Sample records for high-frequency sedimentation cycles

  1. High-Frequency Sound Interaction in Ocean Sediments

    DTIC Science & Technology

    2003-09-30

    results, combined with measured sediment properties, to test the validity of sediment acoustic models , and in particular the poroelastic (Biot...understanding of the dominant scatterers versus frequency near the sediment surface, the potential need for poroelastic sediment models , the...work are described under a separate ONR project titled “ Acoustic propagation and scattering within sand sediments: Laboratory experiments, modeling

  2. High Frequency Acoustic Reflection and Transmission in Ocean Sediments

    DTIC Science & Technology

    2006-09-30

    06-1-0766 http://www.arlut.utexas.edu LONG-TERM GOALS Development of a physical model of high-frequency acoustic interaction with the...shallow water. OBJECTIVES 1) A comparative study of acoustic sediment interaction models including visco-elastic, Biot, BICSQS, and grain...experimental measurements of the bistatic return, for the purpose of defining the best physical model of high-frequency acoustic interaction with the ocean

  3. High Frequency Acoustic Reflection and Transmission in Ocean Sediments

    DTIC Science & Technology

    2003-09-30

    Development of a physical model of high-frequency acoustic interaction with the ocean floor, including penetration through and reflection from smooth and...experiments and additional laboratory measurements in the ARL:UT sand tank, an improved model of sediment acoustics will be developed that is...distinct areas of concentration: development of a broadband the oretical model to describe the acoustic interaction with the ocean floor in littoral

  4. Molybdenum Cycling in Upwelling Sediments: An Example from Namibian Margin Sediments

    NASA Astrophysics Data System (ADS)

    Arnold, G. L.; Goldhammer, T.; Formolo, M.; Brunner, B.; Ferdelman, T.

    2008-12-01

    The paleo-redox application of molybdenum (Mo) isotopes is strongly tied to our knowledge of the modern marine Mo cycle. Elemental mass balance indicates that ~47% of the Mo supplied to the oceans is removed to deep sea sediments, leaving the remaining Mo to "near-shore" reducing sediments (1). The Black Sea is likely the best studied reducing environment with regards to Mo isotopes, yet accounts for only a small fraction of the Mo mass balance. The accumulation of Mo in continental margin sediments has been recently re-assessed and may account for a larger fraction of the marine Mo reservoir than previously thought (2). In the presence of sulfide, the molybdate anion is transformed, by the replacement of oxygen with sulfur, to particle reactive oxy-thiomolybdates (3). This is often cited as the mechanism by which Mo removal proceeds in the Black Sea where sulfide concentrations in the water are high. In contrast, in continental margin settings, the removal mechanism is poorly understood, and the extent to which sulfur cycling plays a role remains un-quantified. To better understand removal/cycling processes in a continental margin setting, where sulfide may only be present in the pore waters and not in the water column, Mo was studied in an array of marine settings off the Namibian coast. Surface sediments were collected across a transect from near-shore/high productivity to deep water/low productivity sediments. These sediments were incubated in bag experiments to study the relationship between sulfur and Mo cycling. Molybdenum concentrations in the Namibian sediments range from detrital values at the lowest productivity site to 25 ppm in surface sediments with high productivity. Preliminary results allude to a correlation between sulfate reduction rates and Mo accumulation in these sediments. Detailed studies of Mo, Mo isotopes, other trace metals, and sulfur investigations from both sediment cores and bag experiments will be presented. (1)Bertine and Turekian

  5. High Frequency Acoustic Reflection and Transmission in Ocean Sediments

    DTIC Science & Technology

    2005-09-30

    the magnitude and phase of the reflection coefficient from a smooth water/sand interface with elastic and poroelastic models ”, J. Acoust . Soc. Am...physical model of high-frequency acoustic interaction with the ocean floor, including penetration through and reflection from smooth and rough water...and additional laboratory measurements in the ARL:UT sand tank, an improved model of sediment acoustics will be developed that is consistent with

  6. Characterizing riverbed sediment using high-frequency acoustics 1: spectral properties of scattering

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    Bed-sediment classification using high-frequency hydro-acoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain-scale roughness. Here, a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel,rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from geo-referenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed ‘stochastic geometries’. Backscatter aggregated over small spatial scales have spectra that obey a power-law. This apparently self-affine behavior could instead arise from morphological- and grain-scale roughnesses over multiple overlapping scales, or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate, nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed-sediment observations (which is the subject of part two of this manuscript).

  7. Characterizing riverbed sediment using high-frequency acoustics 2: scattering signatures of Colorado River bed sediment in Marble and Grand Canyons

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length- and amplitude-scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by geo-referenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum, and the intercept and slope from a power-law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision-tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration, and surveys made at calibration sites at different times, were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.

  8. Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXOs

    DTIC Science & Technology

    2015-05-26

    FINAL REPORT Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXOs SERDP...DOCUMENTATION PAGE Prescribed by ANSI Std. Z39.18 Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is...2015 Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXO’s W912HQ-12-C-0049 MR

  9. Frequency Selection for Multi-frequency Acoustic Measurement of Suspended Sediment

    NASA Astrophysics Data System (ADS)

    Chen, X.; HO, H.; Fu, X.

    2017-12-01

    Multi-frequency acoustic measurement of suspended sediment has found successful applications in marine and fluvial environments. Difficult challenges remain in regard to improving its effectiveness and efficiency when applied to high concentrations and wide size distributions in rivers. We performed a multi-frequency acoustic scattering experiment in a cylindrical tank with a suspension of natural sands. The sands range from 50 to 600 μm in diameter with a lognormal size distribution. The bulk concentration of suspended sediment varied from 1.0 to 12.0 g/L. We found that the commonly used linear relationship between the intensity of acoustic backscatter and suspended sediment concentration holds only at sufficiently low concentrations, for instance below 3.0 g/L. It fails at a critical value of concentration that depends on measurement frequency and the distance between the transducer and the target point. Instead, an exponential relationship was found to work satisfactorily throughout the entire range of concentration. The coefficient and exponent of the exponential function changed, however, with the measuring frequency and distance. Considering the increased complexity of inverting the concentration values when an exponential relationship prevails, we further analyzed the relationship between measurement error and measuring frequency. It was also found that the inversion error may be effectively controlled within 5% if the frequency is properly set. Compared with concentration, grain size was found to heavily affect the selection of optimum frequency. A regression relationship for optimum frequency versus grain size was developed based on the experimental results.

  10. Sediment Relative Paleointensity Record With Slow-sedimentation Rates: Implication For a Chronological Tool In The Slow-sedimentation Sequence

    NASA Astrophysics Data System (ADS)

    Kanamatsu, T.

    2006-12-01

    Usefulness of paleointensity records with high-sedimentation rates in stratigraphic correlation have been proved (e.g. Stoner et al., 1998, Laj et al., 2000, Stoner et al., 2000), because the sediment geomagnetic paleointensity data makes possible the fine time correlation between cores on the older sediment than the range of AMS 14C. As father application of the sediment paleointensity for chronological tool, we examined the paleointensity record of much slower sedimentation rate. The paleointensity record of the slower sedimentation sequence is supposed to show the convoluted record by the filtering effect of the post- depositional remanent magnetization, then a unique and different pattern depending on the sedimentation rate (e.g. Guyodo and Channell, 2002). We studied the record of the cores obtained from the West Philippine Sea Basin (Water depth ca. 5000 to 6000 m). The analyses of paleomagnetic direction proved that the cores contain Jaramillo and Olduvai Events. The sedimentation rates of cores estimated from magnetostratigraphy are less than 1cm/kyr (0.6-0.4 cm/kyr). Proxy of paleointensity (NRM20mT/ARM20mT) applied to cores reveals the variations in the records are dominate in c.a. 100 ky cycle. Comparing to other published paleointensity record, it is clear that the record includes ca.100-ky cycle in spite of slower sedimentation rates, although other high frequency records were not identified. It is suggests that geomagnetic events of a few to several kys are recordable in the sediment. The paleointensity in the slow-sedimentation record is still useful for the age control utilizing the lower frequency signal, especially for investigating of less age information sequence such as the deep sea sediment below CCD, but not for fine correlation by high frequency data.

  11. Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas

    NASA Astrophysics Data System (ADS)

    Droxler, Andre W.; Schlager, Wolfgang

    1985-11-01

    The southern Tongue of the Ocean is a 1300-m-deep, flat-floored basin in the Bahamas that receives large amounts of sediment from the carbonate platforms surrounding it on three sides. We have examined five 8 13-m-long piston cores and determined bulk sedimentation rates, turbidite frequency, and turbidite accumulation rates for the past two glacial and interglacial periods. The mean of bulk sedimentation rates is four to six times higher in interglacial periods; average accumulation rates of recognizable turbidites are higher by a factor of 21 to 45, and interglacial turbidite frequency is higher by a factor of 6 to 14. Sediment composition indicates that increased interglacial rates are due to higher accumulation of platform-derived material. Additional data from other Bahamian basins as well as published material from the Caribbean strongly suggest that highstand shedding is a general trend in pure carbonate depositional systems. Carbonate platforms without a siliciclastic component export more material during highstands of sea level when the platform tops are flooded and produce sediment. The response of carbonate platforms to Quaternary sea-level cycles is opposed to that of siliciclastic ocean margins, where sediment is stored on the inner shelf during highstands and passed on to continental rises and abyssal plains during lowstands of sea level.

  12. Linking Sediment Microbial Communities to Carbon Cycling in High-Latitude Lakes

    NASA Astrophysics Data System (ADS)

    Emerson, J. B.; Varner, R. K.; Johnson, J. E.; Owusu-Dommey, A.; Binder, M.; Woodcroft, B. J.; Wik, M.; Freitas, N. L.; Boyd, J. A.; Crill, P. M.; Saleska, S. R.; Tyson, G. W.; Rich, V. I.

    2015-12-01

    It is well recognized that thawing permafrost peatlands are likely to provide a positive feedback to climate change via CH4 and CO2 emissions. High-latitude lakes in these landscapes have also been identified as sources of CH4 and CO2 loss to the atmosphere. To investigate microbial contributions to carbon loss from high-latitude lakes, we characterized sediment geochemistry and microbiota via cores collected from deep and shallow regions of two lakes (Inre Harrsjön and Mellersta Harrsjön) in Arctic Sweden in July, 2012. These lakes are within the Stordalen Mire long-term ecological area, a focal site for investigating the impacts of climate change-related permafrost thaw, and the lakes in this area are responsible for ~55% of the CH4 loss from this hydrologically interconnected system. Across 40 samples from 4 to 40 cm deep within four sediment cores, Illumina 16S rRNA gene sequencing revealed that the sedimentary microbiota was dominated by candidate phyla OP9 and OP8 (Atribacteria and Aminicenantes, respectively, including putative fermenters and anaerobic respirers), predicted methanotrophic Gammaproteobacteria, and predicted methanogenic archaea from the Thermoplasmata Group E2 clade. We observed some overlap in community structure with nearby peatlands, which tend to be dominated by methanogens and Acidobacteria. Sediment microbial communities differed significantly between lakes, by overlying lake depth (shallow vs. deep), and by depth within a core, with each trend corresponding to parallel differences in biogeochemical measurements. Overall, our results support the potential for significant microbial controls on carbon cycling in high-latitude lakes associated with thawing permafrost, and ongoing metagenomic analyses of focal samples will yield further insight into the functional potential of these microbial communities and their dominant members.

  13. Benthic exchange and biogeochemical cycling in permeable sediments.

    PubMed

    Huettel, Markus; Berg, Peter; Kostka, Joel E

    2014-01-01

    The sandy sediments that blanket the inner shelf are situated in a zone where nutrient input from land and strong mixing produce maximum primary production and tight coupling between water column and sedimentary processes. The high permeability of the shelf sands renders them susceptible to pressure gradients generated by hydrodynamic and biological forces that modulate spatial and temporal patterns of water circulation through these sediments. The resulting dynamic three-dimensional patterns of particle and solute distribution generate a broad spectrum of biogeochemical reaction zones that facilitate effective decomposition of the pelagic and benthic primary production products. The intricate coupling between the water column and sediment makes it challenging to quantify the production and decomposition processes and the resultant fluxes in permeable shelf sands. Recent technical developments have led to insights into the high biogeochemical and biological activity of these permeable sediments and their role in the global cycles of matter.

  14. Sequence stratigraphy and high-frequency cycles: New aspects for a quantitative evaluation of the Gulf of Suez basin, Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nio, S.D.; Yang, C.S.; Tewfik, N.

    1993-09-01

    A new development in the application of sequence stratigraphic concepts in marine as well as continental basins is the recognition of high-frequency cyclic patterns in rock successions in the subsurface. Studies of six wells from the northern, central, and southern parts of the Gulf of Suez show the presence of well-preserved, high-frequency cycles with periodicities similar to the orbitally forced Malankovitch parameters. Subsurface rock successions, third-order sequences, and high-frequency cycles were compared with outcrops. After establishing the biostratigraphic framework for the above-mentioned wells, a sequence analysis was performed. Sequence boundaries and maximum flooding positions in each well were calibrated withmore » the occurrences and evaluation of the high-frequency cycles. It became obvious that there is an intimate relationship between these high-frequency Milankovitch cycles and sequence organization. In addition, a close relationship can be observed in the subsurface as well as in outcrops between high-frequency climatic changes (connected to the Milankovitch cycles) and (litho)facies variability. Quantitative evaluations of each sequence and/or systems tract can be computed with the International Geoservices' cyclicity analysis tool (MILABAR). The results are summarized in a well composite chart, rate (NAR), and ratio of preserved time. In correlations between the wells, an accuracy of 500-100 Ka can be obtained. The quantitative evaluation of the sequence and high-frequency cycle analysis gave some new aspects concerning the (litho)facies and geodynamic development during the pre- as well as the synrift stages of the Gulf of Suez Basin.« less

  15. High-frequency sediment-level oscillations in the swash zone

    USGS Publications Warehouse

    Sallenger, A.H.; Richmond, B.M.

    1984-01-01

    Sediment-level oscillations with heights of about 6 cm and shore-normal lengths of order 10 m have been measured in the swash zone of a high-energy, coarse-sand beach. Crests of oscillations were shore parallel and continuous alongshore. The oscillations were of such low steepness (height-to-length ratio approximately 0.006) that they were difficult to detect visually. The period of oscillation ranged between 6 and 15 min and decreased landward across the swash zone. The sediment-level oscillations were progressive landward with an average migration rate in the middle to upper swash zone of 0.8 m min-1. Migration was caused mostly by erosion on the seaward flank of the crest of an oscillation during a period of net seaward sediment transport. Thus, the observed migration was a form migration landward rather than a migration involving net landward sediment transport. The observed sediment-level oscillations were different than sand waves or other swash-zone bedforms previously described. ?? 1984.

  16. High-Frequency Sound Interaction in Ocean Sediments

    DTIC Science & Technology

    2002-09-30

    sediment attenuation (10-300 kHz) and sound speed (10-300 kHz) and determine constraints imposed on sediment acoustic models , such as poroelastic (Biot...by poroelastic seafloors: First-order theory,” accepted for publication in J. Acoust . Soc. Am. 5. K. L. Williams, “An effective density fluid model ... poroelastic sediment models , the appropriateness of stochastic descriptions of sediment heterogeneities, the importance of single versus multiple

  17. Geochemical evidence for cryptic sulfur cycling in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Mills, Jennifer V.; Antler, Gilad; Turchyn, Alexandra V.

    2016-11-01

    Cryptic sulfur cycling is an enigmatic process in which sulfate is reduced to some lower-valence state sulfur species and subsequently quantitatively reoxidized; the rate and microbial energetics of this process and how prevalent it may be in the environment remain controversial. Here we investigate sulfur cycling in salt marsh sediments from Norfolk, England where we observe high ferrous iron concentrations with no depletion of sulfate or change in the sulfur isotope ratio of that sulfate, but a 5‰ increase in the oxygen isotope ratio in sulfate, indicating that sulfate has been through a reductive cycle replacing its oxygen atoms. This cryptic sulfur cycle was replicated in laboratory incubations using 18O-enriched water, demonstrating that the field results do not solely result from mixing processes in the natural environment. Numerical modeling of the laboratory incubations scaled to represent the salt marsh sediments suggests that the uptake rate of sulfate during this cryptic sulfur cycling is similar to the uptake rate of sulfate during the fastest microbial sulfate reduction that has been measured in the natural environment. The difference is that during cryptic sulfur cycling, all of the sulfur is subsequently reoxidized to sulfate. We discuss mechanisms for this pathway of sulfur cycling including the possible link to the subsurface iron cycle.

  18. Automatic real-time control of suspended sediment based upon high frequency in situ measurements of nephelometric turbidity

    Treesearch

    Jack Lewis; Rand Eads

    1998-01-01

    Abstract - For estimating suspended sediment concentration (SSC) in rivers, turbidity is potentially a much better predictor than water discharge. Since about 1990, it has been feasible to automatically collect high frequency turbidity data at remote sites using battery-powered turbidity probes that are properly mounted in the river or stream. With sensors calibrated...

  19. Biogeochemistry of the coupled manganese-iron-sulfur cycles of intertidal surface sediments

    NASA Astrophysics Data System (ADS)

    Bosselmann, K.; Boettcher, M. E.; Billerbeck, M.; Walpersdorf, E.; Debeer, D.; Brumsack, H.-J.; Huettel, M.; Joergensen, B. B.

    2003-04-01

    The biogeochemistry of the coupled iron-manganese-sulfur-carbon cycles was studied in temperate intertidal surface sediments of the German Wadden Sea (North Sea). Coastal sampling sites include sand, mixed and mud flats with different organic matter and metal contents and permeability reflecting different hydrodynamic regimes. The field study focusses on the influence of temperature, organic matter load, and sediment types on the dynamics of biogeochemical reactions on different time scales (season, day-night, tidal cycles). One of the main interests was related to the cycling of metals (Mn, Fe) in relation to the activity of sulfate-reducing bacteria. Pore water profiles were investigated by sediment sectioning and high resolution gel sampling techniques. Microbial sulfate reduction rates were measured using radiolabeled sulfate with the whole core incubation technique and the spatial distribution of bacterial activity was visualised by using "2D-photoemulsion-monitoring technique". The biogeochemical sulfur cycle was additionally characterised by the stable isotope ratios (S,O) of different sulfur species (e.g., SO_4, AVS, pyrite). Element transfers (metals, nutrients) across the sediment-water interface were additionally quantified by the application of benthic flux chambers. Microbial sulfate reduction was generally highest in the suboxic zone of the surface sediments indicating its potential importance for the mobilization of iron and manganese. In organic matter poor permeable sediments tidal effects additionally influence the spatial and temporal distribution of dissolved redox-sensitive metals. In organic matter-rich silty and muddy sediments, temperature controlled the microbial sulfate reduction rates. Depth-integrated sulfate reduction rates in sandy sediments were much lower and controlled by both temperature and organic matter. Formation of anoxic sediment surfaces due to local enhanced organic matter load (so-called "black spots") may create windows

  20. 15N indicates an active N-cycling microbial community in low carbon, freshwater sediments.

    NASA Astrophysics Data System (ADS)

    Sheik, C.

    2017-12-01

    Earth's large lakes are unique aquatic ecosystems, but we know little of the microbial life driving sedimentary biogeochemical cycles and ultimately the isotopic record. In several of these large lakes, water column productivity is constrained by element limitation, such as phosphorus and iron, creating oligotrophic water column conditions that drive low organic matter content in sediments. Yet, these sediments are biogeochemically active and have been shown to have oxygen consumption rates akin to pelagic ocean sediments and complex sulfur cycling dynamics. Thus, large oligotrophic lakes provide unique and interesting biogeochemical contrast to highly productive freshwater and coastal marine systems. Using Lake Superior as our study site, we found microbial community structure followed patterns in bulk sediment carbon and nitrogen concentrations. These observed patterns were loosely driven by land proximity, as some stations are more coastal and have higher rates of sedimentation, allochthonous carbon inputs and productivity than pelagic sites. Interestingly, upper sediment carbon and nitrogen stable isotopes were quite different from water column. Sediment carbon and nitrogen isotopes correlated significantly with microbial community structure. However, 15N showed much stronger correlation than 13C, and became heavier with core depth. Coinciding with the increase in 15N values, we see evidence of both denitrification and anammox processes in 16S rRNA gene libraries and metagenome assembled genomes. Given that microorganisms prefer light isotopes and that these N-cycling processes both contribute to N2 production and efflux from the sediment, the increase in 15N with sediment depth suggests microbial turnover. Abundance of these genomes also varies with depth suggesting these novel microorganisms are partitioning into specific sediment geochemical zones. Additionally, several of these genomes contain genes involved in sulphur cycling, suggesting a dual

  1. Temperature and Cyanobacterial Bloom Biomass Influence Phosphorous Cycling in Eutrophic Lake Sediments

    PubMed Central

    Chen, Mo; Ye, Tian-Ran; Krumholz, Lee R.; Jiang, He-Long

    2014-01-01

    Cyanobacterial blooms frequently occur in freshwater lakes, subsequently, substantial amounts of decaying cyanobacterial bloom biomass (CBB) settles onto the lake sediments where anaerobic mineralization reactions prevail. Coupled Fe/S cycling processes can influence the mobilization of phosphorus (P) in sediments, with high releases often resulting in eutrophication. To better understand eutrophication in Lake Taihu (PRC), we investigated the effects of CBB and temperature on phosphorus cycling in lake sediments. Results indicated that added CBB not only enhanced sedimentary iron reduction, but also resulted in a change from net sulfur oxidation to sulfate reduction, which jointly resulted in a spike of soluble Fe(II) and the formation of FeS/FeS2. Phosphate release was also enhanced with CBB amendment along with increases in reduced sulfur. Further release of phosphate was associated with increases in incubation temperature. In addition, CBB amendment resulted in a shift in P from the Fe-adsorbed P and the relatively unreactive Residual-P pools to the more reactive Al-adsorbed P, Ca-bound P and organic-P pools. Phosphorus cycling rates increased on addition of CBB and were higher at elevated temperatures, resulting in increased phosphorus release from sediments. These findings suggest that settling of CBB into sediments will likely increase the extent of eutrophication in aquatic environments and these processes will be magnified at higher temperatures. PMID:24682039

  2. The Effects of Sediment Properties on Low Frequency Acoustic Propagation

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. The Effects of Sediment Properties on Low Frequency...investigations have indicated that water-borne acoustic arrival properties such as their Airy Phase are sensitive to sediment shear properties. Our major...goals of our research are to: • Improve inversion schemes for the estimation of sediment geoacoustic properties using low frequency broadband

  3. The life sulfuric: microbial ecology of sulfur cycling in marine sediments

    PubMed Central

    Wasmund, Kenneth; Mußmann, Marc

    2017-01-01

    Summary Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular‐ and ecosystem‐level processes. Sulfur‐transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate‐rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep‐subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. PMID:28419734

  4. Comparison of environmental forcings affecting suspended sediments variability in two macrotidal, highly-turbid estuaries

    NASA Astrophysics Data System (ADS)

    Jalón-Rojas, Isabel; Schmidt, Sabine; Sottolichio, Aldo

    2017-11-01

    The relative contribution of environmental forcing frequencies on turbidity variability is, for the first time, quantified at seasonal and multiannual time scales in tidal estuarine systems. With a decade of high-frequency, multi-site turbidity monitoring, the two nearby, macrotidal and highly-turbid Gironde and Loire estuaries (west France) are excellent natural laboratories for this purpose. Singular Spectrum Analyses, combined with Lomb-Scargle periodograms and Wavelet Transforms, were applied to the continuous multiannual turbidity time series. Frequencies of the main environmental factors affecting turbidity were identified: hydrological regime (high versus low river discharges), river flow variability, tidal range, tidal cycles, and turbulence. Their relative influences show similar patterns in both estuaries and depend on the estuarine region (lower or upper estuary) and the time scale (multiannual or seasonal). On the multiannual time scale, the relative contribution of tidal frequencies (tidal cycles and range) to turbidity variability decreases up-estuary from 68% to 47%, while the influence of river flow frequencies increases from 3% to 42%. On the seasonal time scale, the relative influence of forcings frequencies remains almost constant in the lower estuary, dominated by tidal frequencies (60% and 30% for tidal cycles and tidal range, respectively); in the upper reaches, it is variable depending on hydrological regime, even if tidal frequencies are responsible for up 50% of turbidity variance. These quantifications show the potential of combined spectral analyses to compare the behavior of suspended sediment in tidal estuaries throughout the world and to evaluate long-term changes in environmental forcings, especially in a context of global change. The relevance of this approach to compare nearby and overseas systems and to support management strategies is discussed (e.g., selection of effective operation frequencies/regions, prediction of the most

  5. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, Bikram; Damodaran, Anoop R.; Cho, Hanna

    2014-11-21

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO{sub 3} film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10{sup 5 }kV/cm-s, and temperature change rates as high as 6 × 10{sup 5 }K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cyclesmore » are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems.« less

  6. The life sulfuric: microbial ecology of sulfur cycling in marine sediments.

    PubMed

    Wasmund, Kenneth; Mußmann, Marc; Loy, Alexander

    2017-08-01

    Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. A New Real-Time Cycle Slip Detection and Repair Method under High Ionospheric Activity for a Triple-Frequency GPS/BDS Receiver.

    PubMed

    Liu, Wanke; Jin, Xueyuan; Wu, Mingkui; Hu, Jie; Wu, Yun

    2018-02-01

    Cycle slip detection and repair is a prerequisite for high-precision global navigation satellite system (GNSS)-based positioning. With the modernization and development of GNSS systems, more satellites are available to transmit triple-frequency signals, which allows the introduction of additional linear combinations and provides new opportunities for cycle slip detection and repair. In this paper, we present a new real-time cycle slip detection and repair method under high ionospheric activity for undifferenced Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) triple-frequency observations collected with a single receiver. First, three optimal linearly independent geometry-free pseudorange minus phase combinations are selected to correctly and uniquely determine the cycle slips on the original triple-frequency carrier phase observations. Then, a second-order time-difference algorithm is employed for the pseudorange minus phase combinations to mitigate the impact of between-epoch ionospheric residuals on cycle slip detection, which is especially beneficial under high ionospheric activity. The performance of the approach is verified with static GPS/BDS triple-frequency observations that are collected with a 30 s sampling interval under active ionospheric conditions, and observations are manually inserted with simulated cycle slips. The results show that the method can correctly detect and repair cycle slips at a resolution as small as 1 cycle. Moreover, kinematic data collected from car-driven and airborne experiments are also processed to verify the performance of the method. The experimental results also demonstrate that the method is effective in processing kinematic data.

  8. A New Real-Time Cycle Slip Detection and Repair Method under High Ionospheric Activity for a Triple-Frequency GPS/BDS Receiver

    PubMed Central

    Liu, Wanke; Wu, Mingkui; Hu, Jie; Wu, Yun

    2018-01-01

    Cycle slip detection and repair is a prerequisite for high-precision global navigation satellite system (GNSS)-based positioning. With the modernization and development of GNSS systems, more satellites are available to transmit triple-frequency signals, which allows the introduction of additional linear combinations and provides new opportunities for cycle slip detection and repair. In this paper, we present a new real-time cycle slip detection and repair method under high ionospheric activity for undifferenced Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) triple-frequency observations collected with a single receiver. First, three optimal linearly independent geometry-free pseudorange minus phase combinations are selected to correctly and uniquely determine the cycle slips on the original triple-frequency carrier phase observations. Then, a second-order time-difference algorithm is employed for the pseudorange minus phase combinations to mitigate the impact of between-epoch ionospheric residuals on cycle slip detection, which is especially beneficial under high ionospheric activity. The performance of the approach is verified with static GPS/BDS triple-frequency observations that are collected with a 30 s sampling interval under active ionospheric conditions, and observations are manually inserted with simulated cycle slips. The results show that the method can correctly detect and repair cycle slips at a resolution as small as 1 cycle. Moreover, kinematic data collected from car-driven and airborne experiments are also processed to verify the performance of the method. The experimental results also demonstrate that the method is effective in processing kinematic data. PMID:29389879

  9. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment.

    PubMed

    Baldwin, Darren S; Mitchell, Alison

    2012-03-15

    The impact of sulfate pollution is increasingly being seen as an issue in the management of inland aquatic ecosystems. In this study we use sediment slurry experiments to explore the addition of sulfate, with or without added carbon, on the anaerobic biogeochemical cycles in a wetland sediment that previously had not been exposed to high levels of sulfate. Specifically we looked at the cycling of S (sulfate, dissolved and particulate sulfide--the latter measured as acid volatile sulfide; AVS), C (carbon dioxide, bicarbonate, methane and the short chain volatile fatty acids formate, acetate, butyrate and propionate), N (dinitrogen, ammonium, nitrate and nitrite) and redox active metals (Fe(II) and Mn(II)). Sulfate had the largest effects on the cycling of S and C. All the added S at lower loadings were converted to AVS over the course of the experiment (30 days). At the highest loading (8 mmol) less than 50% of consumed S was converted to AVS, however this is believed to be a kinetic effect. Although sulfate reduction was occurring in sediments with added sulfate, dissolved sulfide concentrations remained low throughout the study. Sulfate addition affected methanogenesis. In the absence of added carbon, addition of sulfate, even at a loading of 1 mmol, resulted in a halving of methane formation. The initial rate of formation of methane was not affected by sulfate if additional carbon was added to the sediment. However, there was evidence for anaerobic methane oxidation in those sediments with added sulfate and carbon, but not in those sediments treated only with carbon. Surprisingly, sulfate addition had little apparent impact on N dynamics; previous studies have shown that sulfide can inhibit denitrification and stimulate dissimilatory nitrate reduction to ammonia. We propose that because most of the reduced sulfur was in particulate form, levels of dissolved sulfide were too low to interfere with the N cycle. Crown Copyright © 2011. Published by Elsevier Ltd. All

  10. Manganese cycles in Arctic marine sediments - Climate signals or diagenesis?

    NASA Astrophysics Data System (ADS)

    März, C.; Stratmann, A.; Eckert, S.; Schnetger, B.; Brumsack, H.-J.

    2009-04-01

    In comparison to sediments from other parts of the world ocean, the inorganic geochemistry of Arctic Ocean sediments is poorly investigated. However, marked light to dark brown layers are well-known features of Quaternary Arctic sediments, and have been related to variable Mn contents. Brown layers represent intervals relatively rich in Mn (often > 1 wt.%), while yellowish-greyish intervals contain less Mn. As these brown layers are widespread in pelagic Quaternary deposits of the Arctic Ocean, there are attempts to use them as stratigraphic, age-equivalent marker horizons that are genetically related to global climate changes (e.g. Jakobsson et al., 2000; Löwemark et al., 2008). In the Arctic Ocean, other conventional stratigraphic methods often fail, therefore the use of Mn-rich layers as a chemostratigraphic tool seems to be a promising approach. However, several inorganic-geochemical and modelling studies of Mn cycles in the Arctic as well as in other parts of the world ocean have shown that multiple Mn layers in marine sediments can be created by non-steady state diagenetic processes, i.e. secondary Mn redistribution in the sediment due to microbially mediated dissolution-reprecipitation reactions (e.g. Li et al., 1969; Gobeil et al., 1997; Burdige, 2006; Katsev et al., 2006). Such biogeochemical processes can lead to rapid migration or fixation of redox boundaries in the sediment, resulting in the formation or (partial) destruction of metal-rich layers several thousands of years after sediment deposition. As this clearly would alter primary paleoenvironmental signals recorded in the sediments, we see an urgent need to unravel the real stratigraphic potential of Arctic Mn cycles before they are readily established as standard tools. For this purpose, we are studying Mn cycles in Arctic Ocean sediments recovered during R/V Polarstern expedition ARK XXIII/3 on the Mendeleev Ridge (East Siberian Sea). First results of pore water and sediment composition

  11. Phase reduction of a limit cycle oscillator perturbed by a strong amplitude-modulated high-frequency force.

    PubMed

    Pyragas, Kestutis; Novičenko, Viktor

    2015-07-01

    The phase reduction method for a limit cycle oscillator subjected to a strong amplitude-modulated high-frequency force is developed. An equation for the phase dynamics is derived by introducing a new, effective phase response curve. We show that if the effective phase response curve is everywhere positive (negative), then an entrainment of the oscillator to an envelope frequency is possible only when this frequency is higher (lower) than the natural frequency of the oscillator. Also, by using the Pontryagin maximum principle, we have derived an optimal waveform of the perturbation that ensures an entrainment of the oscillator with minimal power. The theoretical results are demonstrated with the Stuart-Landau oscillator and model neurons.

  12. Anaerobic Redox Cycling of Iron by Freshwater Sediment Microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Karrie A.; Urrutia, Matilde M.; Churchill, Perry F.

    2006-01-01

    The potential for microbially-mediated anaerobic redox cycling of iron (Fe) was examined in a first-generation enrichment culture of freshwater wetland sediment microorganisms. MPN enumerations revealed the presence of significant populations of Fe(III)-reducing (ca. 108 cells mL-1) and Fe(II)-oxidizing, nitrate-reducing organisms (ca. 105 cells mL-1) in the sediment used to inoculate the enrichment cultures. Nitrate reduction commenced immediately following inoculation of acetate-containing (ca. 1 mM) medium with a small quantity (1% vol/vol) of wetland sediment, and resulted in the transient accumulation of NO2- and production of a mixture of end-products including NH4+. Fe(III) oxide (high surface area goethite) reduction took placemore » - after NO3- was depleted and continued until all the acetate was utilized. Addition of NO3 after Fe(III) reduction ceased resulted in the immediate oxidation of Fe(II) coupled to reduction of + NO3-to NH4 . No significant NO2- accumulation was observed during nitrate-dependent Fe(II) oxidation. No Fe(II) oxidation occurred in pasteurized controls. Microbial community structure in the enrichment was monitored by DGGE analysis of PCR amplified 16s rDNA and RT-PCR amplified 16S rRNA, as well as by construction of 16S rDNA clone libraries for four different time points during the experiment. Strong similarities in dominant members of the microbial community were observed in the Fe(III) reduction and nitrate-dependent Fe(II) oxidation phases of the experiment, specifically the common presence of organisms closely related (= 95% sequence similarity) to the genera Geobacter and Dechloromonas. These results indicate that the wetland sediments contained organisms such as Geobacter sp. which are capable of both + dissimilatory Fe(III) reduction and oxidation of Fe(II) with reduction of NO3-reduction to NH4 . Our findings suggest that microbially-catalyzed nitrate-dependent Fe(II) oxidation has the potential to contribute to a dynamic

  13. Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) arenaceodentata; Full Life-Cycle Exposure to Bedded Sediments

    DTIC Science & Technology

    1993-06-01

    COMMUNITY ENZYME OSMOREGULATION ENERGY FLOW DNA/RNA BEHAVIOR NUTRIENT CYCLING END POINT MEMBRANES METABOLISM INTRASPECIFIC HISTOPATHOLOGY SURVIVAL...Miscellaneous Paper D-93-2AD-A268 207 June 1993 US Army Corps of Engineers Waterways Experiment Station Long-Term Effects of Dredging Operations...Program Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) arenaceodentata; Full Life-Cycle Exposure to Bedded Sediments by

  14. Carbon, nutrient and trace metal cycling in sandy sediments: A comparison of high-energy beaches and backbarrier tidal flats

    NASA Astrophysics Data System (ADS)

    Reckhardt, Anja; Beck, Melanie; Seidel, Michael; Riedel, Thomas; Wehrmann, Achim; Bartholomä, Alexander; Schnetger, Bernhard; Dittmar, Thorsten; Brumsack, Hans-Jürgen

    2015-06-01

    In order to evaluate the importance of coastal sandy sediments and their contribution to carbon, nutrient and metal cycling we investigated two beach sites on Spiekeroog Island, southern North Sea, Germany, and a tidal flat margin, located in Spiekeroog's backbarrier area. We also analyzed seawater and fresh groundwater on Spiekeroog Island, to better define endmember concentrations, which influence our study sites. Intertidal sandy flats and beaches are characterized by pore water advection. Seawater enters the sediment during flood and pore water drains out during ebb and at low tide. This pore water circulation leads to continuous supply of fresh organic substrate to the sediments. Remineralization products of microbial degradation processes, i.e. nutrients, and dissolved trace metals from the reduction of particulate metal oxides, are enriched in the pore water compared to open seawater concentrations. The spatial distribution of dissolved organic carbon (DOC), nutrients (PO43-, NO3-, NO2-, NH4+, Si(OH)4 and total alkalinity), trace metals (dissolved Fe and Mn) as well as sulfate suggests that the exposed beach sites are subject to relatively fast pore water advection, which leads to organic matter and oxygen replenishment. Frequent pore water exchange further leads to comparatively low nutrient concentrations. Sulfate reduction does not appear to play a major role during organic matter degradation. High nitrate concentrations indicate that redox conditions are oxic within the duneward freshwater influenced section, while ammonification, denitrification, manganese and iron reduction seem to prevail in the ammonium-dominated seawater circulation zone. In contrast, the sheltered tidal flat margin site exhibits a different sedimentology (coarser beach sands versus finer tidal flat sands) and nutrients, dissolved manganese and DOC accumulate in the pore water. Ammonium is the dominant pore water nitrogen species and intense sulfate reduction leads to the formation

  15. Drivers of Microbial Metabolic Activity, Biogeochemical Cycling and Associated Greenhouse Gas Production in Streambed Sediments

    NASA Astrophysics Data System (ADS)

    Comer-Warner, S.; Krause, S.; Gooddy, D.; Blaen, P.; Brekenfeld, N.; Wexler, S.; Kaiser, J.

    2017-12-01

    Hotspots of enhanced biogeochemical reactivity are produced where groundwater and surface water mixes in streambed sediments. This enhanced reactivity is due to elevated residence times and nutrient concentrations found in these areas, leading to increased rates of microbial metabolic activity. Streambed sediments, therefore, may be important in reducing catchment-wide nutrient concentrations through increased cycling. However, they also have the potential to produce high concentrations of greenhouse gases (CO2, CH4 and N2O), as end-products of respiration and intermediate products of denitrification. The hydrological and biogeochemical drivers of streambed C and N cycling, are still insufficiently understood. Here we present results from biogeochemical sampling and tracer experiments in an agricultural sandstone stream in the UK. Nutrient, DOC and greenhouse gas concentrations, as well as d13CCO2, were measured in the streambed sediment in multilevel piezometers, and nutrient concentrations, as well as d15NNO3 and d18ONO3, were measured in Diffusive Equilibrium in Thin-film Gels. Tracer experiments using both conservative (Fluorescein and NaCl) and smart (Resazurin-Resorufin) tracers were performed to determine in-stream metabolism, transient storage and solute transport times in sub-reaches of the stream. Our results show large differences in nutrient and greenhouse gas concentrations between sub-reaches dominated by gravel sediments and those dominated by sandy sediments, as well as seasonally. This suggests temperature, sediment type and residence time are key controls on streambed nutrient cycling and greenhouse gas production. The results of this study have important implications for future greenhouse gas estimates from streams and rivers, particularly as the contribution of sediment greenhouse gas production is recognised as increasingly significant.

  16. SULFUR CYCLING IN THALASSIA TESTUDINUM SEAGRASS BED SEDIMENTS

    EPA Science Inventory

    Quarles, Robert L., Jessica A. Rivord and Richard Devereux. In press. Sulfur Cycling in Thalassia testudinum Seagrass Bed Sediments (Abstract). To be presented at the SWS/GERS Fall Joint Society Meeting: Communication and Collaboration: Coastal Systems of the Gulf of Mexico and S...

  17. LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model

    NASA Astrophysics Data System (ADS)

    Zeebe, R. E.

    2011-06-01

    The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, pCO2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to loscar.model@gmail.com.

  18. Study on sound-speed dispersion in a sandy sediment at frequency ranges of 0.5-3 kHz and 90-170 kHz

    NASA Astrophysics Data System (ADS)

    Yu, Sheng-qi; Liu, Bao-hua; Yu, Kai-ben; Kan, Guang-ming; Yang, Zhi-guo

    2017-03-01

    In order to study the properties of sound-speed dispersion in a sandy sediment, the sound speed was measured both at high frequency (90-170 kHz) and low frequency (0.5-3 kHz) in laboratory environments. At high frequency, a sampling measurement was conducted with boiled and uncooked sand samples collected from the bottom of a large water tank. The sound speed was directly obtained through transmission measurement using single source and single hydrophone. At low frequency, an in situ measurement was conducted in the water tank, where the sandy sediment had been homogeneously paved at the bottom for a long time. The sound speed was indirectly inverted according to the traveling time of signals received by three buried hydrophones in the sandy sediment and the geometry in experiment. The results show that the mean sound speed is approximate 1710-1713 m/s with a weak positive gradient in the sand sample after being boiled (as a method to eliminate bubbles as much as possible) at high frequency, which agrees well with the predictions of Biot theory, the effective density fluid model (EDFM) and Buckingham's theory. However, the sound speed in the uncooked sandy sediment obviously decreases (about 80%) both at high frequency and low frequency due to plenty of bubbles in existence. And the sound-speed dispersion performs a weak negative gradient at high frequency. Finally, a water-unsaturated Biot model is presented for trying to explain the decrease of sound speed in the sandy sediment with plenty of bubbles.

  19. Treated and untreated wastewater effluents alter river sediment bacterial communities involved in nitrogen and sulphur cycling.

    PubMed

    Martínez-Santos, Miren; Lanzén, Anders; Unda-Calvo, Jessica; Martín, Iker; Garbisu, Carlos; Ruiz-Romera, Estilita

    2018-08-15

    Studying the dynamics of nitrogen and sulphur cycling bacteria in river surface sediments is essential to better understand their contribution to global biogeochemical cycles. Evaporitic rocks settled at the headwater of the Deba River catchment (northern Spain) lead to high values of sulphate concentration in its waters. Besides, the discharge of effluents from untreated and treated residual (urban and industrial) wastewaters increases the concentration of metals, nutrients and organic compounds in its mid- and low-water courses. The aim of this study was to assess the impact of anthropogenic contamination from untreated and treated residual and industrial wastewaters on the structure and function of bacterial communities present in surface sediments of the Deba River catchment. The application of a quantitative functional approach (qPCR) based on denitrification genes (nir: nirS+nirK; and nosZ), together with a 16S rRNA gene metabarcoding structural analysis, revealed (i) the high relevance of the sulphur cycle at headwater surface sediments (as reflected by the abundance of members of the Syntrophobacterales order, and the Sulfuricurvum and Thiobacillus genera) and (ii) the predominance of sulphide-driven autotrophic denitrification over heterotrophic denitrification. Incomplete heterotrophic denitrification appeared to be predominant in surface sediments strongly impacted by treated and untreated effluents, as reflected by the lower values of the nosZ/nir ratio, thus favouring N 2 O emissions. Understanding nitrogen and sulphur cycling pathways has profound implications for the management of river ecosystems, since this knowledge can help us determine whether a specific river is acting or not as a source of greenhouse gases (i.e., N 2 O). Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The microbial nitrogen cycling potential is impacted by polyaromatic hydrocarbon pollution of marine sediments

    DOE PAGES

    Scott, Nicole M.; Hess, Matthias; Bouskill, Nick J.; ...

    2014-03-25

    During hydrocarbon exposure, the composition and functional dynamics of marine microbial communities are altered, favoring bacteria that can utilize this rich carbon source. Initial exposure of high levels of hydrocarbons in aerobic surface sediments can enrich growth of heterotrophic microorganisms having hydrocarbon degradation capacity. As a result, there can be a localized reduction in oxygen potential within the surface layer of marine sediments causing anaerobic zones. We hypothesized that increasing exposure to elevated hydrocarbon concentrations would positively correlate with an increase in denitrification processes and the net accumulation of dinitrogen. This hypothesis was tested by comparing the relative abundance ofmore » genes associated with nitrogen metabolism and nitrogen cycling identified in 6 metagenomes from sediments contaminated by polyaromatic hydrocarbons from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico, and 3 metagenomes from sediments associated with natural oil seeps in the Santa Barbara Channel. An additional 8 metagenomes from uncontaminated sediments from the Gulf of Mexico were analyzed for comparison. We predicted relative changes in metabolite turnover as a function of the differential microbial gene abundances, which showed predicted accumulation of metabolites associated with denitrification processes, including anammox, in the contaminated samples compared to uncontaminated sediments, with the magnitude of this change being positively correlated to the hydrocarbon concentration and exposure duration. Furthermore, these data highlight the potential impact of hydrocarbon inputs on N cycling processes in marine sediments and provide information relevant for system scale models of nitrogen metabolism in affected ecosystems.« less

  1. The microbial nitrogen cycling potential is impacted by polyaromatic hydrocarbon pollution of marine sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Nicole M.; Hess, Matthias; Bouskill, Nick J.

    2014-03-25

    During hydrocarbon exposure, the composition and functional dynamics of marine microbial communities are altered, favoring bacteria that can utilize this rich carbon source. Initial exposure of high levels of hydrocarbons in aerobic surface sediments can enrich growth of heterotrophic microorganisms having hydrocarbon degradation capacity. As a result, there can be a localized reduction in oxygen potential within the surface layer of marine sediments causing anaerobic zones. We hypothesized that increasing exposure to elevated hydrocarbon concentrations would positively correlate with an increase in denitrification processes and the net accumulation of dinitrogen. This hypothesis was tested by comparing the relative abundance ofmore » genes associated with nitrogen metabolism and nitrogen cycling identified in 6 metagenomes from sediments contaminated by polyaromatic hydrocarbons from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico, and 3 metagenomes from sediments associated with natural oil seeps in the Santa Barbara Channel. An additional 8 metagenomes from uncontaminated sediments from the Gulf of Mexico were analyzed for comparison. We predicted relative changes in metabolite turnover as a function of the differential microbial gene abundances, which showed predicted accumulation of metabolites associated with denitrification processes, including anammox, in the contaminated samples compared to uncontaminated sediments, with the magnitude of this change being positively correlated to the hydrocarbon concentration and exposure duration. These data highlight the potential impact of hydrocarbon inputs on N cycling processes in marine sediments and provide information relevant for system scale models of nitrogen metabolism in affected ecosystems« less

  2. Soil erosion, sedimentation and the carbon cycle

    NASA Astrophysics Data System (ADS)

    Cammeraat, L. H.; Kirkels, F.; Kuhn, N. J.

    2012-04-01

    Historically soil erosion focused on the effects of on-site soil quality loss and consequently reduced crop yields, and off-site effects related to deposition of material and water quality issues such as increased sediment loads of rivers. In agricultural landscapes geomorphological processes reallocate considerable amounts of soil and soil organic carbon (SOC). The destiny of SOC is of importance because it constitutes the largest C pool of the fast carbon cycle, and which cannot only be understood by looking at the vertical transfer of C from soil to atmosphere. Therefore studies have been carried out to quantify this possible influence of soil erosion and soil deposition and which was summarized by Quinton et al. (2010) by "We need to consider soils as mobile systems to make accurate predictions about the consequences of global change for terrestrial biogeochemical cycles and climate feedbacks". Currently a debate exists on the actual fate of SOC in relation to the global carbon cycle, represented in a controversy between researchers claiming that erosion is a sink, and those who claim the opposite. This controversy is still continuing as it is not easy to quantify and model the dominating sink and source processes at the landscape scale. Getting insight into the balance of the carbon budget requires a comprehensive research of all relevant processes at broad spatio-temporal scales, from catchment to regional scales and covering the present to the late Holocene. Emphasising the economic and societal benefits, the merits for scientific knowledge of the carbon cycle and the potential to sequester carbon and consequently offset increasing atmospheric CO2 concentrations, make the fate of SOC in agricultural landscapes a high-priority research area. Quinton, J.N., Govers, G., Van Oost, K., Bardgett, R.D., 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci, 3, 311-314.

  3. Ni cycling in mangrove sediments from New Caledonia

    NASA Astrophysics Data System (ADS)

    Noël, Vincent; Morin, Guillaume; Juillot, Farid; Marchand, Cyril; Brest, Jessica; Bargar, John R.; Muñoz, Manuel; Marakovic, Grégory; Ardo, Sandy; Brown, Gordon E.

    2015-11-01

    sediment layers. Ni-incorporation in pyrite is especially observed beneath an inland Avicennia stand where anoxic conditions are dominant. In contrast, beneath a Rhizophora stand closer to the ocean, where the redox cycle is intensified due to the tide cycle, partial re-oxidation of Ni-bearing pyrites favors nickel mobility, as confirmed by Ni-mass balance estimates and by higher Ni concentration in the pore waters. These findings have important environmental implications for better evaluating the protective role of mangroves against trace metal dispersion into marine ecosystems. They may also help in predicting the response of mangrove ecosystems to increasing anthropogenic pressure on coastal areas.

  4. Floodplain trapping and cycling compared to streambank erosion of sediment and nutrients in an agricultural watershed

    USGS Publications Warehouse

    Gillespie, Jaimie; Noe, Gregory; Hupp, Cliff R.; Gellis, Allen; Schenk, Edward R.

    2018-01-01

    Floodplains and streambanks can positively and negatively influence downstream water quality through interacting geomorphic and biogeochemical processes. Few studies have measured those processes in agricultural watersheds. We measured inputs (floodplain sedimentation and dissolved inorganic loading), cycling (floodplain soil nitrogen [N] and phosphorus [P] mineralization), and losses (bank erosion) of sediment, N, and P longitudinally in stream reaches of Smith Creek, an agricultural watershed in the Valley and Ridge physiographic province. All study reaches were net depositional (floodplain deposition > bank erosion), had high N and P sedimentation and loading rates to the floodplain, high soil concentrations of N and P, and high rates of floodplain soil N and P mineralization. High sediment, N, and P inputs to floodplains are attributed to agricultural activity in the region. Rates of P mineralization were much greater than those measured in other studies of nontidal floodplains that used the same method. Floodplain connectivity and sediment deposition decreased longitudinally, contrary to patterns in most watersheds. The net trapping function of Smith Creek floodplains indicates a benefit to water quality. Further research is needed to determine if future decreases in floodplain deposition, continued bank erosion, and the potential for nitrate leaching from nutrient-enriched floodplain soils could pose a long-term source of sediment and nutrients to downstream rivers.

  5. Nitrogen cycling processes and microbial community composition in bed sediments in the Yukon River at Pilot Station

    USGS Publications Warehouse

    Repert, Deborah A.; Underwood, Jennifer C.; Smith, Richard L.; Song, Bongkeun

    2014-01-01

    Information on the contribution of nitrogen (N)-cycling processes in bed sediments to river nutrient fluxes in large northern latitude river systems is limited. This study examined the relationship between N-cycling processes in bed sediments and N speciation and loading in the Yukon River near its mouth at the Bering Sea. We conducted laboratory bioassays to measure N-cycling processes in sediment samples collected over distinct water cycle seasons. In conjunction, the microbial community composition in the bed sediments using genes involved in N-cycling (narG, napA, nosZ, and amoA) and 16S rRNA gene pyrosequences was examined. Temporal variation was observed in net N mineralization, nitrate uptake, and denitrification rate potentials and correlated strongly with sediment carbon (C) and extractable N content and microbial community composition rather than with river water nutrient concentrations. The C content of the bed sediment was notably impacted by the spring flood, ranging from 1.1% in the midst of an ice-jam to 0.1% immediately after ice-out, suggesting a buildup of organic material (OM) prior to scouring of the bed sediments during ice break up. The dominant members of the microbial community that explained differences in N-processing rates belonged to the genera Crenothrix,Flavobacterium, and the family of Comamonadaceae. Our results suggest that biogeochemical processing rates in the bed sediments appear to be more coupled to hydrology, nutrient availability in the sediments, and microbial community composition rather than river nutrient concentrations at Pilot Station.

  6. Difference of nitrogen-cycling microbes between shallow bay and deep-sea sediments in the South China Sea.

    PubMed

    Yu, Tiantian; Li, Meng; Niu, Mingyang; Fan, Xibei; Liang, Wenyue; Wang, Fengping

    2018-01-01

    In marine sediments, microorganisms are known to play important roles in nitrogen cycling; however, the composition and quantity of microbes taking part in each process of nitrogen cycling are currently unclear. In this study, two different types of marine sediment samples (shallow bay and deep-sea sediments) in the South China Sea (SCS) were selected to investigate the microbial community involved in nitrogen cycling. The abundance and composition of prokaryotes and seven key functional genes involved in five processes of the nitrogen cycle [nitrogen fixation, nitrification, denitrification, dissimilatory nitrate reduction to ammonium (DNRA), and anaerobic ammonia oxidation (anammox)] were presented. The results showed that a higher abundance of denitrifiers was detected in shallow bay sediments, while a higher abundance of microbes involved in ammonia oxidation, anammox, and DNRA was found in the deep-sea sediments. Moreover, phylogenetic differentiation of bacterial amoA, nirS, nosZ, and nrfA sequences between the two types of sediments was also presented, suggesting environmental selection of microbes with the same geochemical functions but varying physiological properties.

  7. Physical context for theoretical approaches to sediment transport magnitude-frequency analysis in alluvial channels

    NASA Astrophysics Data System (ADS)

    Sholtes, Joel; Werbylo, Kevin; Bledsoe, Brian

    2014-10-01

    Theoretical approaches to magnitude-frequency analysis (MFA) of sediment transport in channels couple continuous flow probability density functions (PDFs) with power law flow-sediment transport relations (rating curves) to produce closed-form equations relating MFA metrics such as the effective discharge, Qeff, and fraction of sediment transported by discharges greater than Qeff, f+, to statistical moments of the flow PDF and rating curve parameters. These approaches have proven useful in understanding the theoretical drivers behind the magnitude and frequency of sediment transport. However, some of their basic assumptions and findings may not apply to natural rivers and streams with more complex flow-sediment transport relationships or management and design scenarios, which have finite time horizons. We use simple numerical experiments to test the validity of theoretical MFA approaches in predicting the magnitude and frequency of sediment transport. Median values of Qeff and f+ generated from repeated, synthetic, finite flow series diverge from those produced with theoretical approaches using the same underlying flow PDF. The closed-form relation for f+ is a monotonically increasing function of flow variance. However, using finite flow series, we find that f+ increases with flow variance to a threshold that increases with flow record length. By introducing a sediment entrainment threshold, we present a physical mechanism for the observed diverging relationship between Qeff and flow variance in fine and coarse-bed channels. Our work shows that through complex and threshold-driven relationships sediment transport mode, channel morphology, flow variance, and flow record length all interact to influence estimates of what flow frequencies are most responsible for transporting sediment in alluvial channels.

  8. Life cycle assessment for dredged sediment placement strategies.

    PubMed

    Bates, Matthew E; Fox-Lent, Cate; Seymour, Linda; Wender, Ben A; Linkov, Igor

    2015-04-01

    Dredging to maintain navigable waterways is important for supporting trade and economic sustainability. Dredged sediments are removed from the waterways and then must be managed in a way that meets regulatory standards and properly balances management costs and risks. Selection of a best management alternative often results in stakeholder conflict regarding tradeoffs between local environmental impacts associated with less expensive alternatives (e.g., open water placement), more expensive measures that require sediment disposal in constructed facilities far away (e.g., landfills), or beneficial uses that may be perceived as risky (e.g., beach nourishment or island creation). Current sediment-placement decisions often focus on local and immediate environmental effects from the sediment itself, ignoring a variety of distributed and long-term effects from transportation and placement activities. These extended effects have implications for climate change, resource consumption, and environmental and human health, which may be meaningful topics for many stakeholders not currently considered. Life-Cycle Assessment (LCA) provides a systematic and quantitative method for accounting for this wider range of impacts and benefits across all sediment management project stages and time horizons. This paper applies a cradle-to-use LCA to dredged-sediment placement through a comparative analysis of potential upland, open water, and containment-island placement alternatives in the Long Island Sound region of NY/CT. Results suggest that, in cases dealing with uncontaminated sediments, upland placement may be the most environmentally burdensome alternative, per ton-kilometer of placed material, due to the emissions associated with diesel fuel combustion and electricity production and consumption required for the extra handling and transportation. These results can be traded-off with the ecosystem impacts of the sediments themselves in a decision-making framework. Published by

  9. Genomic reconstruction of novel sediment phyla enlightens roles in sedimentary biogeochemical cycling

    NASA Astrophysics Data System (ADS)

    Baker, B.; Lazar, C.; Seitz, K.; Teske, A.; Hinrichs, K. U.; Dick, G.

    2015-12-01

    Estuaries are among the most productive habitats on the planet. Microbes in estuary sediments control the turnover of organic carbon, and the anaerobic cycling of nitrogen and sulfur. These communities are complex and primarily made up of uncultured lineages, thus little is known about how ecological and metabolic processes are partitioned in sediments. We reconstructed 82 bacterial and 24 archaeal high-quality genomes from different redox regimes (sulfate-rich, sulfate-methane transition zone, and methane-rich zones) of estuary sediments. These bacteria belong to 23 distinct groups, including uncultured candidate phyla (eg. KSB1, TA06, and KD3-62), and three newly described phyla (WOR-1, and -2, and -3). The archaea encompass 8 widespread sediment lineages including MGB-D, RC-III and IV, Z7ME43, Parvarchaeota, Lokiarchoaeta (MBG-B), SAGMEG, Bathyarchaeota (groups MCG-1, -6, -7, and -15) and previously unrecognized deeply branched phylum "Thorarchaeota". The uncultured phyla mediate essential biogeochemical processes of the estuarine environment. Z7ME43 archaea have genes for S disproportionation (S0 reduction and thiosulfate reduction and oxidation). SAGMEG appear to be strict anaerobes capable of coupling CO/H2 oxidation to either S0 or nitrite reduction and have novel RubisCO genes for carbon fixation. Thorarchaeota contain pathways for acetate production from the degradation of detrital proteins and intermediate S cycling. Furthermore, the gene content of this group revealed links in the evolutionary histories of archaea and eukaryotes. This dataset extents our knowledge of the metabolic potential of several uncultured phyla. We were able to chart the flow of carbon and nutrients through the multiple layers of bacterial processing and reveal potential ecological interactions within the communities.

  10. Improving understanding of mixed-land-use watershed suspended sediment regimes: Mechanistic progress through high-frequency sampling.

    PubMed

    Kellner, Elliott; Hubbart, Jason A

    2017-11-15

    Given the importance of suspended sediment to biogeochemical functioning of aquatic ecosystems, and the increasing concern of mixed-land-use effects on pollutant loading, there is an urgent need for research that quantitatively characterizes spatiotemporal variation of suspended sediment dynamics in contemporary watersheds. A study was conducted in a representative watershed of the central United States utilizing a nested-scale experimental watershed design, including five gauging sites (n=5) partitioning the catchment into five sub-watersheds. Hydroclimate stations at gauging sites were used to monitor air temperature, precipitation, and stream stage at 30-min intervals during the study (Oct. 2009-Feb. 2014). Streamwater grab samples were collected four times per week, at each site, for the duration of the study (Oct. 2009-Feb. 2014). Water samples were analyzed for suspended sediment using laser particle diffraction. Results showed significant differences (p<0.05) between monitoring sites for total suspended sediment concentration, mean particle size, and silt volume. Total concentration and silt volume showed a decreasing trend from the primarily agricultural upper watershed to the urban mid-watershed, and a subsequent increasing trend to the more suburban lower watershed. Conversely, mean particle size showed an opposite spatial trend. Results are explained by a combination of land use (e.g. urban stormwater dilution) and surficial geology (e.g. supply-controlled spatial variation of particle size). Correlation analyses indicated weak relationships with both hydroclimate and land use, indicating non-linear sediment dynamics. Suspended sediment parameters displayed consistent seasonality during the study, with total concentration decreasing through the growing season and mean particle size inversely tracking air temperature. Likely explanations include vegetation influences and climate-driven weathering cycles. Results reflect unique observations of

  11. MODELING NITROGEN-CARBON CYCLING AND OXYGEN CONSUMPTION IN BOTTOM SEDIMENTS

    EPA Science Inventory

    A model framework is presented for simulating nitrogen and carbon cycling at the sediment–water interface, and predicting oxygen consumption by oxidation reactions inside the sediments. Based on conservation of mass and invoking simplifying assumptions, a coupled system of diffus...

  12. Sediment transport and fluid mud layer formation in the macro-tidal Chikugo river estuary during a fortnightly tidal cycle

    NASA Astrophysics Data System (ADS)

    Azhikodan, Gubash; Yokoyama, Katsuhide

    2018-03-01

    The erosion and deposition dynamics of fine sediment in a highly turbid estuarine channel were successfully surveyed during the period from August 29 to September 12, 2009 using an echo sounder in combination with a high-resolution acoustic Doppler current profiler. Field measurements were conducted focusing on the tide driven dynamics of suspended sediment concentration (SSC), and fluid mud at the upstream of the macrotidal Chikugo river estuary during semidiurnal and fortnightly tidal cycles. Morphological evolution was observed especially during the spring tide over a period of two weeks. The elevation of the channel bed was stable during neap tide, but it underwent fluctuations when the spring tide occurred owing to the increase in the velocity and shear stress. Two days of time lag were observed between the maximum SSC and peak tidal flow, which resulted in the asymmetry between neap-to-spring and spring-to-neap transitions. During the spring tide, a hysteresis loop was observed between shear stress and SSC, and its direction was different during flood and ebb tides. Although both fine sediments and flocs were dominant during flood tides, only fine sediments were noticed during ebb tides. Hence, the net elevation change in the bed was positive, and sedimentation took place during the semilunar tidal cycle. Finally, a bed of consolidated mud was deposited on the initial bed, and the height of the channel bed increased by 0.9 m during the two-week period. The observed hysteretic effect between shear stress and SSC during the spring tides, and the asymmetrical neap-spring-neap tidal cycle influenced the near-bed sediment dynamics of the channel, and led to the formation of a fluid mud layer at the bottom of the river.

  13. Bioturbation and Manganese Cycling in Hemipelagic Sediments

    NASA Astrophysics Data System (ADS)

    Aller, R. C.

    1990-06-01

    The activities of infaunal macrobenthos have major influences on the types, rates and distributions of diagenetic reactions involving manganese in relatively carbon-rich deep-sea and nearshore sediments. In some non-sulphidic hemipelagic deposits of the eastern equatorial Pacific (Panama Basin) biogenic reworking drives internal cycles of manganese, which can apparently account for up to ca. 100% of organic carbon oxidation and reduction of O2 supplied (diffusively) to the sea floor. Heterotrophic (carbon-based) manganese reduction is stimulated by simultaneous mixing of reactive organic matter and manganese oxide into suboxic-anoxic deposits. In sulphidic sediments, biogenic reworking must also enhance a lithotrophic pathway (sulphur-based) pathway of manganese reduction by promoting contact of manganese oxides and iron sulphides. Particle reworking dramatically alters the balance between aerobic and anaerobic decomposition pathways, promoting the utilization of O2 in the reoxidaton of reduced metabolites rather than direct oxidation of carbon. Irrigated burrows create microenvironments, which increase manganese reduction-oxidation and deplete Mn2+ from deeper pore waters. This may increase net Mn2+ production rates by removal of metabolites and potential co-precipitants with Mn2+. The occurrence and geometry of manganese oxide encrusted biogenic structures imply specific adaptations of infauna to manganese based microbial activity in hemipelagic sediments like the Panama Basin.

  14. Short-chain alkane cycling in deep Gulf of Mexico cold-seep sediments

    NASA Astrophysics Data System (ADS)

    Sibert, R.; Joye, S. B.; Hunter, K.

    2015-12-01

    Mixtures of light hydrocarbon gases are common in deep Gulf of Mexico cold-seep sediments, and are typically dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is usually methane (>80% C1), but ethane (C2) and propane (C3) are nearly always present in trace amounts (<1% total). The processes that control the concentration and isotopic signature of these gases in sediments are well explained for methane, but the controls for C2/C3 cycling are still a relative mystery. Methane production proceeds in deep anoxic sediments by either 1) thermocatalytic cracking of fossil organic matter, or 2) as a direct product of microbial metabolism, i.e. methanogenesis. In surface sediments, it appears that both microbial consumption and chemical deposition of methane (i.e. as methane clathrate) ensures that >95% of the methane produced at depth never reaches the water column. Production of C1 and C2 in deep-sea sediments has been historically attributed only to thermocatalytic processes, though limited data suggests production of C2/C3 compounds through the activity of archaea at depth. Furthermore, carbon isotopic data on ethane and propane from deep cores of Gulf of Mexico sediments suggest alkanogenesis at >3 m depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Additional studies have also isolated microorganisms capable of oxidizing ethane and propane in the laboratory, but field studies of microbial-driven dynamics of C2/C3 gases in cold-seep sediments are rare. Here, we present the results of a series of incubation experiments using sediment slurries culled from surface sediments from one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of alkane oxidation were measured under a variety of conditions to assess the surface-driven microbial controls on C2/C3 cycling in cold-seep environments. Such microbial processes

  15. High resolution chronology of late Cretaceous-early Tertiary events determined from 21,000 yr orbital-climatic cycles in marine sediments

    NASA Technical Reports Server (NTRS)

    Herbert, Timothy D.; Dhondt, Steven

    1988-01-01

    A number of South Atlantic sites cored by the Deep Sea Drilling Project (DSDP) recovered late Cretaceous and early Tertiary sediments with alternating light-dark, high-low carbonate content. The sedimentary oscillations were turned into time series by digitizing color photographs of core segments at a resolution of about 5 points/cm. Spectral analysis of these records indicates prominent periodicity at 25 to 35 cm in the Cretaceous intervals, and about 15 cm in the early Tertiary sediments. The absolute period of the cycles that is determined from paleomagnetic calibration at two sites is 20,000 to 25,000 yr, and almost certainly corresponds to the period of the earth's precessional cycle. These sequences therefore contain an internal chronometer to measure events across the K/T extinction boundary at this scale of resolution. The orbital metronome was used to address several related questions: the position of the K/T boundary within magnetic chron 29R, the fluxes of biogenic and detrital material to the deep sea immediately before and after the K/T event, the duration of the Sr anomaly, and the level of background climatic variability in the latest Cretaceous time. The carbonate/color cycles that were analyzed contain primary records of ocean carbonate productivity and chemistry, as evidenced by bioturbational mixing of adjacent beds and the weak lithification of the rhythmic sequences. It was concluded that sedimentary sequences that contain orbital cyclicity are capable of providing resolution of dramatic events in earth history with much greater precision than obtainable through radiometric methods. The data show no evidence for a gradual climatic deterioration prior to the K/T extinction event, and argue for a geologically rapid revolution at this horizon.

  16. Evolution of high duty cycle echolocation in bats.

    PubMed

    Fenton, M Brock; Faure, Paul A; Ratcliffe, John M

    2012-09-01

    Duty cycle describes the relative 'on time' of a periodic signal. In bats, we argue that high duty cycle (HDC) echolocation was selected for and evolved from low duty cycle (LDC) echolocation because increasing call duty cycle enhanced the ability of echolocating bats to detect, lock onto and track fluttering insects. Most echolocators (most bats and all birds and odontocete cetaceans) use LDC echolocation, separating pulse and echo in time to avoid forward masking. They emit short duration, broadband, downward frequency modulated (FM) signals separated by relatively long periods of silence. In contrast, bats using HDC echolocation emit long duration, narrowband calls dominated by a single constant frequency (CF) separated by relatively short periods of silence. HDC bats separate pulse and echo in frequency by exploiting information contained in Doppler-shifted echoes arising from their movements relative to background objects and their prey. HDC echolocators are particularly sensitive to amplitude and frequency glints generated by the wings of fluttering insects. We hypothesize that narrowband/CF calls produced at high duty cycle, and combined with neurobiological specializations for processing Doppler-shifted echoes, were essential to the evolution of HDC echolocation because they allowed bats to detect, lock onto and track fluttering targets. This advantage was especially important in habitats with dense vegetation that produce overlapping, time-smeared echoes (i.e. background acoustic clutter). We make four specific, testable predictions arising from this hypothesis.

  17. Sediment Production and Storage Through a Glacial-Interglacial Cycle on a Cool-Temperate Glaciated Margin

    NASA Astrophysics Data System (ADS)

    Powell, R. D.

    2001-12-01

    The southern Alaska margin has high coastal mountains, which coupled with temperate glaciation, result in extremely high modern erosion rates (e.g. Jaeger et al., 2001), possibly exceeding rates of orogenic uplift (Meigs and Sauber, 2000). Where measured, modern sediment yields are among the highest of any basin worldwide (Hallet et al., 1996; Elverhoi et al., 1998; Jaeger et al., 1998). In Muir Inlet, Glacier Bay, sediment yields from slowly retreating glaciers decrease logarithmically with decreasing drainage basin area (Powell, 1991), a trend also reflected in regional data synthesized in Hallet et al. (1996). Alley (1997) then hypothesized that if erosion increases with basin area then where two tributaries join, deeper erosion would ensue, which is consistent with linear erosional troughs and hanging valleys. The idea is also consistent with the general downglacier increase in water flux at the glacier bed. However over longer periods, data from seismic profiles of the Gulf of Alaska shelf, show sediment yields are nearly the same through a glacial-interglacial cycle; regional data from other glaciated basins appear to confirm that trend (Elverhoi et al., 1998). If yields are continuously high from bedrock erosion, then why are mountains not eroded to base level because erosion rates are higher than isostatic uplift? Why are trends in yields apparently different during recent retreats with decreasing basin sizes than during longer term glacial cycles? Answers to these questions may be numerous and compound; however, one possibility will be evaluated. We know there is significant modern bedrock erosion occurring during glacial retreat and that also appears to have been the case during advance. Native stories describing the last (Little Ice Age) advance in Glacier Bay describe a large amount of sediment being produced (Powell et al., 1995) indicating that significant erosion was occurring. Fjord-wall stratigraphy shows that sediment had infilled much of the Bay

  18. Sea-level responses to sediment transport over the last ice age cycle

    NASA Astrophysics Data System (ADS)

    Ferrier, K.; Mitrovica, J. X.

    2013-12-01

    Sea-level changes over the last ice age cycle were instrumental in steering Earth's topographic evolution. These sea-level variations were driven by changes in surface mass loads, including not only ice and ocean mass variations but also the transfer of rock from eroding mountains to sedimentary deposits. Here we use an extended numerical model of ice age sea level (Dalca et al., 2013) to explore how sediment erosion and deposition affected global sea-level variations over the last ice age cycle. The model takes histories of ice and sediment loads as inputs, and it computes gravitationally self-consistent sea level responses by accounting for the deformational, gravitational, and rotational perturbations in the Earth's viscoelastic form. In these model simulations, we use published estimates of erosion rates, sedimentation rates, and ice sheet variations to constrain sediment and ice loading since the Last Interglacial. We explore sea-level responses to several erosional and depositional scenarios, and in each we quantify the relative contributions of crustal deformation and gravitational perturbation to the computed sea-level change. We also present a case study to illustrate the effects that sediment transfer can have on sea level at the regional scale. In particular, we focus on the region surrounding the Indus River, where fluvial sediment fluxes are among the highest on Earth. Preliminary model results suggest that sediment fluxes from Asia to the ocean are large enough to produce a significant response in sea level along the northeastern coast of the Arabian Sea. Moreover, they suggest that modeled sea-level histories are sensitive to the timing and spatial distribution of sediment erosion and deposition. For instance, sediment deposition along the continental shelf - which may have been the primary site of Indus River sediment deposition during the Holocene - produces a different sea-level response than sediment deposition on the deep-sea Indus Fan, where

  19. A continuously weighing, high frequency sand trap: Wind tunnel and field evaluations

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Yang, XingHua; Huo, Wen; Ali, Mamtimin; Zheng, XinQian; Zhou, ChengLong; He, Qing

    2017-09-01

    A new continuously weighing, high frequency sand trap (CWHF) has been designed. Its sampling efficiency is evaluated in a wind tunnel and the potential of the new trap has been demonstrated in field trials. The newly designed sand trap allows fully automated and high frequency measurement of sediment fluxes over extensive periods. We show that it can capture the variations and structures of wind-driven sand transport processes and horizontal sediment flux, and reveal the relationships between sand transport and meteorological parameters. Its maximum sampling frequency can reach 10 Hz. Wind tunnel tests indicated that the sampling efficiency of the CWHF sand trap varies between 39.2 to 64.3%, with an average of 52.5%. It achieved a maximum sampling efficiency of 64.3% at a wind speed of 10 m s- 1. This is largely achieved by the inclusion of a vent hole which leads to a higher sampling efficiency than that of a step-like sand trap at high wind speeds. In field experiments, we show a good agreement between the mass of sediment from the CWHF sand trap, the wind speed at 2 m and the number of saltating particles at 5 cm above the ground surface. According to analysis of the horizontal sediment flux at four heights from the CWHF sand trap (25, 35, 50, and 100 cm), the vertical distribution of the horizontal sediment flux up to a height of 100 cm above the sand surface follows an exponential function. Our field experiments show that the new instrument can capture more detailed information on sediment transport with much reduced labor requirement. Therefore, it has great potential for application in wind-blown sand monitoring and process studies.

  20. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism

    PubMed Central

    Elshahed, Mostafa S.; Najar, Fares Z.; Krumholz, Lee R.

    2015-01-01

    Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons. PMID:26417542

  1. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism.

    PubMed

    Spain, Anne M; Elshahed, Mostafa S; Najar, Fares Z; Krumholz, Lee R

    2015-01-01

    Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring's source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.

  2. A method for the division of the conglomerate depositional cycle under Milankovitch cycles

    NASA Astrophysics Data System (ADS)

    Chen, Panpan; Fang, Nianqiao; Li, Cunlei; Liu, Jianmei

    2017-06-01

    The conglomerate layer at the upper section of the 4th member of the Shahejie formation ({{{{S}}}4}{{u}}) of the Yongan district at the Donying depression is a well-developed sedimentation of several periods. It lacks stable muddy layers and sophisticated classification of the sedimentation periods and the proportion of sedimentary layering in each period has long been a difficult task for geologists. In addressing this problem, this paper attempts to introduce the theory of climatic cycles driven by astronomical periods from astronomical stratigraphy on the basis of the characteristics of the sedimentation under the turbidity current in the region of study. Through studying the conditions for the formation of the conglomerate layer and the factors of control, we pinpoint the formation of the layer in chronology and differentiate the cycle interface and correlation in the same formation period. Milankovitch analysis is conducted on the sedimentation of the conglomerate layer in the region of study to determine if the stratigraphy cycle of the region is primarily controlled by the eccentricity cycle and calculate MSC1 and MSC2 thicknesses of 189.3 m and 78.05 m, respectively. Milankovitch theory is the primary tool used in the analysis, in conjunction with petrographic analysis. The stratum at the {{{{S}}}4}{{u}} is classified into four IV-grade sequences and 11 V-grade sequences. The information on the dominant cycle frequency is used for wave filtering of the well logs and to determine the significant Milankovitch wave log. With the data from this curve, we may compare the stratigraphy cycle with the characteristics of the standard cycle and classify and compare the sedimentation periods of the conglomerate layers in further detail.

  3. Microbial Community Structure in Lake and Wetland Sediments from a High Arctic Polar Desert Revealed by Targeted Transcriptomics

    PubMed Central

    Stoeva, Magdalena K.; Aris-Brosou, Stéphane; Chételat, John; Hintelmann, Holger; Pelletier, Philip; Poulain, Alexandre J.

    2014-01-01

    While microbial communities play a key role in the geochemical cycling of nutrients and contaminants in anaerobic freshwater sediments, their structure and activity in polar desert ecosystems are still poorly understood, both across heterogeneous freshwater environments such as lakes and wetlands, and across sediment depths. To address this question, we performed targeted environmental transcriptomics analyses and characterized microbial diversity across three depths from sediment cores collected in a lake and a wetland, located on Cornwallis Island, NU, Canada. Microbial communities were characterized based on 16S rRNA and two functional gene transcripts: mcrA, involved in archaeal methane cycling and glnA, a bacterial housekeeping gene implicated in nitrogen metabolism. We show that methane cycling and overall bacterial metabolic activity are the highest at the surface of lake sediments but deeper within wetland sediments. Bacterial communities are highly diverse and structured as a function of both environment and depth, being more diverse in the wetland and near the surface. Archaea are mostly methanogens, structured by environment and more diverse in the wetland. McrA transcript analyses show that active methane cycling in the lake and wetland corresponds to distinct communities with a higher potential for methane cycling in the wetland. Methanosarcina spp., Methanosaeta spp. and a group of uncultured Archaea are the dominant methanogens in the wetland while Methanoregula spp. predominate in the lake. PMID:24594936

  4. Iron Cycling in Marine Sediments - New Insights from Isotope Analysis on Sequentially Extracted Fe Fractions

    NASA Astrophysics Data System (ADS)

    Henkel, S.; Kasten, S.; Poulton, S.; Hartmann, J.; Staubwasser, M.

    2014-12-01

    Reactive Fe (oxyhydr)oxides preferentially undergo early diagenetic cycling and may cause a diffusive flux of dissolved Fe2+ from sediments towards the sediment-water interface. The partitioning of Fe in sediments has traditionally been studied by applying sequential extractions based on reductive dissolution of Fe minerals. We complemented the sequential leaching method by Poulton and Canfield [1] in order to be able to gain δ56Fe data for specific Fe fractions, as such data are potentially useful to study Fe cycling in marine environments. The specific mineral fractions are Fe-carbonates, ferrihydrite + lepidocrocite, goethite + hematite, and magnetite. Leaching was performed with acetic acid, hydroxylamine-HCl, Na-dithionite and oxalic acid. The processing of leachates for δ56Fe analysis involved boiling the samples in HCl/HNO3/H2O2, Fe precipitation and anion exchange column chromatography. The new method was applied to short sediment cores from the North Sea and a bay of King George Island (South Shetland Islands, Antarctica). Downcore mineral-specific variations in δ56Fe revealed differing contributions of Fe (oxyhydr)oxides to redox cycling. A slight decrease in easily reducible Fe oxides correlating with a slight increase in δ56Fe for this fraction with depth, which is in line with progessive dissimilatory iron reduction [2,3], is visible in the top 10 cm of the North Sea core, but not in the antarctic sediments. Less reactive (dithionite and oxalate leachable) fractions did not reveal isotopic trends. The acetic acid-soluble fraction displayed pronounced δ56Fe trends at both sites that cannot be explained by acid volatile sulfides that are also extracted by acetic acid [1]. We suggest that low δ56Fe values in this fraction relative to the pool of easily reducible Fe oxides result from adsorbed Fe(II) that was open to isotopic exchange with oxide surfaces, affirming the experimental results of Crosby el al. [2]. Hence, δ56Fe analyses on marine

  5. High-frequency signal and noise estimates of CSR GRACE RL04

    NASA Astrophysics Data System (ADS)

    Bonin, Jennifer A.; Bettadpur, Srinivas; Tapley, Byron D.

    2012-12-01

    A sliding window technique is used to create daily-sampled Gravity Recovery and Climate Experiment (GRACE) solutions with the same background processing as the official CSR RL04 monthly series. By estimating over shorter time spans, more frequent solutions are made using uncorrelated data, allowing for higher frequency resolution in addition to daily sampling. Using these data sets, high-frequency GRACE errors are computed using two different techniques: assuming the GRACE high-frequency signal in a quiet area of the ocean is the true error, and computing the variance of differences between multiple high-frequency GRACE series from different centers. While the signal-to-noise ratios prove to be sufficiently high for confidence at annual and lower frequencies, at frequencies above 3 cycles/year the signal-to-noise ratios in the large hydrological basins looked at here are near 1.0. Comparisons with the GLDAS hydrological model and high frequency GRACE series developed at other centers confirm CSR GRACE RL04's poor ability to accurately and reliably measure hydrological signal above 3-9 cycles/year, due to the low power of the large-scale hydrological signal typical at those frequencies compared to the GRACE errors.

  6. Are landscapes buffered to high-frequency climate change? A comparison of sediment fluxes and depositional volumes in the Corinth rift, central Greece, over the past 130 kyrs

    NASA Astrophysics Data System (ADS)

    Watkins, Stephen E.; Whittaker, Alexander C.; Bell, Rebecca E.; McNeill, Lisa C.; Gawthope, Robert L.

    2017-04-01

    Sediment supply is a fundamental control on the stratigraphic record. However, a key question is the extent to which tectonics and climate affect sediment fluxes in time and space. To address this question, estimates of sediment fluxes must be compared with measured sediment volumes within a closed basin, for which the tectonic and climatic boundary conditions are constrained. The Corinth rift, Greece is one of the most actively extending basins on Earth, with modern day extension rates of up to 15 mm/yr. The Gulf of Corinth is a closed system and has periodically become a lake during marine lowstands over the late Pleistocene. We estimated suspended sediment fluxes through time for rivers draining into the Gulf of Corinth using an empirically-derived BQART method. WorldClim climate data, palaeoclimate models and palaeoclimate proxies were used to estimate discharges and temperatures over the last 130 ky. We used high-resolution 2D seismic surveys to interpret three seismic units over this period and we used this data to derive independent time series of basin sedimentary volumes to compare with our sediment input flux estimates. Our results predict total Holocene sediment fluxes into the Corinth Gulf of 20 km3, within a factor of 2 of the measured sediment volume in the central depocentres over this timescale. Sediment fluxes vary spatially around the Gulf, but imply catchment-averaged erosion rates of 0.2 to 0.4 mm/yr. Moreover, BQART predicted sediment fluxes and sedimentation rate measurements both indicate a 25% reduction during the last glacial period compared to the Holocene. At the last glacial maximum mean annual temperatures were lower by 5 degrees, although precipitation was similar, or lower, than present. Consequently, our results demonstrate that sediment export to the basin is sensitive to glacial-interglacial cycles. However, precipitation constraints alone are insufficient to understand sediment flux sensitivity to climate change.

  7. High frequency pulsed electromigration

    NASA Astrophysics Data System (ADS)

    Malone, David Wayne

    Electromigration life tests were performed on copper-alloyed aluminum test structures that were representative of modern CMOS metallization schemes, complete with Ti/TiN cladding layers and a tungsten-plug contact at the cathode. A total of 18 electrical stress treatments were applied. One was a DC current of 15 mA. The other 17 were pulsed currents, varied according to duty cycle and frequency. The pulse amplitude was 15 mA (˜2.7 × 10sp6 A/cmsp2) for all treatments. Duty cycles ranged from 33.3% to 80%, and frequencies fell into three rough ranges-100 KHz, 1 MHz, and 100 MHz. The ambient test temperature was 200sp°C in all experiments. Six to 9 samples were subjected to each treatment. Experimental data were gathered in the form of test stripe resistance versus time, R(t). For purposes of lifetime analysis, "failure" was defined by the criterion R(t)/R(0) = 1.10, and the median time to failure, tsb{50}, was used as the primary basis of comparison between test groups. It was found that the dependence of tsb{50} on pulse duty cycle conformed rather well to the so-called "average current density model" for duty cycles of 50% and higher. Lifetimes were less enhanced for a duty cycle of 33.3%, but they were still considerably longer than an "on-time" model would predict. No specific dependence of tsb{50} on pulse frequency was revealed by the data, that is, reasonably good predictions of tsb{50} could be made by recognizing the dominant influence of duty cycle. These findings confirm that IC miniaturization can be more aggressively pursued than an on-time prediction would allow. It is significant that this was found to be true for frequencies on the order of 100 MHz, where many present day digital applications operate. Post-test optical micrographs were obtained for each test subject in order to determine the location of electromigration damage. The pulse duty cycle was found to influence the location. Most damage occurred at the cathode contact, regardless of

  8. Watershed erosion estimated from a high-resolution sediment core reveals a non-stationary frequency-magnitude relationship and importance of seasonal climate drivers

    NASA Astrophysics Data System (ADS)

    Gavin, D. G.; Colombaroli, D.; Morey, A. E.

    2015-12-01

    The inclusion of paleo-flood events greatly affects estimates of peak magnitudes (e.g., Q100) in flood-frequency analysis. Likewise, peak events also are associated with certain synoptic climatic patterns that vary on all time scales. Geologic records preserved in lake sediments have the potential to capture the non-stationarity in frequency-magnitude relationships, but few such records preserve a continuous history of event magnitudes. We present a 10-meter 2000-yr record from Upper Squaw Lake, Oregon, that contains finely laminated silt layers that reflect landscape erosion events from the 40 km2 watershed. CT-scans of the core (<1 mm resolution) and a 14C-dated chronology yielded a pseudo-annual time series of erosion magnitudes. The most recent 80 years of the record correlates strongly with annual peak stream discharge and road construction. We examined the frequency-magnitude relationship for the entire pre-road period and show that the seven largest events fall above a strongly linear relationship, suggesting a distinct process (e.g., severe fires or earthquakes) operating at low-frequency to generate large-magnitude events. Expressing the record as cumulative sediment accumulation anomalies showed the importance of the large events in "returning the system" to the long-term mean rate. Applying frequency-magnitude analysis in a moving window showed that the Q100 and Q10 of watershed erosion varied by 1.7 and 1.0 orders of magnitude, respectively. The variations in watershed erosion are weakly correlated with temperature and precipitation reconstructions at the decadal to centennial scale. This suggests that dynamics both internal (i.e., sediment production) and external (i.e., earthquakes) to the system, as well as more stochastic events (i.e., single severe wildfires) can at least partially over-ride external climate forcing of watershed erosion at decadal to centennial time scales.

  9. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling.

    PubMed

    Green, Dannielle Senga; Boots, Bas; Sigwart, Julia; Jiang, Shan; Rocha, Carlos

    2016-01-01

    Effects of microplastic pollution on benthic organisms and ecosystem services provided by sedimentary habitats are largely unknown. An outdoor mesocosm experiment was done to realistically assess the effects of three different types of microplastic pollution (one biodegradable type; polylactic acid and two conventional types; polyethylene and polyvinylchloride) at increasing concentrations (0.02, 0.2 and 2% of wet sediment weight) on the health and biological activity of lugworms, Arenicola marina (Linnaeus, 1758), and on nitrogen cycling and primary productivity of the sediment they inhabit. After 31 days, A. marina produced less casts in sediments containing microplastics. Metabolic rates of A. marina increased, while microalgal biomass decreased at high concentrations, compared to sediments with low concentrations or without microplastics. Responses were strongest to polyvinylchloride, emphasising that different materials may have differential effects. Each material needs to be carefully evaluated in order to assess their risks as microplastic pollution. Overall, both conventional and biodegradable microplastics in sandy sediments can affect the health and behaviour of lugworms and directly or indirectly reduce primary productivity of these habitats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Evaluation of shallow sediment methane cycling in a pockmark field on the Chatham Rise, New Zealand

    NASA Astrophysics Data System (ADS)

    Coffin, R. B.; Rose, P. S.; Klaucke, I.; Bialas, J.; Pecher, I. A.; Gorman, A. R.

    2014-12-01

    Seismic studies have identified an extensive field (>20,000 km2) of seafloor depressions, or pockmarks, on the southwestern flank of the Chatham Rise, New Zealand. It has been suggested that these pockmarks result from gas hydrate dissociation linked to sea-level changes during glacial-interglacial cycles. Gas hydrates are predominately composed of methane (CH4), a potent greenhouse gas. Surface sediment cores (~ 8 m) were collected from the pockmark field on the Chatham Rise during a research cruise in February 2013 to evaluate the association of the features with CH4 releases. A suite of geochemical parameters are interpreted to determine the methane contribution to solid phase sediment and pore water. The upward flux of CH4 in sediments is often quantified using pore water sulfate (SO42-) profiles, assuming steady-state consumption of SO42- and CH4 by anaerobic oxidation of methane (AOM): CH4 + SO42- → HCO3- + HS- + H2O. This reaction is one of the primary controls on CH4 distributions in sediments. This work will present pore water SO42-, sulfide (HS-) and chloride (Cl-) depth profiles in sediment collected from the pockmark field. Theoretical SO42- distributions in the absence of AOM are compared to observed SO42- profiles as a preliminary assessment of the influence of CH4 on sediment geochemistry in and around the seafloor depressions. In addition isotopically-light CH4 is incorporated into sediment carbon pools via AOM and subsequent CO2 fixation. Stable carbon isotope distributions in the organic and inorganic carbon pools are presented to determine the influence of CH4 in sediments in the vicinty of the pockmarks. Collectively, the geochemical data are used to assess the role of gas hydate dissociation in pockmark formation on the Chatham Rise. Despite sesimic data interpretation in this region there is no modern day contribution of CH4 to shallow sediment carbon cycling and data are presented to assess paleogeochemical methane cycling.

  11. LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model v2.0.4

    NASA Astrophysics Data System (ADS)

    Zeebe, R. E.

    2012-01-01

    The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. LOSCAR's configuration of ocean geometry is flexible and allows for easy switching between modern and paleo-versions. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, pCO2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to loscar.model@gmail.com.

  12. Persistence of effects of high sediment loading in a salmon-bearing river, northern California

    USGS Publications Warehouse

    Madej, Mary Ann; Ozaki, V.

    2009-01-01

    Regional high-magnitude rainstorms have produced several large floods in north coastal California during the last century, which resulted in extensive massmovement activity and channel aggradation. Channel monitoring in Redwood Creek, through the use of cross-sectional surveys, thalweg profi les, and pebble counts, has documented the persistence and routing of channel-stored sediment following these large floods in the 1960s and 1970s. Channel response varied on the basis of timing of peak aggradation. Channel-stored sediment was evacuated rapidly from the upstream third of the Redwood Creek channel, and the channel bed stabilized by 1985 as the bed coarsened. Currently only narrow remnants of flood deposits remain and are well vegetated. In the downstream reach, channel aggradation peaked in the 1990s, and the channel is still incising. Channel-bed elevations throughout the watershed showed an approximate exponential decrease with time, but decay rates were highest in areas with the thickest flood deposits. Pool frequencies and depths generally increased from 1977 to 1995, as did median residual water depths, but a 10 yr flood in 1997 resulted in a moderate reversal of this trend. Channel aggradation generated during 25 yr return interval floods has persisted in Redwood Creek for more than 30 yr and has impacted many life cycles of salmon. Watershed restoration work is currently focused on correcting erosion problems on hillslopes to reduce future sediment supply to Redwood Creek instead of attempting in-channel manipulations. ?? 2009 Geological Society of America.

  13. Role of freeze-thaw cycles and chlorpyrifos insecticide use on diffuse Cd loss and sediment accumulation

    NASA Astrophysics Data System (ADS)

    Wang, Fangli; Ouyang, Wei; Hao, Fanghua; Jiao, Wei; Shan, Yushu; Lin, Chunye

    2016-06-01

    Freeze-thaw cycles are predicted to increase in cold temperate regions. The potential influence of the interactions of freeze-thaw cycles and agrochemicals on the release of Cd into river water is unknown. In this study, the interactions of freeze-thaw cycles and chlorpyrifos (FC) on Cd mobility in soils were analysed. The spatial variability of soil Cd under long-term intensive tillage in a freeze-thaw agro-system was also identified. The temporal variation of sediment Cd was detected based on analysis of the sediment geochemistry. The results showed that FC increased soil Cd mobility, with an increase of approximately 10% in CaCl2-extractable Cd. The increased mobile fractions of water-soluble and exchangeable Cd originated from the decreased fraction of Fe-Mn-oxide-associated Cd and organic matter-bound Cd. The total Cd content in the surface soil followed the zonally decreasing trend of dry land > paddy land > natural land. The Cd concentrations and sedimentation rates of the sediment core generally increased from 1943 to 2013 due to agricultural exploration and farmland irrigation system construction, indicating an increase of the Cd input flux into water. The results provide valuable information about the soil Cd transport response to the influence of climatic and anthropogenic factors in cold intensive agro-systems.

  14. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation

    PubMed Central

    Yazdani Foshtomi, Maryam; Braeckman, Ulrike; Derycke, Sofie; Sapp, Melanie; Van Gansbeke, Dirk; Sabbe, Koen; Willems, Anne; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    Objectives The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. Spatio-Temporal Patterns of the Microbial Communities Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. Macrofauna, Microbes and the Benthic N-Cycle Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided

  15. Extraterrestrial 3He in Paleocene sediments from Shatsky Rise: Constraints on sedimentation rate variability

    NASA Astrophysics Data System (ADS)

    Marcantonio, Franco; Thomas, Deborah J.; Woodard, Stella; McGee, David; Winckler, Gisela

    2009-09-01

    We attempt to constrain the variability of the flux of extraterrestrial 3He in the Paleocene by studying sediments from Shatsky Rise (Ocean Drilling Program, ODP Leg 198) that have tight orbital age control. 3He concentrations in Shatsky Rise sediments vary periodically at high frequency by about a factor of 6 over the 800-ka record analyzed. Virtually all of the sedimentary 3He (> 99.98%) is of extraterrestrial origin. The total helium in the sediments can be explained as a binary mixture of terrestrial and extraterrestrial components. We calculate an average 3He/ 4He ratio for the extraterrestrial endmember of 2.41 ± 0.29 × 10 - 4 , which is, remarkably, equal to that measured in present-day interplanetary dust particles. We determine a constant extraterrestrial 3He flux of 5.9 ± 0.9 × 10 - 13 cm 3STP .cm - 2 ka - 1 for our 800-ka Paleocene record at ~ 58 Ma. This value is identical within error to those for the late Paleocene in sediments from the northern Pacific and the Weddell Sea. Bulk sediment MARs (derived using a constant extraterrestrial 3He flux) respond to climate-forced carbonate preservation cycles and changes in eolian flux over the late Paleocene. This is the first direct evidence for significant changes in dust accumulation in response to eccentricity forcing during a greenhouse climate interval.

  16. High-Frequency Sound Interaction with Ocean Sediments and with Objects in the Vicinity of the Water/Sediment Interface and Mid-Frequency Shallow Water Propagation and Scattering

    DTIC Science & Technology

    2007-09-30

    combined with measured sediment properties, to test the validity of sediment acoustic models , and in particular the poroelastic (Biot) model . Addressing...TERM GOALS 1. Development of accurate models for acoustic scattering from, penetration into, and propagation within shallow water ocean sediments...2. Development of reliable methods for modeling acoustic detection of buried objects at subcritical grazing angles. 3. Improving our

  17. Earth's portfolio of extreme sediment transport events

    NASA Astrophysics Data System (ADS)

    Korup, Oliver

    2012-05-01

    Quantitative estimates of sediment flux and the global cycling of sediments from hillslopes to rivers, estuaries, deltas, continental shelves, and deep-sea basins have a long research tradition. In this context, extremely large and commensurately rare sediment transport events have so far eluded a systematic analysis. To start filling this knowledge gap I review some of the highest reported sediment yields in mountain rivers impacted by volcanic eruptions, earthquake- and storm-triggered landslide episodes, and catastrophic dam breaks. Extreme specific yields, defined here as those exceeding the 95th percentile of compiled data, are ~ 104 t km- 2 yr- 1 if averaged over 1 yr. These extreme yields vary by eight orders of magnitude, but systematically decay with reference intervals from minutes to millennia such that yields vary by three orders of magnitude for a given reference interval. Sediment delivery from natural dam breaks and pyroclastic eruptions dominate these yields for a given reference interval. Even if averaged over 102-103 yr, the contribution of individual disturbances may remain elevated above corresponding catchment denudation rates. I further estimate rates of sediment (re-)mobilisation by individual giant terrestrial and submarine mass movements. Less than 50 postglacial submarine mass movements have involved an equivalent of ~ 10% of the contemporary annual global flux of fluvial sediment to Earth's oceans, while mobilisation rates by individual events rival the decadal-scale sediment discharge from tectonically active orogens such as Taiwan or New Zealand. Sediment flushing associated with catastrophic natural dam breaks is non-stationary and shows a distinct kink at the last glacial-interglacial transition, owing to the drainage of very large late Pleistocene ice-marginal lakes. Besides emphasising the contribution of high-magnitude and low-frequency events to the global sediment cascade, these findings stress the importance of sediment storage

  18. Use of life cycle assessments to evaluate the environmental footprint of contaminated sediment remediation.

    PubMed

    Sparrevik, Magnus; Saloranta, Tuomo; Cornelissen, Gerard; Eek, Espen; Fet, Annik Magerholm; Breedveld, Gijs D; Linkov, Igor

    2011-05-15

    Ecological and human risks often drive the selection of remedial alternatives for contaminated sediments. Traditional human and ecological risk assessment (HERA) includes assessing risk for benthic organisms and aquatic fauna associated with exposure to contaminated sediments before and after remediation as well as risk for human exposure but does not consider the environmental footprint associated with implementing remedial alternatives. Assessment of environmental effects over the whole life cycle (i.e., Life Cycle Assessment, LCA) could complement HERA and help in selecting the most appropriate sediment management alternative. Even though LCA has been developed and applied in multiple environmental management cases, applications to contaminated sediments and marine ecosystems are in general less frequent. This paper implements LCA methodology for the case of the polychlorinated dibenzo-p-dioxins and -furans (PCDD/F)-contaminated Grenland fjord in Norway. LCA was applied to investigate the environmental footprint of different active and passive thin-layer capping alternatives as compared to natural recovery. The results showed that capping was preferable to natural recovery when analysis is limited to effects related to the site contamination. Incorporation of impacts related to the use of resources and energy during the implementation of a thin layer cap increase the environmental footprint by over 1 order of magnitude, making capping inferior to the natural recovery alternative. Use of biomass-derived activated carbon, where carbon dioxide is sequestered during the production process, reduces the overall environmental impact to that of natural recovery. The results from this study show that LCA may be a valuable tool for assessing the environmental footprint of sediment remediation projects and for sustainable sediment management.

  19. Iron Cycling in Sediment of the North Atlantic: Preliminary Results from R/V Knorr Expedition 223

    NASA Astrophysics Data System (ADS)

    Anderson, C. H.; Estes, E. R.; Dyar, M. D.; Murray, R. W.; Spivack, A. J.; Sauvage, J.; McKinley, C. C.; Present, T. M.; Homola, K.; Pockalny, R. A.; D'Hondt, S.

    2015-12-01

    Iron (Fe) in marine sediments is a significant microbial electron acceptor [Fe(III)] in suboxic conditions and is an electron donor [Fe(II)] in oxic conditions. In the transition from oxic to suboxic sediment, a portion of solid Fe is reduced and mobilized as soluble Fe(II) into interstitial water during the oxidation of organic matter. The presence of Fe and its oxidation state in oxic sediment provides insight into an important metabolic and mineral reaction pathway in subseafloor sediment. We recovered bulk sediment and interstitial water at western North Atlantic sites during Expedition 223 on the R/V Knorr in November, 2014. The expedition targeted regions with predominantly oxic sediment and regions with predominantly anoxic sediment, ideal for investigating redox Fe cycling between solid and aqueous phases. At Site 10 (14.4008N, 50.6209W, 4455m water depth), interstitial dissolved oxygen is depleted within the upper few meters of sediment. At Site 12 (29.6767N, 58.3285W, 5637m water depth), interstitial dissolved oxygen is present throughout the cored sediment column (10s of meters). Here we present total solid Fe concentration for 45 bulk sediment samples and total aqueous Fe and Mn concentrations for 50 interstitial water samples analyzed via ICP-ES. We additionally present Fe(II) and Fe(III) speciation results from 10 solid sediment samples determined by Mossbauer spectroscopy. We trace downcore fluctuations in Fe in solid and aqueous phases to understand Fe cycling in oxic, suboxic, and transitional regimes. Our preliminary data indicate that solid Fe concentration ranges from 4-6 wt % at the oxic site; aqueous Fe ranges from below detection to 20μM and aqueous Mn ranges from 1 to 125 μM at the anoxic site. In the anoxic sediment (Site 10), 86-90% of the total Fe is oxidized [Fe(III)] and 10-14% as reduced [Fe(II)], compared to 3-6% as reduced [Fe(II)] at the oxic site (Site 12), even in sediment as old as 25 million years.

  20. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades.

    PubMed

    Zhu, Shun-Peng; Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan

    2017-06-26

    Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner's rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

  1. High frequency peritidal cycles in the lower member of the Late Cretaceous (Turonian, Coniasian-Santonian) El Hefhuf Formation, Bahariya Oases, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Khalifa, M. A.; Tanner, Lawrence H.

    2017-06-01

    Carbonate lithofacies of the lower member of the El Hefhuf Formation (Turonian, Coniasian-Santonian) in the Bahariya Oases, Western Desert of Egypt comprise dolostone, burrowed dolostone, cherty dolostone, calcareous dedolostone, dolomitic quartzose lime-mudstone, and caliche. The dolostone and cherty dolostone formed in intertidal to supratidal environments, while dedolostone and caliche were formed during subaerial exposure. The dolomitic quartzose lime-mudstone was deposited in a restricted subtidal environment. Stable isotope analyses of the dolostone lithofacies are consistent with dolomitization by normal marine to evaporatively enriched dolomitizing fluids with only slight mixing of meteoric water. Therefore, dolomitization occurred in the intertidal and supratidal environments immediately following deposition. The dolostone and cherty dolostone lithofacies display pronounced cyclicity at the sub-meter scale, with individual cycles consisting of one (monolithic), two (diad) or at most three (triad) lithofacies. Most of all cycles show evidence of subaerial exposure at the top, such as brecciations, and many cycles are capped by calcareous palaeosol layers (caliche). In the absence of evidence for cycle periods at Milankovitch-scale frequencies, we reject orbital forcing as the cause of the cyclicity and suggest instead autocyclic depositional processes in the peritidal environment as the primary control on cyclicity, possibly modified by eustatic fluctuations at periods longer than the cycles recorded here. The significance of this study is to suggest formation of dolomite cycles due to high-frequency in sea level with intermittent subaerial exposure.

  2. Possible roles of uncultured archaea in carbon cycling in methane-seep sediments

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Marcos Y.; Lazar, Cassandre S.; Elvert, Marcus; Lin, Yu-Shih; Zhu, Chun; Heuer, Verena B.; Teske, Andreas; Hinrichs, Kai-Uwe

    2015-09-01

    Studies on microbial carbon cycling uniformly confirm that anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria represent the dominant and most active fraction of the sedimentary microbial community in methane-seep sediments. However, little is known about other frequently observed and abundant microbial taxa, their role in carbon cycling and association with the anaerobic oxidation of methane (AOM). Here, we provide a comprehensive characterization of stable carbon isotopes (δ13C) from several intact polar lipid (IPL) classes and metabolite pools in a downcore profile at a cold seep within the oxygen minimum zone off Pakistan. We aimed to evaluate microbial carbon metabolism using IPLs in relation to redox conditions, metabolites and 16S rRNA gene libraries. The 13C-depleted signature of carbon pools and microbial metabolites in pore waters (e.g., dissolved inorganic carbon, lactate and acetate) demonstrated high accumulation of AOM-associated biomass and subsequent turnover thereof. ANMEs accounted for a small fraction of the archaeal 16S rRNA gene survey, whereas sequences of other uncultured benthic archaea dominated the clone libraries, particularly the Marine Benthic Group D. On the basis of lipid diversity and carbon isotope information, we suggest that structurally diverse phospho- and glycolipids, including the recently identified unsaturated tetraethers that are particularly abundant in this setting, are likely derived from archaea other than ANMEs. Through the evaluation of δ13C values of individual IPL, our results indicate heterotrophy as a possible metabolic pathway of archaea in these AOM-dominated sediments.

  3. Organic Matter Remineralization Predominates Phosphorus Cycling in the Mid-Bay Sediments in the Chesapeake Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunendra, Joshi R.; Kukkadapu, Ravi K.; Burdige, David J.

    2015-05-19

    The Chesapeake Bay, the largest and most productive estuary in the US, suffers from varying degrees of water quality issues fueled by both point and non–point source nutrient sources. Restoration of the bay is complicated by the multitude of nutrient sources, their variable inputs and hydrological conditions, and complex interacting factors including climate forcing. These complexities not only restrict formulation of effective restoration plans but also open up debates on accountability issues with nutrient loading. A detailed understanding of sediment phosphorus (P) dynamics enables one to identify the exchange of dissolved constituents across the sediment- water interface and aid tomore » better constrain mechanisms and processes controlling the coupling between the sediments and the overlying waters. Here we used phosphate oxygen isotope ratios (δ18Op) in concert with sediment chemistry, XRD, and Mössbauer spectroscopy on the sediment retrieved from an organic rich, sulfidic site in the meso-haline portion of the mid-bay to identify sources and pathway of sedimentary P cycling and to infer potential feedback effect on bottom water hypoxia and surface water eutrophication. Isotope data indicate that the regeneration of inorganic P from organic matter degradation (remineralization) is the predominant, if not sole, pathway for authigenic P precipitation in the mid-bay sediments. We interpret that the excess inorganic P generated by remineralization should have overwhelmed any bottom-water and/or pore-water P derived from other sources or biogeochemical processes and exceeded saturation with respect to authigenic P precipitation. It is the first research that identifies the predominance of remineralization pathway against remobilization (coupled Fe-P cycling) pathway in the Chesapeake Bay. Therefore, these results are expected to have significant implications for the current understanding of P cycling and benthic-pelagic coupling in the bay, particularly on

  4. The Relationship Between Sediment Properties and Sedimentation Patterns on a Macrotidal Gravel Beach over a Semi-lunar Tidal Cycle.

    NASA Astrophysics Data System (ADS)

    Buscombe, D.; Masselink, G.

    2007-12-01

    Detailed measurements of profile and sediment dynamics have been obtained from a macrotidal gravel barrier beach in southern England. Surface and sub-surface sediment samples, beach profiles, and disturbance depths were taken from the intertidal zone on consecutive low tides over semi-lunar tidal cycles, along with continuous wave and tide measurements. Results from two separate field surveys are presented, representing 26 and 24 consecutive low tides, respectively. A combination of Canonical Correlation Analysis (CCA) and Empirical Orthogonal Function (EOF) analysis was used to identify a number of consistent relationships in morphological and sedimentological variables not readily apparent using ordinary correlations. The disadvantage of such statistical models is that the relationships obtained cannot be expressed in physically meaningful units, which does limit its utility in physical-numerical modelling. However, the results reveal some interesting relationships between gravel beachface sedimentology and morphological change. For example, beachface morphology and sedimentology are more similar at a given spatial location over time than over space (cross-shore) at any individual time. Subsurface sedimentology over the depth of disturbance indicates that the beach step can be traced through the sediment characteristics. Indeed, the study suggests that gravel beachface sedimentology is 'slaved' to morphological change rather than vice-versa; and that the relationship becomes more evident as secondary morphological features develop on the beachface. The results imply that median sediment size and geometric sorting are suitable parameters for detecting such relationships. Strong hysteresis over space was present in the EOF modes associated with the most variance in the data sets, for both sediment size and sorting. Statistically significant relationships were found between the temporal modes of (absolute) size/sorting and net sedimentation associated with the

  5. Early Diagenesis of Trace Elements in Modern Fjord Sediments of the High Arctic

    NASA Astrophysics Data System (ADS)

    Herbert, L.; Riedinger, N.; Aller, R. C.; Jørgensen, B. B.; Wehrmann, L.

    2017-12-01

    Marine sediments are critical repositories for elements that are only available at trace concentrations in seawater, such as Fe, Mn, Co, Ni, As, Mo, and U. The behavior of these trace elements in the sediment is governed by a dynamic interplay of diagenetic reactions involving organic carbon, Fe and Mn oxides, and sulfur phases. In the Arctic fjords of Svalbard, glacial meltwater delivers large amounts of reactive Fe and Mn oxides to the sediment, while organic carbon is deposited episodically and diluted by lithogenic material. These conditions result in pronounced Fe and Mn cycling, which in turn drives other diagenetic processes such as rapid sulfide oxidation. These conditions make the Svalbard fjords ideal sites for investigating trace element diagenesis because they allow resolution of the interconnections between Fe and Mn dynamics and trace element cycling. In August 2016, we collected sediment cores from three Svalbard fjords and analyzed trace elements in the pore water and solid sediment over the top meter. Initial results reveal the dynamic nature of these fjords, which are dominated by non-steady state processes and episodic events such as meltwater pulses and phytoplankton blooms. Within this system, the distribution of As appears to be strongly linked to the Fe cycle, while Co and Ni follow Mn; thus, these three elements may be released from the sediment through diffusion and bioturbation along with Fe and Mn. The pore water profiles of U and Mo indicate removal processes that are independent from Fe or Mn, and which are rather unexpected given the apparent diagenetic conditions. Our results will help elucidate the processes controlling trace element cycling in a dynamic, glacially impacted environment and will ultimately contribute to our understanding of the role of fjords in the biogeochemical cycling of trace elements in a rapidly changing Arctic Ocean.

  6. Freeze-thaw processes and intense winter rainfall: The one-two punch for high streambank legacy sediment and nutrient loads from Mid-Atlantic watersheds

    NASA Astrophysics Data System (ADS)

    Inamdar, S. P.; Johnson, E. R.; Rowland, R. D.; Walter, R. C.; Merritts, D.

    2017-12-01

    Historic and contemporary anthropogenic soil erosion combined with early-American milldams resulted in large deposits of legacy sediments in the valley bottoms of Piedmont watersheds of the eastern US. Breaching of milldams subsequently yielded highly incised streams with exposed vertical streambanks that are vulnerable to erosion. Streambank erosion is attributed to fluvial scouring, freeze-thaw processes and mass wasting. While streambanks represent a large reservoir of fine sediments and nutrients, there is considerable uncertainty about the contribution of these sources to watershed nonpoint source pollution. Using high-frequency hydrologic, sediment, and turbidity data we show that freeze-thaw events followed by intense winter rainstorms can export unusually high concentrations of suspended sediment and particulate nutrients from watersheds. Data from a 12 ha forested, Piedmont, stream following an intense rain event (54 mm) on February 2016 yielded suspended sediment and particulate nutrient (organic carbon and nitrogen) concentrations and exports that exceeded those from tropical storms Irene, Lee, and Sandy that had much greater rainfall and discharge amounts, but which occurred later in the year. A similar response was also observed with regards to turbidity data for USGS stream monitoring locations at Brandywine Creek (813 km2) and White Clay Creek (153 km2). We hypothesize that much of the sediment export associated with winter storms is likely due to erosion of streambank sediments and was driven by the coupled occurrence of freeze-thaw conditions and intense rainfall events. We propose that freeze-thaw erosion represents an important and underappreciated mechanism in streams that "recharges" the sediment supply, which then is available for flushing by moderate to large storms. Future climate projections indicate increased intensification of storm events and increased variability of winter temperatures. Freeze-thaw cycles coupled with winter rain events

  7. Impact of point-source pollution on phosphorus and nitrogen cycling in stream-bed sediments.

    PubMed

    Palmer-Felgate, Elizabeth J; Mortimer, Robert J G; Krom, Michael D; Jarvie, Helen P

    2010-02-01

    Diffusive equilibration in thin films was used to study the cycling of phosphorus and nitrogen at the sediment-water interface in situ and with minimal disturbance to redox conditions. Soluble reactive phosphate (SRP), nitrate, nitrite, ammonium, sulfate, iron, and manganese profiles were measured in a rural stream, 12 m upstream, adjacent to, and 8 m downstream of a septic tank discharge. Sewage fungus adjacent to the discharge resulted in anoxic conditions directly above the sediment. SRP and ammonium increased with depth through the fungus layer to environmentally significant concentrations (440 and 1800 microM, respectively) due to release at the sediment surface. This compared to only 0.8 microM of SRP and 2.0 microM of ammonium in the water column upstream of the discharge. Concomitant removal of ammonium, nitrite and nitrate within 0.5 cm below the fungus-water interface provided evidence for anaerobic ammonium oxidation (anammox). "Hotspots" of porewater SRP (up to 350 microM) at the downstream site demonstrated potential in-stream storage of the elevated P concentrations from the effluent. These results provide direct in situ evidence of phosphorus and nitrogen release from river-bed sediments under anoxic conditions created by sewage-fungus, and highlight the wider importance of redox conditions and rural point sources on in-stream nutrient cycling.

  8. Exploring the effects of black mangrove (Avicennia germinans) expansions on nutrient cycling in smooth cordgrass (Spartina alterniflora) marsh sediments of southern Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Henry, K. M.; Twilley, R. R.

    2011-12-01

    source and sink of nitrite, ammonium, and phosphate depending on the season and light conditions. Further sediment analysis showed no significant difference in bulk density, carbon, nitrogen, or phosphorus content between Spartina and Avicennia sediments. Marine sediments high in bulk density and phosphorus content and low carbon and nitrogen content dominated the top several centimeters in both Spartina and Avicennia habitats. These surprising but reassuring results suggest that in a region where allochthonous sediment input dominates organic accretion from the primary producers, the climate-induced shift from Spartina to Avicennia will have little to no affect on littoral nutrient cycling.

  9. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation.

    PubMed

    Yazdani Foshtomi, Maryam; Braeckman, Ulrike; Derycke, Sofie; Sapp, Melanie; Van Gansbeke, Dirk; Sabbe, Koen; Willems, Anne; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided broad correlative support for the hypothesis that this relationship is modulated by macrofaunal activity. We

  10. The Laminated Marca Shale: High-Frequency Climate Cycles From the Latest Cretaceous

    NASA Astrophysics Data System (ADS)

    Davies, A.; Kemp, A. E.; Weedon, G.; Barron, J. A.

    2005-12-01

    The Latest Cretaceous (Maastrichtian) Marca Shale Member, California, displays a well-preserved record of alternating terrigenous and diatomaceous laminae couplets, remarkably similar in lithology to recent laminated sediments from the Gulf of California and Santa Barbara Basin. This similarity, together with the recognition of intra- and inter-annual variability in the diatom flora, implies an annual origin for these couplets. High-resolution backscattered electron imagery has identified two sublaminae types within the varved succession; near monospecific lamina of Chaetoceros-type resting spore and of large Azpeitiopsis morenoensis. The composition and occurrence of these laminae is similar to ENSO forced intra-annual variability of diatom flora along the modern Californian margin. Relative thickness variations in terrigenous and biogenic laminae (proxies for precipitation and productivity respectively) also exhibit similar characteristics to variability in Quaternary varves from the Santa Barbara Basin, shown to be imparted by ENSO forcing. In order to track changes in the levels of bottom water oxygenation within the basin, a bioturbation index was established. Periods when bioturbation was minimal (enhanced benthic anoxia) coincide with times of greatest diatomaceous export flux and also lowest flux of detrital material. Conversely, periods of enhanced bioturbation correspond with reduced diatomaceous export flux and an increased flux of detrital material, comparable with ENSO forced variations in diatomaceous and terrigenous export flux and associated benthic oxygenation levels in Pleistocene varves off the Californian margin. Power spectra obtained from time-series analysis of the bioturbation index and laminae thickness variations exhibit strong signals within the ENSO band. This research implies that high-frequency climate perturbations are inherent components of the climate system and that ENSO-type variability was not confined to the dynamic climate

  11. Using multi-frequency acoustic attenuation to monitor grain size and concentration of suspended sediment in rivers.

    PubMed

    Moore, S A; Le Coz, J; Hurther, D; Paquier, A

    2013-04-01

    Multi-frequency acoustic backscatter profiles recorded with side-looking acoustic Doppler current profilers are used to monitor the concentration and size of sedimentary particles suspended in fluvial environments. Data at 300, 600, and 1200 kHz are presented from the Isère River in France where the dominant particles in suspension are silt and clay sizes. The contribution of suspended sediment to the through-water attenuation was determined for three high concentration (> 100 mg/L) events and compared to theoretical values for spherical particles having size distributions that were measured by laser diffraction in water samples. Agreement was good for the 300 kHz data, but it worsened with increasing frequency. A method for the determination of grain size using multi-frequency attenuation data is presented considering models for spherical and oblate spheroidal particles. When the resulting size estimates are used to convert sediment attenuation to concentration, the spheroidal model provides the best agreement with optical estimates of concentration, but the aspect ratio and grain size that provide the best fit differ between events. The acoustic estimates of size were one-third the values from laser grain sizing. This agreement is encouraging considering optical and acoustical instruments measure different parameters.

  12. A High Performance 50% Clock Duty Cycle Regulator

    NASA Astrophysics Data System (ADS)

    Huang, Peng; Deng, Hong-Hui; Yin, Yong-Sheng

    A low-jitter clock duty cycle corrector circuit applied in high performance ADC is presented in the paper, such circuits can change low accuracy input signals with different frequencies into 50% pulse width clock. The result have show that the circuit could lock duty cycle rapidly with an accuracy of 50% ± 1% in 200ns. This circuit have 10%-90% of duty cycle input, and clock jitter could be suppressed to less than 5ps. The method used in the circuit, which provides little relationship with the noise and process mismatch, is widely used Implemented in 0.18μm CMOS process.

  13. Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments

    PubMed Central

    Lenstra, Wytze; Jong, Dirk; Meysman, Filip J. R.; Sapart, Célia J.; van der Veen, Carina; Röckmann, Thomas; Gonzalez, Santiago; Slomp, Caroline P.

    2016-01-01

    Globally, the methane (CH4) efflux from the ocean to the atmosphere is small, despite high rates of CH4 production in continental shelf and slope environments. This low efflux results from the biological removal of CH4 through anaerobic oxidation with sulfate in marine sediments. In some settings, however, pore water CH4 is found throughout the sulfate-bearing zone, indicating an apparently inefficient oxidation barrier for CH4. Here we demonstrate that rapid sediment accumulation can explain this limited capacity for CH4 removal in coastal sediments. In a saline coastal reservoir (Lake Grevelingen, The Netherlands), we observed high diffusive CH4 effluxes from the sediment into the overlying water column (0.2–0.8 mol m-2 yr-1) during multiple years. Linear pore water CH4 profiles and the absence of an isotopic enrichment commonly associated with CH4 oxidation in a zone with high rates of sulfate reduction (50–170 nmol cm-3 d-1) both suggest that CH4 is bypassing the zone of sulfate reduction. We propose that the rapid sediment accumulation at this site (~ 13 cm yr-1) reduces the residence time of the CH4 oxidizing microorganisms in the sulfate/methane transition zone (< 5 years), thus making it difficult for these slow growing methanotrophic communities to build-up sufficient biomass to efficiently remove pore water CH4. In addition, our results indicate that the high input of organic matter (~ 91 mol C m-2 yr-1) allows for the co-occurrence of different dissimilatory respiration processes, such as (acetotrophic) methanogenesis and sulfate reduction in the surface sediments by providing abundant substrate. We conclude that anthropogenic eutrophication and rapid sediment accumulation likely increase the release of CH4 from coastal sediments. PMID:27560511

  14. Impact of Aeolian Dry Deposition of Reactive Iron Minerals on Sulfur Cycling in Sediments of the Gulf of Aqaba

    PubMed Central

    Blonder, Barak; Boyko, Valeria; Turchyn, Alexandra V.; Antler, Gilad; Sinichkin, Uriel; Knossow, Nadav; Klein, Rotem; Kamyshny, Alexey

    2017-01-01

    The Gulf of Aqaba is an oligotrophic marine system with oxygen-rich water column and organic carbon-poor sediments (≤0.6% at sites that are not influenced by anthropogenic impact). Aeolian dust deposition from the Arabian, Sinai, and Sahara Deserts is an important source of sediment, especially at the deep-water sites of the Gulf, which are less affected by sediment transport from the Arava Desert during seasonal flash floods. Microbial sulfate reduction in sediments is inferred from the presence of pyrite (although at relatively low concentrations), the presence of sulfide oxidation intermediates, and by the sulfur isotopic composition of sulfate and solid-phase sulfides. Saharan dust is characterized by high amounts of iron minerals such as hematite and goethite. We demonstrated, that the resulting high sedimentary content of reactive iron(III) (hydr)oxides, originating from this aeolian dry deposition of desert dust, leads to fast re-oxidation of hydrogen sulfide produced during microbial sulfate reduction and limits preservation of reduced sulfur in the form of pyrite. We conclude that at these sites the sedimentary sulfur cycle may be defined as cryptic. PMID:28676799

  15. High power, high frequency helix TWT's

    NASA Astrophysics Data System (ADS)

    Sloley, H. J.; Willard, J.; Paatz, S. R.; Keat, M. J.

    The design and performance characteristics of a 34-GHz pulse tube capable of 75 W peak power output at 30 percent duty cycle and a broadband CW tube are presented. Particular attention is given to the engineering problems encountered during the development of the tubes, including the suppression of backward wave oscillation, the design of electron guns for small-diameter high-current beams, and the thermal capability of small helix structures. The discussion also covers the effects of various design parameters and choice of engineering materials on the ultimate practical limit of power and gain at the operating frequencies. Measurements are presented for advanced experimental tubes.

  16. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades

    PubMed Central

    Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan

    2017-01-01

    Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors. PMID:28773064

  17. Physically based method for measuring suspended-sediment concentration and grain size using multi-frequency arrays of acoustic-doppler profilers

    USGS Publications Warehouse

    Topping, David J.; Wright, Scott A.; Griffiths, Ronald; Dean, David

    2014-01-01

    As the result of a 12-year program of sediment-transport research and field testing on the Colorado River (6 stations in UT and AZ), Yampa River (2 stations in CO), Little Snake River (1 station in CO), Green River (1 station in CO and 2 stations in UT), and Rio Grande (2 stations in TX), we have developed a physically based method for measuring suspended-sediment concentration and grain size at 15-minute intervals using multifrequency arrays of acoustic-Doppler profilers. This multi-frequency method is able to achieve much higher accuracies than single-frequency acoustic methods because it allows removal of the influence of changes in grain size on acoustic backscatter. The method proceeds as follows. (1) Acoustic attenuation at each frequency is related to the concentration of silt and clay with a known grain-size distribution in a river cross section using physical samples and theory. (2) The combination of acoustic backscatter and attenuation at each frequency is uniquely related to the concentration of sand (with a known reference grain-size distribution) and the concentration of silt and clay (with a known reference grain-size distribution) in a river cross section using physical samples and theory. (3) Comparison of the suspended-sand concentrations measured at each frequency using this approach then allows theory-based calculation of the median grain size of the suspended sand and final correction of the suspended-sand concentration to compensate for the influence of changing grain size on backscatter. Although this method of measuring suspended-sediment concentration is somewhat less accurate than using conventional samplers in either the EDI or EWI methods, it is much more accurate than estimating suspended-sediment concentrations using calibrated pump measurements or single-frequency acoustics. Though the EDI and EWI methods provide the most accurate measurements of suspended-sediment concentration, these measurements are labor-intensive, expensive, and

  18. Development of a frequency regulation duty-cycle for standardized energy storage performance testing

    DOE PAGES

    Rosewater, David; Ferreira, Summer

    2016-05-25

    The US DOE Protocol for uniformly measuring and expressing the performance of energy storage systems, first developed in 2012 through inclusive working group activities, provides standardized methodologies for evaluating an energy storage system’s ability to supply specific services to electrical grids. This article elaborates on the data and decisions behind the duty-cycle used for frequency regulation in this protocol. Analysis of a year of publicly available frequency regulation control signal data from a utility was considered in developing the representative signal for this use case. Moreover, this showed that signal standard deviation can be used as a metric for aggressivenessmore » or rigor. From these data, we select representative 2 h long signals that exhibit nearly all of dynamics of actual usage under two distinct regimens, one for average use and the other for highly aggressive use. Our results were combined into a 24-h duty-cycle comprised of average and aggressive segments. The benefits and drawbacks of the selected duty-cycle are discussed along with its potential implications to the energy storage industry.« less

  19. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    USGS Publications Warehouse

    Foley, Melissa M.; Warrick, Jonathan

    2017-01-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  20. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    NASA Astrophysics Data System (ADS)

    Foley, Melissa M.; Warrick, Jonathan A.

    2017-11-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  1. Parkinsonian Rest Tremor Is Associated With Modulations of Subthalamic High-Frequency Oscillations.

    PubMed

    Hirschmann, Jan; Butz, Markus; Hartmann, Christian J; Hoogenboom, Nienke; Özkurt, Tolga E; Vesper, Jan; Wojtecki, Lars; Schnitzler, Alfons

    2016-10-01

    High frequency oscillations (>200 Hz) have been observed in the basal ganglia of PD patients and were shown to be modulated by the administration of levodopa and voluntary movement. The objective of this study was to test whether the power of high-frequency oscillations in the STN is associated with spontaneous manifestation of parkinsonian rest tremor. The electromyogram of both forearms and local field potentials from the STN were recorded in 11 PD patients (10 men, age 58 [9.4] years, disease duration 9.2 [6.3] years). Patients were recorded at rest and while performing repetitive hand movements before and after levodopa intake. High-frequency oscillation power was compared across epochs containing rest tremor, tremor-free rest, or voluntary movement and related to the tremor cycle. We observed prominent slow (200-300 Hz) and fast (300-400 Hz) high-frequency oscillations. The ratio between slow and fast high-frequency oscillation power increased when tremor became manifest. This increase was consistent across nuclei (94%) and occurred in medication ON and OFF. The ratio outperformed other potential markers of tremor, such as power at individual tremor frequency, beta power, or low gamma power. For voluntary movement, we did not observe a significant difference when compared with rest or rest tremor. Finally, rhythmic modulations of high-frequency oscillation power occurred within the tremor cycle. Subthalamic high-frequency oscillation power is closely linked to the occurrence of parkinsonian rest tremor. The balance between slow and fast high-frequency oscillation power combines information on motor and medication state. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  2. Controlling factors of spatial and temporal preservation of the geochronological signal in sediments during an orogenic cycle

    NASA Astrophysics Data System (ADS)

    Rat, Juliette; Mouthereau, Frédéric; Bernet, Matthias; Brichau, Stéphanie; Balvay, Mélanie; Garzanti, Eduardo; Ando, Sergio

    2017-04-01

    Detrital content of sediments preserved in basins provide constraints on the nature of source rocks, dynamics of sediment transport, and potentially on tectonics and climate changes. U-Pb dating method on detrital zircon is ideally suited for provenance studies due to the ability of U-Pb age data to resist several orogenic cycles. However, with the aim to track sediment source evolution over a single orogenic cycle and determine characteristic time and parameters controlling the geochronological signal preservation throughout the cycle from rifting, mountain building to post-collision evolution, low-temperature thermochronology combined with sediment petrography are more appropriate than the U-Pb dating approach taken alone. To better understanding processes at play in the long-term geochronological signal preservation we focus on the sediment record associated with the Iberia plate tectonic evolution, which is part of the OROGEN research project, co-financed by BRGM, TOTAL & CNRS. The Iberian plate recorded a period of extension in the Late Jurassic, followed during the Early Cretaceous (Aptian-Albian) by a major thinning event documented by thick syn-rift sediments in intraplate basins and plate-scale heating/cooling of the Iberia crust, as argued by published fission track ages. Paleogeographic reconstructions that are based on stratigraphic and lithofacies analyses in northern Iberia (Iberian Range, Pyrenees and Basque-Cantabrians Range), describe a large domain of continental/fluvial and shallow-marine siliciclastic deposition. The related detrital content was then recycled during the subsequent Pyrenean orogenic phase in the Ebro foreland basin, and eventually transfer to the Mediterranean realm during post-orogenic re-excavation of the Ebro basin. In this study, we complete the published time-temperature paths in the mesozoic syn-rift basins by providing new thermo-chronological analyses of well-dated syn-collision and post-collision stratigraphic sections

  3. Biogeochemical Cycle of Methanol in Anoxic Deep-Sea Sediments

    PubMed Central

    Yanagawa, Katsunori; Tani, Atsushi; Yamamoto, Naoya; Hachikubo, Akihiro; Kano, Akihiro; Matsumoto, Ryo; Suzuki, Yohey

    2016-01-01

    The biological flux and lifetime of methanol in anoxic marine sediments are largely unknown. We herein reported, for the first time, quantitative methanol removal rates in subsurface sediments. Anaerobic incubation experiments with radiotracers showed high rates of microbial methanol consumption. Notably, methanol oxidation to CO2 surpassed methanol assimilation and methanogenesis from CO2/H2 and methanol. Nevertheless, a significant decrease in methanol was not observed after the incubation, and this was attributed to the microbial production of methanol in parallel with its consumption. These results suggest that microbial reactions play an important role in the sources and sinks of methanol in subseafloor sediments. PMID:27301420

  4. Bankfull discharge and sediment transport in northwestern California

    Treesearch

    K. M. Nolan; T. E. Lisle; H. M. Kelsey

    1987-01-01

    Abstract - High-magnitude, low-frequency discharges are more responsible for transporting suspended sediment and forming channels in northwestern California than in previously studied areas. Bankfull discharge and the magnitude and frequency of suspended sediment discharge were determined at five gaging stations in northwestern California. Although discharges below...

  5. Quantifying uncertainty in morphologically-derived bedload transport rates for large braided rivers: insights from high-resolution, high-frequency digital elevation model differencing

    NASA Astrophysics Data System (ADS)

    Brasington, J.; Hicks, M.; Wheaton, J. M.; Williams, R. D.; Vericat, D.

    2013-12-01

    Repeat surveys of channel morphology provide a means to quantify fluvial sediment storage and enable inferences about changes in long-term sediment supply, watershed delivery and bed level adjustment; information vital to support effective river and land management. Over shorter time-scales, direct differencing of fluvial terrain models may also offer a route to predict reach-averaged sediment transport rates and quantify the patterns of channel morphodynamics and the processes that force them. Recent and rapid advances in geomatics have facilitated these goals by enabling the acquisition of topographic data at spatial resolutions and precisions suitable for characterising river morphology at the scale of individual grains over multi-kilometre reaches. Despite improvements in topographic surveying, inverting the terms of the sediment budget to derive estimates of sediment transport and link these to morphodynamic processes is, nonetheless, often confounded by limited knowledge of either the sediment supply or efflux across a boundary of the control volume, or unobserved cut-and-fill taking place between surveys. This latter problem is particularly poorly constrained, as field logistics frequently preclude surveys at a temporal frequency sufficient to capture changes in sediment storage associated with each competent event, let alone changes during individual floods. In this paper, we attempt to quantify the principal sources of uncertainty in morphologically-derived bedload transport rates for the large, labile, gravel-bed braided Rees River which drains the Southern Alps of NZ. During the austral summer of 2009-10, a unique timeseries of 10 high quality DEMs was derived for a 3 x 0.7 km reach of the Rees, using a combination of mobile terrestrial laser scanning, aDcp soundings and aerial image analysis. Complementary measurements of the forcing flood discharges and estimates of event-based particle step lengths were also acquired during the field campaign

  6. Terrestrial Sediments of the Earth: Development of a Global Unconsolidated Sediments Map Database (GUM)

    NASA Astrophysics Data System (ADS)

    Börker, J.; Hartmann, J.; Amann, T.; Romero-Mujalli, G.

    2018-04-01

    Mapped unconsolidated sediments cover half of the global land surface. They are of considerable importance for many Earth surface processes like weathering, hydrological fluxes or biogeochemical cycles. Ignoring their characteristics or spatial extent may lead to misinterpretations in Earth System studies. Therefore, a new Global Unconsolidated Sediments Map database (GUM) was compiled, using regional maps specifically representing unconsolidated and quaternary sediments. The new GUM database provides insights into the regional distribution of unconsolidated sediments and their properties. The GUM comprises 911,551 polygons and describes not only sediment types and subtypes, but also parameters like grain size, mineralogy, age and thickness where available. Previous global lithological maps or databases lacked detail for reported unconsolidated sediment areas or missed large areas, and reported a global coverage of 25 to 30%, considering the ice-free land area. Here, alluvial sediments cover about 23% of the mapped total ice-free area, followed by aeolian sediments (˜21%), glacial sediments (˜20%), and colluvial sediments (˜16%). A specific focus during the creation of the database was on the distribution of loess deposits, since loess is highly reactive and relevant to understand geochemical cycles related to dust deposition and weathering processes. An additional layer compiling pyroclastic sediment is added, which merges consolidated and unconsolidated pyroclastic sediments. The compilation shows latitudinal abundances of sediment types related to climate of the past. The GUM database is available at the PANGAEA database (https://doi.org/10.1594/PANGAEA.884822).

  7. New relationship between fundamental site frequency and thickness of soft sediments from seismic ambient noise

    NASA Astrophysics Data System (ADS)

    Abd el-aal, Abd el-aziz Khairy

    2018-05-01

    In this contribution, new relationship between the fundamental site frequency and the thickness of soft sediments is obtained for many sites in Egypt. The Horizontal-to-Vertical Spectral Ratio ("H/V") technique (known as Nakamura technique) can be used as a robust tool to determine the thickness of soft sediments layers overlaying bedrock from observations and measurements of seismic ambient noise data. In Egypt, numerous seismic ambient noise measurements have been conducted in several areas to determine the dynamic properties of soft soil for engineering purposes. At each site in each studied area, the fundamental site frequency was accurately estimated from the main peak in the spectral ratio between the horizontal and vertical component. Consequently, an extensive database of microtremor measurements, well logging data, and shallow seismic refraction data have been configured and assembled for the studied areas. New formula between fundamental site frequency (f 0 ) and thickness of soft sediments (h) is established. The new formula has been validated and compared with other formulas of earlier scientists, and the results indicate that the calculated depth and geometry of the bedrock surface using new formula are in a good agreement with well logs data and previously published seismic refraction surveys in the investigated sites.

  8. Flocculation and sediment deposition in a hypertidal creek

    NASA Astrophysics Data System (ADS)

    O'Laughlin, C.; van Proosdij, D.; Milligan, T. G.

    2014-07-01

    In the hypertidal Bay of Fundy, environmental impacts in response to commercial-scale tidal power development remain to be fully understood. The extraction of tidal energy may impact sediment dynamics in far-field environments, such as the intertidal zone, through potential alterations to tidal amplitude in the Minas Basin. Tidal conditions (e.g. current velocity, turbulence, suspended sediment concentration) were monitored in a sheltered salt marsh creek over 18 tidal cycles in various stages of the spring-neap cycle. Samples of deposited and suspended sediments were collected and analyzed for grain size using a Beckman Coulter Multisizer III. Results suggest that the flocculated component of both deposited and suspended sediment is consistently high over a wide range of tidal conditions. A routinely high incoming concentration of highly-flocculated material results in large amounts of sediment deposition in tidal creeks in response to individual tidal cycles. Resuspension and removal of newly deposited material is shown to vary with over-marsh, bankfull and channel-restricted tides. Disruption of the tidal regime due to a reduction in Minas Basin tidal amplitude may lessen the cumulative export capacity of tidal channels over time, potentially leading to gradual infilling of tidal creeks. The long-term effects of tidal power development on intertidal areas are generally unknown.

  9. Quantity, composition, and source of sediment collected in sediment traps along the fringing coral reef off Molokai, Hawaii

    USGS Publications Warehouse

    Bothner, Michael H.; Reynolds, R.L.; Casso, M.A.; Storlazzi, C.D.; Field, M.E.

    2006-01-01

    Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000–May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates > 1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves.The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.

  10. Quantity, composition, and source of sediment collected in sediment traps along the fringing coral reef off Molokai, Hawaii.

    PubMed

    Bothner, Michael H; Reynolds, Richard L; Casso, Michael A; Storlazzi, Curt D; Field, Michael E

    2006-09-01

    Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000-May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates>1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves. The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.

  11. Contemporary suspended sediment yield of a partly glaciated catchment, Riffler Bach (Tyrol, Austria)

    NASA Astrophysics Data System (ADS)

    Weber, Martin; Baewert, Henning; Morche, David

    2015-04-01

    Due to glacier retreat since the LIA (Little Ice Age) proglacial areas in high mountain landscapes are growing. These systems are characterized by a high geomorphological activity, especially in the fluvial subsystem. Despite the long tradition of geomorphological research in the European Alps there is a still a lack of understanding in the interactions between hydrology, sediment sources, sediments sinks and suspended sediment transport. As emphasized by ORWIN ET AL. (2010) those problems can be solved by gathering data in a higher frequency and/or in a higher spatial resolution or density - both leading to a big amount of data. In 2012 a gauging station was installed at the outlet of the partly glaciated catchment of the Riffler Bach (Kaunertal valley, Tyrol). During the ablation seasons in 2012 and 2013 water stage was logged automatically every 15 minutes. In both seasons discharge was measured at different water levels to calculate a stage-discharge relation. Additionally, water samples were taken by an automatic water sampler. Within 16 sampling cycles with sampling frequencies ranging from 1 to 24 hours 389 water samples have been collected. The samples were filtered to calculate the suspended sediment concentration (SSC) of each sample. Furthermore, the climate station Weißsee provided meteorological data at a 15 minute interval. Due to the high variability in suspended sediment transport in proglacial rivers it is impossible to compute a robust annual Q-SSC-relation. Hence, two other approaches were used to calculate the suspended sediment load (SSL) and the suspended sediment yield (SSY): A) Q-SSC-relations for every single sampling cycle (e.g. GEILHAUSEN ET AL. 2013) B) Q-SSC-relations based on classification of dominant runoff-generating processes (e.g. ORWIN AND SMART 2004). The first approach uses commonly operated analysis methods that are well understood. While the hydro-climatic approach is more feasible to explain discharge generation and to

  12. Solar Influences on the Return Direction of High-Frequency Radar Backscatter

    NASA Astrophysics Data System (ADS)

    Burrell, Angeline G.; Perry, Gareth W.; Yeoman, Timothy K.; Milan, Stephen E.; Stoneback, Russell

    2018-04-01

    Coherent-scatter, high-frequency, phased-array radars create narrow beams through the use of constructive and destructive interference patterns. This formation method leads to the creation of a secondary beam, or lobe, that is sent out behind the radar. This study investigates the relative importance of the beams in front of and behind the high-frequency radar located in Hankasalmi, Finland, using observations taken over a solar cycle, as well as coincident observations from Hankasalmi and the Enhanced Polar Outflow Probe Radio Receiver Instrument. These observations show that the relative strength of the front and rear beams is frequency dependent, with the relative amount of power sent to the front lobe increasing with increasing frequency. At the range of frequencies used by Hankasalmi, both front and rear beams are always present, though the main beam is always stronger than the rear lobe. Because signals are always transmitted to the front and rear of the radar, it is always possible to receive backscatter from both return directions. Examining the return direction as a function of local time, season, and solar cycle shows that the dominant return direction depends primarily on the local ionospheric structure. Diurnal changes in plasma density typically cause an increase in the amount of groundscatter returning from the rear lobe at night, though the strength of this variation has a seasonal dependence. Solar cycle variations are also seen in the groundscatter return direction, modifying the existing local time and seasonal variations.

  13. Skyrmion-based high-frequency signal generator

    NASA Astrophysics Data System (ADS)

    Luo, Shijiang; Zhang, Yue; Shen, Maokang; Ou-Yang, Jun; Yan, Baiqian; Yang, Xiaofei; Chen, Shi; Zhu, Benpeng; You, Long

    2017-03-01

    Many concepts for skyrmion-based devices have been proposed, and most of their possible applications are based on the motion of skyrmions driven by a dc current in an area with a constricted geometry. However, skyrmion motion driven by a pulsed current has not been investigated so far. In this work, we propose a skyrmion-based high-frequency signal generator based on the pulsed-current-driven circular motion of skyrmions in a square-shaped film by micromagnetic simulation. The results indicate that skyrmions can move in a closed curve with central symmetry. The trajectory and cycle period can be adjusted by tuning the size of the film, the current density, the Dzyaloshinskii-Moriya interaction constant, and the local in-plane magnetic anisotropy. The period can be tuned from several nanoseconds to tens of nanoseconds, which offers the possibility to prepare high-frequency signal generator based on skyrmions.

  14. High Bacterial Diversity in Permanently Cold Marine Sediments

    PubMed Central

    Ravenschlag, Katrin; Sahm, Kerstin; Pernthaler, Jakob; Amann, Rudolf

    1999-01-01

    A 16S ribosomal DNA (rDNA) clone library from permanently cold marine sediments was established. Screening 353 clones by dot blot hybridization with group-specific oligonucleotide probes suggested a predominance of sequences related to bacteria of the sulfur cycle (43.4% potential sulfate reducers). Within this fraction, the major cluster (19.0%) was affiliated with Desulfotalea sp. and other closely related psychrophilic sulfate reducers isolated from the same habitat. The cloned sequences showed between 93 and 100% similarity to these bacteria. Two additional groups were frequently encountered: 13% of the clones were related to Desulfuromonas palmitatis, and a second group was affiliated with Myxobacteria spp. and Bdellovibrio spp. Many clones (18.1%) belonged to the γ subclass of the class Proteobacteria and were closest to symbiotic or free-living sulfur oxidizers. Probe target groups were further characterized by amplified rDNA restriction analysis to determine diversity within the groups and within the clone library. Rarefaction analysis suggested that the total diversity assessed by 16S rDNA analysis was very high in these permanently cold sediments and was only partially revealed by screening of 353 clones. PMID:10473405

  15. Modelling coupled turbulence - dissolved oxygen dynamics near the sediment-water interface under wind waves and sea swell.

    PubMed

    Chatelain, Mathieu; Guizien, Katell

    2010-03-01

    A one-dimensional vertical unsteady numerical model for diffusion-consumption of dissolved oxygen (DO) above and below the sediment-water interface was developed to investigate DO profile dynamics under wind waves and sea swell (high-frequency oscillatory flows with periods ranging from 2 to 30s). We tested a new approach to modelling DO profiles that coupled an oscillatory turbulent bottom boundary layer model with a Michaelis-Menten based consumption model. The flow regime controls both the mean value and the fluctuations of the oxygen mass transfer efficiency during a wave cycle, as expressed by the non-dimensional Sherwood number defined with the maximum shear velocity (Sh). The Sherwood number was found to be non-dependent on the sediment biogeochemical activity (mu). In the laminar regime, both cycle-averaged and variance of the Sherwood number are very low (Sh <0.05, VAR(Sh)<0.1%). In the turbulent regime, the cycle-averaged Sherwood number is larger (Sh approximately 0.2). The Sherwood number also has intra-wave cycle fluctuations that increase with the wave Reynolds number (VAR(Sh) up to 30%). Our computations show that DO mass transfer efficiency under high-frequency oscillatory flows in the turbulent regime are water-side controlled by: (a) the diffusion time across the diffusive boundary layer and (b) diffusive boundary layer dynamics during a wave cycle. As a result of these two processes, when the wave period decreases, the Sh minimum increases and the Sh maximum decreases. Sh values vary little, ranging from 0.17 to 0.23. For periods up to 30s, oxygen penetration depth into the sediment did not show any intra-wave fluctuations. Values for the laminar regime are small (

  16. High-Resolution Physical Properties Logging of the AND-1B Sediment Core - Opportunity for Detecting High-Frequency Signals of Paleoenvironmental Changes

    NASA Astrophysics Data System (ADS)

    Niessen, F.; Magens, D.; Kuhn, G.; Helling, D.

    2008-12-01

    Within the ANDRILL-MIS Project, a more than 1200 m long sediment core, dating back to about 13 Ma, was drilled beneath McMurdo Ice Shelf near Ross Island (Antarctica) in austral summer 2006/07 with the purpose of contributing to a better understanding of the Late Cenozoic history of the Antarctic Ice Sheet. One way to approach past ice dynamics and changes in the paleoenvironment quantitatively, is the analysis of high- resolution physical properties obtained from whole-core multi-sensor core logger measurements in which lithologic changes are expressed numerically. This is especially applicable for the repeating sequences of diatomites and diamictites in the upper half of the core with a prominent cyclicity between 140-300 mbsf. Rather abrupt high-amplitude variations in wet-bulk density (WBD) and magnetic susceptibility (MS) reflect a highly dynamic depositional system, oscillating between two main end-member types: a grounded ice sheet and open marine conditions. For the whole core, the WBD signal, ranging from 1.4 kg/cu.m in the diatomites to 2.3 kg/cu.m in diamictites from the lower part of the core, represents the influence of three variables: (i) the degree of compaction seen as reduction of porosities with depth of about 30 % from top to bottom, (ii) the clast content with clasts being almost absent in diatomite deposits and (iii) the individual grain density (GD). GD itself strongly reflects the variety of lithologies as well as the influence of cement (mainly pyrite and carbonate) on the matrix grain density. The calculation of residual porosities demonstrates the strong imprint of glacial loading for especially diamictites from the upper 150 m, pointing to a significant thickness of the overriding Pleistocene ice sheet. MS on the other hand mainly documents a marine vs. terrestrial source of sediments where the latter can be divided into younger local material from the McMurdo Volcanic Province and basement clasts from the Transantarctic Mountains

  17. Frequency-chirp rates of harmonics driven by a few-cycle pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, M.; Mauritsson, J.; Gaarde, M.B.

    2005-08-15

    We present numerical calculations of the time-frequency characteristics of cutoff harmonics generated by few-cycle laser pulses. We find that for driving pulses as short as three optical cycles, the adiabatic prediction for the harmonic chirp rate is very accurate. This negative chirp is so large that the resulting bandwidth causes substantial overlap between neighboring harmonics, and the harmonic phase therefore appears to not vary in time or frequency. By adding a compensating positive chirp to the driving pulse, which reduces the harmonic bandwidth and allows for the appearance of the negative chirp, we can measure the harmonic chirp rates. Wemore » also find that the positive chirp on the driving pulse causes the harmonics to shift down in frequency. We show that this counterintuitive result is caused by the change in the strong field continuum dynamics introduced by the variation of the driving frequency with time.« less

  18. Biogeochemical cycling of permeable sediments in a shelf sea environment: Celtic Sea, a seasonal study.

    NASA Astrophysics Data System (ADS)

    Reynolds, S.; Klar, J. K.; Kitidis, V. A.; Chapman-Greig, L.; Panton, A.; Thompson, C.; Statham, P. J.; Fones, G. R.

    2016-02-01

    Shelf seas are globally important in contributing to the biogeochemical cycling of carbon and nutrients. Much of the benthic environment found in shelf seas comprise of relic permeable sands whereby advective pore-water flow processes govern the biogeochemical cycling within these sediments. To further elucidate our understanding of the biogeochemistry of these systems, flow-through reactors were employed during a field campaign as part of the UK led Shelf Sea Biogeochemistry Programme. Three cruises took place in the southern Celtic Sea in 2015 and were timed to sample pre-bloom, post-bloom and late summer conditions. Preliminary data show marked differences with the pre-bloom and late summer flow-through incubations when compared with the post-bloom. Pre-bloom and late summer oxygen consumption rates ranged between 0.18 mmol O2 m-3 d-1 and 0.15 mmol O2 m-3 d-1 respectively. However, post-bloom oxygen consumption rates were almost double at 0.29 mmol O2 m-3 d-1. Differences were also observed in the amount of iron (II) being released with no marked releases from the pre-bloom and late summer but with significant contributions of up to 140 nM during the post-bloom incubation. These initial findings demonstrate the seasonal variability and extent of the biogeochemical cycling of benthic permeable sediments. Additional measurements of inorganic nutrients, dissolved organic carbon and denitrification rates will contribute further to our understanding of sandy sediments in a shelf sea environment and their capacity to act as a carbon and nutrient source or sink.

  19. The effects of wastewater discharge on the microbiological nitrogen cycle of the lake sediments

    NASA Astrophysics Data System (ADS)

    Saarenheimo, Jatta; Aalto, Sanni L.; Tiirola, Marja

    2016-04-01

    Anthropogenic wastewater inputs alter the natural dynamics of nitrogen (N) cycle by providing high concentrations of nitrate and organic matter to the sediment microbes. It can also change the microbial community composition and N removal potential but this is currently not that well studied. To study these aspects, we conducted ecosystem-scale experiment in Lake Keurusselkä, Finland. In the experiment, the wastewater discharge to the recipient lake was optimized with sediment filtration, which increased the surface and retention time of the nitrified wastewater with the sediment. In addition to N transformation rates, which showed that optimization enhanced denitrification, we studied the microbial responses at the sediment. Genetic potential of nitrogen transformation processes, such as denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and nitrification were studied by targeting the functional genes (i.e. nirS, nirK, nosZI, nosZII, nrfA, amoAarchaea and amoAbacteria) with quantitative PCR and digital droplet PCR. In addition, changes in the microbial community composition along the wastewater gradient were examined by using next generation sequencing of the 16S rRNA genes. In line with our hypothesis, the relative abundance of denitrifying genes followed the observed denitrification rates, being highest near the nitrate-rich wastewater discharge. Furthermore the microbial community composition in the discharge point differed clearly from the control and downstream sites, having also the highest numbers of rare OTUs. Abundance of nitrifying bacteria was higher than nitrifying archaea near the waste water discharge, whereas the opposite was seen at the control site. The results indicate that wastewater is not only increasing the denitrification rates, but can also alter the structure and genetic potential microbial communities.

  20. Solar Cycle Driven Environmental Changes on Decadal to Centennial Scale of Late Miocene Lake Sediments (tortonian, Lake Pannon, Central Europe)

    NASA Astrophysics Data System (ADS)

    Piller, W. E.; Kern, A. K.; Harzhauser, M.; Soliman, A.; Mandic, O.

    2012-12-01

    High time resolution is a key issue in reconstructing past climate systems. This is of particular importance when searching for model predictions of future climate change, such as the warm Late Miocene. For this study we selected Lake Pannon, a paleo-ancient, alkaline, brackish lake in Europe during the Tortonian (early Late Miocene). On a continuous sediment core including the interval from ca. 10.5 - 10.4 Ma we show the power of high resolution multiproxy analyses for reconstructing paleoclimatology on a decadal scale over several millennia of Late Miocene time. To demonstrate this high-resolution interpretation we selected a core from the western margin of Lake Pannon and studied it in respect to 2 different time resolutions. A continuous 6-m-core clearly displays regular fluctuations and modulations within three different environmental proxies (natural gamma radiation, magnetic susceptibility, total abundance of ostracods). Lomb-Scargle and REDFIT periodograms next to wavelet spectra of all data sets reveal distinct frequencies. Only few of these are deciphered in all proxy data sets at the same power, while some occur only in two or one proxies. A higher resolution study was conducted on a 1.5-m-long core interval based on pollen and dinoflagellate cysts, ostracod abundance, carbon and sulfur contents as well as magnetic susceptibility and natural gamma radiation. Based on an already established age model the study covers about two millennia of Late Miocene time with a resolution of ~13.7 years per sample. No major ecological turnovers are expected in respect to this very short interval. Thus, the pollen record suggests rather stable wetland vegetation with a forested hinterland. Shifts in the spectra can be mainly attributed to variations in transport mechanism, represented by few phases of fluvial input but mainly by changes in wind intensity and probably also wind direction. Even within this short time span, dinoflagellates document rapid changes between

  1. Interictal spike frequency varies with ovarian cycle stage in a rat model of epilepsy.

    PubMed Central

    D’Amour, James; Magagna-Poveda, Alejandra; Moretto, Jillian; Friedman, Daniel; LaFrancois, John J.; Pearce, Patrice; Fenton, Andre A.; MacLusky, Neil J.; Scharfman, Helen E.

    2015-01-01

    In catamenial epilepsy, seizures exhibit a cyclic pattern that parallels the menstrual cycle. Many studies suggest that catamenial seizures are caused by fluctuations in gonadal hormones during the menstrual cycle, but this has been difficult to study in rodent models of epilepsy because the ovarian cycle in rodents, called the estrous cycle, is disrupted by severe seizures. Thus, when epilepsy is severe, estrous cycles become irregular or stop. Therefore, we modified kainic acid (KA)- and pilocarpine-induced status epilepticus (SE) models of epilepsy so that seizures were rare for the first months after SE, and conducted video-EEG during this time. The results showed that interictal spikes (IIS) occurred intermittently. All rats with regular 4-day estrous cycles had IIS that waxed and waned with the estrous cycle. The association between the estrous cycle and IIS was strong: if the estrous cycles became irregular transiently, IIS frequency also became irregular, and when the estrous cycle resumed its 4-day pattern, IIS frequency did also. Furthermore, when rats were ovariectomized, or males were recorded, IIS frequency did not show a 4-day pattern. Systemic administration of an estrogen receptor antagonist stopped the estrous cycle transiently, accompanied by transient irregularity of the IIS pattern. Eventually all animals developed severe, frequent seizures and at that time both the estrous cycle and the IIS became irregular. We conclude that the estrous cycle entrains IIS in the modified KA and pilocarpine SE models of epilepsy. The data suggest that the ovarian cycle influences more aspects of epilepsy than seizure susceptibility. PMID:25864929

  2. On the Importance of High Frequency Gravity Waves for Ice Nucleation in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.

    2016-01-01

    Recent investigations of the influence of atmospheric waves on ice nucleation in cirrus have identified a number of key processes and sensitivities: (1) ice concentrations produced by homogeneous freezing are strongly dependent on cooling rates, with gravity waves dominating upper tropospheric cooling rates; (2) rapid cooling driven by high-frequency waves are likely responsible for the rare occurrences of very high ice concentrations in cirrus; (3) sedimentation and entrainment tend to decrease ice concentrations as cirrus age; and (4) in some situations, changes in temperature tendency driven by high-frequency waves can quench ice nucleation events and limit ice concentrations. Here we use parcel-model simulations of ice nucleation driven by long-duration, constant-pressure balloon temperature time series, along with an extensive dataset of cold cirrus microphysical properties from the recent ATTREX high-altitude aircraft campaign, to statistically examine the importance of high-frequency waves as well as the consistency between our theoretical understanding of ice nucleation and observed ice concentrations. The parcel-model simulations indicate common occurrence of peak ice concentrations exceeding several hundred per liter. Sedimentation and entrainment would reduce ice concentrations as clouds age, but 1-D simulations using a wave parameterization (which underestimates rapid cooling events) still produce ice concentrations higher than indicated by observations. We find that quenching of nucleation events by high-frequency waves occurs infrequently and does not prevent occurrences of large ice concentrations in parcel simulations of homogeneous freezing. In fact, the high-frequency variability in the balloon temperature data is entirely responsible for production of these high ice concentrations in the simulations.

  3. Storage stability of light cycle oil: Studies for the root substance of insoluble sediment formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motohashi, Katsunori; Nakazono, Kingo; Oki, Masami

    1995-04-01

    The storage stabilities of a raw and pretreated light cycle oils (LCOs) have been studied under the condition of ASTM D2274-88. The raw LCO was pretreated by five methods; 10% sulfuric acid-extraction, 10% sodium hydroxide-extraction, methanol-extraction, active clay- treatment, and catalytic hydrotreating. The raw and pretreated LCOs were aged at 95{degrees}C for 144 hours while oxygen was bubbled. The pretreatment except 10% sulfuric acid-extraction showed the decreasing sediments. After removing the sediments by filtration, the changes of component of the residual oils before and after aging, were analyzed by GUMS, GC/AED and GC/NPD. Remarkable changes were observed in nitrogen compoundsmore » such as anilines and indoles, sulfur compounds such as thiophenols, and oxygen compounds such as phenol and its derivatives. It was clarified that the sediment formation was caused by the mutual interactions among heteroatom-containing compounds mentioned above. In addition, unstable hydrocarbons were suggested to behave as key-compounds for sediment formation.« less

  4. Precipitation-runoff, suspended-sediment, and flood-frequency characteristics for urbanized areas of Elmendorf Air Force Base, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.

    1999-01-01

    The developed part of Elmendorf Air Force Base near Anchorage, Alaska, consists of two basins with drainage areas of 4.0 and 0.64 square miles, respectively. Runoff and suspended-sediment data were collected from August 1996 to March 1998 to gain a basic understanding of the surface-water hydrology of these areas and to estimate flood-frequency characteristics. Runoff from the larger basin averaged 6 percent of rainfall, whereas runoff from the smaller basin averaged 13 percent of rainfall. During rainfall periods, the suspended-sediment load transported from the larger watershed ranged from 179 to 21,000 pounds and that from the smaller watershed ranged from 23 to 18,200 pounds. On a yield basis, suspended sediment from the larger watershed was 78 pounds per inch of runoff and from the smaller basin was 100 pounds per inch of runoff. Suspended-sediment loads and yields were generally lower during snowmelt periods than during rainfall periods. At each outfall of the two watersheds, water flows into steep natural channels. Suspended-sediment loads measured approximately 1,000 feet downstream from the outfalls during rainfall periods ranged from 8,450 to 530,000 pounds. On a yield basis, suspended sediment averaged 705 pounds per inch of runoff, more than three times as much as the combined sediment yield from the two watersheds. The increase in suspended sediment is most likely due to natural erosion of the streambanks. Streamflow data, collected in 1996 and 1997, were used to calibrate and verify a U.S. Geological Survey computer model?the Distributed Routing Rainfall Runoff Model-Version II (DR3M-II). The model was then used to simulate annual peak discharges and runoff volumes for 1981 to 1995 using historical rainfall records. Because the model indicated that surcharging (or ponding) would occur, no flood-frequency analysis was done for peak discharges. A flood-frequency analysis of flood volumes indicated that a 10-year flood would result in 0.39 inch of runoff

  5. Temperature, productivity and sediment characteristics as drivers of seasonal and spatial variations of dissolved methane in the near-shore coastal areas (Belgian coastal zone, North Sea)

    NASA Astrophysics Data System (ADS)

    Borges, Alberto V.; Speeckaert, Gaëlle; Champenois, Willy; Scranton, Mary I.; Gypens, Nathalie

    2017-04-01

    The open ocean is a modest source of CH4 to the atmosphere compared to other natural and anthropogenic CH4 emissions. Coastal regions are more intense sources of CH4 to the atmosphere than open oceanic waters, in particular estuarine zones. The CH4 emission to the atmosphere from coastal areas is sustained by riverine inputs and methanogenesis in the sediments due to high organic matter (OM) deposition. Additionally, natural gas seeps are sources of CH4 to bottom waters leading to high dissolved CH4 concentrations in bottom waters (from tenths of nmol L-1 up to several µmol L-1). We report a data set of dissolved CH4 concentrations obtained at nine fixed stations in the Belgian coastal zone (Southern North Sea), during one yearly cycle, with a bi-monthly frequency in spring, and a monthly frequency during the rest of the year. This is a coastal area with multiple possible sources of CH4 such as from rivers and gassy sediments, and where intense phytoplankton blooms are dominated by the high dimethylsulfoniopropionate (DMSP) producing micro-algae Phaeocystis globosa, leading to DMSP and dimethylsulfide (DMS) concentrations. Furthermore, the BCZ is a site of important OM sedimentation and accumulation unlike the rest of the North Sea. Spatial variations of dissolved CH4 concentrations were very marked with a minimum yearly average of 9 nmol L-1 in one of the most off-shore stations and maximum yearly average of 139 nmol L-1 at one of the most near-shore stations. The spatial variations of dissolved CH4 concentrations were related to the organic matter (OM) content of sediments, although the highest concentrations seemed to also be related to inputs of CH4 from gassy sediments associated to submerged peat. In the near-shore stations with fine sand or muddy sediments with a high OM content, the seasonal cycle of dissolved CH4 concentration closely followed the seasonal cycle of water temperature, suggesting the control of methanogenesis by temperature in these OM

  6. Recent sediment dynamics in hadal trenches: Evidence for the influence of higher-frequency (tidal, near-inertial) fluid dynamics

    NASA Astrophysics Data System (ADS)

    Turnewitsch, Robert; Falahat, Saeed; Stehlikova, Jirina; Oguri, Kazumasa; Glud, Ronnie N.; Middelboe, Mathias; Kitazato, Hiroshi; Wenzhöfer, Frank; Ando, Kojiro; Fujio, Shinzou; Yanagimoto, Daigo

    2014-08-01

    In addition to high hydrostatic pressure, scarcity of food is viewed as a factor that limits the abundance and activity of heterotrophic organisms at great ocean depths, including hadal trenches. Supply of nutritious food largely relies on the flux of organic-rich particulate matter from the surface ocean. It has been speculated that the shape of hadal trenches helps to ‘funnel' particulate matter into the deeper parts of the trench, leading to sediment ‘focussing' and improved benthic food supply. Here we investigate for five Northwest Pacific trenches the efficiency of sediment focussing by evaluating ratios of measured (sediment-derived) and expected (water-column-derived) sedimentary inventories of the naturally occurring and radioactive particulate-matter tracer 210Pbxs. The sites comprise a broad range of surface-ocean productivity and physical-oceanographic regimes. Across the five trench-axis settings the inventory ratio varies between 0.5 and 4.1, with four trench-axis settings having ratios>1 (sediment focussing) and one trench-axis setting a ratio<1 (sediment winnowing). Although the fluid- and sediment-dynamical forcing behind sediment focussing remains unclear, this study finds evidence for another mechanism that is superimposed on, and counteracts, the focussing mechanism. This superimposed mechanism is related to higher-frequency (tidal, near-inertial) fluid dynamics. In particular, there is evidence for a strong and negative relation between the intensity of propagating internal tides and the extent of sediment focussing in the trench-axis. The relation can be approximated by a power function and the most intense drop in sediment focussing already occurs at moderate internal-tide intensities. This suggests that propagating internal tides may have a subtle but significant influence on particulate-matter dynamics and food supply in hadal trenches in particular, but possibly also in the deep seas in general. A mechanism for the influence of

  7. Magnetic Properties of Bermuda Rise Sediments Controlled by Glacial Cycles During the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Roud, S.

    2015-12-01

    Sediments from ODP site 1063 (Bermuda Rise, North Atlantic) contain a high-resolution record of geomagnetic field behavior during the Brunhes Chron. We present rock magnetic data of the upper 160 mcd (<900 ka) from hole 1063D that show magnetic properties vary in concert with glacial cycles. Magnetite appears to be the main magnetic carrier in the carbonate-dominated interglacial horizons, yet exhibits contrasting grain size distributions depending on the redox state of the horizons. Higher contributions of single domain magnetite exist above the present day sulfate reduction zone (ca. 44 mcd) with relatively higher multidomain magnetite components below that likely arise from the partial dissolution of SD magnetite in the deeper, anoxic horizons. Glacial horizons on the other hand, characterized by enhanced terrigenous deposition, show no evidence for diagenetic dissolution but do indicate the presence of authigenic greigite close to glacial maxima (acquisition of gyro-remanence, strong magnetostatic interactions and SD properties). Glacial horizons contain hematite (maxima in HIRM and S-Ratio consistent with a reddish hue) and exhibit higher ARM anisotropy and pronounced sedimentary fabrics. We infer that post depositional processes affected the magnetic grain size and mineralogy of Bermuda rise sediments deposited during the late Pleistocene. Hematite concentration is interpreted to reflect primary terrigenous input that is likely derived from the Canadian Maritime Provinces. A close correlation between HIRM and magnetic foliation suggests that changes in sediment composition (terrigenous vs. marine biogenic) were accompanied by changes in the depositional processes at the site.

  8. Sulfur and iron cycling in deep-subsurface, coal bed-containing sediments off Shimokita (Japan)

    NASA Astrophysics Data System (ADS)

    Riedinger, N.; Smirnoff, M. N.; Gilhooly, W.; Phillips, S. C.; Lyons, T. W.; 337 Scientific Party, I.

    2013-12-01

    The main goal of IODP Expedition 337 was the identification and characterization of the deep coal bed biosphere and hydrocarbon system off the Shimokita Peninsula (Japan) in the northwestern Pacific using the D/V Chikyu. To accomplish this scientific objective, it was also necessary to investigate the inorganic biogeochemistry in order to identify possible electron acceptors and bio-essential nutrients. These biogeochemical parameters greatly influence both, the composition and abundance of microbial communities as well as the organic carbon cycle. In turn, the microbially mediated carbon cycle influences the diagenetic reactions in the subsurface, thus, altering geochemical and physical characteristics of the material. Here we present results from metal and sulfur geochemical analyses from the deep-subsurface sediments (about 1250 to 2466 mbsf) at Site C0020 off Shimokita. The measured concentrations of acid volatile sulfur (AVS) as well as chromium reducible sulfur (CRS) reflect the alteration of iron oxides to iron sulfides and indicate that the main sulfur-bearing phase in the investigated sediments is pyrite. Concentrations of intermediate sulfur species are minor and occur mainly in the coal-bearing interval. Our data show that the uppermost sediments contain higher amounts of pyrite (up to 1.2 wt.%) with an average of 0.5 wt.% compared to the deeper deposits (below about 1800 mbsf), which show an average of 0.16 wt.%. In contrast, iron oxide concentrations are highest in the deeper sediment sections (up to 0.4%), where pyrite concentrations are low. The alteration of iron oxides to sulfides in theses lower section was probably governed by the amount of available sulfide in the pore water. The occurrence of (bio-)reactive iron phases in these deeply buried sediments has implications for the deep biosphere as those minerals have the potential to serve as electron acceptors during burial, including reactions involving deep sourced electron donors, such as

  9. Oligotrophic wetland sediments susceptible to shifts in microbiomes and mercury cycling with dissolved organic matter addition

    PubMed Central

    Gabor, Rachel S.; Schooler, Shon; McKnight, Diane M.; Knelman, Joseph E.

    2018-01-01

    Recent advances have allowed for greater investigation into microbial regulation of mercury toxicity in the environment. In wetlands in particular, dissolved organic matter (DOM) may influence methylmercury (MeHg) production both through chemical interactions and through substrate effects on microbiomes. We conducted microcosm experiments in two disparate wetland environments (oligotrophic unvegetated and high-C vegetated sediments) to examine the impacts of plant leachate and inorganic mercury loadings (20 mg/L HgCl2) on microbiomes and MeHg production in the St. Louis River Estuary. Our research reveals the greater relative capacity for mercury methylation in vegetated over unvegetated sediments. Further, our work shows how mercury cycling in oligotrophic unvegetated sediments may be susceptible to DOM inputs in the St. Louis River Estuary: unvegetated microcosms receiving leachate produced substantially more MeHg than unamended microcosms. We also demonstrate (1) changes in microbiome structure towards Clostridia, (2) metagenomic shifts toward fermentation, and (3) degradation of complex DOM; all of which coincide with elevated net MeHg production in unvegetated microcosms receiving leachate. Together, our work shows the influence of wetland vegetation in controlling MeHg production in the Great Lakes region and provides evidence that this may be due to both enhanced microbial activity as well as differences in microbiome composition. PMID:29632744

  10. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments.

    PubMed

    Cooper, D Craig; Picardal, Flynn F; Coby, Aaron J

    2006-03-15

    Microbial iron reduction is an important biogeochemical process that can affect metal geochemistry in sediments through direct and indirect mechanisms. With respectto Fe(III) (hydr)oxides bearing sorbed divalent metals, recent reports have indicated that (1) microbial reduction of goethite/ferrihydrite mixtures preferentially removes ferrihydrite, (2) this process can incorporate previously sorbed Zn(II) into an authigenic crystalline phase that is insoluble in 0.5 M HCl, (3) this new phase is probably goethite, and (4) the presence of nonreducible minerals can inhibit this transformation. This study demonstrates that a range of sorbed transition metals can be selectively sequestered into a 0.5 M HCl insoluble phase and that the process can be stimulated through sequential steps of microbial iron reduction and air oxidation. Microbial reduction experiments with divalent Cd, Co, Mn, Ni, Pb, and Zn indicate that all metals save Mn experienced some sequestration, with the degree of metal incorporation into the 0.5 M HCl insoluble phase correlating positively with crystalline ionic radius at coordination number = 6. Redox cycling experiments with Zn adsorbed to synthetic goethite/ferrihydrite or iron-bearing natural sediments indicate that redox cycling from iron reducing to iron oxidizing conditions sequesters more Zn within authigenic minerals than microbial iron reduction alone. In addition, the process is more effective in goethite/ferrihydrite mixtures than in iron-bearing natural sediments. Microbial reduction alone resulted in a -3x increase in 0.5 M HCl insoluble Zn and increased aqueous Zn (Zn-aq) in goethite/ferrihydrite, but did not significantly affect Zn speciation in natural sediments. Redox cycling enhanced the Zn sequestration by approximately 12% in both goethite/ferrihydrite and natural sediments and reduced Zn-aq to levels equal to the uninoculated control in goethite/ferrihydrite and less than the uninoculated control in natural sediments. These

  11. Nitrogen Cycling and Community Structure of Proteobacterial β-Subgroup Ammonia-Oxidizing Bacteria within Polluted Marine Fish Farm Sediments

    PubMed Central

    McCaig, Allison E.; Phillips, Carol J.; Stephen, John R.; Kowalchuk, George A.; Harvey, S. Martyn; Herbert, Rodney A.; Embley, T. Martin; Prosser, James I.

    1999-01-01

    A multidisciplinary approach was used to study the effects of pollution from a marine fish farm on nitrification rates and on the community structure of ammonia-oxidizing bacteria in the underlying sediment. Organic content, ammonium concentrations, nitrification rates, and ammonia oxidizer most-probable-number counts were determined in samples of sediment collected from beneath a fish cage and on a transect at 20 and 40 m from the cage. The data suggest that nitrogen cycling was significantly disrupted directly beneath the fish cage, with inhibition of nitrification and denitrification. Although visual examination indicated some slight changes in sediment appearance at 20 m, all other measurements were similar to those obtained at 40 m, where the sediment was considered pristine. The community structures of proteobacterial β-subgroup ammonia-oxidizing bacteria at the sampling sites were compared by PCR amplification of 16S ribosomal DNA (rDNA), using primers which target this group. PCR products were analyzed by denaturing gradient gel electrophoresis (DGGE) and with oligonucleotide hybridization probes specific for different ammonia oxidizers. A DGGE doublet observed in PCR products from the highly polluted fish cage sediment sample was present at a lower intensity in the 20-m sample but was absent from the pristine 40-m sample station. Band migration, hybridization, and sequencing demonstrated that the doublet corresponded to a marine Nitrosomonas group which was originally observed in 16S rDNA clone libraries prepared from the same sediment samples but with different PCR primers. Our data suggest that this novel Nitrosomonas subgroup was selected for within polluted fish farm sediments and that the relative abundance of this group was influenced by the extent of pollution. PMID:9872782

  12. High duty cycle to low duty cycle: echolocation behaviour of the hipposiderid bat Coelops frithii.

    PubMed

    Ho, Ying-Yi; Fang, Yin-Ping; Chou, Cheng-Han; Cheng, Hsi-Chi; Chang, Hsueh-Wen

    2013-01-01

    Laryngeally echolocating bats avoid self-deafening (forward masking) by separating pulse and echo either in time using low duty cycle (LDC) echolocation, or in frequency using high duty cycle (HDC) echolocation. HDC echolocators are specialized to detect fluttering targets in cluttered environments. HDC echolocation is found only in the families Rhinolophidae and Hipposideridae in the Old World and in the New World mormoopid, Pteronotus parnellii. Here we report that the hipposiderid Coelops frithii, ostensibly an HDC bat, consistently uses an LDC echolocation strategy whether roosting, flying, or approaching a fluttering target rotating at 50 to 80 Hz. We recorded the echolocation calls of free-flying C. frithii in the field in various situations, including presenting bats with a mechanical fluttering target. The echolocation calls of C. frithii consisted of an initial narrowband component (0.5±0.3 ms, 90.6±2.0 kHz) followed immediately by a frequency modulated (FM) sweep (194 to 113 kHz). This species emitted echolocation calls at duty cycles averaging 7.7±2.8% (n = 87 sequences). Coelops frithii approached fluttering targets more frequently than did LDC bats (C.frithii, approach frequency  = 40.4%, n = 80; Myotis spp., approach frequency  = 0%, n = 13), and at the same frequency as sympatrically feeding HDC species (Hipposideros armiger, approach rate  = 53.3%, n = 15; Rhinolophus monoceros, approach rate  = 56.7%, n = 97). We propose that the LDC echolocation strategy used by C. frithii is derived from HDC ancestors, that this species adjusts the harmonic contents of its echolocation calls, and that it may use both the narrowband component and the FM sweep of echolocations calls to detect fluttering targets.

  13. High Duty Cycle to Low Duty Cycle: Echolocation Behaviour of the Hipposiderid Bat Coelops frithii

    PubMed Central

    Ho, Ying-Yi; Fang, Yin-Ping; Chou, Cheng-Han; Cheng, Hsi-Chi; Chang, Hsueh-Wen

    2013-01-01

    Laryngeally echolocating bats avoid self-deafening (forward masking) by separating pulse and echo either in time using low duty cycle (LDC) echolocation, or in frequency using high duty cycle (HDC) echolocation. HDC echolocators are specialized to detect fluttering targets in cluttered environments. HDC echolocation is found only in the families Rhinolophidae and Hipposideridae in the Old World and in the New World mormoopid, Pteronotus parnellii. Here we report that the hipposiderid Coelops frithii, ostensibly an HDC bat, consistently uses an LDC echolocation strategy whether roosting, flying, or approaching a fluttering target rotating at 50 to 80 Hz. We recorded the echolocation calls of free-flying C. frithii in the field in various situations, including presenting bats with a mechanical fluttering target. The echolocation calls of C. frithii consisted of an initial narrowband component (0.5±0.3 ms, 90.6±2.0 kHz) followed immediately by a frequency modulated (FM) sweep (194 to 113 kHz). This species emitted echolocation calls at duty cycles averaging 7.7±2.8% (n = 87 sequences). Coelops frithii approached fluttering targets more frequently than did LDC bats (C.frithii, approach frequency  = 40.4%, n = 80; Myotis spp., approach frequency  = 0%, n = 13), and at the same frequency as sympatrically feeding HDC species (Hipposideros armiger, approach rate  = 53.3%, n = 15; Rhinolophus monoceros, approach rate  = 56.7%, n = 97). We propose that the LDC echolocation strategy used by C. frithii is derived from HDC ancestors, that this species adjusts the harmonic contents of its echolocation calls, and that it may use both the narrowband component and the FM sweep of echolocations calls to detect fluttering targets. PMID:23717396

  14. Geochemical cycles in sediments deposited on the slopes of the Guaymas and Carmen Basins of the Gulf of California over the last 180 years

    USGS Publications Warehouse

    Dean, W.; Pride, C.; Thunell, R.

    2004-01-01

    Sediments deposited on the slopes of the Guaymas and Carmen Basins in the central Gulf of California were recovered in two box cores. Q-mode factor analyses identified detrital-clastic, carbonate, and redox associations in the elemental composition of these sediments. The detrital-clastic fraction appears to contain two source components, a more mafic component presumably derived from the Sierra Madre Occidental along the west coast of Mexico, and a more felsic component most likely derived from sedimentary rocks (mostly sandstones) of the Colorado Plateau and delivered by the Colorado River. The sediments also contain significant siliceous biogenic components and minor calcareous biogenic components, but those components were not quantified in this study. Redox associations were identified in both cores based on relatively high concentrations of molybdenum, which is indicative of deposition under conditions of sulfate reduction. Decreases in concentrations of molybdenum in younger sediments suggest that the bottom waters of the Gulf have became more oxygenated over the last 100 years. Many geochemical components in both box cores exhibit distinct cyclicity with periodicities of 10-20 years. The most striking are 20-year cycles in the more mafic components (e.g., titanium), particularly in sediments deposited during the 19th century. In that century, the titanium cycles are in very good agreement with warm phases of the Pacific Decadal Oscillation, implying that at times of greater influx of titanium-rich volcanic debris, there were more El Nin??os and higher winter precipitation. The cycles are interpreted as due to greater and lesser riverine influx of volcanic rock debris from the Sierra Madre. There is also spectral evidence for periodicities of 4-8 and 8-16 years, suggesting that the delivery of detrital-clastic material is responding to some multiannual (ENSO?) forcing.

  15. Sediment Characterization in St. Alban's Bay, VT

    NASA Astrophysics Data System (ADS)

    Nethercutt, S.; Manley, T.; Manley, P.

    2017-12-01

    St. Alban's Bay within Lake Champlain is plagued with harmful algal blooms. With future intensification due to climate change, a multidisciplinary program (BREE-Basin Resilience to Extreme Events) was initiated in 2016. In order to assess the mobilization of harmful nutrients from sediment resuspension events and riverine input, 74 sediment samples were collected in a grid fashion throughout St. Alban's Bay. Sediments were deflocculated and analyzed using a LA920 Horiba laser scattering particle size distribution analyzer to define the frequency of sediment sizes from clay to sand. Gridded surfaces of mean sortable silt percentage, silt percentage, sand percentage, and clay percentage were used to represent the sediment distribution of the region. A plot of diameter versus frequency showed the bimodal nature of some of the sediments, with one peak at about 10 microns diameter (silt) and the second at about 525 microns diameter (sand). The data showed an extremely low percentage of clay relative to that of sand and silt. The highest frequencies of sortable silt, which represents the most easily mobilized particle size, are found in the deepest areas of the bay, suggesting that these regions are where dominant bottom flow occurs. The high occurrence of sortable silt in the St. Alban's Bay does suggest that sediment mobilization, and therefore nutrient mobilization has the potential to occur. These data combined with high-resolution multibeam and hydrodynamic data will allow for future models of water flow and remobilization studies in the future.

  16. Closed-Cycle, Frequency-Stable CO2 Laser Technology

    NASA Technical Reports Server (NTRS)

    Batten, Carmen E. (Editor); Miller, Irvin M. (Editor); Wood, George M., Jr. (Editor); Willetts, David V. (Editor)

    1987-01-01

    These proceedings contain a collection of papers and comments presented at a workshop on technology associated with long-duration closed-cycle operation of frequency-stable, pulsed carbon dioxide lasers. This workshop was held at the NASA Langley Research Center June 10 to 12, 1986. The workshop, jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Royal Signals and Radar Establishment (RSRE), was attended by 63 engineers and scientists from the United States and the United Kingdom. During the 2 1/2 days of the workshop, a number of issues relating to obtaining frequency-stable operation and to the catalytic control of laser gas chemistry were discussed, and specific recommendations concerning future activities were drafted.

  17. Resting state alpha frequency is associated with menstrual cycle phase, estradiol and use of oral contraceptives.

    PubMed

    Brötzner, Christina P; Klimesch, Wolfgang; Doppelmayr, Michael; Zauner, Andrea; Kerschbaum, Hubert H

    2014-08-19

    Ongoing intrinsic brain activity in resting, but awake humans is dominated by alpha oscillations. In human, individual alpha frequency (IAF) is associated with cognitive performance. Noticeable, performance in cognitive and emotional tasks in women is associated with menstrual cycle phase and sex hormone levels, respectively. In the present study, we correlated frequency of alpha oscillation in resting women with menstrual cycle phase, sex hormone level, or use of oral contraceptives. Electroencephalogram (EEG) was recorded from 57 women (aged 24.07 ± 3.67 years) having a natural menstrual cycle as well as from 57 women (aged 22.37 ± 2.20 years) using oral contraceptives while they sat in an armchair with eyes closed. Alpha frequency was related to the menstrual cycle phase. Luteal women showed highest and late follicular women showed lowest IAF or center frequency. Furthermore, IAF as well as center frequency correlated negatively with endogenous estradiol level, but did not reveal an association with endogenous progesterone. Women using oral contraceptives showed an alpha frequency similar to women in the early follicular phase. We suggest that endogenous estradiol modulate resting alpha frequency. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Replication of Annual Cycles in Mn in Hudson River Cores: Mn Peaks During High Water Flow

    NASA Astrophysics Data System (ADS)

    Abbott, D. H.; Hutson, D.; Marrero, A. M.; Block, K. A.; Chang, C.; Cai, Y.

    2017-12-01

    Using the results from an ITRAX, XRF scanner, we previously reported apparent annual cycles in Mn in a single, high sedimentation rate Hudson River core, LWB1-8, taken off Yonkers, NY (Carlson et al., 2016). We replicated these results in three more high sedimentation rate cores and found stratigraphic markers that verify our inferences about the annual nature of the Mn cycles. The three new cores are LWB4-5 taken off Peekskill, NY, and LWB3-44 and LWB3-25, both taken in Haverstraw Bay. The cores are from water depths of 7-9 meters and all have high magnetic susceptibilities (typically > 30 cgs units) in their upper 1 to 2 meters. The high susceptibilities are primarily produced by magnetite from modern industrial combustion. One core, LWB1-8, has reconnaissance Cs dates that verify the annual nature of the cycles. More Cs dates are expected before the meeting. We developed several new methods of verifying the annual nature of our layer counts. The first is looking at the grain size distribution and age of layers with unusually high Mn peaks. Peaks in Si, Ni and Ti and peaks in percentage of coarse material typically accompany the peaks in Mn. Some are visible as yellow sandy layers. The five highest peaks in Mn in LWB1-8 have layer counted ages that correspond (within 1 year in the top meter and within 2 years in the bottom meter) to 1996, 1948, 1913, 1857 and 1790. The latter three events are the three largest historical spring freshets on the Hudson. 1996 is a year of unusually high flow rate during the spring freshet. Based on our work and previous work on Mn cycling in rivers, we infer that the peaks in Mn are produced by extreme erosional events that erode sediment and release pore water Mn into the water column. The other methods of testing our chronology involve marine storms that increase Ca and Sr and a search for fragments of the Peekskill meteorite that fell in October 1992. More information on the latter will be available by the meeting.

  19. The lacustrine carbon cycle as illuminated by the waters and sediments of two hydrologically distinct headwater lakes in North-Central Minnesota, U.S.A

    USGS Publications Warehouse

    Dean, W.E.; Schwalb, A.

    2002-01-01

    The accumulation rates of CaCO3 and organic carbon (OC) in lake sediments are delicately balanced between production in the epilimnion and destruction in the hypolimnion. The cycling of these two forms of carbon makes a "carbon pump" that greatly affects the biogeochemical cycles of other elements. To further understand these biogeochemical dynamics, the lakes, streams, and wetlands of the Shingobee River headwater area of north-central Minnesota have been subjected to intensive hydrologic and biogeochemical studies. Williams Lake, situated close to the highest point in the regional flow system, is hydrologically closed, with no surface inlet or outlet, and ground water and precipitation as the only sources of water. Shingobee Lake, situated at the lowest point in the regional flow system, has the Shingobee River as an inlet and outlet. The surface waters of both lakes are oversaturated, and the bottom waters undersaturated, with respect to CaCO3 during the summer. The small amount of CaCO3 that is precipitated in the epilimnion of Williams Lake during the summer is dissolved in the undersaturated hypolimnion and sediments with the result that no CaCO3 is incorporated into the profundal surface sediments. Because of the high phytoplankton productivity of Shingobee Lake, sufficient CaCO3 is produced in the epilimnion that large amounts survive the corrosive hypolimnion and sediments, and an average of 46 wt. % accumulates in surface sediments. Another consequence of higher phytoplankton productivity in Shingobee Lake is that the hypolimnion becomes oxygen deficient within a month after overturn in both the spring and fall. Because of reducing conditions that develop in the hypolimnion of Shingobee Lake, high concentrations of dissolved Fe and Mn accumulate there during summer stratification. Precipitation of Fe and Mn oxyhydroxides during periods of fall and spring overturn results in high concentrations of Fe and Mn in surface sediments. In Williams Lake, high

  20. Marine geochemical cycles of the alkali elements and boron: the role of sediments

    NASA Astrophysics Data System (ADS)

    James, Rachael H.; Palmer, Martin R.

    2000-09-01

    We have analysed the concentrations of Li, K, Rb, Cs, and B, and the isotopic ratios of Li and B of a suite of pore fluids recovered from ODP Sites 1037 (Leg 169; Escanaba Trough) and 1034 (Leg 169S; Saanich Inlet). In addition, we have analysed dissolved K, Rb, and Cs concentrations for estuarine mixing of the Ganges-Brahmaputra river system. Together, these data sets have been used to assess the role of sediments in the marine geochemical cycles of the alkali elements and boron. Uptake onto clay minerals during estuarine mixing removes 20-30% of the riverine input of dissolved Cs and Rb to the oceans. Prior to this study, the only other recognised sink of Rb and Cs was uptake during low-temperature alteration of the oceanic crust. Even with this additional sink there is an excess of inputs over outputs in their modern oceanic mass balance. Pore fluid data show that Li and Rb are transferred into marine sediments during early diagenesis. However, modeling of the Li isotope systematics of the pore fluids from Site 1037 shows that seawater Li taken up during marine sedimentation can be readily returned to solution in the presence of less hydrated cations, such as NH 4+. This process also appears to result in high concentrations of pore fluid Cs (relative to local seawater) due to expulsion of adsorbed Cs from cation exchange sites. Flux calculations based on pore fluid data for a series of ODP sites indicate that early diagenesis of clay sediments removes around 8% of the modern riverine input of dissolved Li. Although NH 4+-rich fluids do result in a flux of Cs to the oceans, on the global scale this input only augments the modern riverine Cs flux by ˜3%. Nevertheless, this may have implications for the fate of radioactive Cs in the natural environment and waste repositories.

  1. Monitoring the Transport of Sediment During Tropical Cyclones From High-frequency Seismic Noise in Two Rivers of La Réunion Island

    NASA Astrophysics Data System (ADS)

    Fontaine, F. R.; Gonzalez, A.; Burtin, A.; Barruol, G.; Recking, A.; Join, J. L.; Delcher, E.

    2016-12-01

    La Réunion Island is a basaltic shield volcano located in the western Indian Ocean. The island undergoes heavy annual precipitations during tropical depressions and cyclones. These rainfalls modify the stream dynamics and sediment transport of rivers. The transport of sediment participates to the erosion of the volcanic island, however, in situ characterization is difficult during high water stage. In the frame of the Rivière des Pluies project, we are deploying a temporary seismic network of 10 three-component broadband seismometers around two rivers: Rivière des Pluies and Rivière du Mât. The goal of the project is to monitor spatial and temporal variations of the river's bed-load during tropical cyclones with high-frequency noise. Meteorological and hydrological stations are installed at both rivers providing valuable data such as precipitations, water discharge and water level. We will also sample the bed surface grain size distribution by visual count to determine its influence on the seismic noise. We present preliminary results from two broadband seismic stations located near instrumented streams. SALA station from the temporary RHUM-RUM seismic network (http://www.rhum-rum.net/en/) was installed close to the Rivière du Mât and the permanent GEOSCOPE RER station is located close to the Rivière de l'Est. We analyzed the footprint of the cyclone Bejisa in January 2014. We observe a significant increase of the precipitation when the cyclone eye is 300 km close to the island followed by the increase of the water discharge. Simultaneously the seismic signal shows a sudden increase of the power spectral density visible above 1 Hz. Further investigations on the relationship between the seismic noise and the hydrological and meteorological parameters will help us quantifying the river bed-load.

  2. [Limnology of high mountain tropical lake, in Ecuador: characteristics of sediments and rate of sedimentation].

    PubMed

    Gunkel, Günter

    2003-06-01

    Equatorial high mountain lakes are a special type of lake occurring mainly in the South American Andes as well as in Central Africa and Asia. They occur at altitudes of a few thousand meters above sea level and are cold-water lakes (< 20 degrees C). Relatively little is known about them. A long-term limnological study was therefore undertaken at Lake San Pablo, Ecuador, to analyze the basic limnological processes of the lake, which has a tendency for eutrophication. Sediment quality of San Pablo Lake is given under consideration of horizontal and vertical distribution using sediment cores. Significance of sediments for eutrophication process of lakes is demonstrated using phosphorus concentration of sediments as well as the phosphorus retention capacity of the sediments by ratio Fe/P. Dating of the sediments is done using 137Cs and 210Pb, but the activity of 137Cs in the sediment was very low nearly at the detection level. Sedimentation rate is determined to be 3.5 mm/year and the sediment cores represent about 110 years. P concentration of the sediments is high (approximately 5 g/kg dry substance), and P retention capacity by Fe is insufficient (Fe/P = 4). The sediment quality did not change significantly during the past decades, and the trophic state of San Pablo Lake was already less or more eutrophic 110 years ago. The contamination of the lake sediments by heavy metals is insignificant.

  3. Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Xiong, Jilian; Wang, Xiao Hua; Wang, Ya Ping; Chen, Jingdong; Shi, Benwei; Gao, Jianhua; Yang, Yang; Yu, Qian; Li, Mingliang; Yang, Lei; Gong, Xulong

    2017-05-01

    An understanding of the dynamics and behaviors of suspended sediments is vital in analysis of morphological, environmental, and ecological processes occurring in coastal marine environments. To study the mechanisms of maintaining high suspended sediment concentrations (SSCs) on a tide-dominated offshore shoal, we measured water depths, current velocities, SSCs, wave parameters and bottom sediment compositions in the southern Yellow Sea. These data were then used to calculate bottom shear stresses generated by currents (τc), waves (τw), and wave-current interactions (τcw). SSCs time series exhibited strong quarter-diurnal peaks during spring tides, in contrast to the semidiurnal signal during neap tides. A Fourier analysis showed that suspended sediment variations within tidal cycles was mainly controlled by resuspension in most stations. There existed relatively stable background SSCs (maintaining high SSCs among tidal cycles) values at all four stations during both windy (wind speed > 9.0 m/s) and normal weather conditions (wind speed < 3.0 m/s). The background SSCs had strong relationship with spring/neap-averaged τcw, indicating background SSCs were mainly controlled by mean bottom shear stress, with a minimum value of 0.21 N/m2. On account of the strong tidal currents, background SSCs of spring tides were greater than that of neap tides. In addition, on the base of wavelet, statistics analyses and turbulence dissipation parameter, background SSCs during slack tide in the study area may be maintained by intermittent turbulence events induced by a combined tidal current and wave action.

  4. Effects of sediment dredging on nitrogen cycling in Lake Taihu, China: Insight from mass balance based on a 2-year field study.

    PubMed

    Yu, Juhua; Fan, Chengxin; Zhong, Jicheng; Zhang, Lu; Zhang, Lei; Wang, Changhui; Yao, Xiaolong

    2016-02-01

    Sediment dredging can permanently remove pollutants from an aquatic ecosystem, which is considered an effective approach to aquatic ecosystem restoration. In this work, a 2-year field simulation test was carried out to investigate the effect of dredging on nitrogen cycling across the sediment-water interface (SWI) in Lake Taihu, China. The results showed that simulated dredging applied to an area rich in total organic carbon (TOC) and total nitrogen (TN) slightly reduced the NH4(+)-N release from sediments while temporarily enhanced the NH4(+)-N release in an area with lower TOC and/or TN (in the first 180 days), although the application had a limited effect on the fluxes of NO2(-)-N and NO3(-)-N in both areas. Further analysis indicated that dredging induced decreases in nitrification, denitrification, and anaerobic ammonium oxidation (anammox) in sediments, notably by 76.9, 49.0, and 89.9%, respectively, in the TOC and/or TN-rich area. Therefore, dredging slowed down nitrogen cycling rates in sediments but did not increase N loading to overlying water. The main reason for the above phenomenon could be attributed to the removal of the surface sediments enriched with more TOC and/or TN (compared with the bottom sediments). Overall, to minimize internal N pollution, dredging may be more applicable to nutrient-rich sediments.

  5. MODELING SEDIMENT-NUTRIENT FLUX AND SEDIMENT OXYGEN DEMAND

    EPA Science Inventory

    Depositional flux of particulate organic matter in bottom sediments affects nutrients cycling at the sediment-water interface and consumes oxygen from the overlying water in streams, lakes, and estuaries. This project deals with analytical modeling of nitrogen and carbon producti...

  6. Thrombolysis using multi-frequency high intensity focused ultrasound at MHz range: an in vitro study

    NASA Astrophysics Data System (ADS)

    Suo, Dingjie; Guo, Sijia; Lin, Weili; Jiang, Xiaoning; Jing, Yun

    2015-09-01

    High intensity focused ultrasound (HIFU) based thrombolysis has emerged as a promising drug-free treatment approach for ischemic stroke. The large amount of acoustic power required by this approach, however, poses a critical challenge to the future clinical translation. In this study, multi-frequency acoustic waves at MHz range (near 1.5 MHz) were introduced as HIFU excitations to reduce the required power for treatment as well as the treatment time. In vitro bovine blood clots weighing around 150 mg were treated by single-frequency and multi-frequency HIFU. The pulse length was 2 ms for all experiments except the ones where the duty cycle was changed. It was found that dual-frequency thrombolysis efficiency was statistically better than single-frequency under the same acoustic power and excitation condition. When varying the acoustic power but fixing the duty cycle at 5%, it was found that dual-frequency ultrasound can save almost 30% power in order to achieve the same thrombolysis efficiency. In the experiment where the duty cycle was increased from 0.5% to 10%, it was shown that dual-frequency ultrasound can achieve the same thrombolysis efficiency with only half of the duty cycle of single-frequency. Dual-frequency ultrasound could also accelerate the thrombolysis by a factor of 2-4 as demonstrated in this study. No significant differences were found between dual-frequencies with different frequency differences (0.025, 0.05, and 0.1 MHz) and between dual-frequency and triple-frequency. The measured cavitation doses of dual-frequency and triple-frequency excitations were at about the same level but both were significantly higher than that of single-frequency.

  7. Impact of longer-term modest climate shifts on architecture of high-frequency sequences (Cyclothems), Pennsylvanian of midcontinent U.S.A

    USGS Publications Warehouse

    Feldman, H.R.; Franseen, E.K.; Joeckel, R.M.; Heckel, P.H.

    2005-01-01

    Pennsylvanian glacioeustatic cyclothems exposed in Kansas and adjacent areas provide a unique opportunity to test models of the impact of relative sea level and climate on stratal architecture. A succession of eight of these high-frequency sequences, traced along dip for 500 km, reveal that modest climate shifts from relatively dry-seasonal to relatively wet-seasonal with a duration of several sequences (???600,000 to 1 million years) had a dominant impact on facies, sediment dispersal patterns, and sequence architecture. The climate shifts documented herein are intermediate, both in magnitude and duration, between previously documented longer-term climate shifts throughout much of the Pennsylvanian and shorter-term shifts described within individual sequences. Climate indicators are best preserved at sequence boundaries and in incised-valley fills of the lowstand systems tracts (LST). Relatively drier climate indicators include high-chroma paleosols, typically with pedogenic carbonates, and plant assemblages that are dominated by gymnosperms, mostly xerophytic walchian conifers. The associated valleys are small (4 km wide and >20 m deep), and dominated by quartz sandstones derived from distant source areas, reflecting large drainage networks. Transgressive systems tracts (TST) in all eight sequences gen erally are characterized by thin, extensive limestones and thin marine shales, suggesting that the dominant control on TST facies distribution was the sequestration of siliciclastic sediment in updip positions. Highstand systems tracts (HST) were significantly impacted by the intermediate-scale climate cycle in that HSTs from relatively drier climates consist of thin marine shales overlain by extensive, thick regressive limestones, whereas HSTs from relatively wetter climates are dominated by thick marine shales. Previously documented relative sea-level changes do not track the climate cycles, indicating that climate played a role distinct from that of relative sea

  8. Oligotrophic wetland sediments susceptible to shifts in microbiomes and mercury cycling with dissolved organic matter addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Emily B.; Gabor, Rachel S.; Schooler, Shon

    Recent advances have allowed for greater investigation into microbial regulation of mercury toxicity in the environment. In wetlands in particular, dissolved organic matter (DOM) may influence methylmercury (MeHg) production both through chemical interactions and through substrate effects on microbiomes. We conducted microcosm experiments in two disparate wetland environments (oligotrophic unvegetated and high-C vegetated sediments) to examine the impacts of plant leachate and inorganic mercury loadings (20 mg/L HgCl 2) on microbiomes and MeHg production in the St. Louis River Estuary. Our research reveals the greater relative capacity for mercury methylation in vegetated over unvegetated sediments. Further, our work shows howmore » mercury cycling in oligotrophic unvegetated sediments may be susceptible to DOM inputs in the St. Louis River Estuary: unvegetated microcosms receiving leachate produced substantially more MeHg than unamended microcosms. We also demonstrate (1) changes in microbiome structure towards Clostridia, (2) metagenomic shifts toward fermentation, and (3) degradation of complex DOM; all of which coincide with elevated net MeHg production in unvegetated microcosms receiving leachate. Altogether, our work shows the influence of wetland vegetation in controlling MeHg production in the Great Lakes region and provides evidence that this may be due to both enhanced microbial activity as well as differences in microbiome composition.« less

  9. Oligotrophic wetland sediments susceptible to shifts in microbiomes and mercury cycling with dissolved organic matter addition

    DOE PAGES

    Graham, Emily B.; Gabor, Rachel S.; Schooler, Shon; ...

    2018-04-03

    Recent advances have allowed for greater investigation into microbial regulation of mercury toxicity in the environment. In wetlands in particular, dissolved organic matter (DOM) may influence methylmercury (MeHg) production both through chemical interactions and through substrate effects on microbiomes. We conducted microcosm experiments in two disparate wetland environments (oligotrophic unvegetated and high-C vegetated sediments) to examine the impacts of plant leachate and inorganic mercury loadings (20 mg/L HgCl 2) on microbiomes and MeHg production in the St. Louis River Estuary. Our research reveals the greater relative capacity for mercury methylation in vegetated over unvegetated sediments. Further, our work shows howmore » mercury cycling in oligotrophic unvegetated sediments may be susceptible to DOM inputs in the St. Louis River Estuary: unvegetated microcosms receiving leachate produced substantially more MeHg than unamended microcosms. We also demonstrate (1) changes in microbiome structure towards Clostridia, (2) metagenomic shifts toward fermentation, and (3) degradation of complex DOM; all of which coincide with elevated net MeHg production in unvegetated microcosms receiving leachate. Altogether, our work shows the influence of wetland vegetation in controlling MeHg production in the Great Lakes region and provides evidence that this may be due to both enhanced microbial activity as well as differences in microbiome composition.« less

  10. High-frequency oscillations in human and monkey neocortex during the wake–sleep cycle

    PubMed Central

    Le Van Quyen, Michel; Muller, Lyle E.; Telenczuk, Bartosz; Halgren, Eric; Cash, Sydney; Hatsopoulos, Nicholas G.; Dehghani, Nima; Destexhe, Alain

    2016-01-01

    Beta (β)- and gamma (γ)-oscillations are present in different cortical areas and are thought to be inhibition-driven, but it is not known if these properties also apply to γ-oscillations in humans. Here, we analyze such oscillations in high-density microelectrode array recordings in human and monkey during the wake–sleep cycle. In these recordings, units were classified as excitatory and inhibitory cells. We find that γ-oscillations in human and β-oscillations in monkey are characterized by a strong implication of inhibitory neurons, both in terms of their firing rate and their phasic firing with the oscillation cycle. The β- and γ-waves systematically propagate across the array, with similar velocities, during both wake and sleep. However, only in slow-wave sleep (SWS) β- and γ-oscillations are associated with highly coherent and functional interactions across several millimeters of the neocortex. This interaction is specifically pronounced between inhibitory cells. These results suggest that inhibitory cells are dominantly involved in the genesis of β- and γ-oscillations, as well as in the organization of their large-scale coherence in the awake and sleeping brain. The highest oscillation coherence found during SWS suggests that fast oscillations implement a highly coherent reactivation of wake patterns that may support memory consolidation during SWS. PMID:27482084

  11. High-frequency oscillations in human and monkey neocortex during the wake-sleep cycle.

    PubMed

    Le Van Quyen, Michel; Muller, Lyle E; Telenczuk, Bartosz; Halgren, Eric; Cash, Sydney; Hatsopoulos, Nicholas G; Dehghani, Nima; Destexhe, Alain

    2016-08-16

    Beta (β)- and gamma (γ)-oscillations are present in different cortical areas and are thought to be inhibition-driven, but it is not known if these properties also apply to γ-oscillations in humans. Here, we analyze such oscillations in high-density microelectrode array recordings in human and monkey during the wake-sleep cycle. In these recordings, units were classified as excitatory and inhibitory cells. We find that γ-oscillations in human and β-oscillations in monkey are characterized by a strong implication of inhibitory neurons, both in terms of their firing rate and their phasic firing with the oscillation cycle. The β- and γ-waves systematically propagate across the array, with similar velocities, during both wake and sleep. However, only in slow-wave sleep (SWS) β- and γ-oscillations are associated with highly coherent and functional interactions across several millimeters of the neocortex. This interaction is specifically pronounced between inhibitory cells. These results suggest that inhibitory cells are dominantly involved in the genesis of β- and γ-oscillations, as well as in the organization of their large-scale coherence in the awake and sleeping brain. The highest oscillation coherence found during SWS suggests that fast oscillations implement a highly coherent reactivation of wake patterns that may support memory consolidation during SWS.

  12. High-cycle-life, high-energy-density nickel-zinc batteries

    NASA Astrophysics Data System (ADS)

    Wagner, O. C.

    1982-02-01

    The ERADCOM nickel-zinc program, resulted in the development of 5 ampere-hour nickel-zinc cells that maintained 79% to 86% of initial capacity after 650 cycles on the C/3 80% DOD cycling regime. One cell is still delivering 70% of initial capacity after 880 cycles. This achievement is primarily due to the employment of an interrupted current (IC) charging mode on every cycle, the optimum frequency being 5 to 8 Hertz at a rest-to-pulse-ratio of 3/1, with charge control being by means of a GRL pressure switch attached to each cell at a cutoff pressure of 8 psig, and venting means at 10 psig. Design and performance characteristics of the battery are reported.

  13. Influence of seasonal variation and anthropogenic activity on phosphorus cycling and retention in mangrove sediments: A case study in China

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Lu, Haoliang; Liu, Jingchun; Lin, Yushan; Dai, Minyue; Yan, Chongling

    2018-03-01

    Mangroves are known for sequestering and storing large quantities of phosphorus (P) within their sediments. In the present study, the sediment P cycle (including phosphatase activity intensity, total sedimentary P, P fractions distinguished by a sequential extraction method, as well as diffusion-adsorption processes) in a mangrove swamp in a subtropical estuary in China was studied. In the spring, the acid phosphatase activity varied between 1.3 and 1.9 units in the four sites in the estuary. The activity of alkaline phosphatase varied from 0.8 to 1.4 units. The total sedimentary P ranged from 821 to 1689 mg kg-1 with a dominance of redox-sensitive (Fe/Al bound) P. In the autumn, activities of both phosphatases and the total sediment P amount increased, probably due to enhanced inputs of organic matter and Fe oxides. In addition to seasonal variation, P in the mangrove sediment was influenced by anthropogenic activities. In particular, redox-sensitive P decreased significantly while phosphatase activity increased in the site that was flushed with aquaculture pond effluents. In contrast, sediment P enrichment was observed in the site that received domestic sewage. Both sources of anthropogenic P increased the eutrophication risk of the mangrove sediment because of a decrease in the amount of P adsorption and an enhancement of P release via diffusion. Diesel contamination due to the presence of a dock depressed phosphatase activity in the surficial sediment. The overlap between seasonal rhythm and human influences may introduce significant variations in P cycling, which warrants further attention from coastal management.

  14. In Situ, High-Resolution Profiles of Labile Metals in Sediments of Lake Taihu

    PubMed Central

    Wang, Dan; Gong, Mengdan; Li, Yangyang; Xu, Lv; Wang, Yan; Jing, Rui; Ding, Shiming; Zhang, Chaosheng

    2016-01-01

    Characterizing labile metal distribution and biogeochemical behavior in sediments is crucial for understanding their contamination characteristics in lakes, for which in situ, high-resolution data is scare. The diffusive gradient in thin films (DGT) technique was used in-situ at five sites across Lake Taihu in the Yangtze River delta in China to characterize the distribution and mobility of eight labile metals (Fe, Mn, Zn, Ni, Cu, Pb, Co and Cd) in sediments at a 3 mm spatial resolution. The results showed a great spatial heterogeneity in the distributions of redox-sensitive labile Fe, Mn and Co in sediments, while other metals had much less marked structure, except for downward decreases of labile Pb, Ni, Zn and Cu in the surface sediment layers. Similar distributions were found between labile Mn and Co and among labile Ni, Cu and Zn, reflecting a close link between their geochemical behaviors. The relative mobility, defined as the ratio of metals accumulated by DGT to the total contents in a volume of sediments with a thickness of 10 mm close to the surface of DGT probe, was the greatest for Mn and Cd, followed by Zn, Ni, Cu and Co, while Pb and Fe had the lowest mobility; this order generally agreed with that defined by the modified BCR approach. Further analyses showed that the downward increases of pH values in surface sediment layer may decrease the lability of Pb, Ni, Zn and Cu as detected by DGT, while the remobilization of redox-insensitive metals in deep sediment layer may relate to Mn cycling through sulphide coprecipitation, reflected by several corresponding minima between these metals and Mn. These in situ data provided the possibility for a deep insight into the mechanisms involved in the remobilization of metals in freshwater sediments. PMID:27608033

  15. Determining the Effects of Oiled Sediment on Fish Life Cycle Endpoints using the Sheepshead Minnow (Cyprinodon variegatus)

    EPA Science Inventory

    Determination of long-term effects of exposure to crude oil is critical for ascertaining population-level risk following spill events. A 19-week life-cycle experiment was conducted with the estuarine sheepshead minnow exposed to natural sediment spiked with weathered Louisiana S...

  16. CO2 leakage from carbon dioxide capture and storage (CCS) systems affects organic matter cycling in surface marine sediments.

    PubMed

    Rastelli, Eugenio; Corinaldesi, Cinzia; Dell'Anno, Antonio; Amaro, Teresa; Greco, Silvestro; Lo Martire, Marco; Carugati, Laura; Queirós, Ana M; Widdicombe, Stephen; Danovaro, Roberto

    2016-12-01

    Carbon dioxide capture and storage (CCS), involving the injection of CO 2 into the sub-seabed, is being promoted worldwide as a feasible option for reducing the anthropogenic CO 2 emissions into the atmosphere. However, the effects on the marine ecosystems of potential CO 2 leakages originating from these storage sites have only recently received scientific attention, and little information is available on the possible impacts of the resulting CO 2 -enriched seawater plumes on the surrounding benthic ecosystem. In the present study, we conducted a 20-weeks mesocosm experiment exposing coastal sediments to CO 2 -enriched seawater (at 5000 or 20,000 ppm), to test the effects on the microbial enzymatic activities responsible for the decomposition and turnover of the sedimentary organic matter in surface sediments down to 15 cm depth. Our results indicate that the exposure to high-CO 2 concentrations reduced significantly the enzymatic activities in the top 5 cm of sediments, but had no effects on subsurface sediment horizons (from 5 to 15 cm depth). In the surface sediments, both 5000 and 20,000 ppm CO 2 treatments determined a progressive decrease over time in the protein degradation (up to 80%). Conversely, the degradation rates of carbohydrates and organic phosphorous remained unaltered in the first 2 weeks, but decreased significantly (up to 50%) in the longer term when exposed at 20,000 ppm of CO 2 . Such effects were associated with a significant change in the composition of the biopolymeric carbon (due to the accumulation of proteins over time in sediments exposed to high-pCO 2 treatments), and a significant decrease (∼20-50% at 5000 and 20,000 ppm respectively) in nitrogen regeneration. We conclude that in areas immediately surrounding an active and long-lasting leak of CO 2 from CCS reservoirs, organic matter cycling would be significantly impacted in the surface sediment layers. The evidence of negligible impacts on the deeper sediments should be

  17. Sediment yield and runoff frequency of small drainage basins in the Mojave Desert, U.S.A

    USGS Publications Warehouse

    Griffiths, P.G.; Hereford, R.; Webb, R.H.

    2006-01-01

    Sediment yield from small arid basins, particularly in the Mojave Desert, is largely unknown owing to the ephemeral nature of these fluvial systems and long recurrence interval of flow events. We examined 27 reservoirs in the northern and eastern Mojave Desert that trapped sediment from small (< 1 km2) drainage basins on alluvial fans over the past 100 yr, calculated annual sediment yield, and estimated the average recurrence interval (RI) of sediment-depositing flow events. These reservoirs formed where railbeds crossed and blocked channels, causing sediment to be trapped and stored upslope. Deposits are temporally constrained by the date of railway construction (1906-1910), the presence of 137Cs in the reservoir profile (post-1952 sediment), and either 1993, when some basins breached during regional flooding, or 2000-2001, when stratigraphic analyses were performed. Reservoir deposits are well stratified at most sites and have distinct fining-upward couplets indicative of discrete episodes of sediment-bearing runoff. Average RI of runoff events for these basins ranges from 2.6 to 7.3 yr and reflects the incidence of either intense or prolonged rainfall; more than half the runoff events occurred before 1963. A period of above-normal precipitation, from 1905 to 1941, may have increased runoff frequency in these basins. Mean sediment yield (9 to 48 tons km-2 yr-1) is an order of magnitude smaller than sediment yields calculated elsewhere and may be limited by reduced storm intensity, the presence of desert pavement, and shallow gradient of fan surfaces. Sediment yield decreases as drainage area increases, a trend typical of much larger drainage basins where sediment-transport processes constrain sediment yield. Coarse substrate and low-angle slopes of these alluvial fan surfaces likely limit sediment transport capacity through transmission losses and channel storage. ?? 2005 Elsevier B.V. All rights reserved.

  18. Viral activities and life cycles in deep subseafloor sediments.

    PubMed

    Engelhardt, Tim; Orsi, William D; Jørgensen, Bo Barker

    2015-12-01

    Viruses are highly abundant in marine subsurface sediments and can even exceed the number of prokaryotes. However, their activity and quantitative impact on microbial populations are still poorly understood. Here, we use gene expression data from published continental margin subseafloor metatranscriptomes to qualitatively assess viral diversity and activity in sediments up to 159 metres below seafloor (mbsf). Mining of the metatranscriptomic data revealed 4651 representative viral homologues (RVHs), representing 2.2% of all metatranscriptome sequence reads, which have close translated homology (average 77%, range 60-97% amino acid identity) to viral proteins. Archaea-infecting RVHs are exclusively detected in the upper 30 mbsf, whereas RVHs for filamentous inoviruses predominate in the deepest sediment layers. RVHs indicative of lysogenic phage-host interactions and lytic activity, notably cell lysis, are detected at all analysed depths and suggest a dynamic virus-host association in the marine deep biosphere studied here. Ongoing lytic viral activity is further indicated by the expression of clustered, regularly interspaced, short palindromic repeat-associated cascade genes involved in cellular defence against viral attacks. The data indicate the activity of viruses in subsurface sediment of the Peruvian margin and suggest that viruses indeed cause cell mortality and may play an important role in the turnover of subseafloor microbial biomass. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Tracking heterotrophic and autotrophic carbon cycling by magnetotactic bacteria in freshwater sediments using DNA stable isotope probing

    NASA Astrophysics Data System (ADS)

    Kürşat Coşkun, Ömer; Roud, Sophie; He, Kuang; Petersen, Nikolai; Gilder, Stuart; Orsi, William D.

    2017-04-01

    Magnetotactic bacteria (MTB) are diverse, widespread, motile prokaryotes which biomineralize nanosize magnetic minerals, either magnetite or gregite, under highly conserved genetic control and have magnetotaxis to align their position in aquatic environment according to Earth's magnetic field. They play important roles on some geobiological cycle of important minerals such as iron, sulphur, nitrogen and carbon. Yet, to date, their importance in carbon cycle and carbon source in their natural environment have not been previously studied. In this study, we focused on freshwater benthic carbon cycling of MTB and total bacteria using DNA stable isotope probing (DNA-SIP) technique coupled with quantitative PCR (qPCR). Pond sediments from Unterlippach (Germany) were amended with 13C-labelled sodium bicarbonate and 13C-labelled organic matter, and incubated in the dark over a two week time period. Applying separate qPCR assays specific for total bacteria and MTB, respectively, allowed us to estimate the contribution of MTB to total heterotrophic and autotrophic carbon cycling via DNA-SIP. After one week, there was a slight degree of autotrophic activity which increased markedly after two weeks. Comparing total DNA to the qPCR data revealed that changes in the buoyant density of DNA was due mainly to autotrophic bacterial production. DNA-SIP also identified heterotrophic utilization of 13C-labelled organic matter by MTB after 1 week. The qPCR data also allowed us to estimate uptake rates based on the incubation times for heterotrophic and autotrophic MTB. High-throughput DNA sequencing of 16S rRNA genes showed that most of the MTB involved in carbon cycling were related to the Magnetococcus genus. This study sheds light on the carbon sources for MTB in a natural environment and helps unravel their ecological role in the carbon cycle.

  20. Continuous measurements of suspended sediment loads using dual frequency acoustic Doppler profile signals

    NASA Astrophysics Data System (ADS)

    Antonini, Alessandro; Guerrero, Massimo; Rüther, Nils; Stokseth, Siri

    2016-04-01

    A huge thread to Hydropower plants (HPP) is incoming sediments in suspension from the rivers upstream. The sediments settle in the reservoir and reduce the effective head as well as the volume and reduce consequently the lifetime of the reservoir. In addition are the fine sediments causing severe damages to turbines and infrastructure of a HPP. For estimating the amount of in-coming sediments in suspension and the consequent planning of efficient counter measures, it is essential to monitor the rivers within the catchment of the HPP for suspended sediments. This work is considerably time consuming and requires highly educated personnel and is therefore expensive. Surrogate-indirect methods using acoustic and optic devices have bee developed since the last decades that may be efficiently applied for the continuous monitoring of suspended sediment loads. The presented study proposes therefore to establish a research station at a cross section of a river which is the main tributary to a reservoir of a HPP and equip this station with surrogate as well as with common method of measuring suspended load concentrations and related flow discharge and level. The logger at the research station delivers data automatically to a server. Therefore it is ensured that also large flood events are covered. Data during flood are of high interest to the HPP planners since they carried the most part of the sediment load in a hydrological year. Theses peaks can hardly be measured with common measurement methods. Preliminary results of the wet season 2015/2016 are presented. The data gives insight in the applicable range, in terms of scattering particles concentration-average size and corresponding flow discharge and level, eventually enabling the study of suspended sediment load-water flow correlations during peak events. This work is carried out as part of a larger research project on sustainable hydro power plants exposed to high sediment yield, SediPASS. SediPASS is funded by the

  1. Improved measurement of extracellular enzymatic activities in subsurface sediments using competitive desorption treatment

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Adrienne; Snider, Rachel; Arnosti, Carol

    2017-02-01

    Extracellular enzymatic activities initiate microbially-driven heterotrophic carbon cycling in subsurface sediments. While measurement of hydrolytic activities in sediments is fundamental to our understanding of carbon cycling, these measurements are often technically difficult due to sorption of organic substrates to the sediment matrix. Most methods that measure hydrolysis of organic substrates in sediments rely on recovery of a fluorophore or fluorescently-labeled target substrate from a sediment incubation. The tendency for substrates to sorb to sediments results in lower recovery of an added substrate, and can result in data that are unusable or difficult to interpret. We developed a treatment using competitive desorption of a fluorescently-labeled, high molecular weight organic substrate that improves recovery of the labeled substrate from sediment subsamples. Competitive desorption treatment improved recovery of the fluorescent substrate by a median of 66%, expanded the range of sediments for which activity measurements could be made, and was effective in sediments from a broad range of geochemical contexts. More reliable measurements of hydrolytic activities in sediments will yield usable and more easily interpretable data from a wider range of sedimentary environments, enabling better understanding of microbially-catalyzed carbon cycling in subsurface environments.

  2. Sediment focusing creates 100-ka cycles in interplanetary dust accumulation on the Ontong Java Plateau

    NASA Astrophysics Data System (ADS)

    Higgins, Sean M.; Anderson, Robert F.; Marcantonio, Franco; Schlosser, Peter; Stute, Martin

    2002-10-01

    The accumulation of extraterrestrial 3He, a tracer for interplanetary dust particles (IDPs), in sediments from the Ontong Java Plateau (OJP; western equatorial Pacific Ocean) has been shown previously to exhibit a regular cyclicity during the late Pleistocene, with a period of ∼100 ka. Those results have been interpreted to reflect periodic variability in the global accretion of IDPs that, in turn, has been linked to changes in the inclination of Earth's orbit with respect to the invariable plane of the solar system. Here we show that the accumulation in OJP sediments of authigenic 230Th, produced by radioactive decay of 234U in seawater, exhibits a 100-ka cyclicity similar in phase and amplitude to that evident in the 3He record. We interpret the similar patterns of 230Th and 3He accumulation to reflect a common origin within the ocean-climate system. Comparing spatial and temporal patterns of sediment accumulation against regional patterns of biological productivity and against the well-established pattern of CaCO3 dissolution in the deep Pacific Ocean leads to the further conclusion that a common 100-ka cycle in accumulation of biogenic, authigenic and extraterrestrial constituents in OJP sediments reflects the influence of climate-related changes in sediment focusing, rather than changes in the rate of production or supply of sedimentary constituents.

  3. High-frequency monitoring reveals nutrient sources and transport processes in an agriculture-dominated lowland water system

    NASA Astrophysics Data System (ADS)

    van der Grift, Bas; Broers, Hans Peter; Berendrecht, Wilbert; Rozemeijer, Joachim; Osté, Leonard; Griffioen, Jasper

    2016-05-01

    Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas or for reducing export loads to downstream water bodies. This paper introduces new insights in nutrient sources and transport processes in a polder in the Netherlands situated below sea level using high-frequency monitoring technology at the outlet, where the water is pumped into a higher situated lake, combined with a low-frequency water quality monitoring programme at six locations within the drainage area. Seasonal trends and short-scale temporal dynamics in concentrations indicated that the NO3 concentration at the pumping station originated from N loss from agricultural lands. The NO3 loads appear as losses via tube drains after intensive rainfall events during the winter months due to preferential flow through the cracked clay soil. Transfer function-noise modelling of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be related to rainfall. The total phosphorus (TP) concentration and turbidity almost doubled during operation of the pumping station, which points to resuspension of particulate P from channel bed sediments induced by changes in water flow due to pumping. Rainfall events that caused peaks in NO3 concentrations did not results in TP concentration peaks. The rainfall induced and NO3 enriched quick interflow, may also be enriched in TP but retention of TP due to sedimentation of particulate P then results in the absence of rainfall induced TP concentration peaks. Increased TP concentrations associated with run-off events is only observed during a rainfall event at the end of a freeze-thaw cycle. All these observations suggest that the P retention potential of polder water systems is primarily due to the artificial pumping regime

  4. Element geochemical analysis of the contribution of aeolian sand to suspended sediment in desert stream flash floods.

    PubMed

    Jia, Xiaopeng; Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream.

  5. Element Geochemical Analysis of the Contribution of Aeolian Sand to Suspended Sediment in Desert Stream Flash Floods

    PubMed Central

    Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream. PMID:25089295

  6. Channel responses to varying sediment input: A flume experiment modeled after Redwood Creek, California

    USGS Publications Warehouse

    Madej, Mary Ann; Sutherland, D.G.; Lisle, T.E.; Pryor, B.

    2009-01-01

    At the reach scale, a channel adjusts to sediment supply and flow through mutual interactions among channel form, bed particle size, and flow dynamics that govern river bed mobility. Sediment can impair the beneficial uses of a river, but the timescales for studying recovery following high sediment loading in the field setting make flume experiments appealing. We use a flume experiment, coupled with field measurements in a gravel-bed river, to explore sediment transport, storage, and mobility relations under various sediment supply conditions. Our flume experiment modeled adjustments of channel morphology, slope, and armoring in a gravel-bed channel. Under moderate sediment increases, channel bed elevation increased and sediment output increased, but channel planform remained similar to pre-feed conditions. During the following degradational cycle, most of the excess sediment was evacuated from the flume and the bed became armored. Under high sediment feed, channel bed elevation increased, the bed became smoother, mid-channel bars and bedload sheets formed, and water surface slope increased. Concurrently, output increased and became more poorly sorted. During the last degradational cycle, the channel became armored and channel incision ceased before all excess sediment was removed. Selective transport of finer material was evident throughout the aggradational cycles and became more pronounced during degradational cycles as the bed became armored. Our flume results of changes in bed elevation, sediment storage, channel morphology, and bed texture parallel those from field surveys of Redwood Creek, northern California, which has exhibited channel bed degradation for 30??years following a large aggradation event in the 1970s. The flume experiment suggested that channel recovery in terms of reestablishing a specific morphology may not occur, but the channel may return to a state of balancing sediment supply and transport capacity.

  7. Field application of a multi-frequency acoustic instrument to monitor sediment for silt erosion study in Pelton turbine in Himalayan region, India

    NASA Astrophysics Data System (ADS)

    Rai, A. K.; Kumar, A.; Hies, T.; Nguyen, H. H.

    2016-11-01

    High sediment load passing through hydropower components erodes the hydraulic components resulting in loss of efficiency, interruptions in power production and downtime for repair/maintenance, especially in Himalayan regions. The size and concentration of sediment play a major role in silt erosion. The traditional process of collecting samples manually to analyse in laboratory cannot suffice the need of monitoring temporal variation in sediment properties. In this study, a multi-frequency acoustic instrument was applied at desilting chamber to monitor sediment size and concentration entering the turbine. The sediment size and concentration entering the turbine were also measured with manual samples collected twice daily. The samples collected manually were analysed in laboratory with a laser diffraction instrument for size and concentration apart from analysis by drying and filtering methods for concentration. A conductivity probe was used to calculate total dissolved solids, which was further used in results from drying method to calculate suspended solid content of the samples. The acoustic instrument was found to provide sediment concentration values similar to drying and filtering methods. However, no good match was found between mean grain size from the acoustic method with the current status of development and laser diffraction method in the first field application presented here. The future versions of the software and significant sensitivity improvements of the ultrasonic transducers are expected to increase the accuracy in the obtained results. As the instrument is able to capture the concentration and in the future most likely more accurate mean grain size of the suspended sediments, its application for monitoring silt erosion in hydropower plant shall be highly useful.

  8. Application of in situ thermography for evaluating the high-cycle and very high-cycle fatigue behaviour of cast aluminium alloy AlSi7Mg (T6).

    PubMed

    Krewerth, D; Weidner, A; Biermann, H

    2013-12-01

    The present paper illustrates the application of infrared thermal measurements for the investigation of crack initiation point and crack propagation in the high-cycle and the very high-cycle fatigue range of cast AlSi7Mg alloy (A356). The influence of casting defects, their location, size and amount was studied both by fractography and thermography. Besides internal and surface fatigue crack initiation as a further crack initiation type multiple fatigue crack initiation was observed via in situ thermography which can be well correlated with the results from fractography obtained by SEM investigations. In addition, crack propagation was studied by the development of the temperature measured via thermography. Moreover, the frequency influence on high-cycle fatigue behaviour was investigated. The presented results demonstrate well that the combination of fractography and thermography can give a significant contribution to the knowledge of crack initiation and propagation in the VHCF regime. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Solar cycles and depositional processes in annual 10Be from two varved lake sediment records

    NASA Astrophysics Data System (ADS)

    Czymzik, Markus; Muscheler, Raimund; Brauer, Achim; Adolphi, Florian; Ott, Florian; Kienel, Ulrike; Dräger, Nadine; Słowiński, Michał; Aldahan, Ala; Possnert, Göran

    2015-10-01

    Beryllium 10 concentrations (10Becon) were measured at annual resolution from varved sediment cores of Lakes Tiefer See (TSK) and Czechowskie (JC) for the period 1983-2009 (∼solar cycles 22 and 23). Calibrating the 10Becon time-series against complementing proxy records from the same archive as well as local precipitation and neutron monitor data, reflecting solar forced changes in atmospheric radionuclide production, allowed (i) identifying the main depositional processes and (ii) evaluating the potential for solar activity reconstruction. 10Becon in TSK and JC sediments are significantly correlated to varying neutron monitor counts (TSK: r = 0.5, p = 0.05, n = 16; JC: r = 0.46, p = 0.03, n = 22). However, the further correlations with changes in organic carbon contents in TSK as well as varying organic carbon and detrital matter contents in JC point to catchment specific biases in the 10Becon time-series. In an attempt to correct for these biases multiple regression analysis was applied to extract an atmospheric 10Be production signal (10Beatmosphere). To increase the signal to noise ratio a 10Be composite record (10Becomposite) was calculated from the TSK and JC 10Beatmosphere time-series. 10Becomposite is significantly correlated to variations in the neutron monitor record (r = 0.49, p = 0.01, n = 25) and matches the expected amplitude changes in 10Be production between solar cycle minima and maxima. This calibration study on 10Be from two sites indicates the large potential but also, partly site-specific, limitations of 10Be in varved lake sediments for solar activity reconstruction.

  10. Fire Frequency and Vegetation Composition Influence Soil Nitrogen Cycling and Base Cations in an Oak Savanna Ecosystem

    NASA Astrophysics Data System (ADS)

    McLauchlan, K. K.; Nelson, D. M.; Perakis, S.; Marcotte, A. L.

    2017-12-01

    Fire frequency is crucial for maintaining savannas in the transition between forests and grasslands. In general, increasing fire frequency has two effects: it increases herbaceous plant cover more than woody plant cover, and it lowers soil organic matter stocks. These effects have been demonstrated at a long-term prescribed fire experiment in an oak savanna ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, U.S.A. The fire experiment began in 1964 and oak savannas are burned at various frequencies ranging from every year to not at all. This has led to changes in vegetation ranging from almost 100% grassland to 100% oak forest. Additionally, nitrogen stocks almost doubled in the sites that were not burned, as it accumulated in the trees, leaf litter, and soil. We addressed additional soil changes taking place at this experiment by asking the question: How have fire and oak-grass balance affected soil nutrients, specifically nitrogen and base cations? Surface soils were collected from 12 plots on the oak savanna burn experiment. Soils were collected in increments to 100 cm depth, from under grass-dominated vegetation and from under tree-dominated vegetation. We non-destructively estimated soil base cations by measuring elemental concentrations of dried soil subsamples with a handheld x-ray fluorescence analyzer. We also measured carbon and nitrogen concentrations and isotopic composition of the soil samples. Soils in plots with high fire frequency had higher concentrations of calcium than soils in unburned plots (low fire frequency). Similar trends were seen for soil potassium, magnesium, and phosphorus concentrations. In contrast, soils in plots with high fire frequency had dramatically lowered nitrogen cycling rates and stocks across the oak savanna. The contrast between the responses of different nutrients to changing fire frequency has important implications for the consequences of fire and tree-grass composition on nutrient cycling dynamics.

  11. Evidence for iron-sulfate coupling in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Mills, Jennifer; Antler, Gilad; Turchyn, Alexandra

    2014-05-01

    Organic carbon burial in shallow marine sediments represents an important net sink in the global carbon cycle. Microbially mediated oxidation of organic matter in oxic, suboxic, and anoxic sediments however, prevents the ultimate burial of organic carbon and its removal from the surface of the planet. Although the subsurface transformations of organic carbon have been studied extensively, an enigmatic question remains: when organic matter is deposited, what determines whether it will be buried, reoxidized, or undergo methanogenesis? One hypothesis is that the sulfur cycle, due to the abundance of sulfate in many surface environments, dominates the subsurface oxidation or other fate of organic carbon. However, it has also been suggested that iron may in turn play a key role in determining the behavior of the sulfur cycle. To better understand the controls on these processes, we are using stable isotope and geochemical techniques to explore the microbially mediated oxidation of organic carbon in salt marsh sediments in North Norfolk, UK. In these sediments there is a high supply of organic carbon, iron, and sulfate (from diurnal tidal cycles). Thus these environments may provide insight into the nature of interactions between the carbon, iron, and sulfur cycles. A series of sampling missions was undertaken in the autumn and winter of 2013-2014. In subsurface fluid samples we observe very high ferrous iron concentrations (>1mM), indicative of extended regions of iron reduction (to over 30cm depth). Within these zones of iron reduction we would predict no sulfate reduction, and as expected δ34Ssulfate remains unchanged with depth. However, δ18Osulfate exhibits significant enrichments of up to 5 permil. This decoupling in the sulfur and oxygen isotopes of sulfate is suggestive of a sulfate recycling process in which sulfate is reduced to an intermediate sulfur species and subsequently reoxidized to sulfate. Taken together, these data suggest that microbial assemblages

  12. Reprint of Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Xiong, Jilian; Wang, Xiao Hua; Wang, Ya Ping; Chen, Jingdong; Shi, Benwei; Gao, Jianhua; Yang, Yang; Yu, Qian; Li, Mingliang; Yang, Lei; Gong, Xulong

    2018-06-01

    An understanding of the dynamics and behaviors of suspended sediments is vital in analysis of morphological, environmental, and ecological processes occurring in coastal marine environments. To study the mechanisms of maintaining high suspended sediment concentrations (SSCs) on a tide-dominated offshore shoal, we measured water depths, current velocities, SSCs, wave parameters and bottom sediment compositions in the southern Yellow Sea. These data were then used to calculate bottom shear stresses generated by currents (τc), waves (τw), and wave-current interactions (τcw). SSCs time series exhibited strong quarter-diurnal peaks during spring tides, in contrast to the semidiurnal signal during neap tides. A Fourier analysis showed that suspended sediment variations within tidal cycles was mainly controlled by resuspension in most stations. There existed relatively stable background SSCs (maintaining high SSCs among tidal cycles) values at all four stations during both windy (wind speed > 9.0 m/s) and normal weather conditions (wind speed < 3.0 m/s). The background SSCs had strong relationship with spring/neap-averaged τcw, indicating background SSCs were mainly controlled by mean bottom shear stress, with a minimum value of 0.21 N/m2. On account of the strong tidal currents, background SSCs of spring tides were greater than that of neap tides. In addition, on the base of wavelet, statistics analyses and turbulence dissipation parameter, background SSCs during slack tide in the study area may be maintained by intermittent turbulence events induced by a combined tidal current and wave action.

  13. Corrosion monitoring using high-frequency guided waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  14. High levels of methylmercury in guano and ornithogenic coral sand sediments on Xisha islands, South China sea.

    PubMed

    Chen, Qianqian; Liu, Xiaodong; Xu, Liqiang; Sun, Liguang; Yan, Hong; Liu, Yi; Luo, Yuhan; Huang, Jing

    2012-08-01

    This study determined the distribution and main source of methylmercury in ornithogenic coral sand sediments and pure guano collected from Guangjin and Jinqing islets of the South China Sea. Results showed that the levels of methylmercury (MeHg) and total mercury (THg), as well as the percentage of MeHg relative to THg (%MeHg), are high in both fresh and ancient guano samples. %MeHg in ancient guano exceeded 70 %, much greater than that in fresh seabird droppings (~45 %). These results suggest that excretion through feces likely plays an important role in the cycling of MeHg by seabirds. Guano has been identified as the major source of MeHg in the ornithogenic coral sand sediments in the Xisha Islands. The close relationship between MeHg and guano-derived phosphorus has weakened considerably since 1840 AD. This is probably caused by a significant increase in THg and MeHg in modern guano samples due to the recent increase of Hg pollution. %MeHg in the ornithogenic coral sand sediments is extremely high, ranging from 10 to 30 % (average 20 %).

  15. Using turbidity and acoustic backscatter intensity as surrogate measures of suspended sediment concentration in a small subtropical estuary.

    PubMed

    Chanson, Hubert; Takeuchi, Maiko; Trevethan, Mark

    2008-09-01

    The suspended sediment concentration is a key element in stream monitoring, although the turbidity and acoustic Doppler backscattering may be suitable surrogate measures. Herein a series of new experiments were conducted in laboratory under controlled conditions using water and mud samples collected in a small subtropical estuary of Eastern Australia. The relationship between suspended sediment concentration and turbidity exhibited a linear relationship, while the relationships between suspended sediment concentration and acoustic backscatter intensity showed a monotonic increase. The calibration curves were affected by both sediment material characteristics and water quality properties, implying that the calibration of an acoustic Doppler system must be performed with the waters and soil materials of the natural system. The results were applied to some field studies in the estuary during which the acoustic Doppler velocimeter was sampled continuously at high frequency. The data yielded the instantaneous suspended sediment flux per unit area in the estuarine zone. They showed some significant fluctuations in instantaneous suspended mass flux, with a net upstream-suspended mass flux during flood tide and net downstream sediment flux during ebb tide. For each tidal cycle, the integration of the suspended sediment flux per unit area data with respect of time yielded some net upstream sediment flux in average.

  16. Modeling Biogeochemical Cycling of Heavy Metals in Lake Coeur d'Alene Sediments

    NASA Astrophysics Data System (ADS)

    Sengor, S. S.; Spycher, N.; Belding, E.; Curthoys, K.; Ginn, T. R.

    2005-12-01

    Mining of precious metals since the late 1800's have left Lake Coeur d'Alene (LCdA) sediments heavily enriched with toxic metals, including Cd, Cu, Pb, and Zn. Indigenous microbes however are capable of catalyzing reactions that detoxify the benthic and aqueous lake environments, and thus constitute an important driving component in the biogeochemical cycles of these metals. Here we report on the development of a quantitative model of transport, fate, exposure and effects of toxic compounds on benthic microbial communities at LCdA. First, chemical data from the LCdA area have been compiled from multiple sources to investigate trends in chemical occurrence, as well as to define model boundary conditions. The model is structured as 1-D diffusive reactive transport model to simulate spatial and temporal distribution of metals through the benthic sediments. Inorganic reaction processes included in the model are aqueous speciation, surface complexation, mineral precipitation/dissolution and abiotic redox reactions. Simulations with and without surface complexation are carried out to evaluate the effect of sorption and the conservative behaviour of metals within the benthic sediments under abiotic and purely diffusive transport. The 1-D inorganic diffusive transport model is then coupled to a biotic reaction network including consortium biodegradation kinetics with multiple electron acceptors, product toxicity, and energy partitioning. Multiyear simulations are performed, with water column chemistry established as a boundary condition from extant data, to explore the role of biogeochemical dynamics on benthic fluxes of metals in the long term.

  17. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling

    PubMed Central

    2013-01-01

    Background Sediments are massive reservoirs of carbon compounds and host a large fraction of microbial life. Microorganisms within terrestrial aquifer sediments control buried organic carbon turnover, degrade organic contaminants, and impact drinking water quality. Recent 16S rRNA gene profiling indicates that members of the bacterial phylum Chloroflexi are common in sediment. Only the role of the class Dehalococcoidia, which degrade halogenated solvents, is well understood. Genomic sampling is available for only six of the approximate 30 Chloroflexi classes, so little is known about the phylogenetic distribution of reductive dehalogenation or about the broader metabolic characteristics of Chloroflexi in sediment. Results We used metagenomics to directly evaluate the metabolic potential and diversity of Chloroflexi in aquifer sediments. We sampled genomic sequence from 86 Chloroflexi representing 15 distinct lineages, including members of eight classes previously characterized only by 16S rRNA sequences. Unlike in the Dehalococcoidia, genes for organohalide respiration are rare within the Chloroflexi genomes sampled here. Near-complete genomes were reconstructed for three Chloroflexi. One, a member of an unsequenced lineage in the Anaerolinea, is an aerobe with the potential for respiring diverse carbon compounds. The others represent two genomically unsampled classes sibling to the Dehalococcoidia, and are anaerobes likely involved in sugar and plant-derived-compound degradation to acetate. Both fix CO2 via the Wood-Ljungdahl pathway, a pathway not previously documented in Chloroflexi. The genomes each encode unique traits apparently acquired from Archaea, including mechanisms of motility and ATP synthesis. Conclusions Chloroflexi in the aquifer sediments are abundant and highly diverse. Genomic analyses provide new evolutionary boundaries for obligate organohalide respiration. We expand the potential roles of Chloroflexi in sediment carbon cycling beyond

  18. High-frequency gamma oscillations coexist with low-frequency gamma oscillations in the rat visual cortex in vitro.

    PubMed

    Oke, Olaleke O; Magony, Andor; Anver, Himashi; Ward, Peter D; Jiruska, Premysl; Jefferys, John G R; Vreugdenhil, Martin

    2010-04-01

    Synchronization of neuronal activity in the visual cortex at low (30-70 Hz) and high gamma band frequencies (> 70 Hz) has been associated with distinct visual processes, but mechanisms underlying high-frequency gamma oscillations remain unknown. In rat visual cortex slices, kainate and carbachol induce high-frequency gamma oscillations (fast-gamma; peak frequency approximately 80 Hz at 37 degrees C) that can coexist with low-frequency gamma oscillations (slow-gamma; peak frequency approximately 50 Hz at 37 degrees C) in the same column. Current-source density analysis showed that fast-gamma was associated with rhythmic current sink-source sequences in layer III and slow-gamma with rhythmic current sink-source sequences in layer V. Fast-gamma and slow-gamma were not phase-locked. Slow-gamma power fluctuations were unrelated to fast-gamma power fluctuations, but were modulated by the phase of theta (3-8 Hz) oscillations generated in the deep layers. Fast-gamma was spatially less coherent than slow-gamma. Fast-gamma and slow-gamma were dependent on gamma-aminobutyric acid (GABA)(A) receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and gap-junctions, their frequencies were reduced by thiopental and were weakly dependent on cycle amplitude. Fast-gamma and slow-gamma power were differentially modulated by thiopental and adenosine A(1) receptor blockade, and their frequencies were differentially modulated by N-methyl-D-aspartate (NMDA) receptors, GluK1 subunit-containing receptors and persistent sodium currents. Our data indicate that fast-gamma and slow-gamma both depend on and are paced by recurrent inhibition, but have distinct pharmacological modulation profiles. The independent co-existence of fast-gamma and slow-gamma allows parallel processing of distinct aspects of vision and visual perception. The visual cortex slice provides a novel in vitro model to study cortical high-frequency gamma oscillations.

  19. Cyclic Sediment Trading Between Channel and River Bed Sediments

    NASA Astrophysics Data System (ADS)

    Haddadchi, A.

    2015-12-01

    Much of the previous work on sediment tracing has focused on determining either the initial sources of the sediment (soils derive from a particular rock type) or the erosion processes generating the sediment. However, alluvial stores can be both a source and sink for sediment transported by streams. Here geochemical and fallout radionuclide tracing of river-bed and alluvial sediments are used to determine the role of secondary sources, sediment stores, as potential sources of sediment leaving Emu Creek catchment, southeastern Queensland, Australia. Activity concentrations of 137Cs on the river sediments are consistent with channel erosion being the dominant source at all sites sampled along the river. To characterise the deposition and remobilisation cycles in the catchment, a novel geochemical tracing approach was used. Successive pockets of alluvium were treated as discrete sink terms within geochemical mixing models and their source contributions compared with those of river bed sediments collected adjacent to each alluvial pocket. Three different size fractions were examined; silts and clays (<10 μm), silts (10-63 μm), and fine sands (63-212 μm). The contribution of the initial soil/rock type sources to river bed and alluvial sediments at each sampling site was identical for all three different size fractions, but varied along the stream. Combining these findings it is concluded that proximal alluvial stores dominated the supply of sediment to the river at each location, with this being particularly evident at the catchment outlet. Identical contribution of rock type sources to both river bed and alluvial pockets together with the dominant erosion being from channel banks indicates a high degree of 'trading' between the fluvial space and the alluvial space. Hence, management works aimed at primarily reducing the supply of sediments to the outlet of Emu Creek should focus on rehabilitation of channel banks in the lower catchment.

  20. Effect of high sedimentation rates on surface sediment dynamics and mangrove growth in the Porong River, Indonesia.

    PubMed

    Sidik, Frida; Neil, David; Lovelock, Catherine E

    2016-06-15

    Large quantities of mud from the LUSI (Lumpur Sidoarjo) volcano in northeastern Java have been channeled to the sea causing high rates of sediment delivery to the mouth of the Porong River, which has a cover of natural and planted mangroves. This study investigated how the high rates of sediment delivery affected vertical accretion, surface elevation change and the growth of Avicennia sp., the dominant mangrove species in the region. During our observations in 2010-2011 (4-5years after the initial volcanic eruption), very high rates of sedimentation in the forests at the mouth of the river gave rise to high vertical accretion of over 10cmy(-1). The high sedimentation rates not only resulted in reduced growth of Avicennia sp. mangrove trees at the two study sites at the Porong River mouth, but also gave rise to high soil surface elevation gains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2014-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  2. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  3. Quantifying manganese and nitrogen cycle coupling in manganese-rich, organic carbon-starved marine sediments: Examples from the Clarion-Clipperton fracture zone

    NASA Astrophysics Data System (ADS)

    Mogollón, José M.; Mewes, Konstantin; Kasten, Sabine

    2016-07-01

    Extensive deep-sea sedimentary areas are characterized by low organic carbon contents and thus harbor suboxic sedimentary environments where secondary (autotrophic) redox cycling becomes important for microbial metabolic processes. Simulation results for three stations in the Eastern Equatorial Pacific with low organic carbon content (<0.5 dry wt %) and low sedimentation rates (10-1-100 mm ky-1) show that ammonium generated during organic matter degradation may act as a reducing agent for manganese oxides below the oxic zone. Likewise, at these sedimentary depths, dissolved reduced manganese may act as a reducing agent for oxidized nitrogen species. These manganese-coupled transformations provide a suboxic conversion pathway of ammonium and nitrate to dinitrogen. These manganese-nitrogen interactions further explain the presence and production of dissolved reduced manganese (up to tens of μM concentration) in sediments with high nitrate (>20 μM) concentrations.

  4. High-frequency, high-intensity photoionization

    NASA Astrophysics Data System (ADS)

    Reiss, H. R.

    1996-02-01

    Two analytical methods for computing ionization by high-frequency fields are compared. Predicted ionization rates compare well, but energy predictions for the onset of ionization differ radically. The difference is shown to arise from the use of a transformation in one of the methods that alters the zero from which energy is measured. This alteration leads to an apparent energy threshold for ionization that can, especially in the stabilization regime, differ strongly from the laboratory measurement. It is concluded that channel closings in intense-field ionization can occur at high as well as low frequencies. It is also found that the stabilization phenomenon at high frequencies, very prominent for hydrogen, is absent in a short-range potential.

  5. Temporal variations of water and sediment fluxes in the Cointzio river basin, central Mexico

    NASA Astrophysics Data System (ADS)

    Duvert, C.; Gratiot, N.; Navratil, O.; Esteves, M.; Prat, C.; Nord, G.

    2009-04-01

    The STREAMS program (Sediment TRansport and Erosion Across MountainS) was launched in 2006 to study suspended sediment dynamics in mountainous areas. Two watersheds were selected as part of the program: the Bléone river basin in the French Alps, and the Cointzio river basin (636 km2), located in the mountainous region of Michoacán, in central Mexico. The volcanic soils of the Cointzio catchment undergo important erosion processes, especially during flashflood events. Thus, a high-frequency monitoring of sediment transport is highly required. The poster presents the high-frequency database obtained from the 2008 hydrological season at the Santiago Undameo gauged station, located at the basin's outlet. Suspended Sediment Concentration (SSC) was estimated every 10 minutes by calibrating turbidity measurements with bottle sampling acquired on a double-daily basis. Water discharge time-series was approximated with continuous water-level measurements (5 minutes time-step), and a stage-discharge rating curve. Our investigation highlights the influence of sampling frequency on annual water and sediment fluxes estimate. A daily or even a weekly water-level measurement provides an unexpectedly reliable assessment of the seasonal water fluxes, with an under-estimation of about 5 % of the total flux. Concerning sediment fluxes, a high-frequency SSC survey appears to be necessary. Acquiring SSC data even twice a day leads to a significant (over 30 %) under-estimation of the seasonal sediment load. These distinct behaviors can be attributed to the fact that sediment transport almost exclusively occurs during brief night flood events, whereas exfiltration on the watershed always provides a base flow during the daily water-level measurements.

  6. Advances in Holocene mountain geomorphology inspired by sediment budget methodology

    NASA Astrophysics Data System (ADS)

    Slaymaker, Olav; Souch, Catherine; Menounos, Brian; Filippelli, Gabriel

    2003-09-01

    The sediment budget, which links sediment sources to sediment sinks with hydroclimatic and weathering processes mediating the response, is applied to the analysis of sediments in three alpine lakes in British Columbia. We provide two ways of using the sediment budget as an integrating device in the interpretation of mountain geomorphology. These approaches differ in their resolution and ability to budget the major components of the fine-sediment cascade in glaciated environments. Taken together, they provide an integrated index of landscape change over the Holocene. The first example compares the hydroclimatic controls of lake sedimentation for the last 600 years (A.D. 1370-1998) preserved in varved sediments from two of the lake basins. This hydroclimatological approach incorporates contemporary monitoring, air photo analysis, and detailed stratigraphy of sedimentation events within a single varve to infer the timing, sources, and preferred pathways of fine-grained sediments reaching the lake basins. The results indicate that glaciers, hillslope, and channel instability within the major subbasins are the principal sediment sources to the lake basins. Transitory sediment storage of glacially derived sediments within the channels is believed to modulate the episodic and more frequent delivery of sediments from adjacent hillslope and fluvial storage sites and direct routing of glacial rock flour during years of prolonged glacial melt. The second example, relying on the phosphorus geochemistry of sediments in an alpine lake basin, considers the evolution of phosphorus forms (from mineral to occluded and organic fractions) as a function of the soil development, inherent slope instability, and repeated cycles of glaciation and neoglaciation over the Holocene. This geochemical approach demonstrates that both neoglaciation and full glaciation have essentially zeroed the system in such a way that a high proportion of mineral phosphorus remains in the present lake sediments

  7. Basin-wide Millennial Cycles in Arabian Sea Climate Over the Last Glacial

    NASA Astrophysics Data System (ADS)

    Pourmand, A.; Marcantonio, F.

    2005-05-01

    High-frequency Dansgaard-Oeschger (D-O) and Heinrich cycles first discovered in the records of North Atlantic ice and marine sediments have been found to extend beyond the North Atlantic There is ample evidence for these millennial cycles of climate variability in the sediments of the Arabian Sea. We employ uranium-series radionuclide proxies to determine changes in the fluxes of sedimentary components in two cores from the western (W) and northeastern (NE) Arabian Sea in order to investigate fluctuations of export production and wind strength on a large regional scale during the last glacial period. In the NE Arabian Sea off of the Pakistani margin, 230Th-derived detrital (eolian) fluxes are highest during periods consistent with the timing of North Atlantic D-O stadial and H 1-7 events. Authigenic uranium concentrations, which we interpret as a proxy for primary productivity, also show an increase during North Atlantic D-O interstadials. Preliminary results from W Arabian Sea sediments off of the Oman margin corroborate that these millennial cycles in productivity and eolian fluxes are indeed basin-wide events. Authigenic U concentrations in these sediments are, on average, about twice those measured in the NE Arabian Sea, suggesting, qualitatively, an enhancement of primary productivity in the western part of the basin. In contrast, fluxes of eolian material to the Oman margin are, on average, more than 10 times lower than those delivered to the Pakistani margin, even though the patterns of millennial variability are virtually identical. We associate enhanced export production and a decreased eolian input during relatively warmer D-O interstadials with an intensification of southwest monsoonal winds. Similarly, decreased export production is coincident with an increase in eolian fluxes during North Atlantic stadial and H events. These results provide strong evidence for a basin-wide atmospheric teleconnection between Arabian Sea and North Atlantic climate on sub

  8. Cycle Time Reduction in Trapped Mercury Ion Atomic Frequency Standards

    NASA Technical Reports Server (NTRS)

    Burt, Eric A.; Tjoelker, Robert L.; Taghavi, Shervin

    2011-01-01

    The use of the mercury ion isotope (201)Hg(+) was examined for an atomic clock. Taking advantage of the faster optical pumping time in (201)Hg(+) reduces both the state preparation and the state readout times, thereby decreasing the overall cycle time of the clock and reducing the impact of medium-term LO noise on the performance of the frequency standard. The spectral overlap between the plasma discharge lamp used for (201)Hg(+) state preparation and readout is much larger than that of the lamp used for the more conventional (199)Hg(+). There has been little study of (201)Hg(+) for clock applications (in fact, all trapped ion clock work in mercury has been with (199)Hg(+); however, recently the optical pumping time in (201)Hg(+) has been measured and found to be 0.45 second, or about three times faster than in (199)Hg(+) due largely to the better spectral overlap. This can be used to reduce the overall clock cycle time by over 2 seconds, or up to a factor of 2 improvement. The use of the (201)Hg(+) for an atomic clock is totally new. Most attempts to reduce the impact of LO noise have focused on reducing the interrogation time. In the trapped ion frequency standards built so far at JPL, the optical pumping time is already at its minimum so that no enhancement can be had by shortening it. However, by using (201)Hg(+), this is no longer the case. Furthermore, integrity monitoring, the mechanism that determines whether the clock is functioning normally, cannot happen faster than the clock cycle time. Therefore, a shorter cycle time will enable quicker detection of failure modes and recovery from them.

  9. Near bed suspended sediment flux by single turbulent events

    NASA Astrophysics Data System (ADS)

    Amirshahi, Seyed Mohammad; Kwoll, Eva; Winter, Christian

    2018-01-01

    The role of small scale single turbulent events in the vertical mixing of near bed suspended sediments was explored in a shallow shelf sea environment. High frequency velocity and suspended sediment concentration (SSC; calibrated from the backscatter intensity) were collected using an Acoustic Doppler Velocimeter (ADV). Using quadrant analysis, the despiked velocity time series was divided into turbulent events and small background fluctuations. Reynolds stress and Turbulent Kinetic Energy (TKE) calculated from all velocity samples, were compared to the same turbulent statistics calculated only from velocity samples classified as turbulent events (Reevents and TKEevents). The comparison showed that Reevents and TKEevents was increased 3 and 1.6 times, respectively, when small background fluctuations were removed and that the correlation with SSC for TKE could be improved through removal of the latter. The correlation between instantaneous vertical turbulent flux (w ‧) and SSC fluctuations (SSC ‧) exhibits a tidal pattern with the maximum correlation at peak ebb and flood currents, when strong turbulent events appear. Individual turbulent events were characterized by type, strength, duration and length. Cumulative vertical turbulent sediment fluxes and average SSC associated with individual turbulent events were calculated. Over the tidal cycle, ejections and sweeps were the most dominant events, transporting 50% and 36% of the cumulative vertical turbulent event sediment flux, respectively. Although the contribution of outward interactions to the vertical turbulent event sediment flux was low (11%), single outward interaction events were capable of inducing similar SSC ‧ as sweep events. The results suggest that on time scales of tens of minutes to hours, TKE may be appropriate to quantify turbulence in sediment transport studies, but that event characteristics, particular the upward turbulent flux need to be accounted for when considering sediment transport

  10. High Cycle-life Shape Memory Polymer at High Temperature

    PubMed Central

    Kong, Deyan; Xiao, Xinli

    2016-01-01

    High cycle-life is important for shape memory materials exposed to numerous cycles, and here we report shape memory polyimide that maintained both high shape fixity (Rf) and shape recovery (Rr) during the more than 1000 bending cycles tested. Its critical stress is 2.78 MPa at 250 °C, and the shape recovery process can produce stored energy of 0.218 J g−1 at the efficiency of 31.3%. Its high Rf is determined by the large difference in storage modulus at rubbery and glassy states, while the high Rr mainly originates from its permanent phase composed of strong π-π interactions and massive chain entanglements. Both difference in storage modulus and overall permanent phase were preserved during the bending deformation cycles, and thus high Rf and Rr were observed in every cycle and the high cycle-life will expand application areas of SMPs enormously. PMID:27641148

  11. The influence of loading frequency on the high-temperature fatigue behavior of a Nicalon-fabric-reinforced polymer-derived ceramic-matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanswijgenhoven, E.; Holmes, J.; Wevers, M.

    Fiber-reinforced ceramic-matrix composites are under development for high-temperature structural applications. These applications involve fatigue loading under a wide range of frequencies. To date, high-temperature fatigue experiments have typically been performed at loading frequencies of 10 Hz or lower. At higher frequencies, a strong effect of loading frequency on fatigue life has been demonstrated for certain CMC`s tested at room temperature. The fatigue life of CMC`s with weak fiber-matrix interfaces typically decreases as the loading frequency increases. This decrease is attributed to frictional heating and frequency dependent interface and fiber damage. More recently, it has been shown that the room temperaturemore » fatigue life of a Nicalon-fabric-reinforced composite with a strong interface (SYLRAMIC{trademark}) appears to be independent of loading frequency. The high-temperature low-frequency fatigue behavior of the SYLRAMIC composite has also been investigated. For a fatigue peak stress {sigma}{sub peak} above a proportional limit stress of 70 MPa, the number of cycles to failure N{sub f} decreased with an increase in {sigma}{sub peak}. The material endured more than 10{sup 6} cycles for {sigma}{sub peak} below 70 MPa. In this paper, the influence of loading frequency on the high-temperature fatigue behavior of the SYLRAMIC composite is reported. It will be shown that the fatigue limit is unaffected by the loading frequency, that the number of fatigue cycles to failure N{sub f} increases with an increase in frequency, and that the time to failure t{sub f} decreases with an increase in frequency.« less

  12. Low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)

    1988-01-01

    The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.

  13. High-frequency Po/So guided waves in the oceanic lithosphere: I-long-distance propagation

    NASA Astrophysics Data System (ADS)

    Kennett, B. L. N.; Furumura, T.

    2013-12-01

    In many parts of the ocean high-frequency seismic energy is carried to very great distances from the source. The onsets of the P and S energy travel with speeds characteristic of the mantle lithosphere. The complex and elongated waveforms of such Po and So waves and their efficient transport of high frequencies (>10 Hz) have proved difficult to explain in full. Much of the character can be captured with stratified models, provided a full allowance is made for reverberations in the ocean and the basal sediments. The nature of the observations implies a strong scattering environment. By analysing the nature of the long-distance propagation we are able to identify the critical role played by shallow reverberations in the water and sediments, and the way that these link with propagation in a heterogeneous mantle. 2-D finite difference modelling to 10 Hz for ranges over 1000 km demonstrates the way in which heterogeneity shapes the wavefield, and the way in which the properties of the lithosphere and asthenosphere control the nature of the propagation processes. The nature of the Po and So phases are consistent with pervasive heterogeneity in the oceanic lithosphere with a horizontal correlation length (˜10 km) much larger than the vertical correlation length (˜0.5 km).

  14. Biotic and abiotic pathways of phosphorus cycling in minerals and sediments: insights from oxygen isotopes in phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaisi, Deb P.; Kukkadapu, Ravi K.; Stout, Lisa M.

    2011-07-06

    A key question to address in the development of oxygen isotope ratios in phosphate (18Op) as a tracer of biogeochemical cycling of phosphorus in ancient and modern environments is the nature of isotopic signatures associated with uptake and cycling of mineral-bound phosphate by microorganisms. Here we present experimental results aimed at understanding the biotic and abiotic pathway of P cycling during biological uptake of phosphate sorbed to ferrihydrite and the selective uptake of specific sedimentary phosphate phases by Escherichia coli, Vibrio fischeri and Marinobacter aquaeolei. Results indicate that a significant fraction of ferrihydrite-bound phosphate is biologically available. The fraction ofmore » phosphate taken up by E. coli attained an equilibrium isotopic composition in a short time (<50 hrs) due to efficient O-isotope exchange between phosphate and water (biotic pathway). The difference in isotopic composition between newly equilibrated aqueous and residual sorbed phosphate promoted the exchange of intact phosphate radicals (abiotic pathway) so that this difference gradually became negligible. In sediment containing different P phases, E. coli and V. fischeri ‘extracted’ loosely sorbed phosphate first while M. aquaeolei preferred iron-oxide bound phosphate. Each bacterium imprinted a biotic isotopic signature on each P phase that it took up and cycled. For example, the 18Op value of the sorbed phosphate phase shifted gradually towards equilibrium isotopic composition and the value of Fe oxide-bound phosphate showed slight changes at first, but when new iron oxides were formed, co-precipitated/occluded phosphate retained 18O values of aqueous phosphate at that time. Concentrations and isotopic compositions of authigenic and detrital phosphates did not change, suggesting that these phosphate phases were not utilized by bacteria. These findings support burgeoning applications of 18Op as a tracer of phosphorus cycling in sediments, soils and

  15. Frequency divide-and-conquer approach to producing octave-wide frequency combs and few-cycle pulses in the mid-IR

    NASA Astrophysics Data System (ADS)

    Vodopyanov, Konstantin

    2014-05-01

    I will present a new technique for extending frequency combs to the highly desirable yet difficult-to-achieve mid-IR spectral range. The technique is based on subharmonic optical parametric oscillation (OPO) that can be considered as a reverse of the second harmonic generation process. The frequency comb of a pump laser is transposed to half of its central frequency and simultaneously spectrally augmented, thanks to an enormous gain bandwidth of the OPO near degeneracy, as well as due to massive cross-coupling between the laser and the OPO frequency comb components. Using ultrafast erbium (1.56 microns) or thulium (2 microns)-based fiber lasers as a pump and using thin, sub-mm-long, quasi phase-matched lithium niobate or gallium arsenide crystals, we produce frequency combs centered correspondingly at 3.1 or 4 micron subharmonic of the pump frequency. With the properly managed OPO cavity group velocity dispersion, octave-wide frequency combs spanning 2.5 - 6 micron range were achieved. Due to the doubly-resonant operation, the threshold of such a system is low (typically 10 mW) and by several experiments including measuring frequency beats between the OPO comb teeth and a narrow-linewidth CW laser and by interfering the outputs of two identical but distinct OPOs pumped by the same laser, we established that the frequency comb from a subharmonic OPO is phase-locked to that of the pump laser. Pulse duration measurements show that for the optimal intracavity dispersion conditions, we generate sub 5-cycle pulses at the subharmonic of the pump. I will also talk about applications of our mid-IR frequency combs to trace gas detection, where part-per-billion sensitivity of molecular detection is achieved as well as about Fourier spectroscopy using a dual-comb system consisting of two phase-locked lasers. I thank NASA, Office of Naval Research, Air Force Office of Scientific Research, Agilent Technologies, Sanofi- Aventis, Stanford University Bio-X, Stanford Medical School

  16. Variability of suspended-sediment concentration at tidal to annual time scales in San Francisco Bay, USA

    USGS Publications Warehouse

    Schoellhamer, D.H.

    2002-01-01

    Singular spectrum analysis for time series with missing data (SSAM) was used to reconstruct components of a 6-yr time series of suspended-sediment concentration (SSC) from San Francisco Bay. Data were collected every 15 min and the time series contained missing values that primarily were due to sensor fouling. SSAM was applied in a sequential manner to calculate reconstructed components with time scales of variability that ranged from tidal to annual. Physical processes that controlled SSC and their contribution to the total variance of SSC were (1) diurnal, semidiurnal, and other higher frequency tidal constituents (24%), (2) semimonthly tidal cycles (21%), (3) monthly tidal cycles (19%), (4) semiannual tidal cycles (12%), and (5) annual pulses of sediment caused by freshwater inflow, deposition, and subsequent wind-wave resuspension (13%). Of the total variance 89% was explained and subtidal variability (65%) was greater than tidal variability (24%). Processes at subtidal time scales accounted for more variance of SSC than processes at tidal time scales because sediment accumulated in the water column and the supply of easily erodible bed sediment increased during periods of increased subtidal energy. This large range of time scales that each contained significant variability of SSC and associated contaminants can confound design of sampling programs and interpretation of resulting data.

  17. High frequency sonar variability in littoral environments: Irregular particles and bubbles

    NASA Astrophysics Data System (ADS)

    Richards, Simon D.; Leighton, Timothy G.; White, Paul R.

    2002-11-01

    Littoral environments may be characterized by high concentrations of suspended particles. Such suspensions contribute to attenuation through visco-inertial absorption and scattering and may therefore be partially responsible for the observed variability in high frequency sonar performance in littoral environments. Microbubbles which are prevalent in littoral waters also contribute to volume attenuation through radiation, viscous and thermal damping and cause dispersion. The attenuation due to a polydisperse suspension of particles with depth-dependent concentration has been included in a sonar model. The effects of a depth-dependent, polydisperse population of microbubbles on attenuation, sound speed and volume reverberation are also included. Marine suspensions are characterized by nonspherical particles, often plate-like clay particles. Measurements of absorption in dilute suspensions of nonspherical particles have shown disagreement with predictions of spherical particle models. These measurements have been reanalyzed using three techniques for particle sizing: laser diffraction, gravitational sedimentation, and centrifugal sedimentation, highlighting the difficulty of characterizing polydisperse suspensions of irregular particles. The measurements have been compared with predictions of a model for suspensions of oblate spheroids. Excellent agreement is obtained between this model and the measurements for kaolin particles, without requiring any a priori knowledge of the measurements.

  18. Microbial cycling of mercury in contaminated pelagic and wetland sediments of San Pablo Bay, California

    USGS Publications Warehouse

    Marvin-DiPasquale, M. C.; Agee, J.L.; Bouse, R.M.; Jaffe, B.E.

    2003-01-01

    San Pablo Bay is an estuary, within northern San Francisco Bay, containing elevated sediment mercury (Hg) levels because of historic loading of hydraulic mining debris during the California gold-rush of the late 1800s. A preliminary investigation of benthic microbial Hg cycling was conducted in surface sediment (0-4 cm) collected from one salt-marsh and three open-water sites. A deeper profile (0-26 cm) was evaluated at one of the open-water locations. Radiolabeled model Hg-compounds were used to measure rates of both methylmercury (MeHg) production and degradation by bacteria. While all sites and depths had similar total-Hg concentrations (0.3-0.6 ppm), and geochemical signatures of mining debris (as eNd, range: -3.08 to -4.37), in-situ MeHg was highest in the marsh (5.4??3.5 ppb) and ??? 0.7 ppb in all open-water sites. Microbial MeHg production (potential rate) in 0-4 surface sediments was also highest in the marsh (3.1 ng g-1 wet sediment day-1) and below detection (<0.06 ng g-1 wet sediment day-1) in open-water locations. The marsh exhibited a methylation/demethylation (M/D) ratio more than 25x that of all open-water locations. Only below the surface 0-4-cm horizon was significant MeHg production potential evident in the open-water sediment profile (0.2-1.1 ng g-1 wet sediment day-1). In-situ Hg methylation rates, calculated from radiotracer rate constants, and in-situ inorganic Hg(II) concentrations compared well with potential rates. However, similarly calculated in-situ rates of MeHg degradation were much lower than potential rates. These preliminary data indicate that wetlands surrounding San Pablo Bay represent important zones of MeHg production, more so than similarly Hg-contaminated adjacent open-water areas. This has significant implications for this and other Hg-impacted systems, where wetland expansion is currently planned.

  19. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap

    PubMed Central

    Vicario, C.; Monoszlai, B.; Jazbinsek, M.; Lee, S. -H.; Kwon, O. -P.; Hauri, C. P.

    2015-01-01

    In Terahertz (THz) science, one of the long-standing challenges has been the formation of spectrally dense, single-cycle pulses with tunable duration and spectrum across the frequency range of 0.1–15 THz (THz gap). This frequency band, lying between the electronically and optically accessible spectra hosts important molecular fingerprints and collective modes which cannot be fully controlled by present strong-field THz sources. We present a method that provides powerful single-cycle THz pulses in the THz gap with a stable absolute phase whose duration can be continuously selected between 68 fs and 1100 fs. The loss-free and chirp-free technique is based on optical rectification of a wavelength-tunable pump pulse in the organic emitter HMQ-TMS that allows for tuning of the spectral bandwidth from 1 to more than 7 octaves over the entire THz gap. The presented source tunability of the temporal carrier frequency and spectrum expands the scope of spectrally dense THz sources to time-resolved nonlinear THz spectroscopy in the entire THz gap. This opens new opportunities towards ultrafast coherent control over matter and light. PMID:26400005

  20. Meiofauna increases bacterial denitrification in marine sediments.

    PubMed

    Bonaglia, S; Nascimento, F J A; Bartoli, M; Klawonn, I; Brüchert, V

    2014-10-16

    Denitrification is a critical process that can alleviate the effects of excessive nitrogen availability in aquatic ecosystems subject to eutrophication. An important part of denitrification occurs in benthic systems where bioturbation by meiofauna (invertebrates <1 mm) and its effect on element cycling are still not well understood. Here we study the quantitative impact of meiofauna populations of different abundance and diversity, in the presence and absence of macrofauna, on nitrate reduction, carbon mineralization and methane fluxes. In sediments with abundant and diverse meiofauna, denitrification is double that in sediments with low meiofauna, suggesting that meiofauna bioturbation has a stimulating effect on nitrifying and denitrifying bacteria. However, high meiofauna densities in the presence of bivalves do not stimulate denitrification, while dissimilatory nitrate reduction to ammonium rate and methane efflux are significantly enhanced. We demonstrate that the ecological interactions between meio-, macrofauna and bacteria are important in regulating nitrogen cycling in soft-sediment ecosystems.

  1. High-current, high-frequency capacitors

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1983-01-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  2. Autogenic Deposits as A Potential Recorder of High-Frequency Signals: The Role of Autogenic Processes Revisited

    NASA Astrophysics Data System (ADS)

    Li, H.; Plink-Bjorklund, P.

    2017-12-01

    Studies (e.g., Jerolmack and Paola, 2010) have suggested that autogenic processes act as a filter for high-frequency environmental signals, and the underlying assumption is that autogenic processes can cause fluctuations in sediment and water discharge that modify or shred the signal. This assumption, however, fails to recognize that autogenic processes and their final products are dynamic and that they can respond to allogenic forcings. We compile a database containing published field studies, physical experiments, and numerical modeling works, and analyze the data under different boundary conditions. Our analyses suggest different conclusions. Autogenic processes are intrinsic to the sedimentary system, and they possess distinct patterns under steady boundary conditions. Upon changing boundary conditions, the autogenic patterns are also likely to change (depending on the magnitude of the change in the boundary conditions). Therefore, the pattern change provides us with the opportunity to restore the high-frequency signals that may not pass through the transfer zone. Here we present the theoretical basis for using autogenic deposits to infer high-frequency signals as well as modern and ancient field examples, physical experiments, and modeling works to illustrate the autogenic response to allogenic forcings. The field studies show the potential of using autogenic deposits to restore short-term climatic variability. The experiments demonstrate that autogenic processes in rivers are closely linked to sediment and water discharge. The modeling examples reveal the counteracting effects of some autogenic processes to form a self-organized pattern under a set of specific boundary conditions. We also highlight the limitations and challenges that need more research efforts to restore high-frequency signals. Some critical issues include the magnitude of the signals, the effect of the interference between different signals, and the incompleteness of the autogenic deposits.

  3. Field experimental observations of highly graded sediment plumes.

    PubMed

    Jensen, Jacob Hjelmager; Saremi, Sina; Jimenez, Carlos; Hadjioannou, Louis

    2015-06-15

    A field experiment in the waters off the south-eastern coast of Cyprus was carried out to study near-field formation of sediment plumes from dumping. Different loads of sediment were poured into calm and limpid waters one at the time from just above the sea surface. The associated plumes, gravitating towards the seafloor, were filmed simultaneously by four divers situated at different depths in the water column, and facing the plume at different angles. The processes were captured using GoPro-Hero-series cameras. The high-quality underwater footage from near-surface, mid-depth and near-bed positions gives unique insight into the dynamics of the descending plume and near-field dispersion processes, and enables good understanding of flow and sediment transport processes involved from-release-to-deposition of the load in a non-scaled environment. The high resolution images and footages are available through the link provided herein. Observations support the development of a detailed multi-fractional sediment plume model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. High-throughput characterization of sediment organic matter by pyrolysis-gas chromatography/mass spectrometry and multivariate curve resolution: A promising analytical tool in (paleo)limnology.

    PubMed

    Tolu, Julie; Gerber, Lorenz; Boily, Jean-François; Bindler, Richard

    2015-06-23

    Molecular-level chemical information about organic matter (OM) in sediments helps to establish the sources of OM and the prevalent degradation/diagenetic processes, both essential for understanding the cycling of carbon (C) and of the elements associated with OM (toxic trace metals and nutrients) in lake ecosystems. Ideally, analytical methods for characterizing OM should allow high sample throughput, consume small amounts of sample and yield relevant chemical information, which are essential for multidisciplinary, high-temporal resolution and/or large spatial scale investigations. We have developed a high-throughput analytical method based on pyrolysis-gas chromatography/mass spectrometry and automated data processing to characterize sedimentary OM in sediments. Our method consumes 200 μg of freeze-dried and ground sediment sample. Pyrolysis was performed at 450°C, which was found to avoid degradation of specific biomarkers (e.g., lignin compounds, fresh carbohydrates/cellulose) compared to 650°C, which is in the range of temperatures commonly applied for environmental samples. The optimization was conducted using the top ten sediment samples of an annually resolved sediment record (containing 16-18% and 1.3-1.9% of total carbon and nitrogen, respectively). Several hundred pyrolytic compound peaks were detected of which over 200 were identified, which represent different classes of organic compounds (i.e., n-alkanes, n-alkenes, 2-ketones, carboxylic acids, carbohydrates, proteins, other N compounds, (methoxy)phenols, (poly)aromatics, chlorophyll and steroids/hopanoids). Technical reproducibility measured as relative standard deviation of the identified peaks in triplicate analyses was 5.5±4.3%, with 90% of the RSD values within 10% and 98% within 15%. Finally, a multivariate calibration model was calculated between the pyrolytic degradation compounds and the sediment depth (i.e., sediment age), which is a function of degradation processes and changes in OM

  5. High duty cycle echolocation and prey detection by bats.

    PubMed

    Lazure, Louis; Fenton, M Brock

    2011-04-01

    There are two very different approaches to laryngeal echolocation in bats. Although most bats separate pulse and echo in time by signalling at low duty cycles (LDCs), almost 20% of species produce calls at high duty cycles (HDCs) and separate pulse and echo in frequency. HDC echolocators are sensitive to Doppler shifts. HDC echolocation is well suited to detecting fluttering targets such as flying insects against a cluttered background. We used two complementary experiments to evaluate the relative effectiveness of LDC and HDC echolocation for detecting fluttering prey. We measured echoes from fluttering targets by broadcasting artificial bat calls, and found that echo amplitude was greatest for sounds similar to those used in HDC echolocation. We also collected field recordings of syntopic LDC and HDC bats approaching an insect-like fluttering target and found that HDC bats approached the target more often (18.6% of passes) than LDC bats (1.2% of passes). Our results suggest that some echolocation call characteristics, particularly duty cycle and pulse duration, translate into improved ability to detect fluttering targets in clutter, and that HDC echolocation confers a superior ability to detect fluttering prey in the forest understory compared with LDC echolocation. The prevalence of moths in the diets of HDC bats, which is often used as support for the allotonic frequency hypothesis, can therefore be partly explained by the better flutter detection ability of HDC bats.

  6. On High and Low Starting Frequencies of Type II Radio Bursts

    NASA Astrophysics Data System (ADS)

    Sharma, J.; Mittal, N.

    2017-06-01

    We have studied the characteristics of type II radio burst during the period May 1996 to March 2015, for the solar cycle 23 and 24, observed by WIND/WAVES radio instrument. A total of 642 events were recorded by the instrument during the study period. We have divided the events with two starting frequency range (high > 1 MHz; low ≤ 1MHz) as type II1 (i.e., 1-16 MHz) radio burst and type II2 (i.e., 20 KHz - 1020 KHz) radio burst which constitute the DH and km type II radio burst observed by WIND spacecraft, and determined their time and frequency characteristics. The mean drift rate of type II1 and type II2 radio bursts is 29.76 × 10-4 MHz/s and 0.17 × 10-4 MHz/s respectively, which shows that type II1 with high start frequency hase larger drift rate than the type II2 with low starting frequencies. We have also reported that the start frequency and the drift rate of type II1 are in good correlation, with a linear correlation coefficient of 0.58.

  7. High frequency testing of rubber mounts.

    PubMed

    Vahdati, Nader; Saunders, L Ken Lauderbaugh

    2002-04-01

    Rubber and fluid-filled rubber engine mounts are commonly used in automotive and aerospace applications to provide reduced cabin noise and vibration, and/or motion accommodations. In certain applications, the rubber mount may operate at frequencies as high as 5000 Hz. Therefore, dynamic stiffness of the mount needs to be known in this frequency range. Commercial high frequency test machines are practically nonexistent, and the best high frequency test machine on the market is only capable of frequencies as high as 1000 Hz. In this paper, a high frequency test machine is described that allows test engineers to study the high frequency performance of rubber mounts at frequencies up to 5000 Hz.

  8. Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge

    USGS Publications Warehouse

    O'Regan, M.; King, J.; Backman, J.; Jakobsson, M.; Palike, H.; Moran, K.; Heil, C.; Sakamoto, T.; Cronin, T. M.; Jordan, R.W.

    2008-01-01

    Despite its importance in the global climate system, age-calibrated marine geologic records reflecting the evolultion of glacial cycles through the Pleistocene are largely absent from the central Arctic Ocean. This is especially true for sediments older than 200 ka. Three sites cored during the Integrated Ocean Drilling Program's Expedition 302, the Arctic Coring Expedition (ACEX), provide a 27 m continuous sedimentary section from the Lomonosov Ridge in the central Arctic Ocean. Two key biostratigraphic datums and constraints from the magnetic inclination data are used to anchor the chronology of these sediments back to the base of the Cobb Mountain subchron (1215 ka). Beyond 1215 ka, two best fitting geomagnetic models are used to investigate the nature of cyclostratigraphic change. Within this chronology we show that bulk and mineral magnetic properties of the sediments vary on predicted Milankovitch frequencies. These cyclic variations record "glacial" and "interglacial" modes of sediment deposition on the Lomonosov Ridge as evident in studies of ice-rafted debris and stable isotopic and faunal assemblages for the last two glacial cycles and were used to tune the age model. Potential errors, which largely arise from uncertainties in the nature of downhole paleomagnetic variability, and the choice of a tuning target are handled by defining an error envelope that is based on the best fitting cyclostratigraphic and geomagnetic solutions. Copyright 2008 by the American Geophysical Union.

  9. Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao basin, Inner Mongolia, China: an iron isotope approach

    USGS Publications Warehouse

    Guo, Huaming; Liu, Chen; Lu, Hai; Wanty, Richard B.; Wang, Jun; Zhou, Yinzhu

    2013-01-01

    High As groundwater is widely distributed all over the world, which has posed a significant health impact on millions of people. Iron isotopes have recently been used to characterize Fe cycling in aqueous environments, but there is no information on Fe isotope characteristics in the groundwater. Since groundwater As behavior is closely associated with Fe cycling in the aquifers, Fe isotope signatures may help to characterize geochemical processes controlling As concentrations of shallow groundwaters. This study provides the first observation of Fe isotope fractionation in high As groundwater and evaluation of Fe cycling and As behaviors in shallow aquifers in terms of Fe isotope signatures. Thirty groundwater samples were taken for chemical and isotopic analysis in the Hetao basin, Inner Mongolia. Thirty-two sediments were sampled as well from shallow aquifers for Fe isotope analysis. Results showed that groundwater was normally enriched in isotopically light Fe with δ56Fe values between −3.40‰ and 0.58‰ and median of −1.14‰, while heavier δ56Fe values were observed in the sediments (between −1.10‰ and 0.75‰, median +0.36‰). In reducing conditions, groundwaters generally had higher δ56Fe values, in comparison with oxic conditions. High As groundwaters, generally occurring in reducing conditions, had high δ56Fe values, while low As groundwaters normally had low δ56Fe values. Although sediment δ56Fe values were generally independent of lithological conditions, a large variation in sediment δ56Fe values was observed in the oxidation–reduction transition zone. Three pathways were identified for Fe cycling in shallow groundwater, including dissimilatory reduction of Fe(III) oxides, re-adsorption of Fe(II), and precipitation of pyrite and siderite. Dissimilatory reduction of Fe(III) oxides resulted in light δ56Fe values (around −1.0‰) and high As concentration (>50 μg/L) in groundwater in anoxic conditions. Re-adsorption of isotopically

  10. Successful control of internal phosphorus loading after sediment dredging for 6years: A field assessment using high-resolution sampling techniques.

    PubMed

    Chen, Musong; Cui, Jingzhen; Lin, Juan; Ding, Shiming; Gong, Mengdan; Ren, Mingyi; Tsang, Daniel C W

    2018-03-01

    The effectiveness of sediment dredging for the control of internal phosphorus (P) loading, was investigated seasonally in the eutrophic Lake Taihu. The high-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) techniques were used to measure the concentrations of soluble Fe(II) and soluble reactive P (SRP) as well as DGT-labile Fe/P in the non-dredging and post-dredging sediments. The P resupply kinetics from sediment solids were interpreted using DGT Induced Fluxes in Sediments (DIFS) modeling. The results showed no obvious improvement in water and sediment quality after dredging for 6years, due to their geographical proximity (a line distance of approximately 9km). However, dredging significantly decreased the concentrations of soluble Fe(II)/SRP and DGT-labile Fe/P in sediments, with effects varying at different depths below the sediment-water interface; More pronounced effects appeared in January and April. The diffusive flux of pore water SRP from sediments decreased from 0.746, 4.08 and 0.353mg/m 2 /d to 0.174, 1.58 and 0.048mg/m 2 /d in April, July and January, respectively. DIFS modeling indicated that the P retention capability of sediment solids was improved in April in post-dredging site. Positive correlations between pore water soluble Fe(II) and SRP as well as between DGT-labile Fe and P, reflect the key role of Fe redox cycling in regulating dredging effectiveness. This effect is especially important in winter and spring, while in summer and autumn, the decomposition of algae promoted the release of P from sediments and suppressed dredging effectiveness. Overall, the high-resolution HR-Peeper and DGT measurements indicated a successful control of internal P loading by dredging, and the post-dredging effectiveness was suppressed by algal bloom. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Materosion project, a sediment cascade modeling for torrential sediment transfers: final results and perspectives

    NASA Astrophysics Data System (ADS)

    Rudaz, Benjamin; Loye, Alexandre; Mazotti, Benoit; Bardou, Eric; Jaboyedoff, Michel

    2013-04-01

    The Materosion project, conducted between the swiss canton of Valais (CREALP) and University of Lausanne (CRET) aims at forecasting sediment transfer in alpine torrents using the sediment cascade concept. The study site is the high Anniviers valley, around the village of Zinal (Valais). The torrents are divided in homogeneous reaches, to and from which sediments are transported by debris flows and bedload transport events. The model runs simulations of 100 years, with a 1-month time step, each with a given a random meteorological event ranging from no activity up to high magnitude debris flows. These events are calibrated using local rain data and observed corresponding debris flow frequencies. The model is applied to ten torrent systems with variable geological context, watershed geometries and sediment supplies. Given the high number of possible event scenarios, 10'000 simulations per torrent are performed, giving a statistical distribution of cumulated volumes and an event size distribution. A way to visualize the complex results data is proposed, and a back-analysis of the internal sediment cascade dynamic is performed. The back-analysis shows that the results' distribution stabilize after ~5'000 simulations. The model results, especially the range of debris flow volumes are crucial to maintain mitigation measures such as retention dams, and give clues for future sediment cascade modeling.

  12. Metal Oxides in Surface Sediment Control Nickel Bioavailability to Benthic Macroinvertebrates.

    PubMed

    Mendonca, Raissa M; Daley, Jennifer M; Hudson, Michelle L; Schlekat, Christian E; Burton, G Allen; Costello, David M

    2017-11-21

    In aquatic ecosystems, the cycling and toxicity of nickel (Ni) are coupled to other elemental cycles that can limit its bioavailability. Current sediment risk assessment approaches consider acid-volatile sulfide (AVS) as the major binding phase for Ni, but have not yet incorporated ligands that are present in oxic sediments. Our study aimed to assess how metal oxides play a role in Ni bioavailability in surficial sediments exposed to effluent from two mine sites. We coupled spatially explicit sediment geochemistry (i.e., separate oxic and suboxic) to the indigenous macroinvertebrate community structure. Effluent-exposed sites contained high concentrations of sediment Ni and AVS, though roughly 80% less AVS was observed in surface sediments. Iron (Fe) oxide mineral concentrations were elevated in surface sediments and bound a substantial proportion of Ni. Redundancy analysis of the invertebrate community showed surface sediment geochemistry significantly explained shifts in community abundances. Relative abundance of the dominant mayfly (Ephemeridae) was reduced in sites with greater bioavailable Ni, but accounting for Fe oxide-bound Ni greatly decreased variation in effect thresholds between the two mine sites. Our results provide field-based evidence that solid-phase ligands in oxic sediment, most notably Fe oxides, may have a critical role in controlling nickel bioavailability.

  13. Reoxidation of estuarine sediments during simulated resuspension events: Effects on nutrient and trace metal mobilisation

    NASA Astrophysics Data System (ADS)

    Vidal-Durà, Andrea; Burke, Ian T.; Stewart, Douglas I.; Mortimer, Robert J. G.

    2018-07-01

    Estuarine environments are considered to be nutrient buffer systems as they regulate the delivery of nutrients from rivers to the ocean. In the Humber Estuary (UK) seawater and freshwater mixing during tidal cycles leads to the mobilisation of oxic surface sediments (0-1 cm). However, less frequent seasonal events can also mobilise anoxic subsurface (5-10 cm) sediments, which may have further implications for the estuarine geochemistry. A series of batch experiments were carried out on surface and subsurface sediments taken from along the salinity gradient of the Humber Estuary. The aim was to investigate the geochemical processes driving major element (N, Fe, S, and Mn) redox cycling and trace metal behaviour during simulated resuspension events. The magnitude of major nutrient and metal release was significantly greater during the resuspension of outer estuarine sediments rather than from inner estuarine sediments. When comparing resuspension of surface versus subsurface sediment, only the outer estuary experiments showed significant differences in major nutrient behaviour with sediment depth. In general, any ammonium, manganese and trace metals (Cu and Zn) released during the resuspension experiments were rapidly removed from solution as new sorption sites (i.e. Fe/Mn oxyhydroxides) formed. Therefore Humber estuary sediments showed a scavenging capacity for these dissolved species and hence may act as an ultimate sink for these elements. Due to the larger aerial extent of the outer estuary intertidal mudflats in comparison with the inner estuary area, the mobilisation of the outer estuary sediments (more reducing and richer in sulphides and iron) may have a greater impact on the transport and cycling of nutrients and trace metals. Climate change-associated sea level rise combined with an increasing frequency of major storm events in temperate zones, which are more likely to mobilise deeper sediment regions, will impact the nutrient and metal inputs to the

  14. The carbon cycle and biogeochemical dynamics in lake sediments

    USGS Publications Warehouse

    Dean, W.E.

    1999-01-01

    The concentrations of organic carbon (OC) and CaCO3 in lake sediments are often inversely related. This relation occurs in surface sediments from different locations in the same lake, surface sediments from different lakes, and with depth in Holocene sediments. Where data on accumulation rates are available, the relation holds for organic carbon and CaCO3 accumulation rates as well. An increase of several percent OC is accompanied by a decrease of several tens of percent CaCO3 indicating that the inverse relation is not due to simple dilution of one component by another. It appears from core data that once the OC concentration in the sediments becomes greater than about 12%, the CO2 produced by decomposition of that OC and production of organic acids lowers the pH of anoxic pore waters enough to dissolve any CaCO3 that reaches the sediment-water interface. In a lake with a seasonally anoxic hypolimnion, processes in the water column also can produce an inverse relation between OC and CaCO3 over time. If productivity of the lake increases, the rain rate of OC from the epilimnion increases. Biogenic removal of CO2 and accompanying increase in pH also may increase the production of CaCO3. However, the decomposition of organic matter in the hypolimnion will decrease the pH of the hypolimnion causing greater dissolution of CaCO3 and therefore a decrease in the rain rate of CaCO3 to the sediment-water interface.

  15. High Nutrient Load Increases Biostabilization of Sediment by Biofilms

    NASA Astrophysics Data System (ADS)

    Valentine, K.; Mariotti, G.

    2016-12-01

    Benthic biofilms, matrixes of microbial cells and their secretions, have been shown to stabilize sediment in coastal environments. While there have been numerous studies on the effects of nutrients on the ability of vascular plants to stabilize sediment, few studies have investigated how nutrients affect biofilm growth and their ability to stabilize sediment. Diatom-based biofilms were grown in laboratory experiments on a settled bed of bentonite clay, under a saline water column with varying amounts of nutrients. Erodibility at different stages of biofilm growth was measured using a Gust Erosion Microcosm System, which applied shear stresses from 0.05 to 0.6 Pa. Biofilms more than one week old decreased the erodibility of the sediments in all nutrient treatments compared to abiotic experiments. With high nutrients, the biofilm grew the fastest; the erodibility decreased within two weeks of biofilm growth and remained low for all applied shear stresses. After four weeks of biofilm growth, no erosion of sediment occurred even at the highest applied shear stress (0.6 Pa). With low nutrients the erodibility decreased within three weeks. With no nutrients the biofilms grew similarly to those with low nutrients; the erodibility decreased within three weeks under shear stresses 0.05-0.45 Pa, but the sediments were eroded under high shear stresses. Under low to moderate shear stresses (0.05-0.45 Pa), the total mass eroded by all experiments with biofilms was similar, suggesting that any amount of biofilm decreases erodibility at low shear stresses. In summary, high nutrients allow for faster biostabilization and for resistance to extreme shear stresses. These results suggest that eutrophication would not decrease the biofilm ability to stabilize muddy sediments in coastal environment.

  16. Environmental Life Cycle Assessment of marine sediment decontamination by citric acid enhanced-microwave heating.

    PubMed

    Falciglia, Pietro P; Ingrao, Carlo; De Guidi, Guido; Catalfo, Alfio; Finocchiaro, Guglielmo; Farina, Marcello; Liali, Maria; Lorenzano, Giuseppe; Valastro, Gaetano; Vagliasindi, Federico G A

    2018-04-01

    The potential ability of microwave heating (MWH) for the remediation of marine sediments affected by severe hydrocarbon (HC) contamination was investigated. Decontamination effectiveness and environmental sustainability through a comparative Life Cycle Assessment (LCA) were addressed. Main results revealed that the application of a 650-W MWH treatment resulted in a rapid (15min) HC removal. A citric acid (CA) dose of 0.1M led to enhanced-HC removals of 76.9, 96.5 and 99.7% after 5, 10 and 15min of MW irradiation, respectively. The increase in CA dose to 0.2M resulted in a shorter successful remediation time of 10min. The exponential kinetic model adopted showed a good correlation with the experimental data with R 2 values in the 0.913-0.987 range. The nature of the MW treatment was shown to differently influence the HC fraction concentration after the irradiation process. Achieved HC removals in such a short remediation time are hardly possible by other clean-up techniques, making the studied treatment a potential excellent choice. Removal mechanisms, which allowed the enhanced-MWH to operate as a highly effective multi-step technique (pure thermal desorption+chemical washing), undoubtedly represent a key factor in the whole remediation process. The LCA highlighted that the MW technology is the most environmentally sustainable alternative for sediment decontamination applications, with a total damage, which was 75.74% lower than that associated with the EK (0.0503pt). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. High Resolution Upwelling Cycles in Guaymas and Cariaco Basins over the late Holocene: Coupling Between the Western Atlantic and Eastern Pacific?

    NASA Astrophysics Data System (ADS)

    Goni, M. A.

    2005-12-01

    The recent past history of sea surface temperature (SST) conditions in two wind-dominated upwelling systems, Guaymas Basin (Gulf of California) and Cariaco Basin (Venezuela) was investigated using the alkenone-based UK'37 index. Both of these systems undergo marked seasonal SST changes of 4-10 degrees C, which are associated with wind-driven upwelling and thermal stratification cycles. Both Guaymas and Cariaco Basins are also characterized by suboxic to anoxic bottom waters that result in undisturbed, varved sediments. Confirmation that the seasonal SST trends are accurately incorporated into the UK'37 ratios of sinking particles was achieved using sediment trap samples. Analyses of sediment cores from Guaymas and Cariaco Basins yielded high-resolution (decadal) records of SST conditions in the overlying water column from 1700 to 2000 AD. The trends in the UK'37 index revealed general increases in the SST at both sites over that last 300 years associated with the end of the little ice age. However, in addition to this long-term trend, higher-frequency (~ 50 years) changes in SST that ranged from 1-3 degrees C were observed. We speculate that these decadal trends in SST reflect variations in the intensity of wind-driven upwelling at these sites. Most interestingly, there is a marked contrast in the timing of the SST values between Guaymas and Cariaco so that periods of enhanced upwelling in Guyamas Basin are characterized by decreased upwelling in Cariaco Basin (and vice versa). We propose that these contrasting records reflect differences in the response of wind-driven upwelling to changes in the position of the Intertropical Convergence Zone over the western Atlantic and the subtropical High over the eastern Pacific. The connection between these two upwelling systems and its significance for paleoreconstruction studies will be explored further.

  18. Sequential extraction protocol for organic matter from soils and sediments using high resolution mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tfaily, Malak M.; Chu, Rosalie K.; Toyoda, Jason

    A vast number of organic compounds are present in soil organic matter (SOM) and play an important role in the terrestrial carbon cycle, facilitate interactions between organisms, and represent a sink for atmospheric CO2. The diversity of different SOM compounds and their molecular characteristics is a function of the organic source material and biogeochemical history. By understanding how SOM composition changes with sources and the processes by which it is biogeochemically altered in different terrestrial ecosystems, it may be possible to predict nutrient and carbon cycling, response to system perturbations, and impact of climate change will have on SOM composition.more » In this study, a sequential chemical extraction procedure was developed to reveal the diversity of organic matter (OM) in different ecosystems and was compared to the previously published protocol using parallel solvent extraction (PSE). We compared six extraction methods using three sample types, peat soil, spruce forest soil and river sediment, so as to select the best method for extracting a representative fraction of organic matter from soils and sediments from a wide range of ecosystems. We estimated the extraction yield of dissolved organic carbon (DOC) by total organic carbon analysis, and measured the composition of extracted OM using high resolution mass spectrometry. This study showed that OM composition depends primarily on soil and sediment characteristics. Two sequential extraction protocols, progressing from polar to non-polar solvents, were found to provide the highest number and diversity of organic compounds extracted from the soil and sediments. Water (H2O) is the first solvent used for both protocols followed by either co-extraction with methanol-chloroform (MeOH-CHCl3) mixture, or acetonitrile (ACN) and CHCl3 sequentially. The sequential extraction protocol developed in this study offers improved sensitivity, and requires less sample compared to the PSE workflow where a new

  19. Sequential extraction protocol for organic matter from soils and sediments using high resolution mass spectrometry.

    PubMed

    Tfaily, Malak M; Chu, Rosalie K; Toyoda, Jason; Tolić, Nikola; Robinson, Errol W; Paša-Tolić, Ljiljana; Hess, Nancy J

    2017-06-15

    A vast number of organic compounds are present in soil organic matter (SOM) and play an important role in the terrestrial carbon cycle, facilitate interactions between organisms, and represent a sink for atmospheric CO 2 . The diversity of different SOM compounds and their molecular characteristics is a function of the organic source material and biogeochemical history. By understanding how SOM composition changes with sources and the processes by which it is biogeochemically altered in different terrestrial ecosystems, it may be possible to predict nutrient and carbon cycling, response to system perturbations, and impact of climate change will have on SOM composition. In this study, a sequential chemical extraction procedure was developed to reveal the diversity of organic matter (OM) in different ecosystems and was compared to the previously published protocol using parallel solvent extraction (PSE). We compared six extraction methods using three sample types, peat soil, spruce forest soil and river sediment, so as to select the best method for extracting a representative fraction of organic matter from soils and sediments from a wide range of ecosystems. We estimated the extraction yield of dissolved organic carbon (DOC) by total organic carbon analysis, and measured the composition of extracted OM using high resolution mass spectrometry. This study showed that OM composition depends primarily on soil and sediment characteristics. Two sequential extraction protocols, progressing from polar to non-polar solvents, were found to provide the highest number and diversity of organic compounds extracted from the soil and sediments. Water (H 2 O) is the first solvent used for both protocols followed by either co-extraction with methanol-chloroform (MeOH-CHCl 3 ) mixture, or acetonitrile (ACN) and CHCl 3 sequentially. The sequential extraction protocol developed in this study offers improved sensitivity, and requires less sample compared to the PSE workflow where a new

  20. Life cycles of dominant mayflies (Ephemeroptera) on a torrent of the high Bolivian Andes

    PubMed

    Molina, Carlos I; Puliafico, Kenneth P

    2016-03-01

    The mayflies of the temperate and cold zones have well-synchronized life cycles, distinct cohorts, short emergence and flight periods. In contrast, aquatic insects from the tropical zones are characterized by multivoltine life cycles, “non-discernible cohorts” and extended flight periods throughout the year. This report is the first observation of life cycle patterns made of two species of mayflies on a torrent in the high elevation Bolivian Andes. The samples were taken from four sites and four periods during a hydrological season. The life cycle of each species was examined using size-class frequency analysis and a monthly modal progression model (von Bertalanffy’s model) to infer the life cycle synchrony type. These first observations showed a moderately synchronized univoltine life cycle for Andesiops peruvianus (Ulmer, 1920), whereas Meridialaris tintinnabula Pescador and Peters (1987), had an unsynchronized multivoltine life cycle. These results showed that the generalization of all aquatic insects as unsynchronized multivoltine species in the Andean region may not be entirely accurate since there is still a need to further clarify the life cycle patterns of the wide variety of aquatic insects living in this high elevation tropical environment.

  1. Regional High-Frequency Stratigraphic Cyclicity Analysis of the Upper Cretaceous Juana Lopez Member of the Mancos Shale, New Mexico

    NASA Astrophysics Data System (ADS)

    Wiercigroch, M.; Bhattacharya, J.

    2017-12-01

    The Earth is considered to have been in a "greenhouse state" during the Cretaceous Period. High-frequency sedimentary cycles are observed throughout the Cretaceous section of the Western Interior Seaway. Even though this warm Cretaceous climate suggests an ice-free planet Earth, there has been much debate as to whether the observed high-frequency sedimentary cycles are climate-driven Milankovitch-scale cycles that would suggest glaciers during the Cretaceous Period. This study tests the hypothesis of a glacio-eustatic origin of high-frequency cyclicity in the Turonian Juana Lopez Member of the Mancos Shale in the San Juan Basin, New Mexico. Data for this study was obtained from two stratigraphic measured sections which are 3.2 km apart, and located southwest of Shiprock. The two sections are found approximately 60 km away from the Turonian shoreline in an offshore marine environment. A high-resolution thin bed facies analysis on both sections reveals the Juana Lopez to be deposited in a fluvial-dominated, mixed wave- and fluvial-influenced environment. The Juana Lopez is shown to be an overall coarsening-upward sequence, displaying a shallowing regressive environment. Correlations between the two sections reveal 13 correlated parasequences identified through the violation of Walther's Law. An average cyclicity frequency of ca 90 kyr was determined for the sequences by bracketing the Inocermus dimidus and Scaphites whitfieldi biostratigraphic zones within the Juana Lopez sections. This cyclicity represents short eccentricity Milankovitch cycles. Many studies have confirmed that the observed Milankovitch-scaled cyclicity in the Cretaceous must be controlled by glacio-eustasy. With similar Milankovitch cyclicity found in the Juana Lopez, the short eccentricity Milankovitch cycles are interpreted as being glacio-eustatic in origin, which supports the presence of ice in the Cretaceous Period.

  2. Combined high vacuum/high frequency fatigue tester

    NASA Technical Reports Server (NTRS)

    Honeycutt, C. R.; Martin, T. F.

    1971-01-01

    Apparatus permits application of significantly greater number of cycles or equivalent number of cycles in shorter time than conventional fatigue test machines. Environment eliminates problems associated with high temperature oxidation and with sensitivity of refractory alloy behavior to atmospheric contamination.

  3. High frequency of phylogenetically diverse reductive dehalogenase-homologous genes in deep subseafloor sedimentary metagenomes

    PubMed Central

    Kawai, Mikihiko; Futagami, Taiki; Toyoda, Atsushi; Takaki, Yoshihiro; Nishi, Shinro; Hori, Sayaka; Arai, Wataru; Tsubouchi, Taishi; Morono, Yuki; Uchiyama, Ikuo; Ito, Takehiko; Fujiyama, Asao; Inagaki, Fumio; Takami, Hideto

    2014-01-01

    Marine subsurface sediments on the Pacific margin harbor diverse microbial communities even at depths of several hundreds meters below the seafloor (mbsf) or more. Previous PCR-based molecular analysis showed the presence of diverse reductive dehalogenase gene (rdhA) homologs in marine subsurface sediment, suggesting that anaerobic respiration of organohalides is one of the possible energy-yielding pathways in the organic-rich sedimentary habitat. However, primer-independent molecular characterization of rdhA has remained to be demonstrated. Here, we studied the diversity and frequency of rdhA homologs by metagenomic analysis of five different depth horizons (0.8, 5.1, 18.6, 48.5, and 107.0 mbsf) at Site C9001 off the Shimokita Peninsula of Japan. From all metagenomic pools, remarkably diverse rdhA-homologous sequences, some of which are affiliated with novel clusters, were observed with high frequency. As a comparison, we also examined frequency of dissimilatory sulfite reductase genes (dsrAB), key functional genes for microbial sulfate reduction. The dsrAB were also widely observed in the metagenomic pools whereas the frequency of dsrAB genes was generally smaller than that of rdhA-homologous genes. The phylogenetic composition of rdhA-homologous genes was similar among the five depth horizons. Our metagenomic data revealed that subseafloor rdhA homologs are more diverse than previously identified from PCR-based molecular studies. Spatial distribution of similar rdhA homologs across wide depositional ages indicates that the heterotrophic metabolic processes mediated by the genes can be ecologically important, functioning in the organic-rich subseafloor sedimentary biosphere. PMID:24624126

  4. High frequency of phylogenetically diverse reductive dehalogenase-homologous genes in deep subseafloor sedimentary metagenomes.

    PubMed

    Kawai, Mikihiko; Futagami, Taiki; Toyoda, Atsushi; Takaki, Yoshihiro; Nishi, Shinro; Hori, Sayaka; Arai, Wataru; Tsubouchi, Taishi; Morono, Yuki; Uchiyama, Ikuo; Ito, Takehiko; Fujiyama, Asao; Inagaki, Fumio; Takami, Hideto

    2014-01-01

    Marine subsurface sediments on the Pacific margin harbor diverse microbial communities even at depths of several hundreds meters below the seafloor (mbsf) or more. Previous PCR-based molecular analysis showed the presence of diverse reductive dehalogenase gene (rdhA) homologs in marine subsurface sediment, suggesting that anaerobic respiration of organohalides is one of the possible energy-yielding pathways in the organic-rich sedimentary habitat. However, primer-independent molecular characterization of rdhA has remained to be demonstrated. Here, we studied the diversity and frequency of rdhA homologs by metagenomic analysis of five different depth horizons (0.8, 5.1, 18.6, 48.5, and 107.0 mbsf) at Site C9001 off the Shimokita Peninsula of Japan. From all metagenomic pools, remarkably diverse rdhA-homologous sequences, some of which are affiliated with novel clusters, were observed with high frequency. As a comparison, we also examined frequency of dissimilatory sulfite reductase genes (dsrAB), key functional genes for microbial sulfate reduction. The dsrAB were also widely observed in the metagenomic pools whereas the frequency of dsrAB genes was generally smaller than that of rdhA-homologous genes. The phylogenetic composition of rdhA-homologous genes was similar among the five depth horizons. Our metagenomic data revealed that subseafloor rdhA homologs are more diverse than previously identified from PCR-based molecular studies. Spatial distribution of similar rdhA homologs across wide depositional ages indicates that the heterotrophic metabolic processes mediated by the genes can be ecologically important, functioning in the organic-rich subseafloor sedimentary biosphere.

  5. Pulsed-High Field/High-Frequency EPR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fuhs, Michael; Moebius, Klaus

    Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.

  6. Design and Application of a Circuit for Measuring Frequency and Duty Cycle of Stimulated Bioelectrical Signal

    NASA Astrophysics Data System (ADS)

    Tang, Li-Ming; Chang, Ben-Kang; Liu, Tie-Bing; Wu, Min; Ling, Gang

    2002-12-01

    To design a new type of circuit for measuring frequency & duty cycle of stimulated bioelectrical signal for the project of 'the map of neuron-threshold in human brain and its clinical application'. This circuit was designed according to the character of stimulated bioelectrical signals. It was tested and improved and then used in the neuron -threshold stimulator. The circuit was found to be very accurate for measuring frequency and the error for measuring duty cycle was below 0.2%. This circuit is well-designed, simple, easy to use, and can be applied in many systems.

  7. The Effects of the Menstrual Cycle on Vibratory Characteristics of the Vocal Folds Investigated With High-Speed Digital Imaging.

    PubMed

    Kunduk, Melda; Vansant, Mathew B; Ikuma, Takeshi; McWhorter, Andrew

    2017-03-01

    This study investigated the effect of menstrual cycle on vocal fold vibratory characteristics in young women using high-speed digital imaging. This study examined the menstrual phase effect on five objective high-speed imaging parameters and two self-rated perceptual parameters. The effects of oral birth control use were also investigated. Thirteen subjects with no prior voice complaints were included in this study. All data were collected at three different time periods (premenses, postmenses, ovulation) over the course of one menstrual cycle. For five of the 13 subjects, data were collected for two consecutive cycles. Six of 13 subjects were oral birth control users. From high-speed imaging data, five objective parameters were computed: fundamental frequency, fundamental frequency deviation, harmonics-to-noise ratio, harmonic richness factor, and ratio of first and second harmonics. They were supplemented by two self-rated parameters: Reflux Severity Index and perceptual voice quality rating. Analysis included mixed model linear analysis with repeated measures. Results indicated no significant main effects for menstrual phase, between-cycle, or birth control use in the analysis for mean fundamental frequency, fundamental frequency deviation, harmonics-to-noise ratio, harmonic richness factor, first and second harmonics, Reflux Severity Index, and perceptual voice quality rating. Additionally, there were no interaction effects. Hormone fluctuations observed across the menstrual cycle do not appear to have direct effect on vocal fold vibratory characteristics in young women with no voice concerns. Birth control use, on the other hand, may have influence on spectral richness of vocal fold vibration. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  8. Source parameters and effects of bandwidth and local geology on high- frequency ground motions observed for aftershocks of the northeastern Ohio earthquake of 31 January 1986

    USGS Publications Warehouse

    Glassmoyer, G.; Borcherdt, R.D.

    1990-01-01

    A 10-station array (GEOS) yielded recordings of exceptional bandwidth (400 sps) and resolution (up to 96 dB) for the aftershocks of the moderate (mb???4.9) earthquake that occurred on 31 January 1986 near Painesville, Ohio. Nine aftershocks were recorded with seismic moments ranging between 9 ?? 1016 and 3 ?? 1019 dyne-cm (MW: 0.6 to 2.3). The aftershock recordings at a site underlain by ???8m of lakeshore sediments show significant levels of high-frequency soil amplification of vertical motion at frequencies near 8, 20 and 70 Hz. Viscoelastic models for P and SV waves incident at the base of the sediments yield estimates of vertical P-wave response consistent with the observed high-frequency site resonances, but suggest additional detailed shear-wave logs are needed to account for observed S-wave response. -from Authors

  9. Radio Frequency Identification (RFID) technology applied to the definition of underwater and subaerial coarse sediment movement

    NASA Astrophysics Data System (ADS)

    Bertoni, Duccio; Sarti, Giovanni; Benelli, Giuliano; Pozzebon, Alessandro; Raguseo, Gianluca

    2010-07-01

    In this paper, Radio Frequency Identification technology has been applied to track both underwater and subaerial displacement of pebbles along an artificial coarse beach at Marina di Pisa, Italy. Several preliminary laboratory tests have been performed to adapt the RFID technique for underwater use, which has been the primary impediment to this promising approach to the study of coarse sediment transport and movement. Tests showed the reliability of low frequencies for this kind of work, since they enable good signal transmission and reception through water. Passive ABS plastic transponders were inserted into about 100 pebbles and released onto the beach in March, 2009. A CORE-125 reader was chosen as the operating antenna to continuously transmit low frequency (125 kHz) signals. An acoustic signal toned whenever a pebble was detected while the unambiguous identification code of the pebble is shown immediately on the screen of a laptop connected to the reader. The positions of the pebbles were recorded with a total station. After two months (May, 2009), 74 marked pebbles were retrieved, 77% of the total. The positions of the retrieved pebbles were also recorded with the total station, thus allowing calculation of the coarse sediment transport tendency. About 60% of the recovered pebbles (44 out of 74) were found on the upper shoreface. The analysis of the marked pebble trajectories revealed a divergent transport movement in the northernmost sector of the beach. This movement was probably triggered by an irregularity of the submerged breakwater fronting the shoreline. The southern sector is characterised by chaotic pathways related to the formation and evolution of beach cusps. This outcome highlights and confirms the importance of a complete definition of the beach system, with no separation between the underwater and the subaerial portion of the shore when it comes to sediment transport and movement. This successful application of RFID technology to the underwater

  10. Pb’s high sedimentation inside the bay mouth of Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Yang, Dongfang; Miao, Zhenqing; Huang, Xinmin; Wei, Linzhen; Feng, Ming

    2017-12-01

    Sedimentation is one of the key environmental behaviors of pollutants in the ocean. This paper analyzed the seasonal and temporal variations of Pb’s sedimentation process in Jiaozhou Bay in 1987. Results showed that Pb contents in bottom waters in Jiaozhou Bay in May, July and November 1987 were 1.87-2.60 μg L-1, 15.11-19.68 μg L-1 and 11.08-15.18 μg L-1, and the pollution levels of Pb in May, July and November 1987 were slight, heavy and heavy, respectively. In May 1987, there was low sedimentation process in waters in the outside of the bay mouth, yet were high sedimentation process in waters in the middle and inside of the bay mouth. In July and November 1987, there was low sedimentation process in waters in the outside of the bay mouth, yet were high sedimentation process in waters in the inside of the bay mouth. The seasonal-temporal variation of sedimentation processes of Pb were determined by the variations of sources input and the vertical water’s effect.

  11. High frequency-heated air turbojet

    NASA Technical Reports Server (NTRS)

    Miron, J. H. D.

    1986-01-01

    A description is given of a method to heat air coming from a turbojet compressor to a temperature necessary to produce required expansion without requiring fuel. This is done by high frequency heating, which heats the walls corresponding to the combustion chamber in existing jets, by mounting high frequency coils in them. The current transformer and high frequency generator to be used are discussed.

  12. Sediment accumulation rates and high-resolution stratigraphy of recent fluvial suspension deposits in various fluvial settings, Morava River catchment area, Czech Republic

    NASA Astrophysics Data System (ADS)

    Sedláček, Jan; Bábek, Ondřej; Kielar, Ondřej

    2016-02-01

    We present a comprehensive study concerning sedimentary processes in fluvial sediment traps within the Morava River catchment area (Czech Republic) involving three dammed reservoirs, four meanders and oxbow lakes, and several natural floodplain sites. The objective of the study was to determine sediment accumulation rates (SAR), estimate erosion rates, calculating these using a combination of the 137Cs method and historical data. Another purpose of this study was to provide insight into changing erosion and accumulation rates over the last century. Extensive water course modifications were carried out in the Morava River catchment area during the twentieth century, which likely affected sedimentation rates along the river course. Other multiproxy stratigraphic methods (X-ray densitometry, magnetic susceptibility, and visible-light reflectance spectrometry) were applied to obtain additional information about sediment infill. Sediment stratigraphy revealed distinct distal-to-proximal patterns, especially in reservoirs. Granulometrically, silts and sandy silts prevailed in sediments. Oxbow lakes and meanders contained larger amounts of clay and organic matter, which is the main difference between them and reservoirs. Pronounced 137Cs peaks were recorded in all studied cores (maximum 377 Bq·kg- 1), thus indicating Chernobyl fallout from 1986 or older events. Calculated sediment accumulation rates were lowest in distal parts of reservoirs (0.13-0.58 cm/y) and floodplains (0.45-0.88 cm/y), moderately high rates were found in proximal parts of reservoirs and oxbow lakes (2.27-4.4 cm/y), and the highest rates in some oxbow lakes located near the river (6-8 cm/y). The frequency of the inundation still can be high in some natural areas as in the Litovelské Pomoraví protected area, whereas the decreasing frequency of the inundation in other modified parts can contribute to a lower sedimentation rate. The local effects such as difference between SARs in oxbow lakes and

  13. Lake Sediments show the Frequency of 21st Century Extreme Flooding in the UK is Unprecedented

    NASA Astrophysics Data System (ADS)

    Chiverrell, R. C.; Sear, D. A.; Warburton, J.; Macdonald, N.; Schillereff, D. N.; Dearing, J.; Croudace, I. W. C.

    2016-12-01

    Flooding in northwest England has been reconstructed from the coarse grained units preserved in lake sediment sequences at Bassenthwaite Lake, a record that includes the floods of December 2015 (Storm Desmond) and November 2009 and shows they were the most extreme in over 600 years. The inception and propagation of a lake sediment flood event horizon in the aftermath of the December 2015 storms in the UK has been explored as part of NERC Urgency Grant that focuses on Bassenthwaite Lake, Brotherswater, Buttermere and Ullswater. Our approach involves repeat coring of locations over 6-12 months, sediment trapping, and testing how this recent extreme event has settled into the sediment record. For Bassenthwaite Lake linking our new sediment palaeoflood series to river discharges, provides the first assessment of flood frequency and magnitude based on lake sediments for the UK. We show that recent devastating flooding in NW England in 2009 was the largest event in 415 years, had a recurrence interval far larger (1:9000 year) than conventional analysis based on short term records suggest (1:700 year), and occurred during a cluster of floods that is unprecedented in 600 years. Particle size characteristics of flood laminations, after correction for variations in the stability of catchment sediment sources, were correlated on a hydrodynamic basis with recorded river flows. The particle size flood record is underpinned by a robust chronology to CE 1420 derived from radionuclide (Pb210, Am241, and Cs137) dating and correlations to the rich history of metal (Pb, Zn, Ba and Cu) mining in the catchment accurately recorded in the sediment geochemistry. The sediment palaeoflood series reveals five flood rich periods (CE 1460-1500, 1580-1680, 1780-1820, 1850-1925, 1970-present), and these correspond with positive phases of reconstructed winter NAOI and other Atlantic circulation patterns. The hydro-climatology of the extreme events (top 1% of floods) in our series, show that 67

  14. Corrosion monitoring using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  15. High Intensity Focused Ultrasound (HIFU) Based Thrombolysis Using Multiple Frequency Excitations

    NASA Astrophysics Data System (ADS)

    Suo, Dingjie

    High intensity focused ultrasound (HIFU) based thrombolysis has emerged as a promising drug-free approach for ischemic stroke treatment. The large amount of acoustic power required by this approach, however, poses a critical challenge to the future clinical translation because of the potential thermal damages. In this dissertation, multi-frequency acoustic waves at MHz range (near 1.5 MHz) were first introduced as HIFU excitations to reduce the required treatment power as well as the treatment time. It was found that dual-frequency thrombolysis efficiency was statistically better than that of single-frequency, under the same acoustic power and excitation condition. Microbubbles (MBs) combined with dual-frequency focused ultrasound (DFFU) for thrombolysis in vitro was then proposed to further reduce the power required. MBs are widely used in therapeutic ultrasound thrombolysis due to the nonlinear characteristics of their harmonic responses, coalescence and cavitation effects, which could further enhance efficiency. It was shown in this study that MBs, with sufficient concentration, could significantly lower the power threshold for thrombolysis for both DFFU and single-frequency focused ultrasound (SFFU). MBs mediated DFFU thrombolysis were then studied with a flow system that mimicked the blood flow in the artery of the brain. It was found that the cavitation threshold of a DFFU excitation yielded a lower level than that of a SFFU excitation. All the experimental results indicated that multi-frequency ultrasound could improve the thrombolysis efficiency. However, this was not well established numerically. Hence, a numerical investigation on the inertial cavitation threshold of MBs under multifrequency ultrasound irradiation was then investigated to confirm the benefit of using multi-frequency ultrasound for various applications. The main contribution and findings of this dissertation are as follows: 1) For the HIFU along study, when varying the acoustic power while

  16. Sediment transport drives tidewater glacier periodicity.

    PubMed

    Brinkerhoff, Douglas; Truffer, Martin; Aschwanden, Andy

    2017-07-21

    Most of Earth's glaciers are retreating, but some tidewater glaciers are advancing despite increasing temperatures and contrary to their neighbors. This can be explained by the coupling of ice and sediment dynamics: a shoal forms at the glacier terminus, reducing ice discharge and causing advance towards an unstable configuration followed by abrupt retreat, in a process known as the tidewater glacier cycle. Here we use a numerical model calibrated with observations to show that interactions between ice flow, glacial erosion, and sediment transport drive these cycles, which occur independent of climate variations. Water availability controls cycle period and amplitude, and enhanced melt from future warming could trigger advance even in glaciers that are steady or retreating, complicating interpretations of glacier response to climate change. The resulting shifts in sediment and meltwater delivery from changes in glacier configuration may impact interpretations of marine sediments, fjord geochemistry, and marine ecosystems.The reason some of the Earth's tidewater glaciers are advancing despite increasing temperatures is not entirely clear. Here, using a numerical model that simulates both ice and sediment dynamics, the authors show that internal dynamics drive glacier variability independent of climate.

  17. Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay

    USGS Publications Warehouse

    Yates, K.K.; Halley, R.B.

    2006-01-01

    Water quality and circulation in Florida Bay (a shallow, subtropical estuary in south Florida) are highly dependent upon the development and evolution of carbonate mud banks distributed throughout the Bay. Predicting the effect of natural and anthropogenic perturbations on carbonate sedimentation requires an understanding of annual, seasonal, and daily variations in the biogenic and inorganic processes affecting carbonate sediment precipitation and dissolution. In this study, net calcification rates were measured over diurnal cycles on 27 d during summer and winter from 1999 to 2003 on mud banks and four representative substrate types located within basins between mud banks. Substrate types that were measured in basins include seagrass beds of sparse and intermediate density Thalassia sp., mud bottom, and hard bottom communities. Changes in total alkalinity were used as a proxy for calcification and dissolution. On 22 d (81%), diurnal variation in rates of net calcification was observed. The highest rates of net carbonate sediment production (or lowest rates of net dissolution) generally occurred during daylight hours and ranged from 2.900 to -0.410 g CaCO3 m-2 d-1. The lowest rates of carbonate sediment production (or net sediment dissolution) occurred at night and ranged from 0.210 to -1.900 g CaCO3 m -2 night-1. During typical diurnal cycles, dissolution during the night consumed an average of 29% of sediment produced during the day on banks and 68% of sediment produced during the day in basins. Net sediment dissolution also occurred during daylight, but only when there was total cloud cover, high turbidity, or hypersalinity. Diurnal variation in calcification and dissolution in surface waters and surface sediments of Florida Bay is linked to cycling of carbon dioxide through photosynthesis and respiration. Estimation of long-term sediment accumulation rates from diurnal rates of carbonate sediment production measured in this study indicates an overall average

  18. Direct sampling during multiple sediment density flows reveals dynamic sediment transport and depositional environment in Monterey submarine canyon

    NASA Astrophysics Data System (ADS)

    Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.

    2017-12-01

    Sediment density flows were directly sampled with a coupled sediment trap-ADCP-instrument mooring array to evaluate the character and frequency of turbidity current events through Monterey Canyon, offshore California. This novel experiment aimed to provide links between globally significant sediment density flow processes and their resulting deposits. Eight to ten Anderson sediment traps were repeatedly deployed at 10 to 300 meters above the seafloor on six moorings anchored at 290 to 1850 meters water depth in the Monterey Canyon axial channel during 6-month deployments (October 2015 - April 2017). Anderson sediment traps include a funnel and intervalometer (discs released at set time intervals) above a meter-long tube, which preserves fine-scale stratigraphy and chronology. Photographs, multi-sensor logs, CT scans, and grain size analyses reveal layers from multiple sediment density flow events that carried sediment ranging from fine sand to granules. More sediment accumulation from sediment density flows, and from between flows, occurred in the upper canyon ( 300 - 800 m water depth) compared to the lower canyon ( 1300 - 1850 m water depth). Sediment accumulated in the traps during sediment density flows is sandy and becomes finer down-canyon. In the lower canyon where sediment directly sampled from density flows are clearly distinguished within the trap tubes, sands have sharp basal contacts, normal grading, and muddy tops that exhibit late-stage pulses. In at least two of the sediment density flows, the simultaneous low velocity and high backscatter measured by the ADCPs suggest that the trap only captured the collapsing end of a sediment density flow event. In the upper canyon, accumulation between sediment density flow events is twice as fast compared to the lower canyon; it is characterized by sub-cm-scale layers in muddy sediment that appear to have accumulated with daily to sub-daily frequency, likely related to known internal tidal dynamics also measured

  19. Nitrogen cycling in 2.7 Ga oceans

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zerkle, A.; Grassineau, N.; Nisbet, E.; Mettam, C.; Izon, G. J.; Morag, H.; Anthony, M.; Newton, J.; Boyce, A.

    2016-12-01

    A growing body of geochemical evidence suggests that localized oxygenation of the surface earth must have begun much earlier than the GOE ( 2.4 Ga). This could have triggered the emergence of the aerobic biogeochemical cycle of nitrogen (N), an essential nutrient for all organisms. However, the timing of this revolutionary transition is poorly known. Some sediments from 2.7 Ga possess exceptionally high enrichment of 15N. Whether these values are linked to the onset of the aerobic N cycle[1], or reflective of alkaline lakes on land[2], has been in dispute. To explore this, we are investigating one of the best-preserved unambiguously marine Achaean successions from the Belingwe Greenstone Belt, in Zimbabwe. We are focusing on nearly pristine sediments from the 2.7 Ga Manjeri Formation, which span both shallow and deep-water environments, preserving organic-rich shales and some of the oldest and most well-preserved stromatolites. The depositional conditions for this succession are further constrained by iron speciation data and sulfur isotopes, which show a redox transition from ferruginous to oxic environments from older to younger sediments. Nitrogen isotopes in these sediments will constrain the global nature of the extremely 15N-enriched values, and test hypotheses for the Neoarchean nitrogen cycle in a non-disputed marine setting. [1] Thomazo et al. (2011) Geobiology; [2] Stüeken et al. (2015) EPSL.

  20. Autonomous bed-sediment imaging-systems for revealing temporal variability of grain size

    USGS Publications Warehouse

    Buscombe, Daniel; Rubin, David M.; Lacy, Jessica R.; Storlazzi, Curt D.; Hatcher, Gerald; Chezar, Henry; Wyland, Robert; Sherwood, Christopher R.

    2014-01-01

    We describe a remotely operated video microscope system, designed to provide high-resolution images of seabed sediments. Two versions were developed, which differ in how they raise the camera from the seabed. The first used hydraulics and the second used the energy associated with wave orbital motion. Images were analyzed using automated frequency-domain methods, which following a rigorous partially supervised quality control procedure, yielded estimates to within 20% of the true size as determined by on-screen manual measurements of grains. Long-term grain-size variability at a sandy inner shelf site offshore of Santa Cruz, California, USA, was investigated using the hydraulic system. Eighteen months of high frequency (min to h), high-resolution (μm) images were collected, and grain size distributions compiled. The data constitutes the longest known high-frequency record of seabed-grain size at this sample frequency, at any location. Short-term grain-size variability of sand in an energetic surf zone at Praa Sands, Cornwall, UK was investigated using the ‘wave-powered’ system. The data are the first high-frequency record of grain size at a single location of a highly mobile and evolving bed in a natural surf zone. Using this technology, it is now possible to measure bed-sediment-grain size at a time-scale comparable with flow conditions. Results suggest models of sediment transport at sandy, wave-dominated, nearshore locations should allow for substantial changes in grain-size distribution over time-scales as short as a few hours.

  1. Cycle frequency in standard Rock-Paper-Scissors games: Evidence from experimental economics

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Zhou, Hai-Jun; Wang, Zhijian

    2013-10-01

    The Rock-Paper-Scissors (RPS) game is a widely used model system in game theory. Evolutionary game theory predicts the existence of persistent cycles in the evolutionary trajectories of the RPS game, but experimental evidence has remained to be rather weak. In this work, we performed laboratory experiments on the RPS game and analyzed the social-state evolutionary trajectories of twelve populations of N=6 players. We found strong evidence supporting the existence of persistent cycles. The mean cycling frequency was measured to be 0.029±0.009 period per experimental round. Our experimental observations can be quantitatively explained by a simple non-equilibrium model, namely the discrete-time logit dynamical process with a noise parameter. Our work therefore favors the evolutionary game theory over the classical game theory for describing the dynamical behavior of the RPS game.

  2. Fate and Transport of Cohesive Sediment and HCB in the Middle Elbe River Basin

    NASA Astrophysics Data System (ADS)

    Moshenberg, Kari; Heise, Susanne; Calmano, Wolfgang

    2014-05-01

    Chemical contamination of waterways and floodplains is a pervasive environmental problem that threatens aquatic ecosystems worldwide. Due to extensive historical contamination and redistribution of contaminated sediments throughout the basin, the Elbe River transports significant loads of contaminants downstream, particularly during flood events. This study focuses on Hexachlorobenzene (HCB), a persistent organic pollutant that has been identified as a contaminant of concern in the Elbe Basin. To better understand the fate and transport of cohesive sediments and sediment-sorbed HCB, a hydrodynamic, suspended sediment, and contaminated transport model for the 271-km reach of the Elbe River basin between Dresden and Magdeburg was developed. Additionally, trends in suspended sediment and contaminant transport were investigated in the context of the recent high frequency of floods in the Elbe Basin. This study presents strong evidence that extreme high water events, such as the August, 2002 floods, have a permanent effect on the sediment transport regime in the Elbe River. Additionally, results indicate that a significant component annual HCB loads are transported downstream during floods. Additionally, modeled results for suspended sediment and HCB accumulation on floodplains are presented and discussed. Uncertainty and issues related to model development are also addressed. A worst case analysis of HCB uptake by dairy cows and beef cattle indicate that significant, biologically relevant quantities of sediment-sorbed HCB accumulate on the Elbe floodplains following flood events. Given both the recent high frequency of floods in the Elbe Basin, and the potential increase in flood frequency due to climate change, an evaluation of source control measures and/or additional monitoring of floodplain soils and grasses is recommended.

  3. Orbital- to Sub-Orbital-Scale Cyclicity in Seismic Reflections and Sediment Character in Early to Middle Pleistocene Mudstone, Santa Barbara Basin, California

    NASA Astrophysics Data System (ADS)

    Peterson, C. D.; Behl, R. J.; Nicholson, C.; Lisiecki, L. E.; Sorlien, C. C.

    2009-12-01

    High-resolution seismic reflection records and well logs from the Santa Barbara Channel suggest that large parts of the Pleistocene succession records climate variability on orbital to sub-orbital scales with remarkable sensitivity, much like the well-studied sediments of the last glacial cycle (ODP Site 893). Spectral analysis of seismic reflection data and gamma ray logs from stratigraphically similar Pleistocene sections finds similar cyclic character and shifts through the section. This correlation suggests that acoustic impedance and physical properties of sediment are linked by basin-scale, likely climatically-driven, oscillations in lithologic composition and fabric during deposition, and that seismic profiling can provide a method for remote identification and correlation of orbital- and sub-orbital-scale sedimentary cyclicity. Where it crops out along the northern shelf of the central Santa Barbara Channel, the early to middle Pleistocene succession (~1.8-1.2 Ma) is a bathyal hemipelagic mudstone with remarkably rhythmic planar bedding, finely laminated fabric, and well-preserved foraminifera, none of which have been significantly altered, or obscured by post-depositional diagenesis or tectonic deformation. Unlike the coarser, turbiditic successions in the central Ventura and Los Angeles basins, this sequence has the potential to record Quaternary global climate change at high resolution. Seismic reflection data (towed chirp) collected on the R/V Melville 2008 Cruise (MV08) penetrate 10's of meters below seafloor into a ~1 km-long sequence of south-dipping seismic reflectors. Sampling parallel to the seafloor permits acquisition of consistent signal amplitude for similar reflectors without spreading loss. Based on established age ranges for this section, sedimentation rates may range from 0.4 to 1.4 meters/kyr, therefore suggesting that the most powerful cycles are orbital- to sub-orbital-scale. Discrete sets of cycles with high power show an abrupt shift

  4. New Insights into an Old Cycle: The Marine Phosphorus Cycle and the Formation of Critical Phosphate Rock Resources (Invited)

    NASA Astrophysics Data System (ADS)

    Filippelli, G. M.

    2010-12-01

    The cycling and geochemistry of phosphorus (P) in the marine environment is a critical component of biological productivity and of resource availability: P control the long-term carbon cycle via its role as a limiting nutrient, and the burial and concentration of P within marine sediments dictates the quality and availability of P as a fertilizer component from a resources standpoint. Given the projections of severe P fertilizer limitation over the next several centuries, understanding the controls on P geochemistry and concentration into a minable resource is critical in sustaining global populations. Several critical aspects of the marine P cycle have been uncovered over the past few decades which have clarified our understanding of P burial and concentration. First, the initial authigenic process of P mineralization within marine sediments, termed phosphogenesis, seems to occur regardless of marine setting. Phosphogenesis results from the release of P into sedimentary pore waters from organic and oxide-bound fractions, and the subsequent supersaturation with respect to carbonate fluorapatite. In sediment-starved basins with significant upwelling-driven productivity, the supply of P into sedimentary pore waters can be so high that visibly apparent layers of carbonate fluorapatite can be formed. Even in such environments, however, the mineral P content is too low to be of economic value unless it has undergone concentration via sediment reworking, a common occurrence in some dynamic continental margin environments. Thus, a combination of phosphogenesis in a high productivity setting plus sediment starvation plus condensation via reworking are necessary to produce phosphorites, sedimentary rocks with high P contents which are ideal as fertilizer-grade P resources. Given these special marine conditions, phosphorites are largely distributed along ancient marine environments (with the exception of the nearly-depleted atoll guano reserves). The largest currently

  5. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments.

    PubMed

    Egger, Matthias; Rasigraf, Olivia; Sapart, Célia J; Jilbert, Tom; Jetten, Mike S M; Röckmann, Thomas; van der Veen, Carina; Bândă, Narcisa; Kartal, Boran; Ettwig, Katharina F; Slomp, Caroline P

    2015-01-06

    Methane is a powerful greenhouse gas and its biological conversion in marine sediments, largely controlled by anaerobic oxidation of methane (AOM), is a crucial part of the global carbon cycle. However, little is known about the role of iron oxides as an oxidant for AOM. Here we provide the first field evidence for iron-dependent AOM in brackish coastal surface sediments and show that methane produced in Bothnian Sea sediments is oxidized in distinct zones of iron- and sulfate-dependent AOM. At our study site, anthropogenic eutrophication over recent decades has led to an upward migration of the sulfate/methane transition zone in the sediment. Abundant iron oxides and high dissolved ferrous iron indicate iron reduction in the methanogenic sediments below the newly established sulfate/methane transition. Laboratory incubation studies of these sediments strongly suggest that the in situ microbial community is capable of linking methane oxidation to iron oxide reduction. Eutrophication of coastal environments may therefore create geochemical conditions favorable for iron-mediated AOM and thus increase the relevance of iron-dependent methane oxidation in the future. Besides its role in mitigating methane emissions, iron-dependent AOM strongly impacts sedimentary iron cycling and related biogeochemical processes through the reduction of large quantities of iron oxides.

  6. Evaluation of mercury biogeochemical cycling at the sediment-water interface in anthropogenically modified lagoon environments.

    PubMed

    Petranich, Elisa; Covelli, Stefano; Acquavita, Alessandro; Faganeli, Jadran; Horvat, Milena; Contin, Marco

    2018-06-01

    The Marano and Grado Lagoon is well known for being contaminated by mercury (Hg) from the Idrija mine (Slovenia) and the decommissioned chlor-alkali plant of Torviscosa (Italy). Experimental activities were conducted in a local fish farm to understand Hg cycling at the sediment-water interface. Both diffusive and benthic fluxes were estimated in terms of chemical and physical features. Mercury concentration in sediments (up to 6.81μg/g) showed a slight variability with depth, whereas the highest methylmercury (MeHg) values (up to 10ng/g) were detected in the first centimetres. MeHg seems to be produced and stored in the 2-3cm below the sediment-water interface, where sulphate reducing bacteria activity occurs and hypoxic-anoxic conditions become persistent for days. DMeHg in porewaters varied seasonally (from 0.1 and 17% of dissolved Hg (DHg)) with the highest concentrations in summer. DHg diffusive effluxes higher (up to 444ng/m 2 /day) than those reported in the open lagoon (~95ng/m 2 /day), whereas DMeHg showed influxes in the fish farm (up to -156ng/m 2 /day). The diurnal DHg and DMeHg benthic fluxes were found to be higher than the highest summer values previously reported for the natural lagoon environment. Bottom sediments, especially in anoxic conditions, seem to be a significant source of MeHg in the water column where it eventually accumulates. However, net fluxes considering the daily trend of DHg and DMeHg, indicated possible DMeHg degradation processes. Enhancing water dynamics in the fish farm could mitigate environmental conditions suitable for Hg methylation. Copyright © 2017. Published by Elsevier B.V.

  7. Adaptive Kalman filter based on variance component estimation for the prediction of ionospheric delay in aiding the cycle slip repair of GNSS triple-frequency signals

    NASA Astrophysics Data System (ADS)

    Chang, Guobin; Xu, Tianhe; Yao, Yifei; Wang, Qianxin

    2018-01-01

    In order to incorporate the time smoothness of ionospheric delay to aid the cycle slip detection, an adaptive Kalman filter is developed based on variance component estimation. The correlations between measurements at neighboring epochs are fully considered in developing a filtering algorithm for colored measurement noise. Within this filtering framework, epoch-differenced ionospheric delays are predicted. Using this prediction, the potential cycle slips are repaired for triple-frequency signals of global navigation satellite systems. Cycle slips are repaired in a stepwise manner; i.e., for two extra wide lane combinations firstly and then for the third frequency. In the estimation for the third frequency, a stochastic model is followed in which the correlations between the ionospheric delay prediction errors and the errors in the epoch-differenced phase measurements are considered. The implementing details of the proposed method are tabulated. A real BeiDou Navigation Satellite System data set is used to check the performance of the proposed method. Most cycle slips, no matter trivial or nontrivial, can be estimated in float values with satisfactorily high accuracy and their integer values can hence be correctly obtained by simple rounding. To be more specific, all manually introduced nontrivial cycle slips are correctly repaired.

  8. A deterministic (non-stochastic) low frequency method for geoacoustic inversion.

    PubMed

    Tolstoy, A

    2010-06-01

    It is well known that multiple frequency sources are necessary for accurate geoacoustic inversion. This paper presents an inversion method which uses the low frequency (LF) spectrum only to estimate bottom properties even in the presence of expected errors in source location, phone depths, and ocean sound-speed profiles. Matched field processing (MFP) along a vertical array is used. The LF method first conducts an exhaustive search of the (five) parameter search space (sediment thickness, sound-speed at the top of the sediment layer, the sediment layer sound-speed gradient, the half-space sound-speed, and water depth) at 25 Hz and continues by retaining only the high MFP value parameter combinations. Next, frequency is slowly increased while again retaining only the high value combinations. At each stage of the process, only those parameter combinations which give high MFP values at all previous LF predictions are considered (an ever shrinking set). It is important to note that a complete search of each relevant parameter space seems to be necessary not only at multiple (sequential) frequencies but also at multiple ranges in order to eliminate sidelobes, i.e., false solutions. Even so, there are no mathematical guarantees that one final, unique "solution" will be found.

  9. Climate-driven unsteady denudation and sediment flux in a high-relief unglaciated catchment-fan using 26Al and 10Be: Panamint Valley, California

    NASA Astrophysics Data System (ADS)

    Mason, Cody C.; Romans, Brian W.

    2018-06-01

    Environmental changes within erosional catchments of sediment routing systems are predicted to modulate sediment transfer dynamics. However, empirical and numerical models that predict such phenomena are difficult to test in natural systems over multi-millennial timescales. Tectonic boundary conditions and climate history in the Panamint Range, California, are relatively well-constrained by existing low-temperature thermochronology and regional multi-proxy paleoclimate studies, respectively. Catchment-fan systems present there minimize sediment storage and recycling, offering an excellent natural laboratory to test models of climate-sedimentary dynamics. We used stratigraphic characterization and cosmogenic radionuclides (CRNs; 26Al and 10Be) in the Pleasant Canyon complex (PCC), a linked catchment-fan system, to examine the effects of Pleistocene high-magnitude, high-frequency climate change on CRN-derived denudation rates and sediment flux in a high-relief, unglaciated catchment-fan system. Calculated 26Al/10Be burial ages from 13 samples collected in an ∼180 m thick outcropping stratigraphic succession range from ca. 1.55 ± 0.22 Ma in basal strata, to ca. 0.36 ± 0.18-0.52 ± 0.20 Ma within the uppermost part of the succession. The mean long-term CRN-derived paleodenudation rate, 36 ± 8 mm/kyr (1σ), is higher than the modern rate of 24 ± 0.6 mm/kyr from Pleasant Canyon, and paleodenudation rates during the middle Pleistocene display some high-frequency variability in the high end (up to 54 ± 10 mm/kyr). The highest CRN-derived denudation rates are associated with stratigraphic evidence for increased precipitation during glacial-pluvial events after the middle Pleistocene transition (post ca. 0.75 Ma), suggesting 100 kyr Milankovitch periodicity could drive the observed variability. We investigated the potential for non-equilibrium sedimentary processes, i.e. increased landslides or sediment storage/recycling, to influence apparent paleodenudation rates

  10. Hindcast and forecast of grand solar minina and maxima using a three-frequency dynamo model based on Jupiter-Saturn tidal frequencies modulating the 11-year sunspot cycle

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola

    2016-04-01

    The Schwabe frequency band of the Zurich sunspot record since 1749 is found to be made of three major cycles with periods of about 9.98, 10.9 and 11.86 years. The two side frequencies appear to be closely related to the spring tidal period of Jupiter and Saturn (range between 9.5 and 10.5 years, and median 9.93 years) and to the tidal sidereal period of Jupiter (about 11.86 years). The central cycle can be associated to a quasi-11-year sunspot solar dynamo cycle that appears to be approximately synchronized to the average of the two planetary frequencies. A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns. The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. These frequencies and other oscillations appear once the model is non-linearly processed. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Sporer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima that occurred during 1900- 1920 and 1960-1980 and the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005 and a secular upward trending during the 20th century: this modulated trending agrees well with some solar proxy model, with

  11. Nonlinear analysis of heart rate variability within independent frequency components during the sleep-wake cycle.

    PubMed

    Vigo, Daniel E; Dominguez, Javier; Guinjoan, Salvador M; Scaramal, Mariano; Ruffa, Eduardo; Solernó, Juan; Siri, Leonardo Nicola; Cardinali, Daniel P

    2010-04-19

    Heart rate variability (HRV) is a complex signal that results from the contribution of different sources of oscillation related to the autonomic nervous system activity. Although linear analysis of HRV has been applied to sleep studies, the nonlinear dynamics of HRV underlying frequency components during sleep is less known. We conducted a study to evaluate nonlinear HRV within independent frequency components in wake status, slow-wave sleep (SWS, stages III or IV of non-rapid eye movement sleep), and rapid-eye-movement sleep (REM). The sample included 10 healthy adults. Polysomnography was performed to detect sleep stages. HRV was studied globally during each phase and then very low frequency (VLF), low frequency (LF) and high frequency (HF) components were separated by means of the wavelet transform algorithm. HRV nonlinear dynamics was estimated with sample entropy (SampEn). A higher SampEn was found when analyzing global variability (Wake: 1.53+/-0.28, SWS: 1.76+/-0.32, REM: 1.45+/-0.19, p=0.005) and VLF variability (Wake: 0.13+/-0.03, SWS: 0.19+/-0.03, REM: 0.14+/-0.03, p<0.001) at SWS. REM was similar to wake status regarding nonlinear HRV. We propose nonlinear HRV is a useful index of the autonomic activity that characterizes the different sleep-wake cycle stages. 2009 Elsevier B.V. All rights reserved.

  12. A microbial arsenic cycle in sediments of an acidic mine impoundment: Herman Pit, Clear Lake, California

    USGS Publications Warehouse

    Blum, Jodi S.; McCann, Shelley; Bennett, S.; Miller, Laurence G.; Stolz, J. R.; Stoneburner, B.; Saltikov, C.; Oremland, Ronald S.

    2015-01-01

    The involvement of prokaryotes in the redox reactions of arsenic occurring between its +5 [arsenate; As(V)] and +3 [arsenite; As(III)] oxidation states has been well established. Most research to date has focused upon circum-neutral pH environments (e.g., freshwater or estuarine sediments) or arsenic-rich “extreme” environments like hot springs and soda lakes. In contrast, relatively little work has been conducted in acidic environments. With this in mind we conducted experiments with sediments taken from the Herman Pit, an acid mine drainage impoundment of a former mercury (cinnabar) mine. Due to the large adsorptive capacity of the abundant Fe(III)-rich minerals, we were unable to initially detect in solution either As(V) or As(III) added to the aqueous phase of live sediment slurries or autoclaved controls, although the former consumed added electron donors (i.e., lactate, acetate, hydrogen), while the latter did not. This prompted us to conduct further experiments with diluted slurries using the live materials from the first incubation as inoculum. In these experiments we observed reduction of As(V) to As(III) under anoxic conditions and reduction rates were enhanced by addition of electron donors. We also observed oxidation of As(III) to As(V) in oxic slurries as well as in anoxic slurries amended with nitrate. We noted an acid-tolerant trend for sediment slurries in the cases of As(III) oxidation (aerobic and anaerobic) as well as for anaerobic As(V) reduction. These observations indicate the presence of a viable microbial arsenic redox cycle in the sediments of this extreme environment, a result reinforced by the successful amplification of arsenic functional genes (aioA, and arrA) from these materials.

  13. Amplitude Variation of Bottom Simulating Reflection with Respect to Frequency - Transitional Base or Attenuation?

    USGS Publications Warehouse

    Lee, Myung W.

    2007-01-01

    The amplitude of a bottom simulating reflection (BSR), which occurs near the phase boundary between gas hydrate-bearing sediments and underlying gas-filled sediments, strongly depends on the frequency content of a seismic signal, as well as the impedance contrast across the phase boundary. A strong-amplitude BSR, detectable in a conventional seismic profile, is a good indicator of the presence of free gas beneath the phase boundary. However, the BSR as observed in low-frequency multichannel seismic data is generally difficult to identify in high-frequency, single-channel seismic data. To investigate the frequency dependence of BSR amplitudes, single-channel seismic data acquired with an air gun source at Blake Ridge, which is located off the shore of South Carolina, were analyzed in the frequency range of 10-240 Hz. The frequency-dependent impedance contrast caused by the velocity dispersion in partially gas saturated sediments is important to accurately analyze BSR amplitude. Analysis indicates that seismic attenuation of gas hydrate-bearing sediments, velocity dispersion, and a transitional base all contribute to the frequency-dependent BSR amplitude variation in the frequency range of 10-500 Hz. When velocity dispersion is incorporated into the BSR amplitude analysis, the frequency-dependent BSR amplitude at Blake Ridge can be explained with gas hydrate-bearing sediments having a quality factor of about 250 and a transitional base with a thickness of about 1 meter.

  14. High-Frequency Testing of Composite Fan Vanes With Erosion-Resistant Coating Conducted

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Sutter, James K.; Naik, Subhash; Otten, Kim D.; Perusek, Gail P.

    2003-01-01

    The mechanical integrity of hard, erosion-resistant coatings were tested using the Structural Dynamics Laboratory at the NASA Glenn Research Center. Under the guidance of Structural Mechanics and Dynamics Branch personnel, fixturing and test procedures were developed at Glenn to simulate engine vibratory conditions on coated polymer-matrix- composite bypass vanes using a slip table in the Structural Dynamics Laboratory. Results from the high-frequency mechanical bench testing, along with concurrent erosion testing of coupons and vanes, provided sufficient confidence to engine-endurance test similarly coated vane segments. The knowledge gained from this program will be applied to the development of oxidation- and erosion-resistant coatings for polymer matrix composite blades and vanes in future advanced turbine engines. Fan bypass vanes from the AE3007 (Rolls Royce America, Indianapolis, IN) gas turbine engine were coated by Engelhard (Windsor, CT) with compliant bond coatings and hard ceramic coatings. The coatings were developed collaboratively by Glenn and Allison Advanced Development Corporation (AADC)/Rolls Royce America through research sponsored by the High-Temperature Engine Materials Technology Project (HITEMP) and the Higher Operating Temperature Propulsion Components (HOTPC) project. High-cycle fatigue was performed through high-frequency vibratory testing on a shaker table. Vane resonant frequency modes were surveyed from 50 to 3000 Hz at input loads from 1g to 55g on both uncoated production vanes and vanes with the erosion-resistant coating. Vanes were instrumented with both lightweight accelerometers and strain gauges to establish resonance, mode shape, and strain amplitudes. Two high-frequency dwell conditions were chosen to excite two strain levels: one approaching the vane's maximum allowable design strain and another near the expected maximum strain during engine operation. Six specimens were tested per dwell condition. Pretest and posttest

  15. An Effective Method for Inversion of Elastic Impedance for Shallow Sediments and Its Application to Gas Hydrate-Bearing Sediments

    USGS Publications Warehouse

    Lee, Myung W.

    2006-01-01

    Elastic properties of gas hydrate-bearing sediments (GHBS) are important for identifying and quantifying gas hydrate as well as discriminating the effects of free gas on velocity from that due to overpressure. Elastic properties of GHBS sediments can be estimated from elastic inversion using the elastic impedance. The accuracy of elastic inversion can be increased by using the predicted S-wave velocity (Vs) in the parameter k, which is k = (Vs / Vp)2. However, when Vs is less than about 0.6 kilometer per second, the inversion is inaccurate, partly because of the difficulty in accurately predicting low S-wave velocities and partly because of the large error associated with small k values. A new formula that leads to estimates of only the high-frequency part of velocity is proposed by decomposing Vs into low- and high-frequency parts. This new inversion formula is applied to a variety of well logs, and the results demonstrate its effectiveness for all ranges of Vs as long as the deviation of Vs from the low-frequency part of Vs is small. For GHBS, the deviation of Vs from the low-frequency part of Vs can be large for moderate to high gas hydrate saturations. Therefore, the new formula is not effective for elastic inversion for GHBS unless the gas hydrate effect is incorporated into the low-frequency part of Vs. For inversion of GHBS with Vs greater than about 0.6 kilometer per second, the original formulation is preferable.

  16. Variation in the stress response between high- and low-neuroticism female undergraduates across the menstrual cycle.

    PubMed

    Liu, Qing; Zhou, Renlai; Oei, Tian P S; Wang, Qingguo; Zhao, Yan; Liu, Yanfeng

    2013-09-01

    This study was undertaken to elucidate possible relationships between menstrual cycle stage, neuroticism and behavioral and physiological responses to a cognitive challenge. The study investigated the differences between high neuroticism and low neuroticism groups across the menstrual cycle (luteal, menstrual and ovulatory stages). The Stroop color-naming task was used as a stressor. During the task, the galvanic skin response (GSR), heart rate (HR) and HR variability (HRV) were simultaneously recorded by a polygraph. The results showed a significant difference in reaction times (RT) on the Stroop task between the high- and low-neuroticism groups during menstruation. However, there were no significant RT differences between groups during the luteal or ovulatory cycle stages. The GSR of the high-neuroticism group during menstruation was significantly lower than it was in the luteal and ovulatory stages. Moreover, during menstruation, the cardiovascular responses (high-frequency HRV (HF) and low-frequency HRV (LF)) and accuracy on the Stroop task were positively correlated, while the correlations between HF, LF and the RT were negative. The results demonstrate that during menstruation, there were consistent variations in female behavior and physiology when facing a cognitive stressor. Specifically, the high-neuroticism group was more sensitive to the stressor than the low neuroticism group, with decreased reaction time on the Stroop task, and increased GSR and HRV.

  17. Biofilms' contribution to organic carbon in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Valentine, K.; Quirk, T. E.; Mariotti, G.; Hotard, A.

    2017-12-01

    Coastal salt marshes are productive environments with high potential for carbon (C) accumulation. Organic C in salt marsh sediment is typically attributed to plant biomass. Recent field measurements, however, suggest that biofilms - mainly composed of benthic diatoms and their secretion - also contribute to basal C in these environments and can be important contributors to marsh productivity, C cycling, and potentially, C sequestration. The potential for biofilms to soil organic C and the influence of mineral sedimentation of biofilm-based C accumulation is unknown. We conducted controlled laboratory experiments to test (1) whether biofilms add measurable amounts of organic C to the sediment and (2) the effect of mineral sedimentation rate on the amount of biofilm-based C accumulation. Settled beds of pure bentonite mud were created in 10-cm-wide cylinders. Each cylinder was inoculated with biofilms collected from a marsh in Louisiana. A small amount of mud was added weekly for 11 weeks. Control experiments without biofilms were also performed. Biofilms were grown with a 12/12 hours cycle, with a gentle mixing of the water column that did not cause sediment resuspension, with a nutrient-rich medium that was exchanged weekly, and in the absence of metazoan grazing. At the end of the experiment, the sediment columns were analyzed for depth-integrated chl-a, loss on ignition (LOI), and total organic carbon (TOC). Chl-a values ranged from 26-113 mg/cm2, LOI values ranged from 86-456 g/m2/yr, and TOC values ranged from 31-211 g/m2/yr. All three of these metrics (chl-a, LOI, and TOC) increased with the rate of mineral sedimentation. These results show that biofilms, in the absence of erosion and grazing, can significantly contribute to C accumulation in salt marshes, especially with high rates of mineral sedimentation. Given the short time scale of the experiment, the increase in organic C accumulation with the rate of sedimentation is attributed to stimulated biofilm

  18. Groundwater/Seawater Exchange over Multiple Time Scales: Two Years of High-Frequency Data from the Coastal Seabed

    NASA Astrophysics Data System (ADS)

    Karam, H. N.; Mulligan, A. E.; Abarca, E.; Gardner, A.; Hemond, H.; Harvey, C. F.

    2013-12-01

    We present time series of vertical pressure gradients in the sea floor at Waquoit Bay, MA, collected along a transect of locations perpendicular to shore, with a 10-minute resolution over two years. The custom-made instruments used for data collection measure pressure differences with an accuracy of 0.5 mm freshwater head, and record pore water and surface water salinities, allowing a robust calculation of the direction and magnitude of flux across the sediment-water interface given an estimate of sediment permeability. Distinct processes of seawater circulation in the subsurface driven by different forcings, including storms, tides, variations in fresh groundwater head, and salinity gradients in coastal groundwater, are manifest as different frequency components in the time series. We characterize the relative contributions of these different forcings to seafloor fluxes at our site, as a function of the time of year and the distance from shore. We find that: 1) Sea level variations drive variations in seafloor flux at time scales of hours to weeks, around a mean flux that is produced by processes with longer time scales, including the seasonal cycle in fresh groundwater head and the density-driven circulation of seawater through the coastal aquifer. 2) Seafloor flux responds non-linearly to shifts in seawater level. Furthermore, this response is asymmetric, with very low tides producing an amplified response in submarine groundwater discharge relative to the recharge produced by equivalently high tides. 3) The amplitude of seafloor pressure gradients shows a three-fold increase during winters relative to summers. We present a model to explain this effect based on the increase in shallow pore water viscosity at colder temperatures. We generalize our findings to help guide the design of sampling studies of seafloor fluxes at other sites. Finally, we present the distribution of subsurface residence times for seawater in Waquoit Bay, derived from our pressure gradient

  19. The Impacts of Episodic Storm and Flood Events on Carbon and Sediment Delivery to Gulf of Mexico Sediments

    NASA Astrophysics Data System (ADS)

    Schreiner, K. M.; Carlin, J. A.; Sayers, L.; Swenson, J.

    2017-12-01

    Marine sediments are an important long-term reservoir for both recently fixed organic carbon (OC) and ancient rock derived OC, much of which is delivered by rivers. The ratio between these two sources of OC in turn regulates atmospheric levels of oxygen and carbon dioxide over geologic time, making this riverine delivery of OC, primarily carried by sediments, an important flux in the global carbon cycle. However, while the overall magnitude of these fluxes are relatively well known, it remains to be determined the importance of episodic events, like storms and floods, in the flux of OC from terrestrial to marine environments. Here, we present data from a 34 cm core collected from the Gulf of Mexico at a mid-shelf distal depocenter for the Brazos River in 2015, during a strong El Nino when that area of the country was experiencing 100-year flood events and anomalously high river flow. Based on analysis of the radioactive isotope 7Be, approximately the top 7-8 cm of the sediment in this core was deposited during this flood event. Both bulk elemental (C, N, and stable carbon isotopes) and chemical biomarker (lignin-phenol) data has been combined to provide information of the origin and chemistry of the OC in this core both before and during flooding. C:N and d13C indicate a mixture of marine-sourced and terrestrially-sourced OC throughout the length of the core with very little variation between the flood layer and deeper sediments. However, lignin-phenol concentrations are higher in flood-deposited sediment, indicating that this sediment is likely terrestrially-sourced. Lignin-phenol indicators of OC degradation state (Acid:Aldehyde ratios) indicate that flood sediment is fresher and less degraded than deeper sediments. Taken together, these results indicate that 1. Bulk analyses are not enough to determine OC source and the importance of flood events in OC cycling and 2. Episodic events like floods could have an oversized impact on OC storage in marine sediments.

  20. Closed-cycle 1-kHz-pulse-repetition-frequency HF(DF) laser

    NASA Astrophysics Data System (ADS)

    Harris, Michael R.; Morris, A. V.; Gorton, Eric K.

    1998-05-01

    We describe the design and performance of a closed cycle, high pulse repetition frequency HF(DF) laser. A short duration, glow discharge is formed in a 10 SF6:1 H2(D2) gas mixture at a total pressure of approximately 110 torr. A pair of profiled electrodes define a 15 X 0.5 X 0.5 cm3 discharge volume through which gas flow is forced in the direction transverse to the optical axis. A centrifugal fan provides adequate gas flow to enable operation up to 3 kHz repetition frequency. The fan also passes the gas through a scrubber cell in which ground state HF(DF) is eliminated from the gas stream. An automated gas make-up system replenishes the spent fuel gases removed by the scrubber. Total gas admission is regulated by monitoring the system pressure, whilst the correct fuel balance is maintained through measurement of the discharge voltage. The HF(DF) generation rate is determined to be close to 5 X 1019 molecules per second per watt of laser output. Typical mean laser output powers of up to 3 watts can be delivered for extended periods of time. The primary limitation to life is found to be the discharge pre- ionization system. A distributed resistance corona pre- ionizer is shown to be advantageous when compared with an alternative arc array scheme.

  1. The influence of flood frequency, riparian vegetation and threshold on long-term river transport capacity

    NASA Astrophysics Data System (ADS)

    Croissant, Thomas; Lague, Dimitri; Davy, Philippe

    2016-04-01

    Climate fluctuations at geological timescales control the capacity of rivers to transport sediment with consequences on geochemical cycles, sedimentary basins dynamics and sedimentation/tectonics interactions. While the impact of differential friction generated by riparian vegetation has been studied for individual flood events, its impact on the long-term sediment transport capacity of rivers, modulated by the frequency of floods remains unknown. Here, we investigate this effect on a simplified river-floodplain configuration obeying observed hydraulic scaling laws. We numerically integrate the full-frequency magnitude distribution of discharge events and its impact on the transport capacity of bedload and suspended material for various level of vegetation-linked differential friction. We demonstrate that riparian vegetation by acting as a virtual confinement of the flow i) increases significantly the instantaneous transport capacity of the river independently of the transport mode and ii) increases the long term bedload transport rates as a function of discharge variability. Our results expose the dominance of flood frequency rather than riparian vegetation on the long term sediment transport capacity. Therefore, flood frequency has to be considered when evaluating long-term bedload transport capacity while floodplain vegetation is important only in high discharge variability regimes. By comparing the transport capacity of unconfined alluvial rivers and confined bedrock gorges, we demonstrate that the latter always presents the highest long term transport capacity at equivalent width and slope. The loss of confinement at the transition between bedrock and alluvial river must be compensated by a widening or a steepening of the alluvial channel to avoid infinite storage. Because steepening is never observed in natural system, we compute the alluvial widening factor value that varies between 3 to 11 times the width of the bedrock channel depending on riparian

  2. Post-disturbance sediment recovery: Implications for watershed resilience

    NASA Astrophysics Data System (ADS)

    Rathburn, Sara L.; Shahverdian, Scott M.; Ryan, Sandra E.

    2018-03-01

    Sediment recovery following disturbances is a measure of the time required to attain pre-disturbance sediment fluxes. Insight into the controls on recovery processes and pathways builds understanding of geomorphic resilience. We assess post-disturbance sediment recovery in three small (1.5-100 km2), largely unaltered watersheds within the northern Colorado Rocky Mountains affected by wildfires, floods, and debris flows. Disturbance regimes span 102 (floods, debris flows) to 103 years (wildfires). For all case studies, event sediment recovery followed a nonlinear pattern: initial high sediment flux during single precipitation events or high annual snowmelt runoff followed by decreasing sediment fluxes over time. Disturbance interactions were evaluated after a high-severity fire within the South Fork Cache la Poudre basin was followed by an extreme flood one year post-fire. This compound disturbance hastened suspended sediment recovery to pre-fire concentrations 3 years after the fire. Wildfires over the last 1900 YBP in the South Fork basin indicate fire recurrence intervals of 600 years. Debris flows within the upper Colorado River basin over the last two centuries have shifted the baseline of sediment recovery caused by anthropogenic activities that increased debris flow frequency. An extreme flood on North St. Vrain Creek with an impounding reservoir resulted in extreme sedimentation that led to a physical state change. We introduce an index of resilience as sediment recovery/disturbance recurrence interval, providing a relative comparison between sites. Sediment recovery and channel form resilience may be inversely related because of high or low physical complexity in streams. We propose management guidelines to enhance geomorphic resilience by promoting natural processes that maintain physical complexity. Finally, sediment connectivity within watersheds is an additional factor to consider when establishing restoration treatment priorities.

  3. Computerized video-enhanced high temporal resolution of erythrocytes sedimentation rate (ESR-graphy) reveals complex dynamic and self-organizing properties of whole blood

    NASA Astrophysics Data System (ADS)

    Voeikov, Vladimir L.; Kondakov, Sergey E.; Buravleva, Ekaterina; Kaganovsky, Isaak; Reznikov, Mikhail

    2000-05-01

    An automatic device for high-temporal resolution of the process of red blood sedimentation was designed. The position of the boundary between red blood and plasma may be registered each 30 sec in several pipettes simultaneously with +/- 10 mkm precision. Fractional rates of the boundary movement are deduced with high accuracy. Data are processed by a PC and presented as velocity-time curves (ESR-grams) and the curves describing time evolution of the boundary position. Several unexpected phenomena in the process of red blood sedimentation have been revealed. Upward fast movements of the boundary up to 1 mm were noted. In patients' blood sets of 5 - 10 milliHz oscillations of sedimentation rate were usually developing at early stages of blood sedimentation. In non-diluted healthy donors' blood high amplitude periodic oscillations were either absent, or were emerging only after blood resided in pipettes for several hours. When blood was diluted to a certain degree with physiological saline or with own plasma long-term low frequency (1 - 3 milliHz) rate oscillations regularly appeared. Non-trivial dependence of patterns of ESR-grams on diluting of blood with own plasma or saline was observed. Thus, non-linear dynamic behavior of living blood has been revealed due to application of the principles of the system of technical vision for the detailed analysis of red blood sedimentation kinetics.

  4. Quantification of depositional changes and paleo-seismic activities from laminated sediments using outcrop data

    NASA Astrophysics Data System (ADS)

    Weidlich, O.; Bernecker, M.

    2004-04-01

    Measurements of laminations from marine and limnic sediments are commonly a time-consuming procedure. However, the resulting quantitative proxies are of importance for the interpretation of both, climate changes and paleo-seismic activities. Digital image analysis accelerates the generation and interpretation of large data sets from laminated sediments based on contrasting grey values of dark and light laminae. Statistical transformation and correlation of the grey value signals reflect high frequency cycles due to changing mean laminae thicknesses, and thus provide data monitoring climate change. Perturbations (e.g., slumping structures, seismites, and tsunamites) of the commonly continuous laminae record seismic activities and obtain proxies for paleo-earthquake frequency. Using outcrop data from (i) the Pleistocene Lisan Formation of Jordan (Dead Sea Basin) and (ii) the Carboniferous-Permian Copacabana Formation of Bolivia (Lake Titicaca), we present a two-step approach to gain high-resolution time series based on field data for both purposes from unconsolidated and lithified outcrops. Step 1 concerns the construction of a continuous digital phototransect and step 2 covers the creation of a grey density curve based on digital photos along a line transect using image analysis. The applied automated image analysis technique provides a continuous digital record of the studied sections and, therefore, serves as useful tool for the evaluation of further proxy data. Analysing the obtained grey signal of the light and dark laminae of varves using phototransects, we discuss the potential and limitations of the proposed technique.

  5. High-Frequency Ultrasound M-mode Imaging for Identifying Lesion and Bubble Activity during High-Intensity Focused Ultrasound Ablation

    PubMed Central

    Kumon, R. E.; Gudur, M. S. R.; Zhou, Y.; Deng, C. X.

    2012-01-01

    Effective real-time monitoring of high-intensity focused ultrasound (HIFU) ablation is important for application of HIFU technology in interventional electrophysiology. This study investigated rapid, high-frequency M-mode ultrasound imaging for monitoring spatiotemporal changes during HIFU application. HIFU (4.33 MHz, 1 kHz PRF, 50% duty cycle, 1 s, 2600 – 6100 W/cm2) was applied to ex-vivo porcine cardiac tissue specimens with a confocally and perpendicularly aligned high-frequency imaging system (Visualsonics Vevo 770, 55 MHz center frequency). Radiofrequency (RF) data from M-mode imaging (1 kHz PRF, 2 s × 7 mm) was acquired before, during, and after HIFU treatment (n = 12). Among several strategies, the temporal maximum integrated backscatter with a threshold of +12 dB change showed the best results for identifying final lesion width (receiver-operating characteristic curve area 0.91 ± 0.04, accuracy 85 ± 8%, as compared to macroscopic images of lesions). A criterion based on a line-to-line decorrelation coefficient is proposed for identification of transient gas bodies. PMID:22341055

  6. In-situ erosion of cohesive sediment in a large shallow lake experiencing long-term decline in wind speed

    NASA Astrophysics Data System (ADS)

    Wu, Tingfeng; Timo, Huttula; Qin, Boqiang; Zhu, Guangwei; Janne, Ropponen; Yan, Wenming

    2016-08-01

    In order to address the major factors affecting cohesive sediment erosion using high-frequency in-situ observations in Lake Taihu, and the response of this erosion to long-term decline in wind speed, high-frequency meteorological, hydrological and turbidity sensors were deployed to record continuous field wind-induced wave, current and sediment erosion processes; Statistical analyses and mathematic modeling spanning 44 years were also conducted. The results revealed that the unconsolidated surficial cohesive sediment frequently experiences the processes of erosion, suspension and deposition. Wind waves, generated by the absorption of wind energy, are the principal force driving this cycle. When the wavelength-to-water depth ratio (L/D) is 2-3, wave propagation is affected by lakebed friction and surface erosion occurs. When L/D > 3, the interaction between wave and lakebed increases to induce massive erosion. However, influenced by rapid urbanization in the Lake Taihu basin, wind speed has significantly decreased, by an average rate of -0.022 m s-1 a-1, from 1970 to 2013. This has reduced the erodible area, represented by simulated L/D, at a rate of -16.9 km2 a-1 in the autumn and winter, and -8.1 km2 a-1 in the spring and summer. This significant decrease in surface erosion area, and the near disappearance of areas experiencing massive erosion, imply that Lake Taihu has become calmer, which can be expected to have adverse effects on the lake ecosystem by increasing eutrophication and nuisance cyanobacteria blooms.

  7. High frequency pressure oscillator for microcryocoolers.

    PubMed

    Vanapalli, S; ter Brake, H J M; Jansen, H V; Zhao, Y; Holland, H J; Burger, J F; Elwenspoek, M C

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5 MPa and compression volume of about 22.6 mm(3) when operating the actuator with a peak-to-peak sinusoidal voltage of 100 V at a frequency of 1 kHz. The electrical power input was 2.73 W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  8. High frequency pressure oscillator for microcryocoolers

    NASA Astrophysics Data System (ADS)

    Vanapalli, S.; ter Brake, H. J. M.; Jansen, H. V.; Zhao, Y.; Holland, H. J.; Burger, J. F.; Elwenspoek, M. C.

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80K, delivering a cooling power of 10mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5MPa and compression volume of about 22.6mm3 when operating the actuator with a peak-to-peak sinusoidal voltage of 100V at a frequency of 1kHz. The electrical power input was 2.73W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  9. SEDIMENT TOTAL ORGANIC CARBON: IS THIS A USEFUL INDICATOR OF SEDIMENT CONDITION FOR PACIFIC NORTHWEST ESTUARIES?

    EPA Science Inventory

    Total organic carbon (TOC) content of sediments has been used as an indicator of benthic community condition during multiple cycles of the EPA National Coastal Assessment (NCA). Because percent TOC is generally positively correlated with sediment percent fines, previous analyses...

  10. A robust signal processing method for quantitative high-cycle fatigue crack monitoring using soft elastomeric capacitor sensors

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki

    2017-04-01

    A large-area electronics (LAE) strain sensor, termed soft elastomeric capacitor (SEC), has shown great promise in fatigue crack monitoring. The SEC is able to monitor strain changes over a mesoscale structural surface and endure large deformations without being damaged under cracking. Previous tests verified that the SEC is able to detect, localize, and monitor fatigue crack activities under low-cycle fatigue loading. In this paper, to examine the SEC's capability of monitoring high-cycle fatigue cracks, a compact specimen is tested under cyclic tension, designed to ensure realistic crack opening sizes representative of those in real steel bridges. To overcome the difficulty of low signal amplitude and relatively high noise level under high-cycle fatigue loading, a robust signal processing method is proposed to convert the measured capacitance time history from the SEC sensor to power spectral densities (PSD) in the frequency domain, such that signal's peak-to-peak amplitude can be extracted at the dominant loading frequency. A crack damage indicator is proposed as the ratio between the square root of the amplitude of PSD and load range. Results show that the crack damage indicator offers consistent indication of crack growth.

  11. Spatial correlation of shear-wave velocity within San Francisco Bay Sediments

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.

    2006-01-01

    Sediment properties are spatially variable at all scales, and this variability at smaller scales influences high frequency ground motions. We show that surface shear-wave velocity is highly correlated within San Francisco Bay Area sediments using shear-wave velocity measurements from 210 seismic cone penetration tests. We use this correlation to estimate the surface sediment velocity structure using geostatistics. We find that the variance of the estimated shear-wave velocity is reduced using ordinary kriging, and that including this velocity structure in 2D ground motion simulations of a moderate sized earthquake improves the accuracy of the synthetics. Copyright ASCE 2006.

  12. RELATIONSHIP BETWEEN LOW AND HIGH FREQUENCIES IN {delta} SCUTI STARS: PHOTOMETRIC KEPLER AND SPECTROSCOPIC ANALYSES OF THE RAPID ROTATOR KIC 8054146

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breger, M.; Robertson, P.; Fossati, L.

    2012-11-01

    Two years of Kepler data of KIC 8054146 ({delta} Sct/{gamma} Dor hybrid) revealed 349 statistically significant frequencies between 0.54 and 191.36 cycles day{sup -1} (6.3 {mu}Hz to 2.21 mHz). The 117 low frequencies cluster in specific frequency bands, but do not show the equidistant period spacings predicted for gravity modes of successive radial order, n, and reported for at least one other hybrid pulsator. The four dominant low frequencies in the 2.8-3.0 cycles day{sup -1} (32-35 {mu}Hz) range show strong amplitude variability with timescales of months and years. These four low frequencies also determine the spacing of the higher frequenciesmore » in and beyond the {delta} Sct pressure-mode frequency domain. In fact, most of the higher frequencies belong to one of three families with spacings linked to a specific dominant low frequency. In the Fourier spectrum, these family regularities show up as triplets, high-frequency sequences with absolutely equidistant frequency spacings, side lobes (amplitude modulations), and other regularities in frequency spacings. Furthermore, within two families the amplitude variations between the low and high frequencies are related. We conclude that the low frequencies (gravity modes, rotation) and observed high frequencies (mostly pressure modes) are physically connected. This unusual behavior may be related to the very rapid rotation of the star: from a combination of high- and low-resolution spectroscopy we determined that KIC 8054146 is a very fast rotator ({upsilon} sin i = 300 {+-} 20 km s{sup -1}) with an effective temperature of 7600 {+-} 200 K and a surface gravity log g of 3.9 {+-} 0.3. Several astrophysical ideas explaining the origin of the relationship between the low and high frequencies are explored.« less

  13. Binaural beats at high frequencies.

    PubMed

    McFadden, D; Pasanen, E G

    1975-10-24

    Binaural beats have long been believed to be audible only at low frequencies, but an interaction reminiscent of a binaural beat can sometimes be heard when different two-tone complexes of high frequency are presented to the two ears. The primary requirement is that the frequency separation in the complex at one ear be slightly different from that in the other--that is, that there be a small interaural difference in the envelope periodicities. This finding is in accord with other recent demonstrations that the auditory system is not deaf to interaural time differences at high frequencies.

  14. Global Sea-level Changes Revealed in the Sediments of the Canterbury Basin, New Zealand: IODP Expedition 317

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Fulthorpe, C.; Blum, P.; Rios, J.; Chow, Y.; Mishkin, K.

    2012-12-01

    -wide unconformities. However, the correlation between eustasy and seismic sequence formation is not always one to one. High sedimentation rates in the Pleistocene offshore Canterbury Basin record a one- to-one correlation between glacioeustasy and seismic sequences, and in some sequences possibly a higher order frequency. But this is not the case for offshore New Jersey, where accumulation rates were lower and only the uppermost seismic sequences represent 100 ky cycles. Furthermore, Pliocene sedimentation in the Canterbury Basin was also controlled by eustasy, but does not show a one-to-one correlation between Milankovich cycles and seismic stratigraphy. Northern and southern hemisphere comparisons provide a powerful tool to better understand controls on regional sedimentation and extract a global signal.

  15. Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment

    USGS Publications Warehouse

    McCoy, S.W.; Kean, Jason W.; Coe, Jeffrey A.; Tucker, G.E.; Staley, Dennis M.; Wasklewicz, T.A.

    2012-01-01

    Debris flows can dramatically increase their volume, and hence their destructive potential, by entraining sediment. Yet quantitative constraints on rates and mechanics of sediment entrainment by debris flows are limited. Using an in situ sensor network in the headwaters of a natural catchment we measured flow and bed properties during six erosive debris-flow events. Despite similar flow properties and thicknesses of bed sediment entrained across all events, time-averaged entrainment rates were significantly faster for bed sediment that was saturated prior to flow arrival compared with rates for sediment that was dry. Bed sediment was entrained from the sediment-surface downward in a progressive fashion and occurred during passage of dense granular fronts as well as water-rich, inter-surge flow.En massefailure of bed sediment along the sediment-bedrock interface was never observed. Large-magnitude, high-frequency fluctuations in total normal basal stress were dissipated within the upper 5 cm of bed sediment. Within this near surface layer, concomitant fluctuations in Coulomb frictional resistance are expected, irrespective of the influence of pore fluid pressure or fluctuations in shear stress. If the near-surface sediment was wet as it was overridden by a flow, additional large-magnitude, high-frequency pore pressure fluctuations were measured in the near-surface bed sediment. These pore pressure fluctuations propagated to depth at subsonic rates and in a diffusive manner. The depth to which large excess pore pressures propagated was typically less than 10 cm, but scaled as (D/fi)0.5, in which D is the hydraulic diffusivity and fi is the frequency of a particular pore pressure fluctuation. Shallow penetration depths of granular-normal-stress fluctuations and excess pore pressures demonstrate that only near-surface bed sediment experiences the full dynamic range of effective-stress fluctuations, and as a result, can be more easily entrained than deeper sediment

  16. ALMA High Frequency Techniques

    NASA Astrophysics Data System (ADS)

    Meyer, J. D.; Mason, B.; Impellizzeri, V.; Kameno, S.; Fomalont, E.; Chibueze, J.; Takahashi, S.; Remijan, A.; Wilson, C.; ALMA Science Team

    2015-12-01

    The purpose of the ALMA High Frequency Campaign is to improve the quality and efficiency of science observing in Bands 8, 9, and 10 (385-950 GHz), the highest frequencies available to the ALMA project. To this end, we outline observing modes which we have demonstrated to improve high frequency calibration for the 12m array and the ACA, and we present the calibration of the total power antennas at these frequencies. Band-to-band (B2B) transfer and bandwidth switching (BWSW), techniques which improve the speed and accuracy of calibration at the highest frequencies, are most necessary in Bands 8, 9, and 10 due to the rarity of strong calibrators. These techniques successfully enable increased signal-to-noise on the calibrator sources (and better calibration solutions) by measuring the calibrators at lower frequencies (B2B) or in wider bandwidths (BWSW) compared to the science target. We have also demonstrated the stability of the bandpass shape to better than 2.4% for 1 hour, hidden behind random noise, in Band 9. Finally, total power observing using the dual sideband receivers in Bands 9 and 10 requires the separation of the two sidebands; this procedure has been demonstrated in Band 9 and is undergoing further testing in Band 10.

  17. Linking sediment structure, hydrological functioning and biogeochemical cycling in disturbed coastal saltmarshes and implications for vegetation development

    NASA Astrophysics Data System (ADS)

    Spencer, Kate; Harvey, Gemma; James, Tempest; Simon, Carr; Michelle, Morris

    2014-05-01

    with preferential horizontal flows. The undisturbed saltmarsh displayed typical vertical geochemical sediment profiles. However, in the restored sites total Fe and Mn are elevated at depth indicating an absence of diagenetic cycling, whilst porewater sulphate and nitrate increased at depth suggesting that vertical solute transport is impeded in restored sites. In surface sediments, though total Hg concentrations are similar, Hg methylation rates are significantly higher than in the undisturbed saltmarsh suggesting that surface anoxia and poor drainage may result in increased mobilization and bioavailability of Hg. These findings have implications for the wider biogeochemical ecosystem services offered by saltmarsh restoration and the water-logged, anoxic conditions produced are unsuitable for seedling germination and plant growth. This highlights the need for integrated understanding of physical and biogeochemical processes.

  18. High-power multi-megahertz source of waveform-stabilized few-cycle light

    PubMed Central

    Pronin, O.; Seidel, M.; Lücking, F.; Brons, J.; Fedulova, E.; Trubetskov, M.; Pervak, V.; Apolonski, A.; Udem, Th.; Krausz, F.

    2015-01-01

    Waveform-stabilized laser pulses have revolutionized the exploration of the electronic structure and dynamics of matter by serving as the technological basis for frequency-comb and attosecond spectroscopy. Their primary sources, mode-locked titanium-doped sapphire lasers and erbium/ytterbium-doped fibre lasers, deliver pulses with several nanojoules energy, which is insufficient for many important applications. Here we present the waveform-stabilized light source that is scalable to microjoule energy levels at the full (megahertz) repetition rate of the laser oscillator. A diode-pumped Kerr-lens-mode-locked Yb:YAG thin-disk laser combined with extracavity pulse compression yields waveform-stabilized few-cycle pulses (7.7 fs, 2.2 cycles) with a pulse energy of 0.15 μJ and an average power of 6 W. The demonstrated concept is scalable to pulse energies of several microjoules and near-gigawatt peak powers. The generation of attosecond pulses at the full repetition rate of the oscillator comes into reach. The presented system could serve as a primary source for frequency combs in the mid infrared and vacuum UV with unprecedented high power levels. PMID:25939968

  19. Accelerated Rates of Nitrogen Cycling and N2O Production in Salt Marsh Sediments due to Long-Term Fertilization

    NASA Astrophysics Data System (ADS)

    Peng, X.; Ji, Q.; Angell, J.; Kearns, P.; Bowen, J. L.; Ward, B. B.

    2014-12-01

    Intensified sedimentary production of nitrous oxide (N2O), one of the most potent greenhouse gases, is one of the many possible environmental consequences of elevated nitrogen (N) loading into estuarine ecosystems. This study investigates the response to over 40 years of fertilization of nitrogen removal processes in the sediments of the Great Sippewissett Marsh in Falmouth, MA. Sediment slurries were incubated (1.5 hr) with trace amounts (< 10% of ambient concentration) of 15NH4+ + 14NO3- or 15NO3- + 14NH4+. An additional parallel incubation with 15NH4+ + 14NO3- and 1 mM of allylthiourea (ATU) was included to measure rates of anaerobic ammonia oxidation (anammox). Well-homogenized slurries filled about 10% of the volume in the gas-tight incubation vials, and the rest of the volume was replaced with an O2/He (20%/80%) mixture. The production of 29N2, 44N2O and 45N2O were determined using isotope ratio mass spectrometry. The rate of total N2O production in fertilized sediments (0.89 nmol hr-1 g-1 wet weight) was 30-fold higher than in unfertilized sediments. The ratio of N2O to N2 production was also significantly higher in fertilized sediments (2.9%) than in unfertilized sediments (1.2%). This highlights the disproportionally large effect of long-term fertilization on N2O production in salt marsh sediments. The reduced oxygen level and higher ammonium concentrations in situ probably contributed to the significant rise in N2O production as a result of long-term fertilization. When detected, anammox and coupled nitrification-denitrification accounted for 10% and 14% of the total N2 production in fertilized sediments (30.5 nmol hr-1 g-1 wet weight), respectively, whereas neither was detected in unfertilized sediments. Thus these experiments indicate that N loading has important effects on multiple N cycle processes that result in N loss and N2O production.

  20. Long-term fertilization alters the relative importance of nitrate reduction pathways in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Peng, Xuefeng; Ji, Qixing; Angell, John H.; Kearns, Patrick J.; Yang, Hannah J.; Bowen, Jennifer L.; Ward, Bess B.

    2016-08-01

    Salt marshes provide numerous valuable ecological services. In particular, nitrogen (N) removal in salt marsh sediments alleviates N loading to the coastal ocean. N removal reduces the threat of eutrophication caused by increased N inputs from anthropogenic sources. It is unclear, however, whether chronic nutrient overenrichment alters the capacity of salt marshes to remove anthropogenic N. To assess the effect of nutrient enrichment on N cycling in salt marsh sediments, we examined important N cycle pathways in experimental fertilization plots in a New England salt marsh. We determined rates of nitrification, denitrification, and dissimilatory nitrate reduction to ammonium (DNRA) using sediment slurry incubations with 15N labeled ammonium or nitrate tracers under oxic headspace (20% oxygen/80% helium). Nitrification and denitrification rates were more than tenfold higher in fertilized plots compared to control plots. By contrast, DNRA, which retains N in the system, was high in control plots but not detected in fertilized plots. The relative contribution of DNRA to total nitrate reduction largely depends on the carbon/nitrate ratio in the sediment. These results suggest that long-term fertilization shifts N cycling in salt marsh sediments from predominantly retention to removal.

  1. Suspended sediment and sediment-associated contaminants in San Francisco Bay.

    PubMed

    Schoellhamer, David H; Mumley, Thomas E; Leatherbarrow, Jon E

    2007-09-01

    Water-quality managers desire information on the temporal and spatial variability of contaminant concentrations and the magnitudes of watershed and bed-sediment loads in San Francisco Bay. To help provide this information, the Regional Monitoring Program for Trace Substances in the San Francisco Estuary (RMP) takes advantage of the association of many contaminants with sediment particles by continuously measuring suspended-sediment concentration (SSC), which is an accurate, less costly, and more easily measured surrogate for several trace metals and organic contaminants. Continuous time series of SSC are collected at several sites in the Bay. Although semidiurnal and diurnal tidal fluctuations are present, most of the variability of SSC occurs at fortnightly, monthly, and semiannual tidal time scales. A seasonal cycle of sediment inflow, wind-wave resuspension, and winnowing of fine sediment also is observed. SSC and, thus, sediment-associated contaminants tend to be greater in shallower water, at the landward ends of the Bay, and in several localized estuarine turbidity maxima. Although understanding of sediment transport has improved in the first 10 years of the RMP, determining a simple mass budget of sediment or associated contaminants is confounded by uncertainties regarding sediment flux at boundaries, change in bed-sediment storage, and appropriate modeling techniques. Nevertheless, management of sediment-associated contaminants has improved greatly. Better understanding of sediment and sediment-associated contaminants in the Bay is of great interest to evaluate the value of control actions taken and the need for additional controls.

  2. Inferring sediment connectivity from high-resolution DEMs of Difference

    NASA Astrophysics Data System (ADS)

    Heckmann, Tobias; Vericat, Damià

    2017-04-01

    Topographic changes due to the erosion and deposition of bedrock, sediments and soil can be measured by differencing Digital Elevation Models (DEM) acquired at different points in time. So-called morphological sediment budgets can be computed from such DEMs of Difference (DoD) on an areal rather than a point basis. The advent of high-resolution and highly accurate surveying techniques (e.g. LiDAR, SfM), together with recent advances of survey platforms (e.g. UaVs) provides opportunities to improve the spatial and temporal scale (in terms of extent and resolution), the availability and quality of such measurements. Many studies have used DoD to investigate and interpret the spatial pattern of positive and negative vertical differences in terms of erosion and deposition, or of horizontal movement. Vertical differences can be converted to volumes, and negative (erosion) and positive (deposition) volumetric changes aggregated for spatial units (e.g., landforms, hillslopes, river channels) have been used to compute net balances. We argue that flow routing algorithms common in digital terrain analysis provide a means to enrich DoD-based investigations with some information about (potential) sediment pathways - something that has been widely neglected in previous studies. Where the DoD indicates a positive surface change, flow routing delineates the upslope area where the deposited sediment has potentially been derived from. In the downslope direction, flow routing indicates probable downslope pathways of material eroded/detached/entrained where the DoD shows negative surface change. This material has either been deposited along these pathways or been flushed out of the area of investigation. This is a question of sediment connectivity, a property of a system (i.e. a hillslope, a sub-/catchment) that describes its potential to move sediment through itself. The sediment pathways derived from the DEM are related to structural connectivity, while the spatial pattern of (net

  3. TRANSIENT BIOGEOCHEMICAL CYCLING AND SEDIMENT OXYGEN DEMAND

    EPA Science Inventory

    Through this research, the effects of variable sediment accumulation and oxygen concentration on SOD and soluble chemical fluxes will be quantified. This study will enable correct estimates of “diffuser-induced” SOD to be made that will facilitate appropriate desig...

  4. In situ time-series measurements of subseafloor sediment properties

    USGS Publications Warehouse

    Wheatcroft, R.A.; Stevens, A.W.; Johnson, R.V.

    2007-01-01

    The capabilities and diversity of subsurface sediment sensors lags significantly from what is available for the water column, thereby limiting progress in understanding time-dependent seabed exchange and high-frequency acoustics. To help redress this imbalance, a new instrument, the autonomous sediment profiler (ASP), is described herein. ASP consists of a four-electrode, Wenner-type resistivity probe and a thermistor that log data at 0.1-cm vertical intervals over a 58-cm vertical profile. To avoid resampling the same spot on the seafloor, the probes are moved horizontally within a 20 times 100-cm-2 area in one of three preselected patterns. Memory and power capacities permit sampling at hourly intervals for up to 3-mo duration. The system was tested in a laboratory tank and shown to be able to resolve high-frequency sediment consolidation, as well as changes in sediment roughness. In a field test off the southern coast of France, the system collected resistivity and temperature data at hourly intervals for 16 d. Coupled with environmental data collected on waves, currents, and suspended sediment, the ASP is shown to be useful for understanding temporal evolution of subsurface sediment porosity, although no large depositional or erosional events occurred during the deployment. Following a rapid decrease in bottom-water temperature, the evolution of the subsurface temperature field was consistent with the 1-D thermal diffusion equation coupled with advection in the upper 3-4 cm. Collectively, the laboratory and field tests yielded promising results on time-dependent seabed change.

  5. High Frequency Radar Astronomy With HAARP

    DTIC Science & Technology

    2003-01-01

    High Frequency Radar Astronomy With HAARP Paul Rodriguez Naval Research Laboratory Information Technology Division Washington, DC 20375, USA Edward...a period of several years, the High frequency Active Auroral Research Program ( HAARP ) transmitting array near Gakona, Alaska, has increased in total...high frequency (HF) radar facility used for research purposes. The basic science objective of HAARP is to study nonlinear effects associated with

  6. Effects of shelter and enrichment on the ecology and nutrient cycling of microbial communities of subtidal carbonate sediments.

    PubMed

    Forehead, Hugh I; Kendrick, Gary A; Thompson, Peter A

    2012-04-01

    The interactions between physical disturbances and biogeochemical cycling are fundamental to ecology. The benthic microbial community controls the major pathway of nutrient recycling in most shallow-water ecosystems. This community is strongly influenced by physical forcing and nutrient inputs. Our study tests the hypotheses that benthic microbial communities respond to shelter and enrichment with (1) increased biomass, (2) change in community composition and (3) increased uptake of inorganic nutrients from the water column. Replicate in situ plots were sheltered from physical disturbance and enriched with inorganic nutrients or left without additional nutrients. At t(0) and after 10 days, sediment-water fluxes of nutrients, O(2) and N(2) , were measured, the community was characterized with biomarkers. Autochthonous benthic microalgal (BMA) biomass increased 30% with shelter and a natural fivefold increase in nutrient concentration; biomass did not increase with greater enrichment. Diatoms remained the dominant taxon of BMA, suggesting that the sediments were not N or Si limited. Bacteria and other heterotrophic organisms increased with enrichment and shelter. Daily exchanges of inorganic nutrients between sediments and the water column did not change in response to shelter or nutrient enrichment. In these sediments, physical disturbance, perhaps in conjunction with nutrient enrichment, was the primary determinant of microbial biomass. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Methane Recycling During Burial of Methane Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    You, K.; Flemings, P. B.

    2017-12-01

    We quantitatively investigate the integral processes of methane hydrate formation from local microbial methane generation, burial of methane hydrate with sedimentation, and methane recycling at the base of the hydrate stability zone (BHSZ) with a multiphase multicomponent numerical model. Methane recycling happens in cycles, and there is not a steady state. Each cycle starts with free gas accumulation from hydrate dissociation below the BHSZ. This free gas flows upward under buoyancy, elevates the hydrate saturation and capillary entry pressure at the BHSZ, and this prevents more free gas flowing in. Later as this layer with elevated hydrate saturation is buried and dissociated, the large amount of free gas newly released and accumulated below rapidly intrudes into the hydrate stability zone, drives rapid hydrate formation and creates three-phase (gas, liquid and hydrate) equilibrium above the BHSZ. The gas front retreats to below the BHSZ until all the free gas is depleted. The shallowest depth that the free gas reaches in one cycle moves toward seafloor as more and more methane is accumulated to the BHSZ with time. More methane is stored above the BHSZ in the form of concentrated hydrate in sediments with relatively uniform pore throat, and/or with greater compressibility. It is more difficult to initiate methane recycling in passive continental margins where the sedimentation rate is low, and in sediments with low organic matter content and/or methanogenesis reaction rate. The presence of a permeable layer can store methane for significant periods of time without recycling. In a 2D system where the seafloor dips rapidly, the updip gas flow along the BHSZ transports more methane toward topographic highs where methane gas and elevated hydrate saturation intrude deeper into the hydrate stability zone within one cycle. This could lead to intermittent gas venting at seafloor at the topographic highs. This study provides insights on many phenomenon associated with

  8. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment.

    PubMed

    Wang, Haitao; Gilbert, Jack A; Zhu, Yongguan; Yang, Xiaoru

    2018-08-01

    Coastal ecosystems are hotspots for nitrogen cycling, and specifically for nitrogen removal from water and sediment through the coupled nitrification-denitrification process. Salinity is globally important in structuring bacterial and archaeal communities, but the association between salinity and microbially-mediated nitrification and denitrification remains unclear. The denitrification activity and composition and structure of microbial nitrifiers and denitrifiers were characterized across a gradient of manipulated salinity (0, 10, 20 and 30ppt) in a mangrove sediment. Salinity negatively correlated with both denitrifying activity and the abundance of nirK and nosZ denitrifying genes. Ammonia-oxidizing bacteria (AOB), which dominated nitrification, had significantly greater abundance at intermediate salinity (10 and 20ppt). However, a positive correlation between ammonia concentration and salinity suggested that nitrifying activity might also be inhibited at higher salinity. The community structure of ammonia-oxidizing archaea (AOA) and bacteria (AOB), as well as nirK, nirS and nosZ denitrifying communities, were all significantly correlated with salinity. These changes were also associated with structural shifts in phylogeny. These findings provide a strong evidence that salinity is a key factor that influences the nitrogen transformations in coastal wetlands, indicating that salinity intrusion caused by climate change might have a broader impact on the coastal biospheres. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Testing the high turbulence level breakdown of low-frequency gyrokinetics against high-frequency cyclokinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhao, E-mail: zhao.deng@foxmail.com; Waltz, R. E.

    2015-05-15

    This paper presents numerical simulations of the nonlinear cyclokinetic equations in the cyclotron harmonic representation [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Simulations are done with a local flux-tube geometry and with the parallel motion and variation suppressed using a newly developed rCYCLO code. Cyclokinetic simulations dynamically follow the high-frequency ion gyro-phase motion which is nonlinearly coupled into the low-frequency drift-waves possibly interrupting and suppressing gyro-averaging and increasing the transport over gyrokinetic levels. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the breakdown of gyrokinetics at high turbulence levels is quantitatively testedmore » over a range of relative ion cyclotron frequency 10 < Ω*{sup  }< 100 where Ω*{sup  }= 1/ρ*, and ρ* is the relative ion gyroradius. The gyrokinetic linear mode rates closely match the cyclokinetic low-frequency rates for Ω*{sup  }> 5. Gyrokinetic transport recovers cyclokinetic transport at high relative ion cyclotron frequency (Ω*{sup  }≥ 50) and low turbulence level as required. Cyclokinetic transport is found to be lower than gyrokinetic transport at high turbulence levels and low-Ω* values with stable ion cyclotron (IC) modes. The gyrokinetic approximation is found to break down when the density perturbations exceed 20%. For cyclokinetic simulations with sufficiently unstable IC modes and sufficiently low Ω*{sup  }∼ 10, the high-frequency component of cyclokinetic transport level can exceed the gyrokinetic transport level. However, the low-frequency component of the cyclokinetic transport and turbulence level does not exceed that of gyrokinetics. At higher and more physically relevant Ω*{sup  }≥ 50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport and turbulence level is still smaller than that of

  10. H2 cycling and microbial bioenergetics in anoxic sediments

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The simple biochemistry of H2 is central to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. In anoxic sediments, the great majority of microbial redox processes involve H2 as a reactant, product, or potential by-product, and the thermodynamics of these processes are thus highly sensitive to fluctuations in environmental H2 concentrations. In turn, H2 concentrations are controlled by the activity of H2-consuming microorganisms, which efficiently utilize this substrate down to levels which correspond to their bioenergetic limitations. Consequently, any environmental change which impacts the thermodynamics of H2-consuming organisms is mirrored by a corresponding change in H2 concentrations. This phenomenon is illustrated in anoxic sediments from Cape Lookout Bight, NC, USA: H2 concentrations are controlled by a suite of environmental parameters (e.g., temperature, sulfate concentrations) in a fashion which can be quantitatively described by a simple thermodynamic model. These findings allow us to calculate the apparent minimum quantity of biologically useful energy in situ. We find that sulfate reducing bacteria are not active at energy yields below -18 kJ per mole sulfate, while methanogenic archaea exhibit a minimum close to -10 kJ per mole methane.

  11. Hydrothermal deposition on the Juan de Fuca Ridge over multiple glacial-interglacial cycles

    NASA Astrophysics Data System (ADS)

    Costa, Kassandra M.; McManus, Jerry F.; Middleton, Jennifer L.; Langmuir, Charles H.; Huybers, Peter J.; Winckler, Gisela; Mukhopadhyay, Sujoy

    2017-12-01

    Hydrothermal systems play an important role in modern marine chemistry, but little is known about how they may have varied on 100,000 year timescales. Here we present high-resolution records of non-lithogenic metal fluxes within sediment cores covering the last 500,000 years of hydrothermal deposition on the flanks of the Juan de Fuca Ridge. Six adjacent, gridded cores were analyzed by x-ray fluorescence for Fe, Mn, and Cu concentrations, corrected for lithogenic inputs with Ti, and normalized to excess initial 230Th to generate non-lithogenic metal flux records that provide the longest orbitally resolved reconstructions of hydrothermal activity currently available. Fe fluxes vary with global sea level over the last two glacial cycles, suggesting higher hydrothermal deposition during interglacial periods. The observed negative relationship between Fe and Mn indicates variable sediment redox conditions and diagenetic remobilization of sedimentary Mn over time. Thus, Mn fluxes may not be a reliable indicator for hydrothermal activity in the Juan de Fuca Ridge sediment cores. Cu fluxes show substantial high-frequency variability that may be linked to changes in vent temperature related to increased magmatic production during glacial periods. Deglacial hydrothermal peaks on the Juan de Fuca Ridge are consistent with previously published records from the Mid-Atlantic Ridge and the East Pacific Rise. Moreover, on the Juan de Fuca Ridge, the deglacial peaks in hydrothermal activity are followed by relatively high hydrothermal fluxes throughout the ensuing interglacial periods relative to the previous glacial period.

  12. Methane in Sediments From Three Tropical, Coastal Lagoons on the Yucatan Peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Young, B.; Paytan, A.; Miller, L.; Herrera-Silveira, J.

    2002-12-01

    Tropical wetlands are significant sources of methane (CH4) to the atmosphere, and the majority of research on methane flux and cycling in the tropics has been conducted in fresh-water wetlands and lakes. However, several previous studies have shown that tropical coastal ecosystems can produce significant methane flux to the atmosphere despite the presence of moderate to marine salinities. Information regarding methane cycling within the sediments is crucial to understanding how natural and anthropogenic changes may influence these systems. We measured methane concentrations in sediments from two tropical coastal lagoons during different seasons, as well as in a third, heavily polluted, lagoon (Terminos) during the rainy season. These three lagoons, Celestun, Chelem, and Terminos, have similar vegetation, seasonal temperature and rainfall patterns, and substrate geology, but very different levels of ground water discharge and pollution. Methane concentrations in Celestun and Terminos lagoon showed high spatial variability(> 0.001 to 5 mmol kg-1 wet sediment), while sediments in Chelem Lagoon, which has near marine salinities and little sewage discharge, showed much lower variability of methane concentrations. Methane concentrations in Celestun sediments displayed two predominant patterns: some profiles contained a peak in methane concentration (1 to 2 mmole methane kg-1 wet sediment) between 5 and 15 cm below the surface while the other sediment profiles instead displayed a steady or monotonic increase in methane concentration with depth to approximately 0.025-0.080 mmol kg-1 at 10-15cm below surface followed by stable methane concentrations to the bottom of the cores (20-45 cm below the surface). A subsurface peak in methane concentrations was also found in some locations in Chelem, however, the concentrations were much lower than those measured in Celestun. Previous studies have shown that sewage pollution may drastically increase methane production in tropical

  13. Quantifying postfire aeolian sediment transport using rare earth element tracers

    USGS Publications Warehouse

    Dukes, David; Gonzales, Howell B.; Ravi, Sujith; Grandstaff, David E.; Van Pelt, R. Scott; Li, Junran; Wang, Guan; Sankey, Joel B.

    2018-01-01

    Grasslands, which provide fundamental ecosystem services in many arid and semiarid regions of the world, are undergoing rapid increases in fire activity and are highly susceptible to postfire-accelerated soil erosion by wind. A quantitative assessment of physical processes that integrates fire-wind erosion feedbacks is therefore needed relative to vegetation change, soil biogeochemical cycling, air quality, and landscape evolution. We investigated the applicability of a novel tracer technique—the use of multiple rare earth elements (REE)—to quantify soil transport by wind and to identify sources and sinks of wind-blown sediments in both burned and unburned shrub-grass transition zone in the Chihuahuan Desert, NM, USA. Results indicate that the horizontal mass flux of wind-borne sediment increased approximately threefold following the fire. The REE tracer analysis of wind-borne sediments shows that the source of the horizontal mass flux in the unburned site was derived from bare microsites (88.5%), while in the burned site it was primarily sourced from shrub (42.3%) and bare (39.1%) microsites. Vegetated microsites which were predominantly sinks of aeolian sediments in the unburned areas became sediment sources following the fire. The burned areas showed a spatial homogenization of sediment tracers, highlighting a potential negative feedback on landscape heterogeneity induced by shrub encroachment into grasslands. Though fires are known to increase aeolian sediment transport, accompanying changes in the sources and sinks of wind-borne sediments may influence biogeochemical cycling and land degradation dynamics. Furthermore, our experiment demonstrated that REEs can be used as reliable tracers for field-scale aeolian studies.

  14. Wave-induced Maintenance of Suspended Sediment Concentration during Slack in a Tidal Channel on a Sheltered Macro-tidal Flat, Gangwha Island, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Guan-hong; Kang, KiRyong

    2018-05-01

    A field campaign was conducted to better understand the influence of wave action, in terms of turbulence and bed shear stress, on sediment resuspension and transport processes on a protected tidal flat. An H-frame was deployed in a tidal channel south of Gangwha Island for 6 tidal cycles during November 2006 with instrumentation including an Acoustic Doppler Velocimeter, an Acoustic Backscatter System, and an Optical Backscatter Sensor. During calm conditions, the current-induced shear was dominant and responsible for suspending sediments during the accelerating phases of flood and ebb. During the high-tide slack, both bed shear stress and suspended sediment concentration were reduced. The sediment flux was directed landward due to the scour-lag effect over a tidal cycle. On the other hand, when waves were stronger, the wave-induced turbulence appeared to keep sediments in suspension even during the high-tide slack, while the current-induced shear remained dominant during the accelerating phases of flood and ebb. The sediment flux under strong waves was directed offshore due to the sustained high suspended sediment concentration during the high-tide slack. Although strong waves can induce offshore sediment flux, infrequent events with strong waves are unlikely to alter the long-term accretion of the protected southern Gangwha tidal flats.

  15. A multivariate analytical method to characterize sediment attributes from high-frequency acoustic backscatter and ground-truthing data (Jade Bay, German North Sea coast)

    NASA Astrophysics Data System (ADS)

    Biondo, Manuela; Bartholomä, Alexander

    2017-04-01

    One of the burning issues on the topic of acoustic seabed classification is the lack of solid, repeatable, statistical procedures that can support the verification of acoustic variability in relation to seabed properties. Acoustic sediment classification schemes often lead to biased and subjective interpretation, as they ultimately aim at an oversimplified categorization of the seabed based on conventionally defined sediment types. However, grain size variability alone cannot be accounted for acoustic diversity, which will be ultimately affected by multiple physical processes, scale of heterogeneity, instrument settings, data quality, image processing and segmentation performances. Understanding and assessing the weight of all of these factors on backscatter is a difficult task, due to the spatially limited and fragmentary knowledge of the seabed from of direct observations (e.g. grab samples, cores, videos). In particular, large-scale mapping requires an enormous availability of ground-truthing data that is often obtained from heterogeneous and multidisciplinary sources, resulting into a further chance of misclassification. Independently from all of these limitations, acoustic segments still contain signals for seabed changes that, if appropriate procedures are established, can be translated into meaningful knowledge. In this study we design a simple, repeatable method, based on multivariate procedures, with the scope to classify a 100 km2, high-frequency (450 kHz) sidescan sonar mosaic acquired in the year 2012 in the shallow upper-mesotidal inlet of the Jade Bay (German North Sea coast). The tool used for the automated classification of the backscatter mosaic is the QTC SWATHVIEWTMsoftware. The ground-truthing database included grab sample data from multiple sources (2009-2011). The method was designed to extrapolate quantitative descriptors for acoustic backscatter and model their spatial changes in relation to grain size distribution and morphology. The

  16. Trends in historical mercury deposition inferred from lake sediment cores across a climate gradient in the Canadian High Arctic.

    PubMed

    Korosi, Jennifer B; Griffiths, Katherine; Smol, John P; Blais, Jules M

    2018-06-02

    Recent climate change may be enhancing mercury fluxes to Arctic lake sediments, confounding the use of sediment cores to reconstruct histories of atmospheric deposition. Assessing the independent effects of climate warming on mercury sequestration is challenging due to temporal overlap between warming temperatures and increased long-range transport of atmospheric mercury following the Industrial Revolution. We address this challenge by examining mercury trends in short cores (the last several hundred years) from eight lakes centered on Cape Herschel (Canadian High Arctic) that span a gradient in microclimates, including two lakes that have not yet been significantly altered by climate warming due to continued ice cover. Previous research on subfossil diatoms and inferred primary production indicated the timing of limnological responses to climate warming, which, due to prevailing ice cover conditions, varied from ∼1850 to ∼1990 for lakes that have undergone changes. We show that climate warming may have enhanced mercury deposition to lake sediments in one lake (Moraine Pond), while another (West Lake) showed a strong signal of post-industrial mercury enrichment without any corresponding limnological changes associated with warming. Our results provide insights into the role of climate warming and organic carbon cycling as drivers of mercury deposition to Arctic lake sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Sedimentation in small reservoirs on the San Rafael Swell, Utah

    USGS Publications Warehouse

    King, Norman Julius; Mace, Mervyn M.

    1953-01-01

    Movement of sediment from upland areas and eventually into main drainages and rivers is by no means through continuous transportation of material from the source to the delta. Instead it consists of a series of intermittent erosional and depositional phases that present a pulsating movement. Hence, sediment carried off upland areas may be deposited in lower reaches or along main drainages if an existing combination of factors tend to effect deposition. During this period actual sediment movement out of the basin may be relatively small. Following any change in existing conditions, however, these unconsolidated alluvial fills may be subjected to rapid removal; thus, for a limited time, abnormally high sediment production rates occur until the deposits are either removed or another cycle of deposition is started.

  18. Sediment production and downslope sediment transport from forest roads in granitic watersheds

    Treesearch

    Gary L. Ketcheson; Walter F. Megahan

    1996-01-01

    A mapping technique was used to measure the annual downslope deposition of granitic sediments eroded from forest roads on three headwater watersheds in the mountains of central Idaho. Frequency distributions were developed to determine sediment travel distance, and a dimensionless relationship was developed to describe the relation between the percentage of total...

  19. Frequency modulation of high-order harmonic generation in an orthogonally polarized two-color laser field.

    PubMed

    Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin

    2016-08-08

    We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.

  20. High-frequency energy in singing and speech

    NASA Astrophysics Data System (ADS)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  1. Suspended sediment and sediment-associated contaminants in San Francisco Bay

    USGS Publications Warehouse

    Schoellhamer, D.H.; Mumley, T.E.; Leatherbarrow, J.E.

    2007-01-01

    Water-quality managers desire information on the temporal and spatial variability of contaminant concentrations and the magnitudes of watershed and bed-sediment loads in San Francisco Bay. To help provide this information, the Regional Monitoring Program for Trace Substances in the San Francisco Estuary (RMP) takes advantage of the association of many contaminants with sediment particles by continuously measuring suspended-sediment concentration (SSC), which is an accurate, less costly, and more easily measured surrogate for several trace metals and organic contaminants. Continuous time series of SSC are collected at several sites in the Bay. Although semidiurnal and diurnal tidal fluctuations are present, most of the variability of SSC occurs at fortnightly, monthly, and semiannual tidal time scales. A seasonal cycle of sediment inflow, wind-wave resuspension, and winnowing of fine sediment also is observed. SSC and, thus, sediment-associated contaminants tend to be greater in shallower water, at the landward ends of the Bay, and in several localized estuarine turbidity maxima. Although understanding of sediment transport has improved in the first 10 years of the RMP, determining a simple mass budget of sediment or associated contaminants is confounded by uncertainties regarding sediment flux at boundaries, change in bed-sediment storage, and appropriate modeling techniques. Nevertheless, management of sediment-associated contaminants has improved greatly. Better understanding of sediment and sediment-associated contaminants in the Bay is of great interest to evaluate the value of control actions taken and the need for additional controls. ?? 2007 Elsevier Inc. All rights reserved.

  2. The relative immunity of high-frequency transposed stimuli to low-frequency binaural interference

    NASA Astrophysics Data System (ADS)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2004-05-01

    We have recently demonstrated that high-frequency transposed stimuli, having envelopes designed to provide high-frequency channels with information similar to that normally available in only low-frequency channels, yield threshold-ITDs and extents of laterality comparable to those obtained with conventional low-frequency stimuli. This enhanced potency of ITDs conveyed by high-frequency transposed stimuli, as compared to conventional high-frequency stimuli, suggested to us that ITDs conveyed by transposed stimuli might be relatively immune to the presence of low-frequency binaural interferers. To investigate this issue, threshold-ITDs and extents of laterality were measured with a variety of conventional and transposed targets centered at 4 kHz. The targets were presented either in the presence or absence of a simultaneously gated diotic noise centered at 500 Hz, the interferer. As expected, the presence of the low-frequency interferer resulted in substantially elevated threshold-ITDs and reduced extents of laterality for the conventional high-frequency stimuli. In contrast, these interference effects were either greatly attenuated or absent for ITDs conveyed by the high-frequency transposed targets. The results will be discussed in the context of current models of binaural interference. [Work supported by NIH DC 04147, NIH DC04073, NIH DC 002304.

  3. Noninvasive Diagnosis of Coronary Artery Disease Using 12-Lead High-Frequency Electrocardiograms

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian

    2006-01-01

    method is the presence versus the absence of reduced-amplitude zones (RAZs). In terms that must be simplified for the sake of brevity, an RAZ comprises several cycles of a high-frequency QRS signal during which the amplitude of the high-frequency oscillation in a portion of the signal is abnormally low (see figure). A given signal sample exhibiting an interval of reduced amplitude may or may not be classified as an RAZ, depending on quantitative criteria regarding peaks and troughs within the reduced-amplitude portion of the high-frequency QRS signal. This analysis is performed in all 12 leads in real time.

  4. Lightweight, high-frequency transformers

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.

    1983-01-01

    The 25-kVA space transformer was developed under contract by Thermal Technology Laboratory, Buffalo, N. Y. The NASA Lewis transformer technology program attempted to develop the baseline technology. For the 25-kVA transformer the input voltage was chosen as 200 V, the output voltage as 1500 V, the input voltage waveform as square wave, the duty cycle as continuous, the frequency range (within certain constraints) as 10 to 40 kHz, the operating temperatures as 85 deg. and 130 C, the baseplate temperature as 50 C, the equivalent leakage inductance as less than 10 micro-h, the operating environment as space, and the life expectancy as 10 years. Such a transformer can also be used for aircraft, ship and terrestrial applications.

  5. Rapid post-seismic landslide evacuation boosted by dynamic river width and implications for sediment fluxes during the seismic cycle

    NASA Astrophysics Data System (ADS)

    Steer, Philippe; Croissant, Thomas; Lague, Dimitri; Davy, Philippe

    2017-04-01

    along the fluvial network and of the exported sediment flux throughout several seismic cycles. These results highlight how landscapes and sediment fluxes respond on longer time scales to a succession of earthquakes able to trigger landslides.

  6. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark)

    NASA Astrophysics Data System (ADS)

    Holmkvist, Lars; Ferdelman, Timothy G.; Jørgensen, Bo Barker

    2011-06-01

    Sulfate reduction and sulfur-iron geochemistry were studied in 5-6 m deep gravity cores of Holocene mud from Aarhus Bay (Denmark). A goal was to understand whether sulfate is generated by re-oxidation of sulfide throughout the sulfate and methane zones, which might explain the abundance of active sulfate reducers deep below the main sulfate zone. Sulfate penetrated down to 130 cm where methane started to build up and where the concentration of free sulfide peaked at 5.5 mM. Below this sulfate-methane transition, sulfide diffused downwards to a sulfidization front at 520 cm depth, below which dissolved iron, Fe 2+, accumulated in the pore water. Sulfate reduction rates measured by 35S-tracer incubations in the sulfate zone were high due to high concentrations of reactive organic matter. Within the sulfate-methane transition, sulfate reduction was distinctly stimulated by the anaerobic oxidation of methane. In the methane zone below, sulfate remained at positive "background" concentrations of <0.5 mM down to the sulfidization front. Sulfate reduction decreased steeply to rates which at 300-500 cm depth were 0.2-1 pmol SO 42- cm -3 d -1, i.e., 4-5 orders of magnitude lower than rates measured near the sediment surface. The turn-over time of sulfate increased from 3 years at 12 cm depth to 100-1000 years down in the methane zone. Sulfate reduction in the methane zone accounted for only 0.1% of sulfate reduction in the entire sediment column and was apparently limited by the low pore water concentration of sulfate and the low availability of organic substrates. Amendment of the sediment with both sulfate and organic substrates immediately caused a 10- to 40-fold higher, "potential sulfate reduction" which showed that a physiologically intact community of sulfate reducing bacteria was present. The "background" sulfate concentration appears to be generated from the reaction of downwards diffusing sulfide with deeply buried Fe(III) species, such as poorly-reactive iron

  7. Characterizing the Fate and Mobility of Phosphorus in Utah Lake Sediments

    NASA Astrophysics Data System (ADS)

    Carling, G. T.; Randall, M.; Nelson, S.; Rey, K.; Hansen, N.; Bickmore, B.; Miller, T.

    2017-12-01

    An increasing number of lakes worldwide are impacted by eutrophication and harmful algal blooms due to anthropogenic nutrient inputs. Utah Lake is a unique eutrophic freshwater lake that is naturally shallow, turbid, and alkaline with high dissolved oxygen levels that has experienced severe algal blooms in recent years. Recently, the Utah Division of Water Quality has proposed a new limitation of phosphorus (P) loading to Utah Lake from wastewater treatment plants in an effort to mitigate eutrophication. However, reducing external P loads may not lead to immediate improvements in water quality due to the legacy pool of nutrients in lake sediments. The purpose of this study was to characterize the fate and mobility of P in Utah Lake sediments to better understand P cycling in this unique system. We analyzed P speciation, mineralogy, and binding capacity in lake sediment samples collected from 15 locations across Utah Lake. P concentrations in sediment ranged from 615 to 1894 ppm, with highest concentrations in Provo Bay near the major metropolitan area. Sequential leach tests indicate that 25-50% of P is associated with Ca (CaCO₃/ Ca10(PO4)6(OH,F,Cl)2 ≈ P) and 40-60% is associated with Fe (Fe(OOH) ≈ P). Ca-associated P was confirmed by SEM images, which showed the highest P concentrations correlating with Ca (carbonate minerals/apatite). The Ca-associated P fraction is likely immobile, but the Fe-bound P is potentially bioavailable under changing redox conditions. Batch sorption results indicate that lake sediments have a high capacity to absorb and remove P from the water column, with an average uptake of 70-96% removal over the range of 1-10 mg/L P. Mineral precipitation and sorption to bottom sediments is an efficient removal mechanism of P in Utah Lake, but a significant portion of P may be temporarily available for resuspension and cycling in surface waters. Mitigating lake eutrophication is a complex problem that goes beyond decreasing external nutrient

  8. High storm surge events in Venice and the 11-yr solar cycle

    NASA Astrophysics Data System (ADS)

    Barriopedro, David; García-Herrera, Ricardo; Lionello, Piero; Pino, Cosimo

    2010-05-01

    In the last years the Venice lagoon has received much attention as a case of coastal vulnerability, mainly because of relative sea level rise and increase frequency of storm surge events, the so-called "aqua alta", which, particularly during autumn, cause the flooding of the Venice historical city center. Long-term fluctuations in solar activity and large-scale climate patterns have been suggested as feasible factors of flooding variability. This study explores the long-term frequency variability of High Surge Events (HSE) in Venice for the period 1948-2008 and its modulation by the 11-yr solar cycle. A significant decadal variability in the frequency of HSE is found in good correspondence with the 11-yr cycle, solar maxima being associated to a significant increase of the October-November-December HSE frequency. A Storm Surge Pattern (SSP), i.e. the seasonal 1000 hPa height pattern associated to increased frequency of HSE, is identified and found similar to the positive phase of the main variability mode of the regional atmospheric circulation (EOF1). However, further analyses indicate that the increase of HSE in solar maxima cannot be simply explained by a higher recurrence of positive EOF1 phases during high solar years. It rather seems that solar activity modulates the spatial patterns of the atmospheric circulation (EOF) and the favorable conditions for HSE occurrence (SSP). Thus, under solar maxima, the occurrence of HSE is enhanced by the EOF1, namely a large-scale wave train pattern that is symptomatic of storm track paths over northern Europe. Solar minima reveal a substantially different and less robust SSP, consisting of a meridionally oriented dipole with a preferred southward path of storm track activity, which is not associated to any EOF during low solar periods. It is concluded that solar activity plays an indirect role in the frequency of HSE by modulating the spatial patterns of the main modes of atmospheric regional variability, the favorable

  9. Redox processes as revealed by voltammetry in the surface sediments of the Gotland Basin, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Yücel, Mustafa; Dale, Andy; Sommer, Stefan; Pfannkuche, Olaf

    2014-05-01

    Sulfur cycling in marine sediments undergoes dramatic changes with changing redox conditions of the overlying waters. The upper sediments of the anoxic Gotland Basin, central Baltic Sea represent a dynamic redox environment with extensive mats of sulfide oxidizing bacteria covering the seafloor beneath the chemocline. In order to investigate sulfur redox cycling at the sediment-water interface, sediment cores were sampled over a transect covering 65 - 174 m water depth in August-September 2013. High resolution (0.25 mm minimum) vertical microprofiles of electroactive redox species including dissolved sulfide and iron were obtained with solid state Au-Hg voltammetric microelectrodes. This approach enabled a fine-scale comparison of porewater profiles across the basin. The steepest sulfide gradients (i.e. the highest sulfide consumption) occurred within the upper 10 mm in sediments covered by surficial mats (2.10 to 3.08 mmol m-2 day-1). In sediments under permanently anoxic waters (>140m), voltammetric signals for Fe(II) and aqueous FeS were detected below a subsurface maximum in dissolved sulfide, indicating a Fe flux originating from older, deeper sedimentary layers. Our results point to a unique sulfur cycling in the Gotland basin seafloor where sulfide accumulation is moderated by sulfide oxidation at the sediment surface and by FeS precipitation in deeper sediment layers. These processes may play an important role in minimizing benthic sulfide fluxes to bottom waters around the major basins of the Baltic Sea.

  10. Endogenic carbonate sedimentation in Bear Lake, Utah and Idaho, over the last two glacial-interglacial cycles

    USGS Publications Warehouse

    Dean, W.E.

    2009-01-01

    Sediments deposited over the past 220,000 years in Bear Lake, Utah and Idaho, are predominantly calcareous silty clay, with calcite as the dominant carbonate mineral. The abundance of siliciclastic sediment indicates that the Bear River usually was connected to Bear Lake. However, three marl intervals containing more than 50% CaCO3 were deposited during the Holocene and the last two interglacial intervals, equivalent to marine oxygen isotope stages (MIS) 5 and 7, indicating times when the Bear River was not connected to the lake. Aragonite is the dominant mineral in two of these three high-carbonate intervals. The high-carbonate, aragonitic intervals coincide with warm interglacial continental climates and warm Pacific sea-surface temperatures. Aragonite also is the dominant mineral in a carbonate-cemented microbialite mound that formed in the southwestern part of the lake over the last several thousand years. The history of carbonate sedimentation in Bear Lake is documented through the study of isotopic ratios of oxygen, carbon, and strontium, organic carbon content, CaCO3 content, X-ray diffraction mineralogy, and HCl-leach chemistry on samples from sediment traps, gravity cores, piston cores, drill cores, and microbialites. Sediment-trap studies show that the carbonate mineral that precipitates in the surface waters of the lake today is high-Mg calcite. The lake began to precipitate high-Mg calcite sometime in the mid-twentieth century after the artificial diversion of Bear River into Bear Lake that began in 1911. This diversion drastically reduced the salinity and Mg2+:Ca2+ of the lake water and changed the primary carbonate precipitate from aragonite to high-Mg calcite. However, sediment-trap and core studies show that aragonite is the dominant mineral accumulating on the lake floor today, even though it is not precipitating in surface waters. The isotopic studies show that this aragonite is derived from reworking and redistribution of shallow-water sediment

  11. High-intensity cycle interval training improves cycling and running performance in triathletes.

    PubMed

    Etxebarria, Naroa; Anson, Judith M; Pyne, David B; Ferguson, Richard A

    2014-01-01

    Effective cycle training for triathlon is a challenge for coaches. We compared the effects of two variants of cycle high-intensity interval training (HIT) on triathlon-specific cycling and running. Fourteen moderately-trained male triathletes ([Formula: see text]O2peak 58.7 ± 8.1 mL kg(-1) min(-1); mean ± SD) completed on separate occasions a maximal incremental test ([Formula: see text]O2peak and maximal aerobic power), 16 × 20 s cycle sprints and a 1-h triathlon-specific cycle followed immediately by a 5 km run time trial. Participants were then pair-matched and assigned randomly to either a long high-intensity interval training (LONG) (6-8 × 5 min efforts) or short high-intensity interval training (SHORT) (9-11 × 10, 20 and 40 s efforts) HIT cycle training intervention. Six training sessions were completed over 3 weeks before participants repeated the baseline testing. Both groups had an ∼7% increase in [Formula: see text]O2peak (SHORT 7.3%, ±4.6%; mean, ±90% confidence limits; LONG 7.5%, ±1.7%). There was a moderate improvement in mean power for both the SHORT (10.3%, ±4.4%) and LONG (10.7%, ±6.8%) groups during the last eight 20-s sprints. There was a small to moderate decrease in heart rate, blood lactate and perceived exertion in both groups during the 1-h triathlon-specific cycling but only the LONG group had a substantial decrease in the subsequent 5-km run time (64, ±59 s). Moderately-trained triathletes should use both short and long high-intensity intervals to improve cycling physiology and performance. Longer 5-min intervals on the bike are more likely to benefit 5 km running performance.

  12. Somatic evoked high-frequency magnetic oscillations reflect activity of inhibitory interneurons in the human somatosensory cortex.

    PubMed

    Hashimoto, I; Mashiko, T; Imada, T

    1996-05-01

    High-frequency potential oscillations in the range of 300-900 Hz have recently been shown to concur with the primary response (N20) of the somatosensory cortex in awake humans. However, the physiological mechanisms of the high-frequency oscillations remained undetermined. We addressed the issue by analyzing magnetic fields during wakefulness and sleep over the left hemisphere to right median nerve stimulation with a wide bandpass (0.1-2000 Hz) recording with subsequent high-pass (> 300 Hz) and low-pass (< 300 Hz) filtering. With wide bandpass recordings, high-frequency magnetic oscillations with the main signal energy at 580-780 Hz were superimposed on the N20m during wakefulness. Isofield mapping at each peak of the high-pass filtered and isolated high-frequency oscillations showed a dipolar pattern and the estimated source for these peaks was the primary somatosensory cortex (area 3b) very close to that for the N20m peak. During sleep, the high-frequency oscillations showed dramatic diminution in amplitude while the N20m amplitude exhibited a moderate increment. This reciprocal relation between the high-frequency oscillations and the N20m during a wake-sleep cycle suggests that they represent different generator substrates. We speculate that the high-frequency oscillations represent a localized activity of the GABAergic inhibitory interneurons of layer 4, which have been shown in animal experiments to respond monosynaptically to thalamo-cortical input with a high-frequency (600-900 Hz) burst of short duration spikes. On the other hand, the underlying N20m represents activity of pyramidal neurons which receive monosynaptic excitatory input from the thalamus as well as a feed-forward inhibition from the interneurons.

  13. High-Frequency ac Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Mildice, James

    1987-01-01

    Loads managed automatically under cycle-by-cycle control. 440-V rms, 20-kHz ac power system developed. System flexible, versatile, and "transparent" to user equipment, while maintaining high efficiency and low weight. Electrical source, from dc to 2,200-Hz ac converted to 440-V rms, 20-kHz, single-phase ac. Power distributed through low-inductance cables. Output power either dc or variable ac. Energy transferred per cycle reduced by factor of 50. Number of parts reduced by factor of about 5 and power loss reduced by two-thirds. Factors result in increased reliability and reduced costs. Used in any power-distribution system requiring high efficiency, high reliability, low weight, and flexibility to handle variety of sources and loads.

  14. Sulphur-cycling bacteria and ciliated protozoans in a Beggiatoaceae mat covering organically enriched sediments beneath a salmon farm in a southern Chilean fjord.

    PubMed

    Aranda, Carlos P; Valenzuela, Cristian; Matamala, Yessica; Godoy, Félix A; Aranda, Nicol

    2015-11-15

    The colourless mat covering organically enriched sediments underlying an intensive salmon farm in Estero Pichicolo, southern Chile, was surveyed by combined 454 PyroTag and conventional Sanger sequencing of 16S/18S ribosomal RNA genes for Bacteria and Eukarya. The mat was dominated by the sulphide-oxidizing bacteria (SOB) Candidatus Isobeggiatoa, Candidatus Parabeggiatoa and Arcobacter. By order of their abundances, sulphate-reducing bacteria (SRB) were represented by diverse deltaproteobacterial Desulfobacteraceae, but also within Desulfobulbaceae, Desulfuromonadaceae and Desulfovibrionaceae. The eukaryotic PyroTags were dominated by polychaetes, copepods and nematodes, however, ciliated protozoans were highly abundant in microscopy observations, and were represented by the genera Condylostoma, Loxophyllum and Peritromus. Finally, the abundant Sulfurimonas/Sulfurovum also suggest the occurrence of zero-valence sulphur oxidation, probably derived from Beggiatoaceae as a result of bacteriovorus infaunal activity or generated as free S(0) by the Arcobacter bacteria. The survey suggests an intense and complex sulphur cycle within the surface of salmon-farm impacted sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. An automated full waveform logging system for high-resolution P-wave profiles in marine sediments

    NASA Astrophysics Data System (ADS)

    Breitzke, Monika; Spieβ, Volkhard

    1993-11-01

    An automated, PC-based logging system has been developed to investigate marine sediment cores by full waveform transmission seismograms. High-resolution P-wave velocity and amplitude attenuation profiles are simultaneously derived from the transmission data to characterize the acoustic properties of the sediment column. A pair of ultrasonic, piezoelectric wheel probes is used to generate and record the transmission signals travelling radially through the sediment core. Both unsplit and split cores are allowed. Mounted in a carriage driven by a stepping motor via a shaft the probes automatically move along the core liner, stopping at equidistant spacings to provide a quasi-continuous inspection of the core by the transmission data. The axial travel distance and the core diameter are determined by digital measuring tools. First arrivals are picked automatically from the transmission seismograms using either a threshold in the seismogram's envelope or a cross-correlation algorithm taking the ‘zero-offset’ signal of both wheel probes into account. Combined with the core diameter these first arrivals lead to a P-wave velocity profile with a relative precision of 1 to 2 m s-1. Simultaneously, the maximum peak-to-peak amplitudes of the transmission seismograms are evaluated to get a first idea on the amplitude attenuation along the sediment core. Two examples of gravity cores taken during a recent cruise of R.V. METEOR in the Western Equatorial Atlantic are presented. They yield that the P-wave profiles can be used for locating strong and fine-scale lithological changes, e.g. turbidite layers and slight variations in the sand, silt or clay content. In addition, the transmission seismograms and their amplitude spectra obviously seem to reveal a correlation between the relative amount of low-frequency spectral components and the sediment grain size, and thus provide a tool for the determination of additional, related physical or sedimentological parameters in future

  16. Fluid flow and sediment transport in evolving sedimentary basins

    NASA Astrophysics Data System (ADS)

    Swenson, John Bradley

    This thesis consists of three studies that focus on groundwater flow and sediment transport in evolving sedimentary basins. The first study considers the subsurface hydrodynamic response to basin-scale transgression and regression and its implications for stratiform ore genesis. I demonstrate that the transgressive sequence focuses marginward-directed, compaction-driven discharge within a basal aquifer during progradation and deposition of the overlying regressive sequence, isolates the basal aquifer from overlying flow systems, and serves as a chemical sink for metal-bearing brines. In the second study, I develop a new theory for the shoreline response to subsidence, sediment supply, and sea level. In this theory, sediment transport in a fluvio-deltaic basin is formally equivalent to heat transfer in a two-phase (liquid and isothermal solid) system: the fluvial system is analogous to a conduction-dominated liquid phase, the shoreline is the melting front, and the water depth at the delta toe is equivalent to the latent heat of fusion. A natural consequence of this theory is that sediment-starved basins do not possess an equilibrium state. In contrast to existing theories, I do not observe either strong phase shifting or attenuation of the shoreline response to low-frequency eustatic forcing; rather, shoreline tracks sea level over a spectrum of forcing frequencies, and its response to low-frequency forcing is amplified relative to the high-frequency response. For the third study, I use a set of dimensionless numbers from the previous study as a mathematical framework for providing a unified treatment of existing stratigraphic theories. In the limit of low-amplitude eustatic forcing, my study suggests that strong phase shifting between shoreline and sea level is a consequence of specifying the sedimentation rate at the shoreline; basins free of this constraint do not develop strong phase shifts.

  17. High-frequency - Spinal Cord Stimulation.

    PubMed

    Rapcan, R; Mlaka, J; Venglarcik, M; Vinklerova, V; Gajdos, M; Illes, R

    2015-01-01

    Our clinical experience with high - frequency SCS for FBSS in patients with predominant low back pain is presented. After a trial period, 100 % (21 out of 21) of patients with FBSS with predominant low back pain reported a significant improvement in visual analog scale (VAS) pain score and underwent permanent implantation of the high - frequency SCS system. SCS trials lasted 7-14 days (median 9 days). SCS leads were mostly positioned at the T8-10 or T8-12 vertebral levels . We used both single and dual lead placement. VAS, patient satisfaction, patient performance status, opioid consumption and complication rate were assessed for the period of 12 months. The mean VAS score before implantation (8.7) compared to VAS 12 months after implantation (4.0) was significantly lower (CI95[3.9-5.4], p < 0.001). There was a significant improvement in performance status when comparing PS before implantation (3.0) and 12 months after implantation (1.8) (CI95[0.9-1.6], p < 0.001). The mean patient satisfaction scores (PSS) did not differ throughout the whole one year follow-up period. Our group of 21 patients with implanted high - frequency SCS systems reported significant low back pain and leg pain relief within the period of 12 months as well as significant improvement in their performance status. We had a special subgroup of 5 patients with regular change of frequencies between high frequency and conventional frequency (with paresthesia) also with significant leg and low back pain relief (Tab. 2, Fig. 1, Ref. 8). Text in PDF www.elis.sk.

  18. Microbiome succession during ammonification in eelgrass bed sediments.

    PubMed

    Ettinger, Cassandra L; Williams, Susan L; Abbott, Jessica M; Stachowicz, John J; Eisen, Jonathan A

    2017-01-01

    Eelgrass ( Zostera marina ) is a marine angiosperm and foundation species that plays an important ecological role in primary production, food web support, and elemental cycling in coastal ecosystems. As with other plants, the microbial communities living in, on, and near eelgrass are thought to be intimately connected to the ecology and biology of eelgrass. Here we characterized the microbial communities in eelgrass sediments throughout an experiment to quantify the rate of ammonification, the first step in early remineralization of organic matter, also known as diagenesis, from plots at a field site in Bodega Bay, CA. Sediment was collected from 72 plots from a 15 month long field experiment in which eelgrass genotypic richness and relatedness were manipulated. In the laboratory, we placed sediment samples ( n  = 4 per plot) under a N 2 atmosphere, incubated them at in situ temperatures (15 °C) and sampled them initially and after 4, 7, 13, and 19 days to determine the ammonification rate. Comparative microbiome analysis using high throughput sequencing of 16S rRNA genes was performed on sediment samples taken initially and at seven, 13 and 19 days to characterize changes in the relative abundances of microbial taxa throughout ammonification. Within-sample diversity of the sediment microbial communities across all plots decreased after the initial timepoint using both richness based (observed number of OTUs, Chao1) and richness and evenness based diversity metrics (Shannon, Inverse Simpson). Additionally, microbial community composition changed across the different timepoints. Many of the observed changes in relative abundance of taxonomic groups between timepoints appeared driven by sulfur cycling with observed decreases in predicted sulfur reducers ( Desulfobacterales ) and corresponding increases in predicted sulfide oxidizers ( Thiotrichales ). None of these changes in composition or richness were associated with variation in ammonification rates. Our

  19. Microbiome succession during ammonification in eelgrass bed sediments

    PubMed Central

    Ettinger, Cassandra L.; Williams, Susan L.; Abbott, Jessica M.; Stachowicz, John J.

    2017-01-01

    Background Eelgrass (Zostera marina) is a marine angiosperm and foundation species that plays an important ecological role in primary production, food web support, and elemental cycling in coastal ecosystems. As with other plants, the microbial communities living in, on, and near eelgrass are thought to be intimately connected to the ecology and biology of eelgrass. Here we characterized the microbial communities in eelgrass sediments throughout an experiment to quantify the rate of ammonification, the first step in early remineralization of organic matter, also known as diagenesis, from plots at a field site in Bodega Bay, CA. Methods Sediment was collected from 72 plots from a 15 month long field experiment in which eelgrass genotypic richness and relatedness were manipulated. In the laboratory, we placed sediment samples (n = 4 per plot) under a N2 atmosphere, incubated them at in situ temperatures (15 °C) and sampled them initially and after 4, 7, 13, and 19 days to determine the ammonification rate. Comparative microbiome analysis using high throughput sequencing of 16S rRNA genes was performed on sediment samples taken initially and at seven, 13 and 19 days to characterize changes in the relative abundances of microbial taxa throughout ammonification. Results Within-sample diversity of the sediment microbial communities across all plots decreased after the initial timepoint using both richness based (observed number of OTUs, Chao1) and richness and evenness based diversity metrics (Shannon, Inverse Simpson). Additionally, microbial community composition changed across the different timepoints. Many of the observed changes in relative abundance of taxonomic groups between timepoints appeared driven by sulfur cycling with observed decreases in predicted sulfur reducers (Desulfobacterales) and corresponding increases in predicted sulfide oxidizers (Thiotrichales). None of these changes in composition or richness were associated with variation in

  20. Evidence of Resonant Mode Coupling and the Relationship between Low and High Frequencies in a Rapidly Rotating a Star

    NASA Astrophysics Data System (ADS)

    Breger, M.; Montgomery, M. H.

    2014-03-01

    In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day-1 (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of "normal" combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day-1 in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.

  1. Headwater sediment dynamics in a debris flow catchment constrained by high-resolution topographic surveys

    NASA Astrophysics Data System (ADS)

    Loye, Alexandre; Jaboyedoff, Michel; Theule, Joshua Isaac; Liébault, Frédéric

    2016-06-01

    Debris flows have been recognized to be linked to the amounts of material temporarily stored in torrent channels. Hence, sediment supply and storage changes from low-order channels of the Manival catchment, a small tributary valley with an active torrent system located exclusively in sedimentary rocks of the Chartreuse Massif (French Alps), were surveyed periodically for 16 months using terrestrial laser scanning (TLS) to study the coupling between sediment dynamics and torrent responses in terms of debris flow events, which occurred twice during the monitoring period. Sediment transfer in the main torrent was monitored with cross-section surveys. Sediment budgets were generated seasonally using sequential TLS data differencing and morphological extrapolations. Debris production depends strongly on rockfall occurring during the winter-early spring season, following a power law distribution for volumes of rockfall events above 0.1 m3, while hillslope sediment reworking dominates debris recharge in spring and autumn, which shows effective hillslope-channel coupling. The occurrence of both debris flow events that occurred during the monitoring was linked to recharge from previous debris pulses coming from the hillside and from bedload transfer. Headwater debris sources display an ambiguous behaviour in sediment transfer: low geomorphic activity occurred in the production zone, despite rainstorms inducing debris flows in the torrent; still, a general reactivation of sediment transport in headwater channels was observed in autumn without new debris supply, suggesting that the stored debris was not exhausted. The seasonal cycle of sediment yield seems to depend not only on debris supply and runoff (flow capacity) but also on geomorphic conditions that destabilize remnant debris stocks. This study shows that monitoring the changes within a torrent's in-channel storage and its debris supply can improve knowledge on recharge thresholds leading to debris flow.

  2. Development, evaluation, and application of sediment quality targets for assessing and managing contaminated sediments in Tampa Bay, Florida

    USGS Publications Warehouse

    MacDonald, D.D.; Carr, R.S.; Eckenrod, D.; Greening, H.; Grabe, S.; Ingersoll, C.G.; Janicki, S.; Janicki, T.; Lindskoog, R.A.; Long, E.R.; Pribble, R.; Sloane, G.; Smorong, D.E.

    2004-01-01

    Tampa Bay is a large, urban estuary that is located in west central Florida. Although water quality conditions represent an important concern in this estuary, information from numerous sources indicates that sediment contamination also has the potential to adversely affect aquatic organisms, aquatic-dependent wildlife, and human health. As such, protecting relatively uncontaminated areas of the bay from contamination and reducing the amount of toxic chemicals in contaminated sediments have been identified as high-priority sediment management objectives for Tampa Bay. To address concerns related to sediment contamination in the bay, an ecosystem-based framework for assessing and managing sediment quality conditions was developed that included identification of sediment quality issues and concerns, development of ecosystem goals and objectives, selection of ecosystem health indicators, establishment of metrics and targets for key indicators, and incorporation of key indicators, metrics, and targets into watershed management plans and decision-making processes. This paper describes the process that was used to select and evaluate numerical sediment quality targets (SQTs) for assessing and managing contaminated sediments. These SQTs included measures of sediment chemistry, whole-sediment and pore-water toxicity, and benthic invertebrate community structure. In addition, the paper describes how the SQTs were used to develop site-specific concentration-response models that describe how the frequency of adverse biological effects changes with increasing concentrations of chemicals of potential concern. Finally, a key application of the SQTs for defining sediment management areas is discussed.

  3. Runoff and sediment variation in the areas with high and coarse sediment yield of the middle Yellow River

    NASA Astrophysics Data System (ADS)

    Zhang, Pan; Yao, Wenyi; Xiao, Peiqing; Sun, Weiying

    2018-02-01

    Massive water and soil conservation works (WSCW) have been conducted in the areas with high and coarse sediment yield of the middle Yellow River since 1982. With the impending effects of climate change, it is necessary to reconsider the effects of WSCW on runoff and sediment variation at decadal and regional scales. Using long-term official and synthesized data, the WSCW impacts on reducing water and soil loss were studied in Sanchuanhe River watershed. Results showed that the sediment and runoff generated from this area showed a decreasing trend in the past 50 years. A great progress has been achieved in erosion control since the 1970s. After the 4 soil and water conservation harnessing stages during the period from 1970 to 2006, the sediment and runoff yield showed decreases with the extension of harnessing. The results revealed that human activities exerted the largest effects on the sediment reduction and explained 66.6% of the variation in the specific sediment yield. The contribution of rainfall variation to runoff reduction was as large as human activities. A great benefit have been obtained in water and soil loss control in this area.

  4. Attenuation of sound in sand sediments due to porosity fluctuations.

    PubMed

    Hefner, Brian T; Jackson, Darrell R

    2014-08-01

    At high frequencies, the attenuation measured in sand sediments is larger than that predicted by Biot theory. To account for this discrepancy, perturbation theory is used to incorporate losses due to scattering by porosity variations into both Biot's poroelastic equations and the effective density fluid model. While previous results showed that fluctuations in the bulk frame modulus were insufficient to produce significant attenuation in a sand sediment, modest levels of fluctuations in the porosity produce significant scattering loss. By using the sediment parameters and the heterogeneity power spectrum measured during the Sediment Acoustics Experiment in 2004, the perturbation theory result shows good agreement with the sound speed and attenuation data without any free parameters.

  5. High-frequency filtering of strong-motion records

    USGS Publications Warehouse

    Douglas, J.; Boore, D.M.

    2011-01-01

    The influence of noise in strong-motion records is most problematic at low and high frequencies where the signal to noise ratio is commonly low compared to that in the mid-spectrum. The impact of low-frequency noise (5 Hz) on computed pseudo-absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency noise our analysis shows that filtering to remove high-frequency noise is only necessary in certain situations and that PSAs can often be used up to 100 Hz even if much lower high-cut corner frequencies are required to remove the noise. This apparent contradiction can be explained by the fact that PSAs are often controlled by ground accelerations associated with much lower frequencies than the natural frequency of the oscillator because path and site attenuation (often modelled by Q and κ, respectively) have removed the highest frequencies. We demonstrate that if high-cut filters are to be used, then their corner frequencies should be selected on an individual basis, as has been done in a few recent studies.

  6. Predicting watershed post-fire sediment yield with the InVEST sediment retention model: Accuracy and uncertainties

    USGS Publications Warehouse

    Sankey, Joel B.; McVay, Jason C.; Kreitler, Jason R.; Hawbaker, Todd J.; Vaillant, Nicole; Lowe, Scott

    2015-01-01

    Increased sedimentation following wildland fire can negatively impact water supply and water quality. Understanding how changing fire frequency, extent, and location will affect watersheds and the ecosystem services they supply to communities is of great societal importance in the western USA and throughout the world. In this work we assess the utility of the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) Sediment Retention Model to accurately characterize erosion and sedimentation of burned watersheds. InVEST was developed by the Natural Capital Project at Stanford University (Tallis et al., 2014) and is a suite of GIS-based implementations of common process models, engineered for high-end computing to allow the faster simulation of larger landscapes and incorporation into decision-making. The InVEST Sediment Retention Model is based on common soil erosion models (e.g., USLE – Universal Soil Loss Equation) and determines which areas of the landscape contribute the greatest sediment loads to a hydrological network and conversely evaluate the ecosystem service of sediment retention on a watershed basis. In this study, we evaluate the accuracy and uncertainties for InVEST predictions of increased sedimentation after fire, using measured postfire sediment yields available for many watersheds throughout the western USA from an existing, published large database. We show that the model can be parameterized in a relatively simple fashion to predict post-fire sediment yield with accuracy. Our ultimate goal is to use the model to accurately predict variability in post-fire sediment yield at a watershed scale as a function of future wildfire conditions.

  7. Analytic theory of high-order-harmonic generation by an intense few-cycle laser pulse

    NASA Astrophysics Data System (ADS)

    Frolov, M. V.; Manakov, N. L.; Popov, A. M.; Tikhonova, O. V.; Volkova, E. A.; Silaev, A. A.; Vvedenskii, N. V.; Starace, Anthony F.

    2012-03-01

    We present a theoretical model for describing the interaction of an electron, weakly bound in a short-range potential, with an intense, few-cycle laser pulse. General definitions for the differential probability of above-threshold ionization and for the yield of high-order-harmonic generation (HHG) are presented. For HHG we then derive detailed analytic expressions for the spectral density of generated radiation in terms of the key laser parameters, including the number N of optical cycles in the pulse and the carrier-envelope phase (CEP). In particular, in the tunneling approximation, we provide detailed derivations of the closed-form formulas presented briefly by M. V. Frolov [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.83.021405 83, 021405(R) (2011)], which were used to describe key features of HHG by both H and Xe atom targets in an intense, few-cycle laser pulse. We then provide a complete analysis of the dependence of the HHG spectrum on both N and the CEP φ of an N-cycle laser pulse. Most importantly, we show analytically that the structure of the HHG spectrum stems from interference between electron wave packets originating from electron ionization from neighboring half-cycles near the peak of the intensity envelope of the few-cycle laser pulse. Such interference is shown to be very sensitive to the CEP. The usual HHG spectrum for a monochromatic driving laser field (comprising harmonic peaks at odd multiples of the carrier frequency and spaced by twice the carrier frequency) is shown analytically to occur only in the limit of very large N, and begins to form, as N increases, in the energy region beyond the HHG plateau cutoff.

  8. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River

    NASA Astrophysics Data System (ADS)

    Wang, Yuankun; Rhoads, Bruce L.; Wang, Dong; Wu, Jichun; Zhang, Xiao

    2018-03-01

    The Yangtze River is one of the largest and most important rivers in the world. Over the past several decades, the natural sediment regime of the Yangtze River has been altered by the construction of dams. This paper uses multi-scale entropy analysis to ascertain the impacts of large dams on the complexity of high-frequency suspended sediment dynamics in the Yangtze River system, especially after impoundment of the Three Gorges Dam (TGD). In this study, the complexity of sediment dynamics is quantified by framing it within the context of entropy analysis of time series. Data on daily sediment loads for four stations located in the mainstem are analyzed for the past 60 years. The results indicate that dam construction has reduced the complexity of short-term (1-30 days) variation in sediment dynamics near the structures, but that complexity has actually increased farther downstream. This spatial pattern seems to reflect a filtering effect of the dams on the on the temporal pattern of sediment loads as well as decreased longitudinal connectivity of sediment transfer through the river system, resulting in downstream enhancement of the influence of local sediment inputs by tributaries on sediment dynamics. The TGD has had a substantial impact on the complexity of sediment series in the mainstem of the Yangtze River, especially after it became fully operational. This enhanced impact is attributed to the high trapping efficiency of this dam and its associated large reservoir. The sediment dynamics "signal" becomes more spatially variable after dam construction. This study demonstrates the spatial influence of dams on the high-frequency temporal complexity of sediment regimes and provides valuable information that can be used to guide environmental conservation of the Yangtze River.

  9. Masking of low-frequency signals by high-frequency, high-level narrow bands of noisea

    PubMed Central

    Patra, Harisadhan; Roup, Christina M.; Feth, Lawrence L.

    2011-01-01

    Low-frequency masking by intense high-frequency noise bands, referred to as remote masking (RM), was the first evidence to challenge energy-detection models of signal detection. Its underlying mechanisms remain unknown. RM was measured in five normal-hearing young-adults at 250, 350, 500, and 700 Hz using equal-power, spectrally matched random-phase noise (RPN) and low-noise noise (LNN) narrowband maskers. RM was also measured using equal-power, two-tone complex (TC2) and eight-tone complex (TC8). Maskers were centered at 3000 Hz with one or two equivalent rectangular bandwidths (ERBs). Masker levels varied from 80 to 95 dB sound pressure level in 5 dB steps. LNN produced negligible masking for all conditions. An increase in bandwidth in RPN yielded greater masking over a wider frequency region. Masking for TC2 was limited to 350 and 700 Hz for one ERB but shifted to only 700 Hz for two ERBs. A spread of masking to 500 and 700 Hz was observed for TC8 when the bandwidth was increased from one to two ERBs. Results suggest that high-frequency noise bands at high levels could generate significant low-frequency masking. It is possible that listeners experience significant RM due to the amplification of various competing noises that might have significant implications for speech perception in noise. PMID:21361445

  10. High frequency magnetostrictive transducers for waveguide applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua Earl; Taylor, Steven Cheney; Rempe, Joy Lynn

    A high frequency magnetostrictive transducer includes a magnetostrictive rod or wire inserted co-axially into a driving coil, wherein the driving coil includes a coil arrangement with a plurality of small coil segments along the magnetostrictive rod or wire; wherein frequency operation of the high frequency magnetostrictive transducer is controlled by a length of the small coil segments and a material type of the magnetostrictive rod or wire. This design of the high frequency magnetostrictive transducer retains the beneficial aspects of the magnetostrictive design, while reducing its primary drawback, lower frequency operation.

  11. Microbubble mediated dual-frequency high intensity focused ultrasound thrombolysis: An In vitro study

    NASA Astrophysics Data System (ADS)

    Suo, Dingjie; Jin, Zhiyang; Jiang, Xiaoning; Dayton, Paul A.; Jing, Yun

    2017-01-01

    High intensity focused ultrasound (HIFU) has recently emerged as a promising alternative approach for thrombolysis. However, the high acoustic energy required by HIFU could elicit thermal damage bioeffects, impeding the clinical translation of this technique. This paper investigates the use of dual-frequency focused ultrasound (DFFU) mediated by microbubbles (MBs) to minimize the acoustic power required for thrombolysis in vitro. It was found that MBs, with sufficient concentration, could significantly lower the power threshold for thrombolysis for both DFFU and single-frequency focused ultrasound (SFFU). In addition, SFFU needs about 96%-156% higher energy to achieve the same thrombolysis efficiency as that of DFFU. The thrombolysis efficiency is also found to increase with the duty cycle. The measured cavitation signals reveal that the enhanced inertial cavitation is likely responsible for the improved thrombolysis under DFFU and MBs.

  12. SEDIMENT GEOCHEMICAL MODEL

    EPA Science Inventory

    Until recently, sediment geochemical models (diagenetic models) have been only able to explain sedimentary flux and concentration profiles for a few simplified geochemical cycles (e.g., nitrogen, carbon and sulfur). However with advances in numerical methods, increased accuracy ...

  13. High duty cycle far-infrared germanium lasers

    NASA Astrophysics Data System (ADS)

    Chamberlin, Danielle Russell

    The effects of crystal geometry, heat transport, and optics on high duty cycle germanium hole population inversion lasers are investigated. Currently the laser's low duty cycle limits its utility for many applications. This low duty cycle is a result of the combination of the large electrical input power necessary and insufficient heat extraction. In order to achieve a continuous-wave device, the input power must be decreased and the cooling power increased. In order to improve laser efficiency and lower the input power, the effect of laser crystal geometry on the electric field uniformity is considered. Geometries with d/L>>1 or <<1 are shown to have improved electric field uniformity, where d is the distance between electrical contacts and L is the length in the direction of the Hall electric field. A geometry with d/L>>1 is shown to decrease the threshold voltage for lasing. Laser crystals with the traditional contact geometry have been compared to a new, planar contact design with both electrical contacts on the same side of the laser crystal. This new geometry provides a large d/L ratio while also allowing effective heat sinking. A pure, single-crystal silicon heat sink is developed for planar contact design lasers, which improves the duty cycle tenfold. For the traditional contact design, copper heat sinks are developed that demonstrate cooling powers up to 10 Watts. The effects of thermal conductivity, surface area, and interfacial thermal resistance on the heat transport are compared. To improve the cavity quality, thereby allowing for smaller crystal volumes, new optical designs are investigated. A vertical cavity structure is demonstrated for the planar contact structure using strontium titanate single crystals as mirrors. A mode-selecting cavity is implemented for the traditional contact design. The spectra of small-volume, near-threshold lasers are measured. In contrast to the emission of larger lasers, these lasers emit within narrow frequency peaks

  14. Metagenomics unveils the attributes of the alginolytic guilds of sediments from four distant cold coastal environments: Alginolytic guilds from cold sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matos, Marina N.; Lozada, Mariana; Anselmino, Luciano E.

    Alginates are abundant polysaccharides in brown algae that constitute an important energy source for marine heterotrophic bacteria. Despite the key role of alginate assimilation processes in the marine carbon cycle, little information is available on the bacterial populations involved in these processes. The goal of this work was to gain insight into the structure and functional traits of the alginolytic communities from sediments of cold coastal environments. Sediment metagenomes from high-latitude regions of both Hemispheres were interrogated for alginate lyase gene homolog sequences and their genomic context. Sediments contained highly abundant and diverse bacterial assemblages with alginolytic potential, including membersmore » of Bacteroidetes and Proteobacteria, as well as several poorly characterized taxa. Temperature and salinity were correlated to the variation in community structure. The microbial communities in Arctic and Antarctic sediments exhibited the most similar alginolytic profiles, whereas brackish sediments had a higher proportion of novel members. Examination of the gene context of the alginate lyase homologs revealed distinct patterns according to the phylogenetic origin of the scaffolds, with evidence of evolutionary relationships among lineages. This information is relevant for understanding carbon fluxes in cold coastal environments and provides valuable information for the development of biotechnological applications from brown algae biomass.« less

  15. Modulating action of low frequency oscillations on high frequency instabilities in Hall thrusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liqiu, Wei, E-mail: weiliqiu@gmail.com, E-mail: weiliqiu@hit.edu.cn; Liang, Han; Ziyi, Yang

    2015-02-07

    It is found that the low frequency oscillations have modulating action on high frequency instabilities in Hall thrusters. The physical mechanism of this modulation is discussed and verified by numerical simulations. Theoretical analyses indicate that the wide-range fluctuations of plasma density and electric field associated with the low frequency oscillations affect the electron drift velocity and anomalous electron transport across the magnetic field. The amplitude and frequency of high frequency oscillations are modulated by low frequency oscillations, which show the periodic variation in the time scale of low frequency oscillations.

  16. Towards science-based sediment quality standards-Effects of field-collected sediments in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Brinkmann, Markus; Eichbaum, Kathrin; Reininghaus, Mathias; Koglin, Sven; Kammann, Ulrike; Baumann, Lisa; Segner, Helmut; Zennegg, Markus; Buchinger, Sebastian; Reifferscheid, Georg; Hollert, Henner

    2015-09-01

    Sediments can act as long-term sinks for environmental pollutants. Within the past decades, dioxin-like compounds (DLCs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) have attracted significant attention in the scientific community. To investigate the time- and concentration-dependent uptake of DLCs and PAHs in rainbow trout (Oncorhynchus mykiss) and their associated toxicological effects, we conducted exposure experiments using suspensions of three field-collected sediments from the rivers Rhine and Elbe, which were chosen to represent different contamination levels. Five serial dilutions of contaminated sediments were tested; these originated from the Prossen and Zollelbe sampling sites (both in the river Elbe, Germany) and from Ehrenbreitstein (Rhine, Germany), with lower levels of contamination. Fish were exposed to suspensions of these dilutions under semi-static conditions for 90 days. Analysis of muscle tissue by high resolution gas chromatography and mass spectrometry and of bile liquid by high-performance liquid chromatography showed that particle-bound PCDD/Fs, PCBs and PAHs were readily bioavailable from re-suspended sediments. Uptake of these contaminants and the associated toxicological effects in fish were largely proportional to their sediment concentrations. The changes in the investigated biomarkers closely reflected the different sediment contamination levels: cytochrome P450 1A mRNA expression and 7-ethoxyresorufin-O-deethylase activity in fish livers responded immediately and with high sensitivity, while increased frequencies of micronuclei and other nuclear aberrations, as well as histopathological and gross pathological lesions, were strong indicators of the potential long-term effects of re-suspension events. Our study clearly demonstrates that sediment re-suspension can lead to accumulation of PCDD/Fs and PCBs in fish

  17. Sediment Burial Intolerance of Marine Macroinvertebrates.

    PubMed

    Hendrick, Vicki J; Hutchison, Zoë L; Last, Kim S

    2016-01-01

    The marine environment contains suspended particulate matter which originates from natural and anthropogenic sources. Settlement of this material can leave benthic organisms susceptible to smothering, especially if burial is sudden i.e. following storms or activities such as dredging. Their survival will depend on their tolerance to, and their ability to escape from burial. Here we present data from a multi-factorial experiment measuring burial responses incorporating duration, sediment fraction and depth. Six macroinvertebrates commonly found in sediment rich environments were selected for their commercial and/or conservation importance. Assessments revealed that the brittle star (Ophiura ophiura), the queen scallop (Aequipecten opercularis) and the sea squirt (Ciona intestinalis) were all highly intolerant to burial whilst the green urchin (Psammichinus miliaris) and the anemone (Sagartiogeton laceratus), showed intermediate and low intolerance respectively, to burial. The least intolerant, with very high survival was the Ross worm (Sabellaria spinulosa). With the exception of C. intestinalis, increasing duration and depth of burial with finer sediment fractions resulted in increased mortality for all species assessed. For C. intestinalis depth of burial and sediment fraction were found to be inconsequential since there was complete mortality of all specimens buried for more than one day. When burial emergence was assessed O. ophiura emerged most frequently, followed by P. miliaris. The former emerged most frequently from the medium and fine sediments whereas P. miliaris emerged more frequently from coarse sediment. Both A. opercularis and S. laceratus showed similar emergence responses over time, with A. opercularis emerging more frequently under coarse sediments. The frequency of emergence of S. laceratus increased with progressively finer sediment and C. intestinalis did not emerge from burial irrespective of sediment fraction or depth. Finally, and perhaps

  18. Relative variances of the cadence frequency of cycling under two differential saddle heights

    PubMed Central

    Chang, Wen-Dien; Fan Chiang, Chin-Yun; Lai, Ping-Tung; Lee, Chia-Lun; Fang, Sz-Ming

    2016-01-01

    [Purpose] Bicycle saddle height is a critical factor for cycling performance and injury prevention. The present study compared the variance in cadence frequency after exercise fatigue between saddle heights with 25° and 35° knee flexion. [Methods] Two saddle heights, which were determined by setting the pedal at the bottom dead point with 35° and 25° knee flexion, were used for testing. The relative variances of the cadence frequency were calculated at the end of a 5-minute warm-up period and 5 minutes after inducing exercise fatigue. Comparison of the absolute values of the cadence frequency under the two saddle heights revealed a difference in pedaling efficiency. [Results] Five minutes after inducing exercise fatigue, the relative variances of the cadence frequency for the saddle height with 35° knee flexion was higher than that for the saddle height with 25° knee flexion. [Conclusion] The current finding demonstrated that a saddle height with 25° knee flexion is more appropriate for cyclists than a saddle height with 35° knee flexion. PMID:27065522

  19. Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Fimpel, P.; Riek, C.; Ebner, L.; Leitenstorfer, A.; Brida, D.; Zumbusch, A.

    2018-04-01

    Stimulated Raman scattering (SRS) microscopy is an important non-linear optical technique for the investigation of unlabeled samples. The SRS signal manifests itself as a small intensity exchange between the laser pulses involved in coherent excitation of Raman modes. Usually, high-frequency modulation is applied in one pulse train, and the signal is then detected on the other pulse train via lock-in amplification. While allowing shot-noise limited detection sensitivity, lock-in detection, which corresponds to filtering the signal in the frequency domain, is not the most efficient way of using the excitation light. In this manuscript, we show that boxcar averaging, which is equivalent to temporal filtering, is better suited for the detection of low-duty-cycle signals as encountered in SRS microscopy. We demonstrate that by employing suitable gating windows, the signal-to-noise ratios achievable with lock-in detection can be realized in shorter time with boxcar averaging. Therefore, high-quality images are recorded at a faster rate and lower irradiance which is an important factor, e.g., for minimizing degradation of biological samples.

  20. Sediment oxygen profiles in a super-oxygenated antarctic lake

    NASA Technical Reports Server (NTRS)

    Wharton, R. A. Jr; Meyer, M. A.; McKay, C. P.; Mancinelli, R. L.; Simmons, G. M. Jr; Wharton RA, J. r. (Principal Investigator)

    1994-01-01

    Perennially ice-covered lakes are found in the McMurdo Dry Valleys of southern Victoria Land, Antarctica. In contrast to temperate lakes that have diurnal photic periods, antarctic (and arctic) lakes have a yearly photic period. An unusual feature of the antarctic lakes is the occurrence of O2 at supersaturated levels in certain portions of the water column. Here we report the first sediment O2 profiles obtained using a microelectrode from a perennially ice-covered antarctic lake. Sediment cores collected in January and October 1987 from Lake Hoare in Taylor Valley show oxygenation down to 15, and in some cases, 25 cm. The oxygenation of sediments several centimeters below the sediment-water interface is atypical for lake sediments and may be characteristic of perennially ice-covered lakes. There is a significant difference between the observed January and October sediment O2 profiles. Several explanations may account for the difference, including seasonality. A time-dependent model is presented which tests the feasibility of a seasonal cycle resulting from the long photoperiod and benthic primary production in sediments overlain by a highly oxygenated water column.

  1. Similar sediment provenance of low and high arsenic aquifers in Bangladesh

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Yang, Q.; Li, S.; Hemming, S. R.; Zhang, Y.; Rasbury, T.; Hemming, G.

    2017-12-01

    Geogenic arsenic (As) in drinking water, especially in groundwater, is estimated to have affected the health of over 100 million people worldwide, with nearly half of the total at risk population in Bangladesh. Sluggish flow and reducing biogeochemical environment in sedimentary aquifers have been shown as the primary controls for the release of As from sediment to the shallower groundwater in the Holocene aquifer. In contrast, deeper groundwater in the Pleistocene aquifer is depleted in groundwater As and sediment-extractable As. This study assesses the origin of the sediment in two aquifers of Bangladesh that contain distinctly different As levels to ascertain whether the source of the sediment is a factor in this difference through measurements of detrital mica Ar-Ar age, detrital zircon U-Pb age, as well as sediment silicate Sr and Nd isotopes. Whole rock geochemical data were also used to illuminate the extent of chemical weathering. Detrital mica 40Ar/39Ar cooling ages and detrital zircon U-Pb ages show no statistical difference between high-As Holocene sediment and low-As Pleistocene sediment, but suggest an aquifer sediment source of both the Brahmaputra and the Ganges rivers. Silicate 87Sr/86Sr and 143Nd/144Nd further depict a major sediment source from the Brahmaputra river, which is supported by a two end member mixing model using 87Sr/86Sr and Sr concentrations. Pleistocene and Holocene sediments show little difference in weathering of mobile elements including As, while coarser sediments and a longer history of the Pleistocene aquifer suggest that sorting and flushing play more important roles in regulating the contrast of As occurrence between these two aquifers.

  2. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high-cycle

  3. Source-to-sink cycling of aeolian sediment in the north polar region of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Kocurek, G.

    2012-12-01

    Aeolian sand dunes are prominent features on the landscapes of Earth, Mars, Venus and Titan and sedimentary deposits interpreted as aeolian in origin are found in the rock records of Earth and Mars. The widespread occurrence of aeolian dunes on the surface of these worlds and within their deep-time depositional records suggests that aeolian systems are and likely have been a default depositional environment for the Solar System. Within an aeolian source-to-sink context, we hypothesize that planet-specific boundary conditions strongly impact production, transport, accumulation and preservation of aeolian sediment, whereas dunes and dune-field patterns remain largely similar. This hypothesis is explored within the north polar region of Mars, which hosts the most extensive aeolian dune fields and aeolian sedimentary deposits yet recognized on Mars and appears to be a region of dynamic source-to-sink cycling of aeolian sediments. The Planum Boreum Cavi Unit rests beneath north polar ice cap of Mars and is composed of several hundred meters of niveo-aeolian dune cross-stratification. The overall architecture of the unit consists of sets of preserved dune topography with an upward increase in the abundance of ice. Dune sets are defined by stabilized, polygonally fractured bounding surfaces, erosional bounding surfaces and typical internal lee foresets made of sediment and ice. The accumulation of the Cavi Unit is interpreted as occurring through freezing and serves as an example of a cold temperature boundary condition on aeolian sediment accumulation. Preservation of the Cavi Unit arises because of deposition of the overlying ice cap and contrasts with preservation of aeolian sediment on Earth, which is largely driven by eustasy and tectonics. The Cavi Unit is thought to be one source of sediment for the north polar Olympia Undae Dune Field. The region of Olympia Undae near the Cavi Unit shows a reticulate dune field pattern composed of two sets of nearly orthogonal

  4. Real-Time, High-Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed

    2003-01-01

    An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction

  5. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    NASA Technical Reports Server (NTRS)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  6. Evaluation of the horizontal-to-vertical spectral ratio (HVSR) seismic method to determine sediment thickness in the vicinity of the South Well Field, Franklin County, OH

    USGS Publications Warehouse

    Haefner, Ralph J.; Sheets, Rodney A.; Andrews, Robert E.

    2011-01-01

    The horizontal-to-vertical spectral ratio (HVSR) seismic method involves analyzing measurements of ambient seismic noise in three dimensions to determine the fundamental site resonance frequency. Resonance is excited by the interaction of surface waves (Rayleigh and Love) and body waves (vertically incident shear) with the high-contrast aconstic impedance boundary at the bedrock-sediment interface. Measurements were made to determine the method's utility for estimating thickness of unconsolidated glacial sediments at 18 locations at the South Well Field, Franklin County, OH, and at six locations in Pickaway County where sediment thickness was already known. Measurements also were made near a high-capacity production well (with pumping on and off) and near a highway and a limestone quarry to examine changes in resonance frequencies over a 20-hour period. Although the regression relation for resonance frequency and sediment thickness had a relatively low [r.sup.2] (0.322), estimates of sediment thickness were, on average, within 14 percent of known thicknesses. Resonance frequencies for pumping on and pumping off were identical, although the amplitude of the peak was nearly double under pumping conditions. Resonance frequency for the 20-hour period did not change, but the amplitude of the peak changed considerably, with a maximum amplitude in the early afternoon and minimum in the very early morning hours. Clay layers within unconsolidated sediments may influence resonance frequency and the resulting regression equation, resulting in underestimation of sediment thickness; however, despite this and other complicating factors, hydrogeologists should consider this method when thickness data are needed for unconsolidated sediments.

  7. A Model-based Interpretation of Low-frequency Changes in the Carbon Cycle during the Last 120,000 years and its Implications for the Reconstruction of Atmospheric (delta) 14-C

    NASA Technical Reports Server (NTRS)

    Koehler, Peter; Muscheler, Raimund; Fischer, Hubertus

    2006-01-01

    A main caveat in the interpretation of observed changes in atmospheric (Delta)C-l4 during the last 50,000 years is the unknown variability of the carbon cycle, which together with changes in the C-14 production rates determines the C-14 dynamics. A plausible scenario explaining glacial/interglacial dynamics seen in atmospheric CO2 and (delta)C-13 was proposed recently (Kohler et al., 2005a). A similar approach that expands its interpretation to the C-14 cycle is an important step toward a deeper understanding of (Delta)C-14 variability. This approach is based on an ocean/atmosphere/biosphere box model of the global carbon cycle (BICYCLE) to reproduce low-frequency changes in atmospheric CO2 as seen in Antarctic ice cores. The model is forced forward in time by various paleoclimatic records derived from ice and sediment cores. The simulation results of our proposed scenario match a compiled CO2 record from various ice cores during the last 120,000 years with high accuracy (r(sup 2) = 0.89). We analyze scenarios with different C-14 production rates, which are either constant or based on Be-10 measured in Greenland ice cores or the recent high-resolution geomagnetic field reconstruction GLOPIS-75 and compare them with the available (Delta)C-14 data covering the last 50,000 years. Our results suggest that during the last glacial cycle in general less than 110%0o f the increased atmospheric (Delta)C-14 is based on variations in the carbon cycle, while the largest part (5/6) of the variations has to be explained by other factors. Glacial atmospheric (Delta)C-14 larger than 700% cannot not be explained within our framework, neither through carbon cycle-based changes nor through variable C-14 production. Superimposed on these general trends might lie positive anomalies in atmospheric (Delta)C-14 of approx. 50% caused by millennial-scale variability of the northern deep water production during Heinrich events and Dansgaard/Oeschger climate fluctuations. According to our

  8. Patterns and controls of mercury accumulation in sediments from three thermokarst lakes on the Arctic Coastal Plain of Alaska

    USGS Publications Warehouse

    Burke, Samantha M.; Zimmerman, Christian E.; Branfireun, Brian A.; Koch, Joshua C.; Swanson, Heidi K.

    2018-01-01

    The biogeochemical cycle of mercury will be influenced by climate change, particularly at higher latitudes. Investigations of historical mercury accumulation in lake sediments inform future predictions as to how climate change might affect mercury biogeochemistry; however, in regions with a paucity of data, such as the thermokarst-rich Arctic Coastal Plain of Alaska (ACP), the trajectory of mercury accumulation in lake sediments is particularly uncertain. Sediment cores from three thermokarst lakes on the ACP were analyzed to understand changes in, and drivers of, Hg accumulation over the past ~ 100 years. Mercury accumulation in two of the three lakes was variable and high over the past century (91.96 and 78.6 µg/m2/year), and largely controlled by sedimentation rate. Mercury accumulation in the third lake was lower (14.2 µg/m2/year), more temporally uniform, and was more strongly related to sediment Hg concentration than sedimentation rate. Sediment mercury concentrations were quantitatively related to measures of sediment composition and VRS-inferred chlorophyll a, and sedimentation rates were related to various catchment characteristics. These results were compared to data from 37 previously studied Arctic and Alaskan lakes. Results from the meta-analysis indicate that thermokarst lakes have significantly higher and more variable Hg accumulation rates than non-thermokarst lakes, suggesting that certain properties (e.g., thermal erosion, thaw slumping, low hydraulic conductivity) likely make lakes prone to high and variable Hg accumulation rates. Differences and high variability in Hg accumulation among high latitude lakes highlight the complexity of predicting future climate-related change impacts on mercury cycling in these environments.

  9. Evidence of resonant mode coupling and the relationship between low and high frequencies in a rapidly rotating a star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breger, M.; Montgomery, M. H.

    In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day{sup –1} (asmore » well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day{sup –1} in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.« less

  10. Navy Applications of High-Frequency Acoustics

    NASA Astrophysics Data System (ADS)

    Cox, Henry

    2004-11-01

    Although the emphasis in underwater acoustics for the last few decades has been in low-frequency acoustics, motivated by long range detection of submarines, there has been a continuing use of high-frequency acoustics in traditional specialized applications such as bottom mapping, mine hunting, torpedo homing and under ice navigation. The attractive characteristics of high-frequency sonar, high spatial resolution, wide bandwidth, small size and relatively low cost must be balanced against the severe range limitation imposed by attenuation that increases approximately as frequency-squared. Many commercial applications of acoustics are ideally served by high-frequency active systems. The small size and low cost, coupled with the revolution in small powerful signal processing hardware has led to the consideration of more sophisticated systems. Driven by commercial applications, there are currently available several commercial-off-the-shelf products including acoustic modems for underwater communication, multi-beam fathometers, side scan sonars for bottom mapping, and even synthetic aperture side scan sonar. Much of the work in high frequency sonar today continues to be focused on specialized applications in which the application is emphasized over the underlying acoustics. Today's vision for the Navy of the future involves Autonomous Undersea Vehicles (AUVs) and off-board ASW sensors. High-frequency acoustics will play a central role in the fulfillment of this vision as a means of communication and as a sensor. The acoustic communication problems for moving AUVs and deep sensors are discussed. Explicit relationships are derived between the communication theoretic description of channel parameters in terms of time and Doppler spreads and ocean acoustic parameters, group velocities, phase velocities and horizontal wavenumbers. Finally the application of synthetic aperture sonar to the mine hunting problems is described.

  11. High frequency switched-mode stimulation can evoke post synaptic responses in cerebellar principal neurons

    PubMed Central

    van Dongen, Marijn N.; Hoebeek, Freek E.; Koekkoek, S. K. E.; De Zeeuw, Chris I.; Serdijn, Wouter A.

    2015-01-01

    This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100 kHz) duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation. These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency. PMID:25798105

  12. New high-frequency weldable polyolefin films.

    PubMed

    Kelch, R

    2000-05-01

    There is an increasing desire for plastic films that can be sealed using high-frequency energy. Tests on new high-frequency polyolefin film structures are reported, which compare them with the characteristics and performance of poly(vinyl chloride), ethylene-vinyl acetate and thermoplastic polyurethane films.

  13. Trace metal cycling and 238U/235U in New Zealand's fjords: Implications for reconstructing global paleoredox conditions in organic-rich sediments

    NASA Astrophysics Data System (ADS)

    Hinojosa, Jessica L.; Stirling, Claudine H.; Reid, Malcolm R.; Moy, Christopher M.; Wilson, Gary S.

    2016-04-01

    Reconstructing the history of ocean oxygenation provides insight into links between ocean anoxia, biogeochemical cycles, and climate. Certain redox-sensitive elements respond to changes in marine oxygen content through phase shifts and concomitant isotopic fractionation, providing new diagnostic proxies of past ocean hypoxia. Here we explore the behavior and inter-dependence of a suite of commonly utilized redox-sensitive trace metals (U, Mo, Fe, and Mn) and the emerging ;stable; isotope system of U (238U/235U, or δ238U) in New Zealand fjords. These semi-restricted basins have chemical conditions spanning the complete redox spectrum from fully oxygenated to suboxic to intermittently anoxic/euxinic. In the anoxic water column, U and Mo concentrations decrease, while Fe and Mn concentrations increase. Similarly, signals of past euxinic conditions can be found by U, Mo, Fe, and Mn enrichment in the underlying sediments. The expected U isotopic shift toward a lower δ238U in the anoxic water column due to U(VI)-U(IV) reduction is not observed; instead, water column δ238U profiles are consistent in fjords of all oxygen content, falling within previously reported ranges for open ocean seawater (δ238U = -0.42 ± 0.07‰). Additionally, surface sediment δ238U results show evidence for competing U isotope fractionation processes. One site indicates increased export of 238U from seawater to the underlying sediments (fractionation between aqueous seawater U and particulate sediment U, or ΔU(aq)-U(solid) = -0.25‰), consistent with redox-driven fractionation. Another site suggests potential U(VI) adsorption-driven fractionation, reflecting increased export of 235U from seawater to sediments (ΔU(aq)-U(solid) = 0.25‰). We discuss several potential factors that could alter δ238U in waters and sediments beyond redox-driven shifts, including adsorption to organic matter in waters of high primary productivity, reaction rates for competing processes of U adsorption and

  14. Insights in nutrient sources and transport from high-frequency monitoring at the outlet pumping station of an agricultural lowland polder catchment

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J.; Van der Grift, B.; Broers, H. P.; Berendrecht, W.; Oste, L.; Griffioen, J.

    2015-12-01

    In this study, we present new insights in nutrient sources and transport processes in an agricultural-dominated lowland water system based on high-frequency monitoring technology. Starting in October 2014, we have collected semi-continuous measurements of the TP and NO3 concentrations, conductivity and water temperature at a large scale pumping station at the outlet of a 576 km2 polder catchment. The semi-continuous measurements complement a water quality monitoring program at six locations within the drainage area based on conventional monthly or biweekly grab sampling. The NO3 and TP concentrations at the pumping station varied between 0.5 and 10 mgN/L and 0.1 and 0.5 mgP/L. The seasonal trends and short scale concentration dynamics clearly indicated that most of the NO3 loads at the pumping station originated from subsurface drain tubes that were active after intensive rainfall events during the winter months. A transfer function-noise model of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be predicted using rainfall data. In February however, NO3 concentrations were higher than predicted due to direct losses after the first manure application. The TP concentration almost doubled during operation of the pumping station. This highlights resuspension of particulate P from channel bed sediments induced by the higher flow velocities during pumping. Rainfall events that caused peaks in NO3 concentrations did not result in TP concentration peaks. Direct effects of run-off, with an association increase in the TP concentration and decrease of the NO3concentration, was only observed during rainfall event at the end of a freeze-thaw cycle. The high-frequency monitoring at the outlet of an agricultural-dominated lowland water system in combination with low-frequency monitoring within the area provided insight in nutrient sources and transport processes that are highly relevant for water quality

  15. Facies analysis of Lofer cycles (Upper Triassic), in the Argolis Peninsula (Greece)

    NASA Astrophysics Data System (ADS)

    Pomoni-Papaioannou, F.

    a sea-level drop, reflect allocyclic control via high-frequency eustatic sea-level oscillation (orbital forcing). Sediment deposition occurred during low-stand system tract (LST), that probably continued also in the transgressive system tract (TST) and reflects an overall sea-level fall. Under these conditions dissolution and cement precipitation episodes, as well development of paleosols and karsts, were triggered, during a relatively less arid interval.

  16. Near-bed observations of high-concentration sediment transport in the Changjiang Estuary

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Ge, J.; Ding, P.

    2017-12-01

    The North Passage, the core of turbidity maximum in the Changjiang Estuary, is now under the strong sedimentation due to the abundant sediment supply from the upstream Changjiang River and the river-tide interacted dynamics. Recent studies suggested that strong siltation could be attributed to bottom high-concentration sediment transport, which however is very difficult to be detected and observed by vessel-anchored survey methods. To better understand the mechanisms of sediment transport and deposition in the channel region of the North Passage and its adjacent areas, we conducted continuous field observations which covered spring and neap tide period in the wintertime of 2016, the summertime of 2015 and 2017, focusing on near-bottom sediment transport. Tripods mounted with multiple instruments, including up-looking and down-looking Acoustic Doppler Current Profilers(ADCP), Vector Current Meter(ADV), Optical Backscatter Sensor(OBS), ASM, ALEC and RBR were used to observe the near-bottom physical process and its induced sediment dynamics. Results of these observations clearly described the current-wave-sediment interaction, which produced different patterns of bottom mud suspension at different tripods. Both hydrodynamic features and suspended sediment showed variations between spring and neap tide. Taking data of 2016 as an example, averaged suspended sediment concentration(SSC) at two tripods was 1.52 g/L and 2.13 g/L during the neap tide, 4.51 g/L and 5.75 g/L with the peak value reaching 25 g/L during the spring tide. At the tripod which was closer to the channel region, three peaks of SSC during the spring tide occurred near the flood slack with notable salinity increase, indicating the impact of saltwater intrusion on the bottom hydrodynamics. The results showed the occurrence of high-concentration suspended sediment was probably related to combined effects of bottom salinity intrusion, turbulent kinetic energy(TKE) and local stratification due to density

  17. Rapid climatic signal propagation from source to sink in a southern California sediment-routing system

    USGS Publications Warehouse

    Covault, J.A.; Romans, B.W.; Fildani, A.; McGann, M.; Graham, S.A.

    2010-01-01

    Terrestrial source areas are linked to deep-sea basins by sediment-routing systems, which only recently have been studied with a holistic approach focused on terrestrial and submarine components and their interactions. Here we compare an extensive piston-core and radiocarbon-age data set from offshore southern California to contemporaneous Holocene climate proxies in order to test the hypothesis that climatic signals are rapidly propagated from source to sink in a spatially restricted sediment-routing system that includes the Santa Ana River drainage basin and the Newport deep-sea depositional system. Sediment cores demonstrate that variability in rates of Holocene deep-sea turbidite deposition is related to complex ocean-atmosphere interactions, including enhanced magnitude and frequency of the North American monsoon and El Ni??o-Southern Oscillation cycles, which increased precipitation and fluvial discharge in southern California. This relationship is evident because, unlike many sediment-routing systems, the Newport submarine canyon-and-channel system was consistently linked tothe Santa Ana River,which maintained sediment delivery even during Holocene marine transgression and highstand. Results of this study demonstrate the efficiency of sediment transport and delivery through a spatially restricted, consistently linked routing system and the potential utility of deep-sea turbidite depositional trends as paleoclimate proxies in such settings. ?? 2010 by The University of Chicago.

  18. Large sized non-uniform sediment transport at high capacity on steep slopes

    NASA Astrophysics Data System (ADS)

    Fu, X.; Zhang, L.; Duan, J. G.

    2015-12-01

    Transport of large-sized particles such as cobbles in steep streams still remains poorly understood in spite of its importance in mountain stream morphdynamics. Here we explored the law of cobble transport and the effect of cobble existence on gravel bed material transport, using flume experiments with a steep slope (4.9%) and water and sediment constantly supplying. The experiments were conducted in an 8 m long and 0.6 m wide circulating flume with the maximal size up to 90 mm and cobble concentrations in the sediment bed ranging from 22 percent to 6 percent. The sediment transport rate is on the order of 1000 g/m/s, which could be taken as high rate transport compared with existing researches. Bed load transport rate and flow variables were measured after the flume reached an equilibrium state. Bed surface topography was also measured by applying Kinect range camera before and after each run in order to analyze the fractal characteristics of the bed surface under different flow conditions. Critical shear stress of each size friction was estimated from the reference transport method (RTM) and a new hiding function was recommended. Preliminary results show that the bed was nearly in an equal mobility transport regime. We then plot dimensionless fractional transport rate versus dimensionless shear stress and assess the existing bed load transport formulas of non-uniform sediments for their applicability at high sediment transport capacity. This study contributes to the comprehension of high rate sediment transport on steep slopes.

  19. High-frequency ECG

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  20. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  1. Water-level fluctuations influence sediment porewater ...

    EPA Pesticide Factsheets

    Reservoirs typically have elevated fish mercury (Hg) levels compared to natural lakes and rivers. A unique feature of reservoirs is water-level management which can result in sediment exposure to the air. The objective of this study is to identify how reservoir water-level fluctuations impact Hg cycling, particularly the formation of the more toxic and bioaccumulative methylmercury (MeHg). Total-Hg (THg), MeHg, stable isotope methylation rates and several ancillary parameters were measured in reservoir sediments (including some in porewater and overlying water) that are seasonally and permanently inundated. The results showed that sediment and porewater MeHg concentrations were over 3-times higher in areas experiencing water-level fluctuations compared to permanently inundated sediments. Analysis of the data suggest that the enhanced breakdown of organic matter in sediments experiencing water-level fluctuations has a two-fold effect on stimulating Hg methylation: 1) it increases the partitioning of inorganic Hg from the solid phase into the porewater phase (lower log Kd values) where it is more bioavailable for methylation; and 2) it increases dissolved organic carbon (DOC) in the porewater which can stimulate the microbial community that can methylate Hg. Sulfate concentrations and cycling were enhanced in the seasonally inundated sediments and may have also contributed to increased MeHg production. Overall, our results suggest that reservoir management a

  2. Recycling of Pleistocene valley fills dominates 125 ka of sediment flux, upper Indus River

    NASA Astrophysics Data System (ADS)

    Munack, Henry; Blöthe, Jan Henrik; Fülöp, Réka-Hajnalka; Codilean, Alexandru T.; Fink, David; Korup, Oliver

    2016-04-01

    Rivers draining the semiarid Transhimalayan Ranges along the western Tibetan Plateau margin underwent alternating phases of massive valley infill and incision in Pleistocene times. The imprints of these cut-and-fill cycles on long-term sediment fluxes have remained largely elusive. We investigate the timing and geomorphic consequences of headward incision of the Zanskar River, which taps the vast More Plains valley fill that currently impedes drainage of the endorheic high-altitude basins of Tso Kar and Tso Moriri. In situ 10Be exposure dating and topographic analyses indicate that a phase of valley infill gave way to net dissection of the >250-m thick sedimentary stacks ˜125 ka ago, i.e. during the last interglacial (MIS 5e). Rivers eroded >14.7 km3 of sediment from the Zanskar headwaters since then, fashioning specific sediment yields that surpass 10Be-derived denudation rates from neighbouring catchments by factors of two to ten. We conclude that recycling of Pleistocene valley fills has provided Transhimalayan headwater rivers with more sediment than bedrock denudation, at least since the beginning of the last glacial cycle. This protracted liberation of sediment stored in thick valley fills could bias rate estimates of current sediment loads and long-term bedrock denudation.

  3. Recent advances in the use of estuarine meiobenthos to assess contaminated sediment effects in multi-species whole sediment microcosms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, G.T.; Coull, B.C.; Schizas, N.V.

    1995-12-31

    Many marine meiobenthic taxa (i.e. invertebrates passing a 1-mm sieve but retaining on a 0.063 mm sieve) are ideal for ``whole-sediment`` and porewater bioassay of sedimented pollutants. Annual production of meiobenthos is 5--10 times that of the more commonly studied macrobenthos, and > 95% of all meiobenthos live in the oxic zone of muddy sediments at densities of 4--12 million per M{sup 2}. Most spend their entire lifecycles, burrowing freely and feeding on/within the sediment:porewater matrix, many taxa undergo 10--14 generations per year, most larval/juvenile stages are benthic, and many have easily quantifiable reproductive output. Furthermore, many meiobenthic taxa canmore » be cultured indefinitely over multiple life-cycles within simple sediment microcosms consisting of sealed whole-sediment cores collected intact from intertidal mudflats. The authors describe several recent technical developments exploiting meiofaunal sediment culture for rapid contaminated sediment bioassays of toxicant effects on survival, reproduction and population growth of meiobenthic taxa in whole-sediment microcosms. Currently meiobenthic copepods, nematodes, foraminifers and polychaetes are being continuously cultured to study these parameters under exposure to model sediment-associated toxicants (e.g. cadmium). Bioassays are run for 21-d under flowing seawater. With this approach, fertile benthic copepods (e.g. Amphiascus tenuiremis) can be added to core microcosms to assess survival and growth of a fixed population cohort. All other meiobenthic taxa are enumerated relative to controls and evaluated for toxicant effects on higher order community-level endpoints. This approach exploits meiobenthos` high abundance and rapid reproductive rates to yield on a micro scale better endpoints than much larger sediment mesocosms targeted at macrofaunal endpoints.« less

  4. Comparative sequence stratigraphy of low-latitude versus high-latitude lacustrine rift basins: Seismic data examples from the East African and Baikal rifts

    USGS Publications Warehouse

    Scholz, C.A.; Moore, T.C.; Hutchinson, D.R.; Golmshtok, A. Ja; Klitgord, Kim D.; Kurotchkin, A.G.

    1998-01-01

    Lakes Baikal, Malawi and Tanganyika are the world's three largest rift valley lakes and are the classic modem examples of lacustrine rift basins. All the rift lakes are segmented into half-graben basins, and seismic reflection datasets reveal how this segmentation controls the filling of the rift basins through time. In the early stages of rifting, basins are fed primarily by flexural margin and axial margin drainage systems. At the climax of syn-rift sedimentation, however, when the basins are deeply subsided, almost all the margins are walled off by rift shoulder uplifts, and sediment flux into the basins is concentrated at accommodation zone and axial margin river deltas. Flexural margin unconformities are commonplace in the tropical lakes but less so in high-latitude Lake Baikal. Lake levels are extremely dynamic in the tropical lakes and in low-latitude systems in general because of the predominance of evaporation in the hydrologic cycle in those systems. Evaporation is minimized in relation to inflow in the high-latitude Lake Baikal and in most high-latitude systems, and consequently, major sequence boundaries tend to be tectonically controlled in that type of system. The acoustic stratigraphies of the tropical lakes are dominated by high-frequency and high-amplitude lake level shifts, whereas in high-latitude Lake Baikal, stratigraphic cycles are dominated by tectonism and sediment-supply variations.

  5. Exploring Microbial Life in Oxic Sediments Underlying Oligotrophic Ocean Gyres

    NASA Astrophysics Data System (ADS)

    Ziebis, W.; Orcutt, B.; Wankel, S. D.; D'Hondt, S.; Szubin, R.; Kim, J. N.; Zengler, K.

    2015-12-01

    Oxygen, carbon and nutrient availability are defining parameters for microbial life. In contrast to organic-rich sediments of the continental margins, where high respiration rates lead to a depletion of O2 within a thin layer at the sediment surface, it was discovered that O2 penetrates several tens of meters into organic-poor sediments underlying oligotrophic ocean gyres. In addition, nitrate, another important oxidant, which usually disappears rapidly with depth in anoxic sediments, tends to accumulate above seawater concentrations in the oxic subsurface, reflecting the importance of nitrogen cycling processes, including both nitrification and denitrification. Two IODP drilling expeditions were vital for exploring the nature of the deep subsurface beneath oligotrophic ocean gyres, expedition 329 to the South Pacific Gyre (SPG) and expedition 336 to North Pond, located on the western flank of the Mid-Atlantic ridge beneath the North Atlantic Gyre. Within the ultra-oligotrophic SPG O2 penetrates the entire sediment column from the sediment-water interface to the underlying basement to depths of > 75 m. At North Pond, a topographic depression filled with sediment and surrounded by steep basaltic outcrops, O2 penetrates deeply into the sediment (~ 30 m) until it eventually becomes depleted. O2 also diffuses upward into the sediment from seawater circulating within the young crust underlying the sediment, resulting in a deep oxic layer several meters above the basalt. Despite low organic carbon contents microbial cells persist throughout the entire sediment column within the SPG (> 75 m) and at North Pond, albeit at low abundances. We explored the nature of the subsurface microbial communities by extracting intact cells from large volumes of sediment obtained from drill cores of the two expeditions. By using CARD-FiSH, amplicon (16s rRNA) and metagenome sequencing we shed light on the phylogenetic and functional diversity of the elusive communities residing in the

  6. Intertidal Concentrations of Microplastics and Their Influence on Ammonium Cycling as Related to the Shellfish Industry.

    PubMed

    Cluzard, Melanie; Kazmiruk, Tamara N; Kazmiruk, Vasily D; Bendell, L I

    2015-10-01

    Microplastics are ubiquitous within the marine environment. The last 10 years have seen research directed at understanding the fate and effect of microplastics within the marine environment; however, no studies have yet addressed how concentrations of these particles could affect sedimentary processes such as nutrient cycling. Herein we first determine the concentration and spatial distribution of microplastics within Baynes Sound, a key shellfish-growing area within coastal British Columbia (BC). We also determined sediment grain size and % organic matter (OM) such that we could relate spatial patterns in sediment microplastic concentrations to sedimentary processes that determine zones of accretion and erosion. Using field-determined concentrations of microplastics, we applied laboratory microcosms studies, which manipulated sediment concentrations of microplastics, OM, and bivalves to determine the influence of sediment microplastics on ammonium cycling within intertidal sediments. Concentrations of microplastics determined within the intertidal sediment varied spatially and were similar to those found in other coastal regions of high urban use. Concentrations were independent of grain size and OM suggesting that physical processes other than those that govern natural sediment components determine the fate of microplastics within sediments. Under laboratory conditions, concentrations of ammonium were significantly greater in the overlying water of treatments with microplastics, clams, and OM compared with treatments without microplastics. These preliminary studies suggest that high concentrations of microplastics have the potential to alter key sedimentary processes such as ammonium flux. This could have serious implications, for example, contributing to eutrophication events in regions of the coast that are highly urbanized.

  7. Characterizing the Fate and Mobility of Phosphorus in Utah Lake Sediments

    NASA Astrophysics Data System (ADS)

    Randall, M.; Carling, G. T.; Nelson, S.; Bickmore, B.; Miller, T.

    2016-12-01

    An increasing number of lakes worldwide are impacted by eutrophication and harmful algal blooms due to nutrient inputs. Utah Lake, located in northern Utah, is a eutrophic freshwater lake that is unique because it is naturally shallow, turbid, and alkaline with high dissolved oxygen levels. Recently, the Utah Division of Water Quality has proposed a new rule to limit phosphorus (P) loading to Utah Lake from wastewater treatment plants in an effort to mitigate eutrophication. However, reducing external P loads may not lead to immediate improvements in water quality due to the legacy pool of nutrients in lake sediments. The purpose of this study is to characterize the fate and mobility of P in Utah Lake to better understand P cycling in this unique system. We analyzed P speciation, mineralogy, and binding capacity in lake sediment samples collected from 9 locations across Utah Lake. P concentrations in sediment ranged from 1120 to 1610 ppm, with highest concentrations in Provo Bay near the major metropolitan area. Likewise, P concentrations in sediment pore water were highest in Provo Bay with concentrations up to 4 mg/L. Sequential leach tests indicate that 30-45% of P is bound to apatite and another 40-55% is adsorbed onto the surface of redox sensitive Fe/Mn hydroxides. This was confirmed by SEM images, which showed the highest P concentrations correlating with both Ca (apatite) and Fe (Fe hydroxides). The apatite-bound P fraction is likely immobile, but the P fraction sorbed to Fe/Mn hydroxides is potentially bioavailable under changing redox conditions. Batch sorption results indicate that lake sediments have a high capacity to absorb and remove P from the water column, with an average uptake of 70-96% of P from spiked surface water with concentrations ranging from 1-10 mg/L. Mineral precipitation and sorption to bottom sediments is an efficient removal mechanism of P in Utah Lake, but a significant portion of P may be available for resuspension and cycling in

  8. High-precision measurements of wetland sediment elevation. I. Recent improvements to the sedimentation--erosion table

    USGS Publications Warehouse

    Cahoon, D.R.; Lynch, J.C.; Hensel, P.; Boumans, R.; Perez, B.C.; Segura, B.; Day, J.W.

    2002-01-01

    The sedimentation-erosion table (SET) developed by Boumans and Day (1993) is herein renamed the surface elevation table (SET) to better reflect the conceptual view of the processes being measured. The SET was designed for making high-resolution measurements of small-scale changes in elevation of loose, unconsolidated sediments in shallow water and mudflat habitats. The SET has undergone three major improvements to increase precision and so that it can be used to measure sediment elevation in vegetated wetlands as well as shallow water habitats. The remote-release 'sliding plate' mechanism has been replaced with a single plate, collars (first 2.5 cm then 7.5 cm in length) have been attached to the plate to reduce play in the placement of the measuring pins, and the brass measuring pins have been replaced with fiberglass pins to reduce bending and consequent loss of precision. Under ideal laboratory conditions, the 95% confidence limit for individual pin measurements averaged about A? 1.4 mm (range A? 0.7 to A? 1.9 mm). These modifications have resulted in a reduction of error by about 50%.

  9. Quantifying and tracing sediment mobilized during the 20th century in the South River watershed, western Massachusetts

    NASA Astrophysics Data System (ADS)

    Dow, S.; Snyder, N. P.; Ouimet, W. B.; Martini, A. M.; Yellen, B.; Woodruff, J. D.; Newton, R. M.

    2016-12-01

    New England has a long history of anthropogenic activity affecting the landscape, including deforestation, land use changes, and the construction of dams. Dams in particular have the ability to impound vast quantities of sediment eroded off the landscape. The South River in western Massachusetts is an example of a watershed where mill dam construction coincided with deforestation during the 17th-19th centuries, leading to the impoundment of legacy sediment. Along the river, these deposits act as a source of sediment being released back into the river. The Conway Electric Dam (CED), a 17 m tall dam built in 1906, is located downstream of the mill dams (most of which are no longer intact), and provides a 20th century depositional record for the watershed. The purpose of this study is to quantify sedimentation behind the CED and link this to erosion of upstream mill pond and glacial sediment sources using aerial photography, sediment cores, grainsize, and geochemical analyses. We used aerial photographs to map areal changes of the reservoir from 1940-1980, and topographic profiles generated from LiDAR to estimate a volume of 244,000 m3 of sediment stored behind the CED. We dated layers in cores collected at the site with Hg and 137Cs analyses. Overall, the reservoir exhibits a decreasing rate of sediment infilling occurring from 1940-1980, except for a potentially anomalous increase from 1940-1952. Discharge data containing large storm events were compared to sediment infilling rates to identify if a frequency of large storms could account for high rates of erosion and sediment transport; however, sedimentation at the site does not appear to be solely dependent on these large storm events. Preliminary Hg analyses of deposits from the watershed upstream of the CED indicate higher concentrations in mill pond sediment than glacial sediment. Ongoing work with geochemical tracers can potentially provide a robust understanding of sources and 20th century sediment

  10. Identifying sediment sources in the sediment TMDL process

    USGS Publications Warehouse

    Gellis, Allen C.; Fitzpatrick, Faith A.; Schubauer-Berigan, Joseph P.; Landy, R.B.; Gorman Sanisaca, Lillian E.

    2015-01-01

    Sediment is an important pollutant contributing to aquatic-habitat degradation in many waterways of the United States. This paper discusses the application of sediment budgets in conjunction with sediment fingerprinting as tools to determine the sources of sediment in impaired waterways. These approaches complement monitoring, assessment, and modeling of sediment erosion, transport, and storage in watersheds. Combining the sediment fingerprinting and sediment budget approaches can help determine specific adaptive management plans and techniques applied to targeting hot spots or areas of high erosion.

  11. High-cycle electromechanical aging of dielectric elastomer actuators with carbon-based electrodes

    NASA Astrophysics Data System (ADS)

    de Saint-Aubin, C. A.; Rosset, S.; Schlatter, S.; Shea, H.

    2018-07-01

    We present high-cycle aging tests of dielectric elastomer actuators (DEAs) based on silicone elastomers, reporting on the time-evolution of actuation strain and of electrode resistance over millions of cycles. We compare several types of carbon-based electrodes, and for the first time show how the choice of electrode has a dramatic influence on DEA aging. An expanding circle DEA configuration is used, consisting of a commercial silicone membrane with the following electrodes: commercial carbon grease applied manually, solvent-diluted carbon grease applied by stamping (pad printing), loose carbon black powder applied manually, carbon black powder suspension applied by inkjet-printing, and conductive silicone-carbon composite applied by stamping. The silicone-based DEAs with manually applied carbon grease electrodes show the shortest lifetime of less than 105 cycles at 5% strain, while the inkjet-printed carbon powder and the stamped silicone-carbon composite make for the most reliable devices, with lifetimes greater than 107 cycles at 5% strain. These results are valid for the specific dielectric and electrode configurations that were tested: using other dielectrics or electrode formulations would lead to different lifetimes and failure modes. We find that aging (as seen in the change in resistance and in actuation strain versus cycle number) is independent of the actuation frequency from 10 Hz to 200 Hz, and depends on the total accumulated time the DEA spends in an actuated state.

  12. Bioirrigation impacts on sediment respiration and microbial metabolic activity

    NASA Astrophysics Data System (ADS)

    Baranov, V. A.; Lewandowski, J.; Romeijn, P.; Krause, S.

    2015-12-01

    Some bioturbators build tubes in the sediment and pump water through their burrows (ventilation). Oxygen is transferred through the burrow walls in the adjacent sediment (bioirrigation). Bioirrigation is playing a pivotal role in the mediation of biogeochemical processes in lake sediments and has the potential to enhance nutrient cycling. The present study investigates the impact of bioirrigation on lake sediment metabolism, respiration rates and in particular, the biogeochemical impacts of bioirrigation intensity as a function of organism density. We therefore apply the bioreactive Resazurin/Resorufin smart tracer system for quantifying the impact of different densities of Chironomidae (Diptera) larvae (0-2112 larvae/m2) on lake sediment respiration in a microcosm experiment. Tracer decay has been found to be proportional to the amount of the aerobic respiration at the sediment-water interface. Tracer transformation was in good agreement with Chironomidae density (correlation, r=0.9). Tracer transformation rates (and sediment respiration) were found to be correlated to Chironomidae density, with highest transformation rates observed in the microcosms with highest density of 2112 larvae/m2. This relationship was not linear though, with sediment respiration rates at the highest larvae densities declining from the linear trend predicted from lower and intermediate larvae density-respiration relationships. We interpret this effect as a density dependent suppression of the Chironomid's metabolic activity. The observations of this study have implications for eutrophied lakes with high densities of bioirrigators. Despite high density of bioirrigirrigating benthos, mineralization of the organic matter in such habitats would likely be lower than in lakes with intermediate densities of the bioturbators.

  13. Velocity field measurements on high-frequency, supersonic microactuators

    NASA Astrophysics Data System (ADS)

    Kreth, Phillip A.; Ali, Mohd Y.; Fernandez, Erik J.; Alvi, Farrukh S.

    2016-05-01

    The resonance-enhanced microjet actuator which was developed at the Advanced Aero-Propulsion Laboratory at Florida State University is a fluidic-based device that produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet that flows into a cylindrical cavity with a single, 1-mm-diameter exhaust orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1-mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and two-component particle image velocimetry. These are the first direct measurements of the velocity fields produced by such actuators. Comparisons are made between the flow visualizations and the velocity field measurements. The results clearly show that the microactuator produces pulsed, supersonic jets with velocities exceeding 400 m/s for roughly 60 % of their cycles. With high unsteady momentum output, this type of microactuator has potential in a range of ow control applications.

  14. Re-assessing the nitrogen signal in continental margin sediments: New insights from the high northern latitudes

    NASA Astrophysics Data System (ADS)

    Knies, Jochen; Brookes, Steven; Schubert, Carsten J.

    2007-01-01

    Organic and inorganic nitrogen and their isotopic signatures were studied in continental margin sediments off Spitsbergen. We present evidence that land-derived inorganic nitrogen strongly dilutes the particulate organic signal in coastal and fjord settings and accounts for up to 70% of the total nitrogen content. Spatial heterogeneity in inorganic nitrogen along the coast is less likely to be influenced by clay mineral assemblages or various substrates than by the supply of terrestrial organic matter (TOM) within eroded soil material into selected fjords and onto the shelf. The δ15N signal of the inorganic nitrogen ( δ15N inorg) in sediments off Spitsbergen seems to be appropriate to trace TOM supply from various climate- and ecosystem zones and elucidates the dominant transport media of terrigenous sediments to the marine realm. Moreover, we postulate that with the study of sedimentary δ15N inorg in the Atlantic-Arctic gateway, climatically induced changes in catchment's vegetations in high northern latitudes may be reconstructed. The δ15N org signal is primarily controlled by the availability of nitrate in the dominating ocean current systems and the corresponding degree of utilization of the nitrate pool in the euphotic zone. Not only does this new approach allow for a detailed view into the nitrogen cycle for settings with purely primary-produced organic matter supply, it also provides new insights into both the deposition of marine and terrestrial nitrogen and its ecosystem response to (paleo-) climate changes.

  15. High frequency circular translation pin-on-disk method for accelerated wear testing of ultrahigh molecular weight polyethylene as a bearing material in total hip arthroplasty.

    PubMed

    Saikko, Vesa

    2015-01-21

    The temporal change of the direction of sliding relative to the ultrahigh molecular weight polyethylene (UHMWPE) component of prosthetic joints is known to be of crucial importance with respect to wear. One complete revolution of the resultant friction vector is commonly called a wear cycle. It was hypothesized that in order to accelerate the wear test, the cycle frequency may be substantially increased if the circumference of the slide track is reduced in proportion, and still the wear mechanisms remain realistic and no overheating takes place. This requires an additional slow motion mechanism with which the lubrication of the contact is maintained and wear particles are conveyed away from the contact. A three-station, dual motion high frequency circular translation pin-on-disk (HF-CTPOD) device with a relative cycle frequency of 25.3 Hz and an average sliding velocity of 27.4 mm/s was designed. The pins circularly translated at high frequency (1.0 mm per cycle, 24.8 Hz, clockwise), and the disks at low frequency (31.4mm per cycle, 0.5 Hz, counter-clockwise). In a 22 million cycle (10 day) test, the wear rate of conventional gamma-sterilized UHMWPE pins against polished CoCr disks in diluted serum was 1.8 mg per 24 h, which was six times higher than that in the established 1 Hz CTPOD device. The wear mechanisms were similar. Burnishing of the pin was the predominant feature. No overheating took place. With the dual motion HF-CTPOD method, the wear testing of UHMWPE as a bearing material in total hip arthroplasty can be substantially accelerated without concerns of the validity of the wear simulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Arsenic Redistribution Between Sediments and Water Near a Highly Contaminated Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keimowitz,A.; Zheng, Y.; Chillrud, S.

    2005-01-01

    Mechanisms controlling arsenic partitioning between sediment, groundwater, porewaters, and surface waters were investigated at the Vineland Chemical Company Superfund site in southern New Jersey. Extensive inorganic and organic arsenic contamination at this site (historical total arsenic >10 000 {micro}g L{sup -1} or >130 {micro}M in groundwater) has spread downstream to the Blackwater Branch, Maurice River, and Union Lake. Stream discharge was measured in the Blackwater Branch, and water samples and sediment cores were obtained from both the stream and the lake. Porewaters and sediments were analyzed for arsenic speciation as well as total arsenic, iron, manganese, and sulfur, and theymore » indicate that geochemical processes controlling mobility of arsenic were different in these two locations. Arsenic partitioning in the Blackwater Branch was consistent with arsenic primarily being controlled by sulfur, whereas in Union Lake, the data were consistent with arsenic being controlled largely by iron. Stream discharge and arsenic concentrations indicate that despite large-scale groundwater extraction and treatment, >99% of arsenic transport away from the site results from continued discharge of high arsenic groundwater to the stream, rather than remobilization of arsenic in stream sediments. Changing redox conditions would be expected to change arsenic retention on sediments. In sulfur-controlled stream sediments, more oxic conditions could oxidize arsenic-bearing sulfide minerals, thereby releasing arsenic to porewaters and streamwaters; in iron-controlled lake sediments, more reducing conditions could release arsenic from sediments via reductive dissolution of arsenic-bearing iron oxides.« less

  17. Statistical Prediction of Solar Particle Event Frequency based on the Measurements of Recent Solar Cycles for Acute Radiation Risk Analysis

    NASA Astrophysics Data System (ADS)

    Kim, M. Y.; Hu, S.; Cucinotta, F. A.

    2009-12-01

    Large solar particle events (SPEs) present significant acute radiation risks to the crew members during extra-vehicular activities (EVAs) or in lightly shielded space vehicles for space missions beyond the protection of the Earth’s magnetic field. Acute radiation sickness (ARS) can impair performance and result in failure of the mission. Improved forecasting capability and/or early-warning systems and proper shielding solutions are required to stay within NASA’s short-term dose limits. Exactly how to make use of observations of SPEs for predicting occurrence and size is a great challenge, because SPE occurrences themselves are random in nature even though the expected frequency of SPEs is strongly influenced by the time position within the solar activity cycle. Therefore, we developed a probabilistic model approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19 -23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, the expected frequency of SPEs was estimated at any given proton fluence threshold (ΦE) with energy (E) >30 MeV during a defined space mission period. Corresponding ΦE (E=30, 60, and 100 MeV) fluence distributions were simulated with a random draw from a gamma distribution, and applied for SPE ARS risk analysis for a specific mission period. It has been found that the accurate prediction of deep-seated organ doses was more precisely predicted at high energies, Φ100, than at lower energies such as Φ30 or Φ60, because of the high penetration depth of high energy protons. Estimates of ARS are then described for 90th and 95th percentile events for several mission lengths and for several likely organ dose-rates. The ability to accurately measure high energy protons (50-300 MeV) in real-time is shown

  18. Statistical Prediction of Solar Particle Event Frequency Based on the Measurements of Recent Solar Cycles for Acute Radiation Risk Analysis

    NASA Technical Reports Server (NTRS)

    Myung-Hee, Y. Kim; Shaowen, Hu; Cucinotta, Francis A.

    2009-01-01

    Large solar particle events (SPEs) present significant acute radiation risks to the crew members during extra-vehicular activities (EVAs) or in lightly shielded space vehicles for space missions beyond the protection of the Earth's magnetic field. Acute radiation sickness (ARS) can impair performance and result in failure of the mission. Improved forecasting capability and/or early-warning systems and proper shielding solutions are required to stay within NASA's short-term dose limits. Exactly how to make use of observations of SPEs for predicting occurrence and size is a great challenge, because SPE occurrences themselves are random in nature even though the expected frequency of SPEs is strongly influenced by the time position within the solar activity cycle. Therefore, we developed a probabilistic model approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19 - 23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, the expected frequency of SPEs was estimated at any given proton fluence threshold (Phi(sub E)) with energy (E) >30 MeV during a defined space mission period. Corresponding Phi(sub E) (E=30, 60, and 100 MeV) fluence distributions were simulated with a random draw from a gamma distribution, and applied for SPE ARS risk analysis for a specific mission period. It has been found that the accurate prediction of deep-seated organ doses was more precisely predicted at high energies, Phi(sub 100), than at lower energies such as Phi(sub 30) or Phi(sub 60), because of the high penetration depth of high energy protons. Estimates of ARS are then described for 90th and 95th percentile events for several mission lengths and for several likely organ dose-rates. The ability to accurately measure high energy protons

  19. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, Howard D.

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  20. A Framework for Sediment Particle Tracking via Radio Frequency IDentification (RFID)

    NASA Astrophysics Data System (ADS)

    Tsakiris, Achilleas; Papanicolaou, Thanos; Abban, Benjamin

    2016-04-01

    The study of sedimentary and morphodynamic processes in riverine environments has recently been shifting from the traditional Eulerian, static perspective to a Lagrangian perspective, which considers the movement characteristics of the individual transported particles, such as their travel and resting distance and time. The Lagrangian framework, in turn allows to better study processes such as bedload particle diffusion, erosion and deposition within a river reach, to more accurately predict bedload fluxes especially through the use of stochastic Discrete Particle models. A technology that goes hand-in-hand with this Lagrangian perspective is Radio Frequency IDentification (RFID), which has been recently applied for tracking the movement of tagged sediment particles within the river continuum. RFID allows the wireless, bidirectional exchange of information between a base station, known as the reader, with a typically large number of transponders (or tags) via an (excitation) antenna. RFID allows essentially the unique, wireless detection and identification of a transponder over a distance. The goal of this study is to further enhance the utility of RFID in riverine applications by developing a framework that allows extracting the 3D location of RFID tagged sediment particles in nearly real-time. To address the goal of this coupled theoretical and experimental study, a semi-theoretical approach based on antenna inductive coupling was combined with experimental measurements for developing a relationship that provides an estimate of the distance between a tagged particle and the antenna using the Return Signal Strength Indication (RSSI). The RSSI quantifies the magnetic energy transmitted from the transponder to the antenna. The RFID system used in this study was a passive, Low-Frequency (LF) system, which ensured that the LF radio waves could penetrate through the river bed material. The RSSI of the signal transmitted from each transponder was measured with an

  1. Evaluation of the horizontal-to-vertical spectral ratio (HVSR) seismic method to determine sediment thickness in the vicinity of the south well field, Franklin county, OH

    USGS Publications Warehouse

    Haefner, R.J.; Sheets, R.A.; Andrews, R.E.

    2010-01-01

    The horizontal-to-vertical spectral ratio (HVSR) seismic method involves analyzing measurements of ambient seismic noise in three dimensions to determine the fundamental site resonance frequency. Resonance is excited by the interaction of surface waves (Rayleigh and Love) and body waves (vertically incident shear) with the high-contrast acoustic impedance boundary at the bedrock-sediment interface. Measurements were made to determine the method's utility for estimating thickness of unconsolidated glacial sediments at 18 locations at the South Well Field, Franklin County, OH, and at six locations in Pickaway County where sediment thickness was already known. Measurements also were made near a high-capacity production well (with pumping on and off ) and near a highway and a limestone quarry to examine changes in resonance frequencies over a 20-hour period. Although the regression relation for resonance frequency and sediment thickness had a relatively low r 2(0.322), estimates of sediment thickness were, on average, within 14 percent of known thicknesses. Resonance frequencies for pumping on and pumping off were identical, although the amplitude of the peak was nearly double under pumping conditions. Resonance frequency for the 20-hour period did not change, but the amplitude of the peak changed considerably, with a maximum amplitude in the early afternoon and minimum in the very early morning hours. Clay layers within unconsolidated sediments may influence resonance frequency and the resulting regression equation, resulting in underestimation of sediment thickness; however, despite this and other complicating factors, hydrogeologists should consider this method when thickness data are needed for unconsolidated sediments. ?? 2011 by The Ohio Academy of Science. All Rights Reserved.

  2. Pleistocene Variations in Delivery and Deposition of Organic Matter Under the Benguela Current Upwelling System - Biomarker Isotopic Evidence From Sediment Light-Dark Color Cycles

    NASA Astrophysics Data System (ADS)

    Meyers, P. A.; Bouloubassi, I.; Pancost, R. D.; Robinson, R. S.

    2007-12-01

    The light-dark color cycles that are distinctive features of sediment beneath the Benguela Current Upwelling System imply repetitive alternations in organic matter delivery and deposition. Organic geochemical proxies for paleoproductivity and for depositional conditions were employed to investigate the paleoceanographic processes involved in creating these cycles in two sediment sequences from ODP Site 1084 corresponding to 0.7 and 1.1 Mya. Concentrations of total organic carbon (TOC) vary between 3.5 and 17.1 wt percent, and those of calcium carbonate fluctuate inversely between 68 and 1 percent, suggesting that carbonate dissolution is involved with the light-dark cycles. Bulk organic del 13C and del 15N values that remain constant across the two light-dark sediment intervals indicate that the extent of nutrient utilization did not change in each cycle. Biomarker compositions in both sequences reflect a range of organic matter sources. Abundant n-alkanes and n-alkanols with odd-over-even and even-over-odd distributions, respectively, record land-plant inputs. Other terrestrial biomakers (e.g triterpenoid acids and alcohols) are present but in very low abundances, suggesting that the n- alkyl components derive predominantly from eolian inputs. Carbon isotopic values of n-alkanes range from -25 to -28 permil, suggesting a mixture of C3 and C4 sources. In contrast, n-alkanol isotopic compositions range from -28 to -34 permil, suggesting that they derive solely from C3 plants. Algal biomarkers are abundant and diverse, represented by 1,15-C30 diols (eustigmatophytes), 4-desmethyl and -methylsterols (diatoms, dinoflagellates), and alkenones (haptophytes). These compounds all have del 13C values ranging from ca. -22 to -24 permil, consistent with a marine origin. Systematic differences in isotopic values imply that marine productivity at 1.1 Mya was higher than at 0.7 Mya, but alkenone-based sea-surface temperatures are higher at 1.1 Mya (21 deg) than at 0.7 Mya (15

  3. Application of parasound data for sediment study on methane seep site at Simeulue basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiguna, Taufan, E-mail: taufan.wiguna@bppt.go.id; Ardhyastuti, Sri

    2015-09-30

    The Parasound data presents sea depth and sub-bottom profiler. In terms of geological terminology, parasound data represents significant recent surface sedimentary structures that valuable for the selection of subsequent sampling site such as sampling at methane seep site. Therefore, Parasound is used to detailing methane seep at surface sediment following seismic data interpretation. In this study, parasound is used to focus observe area especially for sediment study on methane seep site. The Parasound systems works both as narrow beam sounder use high frequency and as sediment echosounder use low frequency. Parasound acquisition applies parametric effect. It produces additional frequency bymore » nonlinear acoustic interaction of finite amplitude waves. Parasound transducers have 128 elements on 1 m2 and need transmission power up to 70 kW. The results of this study are discovered large seep carbonate with porous surface which means there are gas expulsions passing through that rock.« less

  4. Variability of O2, H2S, and pH in intertidal sediments measured on a highly resolved spatial and temporal scale

    NASA Astrophysics Data System (ADS)

    Walpersdorf, E.; Werner, U.; Bird, P.; de Beer, D.

    2003-04-01

    We investigated the variability of O_2, pH, and H_2S in intertidal sediments to assess the time- and spatial scales of changes in environmental conditions and their effects on bacterial activities. Measurements were performed over the tidal cycle and at different seasons by the use of microsensors attached to an autonomous in-situ measuring device. This study was carried out at a sand- and a mixed flat in the backbarrier area of Spiekeroog (Germany) within the frame of the DFG research group "Biogeochemistry of the Wadden Sea". Results showed that O_2 variability was not pronounced in the coastal mixed flat, where only extreme weather conditions could increase O_2 penetration. In contrast, strong dynamics in O_2 availability, pH and maximum penetration depths of several cm were found at the sandflat. In these highly permeable sediments, we directly observed tidal pumping: at high tide O_2-rich water was forced into the plate and at low tide anoxic porewater drained off the sediment. From the lower part of the plate where organic rich clayey layers were embedded in the sediment anoxic water containing H_2S leaked out during low tide. Thus advective processes, driven by the tidal pump, waves and currents, control O_2 penetration and depth distribution of H_2S and pH. The effects of the resulting porewater exchange on mineralization rates and microbial activities will be discussed.

  5. Water level fluctuations in a tropical reservoir: the impact of sediment drying, aquatic macrophyte dieback, and oxygen availability on phosphorus mobilization.

    PubMed

    Keitel, Jonas; Zak, Dominik; Hupfer, Michael

    2016-04-01

    Reservoirs in semi-arid areas are subject to water level fluctuations (WLF) that alter biogeochemical processes in the sediment. We hypothesized that wet-dry cycles may cause internal eutrophication in such systems when they affect densely vegetated shallow areas. To assess the impact of WLF on phosphorus (P) mobilization and benthic P cycling of iron-rich sediments, we tested the effects of (i) sediment drying and rewetting, (ii) the impact of organic matter availability in the form of dried Brazilian Waterweed (Egeria densa), and (iii) alternating redox conditions in the surface water. In principle, drying led to increased P release after rewetting both in plant-free and in plant-amended sediments. Highest P mobilization was recorded in plant amendments under oxygen-free conditions. After re-establishment of aerobic conditions, P concentrations in surface water decreased substantially owing to P retention by sediments. In desiccated and re-inundated sediments, P retention decreased by up to 30% compared to constantly inundated sediments. We showed that WLF may trigger biochemical interactions conducive to anaerobic P release. Thereby, E. densa showed high P release and even P uptake that was redox-controlled and superimposed sedimentary P cycling. Macrophytes play an important role in the uptake of P from the water but may be also a significant source of P in wet-dry cycles. We estimated a potential for the abrupt release of soluble reactive phosphorus (SRP) by E. densa of 0.09-0.13 g SRP per m(2) after each wet-dry cycle. Released SRP may exceed critical P limits for eutrophication, provoking usage restrictions. Our results have implications for management of reservoirs in semi-arid regions affected by WLF.

  6. High frequency ultrasound: a new frontier for ultrasound.

    PubMed

    Shung, K; Cannata, Jonathan; Qifa Zhou, Member; Lee, Jungwoo

    2009-01-01

    High frequency ultrasonic imaging is considered by many to be the next frontier in ultrasonic imaging because higher frequencies yield much improved spatial resolution by sacrificing the depth of penetration. It has many clinical applications including visualizing blood vessel wall, anterior segments of the eye and skin. Another application is small animal imaging. Ultrasound is especially attractive in imaging the heart of a small animal like mouse which has a size in the mm range and a heart beat rate faster than 600 BPM. A majority of current commercial high frequency scanners often termed "ultrasonic backscatter microscope or UBM" acquire images by scanning single element transducers at frequencies between 50 to 80 MHz with a frame rate lower than 40 frames/s, making them less suitable for this application. High frequency linear arrays and linear array based ultrasonic imaging systems at frequencies higher than 30 MHz are being developed. The engineering of such arrays and development of high frequency imaging systems has been proven to be highly challenging. High frequency ultrasound may find other significant biomedical applications. The development of acoustic tweezers for manipulating microparticles is such an example.

  7. Development of a high-performance transtibial cycling-specific prosthesis for the London 2012 Paralympic Games.

    PubMed

    Dyer, Bryce; Woolley, Howard

    2017-10-01

    It has been reported that cycling-specific research relating to participants with an amputation is extremely limited in both volume and frequency. However, practitioners might participate in the development of cycling-specific prosthetic limbs. This technical note presents the development of a successful design of a prosthetic limb developed specifically for competitive cycling. This project resulted in a hollow composite construction which was low in weight and shaped to reduce a rider's aerodynamic drag. The new prosthesis reduces the overall mass of more traditional designs by a significant amount yet provides a more aerodynamic shape over traditional approaches. These decisions have yielded a measurable increase in cycling performance. While further refinement is needed to reduce the aerodynamic drag as much as possible, this project highlights the benefits that can exist by optimising the design of sports-specific prosthetic limbs. Clinical relevance This project resulted in the creation of a cycling-specific prosthesis which was tailored to the needs of a high-performance environment. Whilst further optimisation is possible, this project provides insight into the development of sports-specific prostheses.

  8. Production and Cycling of Methylmercury in High Arctic Wetland Ponds

    NASA Astrophysics Data System (ADS)

    Lehnherr, I.; St. Louis, V. L.

    2010-12-01

    Some species of freshwater fish in the Canadian high Arctic contain levels of methylmercury (MeHg) that pose health risks to the northern Inuit peoples that harvest these species as a traditional food source. In temperate regions, wetlands are known natural sites of MeHg production and hence significant MeHg sources to downstream ecosystems. However, the importance of wetlands to Hg methylation in the Arctic is unclear and the sources of MeHg to arctic freshwater ecosystems are still largely unidentified. Our research is demonstrating that some shallow and warm wetland ponds on the Arctic landscape contain high MeHg concentrations compared to nearby deep and cold lakes. We used a mass-balance approach to measure the net in-pond production of MeHg in two warm wetland ponds (Ponds 1 and 2) near Lake Hazen, Ellesmere Island, Nunavut (81° N latitude). We quantified external inputs and outputs of MeHg to and from the ponds, as well as the accumulation of MeHg in the water column during the summers of 2005 and 2008. Any changes in water column MeHg concentrations that could not be accounted for by external inputs or sinks were attributed to in-pond production. The principal external input and sink of MeHg was, respectively, wet atmospheric deposition and water-column MeHg photodemethylation. For 2005, we estimate that the net flux of MeHg from sediments into the water column was 0.015 μg m-2 d-1 in Pond 1 and 0.0016 μg m-2 d-1 in Pond 2. Compared to sediment-water MeHg fluxes measured in Alaskan tundra lakes (0.0015-0.0045 μg m-2 d-1), Pond 1 sediments are a greater source of MeHg while Pond 2 is similar to the Alaskan lakes. Furthermore, the accumulation of MeHg in the water column of Pond 1 (0.0061 μg m-2 d-1) was similar to the net yield of MeHg from temperate boreal wetlands (0.0005-0.006 μg m-2 d-1), demonstrating that these Arctic wetlands are important sites of MeHg production. In addition, we used mercury stable-isotope tracers to quantify methylation and

  9. Holocene millennial/centennial-scale multiproxy cyclicity in temperate eastern Australian estuary sediments

    NASA Astrophysics Data System (ADS)

    Skilbeck, C. Gregory; Rolph, Timothy C.; Hill, Natalie; Woods, Jonathan; Wilkens, Roy H.

    2005-05-01

    We have undertaken a comparative study of down-core variation in multiproxy palaeoclimate data (magnetic susceptibility, calcium carbonate content and total organic carbon) from two coastal water bodies (Myall and Tuggerah Lakes) in temperate eastern Australia to identify local, regional and global-forcing factors within Holocene estuarine sediments. The two lakes lie within the same temperate climate zone adjacent to the Tasman Sea, but are not part of the same catchment and drain different geological provinces. One is essentially a freshwater coastal lake whereas the other is a brackish back-barrier lagoon. Despite these differences, data from two sites in each of the two lakes have allowed us to investigate and compare cyclicity in otherwise uniform, single facies sediments within the frequency range of 200-2000 years, limited by the sedimentation rate within the lakes and our sample requirements. We have auto- and cross-correlated strong periodicities at 360 years, 500-530 years, 270-290 years, 420-450 years and 210 years, and subordinate periods of 650 years, 1200-1400 years and 1800 years. Our thesis is that climate is the only regionally available mechanism available to control common millennial and centennial scale cyclicity in these sediments, given the geographical and other differences. However, regional climate may not be the dominant effect at any single time and either location. Within the range of frequency spectral peaks we have identified, several fall within known long-term periodical fluctuations of sun spot activity; however, feedback loops associated with short-term orbital variation, such as Dansgaard-Oeschger cycles, and the relationship between these and palaeo-ENSO variation, are also possible contributors. Copyright

  10. Periodic sediment shift in migrating ripples influences benthic microbial activity

    NASA Astrophysics Data System (ADS)

    Zlatanović, Sanja; Fabian, Jenny; Mendoza-Lera, Clara; Woodward, K. Benjamin; Premke, Katrin; Mutz, Michael

    2017-06-01

    Migrating bedforms have high levels of particulate organic matter and high rates of pore water exchange, causing them to be proposed as hot spots of carbon turnover in rivers. Yet, the shifting of sediments and associated mechanical disturbance within migrating bedforms, such as ripples, may stress and abrade microbial communities, reducing their activity. In a microcosm experiment, we replicated the mechanical disturbances caused by the periodic sediment shift within ripples under oligotrophic conditions. We assessed the effects on fungal and bacterial biomass ratio (F:B), microbial community respiration (CR), and bacterial production (BCP) and compared with stable undisturbed sediments. Interactions between periodic mechanical disturbance and sediment-associated particulate organic matter (POM) were tested by enriching sediments collected from migrating ripples with different qualities of POM (fish feces, leaf litter fragments and no addition treatments). F:B and BCP were affected by an interaction between mechanical disturbance and POM quality. Fish feces enriched sediments showed increased F:B and BCP compared to sediments with lower POM quality and responded with a decrease of F:B and BCP to sediment disturbance. In the other POM treatments F:B and BCP were not affected by disturbance. Microbial respiration was however reduced by mechanical disturbance to similar low activity levels regardless of POM qualities added, whereas fish feces enriched sediment showed short temporary boost of CR. With the worldwide proliferation of migrating sand ripples due to massive catchment erosion, suppressed mineralization of POM will increasingly affect stream metabolism, downstream transport of POM and carbon cycling from reach to catchment scale.

  11. Freshwater Sediment Characterization Factors of Copper Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Pu, Yubing; Laratte, Bertrand; Ionescu, Rodica Elena

    2017-01-01

    Wide use of engineered nanoparticles (ENPs) is likely to result in the eventually accumulation of ENPs in sediment. The benthic organisms living in sediments may suffer relatively high toxic effects of ENPs. This study has selected copper oxide nanoparticles (nano-CuO) as a research object. To consider the impacts of spatial heterogeneity on ENPs toxicity, the characterization factor (CF) derived from life cycle assessment (LCA) methodology is used as an indicator in this study. A nano-specific fate model has been used to calculate the freshwater sediment fate factor (FF) of nano-CuO. A literature survey of the nano-CuO toxicology values has been performed to calculate the effect factor (EF). Seventeen freshwater sediment CFs of nano-CuO are proposed as recommended values for subcontinental regions. The region most likely to be affected by nano-CuO is northern Australia (CF of 21.01·103 CTUe, comparative toxic units) and the least likely is northern Europe and northern Canada (CF of 8.55·103 CTUe). These sediment CFs for nano-CuO could be used in the future when evaluating the ecosystem impacts of products containing nano-CuO by LCA method.

  12. High frequency, high power capacitor development

    NASA Astrophysics Data System (ADS)

    White, C. W.; Hoffman, P. S.

    1983-03-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  13. High frequency, high power capacitor development

    NASA Technical Reports Server (NTRS)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  14. Analogies Between Colloidal Sedimentation and Turbulent Convection at High Prandtl Numbers

    NASA Technical Reports Server (NTRS)

    Tong, P.; Ackerson, B. J.

    1999-01-01

    A new set of coarse-grained equations of motion is proposed to describe concentration and velocity fluctuations in a dilute sedimenting suspension of non-Brownian particles. With these equations, colloidal sedimentation is found to be analogous to turbulent convection at high Prandtl numbers. Using Kraichnan's mixing-length theory, we obtain scaling relations for the diffusive dissipation length delta(sub theta), the velocity variance delta u, and the concentration variance delta phi. The obtained scaling laws over varying particle radius alpha and volume fraction phi(sub ) are in excellent agreement with the recent experiment by Segre, Herbolzheimer, and Chaikin. The analogy between colloidal sedimentation and turbulent convection gives a simple interpretation for the existence of a velocity cut-off length, which prevents hydrodynamic dispersion coefficients from being divergent. It also provides a coherent framework for the study of sedimentation dynamics in different colloidal systems.

  15. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  16. Electromagnetic inhibition of high frequency thermal bonding machine

    NASA Astrophysics Data System (ADS)

    He, Hong; Zhang, Qing-qing; Li, Hang; Zhang, Da-jian; Hou, Ming-feng; Zhu, Xian-wei

    2011-12-01

    The traditional high frequency thermal bonding machine had serious radiation problems at dominant frequency, two times frequency and three times frequency. Combining with its working principle, the problems of electromagnetic compatibility were studied, three following measures were adopted: 1.At the head part of the high frequency thermal bonding machine, resonant circuit attenuator was designed. The notch groove and reaction field can make the radiation being undermined or absorbed; 2.The electromagnetic radiation shielding was made for the high frequency copper power feeder; 3.Redesigned the high-frequency oscillator circuit to reduce the output of harmonic oscillator. The test results showed that these measures can make the output according with the national standard of electromagnetic compatibility (GB4824-2004-2A), the problems of electromagnetic radiation leakage can be solved, and good social, environmental and economic benefits would be brought.

  17. Gender Identification Using High-Frequency Speech Energy: Effects of Increasing the Low-Frequency Limit.

    PubMed

    Donai, Jeremy J; Halbritter, Rachel M

    The purpose of this study was to investigate the ability of normal-hearing listeners to use high-frequency energy for gender identification from naturally produced speech signals. Two experiments were conducted using a repeated-measures design. Experiment 1 investigated the effects of increasing high-pass filter cutoff (i.e., increasing the low-frequency spectral limit) on gender identification from naturally produced vowel segments. Experiment 2 studied the effects of increasing high-pass filter cutoff on gender identification from naturally produced sentences. Confidence ratings for the gender identification task were also obtained for both experiments. Listeners in experiment 1 were capable of extracting talker gender information at levels significantly above chance from vowel segments high-pass filtered up to 8.5 kHz. Listeners in experiment 2 also performed above chance on the gender identification task from sentences high-pass filtered up to 12 kHz. Cumulatively, the results of both experiments provide evidence that normal-hearing listeners can utilize information from the very high-frequency region (above 4 to 5 kHz) of the speech signal for talker gender identification. These findings are at variance with current assumptions regarding the perceptual information regarding talker gender within this frequency region. The current results also corroborate and extend previous studies of the use of high-frequency speech energy for perceptual tasks. These findings have potential implications for the study of information contained within the high-frequency region of the speech spectrum and the role this region may play in navigating the auditory scene, particularly when the low-frequency portion of the spectrum is masked by environmental noise sources or for listeners with substantial hearing loss in the low-frequency region and better hearing sensitivity in the high-frequency region (i.e., reverse slope hearing loss).

  18. ARSENIC MOBILIZATION FROM SEDIMENTS IN MICROCOSMS UNDER SULFATE REDUCTION

    PubMed Central

    Sun, Jing; Quicksall, Andrew N.; Chillrud, Steven N.; Mailloux, Brian J.; Bostick, Benjamin C.

    2016-01-01

    Arsenic is often assumed to be immobile in sulfidic environments. Here, laboratory-scale microcosms were conducted to investigate whether microbial sulfate reduction could control dissolved arsenic concentrations sufficiently for use in groundwater remediation. Sediments from the Vineland Superfund site and the Coeur d'Alene mining district were amended with different combination of lactate and sulfate and incubated for 30 to 40 days. In general, sulfate reduction in Vineland sediments resulted in transient and incomplete arsenic removal, or arsenic release from sediments. Sulfate reduction in the Coeur d'Alene sediments was more effective at removing arsenic from solution than the Vineland sediments, probably by arsenic substitution and adsorption within iron sulfides. X-ray absorption spectroscopy indicated that the Vineland sediments initially contained abundant reactive ferrihydrite, and underwent extensive sulfur cycling during incubation. As a result, arsenic in the Vineland sediments could not be effectively converted to immobile arsenic-bearing sulfides, but instead a part of the arsenic was probably converted to soluble thioarsenates. These results suggest that coupling between the iron and sulfur redox cycles must be fully understood for in situ arsenic immobilization by sulfate reduction to be successful. PMID:27037658

  19. Orbital-tuning of Marine Cyclic Sediments - Examples from the Neogene and Jurassic

    NASA Astrophysics Data System (ADS)

    Weedon, G. P.; Hall, I. R.; Wilson, G. S.

    2001-12-01

    Orbital-tuning of pre-Pleistocene sediments usually involves the use of variations in bulk compositional parameters, such as carbonate contents, rather than the oxygen-isotope time series available from Plio-Pleistocene marine strata. Consequently, ascertaining the relationship between orbital-climatic changes and sediment composition is not straightforward. Tuning is either conducted using a target curve (an orbital solution) for late Cenozoic records, or by using a sine wave with a specified period for earlier records - where a "floating" chronology is generated. Examples of each sort of tuning are discussed here. Drilling during Leg 181 of the Ocean Drilling Program yielded an essentially complete record of sediment-drift accumulation at Site 1123 off New Zealand for the past 20Ma. Dissolution of carbonate in the older part of the section precluded generation of isotopic records for tuning. Instead colour reflectance and magnetic susceptibility were used for tuning between 3 and 15Ma. Additionally, the mean size of sortable silt, a proxy for bottom-water flow speed, was used for orbital-tuning between 12 and 15Ma. Site 1123 possesses an exceptionally well-preserved record of geomagnetic reversals. Thus a preliminary time scale was established using the ages of 60 reversal events between 3 and 15.2Ma (based on Berggren et al., 1995). Since the sediment drift at this site accumulated under the influence of the Pacific deep western boundary current which incorporates circumpolar deep water, the sediment cyclicity is dominated by the 41ka orbital-tilt (obliquity) cycle. Tuning to the tilt cycle required relatively little revision to the ages of the magnetic reversals (maximum 65ka, average 23ka). Evolutionary spectra and band-pass filtering of the tuned reflectance time series reveal a pronounced increase in the amplitude of the stratigraphic record of the obliquity cycle after 7Ma. Eccentricity and precession cycles are evident for short intervals (less than one

  20. Effects of near-bottom water oxygen concentration on biogeochemical cycling of C, N and S in sediments of the Gulf of Gdansk (southern Baltic)

    NASA Astrophysics Data System (ADS)

    Lukawska-Matuszewska, Katarzyna; Kielczewska, Joanna

    2016-04-01

    Sediments from four sampling sites in the Gulf of Gdansk were sampled to test how different oxygen concentrations in near-bottom water affects biogeochemical cycling of C, N and S. Vertical distributions of content of organic carbon (OC), total nitrogen (TN) and total sulfur (TS) and number of sulfate-reducing bacteria (SRB) in sediments were determined. Pore water total alkalinity (TA), dissolved inorganic carbon (DIC), sulfate, hydrogen sulfide, ammonium and phosphate were analyzed and benthic fluxes of DIC, hydrogen sulfide and ammonium were calculated. Concentrations of OC and TN decreased and concentration of TS increased with sediment depth. Highest concentrations of OC, TN and TS were observed in silty clay sediments from hypoxic and anoxic sediments below the permanent halocline. Organic matter (OM) accumulation in sediments and oxygen deficiency in near-bottom water stimulate preservation of OC and burial of TS in this area. Concentrations of TA, DIC, hydrogen sulfide, ammonium and phosphate in pore water increased, while concentration of sulfate decreased with sediment depth. Hydrogen sulfide, ammonium and phosphate was a significant additional source of TA in pore water under hypoxic and anoxic conditions. Mineralization of OM at oxygen concentrations <2 ml l-1 occurred mainly via bacterial sulfate reduction. Diurnal hydrogen sulfide fluxes under hypoxic conditions ranged from 400 to 1240 μmol m-2 d-1. Ammonium fluxes were estimated on 534 - 924 μmol m-2 d-1. Corresponding fluxes measured under anoxic conditions were 266 μmol m-2 d-1 and 106 μmol m-2 d-1. Sediments under oxic conditions became a place of the intensive regeneration of carbon - DIC flux from sediment reached 2775 μmol m-2 day-1. Sediment-water DIC fluxes under hypoxic and anoxic conditions were much lower and ranged from 1015 to 1208 μmol m-2 d-1.

  1. Porosity and Organic Carbon Controls on Naturally Reduced Zone (NRZ) Formation Creating Microbial ';Hotspots' for Fe, S, and U Cycling in Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Jones, M. E.; Janot, N.; Bargar, J.; Fendorf, S. E.

    2013-12-01

    Previous studies have illustrated the importance of Naturally Reduced Zones (NRZs) within saturated sediments for the cycling of metals and redox sensitive contaminants. NRZs can provide a source of reducing equivalents such as reduced organic compounds or hydrogen to stimulate subsurface microbial communities. These NRZ's are typically characterized by low permeability and elevated concentrations of organic carbon and trace metals. However, both the formation of NRZs and their importance to the overall aquifer carbon remineralization is not fully understood. Within NRZs the hydrolysis of particulate organic carbon (POC) and subsequent fermentation of dissolved organic carbon (DOC) to form low molecular weight dissolved organic carbon (LMW-DOC) provides electron donors necessary for the respiration of Fe, S, and in the case of the Rifle aquifer, U. Rates of POC hydrolysis and subsequent fermentation have been poorly constrained and rates in excess and deficit to the rates of subsurface anaerobic respiratory processes have been suggested. In this study, we simulate the development of NRZ sediments in diffusion-limited aggregates to investigate the physical and chemical conditions required for NRZ formation. Effects of sediment porosity and POC loading on Fe, S, and U cycling on molecular and nanoscale are investigated with synchrotron-based Near Edge X-ray Absorption Fine Structure Spectroscopy (NEXAFS). Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Fourier Transform Infrared spectroscopy (FTIR) are used to characterize the transformations in POC and DOC. Sediment aggregates are inoculated with the natural microbial biota from the Rifle aquifer and population dynamics are monitored by 16S RNA analysis. Overall, establishment of low permeability NRZs within the aquifer stimulate microbial respiration beyond the diffusion-limited zones and can limit the transport of U through a contaminated aquifer. However, the long-term stability of

  2. Groundwater shapes sediment biogeochemistry and microbial diversity in a submerged Great Lake sinkhole.

    PubMed

    Kinsman-Costello, L E; Sheik, C S; Sheldon, N D; Allen Burton, G; Costello, D M; Marcus, D; Uyl, P A Den; Dick, G J

    2017-03-01

    For a large part of earth's history, cyanobacterial mats thrived in low-oxygen conditions, yet our understanding of their ecological functioning is limited. Extant cyanobacterial mats provide windows into the putative functioning of ancient ecosystems, and they continue to mediate biogeochemical transformations and nutrient transport across the sediment-water interface in modern ecosystems. The structure and function of benthic mats are shaped by biogeochemical processes in underlying sediments. A modern cyanobacterial mat system in a submerged sinkhole of Lake Huron (LH) provides a unique opportunity to explore such sediment-mat interactions. In the Middle Island Sinkhole (MIS), seeping groundwater establishes a low-oxygen, sulfidic environment in which a microbial mat dominated by Phormidium and Planktothrix that is capable of both anoxygenic and oxygenic photosynthesis, as well as chemosynthesis, thrives. We explored the coupled microbial community composition and biogeochemical functioning of organic-rich, sulfidic sediments underlying the surface mat. Microbial communities were diverse and vertically stratified to 12 cm sediment depth. In contrast to previous studies, which used low-throughput or shotgun metagenomic approaches, our high-throughput 16S rRNA gene sequencing approach revealed extensive diversity. This diversity was present within microbial groups, including putative sulfate-reducing taxa of Deltaproteobacteria, some of which exhibited differential abundance patterns in the mats and with depth in the underlying sediments. The biological and geochemical conditions in the MIS were distinctly different from those in typical LH sediments of comparable depth. We found evidence for active cycling of sulfur, methane, and nutrients leading to high concentrations of sulfide, ammonium, and phosphorus in sediments underlying cyanobacterial mats. Indicators of nutrient availability were significantly related to MIS microbial community composition, while LH

  3. Tempo and scale of biogenic effects on high-frequency acoustic propagation near the marine sediment-water interface in shallow water

    NASA Astrophysics Data System (ADS)

    Jumars, Peter

    2003-04-01

    Organisms have natural scales, such as lifetimes, body sizes, frequencies of movement to new locations, and residence times of material in digestive systems, and each scale has potential implications for acoustic effects. The effects of groups of organisms, like organisms themselves, aggregate in space and time. This review, including an assortment of unpublished information, examines examples of such aggregations, many of them documented acoustically. Light synchronizes many activities. Macroscopic animals forage primarily under cover of darkness. This phasing applies both to animals that extend appendages above the sediment-water interface and to animals that leave the seabed at night. Whereas their bottom-modifying activities are concentrated in nocturnal or crepuscular fashion, the bottom-modifying activities of the visual feeders follow a different phasing and often dominate the rate of change in acoustic backscatter from the interface. Light also acts through its effects on primary production, often concentrated in a very thin surficial layer atop the seabed. The supersaturation of oxygen does, and microbubble nucleation may, result. Where tidal velocities are large, light-set patterns are often tidally modulated. Activities of animals living below the seabed, however, remain a mystery, whose primary hope for solution is acoustic. [Work supported by ONR and DEPSCoR.

  4. Deciphering Equatorial Pacific Deep Sea Sediment Transport Regimes by Core-Log-Seismic Integration

    NASA Astrophysics Data System (ADS)

    Ortiz, E.; Tominaga, M.; Marcantonio, F.

    2017-12-01

    Investigating deep-sea sediment transportation and deposition regimes is a key to accurately understand implications from geological information recorded by pelagic sediments, e.g. climate signals. However, except for physical oceanographic particle trap experiments, geochemical analyses of in situsediments, and theoretical modeling of the relation between the bottom currents and sediment particle flux, it has remained a challenging task to document the movement of deep sea sediments, that takes place over time. We utilized high-resolution, multichannel reflection seismic data from the eastern equatorial Pacific region with drilling and logging results from two Integrated Ocean Drilling Program (IODP) sites, the Pacific Equatorial Age Transect (PEAT) 7 (Site U1337) and 8 (Site U1338), to characterize sediment transportation regimes on 18-24 Ma oceanic crust. Site U1337, constructed by a series of distinct abyssal hills and abyssal basins; Site U1338, located 570 km SE from Site U1337 site and constructed by a series of ridges, seamounts, and abyssal hills. These sites are of particular interest due to their proximity to the equatorial productivity zone, areas with high sedimentation rates and preservation of carbonate-bearing sediment that provide invaluable insights on equatorial Pacific ecosystems and carbon cycle. We integrate downhole geophysical logging data as well as geochemistry and physical properties measurements on recovered cores from IODP Sites U1337 and U1338 to comprehensively examine the mobility of deep-sea sediments and sediment diagenesis over times in a quasi-3D manner. We also examine 1100 km of high resolution underway seismic surveys from site survey lines in between PEAT 7 and 8 in order to investigate changes in sediment transportation between both sites. Integrating detailed seismic interpretations, high resolution core data, and 230Th flux measurements we aim to create a detailed chronological sedimentation and sediment diagenesis history

  5. Efficiency of fluorescence in situ hybridization for bacterial cell identification in temporary river sediments with contrasting water content.

    PubMed

    Fazi, Stefano; Amalfitano, Stefano; Pizzetti, Ilaria; Pernthaler, Jakob

    2007-09-01

    We studied the efficiency of two hybridization techniques for the analysis of benthic bacterial community composition under varying sediment water content. Microcosms were set up with sediments from four European temporary rivers. Wet sediments were dried, and dry sediments were artificially rewetted. The percentage of bacterial cells detected by fluorescence in situ hybridization with fluorescently monolabeled probes (FISH) significantly increased from dry to wet sediments, showing a positive correlation with the community activity measured via incorporation of (3)H leucine. FISH and signal amplification by catalyzed reporter deposition (CARD-FISH) could significantly better detect cells with low activity in dried sediments. Through the application of an optimized cell permeabilization protocol, the percentage of hybridized cells by CARD-FISH showed comparable values in dry and wet conditions. This approach was unrelated to (3)H leucine incorporation rates. Moreover, the optimized protocol allowed a significantly better visualization of Gram-positive Actinobacteria in the studied samples. CARD-FISH is, therefore, proposed as an effective technique to compare bacterial communities residing in sediments with contrasting water content, irrespective of differences in the activity state of target cells. Considering the increasing frequencies of flood and drought cycles in European temporary rivers, our approach may help to better understand the dynamics of microbial communities in such systems.

  6. High-frequency ultrasound M-mode monitoring of HIFU ablation in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Kumon, R. E.; Gudur, M. S. R.; Zhou, Y.; Deng, C. X.

    2012-10-01

    Effective real-time HIFU lesion detection is important for expanded use of HIFU in interventional electrophysiology (e.g., epicardial ablation of cardiac arrhythmia). The goal of this study was to investigate rapid, high-frequency M-mode ultrasound imaging for monitoring spatiotemporal changes in tissue during HIFU application. The HIFU application (4.33 MHz, 1000 Hz PRF, 50% duty cycle, 1 s exposure, 6100 W/cm2) was perpendicularly applied to porcine cardiac tissue with a high-frequency imaging system (Visualsonics Vevo 770, 55 MHz, 4.5 mm focal distance) confocally aligned. Radiofrequency (RF) M-mode data (1 kHz PRF, 4 s × 7 mm) was acquired before, during, and after HIFU treatment. Gross lesions were compared with M-mode data to correlate lesion and cavity formation. Integrated backscatter, echo-decorrelation parameters, and their cumulative extrema over time were analyzed for automatically identifying lesion width and bubble formation. Cumulative maximum integrated backscatter showed the best results for identifying the final lesion width, and a criterion based on line-to-line decorrelation was proposed for identification of transient bubble activity.

  7. Characterizing cycle-to-cycle variations of the shedding cycle in the turbulent wake of a normal flat plate using generalized phase averages

    NASA Astrophysics Data System (ADS)

    Martinuzzi, Robert

    2016-11-01

    Quasi-periodic vortex shedding in the turbulent wake of a thin-flat plate placed normal to a uniform stream at Reynolds number of 6700 is investigated based on Particle Image Velocimetry experiments. The wake structure and vortex formation are characterized using a generalized phase average (GPA), a refinement of the triple decomposition of Reynolds and Hussain (1970) incorporating elements of mean-field theory (Stuart, 1958). The resulting analysis highlights the importance of cycle-to-cycle variations in characterizing vortex formation, wake topology and the residual turbulent Reynolds Stresses. For example, it is shown that during high-amplitude cycles vorticity is strongly concentrated within the well-organized shed vortices, whereas during low-amplitude cycles the shed vortices are highly distorted resulting in significant modulation of the shedding frequency. It is found that high-amplitude cycles contribute more to the coherent Reynolds stress field while the low-amplitude cycles contribute to the residual stress field. It is further shown that traditional phase-averaging techniques lead to an over-estimation of the residual stress field. Natural Sciences and Engineering Research Council of Canada.

  8. High-frequency hearing impairment assessed with cochlear microphonics.

    PubMed

    Zhang, Ming

    2012-09-01

    Cochlear microphonic (CM) measurements may potentially become a supplementary approach to otoacoustic emission (OAE) measurements for assessing low-frequency cochlear functions in the clinic. The objective of this study was to investigate the measurement of CMs in subjects with high-frequency hearing loss. Currently, CMs can be measured using electrocochleography (ECochG or ECoG) techniques. Both CMs and OAEs are cochlear responses, while auditory brainstem responses (ABRs) are not. However, there are inherent limitations associated with OAE measurements such as acoustic noise, which can conceal low-frequency OAEs measured in the clinic. However, CM measurements may not have these limitations. CMs were measured in human subjects using an ear canal electrode. The CMs were compared between the high-frequency hearing loss group and the normal-hearing control group. Distortion product OAEs (DPOAEs) and audiogram were also measured. The DPOAE and audiogram measurements indicate that the subjects were correctly selected for the two groups. Low-frequency CM waveforms (CMWs) can be measured using ear canal electrodes in high-frequency hearing loss subjects. The difference in amplitudes of CMWs between the high-frequency hearing loss group and the normal-hearing group is insignificant at low frequencies but significant at high frequencies.

  9. Fluvial sediment transport in a glacier-fed high-mountain river (Riffler Bach, Austrian Alps)

    NASA Astrophysics Data System (ADS)

    Morche, David; Weber, Martin; Faust, Matthias; Schuchardt, Anne; Baewert, Henning

    2017-04-01

    High-alpine environments are strongly affected by glacier retreat since the Little Ice Age (LIA). Due to ongoing climate change the hydrology of proglacial rivers is also influenced. It is expected that the growing proportions of snow melt and rainfall events will change runoff characteristics of proglacial rivers. Additionally, the importance of paraglacial sediment sources in recently deglaciating glacier forefields is increasing, while the role of glacial erosion is declining. Thus complex environmental conditions leading to a complex pattern of fluvial sediment transport in partly glaciated catchments of the European Alps. Under the umbrella of the joint PROSA-project the fluvial sediment transport of the river Riffler Bach (Kaunertal, Tyrol, Austria) was studied in 3 consecutive ablation seasons in order to quantify sediment yields. In June 2012 a probe for water level and an automatic water sampler (AWS) were installed at the outlet of the catchment (20km2). In order to calculate annual stage-discharge-relations by the rating-curve approach, discharge (Q) was repeatedly measured with current meters and by salt dilution. Concurrent to the discharge measurements bed load was collected using a portable Helley-Smith sampler. Bed load samples were weighted and sieved in the laboratory to gain annual bed load rating curves and grain size distributions. In total 564 (2012: 154, 2013: 209, 2014: 201) water samples were collected and subsequently filtered to quantify suspended sediment concentrations (SSC). Q-SSC-relations were calculated for single flood events due to the high variability of suspended sediment transport. The results show a high inter- and intra-annual variability of solid fluvial sediment transport, which can be explained by the characteristics of suspended sediment transport. Only 13 of 22 event-based Q-SSC-relations show causal dependency. In 2012, during a period with multiple pluvial-induced peak discharges most sediment was transported. On the

  10. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  11. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  12. Non-Destructive High-Resolution Organic Matter Record on Lake Sediment using Steady-State Solid Phase Fluorescence: Organic Matter Quality and Quantity Assessment.

    NASA Astrophysics Data System (ADS)

    Quiers, M.; Perrette, Y.; Etienne, D.; Develle, A. L.; Jacq, K.

    2017-12-01

    The use of organic proxies increases in paleoenvironmental reconstructions from natural archives. Major advances have been achieved by the development of new highly informative molecular proxies usually linked to specific compounds. While studies focused on targeted compounds, offering a high information degree, advances on bulk organic matter are limited. However, this bulk is the main contributor to carbon cycle and has been shown to be a driver of many mineral or organic compounds transfer and record. Development of target proxies need complementary information on bulk organic matter to understand biases link to controlling factors or analytical methods, and provide a robust interpretation. Fluorescence methods have often been employed to characterize and quantify organic matter. However, these technics are mainly developed for liquid samples, inducing material and resolution loss when working on natural archives (either stalagmite or sediments). High-resolution solid phase fluorescence (SPF) was developed on speleothems. This method allows now to analyse organic matter quality and quantity if procedure to constrain the optical density are adopted. In fact, a calibration method using liquid phase fluorescence (LPF) was developed for speleothem, allowing to quantify organic carbon at high-resolution. We report here an application of such a procedure SPF/LPF measurements on lake sediments. In order to avoid sediment matrix effects on the fluorescence signal, a calibration using LPF measurements was realised. First results using this method provided organic matter quality record of different organic matter compounds (humic-like, protein-like and chlorophylle-like compounds) at high resolution for the sediment core. High resolution organic matter fluxes are obtained in a second time, applying pragmatic chemometrics model (non linear models, partial least square models) on high resolution fluorescence data. SPF method can be considered as a promising tool for high

  13. Nitrogen supply modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange.

    PubMed

    Morillas, Lourdes; Durán, Jorge; Rodríguez, Alexandra; Roales, Javier; Gallardo, Antonio; Lovett, Gary M; Groffman, Peter M

    2015-10-01

    Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying-rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying-rewetting events in soils from ambient and N-treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying-rewetting cycles led to reductions in soil NO3- levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in NH4+ and total soil inorganic N levels. N-treated soils were more resistant to changes in the frequency of drying-rewetting cycles, and this resistance was stronger for C- than for N-related variables. Both the long-term N addition and the drying-rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying-rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment. © 2015 John Wiley & Sons Ltd.

  14. A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes

    PubMed Central

    Lee, Inhee; Sylvester, Dennis; Blaauw, David

    2016-01-01

    This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from Vthn to [Vdd − |Vthp|]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21–60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC–DC converter. The converter is 11%–56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO. PMID:27546899

  15. A Constant Energy-Per-Cycle Ring Oscillator Over a Wide Frequency Range for Wireless Sensor Nodes.

    PubMed

    Lee, Inhee; Sylvester, Dennis; Blaauw, David

    2016-03-01

    This paper presents an energy-efficient oscillator for wireless sensor nodes (WSNs). It avoids short-circuit current by minimizing the time spent in the input voltage range from V thn to [ V dd - | V thp |]. A current-feeding scheme with gate voltage control enables the oscillator to operate over a wide frequency range. A test chip is fabricated in a 0.18 μm CMOS process. The measurements show that the proposed oscillator achieves a constant energy-per-cycle (EpC) of 0.8 pJ/cycle over the 21-60 MHz frequency range and is more efficient than a conventional current-starved ring oscillator (CSRO) below 300 kHz at 1.8 V supply voltage. As an application example, the proposed oscillator is implemented in a switched-capacitor DC-DC converter. The converter is 11%-56% more efficient for load power values ranging from 583 pW to 2.9 nW than a converter using a conventional CSRO.

  16. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    NASA Astrophysics Data System (ADS)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  17. Acceptability of an oral contraceptive that reduces the frequency of menstruation: the tri-cycle pill regimen.

    PubMed Central

    Loudon, N B; Foxwell, M; Potts, D M; Guild, A L; Short, R V

    1977-01-01

    The frequency of menstruation was reduced to once every three months in 196 women by the continuous administration of the oral contraceptive pill, Minilyn, for 84 days (tri-cycle regimen). No pregnancies occurred. One hundred and sixty-one women (82%) welcomed the reduction in the number of periods with the associated freedom from menstrual and premenstrual symptoms, and many found the tri-cycle regimen easier to follow. Weight gain of more than 2 kg, irregular cycle control, especially in the first three months, breast tenderness, and headaches were the main side effects. Menstrual loss was unchanged or reduced in all but seven women. The doctors and nurses on the clinic staff were less enthusiastic about this regimen than the volunteers themselves. PMID:890363

  18. Frequency variations of the earth's obliquity and the 100-kyr ice-age cycles

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou

    1992-01-01

    Changes in the earth's climate are induced by variations in the earth's orbital parameters which modulate the seasonal distribution of solar radiation. Periodicities in the geological climate record with cycles of 100, 41, and 23 kyr have been linked with changes in obliquity, eccentricity, and precession of the equinoxes. The effect of variations of eccentricity during a 100 kyr period is weak relative to the signals from obliquity and precession variations and it may therefore be expected that the 100 kyr signal in the climate record would be of low intensity. However, this signal dominates the climate record and internal nonlinear processes within the climate system have previously been proposed to account for this fact. The author shows that variations in the frequency of the obliquity cycle can give rise to strong 100-kyr forcing of climate.

  19. [A man with persisting fever, night sweats and high sedimentation rate].

    PubMed

    Kildahl-Andersen, Odd; Murbræch, Klaus; Skudal, Hilde; Stalsberg, Helge

    2011-11-29

    Fever of unknown origin and high sedimentation rate are common clinical problems. A middle-aged man with fever of unknown origin, night sweats and high sedimentation rate was referred to our hospital for investigation. The patient was suspected to have mononucleosis or reactivation of infectious mononucleosis because of mild anaemia and thrombocytopenia, a weakly positive IgM antibody test for Epstein-Barr virus and monocytosis (in peripheral blood). Because monocytosis, elevated sedimentation rate and fever persisted, bone marrow smears were prepared and biopsies taken.The third biopsy showed that morphology was consistent with chronic myelomonocytic leukemia (CMML), which was confirmed by two later biopsies. However, a malignant cell population (consisting of blasts in peripheral blood) was only found in one of several flow cytometry assessments of peripheral blood and bone marrow aspirate and cytogenetic analyses of bone marrow cells were normal. The patient's clinical situation has been stable for some years and treatment has not been necessary.

  20. Carbonate to siliciclastic periplatform sediments: southwest Florida

    USGS Publications Warehouse

    Holmes, Charles W.

    1988-01-01

    Geophysical, geochemical, and sedimentological data suggest that the spatial relationships of these deposits are related to sea-level variations. During extreme lowstands, with much of the shelf exposed, the dominant sedimentation was in the form of siliciclastic deposition on the abyssal floor, and slope talus development at the edge of the shelf. During a subsequent rise in sea level, after carbonate production on the shelf was initiated, sediment was transported southward to the head of the canyons and funneled to the abyssal floor. Subsequent rising sea level shifted the axis of transport farther to the shelf, bypassing the canyons and funneling the sediment through breaks in the carbonate reef banks at the southern edge of the platform. At the sites of both the hemipelagic and the turbidite deposition, high-resolution seismic data indicate that at least three cycles of deposition have occurred. In the abyss, this cyclic nature has produced alternating layers of carbonate and noncarbonate sediments, recognizable in the sedimentary record as limestone units interlayered with fine shales. In the geologic record the hemipelagic deposits would be almost indistinguishable from deep-sea foraminiferal oozes.  

  1. Understanding processes controlling sediment transports at the mouth of a highly energetic inlet system (San Francisco Bay, CA)

    USGS Publications Warehouse

    Elias, Edwin P.L.; Hansen, Jeff E.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    San Francisco Bay is one of the largest estuaries along the U.S. West Coast and is linked to the Pacific Ocean through the Golden Gate, a 100 m deep bedrock inlet. A coupled wave, flow and sediment transport model is used to quantify the sediment linkages between San Francisco Bay, the Golden Gate, and the adjacent open coast. Flow and sediment transport processes are investigated using an ensemble average of 24 climatologically derived wave cases and a 24.8 h representative tidal cycle. The model simulations show that within the inlet, flow and sediment transport is tidally dominated and driven by asymmetry of the ebb and flood tides. Peak ebb velocities exceed the peak flood velocities in the narrow Golden Gate channel as a result of flow convergence and acceleration. Persistent flow and sediment gyres at the headland tips are formed that limit sediment transfer from the ebb-tidal delta to the inlet and into the bay. The residual transport pattern in the inlet is dominated by a lateral segregation with a large ebb-dominant sediment transport (and flow) prevailing along the deeper north side of the Golden Gate channel, and smaller flood dominant transports along the shallow southern margin. The seaward edge of the ebb-tidal delta largely corresponds to the seaward extent of strong tidal flows. On the ebb-tidal delta, both waves and tidal forcing govern flow and sediment transport. Wave focusing by the ebb-tidal delta leads to strong patterns of sediment convergence and divergence along the adjacent Ocean Beach.

  2. The relationship between food frequency and menstrual distress in high school females

    PubMed Central

    Mohamadirizi, Soheila; Kordi, Masoumeh

    2015-01-01

    Background: Nutrition pattern is one of the important factors predicting menstrual distress, which varies among different cultures and countries. The purpose of this study is to determine the relationship between food frequency and menstrual distress in high school girls from Mashhad. Materials and Methods: This cross-sectional study was conducted in 2012 using a two-stage sampling method on 407 high school female students from Mashhad who met the inclusion criteria. Subjects completed questionnaires of demographic characteristics, food frequency, and Menstrual Distress Questionnaire (MDQ) during three phases of the menstrual cycle (a week before bleeding, during menstrual bleeding period, and a week after menstruation). The collected data were analyzed by statistical tests such as Pearson correlation coefficient test, independent Student's t-test, and one-way analysis of variance (ANOVA). Results: Results showed that 87.7% of the students were at moderate economic status, 82.2% were exposed to cigarette smoke, 94.8% had mothers without university education, and 9.4% had working mothers. About 71% of the students reported minor pre-menstruation distress, 81% reported minor distress during bleeding, and 39% reported minor post-menstruation distress. In addition, the mean (SD) values for sweet–fatty foods, salty–fatty foods, fast foods, and caffeine were 3.6, 3.3, 1.3, and 10.2 per week, respectively. In addition, Pearson correlation coefficient test showed no significant correlation between total menstruation distress and food frequency (P > 0.05). Conclusions: With regard to the inappropriate food frequency and high intensity of menstrual distress among high school students and as health care and educational efforts for prevention and health promotion in society are among the duties of health workers, the results of this study can help the officials involved in education to emphasize on nutrition and the menstrual health of students. PMID:26793254

  3. The silica cycle in a Northeast Pacific fjord; the role of biological resuspension

    NASA Astrophysics Data System (ADS)

    Katz, Timor; Yahel, Gitai; Tunnicliffe, Verena; Herut, Barak; Whitney, Frank; Snelgrove, Paul V. R.; Lazar, Boaz

    2016-09-01

    This study is a quantitative assessment of the role fish-induced bio-resuspension plays in the silica cycle of coastal waters. We used new, published and archived oceanographic data to construct a comprehensive silica budget for Saanich Inlet (Vancouver Island, Canada), a highly productive Northeast Pacific fjord, where siliceous diatoms dominate primary productivity. Anoxia in the deep water of the inlet persists during most of the year, precluding animal life, whereas abundant groundfish continuously rework and resuspend bottom sediments in the shallower, oxygenated margins. This resuspension transfers settled biogenic silica fragments from the sediment, where they are immersed in porewater that is rich with dissolved silica, to the overlying water, where the much lower concentrations accelerate their dissolution rate. The budget shows that Saanich Inlet sediments constitute a sink for approximately 250 × 106 mol Si y-1. Most of this Si enters the inlet in advected, siliceous phytoplankton. Sediment resuspension by groundfish in the oxygenated margins of Saanich Inlet generates about 50% of the total flux of dissolved silica from the inlet seafloor. This resuspension also facilitates a massive transport of biogenic silica from the margins to the anoxic basin, where approximately 90% of all the biogenic silica is buried. The excess dissolution caused by fish activity reduces the burial efficiency of biogenic silica in the entire inlet sediments by about 20%. This case study emphasizes the link between the silica cycle and groundfish activity. Based on this study and because biological resuspension occurs in most regions of the ocean, we recommend that it will be taken into account when budgeting the silica cycle, and potentially other geochemical cycles, in marine environments.

  4. Outlook for benefits of sediment microbial fuel cells with two bio‐electrodes

    PubMed Central

    De Schamphelaire, Liesje; Rabaey, Korneel; Boeckx, Pascal; Boon, Nico; Verstraete, Willy

    2008-01-01

    Summary The benefits of sediment microbial fuel cells (SMFCs) go beyond energy generation for low‐power applications. Aside from producing electrical energy, SMFCs can enhance the oxidation of reduced compounds at the anode, thus bringing about the removal of excessive or unwanted reducing equivalents from submerged soils. Moreover, an SMFC could be applied to control redox‐dependent processes in sediment layers. Several cathodic reactions that may drive these sediment oxidation reactions are examined. Special attention is given to two biologically mediated cathodic reactions, respectively employing an oxygen reduction and a manganese cycle. Both reactions imply a low cost and a high electrode potential and are of interest for reactor‐type MFCs as well as for SMFCs. PMID:21261866

  5. Vertical structure and horizontal variations in the cycling of methane in the sediment of Lake Onego, Russia

    NASA Astrophysics Data System (ADS)

    Thomas, Camille; Perga, Marie-Elodie; Frossard, Victor; Pasche, Natacha; Hofmann, Hilmar; Ariztegui, Daniel; Dubois, Nathalie; Belkina, Natalya; Lyautey, Emilie

    2017-04-01

    Lake Onego, the second largest lake in Europe, is a dystrophic, seasonally ice-covered lake in Karelia, Russia. Like most winter-covered lakes, its study has largely been limited to the summer period. However, it is well known that methane production is still ongoing in lake sediments during winter, potentially resulting in accumulation and major release upon thawing. Within the "Life Under The Ice" research project, our objectives were to assess winter contribution to the annual methane flux in Lake Onego, and to understand conditions and factors influencing methane cycling. During two on-ice field campaigns in March 2015 and 2016, sediment cores were retrieved at different sites of Petrozavodsk Bay, located in the north-western part of the lake. DNA and RNA were extracted from these cores to investigate the functional structure of microbial communities. Genes involved in methanogenesis, anaerobic and aerobic methane oxidations were quantified along with the concentrations and isotopic ratio of methane in the sediment pore water. Incubations, fingerprinting and sequencing of mcrA genes were also realized. Vertically, the sediment is structured in a deep anoxic zone (below 10 cm) where mcrA gene and transcript copies increased implying methanogenesis, a transitional zone (5-8 cm) hosting methanotrophic organisms (Cand. Methanoperedens) able to oxidize the diffusing methane anaerobically by coupling nitrate reduction (Haroon et al., 2013), and a shallower oxic zone where methanotrophs were detected (pmoA gene and transcripts) and where methane concentrations drop below detection limit. Sediment cores were also collected at three sites along a transect from the mouth of the river Shuya (the major inflow to the bay) to the open lake. Functional assemblage close to the river mouth had higher diversity and higher potential production rates and consumption of methane than further in the lake. However, the methane produced was almost completely consumed regardless of the

  6. Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya

    2017-07-01

    All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.

  7. Assessment of coarse sediment mobility in the Black Canyon of the Gunnison River, Colorado.

    PubMed

    Dubinski, Ian M; Wohl, Ellen

    2007-07-01

    The Gunnison River in the Black Canyon of the Gunnison National Park (BCNP) near Montrose, Colorado is a mixed gravel and bedrock river with ephemeral side tributaries. Flow rates are controlled immediately upstream by a diversion tunnel and three reservoirs. The management of the hydraulic control structures has decreased low-frequency, high-stage flows, which are the dominant geomorphic force in bedrock channel systems. We developed a simple model to estimate the extent of sediment mobilization at a given flow in the BCNP and to evaluate changes in the extent and frequency of sediment mobilization for flow regimes before and after flow regulation in 1966. Our methodology provides a screening process for identifying and prioritizing areas in terms of sediment mobility criteria when more precise systematic field data are unavailable. The model uses the ratio between reach-averaged bed shear stress and critical shear stress to estimate when a particular grain size is mobilized for a given reach. We used aerial photography from 1992, digital elevation models, and field surveys to identify individual reaches and estimate reach-averaged hydraulic geometry. Pebble counts of talus and debris fan deposits were used to estimate regional colluvial grain-size distributions. Our results show that the frequency of flows mobilizing river bank sediment along a majority of the Gunnison River in the BCNP has significantly declined since 1966. The model results correspond well to those obtained from more detailed, site-specific field studies carried out by other investigators. Decreases in the frequency of significant sediment-mobilizing flows were more pronounced for regions within the BCNP where the channel gradient is lower. Implications of these results for management include increased risk of encroachment of vegetation on the active channel and long-term channel narrowing by colluvial deposits. It must be recognized that our methodology represents a screening of regional

  8. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  9. High frequency oscillations in brain hemodynamic response

    NASA Astrophysics Data System (ADS)

    Akin, Ata; Bolay, Hayrunnisa

    2007-07-01

    Tight autoregulation of vessel tone guarantees proper delivery of nutrients to the tissues. This regulation is maintained at a more delicate level in the brain since any decrease in the supply of glucose and oxygen to neuronal tissues might lead to unrecoverable injury. Functional near infrared spectroscopy has been proposed as a new tool to monitor the cerebrovascular response during cognitive activity. We have observed that during a Stroop task three distinct oscillatory patterns govern the control of the cerebrovascular reactivity: very low frequency (0.02-0.05 Hz), low frequency (0.08-0.12 Hz) and high frequency (0.12-0.18 Hz). High frequency oscillations have been shown to be related to stress level of the subjects. Our findings indicate that as the stress level is increased so does the energy of the high frequency component indicating a higher stimulation from the autonomic nervous system.

  10. High-frequency applications of high-temperature superconductor thin films

    NASA Astrophysics Data System (ADS)

    Klein, N.

    2002-10-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.

  11. Morphodynamic simulation of sediment deposition patterns on a recently stripped bedrock anastomosed channel

    NASA Astrophysics Data System (ADS)

    Milan, David; Heritage, George; Entwistle, Neil; Tooth, Stephen

    2018-04-01

    Some mixed bedrock-alluvial dryland rivers are known to undergo cycles of alluvial building during low flow periods, punctuated by stripping events during rare high magnitude flows. We focus on the Olifants River, Kruger National Park, South Africa, and present 2-D morphodynamic simulations of hydraulics and sediment deposition patterns over an exposed bedrock anastomosed pavement. We examine the assumptions underlying a previous conceptual model, namely that sedimentation occurs preferentially on bedrock highs. Our modelling results and local field observations in fact show that sediment thicknesses are greater over bedrock lows, suggesting these are the key loci for deposition, barform initiation and island building. During peak flows, velocities in the topographic lows tend to be lower than in intermediate topographic areas. It is likely that intermediate topographic areas supply sediment to the topographic lows at this flow stage, which is then deposited in the lows on the falling limb of the hydrograph as velocities reduce. Subsequent vegetation establishment on deposits in the topographic lows is likely to play a key role in additional sedimentation and vegetation succession, both through increasing the cohesive strength of alluvial units and by capturing new sediments and propagules.

  12. Tumor frequencies in walleye (Stizostedion vitreum) and brown bullhead (Ictalurus nebulosus) and sediment contaminants in tributaries of the Laurentian Great Lakes

    USGS Publications Warehouse

    Baumann, Paul C.; Mac, Michael J.; Smith, Stephen B.; Harshbarger, John C.

    1991-01-01

    To better characterize neoplasm epizootics in the Great Lakes basin and their association with families of contaminants, we sampled five locations: the Fox and Menominee rivers, Lake Michigan; Munuscong Lake, St. Mary's River; and the Black and Cuyahoga rivers, Lake Erie. Frequencies of external and liver tumors were determined for brown bullhead (Ictalurus nebulosus) from all locations except the Black River and for walleye (Stizostedion vitreum) from the Lake Michigan and St. Mary's River sites. Sediment samples were analyzed for metals, polychlorinated aromatics, and polynuclear aromatic hydrocarbons (PAH). Liver neoplasms occurred in brown bullhead from the Cuyahoga River and Munuscong Lake; brown bullhead captured from Munuscong Lake were older than those collected from the other locations. Brown bullhead from these same two rivers had elevated hepatosomatic indexes. No liver neoplasms were found in brown bullhead from the Fox and Menominee rivers, although polychlorinated aromatics were highest in both Fox River sediment and Fox and Menominee brown bullhead, and arsenic was highest in Menominee River sediment and fish. Liver neoplasms in brown bullhead from the Cuyahoga River fit the prevailing hypothesis that elevated PAH in sediment can induce cancer in wild fish. The cause of the liver neoplasms in Munuscong Lake brown bullhead is undetermined.

  13. Coupling climate conditions, sediment sources and sediment transport in an alpine basin

    NASA Astrophysics Data System (ADS)

    Rainato, Riccardo; Picco, Lorenzo; Cavalli, Marco; Mao, Luca; Neverman, Andrew J.; Tarolli, Paolo

    2017-04-01

    In a fluvial system, mountain basins control sediment export to the lowland rivers. Hence, the analysis of the erosion processes and sediment delivery patterns that act in mountain basins is important. Several studies have investigated the alterations triggered by recent climatic change on the hydrological regime, whilst only a few works have explored the consequences on the sediment dynamics. Here we combined and analyzed the quasi-unique dataset of climatic conditions, landscape response, and sediment export produced, since 1986 in the Rio Cordon basin (5 km2, Eastern Italian Alps) to examine the sediment delivery processes occurring in the last three decades. The temperature, precipitation, and fluvial sediment fluxes in the basin were analyzed using continuous measurement executed by a permanent monitoring station, while the landscape evolution was investigated by three sediment source inventories established in 1994, 2006, and 2016. Thus, the analysis focused on the trends exhibited during the periods 1986-1993, 1994-2006, and 2007-2015. In terms of climatic conditions, three distinct climate forcing stages can be observed in the periods analyzed: a relatively stable phase (1986-1993), a period characterized by temperature and rainfall fluctuations (1994-2006), and a more recent warmer and wetter phase (2007-2015). In the 1986-1993 period, the fluvial sediment fluxes reflected the stable trend exhibited by the climatic conditions. In the subsequent 1994-2006 period, the average temperature and precipitation were in line with that previously observed, although with higher interannual variability. Notwithstanding the climate forcing and the occurrence of high magnitude/low frequency floods that strongly influenced the source areas, between 1994 and 2006 the Rio Cordon basin showed relatively limited erosion activity. Hence, the climatic conditions and the landscape response can only partially explain the strong increase of sediment export recorded in the 1994

  14. Radionuclides in Chesapeake Bay sediments

    NASA Technical Reports Server (NTRS)

    Cressy, P. J., Jr.

    1976-01-01

    Natural and manmade gamma-ray emitting radionuclides were measured in Chesapeake Bay sediments taken near the Calvert Cliffs Nuclear Power Plant site. Samples represented several water depths, at six locations, for five dates encompassing a complete seasonal cycle. Radionuclide contents of dry sediments ranged as follows: Tl-208, 40 to 400 pCi/kg; Bi-214, 200 to 800 pCi/kg; K, 0.04 to 2.1 percent; Cs-137 5 to 1900 pCi/kg; Ru106, 40 to 1000 pCikg Co60, 1 to 27 pCi/kg. In general, radionuclide contents were positively correlated with each other and negatively correlated with sediment grain size.

  15. Photoinduced High-Frequency Charge Oscillations in Dimerized Systems

    NASA Astrophysics Data System (ADS)

    Yonemitsu, Kenji

    2018-04-01

    Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrödinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for κ-(bis[ethylenedithio]tetrathiafulvalene)2X [κ-(BEDT-TTF)2X] at three-quarter filling. After the application of a one-cycle pulse of a specifically polarized electric field, the charge densities at half of the sites of the system oscillate in the same phase and those at the other half oscillate in the opposite phase. For weak fields, the Fourier transform of the time profile of the charge density at any site after photoexcitation has peaks for finite-sized systems that correspond to those of the steady-state optical conductivity spectrum. For strong fields, these peaks are suppressed and a new peak appears on the high-energy side, that is, the charge densities mainly oscillate with a single frequency, although the oscillation is eventually damped. In the two-dimensional case without intersite repulsion and in the one-dimensional case, this frequency corresponds to charge-transfer processes by which all the bonds connecting the two classes of sites are exploited. Thus, this oscillation behaves as an electronic breathing mode. The relevance of the new peak to a recently found reflectivity peak in κ-(BEDT-TTF)2X after photoexcitation is discussed.

  16. Occurrence of perfluorinated alkyl substances in sediment from estuarine and coastal areas of the East China Sea.

    PubMed

    Yan, Hong; Zhang, Chaojie; Zhou, Qi; Yang, Shouye

    2015-02-01

    Perfluorinated alkyl substances (PFAS) have drawn much attention due to their environmental persistence, ubiquitous existence, and bioaccumulation potential. The occurrence and spatial variation of PFAS were investigated through collection of riverine and marine sediments from estuarine and coastal areas of the East China Sea. Among them, perfluorooctanesulfonic acid (PFOS), perfluoroheptanoic acid (PFHpA), and perfluorooctanoic acid (PFOA) were the three predominant PFAS with the highest detection frequencies in the sediment. PFOS up to 32.4 ng g(-1) dw and ∑PFAS up to 34.8 ng g(-1) dw were detected. Compared to other studies, high levels of PFOS were found in sediments from the East China Sea. PFHpA was also detected at higher frequency and concentration than those of other studies, which suggests point sources in this area. Concentrations of PFAS in riverine sediments were much higher than in marine sediments. Analysis of spatial variations presented overall decreasing trends of PFAS from inshore to offshore areas.

  17. Extremely high frequency RF effects on electronics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit boardmore » traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.« less

  18. How To Live with Phosphorus Scarcity in Soil and Sediment: Lessons from Bacteria

    PubMed Central

    Tapia-Torres, Yunuen; Rodríguez-Torres, Maria Dolores; Islas, Africa; Souza, Valeria; García-Oliva, Felipe

    2016-01-01

    ABSTRACT Phosphorus (P) plays a fundamental role in the physiology and biochemistry of all living things. Recent evidence indicates that organisms in the oceans can break down and use P forms in different oxidation states (e.g., +5, +3, +1, and −3); however, information is lacking for organisms from soil and sediment. The Cuatro Ciénegas Basin (CCB), Mexico, is an oligotrophic ecosystem with acute P limitation, providing a great opportunity to assess the various strategies that bacteria from soil and sediment use to obtain P. We measured the activities in sediment and soil of different exoenzymes involved in P recycling and evaluated 1,163 bacterial isolates (mainly Bacillus spp.) for their ability to use six different P substrates. DNA turned out to be a preferred substrate, comparable to a more bioavailable P source, potassium phosphate. Phosphodiesterase activity, required for DNA degradation, was observed consistently in the sampled-soil and sediment communities. A capability to use phosphite (PO33−) and calcium phosphate was observed mainly in sediment isolates. Phosphonates were used at a lower frequency by both soil and sediment isolates, and phosphonatase activity was detected only in soil communities. Our results revealed that soil and sediment bacteria are able to break down and use P forms in different oxidation states and contribute to ecosystem P cycling. Different strategies for P utilization were distributed between and within the different taxonomic lineages analyzed, suggesting a dynamic movement of P utilization traits among bacteria in microbial communities. IMPORTANCE Phosphorus (P) is an essential element for life found in molecules, such as DNA, cell walls, and in molecules for energy transfer, such as ATP. The Valley of Cuatro Ciénegas, Coahuila (Mexico), is a unique desert characterized by an extreme limitation of P and a great diversity of microbial life. How do bacteria in this valley manage to obtain P? We measured the availability

  19. How To Live with Phosphorus Scarcity in Soil and Sediment: Lessons from Bacteria.

    PubMed

    Tapia-Torres, Yunuen; Rodríguez-Torres, Maria Dolores; Elser, James J; Islas, Africa; Souza, Valeria; García-Oliva, Felipe; Olmedo-Álvarez, Gabriela

    2016-08-01

    Phosphorus (P) plays a fundamental role in the physiology and biochemistry of all living things. Recent evidence indicates that organisms in the oceans can break down and use P forms in different oxidation states (e.g., +5, +3, +1, and -3); however, information is lacking for organisms from soil and sediment. The Cuatro Ciénegas Basin (CCB), Mexico, is an oligotrophic ecosystem with acute P limitation, providing a great opportunity to assess the various strategies that bacteria from soil and sediment use to obtain P. We measured the activities in sediment and soil of different exoenzymes involved in P recycling and evaluated 1,163 bacterial isolates (mainly Bacillus spp.) for their ability to use six different P substrates. DNA turned out to be a preferred substrate, comparable to a more bioavailable P source, potassium phosphate. Phosphodiesterase activity, required for DNA degradation, was observed consistently in the sampled-soil and sediment communities. A capability to use phosphite (PO3 (3-)) and calcium phosphate was observed mainly in sediment isolates. Phosphonates were used at a lower frequency by both soil and sediment isolates, and phosphonatase activity was detected only in soil communities. Our results revealed that soil and sediment bacteria are able to break down and use P forms in different oxidation states and contribute to ecosystem P cycling. Different strategies for P utilization were distributed between and within the different taxonomic lineages analyzed, suggesting a dynamic movement of P utilization traits among bacteria in microbial communities. Phosphorus (P) is an essential element for life found in molecules, such as DNA, cell walls, and in molecules for energy transfer, such as ATP. The Valley of Cuatro Ciénegas, Coahuila (Mexico), is a unique desert characterized by an extreme limitation of P and a great diversity of microbial life. How do bacteria in this valley manage to obtain P? We measured the availability of P and the

  20. Century-scale high-resolution black carbon records in sediment cores from the South Yellow Sea, China

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoming; Hong, Yuehui; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Lirong; Wang, Jianghai

    2018-01-01

    Black carbon (BC) has received increasing attention in the last 20 years because it is not only an absorbent of toxic pollutants but also a greenhouse substance, preserving fire-history records, and more importantly, acting as an indicator of biogeochemical cycles and global changes. By adopting an improved chemothermal oxidation method (WXY), this study reconstructed the century-scale high-resolution records of BC deposition from two fine-grained sediment cores collected from the Yellow Sea Cold Water Mass in the South Yellow Sea. The BC records were divided into five stages, which exhibited specific sequences with three BC peaks at approximately 1891, 1921, and 2007 AD, representing times at which the first heavy storms appeared just after the termination of long-term droughts. The significant correlation between the times of the BC peaks in the cores and heavy storms in the area of the Huanghe (Yellow) River demonstrated that BC peaks could result from markedly strengthened sedimentation due to surface runoff, which augmented the atmospheric deposition. Stable carbon isotope analysis indicated that the evident increase in carbon isotope ratios of BC in Stage 5 might have resulted from the input of weathered rock-derived graphitic carbon cardinally induced by the annual anthropogenic modulation of water-borne sediment in the Huanghe River since 2005 AD. Numerical calculations demonstrated that the input fraction of graphitic carbon was 22.97% for Stage 5, whereas no graphitic carbon entered during Stages 1 and 3. The obtained data provide new and important understanding of the source-sink history of BC in the Yellow Sea.

  1. High-frequency Rayleigh-wave method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  2. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    NASA Astrophysics Data System (ADS)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  3. Phenomenological and Spectroscopic Analysis on the Effects of Sediment Ageing and Organic Carbon on the Fate of a PCB Congener Spiked to Sediment

    EPA Science Inventory

    This study assesses the full cycle transport and fate of a polychlorinated biphenyl (PCB) congener spiked to sediment to empirically and spectroscopically investigate the effects of sediment ageing and organic carbon on the adsorption, desorption, and reaction of the PCB. Caesar ...

  4. CFAVC scheme for high frequency series resonant inverter-fed domestic induction heating system

    NASA Astrophysics Data System (ADS)

    Nagarajan, Booma; Reddy Sathi, Rama

    2016-01-01

    This article presents the investigations on the constant frequency asymmetric voltage cancellation control in the AC-AC resonant converter-fed domestic induction heating system. Conventional fixed frequency control techniques used in the high frequency converters lead to non-zero voltage switching operation and reduced output power. The proposed control technique produces higher output power than the conventional fixed-frequency control strategies. In this control technique, zero-voltage-switching operation is maintained during different duty cycle operation for reduction in the switching losses. Complete analysis of the induction heating power supply system with asymmetric voltage cancellation control is discussed in this article. Simulation and experimental study on constant frequency asymmetric voltage cancellation (CFAVC)-controlled full bridge series resonant inverter is performed. Time domain simulation results for the open and closed loop of the system are obtained using MATLAB simulation tool. The simulation results prove the control of voltage and power in a wide range. PID controller-based closed loop control system achieves the voltage regulation of the proposed system for the step change in load. Hardware implementation of the system under CFAVC control is done using the embedded controller. The simulation and experimental results validate the performance of the CFAVC control technique for series resonant-based induction cooking system.

  5. Indirect effects of climate change on zinc cycling in sediments: The role of changing water levels.

    PubMed

    Nedrich, Sara M; Burton, G Allen

    2017-09-01

    Increased variability in lake and river water levels associated with changing climate could impact the fate and effects of metals in redox-sensitive sediments through the alteration of microbial communities and of acid-base and redox chemistry. The objective of the present study was to determine the influence of water level fluctuation on metal speciation in porewater and predict environmental risk to high-carbonate systems. Using experimental microcosms with sediments collected from 4 metal-contaminated coastal freshwater wetlands in Michigan, USA, we conducted water level fluctuation experiments. Porewater and sediment metals (Ca, Cu, Fe, Mg, Mn, Ni, Zn) and important metal binding phases (iron-oxide speciation, acid-volatile sulfide) were quantified. In a short-term drying (seiche) experiment, there were decreases in all porewater metals after inundation of saturated sediments. During a drought experiment, re-inundation of oxidized sediments increased porewater Cu, Zn, Mg, Ca for most sites. Porewater Zn increased after inundation to levels exceeding the US Environmental Protection Agency threshold for chronic toxicity. These data show that the dissolution of metal carbonates and metal sulfates contributes to metal release after re-flooding and indicate that we might expect increased ecological risk to organisms present in drought-sensitive regions where altered hydroperiods are likely to increase metal bioavailability. Environ Toxicol Chem 2017;36:2456-2464. © 2017 SETAC. © 2017 SETAC.

  6. High-Frequency Percussive Ventilation Revisited

    DTIC Science & Technology

    2010-01-01

    be implemented. ‡ Follow the reverse of the ventilation sequence if respiratory alkalosis develops—however, start at ventilation goal sequence 1 not at...High-frequency percussive ventilation (HFPV) has demonstrated a potential role as a rescue option for refractory acute respiratory distress syndrome...frequency percussive ventilation (HFPV) has demon- strated a potential role as a salvage option for refrac- tory acute respiratory distress syndrome

  7. Effect of higher frequency on the classification of steady-state visual evoked potentials

    NASA Astrophysics Data System (ADS)

    Won, Dong-Ok; Hwang, Han-Jeong; Dähne, Sven; Müller, Klaus-Robert; Lee, Seong-Whan

    2016-02-01

    Objective. Most existing brain-computer interface (BCI) designs based on steady-state visual evoked potentials (SSVEPs) primarily use low frequency visual stimuli (e.g., <20 Hz) to elicit relatively high SSVEP amplitudes. While low frequency stimuli could evoke photosensitivity-based epileptic seizures, high frequency stimuli generally show less visual fatigue and no stimulus-related seizures. The fundamental objective of this study was to investigate the effect of stimulation frequency and duty-cycle on the usability of an SSVEP-based BCI system. Approach. We developed an SSVEP-based BCI speller using multiple LEDs flickering with low frequencies (6-14.9 Hz) with a duty-cycle of 50%, or higher frequencies (26-34.7 Hz) with duty-cycles of 50%, 60%, and 70%. The four different experimental conditions were tested with 26 subjects in order to investigate the impact of stimulation frequency and duty-cycle on performance and visual fatigue, and evaluated with a questionnaire survey. Resting state alpha powers were utilized to interpret our results from the neurophysiological point of view. Main results. The stimulation method employing higher frequencies not only showed less visual fatigue, but it also showed higher and more stable classification performance compared to that employing relatively lower frequencies. Different duty-cycles in the higher frequency stimulation conditions did not significantly affect visual fatigue, but a duty-cycle of 50% was a better choice with respect to performance. The performance of the higher frequency stimulation method was also less susceptible to resting state alpha powers, while that of the lower frequency stimulation method was negatively correlated with alpha powers. Significance. These results suggest that the use of higher frequency visual stimuli is more beneficial for performance improvement and stability as time passes when developing practical SSVEP-based BCI applications.

  8. Effect of higher frequency on the classification of steady-state visual evoked potentials.

    PubMed

    Won, Dong-Ok; Hwang, Han-Jeong; Dähne, Sven; Müller, Klaus-Robert; Lee, Seong-Whan

    2016-02-01

    Most existing brain-computer interface (BCI) designs based on steady-state visual evoked potentials (SSVEPs) primarily use low frequency visual stimuli (e.g., <20 Hz) to elicit relatively high SSVEP amplitudes. While low frequency stimuli could evoke photosensitivity-based epileptic seizures, high frequency stimuli generally show less visual fatigue and no stimulus-related seizures. The fundamental objective of this study was to investigate the effect of stimulation frequency and duty-cycle on the usability of an SSVEP-based BCI system. We developed an SSVEP-based BCI speller using multiple LEDs flickering with low frequencies (6-14.9 Hz) with a duty-cycle of 50%, or higher frequencies (26-34.7 Hz) with duty-cycles of 50%, 60%, and 70%. The four different experimental conditions were tested with 26 subjects in order to investigate the impact of stimulation frequency and duty-cycle on performance and visual fatigue, and evaluated with a questionnaire survey. Resting state alpha powers were utilized to interpret our results from the neurophysiological point of view. The stimulation method employing higher frequencies not only showed less visual fatigue, but it also showed higher and more stable classification performance compared to that employing relatively lower frequencies. Different duty-cycles in the higher frequency stimulation conditions did not significantly affect visual fatigue, but a duty-cycle of 50% was a better choice with respect to performance. The performance of the higher frequency stimulation method was also less susceptible to resting state alpha powers, while that of the lower frequency stimulation method was negatively correlated with alpha powers. These results suggest that the use of higher frequency visual stimuli is more beneficial for performance improvement and stability as time passes when developing practical SSVEP-based BCI applications.

  9. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    NASA Astrophysics Data System (ADS)

    Voichick, Nicholas; Topping, David J.; Griffiths, Ronald E.

    2018-03-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator-prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment

  10. Optimum design on refrigeration system of high-repetition-frequency laser

    NASA Astrophysics Data System (ADS)

    Li, Gang; Li, Li; Jin, Yezhou; Sun, Xinhua; Mao, Shaojuan; Wang, Yuanbo

    2014-12-01

    A refrigeration system with fluid cycle, semiconductor cooler and air cooler is designed to solve the problems of thermal lensing effect and unstable output of high-repetition-frequency solid-state lasers. Utilizing a circulating water pump, water recycling system carries the water into laser cavity to absorb the heat then get to water cooling head. The water cooling head compacts cold spot of semiconductor cooling chips, so the heat is carried to hot spot which contacts the radiating fins, then is expelled through cooling fan. Finally, the cooled water return to tank. The above processes circulate to achieve the purposes of highly effective refrigeration in miniative solid-state lasers.The refrigeration and temperature control components are designed strictly to ensure refrigeration effect and practicability. we also set up a experiment to test the performances of this refrigeration system, the results show that the relationship between water temperature and cooling power of semiconductor cooling chip is linear at 20°C-30°C (operating temperature range of Nd:YAG), the higher of the water temperature, the higher of cooling power. According to the results, cooling power of single semiconductor cooling chip is above 60W, and the total cooling power of three semiconductor cooling chips achieves 200W that will satisfy the refrigeration require of the miniative solid-state lasers.The performance parameters of laser pulse are also tested, include pulse waveform, spectrogram and laser spot. All of that indicate that this refrigeration system can ensure the output of high-repetition-frequency pulse whit high power and stability.

  11. Late Holocene sedimentation in a high Arctic coastal setting: Simpson Lagoon and Colville Delta, Alaska

    NASA Astrophysics Data System (ADS)

    Hanna, Andrea J. M.; Allison, Mead A.; Bianchi, Thomas S.; Marcantonio, Franco; Goff, John A.

    2014-02-01

    Arctic coastal environments near major river outfalls, like Simpson Lagoon, Alaska and the adjacent Colville River Delta, potentially contain high-resolution sediment records useful in elucidating late Holocene Arctic sediment transport pathways and coupled terrestrial-ocean evidence of paleoclimate variability. This study utilizes a multi-tracer geochronology approach (137Cs, 239,240Pu, and 14C) tailored for high-latitude environments to determine the age models for cores collected from Simpson Lagoon, and to date seismic boundaries in shallow acoustic reflection data (CHIRP) to examine late Holocene infill patterns. Modern (~100 y) sediment accumulation rates range from <0.02 to 0.46±0.04 cm y-1, with a primary depocenter in western Simpson Lagoon adjacent to the Colville Delta and a secondary depocenter in eastern Simpson Lagoon. CHIRP reflectors, age-constrained by 14C analysis, reveal rapid late Holocene (0-3500 y BP) transgression consistent with high modern shoreline retreat rates. The western depocenter contains >5 m of late Holocene interbedded sediments, likely derived primarily from the Colville River, with onset of accumulation occurring prior to ~3500 y BP. A paleo-high in central Simpson Lagoon, separating the two depocenters, was subaerially exposed prior to ~600 y BP. The millimeters-per-year sedimentation rates across the lagoon, coupled with the undisturbed, interbedded sediment record, indicate that these settings hold great potential to develop new Arctic paleoenvironmental records.

  12. Warming increases nutrient mobilization and gaseous nitrogen removal from sediments across cascade reservoirs.

    PubMed

    Zhou, Xingpeng; Chen, Nengwang; Yan, Zhihao; Duan, Shuiwang

    2016-12-01

    Increases in water temperature, as a result of climate change, may influence biogeochemical cycles, sediment-water fluxes and consequently environmental sustainability. Effects of rising temperature on dynamics of nitrate, nitrite, ammonium, dissolved inorganic nitrogen (DIN), dissolved reactive phosphorus (DRP), dissolved organic carbon (DOC) and gaseous nitrogen (N 2 and N 2 O) were examined in a subtropical river (the Jiulong River, southeast China) by microcosm experiments. Slurry sediments and overlying water were collected from three continuous cascade reservoirs, and laboratory incubations were performed at four temperature gradients (5 °C, 15 °C, 25 °C and 35 °C). Results indicated: (1) warming considerably increased sediment ammonium, DIN and DOC fluxes to overlying water; (2) warming increased retention of nitrate, and to a lesser extent, nitrite, corresponding to increases in N 2 and N 2 O emission; (3) DRP was retained but released from Fe/Al-P enriched sediments at high temperature (35 °C) due to enhanced coupled transformation of carbon and nitrogen with oxygen deficiency. Using relationships between sediment fluxes and temperature, a projected 2.3°C-warming in future would increase ammonium flux from sediment by 7.0%-16.8%, while increasing nitrate flux into sediment by 8.9%-28.6%. Moreover, substrates (e.g., grain size, carbon availability) influenced nutrient delivery and cycling across cascade reservoirs. This study highlights that warming would increase bioreactive nutrient (i.e., ammonium and phosphate) mobilization with limited gaseous N removal from sediments, consequently deteriorating water quality and increasing eutrophication with future climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  14. Radiocarbon constraints on the coupled growth of sediment and organic carbon reservoirs in fluvial systems

    NASA Astrophysics Data System (ADS)

    Torres, M. A.; Kemeny, P. C.; Fischer, W. W.; Lamb, M. P.

    2017-12-01

    Vast amounts of sediments are stored transiently in fluvial deposits as they move in rivers from source to sink. The timescale(s) of transient storage have the potential to set the cadence for biogeochemical reactions to occur in river sediments. However, the extent to which storage modulates the chemical composition of river sediments remains unclear. In case of the organic carbon (OC) cycle, transient sediment storage may leave an imprint in the radiocarbon (14C) content of riverine particulate OC (POC), offering a potential tool to trace the coupling of sediment storage and biogeochemical cycling in river systems. We investigated the modern and ancient budgets of sediments and POC in the Efi Haukadalsá River catchment in West Iceland to provide new empirical constraints on the role of sediment storage in the terrestrial OC cycle. This field site is attractive because the basaltic bedrock is free of rock-derived (i.e. "petrogenic") POC such that bulk 14C measurements can be interpreted more directly as constraints on catchment OC storage timescales. Additionally, Lake Haukadalsvatn at the outlet of the river catchment has captured sediment for nearly 13 ka, which offers a complementary record of the evolution of climate-sediment-OC linkages since deglaciation. New 14C measurements show that bulk POC in fine grained fluvial deposits within the Haukadalsá catchment is remarkably old (model ages between 1 and 10 ka). This evidence for "aged" POC in floodplain storage is consistent with previous measurements from Lake Haukadalsvatn, which show that POC is aged in the river system by thousands of years prior to deposition in the lake. Additionally, our estimate of the mean transit time of sediments through the river system matches the millennial-scale reservoir age of riverine POC derived from 14C, which implies a tight coupling between sediment storage and the OC cycle. We interpret the long-term increase in the 14C reservoir age of riverine POC over the last 10 ka

  15. Sedimentary and chemostratigraphic record of climatic cycles in Lower Pliensbachian marl-limestone platform successions of Asturias (North Spain)

    NASA Astrophysics Data System (ADS)

    Bádenas, Beatriz; Aurell, Marc; Armendáriz, Maider; Rosales, Idoia; García-Ramos, José Carlos; Piñuela, Laura

    2012-12-01

    A combined sedimentological, lithological and chemostratigraphical (Mg/Ca, δ13C, δ18O) analysis of the Lower Pliensbachian marl-limestone platform successions exposed along the Asturias coastline (northern Spain) has resulted in the characterization of high-frequency cycles. The highest-order sedimentary cycles (i.e. elementary cycles) are centimeter- to deciemeter-thick alternations of bioclastic and muddy laminated/burrowed facies, which do not match the marl-limestone couplets. They encompass three sedimentary stages: deposition from storm-density currents (bioclastic facies), dominant lateral advection of continental terrigenous mud accumulated on to an oxygen-deficient seafloor (laminated facies), and recovery of bottom oxygenation involving the burrowing of laminated sediments (burrowed facies). The close match between the number of elementary cycles recorded during the Jamesoni Subzone in Asturias and Yorkshire (Northern England) gives support to the idea of the influence of a regional climatic factor (i.e. millennial-scale cyclicity). Decimeter- to meter-scale cycles formed by bundles of elementary cycles are thought to record orbitally driven climatic changes (precession or obliquity, depending on the time calibration considered). Lower hemicycles of bundles are dominated by marls/calcareous mudstones, with decreasing burrowing and eventual preservation of laminated facies. They formed during humid periods, which controlled an increase in freshwater and terrigenous input to the platform and quasi-estuarine circulation promoting bottom-anoxia. Upper hemicycles of bundles are dominated by burrowed and bioclastic limestones, thought to be formed under arid conditions with anti-estuarine circulation and an increase of shallow carbonate production and offshore resedimentation. Chemostratigraphic data from belemnites recorded in the muddy laminated and burrowed facies indicate that significant concomitant shifts in δ13C and δ18O occurred during the lower

  16. NGH: A Dynamic Factor in Deep Water Sediments & the Geological Record

    NASA Astrophysics Data System (ADS)

    Max, M. D.; Johnson, A. H.

    2012-12-01

    Prior to identification of natural gas hydrate (NGH) in marine sediments, gravity and tectonic forces were the recognized dynamic forces that could cause disruption in deep marine sediments. NGH introduces a new dynamic factor into continental slope and rise sediments as well as sediments in the deeper parts of some continental shelves. Two critical elements interplay to provide for a slow acting, long-term NGH-dynamic cyclical system. First, NGH forms spontaneously from dissolved natural gas generally in a passive manner without causing any other than very subtle alterations to the megascopic sediment structure. When NGH forms in either dispersed form in muddy sediments or in concentrated form in veins or nodules or in porosity in sandy sediments, it increases overall mechanical strength. Second, when it dissociates, mechanical strength weakens to the point where shear strengths can approach zero. Because the chemical reaction of NGH is highly reversible, changes in sea level that affect pressure, and changes in seafloor temperature can alter rapidly the tendency of NGH to either crystallize or dissociate, with consequent structural and morphological effects. The cyclicity of the Earth's climate introduces a mechanism for periodically injecting overpressured gas into marine sediments as the gas hydrate stability zones (GHSZ) undergoes changes to its thickness and depth. Natural climate change has the potential to produce overpressured natural gas converted from NGH in marine sediments periodically. In-place disruption would consist of disrupted sandy beds, chaotic textures on all scales, intrusion effects, limited mass flow features, dramatic sediment mixing not related to large scale movement and sediment redeposition from fluidized beds. Mobilization would involve larger scale sediment mass flow effects that would be indistinguishable from olistostromic melanges postulated to be initiated by tectonic or gravitational forces. The earliest interpretation of this

  17. High frequency x-ray generator basics.

    PubMed

    Sobol, Wlad T

    2002-02-01

    The purpose of this paper is to present basic functional principles of high frequency x-ray generators. The emphasis is put on physical concepts that determine the engineering solutions to the problem of efficient generation and control of high voltage power required to drive the x-ray tube. The physics of magnetically coupled circuits is discussed first, as a background for the discussion of engineering issues related to high-frequency power transformer design. Attention is paid to physical processes that influence such factors as size, efficiency, and reliability of a high voltage power transformer. The basic electrical circuit of a high frequency generator is analyzed next, with focus on functional principles. This section investigates the role and function of basic components, such as power supply, inverter, and voltage doubler. Essential electronic circuits of generator control are then examined, including regulation of voltage, current and timing of electrical power delivery to the x-ray tube. Finally, issues related to efficient feedback control, including basic design of the AEC circuitry are reviewed.

  18. Quantifying Post-Fire Aeolian Sediment Transport Using Rare Earth Element Tracers.

    NASA Astrophysics Data System (ADS)

    Dukes, D.; Ravi, S.; Grandstaff, D. E.; Gonzales, H. B.; Li, J. J.; Sankey, J. B.; Wang, G.; Van Pelt, R. S.

    2016-12-01

    Grasslands and rangelands in arid and semi-arid regions of the world, which provide fundamental ecosystem services, are undergoing rapid increases in fire activity and are highly susceptible to post-fire accelerated soil erosion by wind. A quantitative assessment that integrates fire-wind erosion feedbacks is therefore critically needed in understanding vegetation change, soil biogeochemical cycling, air quality, and landscape evolution. We investigated the applicability of a novel tracer technique - the use of rare earth element (REE) tracers - to quantify soil erosion by wind and to identify sources and sinks of wind-blown sediments in both a burned and unburned shrub-grass transition zone within the Chihuahuan desert (New Mexico, USA). At the beginning of the windy season, March 2016, silt and sand sized particles in shrub, grass, and bare microsites were each tagged with a unique REE oxide, Ho, Eu, and Yb respectively. Samples were then taken directly after application prior to a prescribed fire and again at the end of the windy season in June 2016. All REE tracers showed signs of depletion and mixing, with the depletion in the burned site up to 20% greater than the unburned. REE concentration comparisons between the burned and unburned plots reveal a shift in the source and sink dynamics of sediment post fire. In unburned plots, changes in microsite REE concentrations indicate that sediment moved from the bare to vegetated microsites, whereas the opposite occurred in burned plots. However, burned plot grass microsites acted as a sink for sediment from shrub microsites, whereas unburned plot grass microsites exhibited no enrichment from shrub microsite-sourced sediment. Though fires are known to immediately increase aeolian sediment transport, accompanying changes in the sources and sinks of wind borne sediment may influence biogeochemical cycling and vegetation shifts possibly providing a feedback mechanism for land degradation in dryland ecosystems.

  19. High-frequency modulation of ion-acoustic waves.

    NASA Technical Reports Server (NTRS)

    Albright, N. W.

    1972-01-01

    A large amplitude, high-frequency electromagnetic oscillation is impressed on a nonrelativistic, collisionless plasma from an external source. The frequency is chosen to be far from the plasma frequency (in fact, lower). The resulting electron velocity distribution function strongly modifies the propagation of ion-acoustic waves parallel to the oscillating electric field. The complex frequency is calculated numerically.

  20. Time Scale Optimization and the Hunt for Astronomical Cycles in Deep Time Strata

    NASA Astrophysics Data System (ADS)

    Meyers, Stephen R.

    2016-04-01

    A valuable attribute of astrochronology is the direct link between chronometer and climate change, providing a remarkable opportunity to constrain the evolution of the surficial Earth System. Consequently, the hunt for astronomical cycles in strata has spurred the development of a rich conceptual framework for climatic/oceanographic change, and has allowed exploration of the geologic record with unprecedented temporal resolution. Accompanying these successes, however, has been a persistent skepticism about appropriate astrochronologic testing and circular reasoning: how does one reliably test for astronomical cycles in stratigraphic data, especially when time is poorly constrained? From this perspective, it would seem that the merits and promise of astrochronology (e.g., a geologic time scale measured in ≤400 kyr increments) also serves as its Achilles heel, if the confirmation of such short rhythms defies rigorous statistical testing. To address these statistical challenges in astrochronologic testing, a new approach has been developed that (1) explicitly evaluates time scale uncertainty, (2) is resilient to common problems associated with spectrum confidence level assessment and 'multiple testing', and (3) achieves high statistical power under a wide range of conditions (it can identify astronomical cycles when present in data). Designated TimeOpt (for "time scale optimization"; Meyers 2015), the method employs a probabilistic linear regression model framework to investigate amplitude modulation and frequency ratios (bundling) in stratigraphic data, while simultaneously determining the optimal time scale. This presentation will review the TimeOpt method, and demonstrate how the flexible statistical framework can be further extended to evaluate (and optimize upon) complex sedimentation rate models, enhancing the statistical power of the approach, and addressing the challenge of unsteady sedimentation. Meyers, S. R. (2015), The evaluation of eccentricity

  1. A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Frank L.

    2012-07-01

    Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storagemore » sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded emissions

  2. Community Composition of Nitrous Oxide-Related Genes in Salt Marsh Sediments Exposed to Nitrogen Enrichment.

    PubMed

    Angell, John H; Peng, Xuefeng; Ji, Qixing; Craick, Ian; Jayakumar, Amal; Kearns, Patrick J; Ward, Bess B; Bowen, Jennifer L

    2018-01-01

    Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated profiles of microbial communities and communities of micro-organisms containing specific nitrogen cycling genes that encode several enzymes ( amoA, norB, nosZ) related to nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms involved in the production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that previously measured rates of nitrous oxide production and consumption are likely the result of changes in community structure, not simply changes in microbial activity.

  3. Estimation of red-light running frequency using high-resolution traffic and signal data.

    PubMed

    Chen, Peng; Yu, Guizhen; Wu, Xinkai; Ren, Yilong; Li, Yueguang

    2017-05-01

    Red-light-running (RLR) emerges as a major cause that may lead to intersection-related crashes and endanger intersection safety. To reduce RLR violations, it's critical to identify the influential factors associated with RLR and estimate RLR frequency. Without resorting to video camera recordings, this study investigates this important issue by utilizing high-resolution traffic and signal event data collected from loop detectors at five intersections on Trunk Highway 55, Minneapolis, MN. First, a simple method is proposed to identify RLR by fully utilizing the information obtained from stop bar detectors, downstream entrance detectors and advance detectors. Using 12 months of event data, a total of 6550 RLR cases were identified. According to a definition of RLR frequency as the conditional probability of RLR on a certain traffic or signal condition (veh/1000veh), the relationships between RLR frequency and some influential factors including arriving time at advance detector, approaching speed, headway, gap to the preceding vehicle on adjacent lane, cycle length, geometric characteristics and even snowing weather were empirically investigated. Statistical analysis shows good agreement with the traffic engineering practice, e.g., RLR is most likely to occur on weekdays during peak periods under large traffic demands and longer signal cycles, and a total of 95.24% RLR events occurred within the first 1.5s after the onset of red phase. The findings confirmed that vehicles tend to run the red light when they are close to intersection during phase transition, and the vehicles following the leading vehicle with short headways also likely run the red light. Last, a simplified nonlinear regression model is proposed to estimate RLR frequency based on the data from advance detector. The study is expected to helpbetter understand RLR occurrence and further contribute to the future improvement of intersection safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The contribution of chemical fluxes across the sediment-water interface to carbon cycling in estuarine regions: A case study at the Rhône River mouth (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Rassmann, Jens; Eitel, Eryn; Bombled, Bruno; Lansard, Bruno; Taillefert, Martial; Rabouille, Christophe

    2016-04-01

    Despite their small surface compared to the global oceans, continental shelf regions play a significant role in the global carbon cycle. Whereas shelf regions are seen as a sink for atmospheric CO2, estuarine regions are seen as a source. These regions are caracterized by the export of allochthonous terrigenous organic matter (OM) and the production of autochthonous marine organic carbon. An important fraction of this OM is mineralized in the sediments close to the river mouth. As a result, high exchange fluxes of dissolved inorganic carbon (DIC), total alkalinity (TA), oxygen and nutriments cross the sediment-water interface (SWI) and cause acidification of the bottom waters. Potentially, primary production in the water column is enhanced by these fluxes. Therefore, OM mineralisation in estuarine regions plays a key role in the carbon cycle as a direct producer of DIC and as a potential control factor for primary production. This work aims to quantify chemical fluxes through the SWI at the prodelta of the Rhone River (Mediterranen). In September 2015, a benthic chamber has been deployed at several stations in the prodelta to measure directly (in situ) fluxes of DIC, TA, ammonium and dissolved calcium at the SWI. At the same stations, in situ microprofiles of oxygen and pH have been recorded and sediment cores were taken for pore water extraction and analysis (DIC, TA, NH4+ and Ca2+). The results show a strong decrease of the fluxes in offshore direction indicating a strong variation of respiration rates in this direction. From pore water profiles, diffusive fluxes have been calculated and compared with the fluxes measured by the benthic chamber. This comparison enables us to include pore water profiles from previous investigations to calculate a carbon mass budget of this region.

  5. SULFIDE MINERALS IN SEDIMENTS

    EPA Science Inventory

    The formation processes of metal sulfides in sediments, especially iron sulfides, have been the subjects of intense scientific research because of linkages to the global biogeochemical cycles of iron, sulfur, carbon, and oxygen. Transition metal sulfides (e.g., NiS, CuS, ZnS, Cd...

  6. Transport of Gas and Solutes in Permeable Estuarine Sediments

    DTIC Science & Technology

    2012-09-30

    produce his Ph.D. dissertation based on this reserach . The acoustic method for detecting and measuring small gas bubbles in marine sands. This...the detection and quantification of small free gas volumes in sandy coastal sediments. After introducing and explaining the instrument, the paper ...influence the sediment erosion threshold, biogeochemical zonations, living space for organisms and thereby the role of the sediments in the cycles of

  7. Microbial community composition along a 50 000-year lacustrine sediment sequence

    PubMed Central

    Ariztegui, Daniel; Horn, Fabian; Kallmeyer, Jens; Orsi, William D

    2018-01-01

    Abstract For decades, microbial community composition in subseafloor sediments has been the focus of extensive studies. In deep lacustrine sediments, however, the taxonomic composition of microbial communities remains undercharacterized. Greater knowledge on microbial diversity in lacustrine sediments would improve our understanding of how environmental factors, and resulting selective pressures, shape subsurface biospheres in marine and freshwater sediments. Using high-throughput sequencing of 16S rRNA genes across high-resolution climate intervals covering the last 50 000 years in Laguna Potrok Aike, Argentina, we identified changes in microbial populations in response to both past environmental conditions and geochemical changes of the sediment during burial. Microbial communities in Holocene sediments were most diverse, reflecting a layering of taxa linked to electron acceptors availability. In deeper intervals, the data show that salinity, organic matter and the depositional conditions over the Last Glacial-interglacial cycle were all selective pressures in the deep lacustrine assemblage resulting in a genetically distinct biosphere from the surface dominated primarily by Bathyarchaeota and Atribacteria groups. However, similar to marine sediments, some dominant taxa in the shallow subsurface persisted into the subsurface as minor fraction of the community. The subsequent establishment of a deep subsurface community likely results from a combination of paleoenvironmental factors that have shaped the pool of available substrates, together with substrate depletion and/or reworking of organic matter with depth. PMID:29471361

  8. Flood magnitude-frequency analysis and sediment transport capacity rate assessment in a mixed alluvial-bedrock channel at Val Lumnezia, Eastern Switzerland, (Graubünden)

    NASA Astrophysics Data System (ADS)

    Bekaddour, T.

    2012-04-01

    ultimately leads to enhanced stabilization of the channel bed and thus to a higher threshold of critical stress of incipient motion. Q10 floods, in contrast, are capable of moving both the d50 and d84 fractions, which implies that Q10 represents an effective flood that is results in the evacuation of hillslope-derived material over longer distances. Our results thus support the idea that the mechanisms and timescales of sediment transport in high mountain streams strongly depend on stream geometry and flood magnitude-frequency.

  9. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise

    PubMed Central

    2016-01-01

    Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4–8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception. PMID:26730702

  10. High resolution microprofiling, fractionation and speciation at sediment water interfaces

    NASA Astrophysics Data System (ADS)

    Fabricius, Anne-Lena; Duester, Lars; Ecker, Dennis; Ternes, Thomas A.

    2016-04-01

    Within aquatic environments, the exchange between the sediment and the overlaying water is often driven by steep gradients of, e.g., the oxygen concentration, the redox potential or the pH value at the sediment water interface (SWI). Important transport processes at the SWI are sedimentation and resuspension of particulate matter and diffusional fluxes of dissolved substances. To gain a better understanding of the key factors and processes determining the fate of substances at the SWI, methods with a spatial high resolution are required that enable the investigation of several sediment parameters in parallel to different analytes of interest in the sediment pore water. Moreover, beside the total content, questions concerning the speciation and fractionation are of concern in studying the different (transport) processes. Due to the availability of numerous micro-sensors and -electrodes (e.g., O2, redox potential, pH value, H2S, N2O) and the development of methods for pore water sampling [1], the toolbox to study the heterogeneous and often dynamic conditions at the SWI at a sub-millimetre scale were considerably improved. Nevertheless, the methods available for pore water sampling often require the installation of the sampling devices at the sampling site and/or intensive preparation procedures that may influence the conditions at the area studied and/or the characteristics of the samples taken. By combination of a micro profiling system with a new micro filtration probe head connected to a pump and a fraction collector, a micro profiling and micro sampling system ("missy") was developed that enables for the first time a direct, automate and low invasive sampling of small volumes (<500 μL) at a spatial high resolution of a few millimetres to sub-millimetres [2]. Via the application of different sample preparation procedures followed by inductively plasma-mass spectrometry analyses, it was possible to address not only the total content of metal(loid)s, but also

  11. High growth potential and nitrogen removal performance of marine anammox bacteria in shrimp-aquaculture sediment.

    PubMed

    Van Duc, Luong; Song, Bongkeun; Ito, Hiroaki; Hama, Takehide; Otani, Masashi; Kawagoshi, Yasunori

    2018-04-01

    Anaerobic ammonium oxidation (anammox) bacteria were enriched in continuous packed-bed columns with marine sediment. One column (SB-C) was packed with only marine sediment collected from a shrimp-aquaculture pond, and another column (SB-AMX) was inoculated with marine anammox bacteria (MAB) as a control. These columns were continuously fed with natural or artificial seawater including ammonium (NH 4 + ) and nitrite (NO 2 - ). The SB-AMX showed anammox activities from the beginning and continued for over 200 days. However, the SB-C had no nitrogen removal performance for over 170 days. After adding a bicarbonate solution (KHCO 3 ) to the sediment-only packed column, anammox activity was observed within 13 days. The column exhibited a nitrogen removal efficiency (NRE) of 88% at a nitrogen loading rate (NLR) of 1.0 kg-N·m -3 ·day -1 , which was comparable to the control one. A next-generation sequencing analysis revealed the predominance of MAB related to "Candidatus Scalindua spp.". In addition, the co-occurrence of sulfur-oxidizing denitrifiers was observed, which suggests their symbiotic relationship. This study suggests the applicability of MAB for in-situ bioremediation of nitrogen-contaminated marine sediments and reveals a potential microbial interaction between anammox and sulfur-oxidizing communities responsible for nitrogen and sulfur cycling in marine aquaculture systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Contact resistance evolution of highly cycled, lightly loaded micro-contacts

    NASA Astrophysics Data System (ADS)

    Stilson, Christopher; Coutu, Ronald

    2014-03-01

    Reliable microelectromechanical systems (MEMS) switches are critical for developing high performance radio frequency circuits like phase shifters. Engineers have attempted to improve reliability and lifecycle performance using novel contact metals, unique mechanical designs and packaging. Various test fixtures including: MEMS devices, atomic force microscopes (AFM) and nanoindentors have been used to collect resistance and contact force data. AFM and nanoindentor test fixtures allow direct contact force measurements but are severely limited by low resonance sensors, and therefore low data collection rates. This paper reports the contact resistance evolution results and fabrication of thin film, sputtered and evaporated gold, micro-contacts dynamically tested up to 3kHz. The upper contact support structure consists of a gold surface micromachined, fix-fix beam designed with sufficient restoring force to overcome adhesion. The hemisphere-upper and planar-lower contacts are mated with a calibrated, external load resulting in approximately 100μN of contact force and are cycled in excess of 106 times or until failure. Contact resistance is measured, in-situ, using a cross-bar configuration and the entire apparatus is isolated from external vibration and housed in an enclosure to minimize contamination due to ambient environment. Additionally, contact cycling and data collection are automated using a computer and LabVIEW. Results include contact resistance measurements of 6 and 8 μm radius contact bumps and lifetime testing up to 323.6 million cycles.

  13. Estimating sediment discharge: Appendix D

    USGS Publications Warehouse

    Gray, John R.; Simões, Francisco J. M.

    2008-01-01

    Sediment-discharge measurements usually are available on a discrete or periodic basis. However, estimates of sediment transport often are needed for unmeasured periods, such as when daily or annual sediment-discharge values are sought, or when estimates of transport rates for unmeasured or hypothetical flows are required. Selected methods for estimating suspended-sediment, bed-load, bed- material-load, and total-load discharges have been presented in some detail elsewhere in this volume. The purposes of this contribution are to present some limitations and potential pitfalls associated with obtaining and using the requisite data and equations to estimate sediment discharges and to provide guidance for selecting appropriate estimating equations. Records of sediment discharge are derived from data collected with sufficient frequency to obtain reliable estimates for the computational interval and period. Most sediment- discharge records are computed at daily or annual intervals based on periodically collected data, although some partial records represent discrete or seasonal intervals such as those for flood periods. The method used to calculate sediment- discharge records is dependent on the types and frequency of available data. Records for suspended-sediment discharge computed by methods described by Porterfield (1972) are most prevalent, in part because measurement protocols and computational techniques are well established and because suspended sediment composes the bulk of sediment dis- charges for many rivers. Discharge records for bed load, total load, or in some cases bed-material load plus wash load are less common. Reliable estimation of sediment discharges presupposes that the data on which the estimates are based are comparable and reliable. Unfortunately, data describing a selected characteristic of sediment were not necessarily derived—collected, processed, analyzed, or interpreted—in a consistent manner. For example, bed-load data collected with

  14. Microstructure-Sensitive Modeling of High Cycle Fatigue (Preprint)

    DTIC Science & Technology

    2009-03-01

    SUBJECT TERMS microplasticity , microstructure-sensitive modeling, high cycle fatigue, fatigue variability 16. SECURITY CLASSIFICATION OF: 17...3Air Force Research Laboratory Wright Patterson Air Force Base, Ohio 45433 Keywords: Microplasticity , microstructure-sensitive modeling, high cycle...cyclic microplasticity ) plays a key role in modeling fatigue resistance. Unlike effective properties such as elastic stiffness, fatigue is

  15. High Frequency Acoustic Propagation using Level Set Methods

    DTIC Science & Technology

    2007-01-01

    solution of the high frequency approximation to the wave equation. Traditional solutions to the Eikonal equation in high frequency acoustics are...the Eikonal equation derived from the high frequency approximation to the wave equation, ucuH ∇±=∇ )(),( xx , with the nonnegative function c(x...For simplicity, we only consider the case ucuH ∇+=∇ )(),( xx . Two difficulties must be addressed when solving the Eikonal equation in a fixed

  16. Apparatus for measuring high frequency currents

    NASA Technical Reports Server (NTRS)

    Hagmann, Mark J. (Inventor); Sutton, John F. (Inventor)

    2003-01-01

    An apparatus for measuring high frequency currents includes a non-ferrous core current probe that is coupled to a wide-band transimpedance amplifier. The current probe has a secondary winding with a winding resistance that is substantially smaller than the reactance of the winding. The sensitivity of the current probe is substantially flat over a wide band of frequencies. The apparatus is particularly useful for measuring exposure of humans to radio frequency currents.

  17. Power MOSFET Linearizer of a High-Voltage Power Amplifier for High-Frequency Pulse-Echo Instrumentation.

    PubMed

    Choi, Hojong; Woo, Park Chul; Yeom, Jung-Yeol; Yoon, Changhan

    2017-04-04

    A power MOSFET linearizer is proposed for a high-voltage power amplifier (HVPA) used in high-frequency pulse-echo instrumentation. The power MOSFET linearizer is composed of a DC bias-controlled series power MOSFET shunt with parallel inductors and capacitors. The proposed scheme is designed to improve the gain deviation characteristics of the HVPA at higher input powers. By controlling the MOSFET bias voltage in the linearizer, the gain reduction into the HVPA was compensated, thereby reducing the echo harmonic distortion components generated by the ultrasonic transducers. In order to verify the performance improvement of the HVPA implementing the power MOSFET linearizer, we measured and found that the gain deviation of the power MOSFET linearizer integrated with HVPA under 10 V DC bias voltage was reduced (-1.8 and -0.96 dB, respectively) compared to that of the HVPA without the power MOSFET linearizer (-2.95 and -3.0 dB, respectively) when 70 and 80 MHz, three-cycle, and 26 dB m input pulse waveforms are applied, respectively. The input 1-dB compression point (an index of linearity) of the HVPA with power MOSFET linearizer (24.17 and 26.19 dB m at 70 and 80 MHz, respectively) at 10 V DC bias voltage was increased compared to that of HVPA without the power MOSFET linearizer (22.03 and 22.13 dB m at 70 and 80 MHz, respectively). To further verify the reduction of the echo harmonic distortion components generated by the ultrasonic transducers, the pulse-echo responses in the pulse-echo instrumentation were compared when using HVPA with and without the power MOSFET linearizer. When three-cycle 26 dB m input power was applied, the second, third, fourth, and fifth harmonic distortion components of a 75 MHz transducer driven by the HVPA with power MOSFET linearizer (-48.34, -44.21, -48.34, and -46.56 dB, respectively) were lower than that of the HVPA without the power MOSFET linearizer (-45.61, -41.57, -45.01, and -45.51 dB, respectively). When five-cycle 20 dB m input

  18. A revised velocity-reversal and sediment-sorting model for a high-gradient, pool-riffle stream

    USGS Publications Warehouse

    Thompson, D.M.; Wohl, E.E.; Jarrett, R.D.

    1996-01-01

    Sediment-sorting processes related to varying channel-bed morphology were investigated from April to November 1993 along a 1-km pool-riffle and step-pool reach of North Saint Vrain Creek, a small mountain stream in the Rocky Mountains of northern Colorado. Measured cross-sectional areas of flow were used to suggest higher velocities in pools than in riffles at high flow. Three hundred and sixteen tracer particles, ranging in size from 16 mm to 256 mm, were placed in two separate pool-riffle-pool sequences and used to assess sediment-sorting patterns and sediment-transport competence variations. Tracer-particle depositional evidence indicated higher sediment-transport competence in pools than in riffles at high flow. Pool-riffle sediment sorting may be created by velocity reversals, and more localized sorting results from gravitational forces along the upstream sloping portion of the channel bed located at the downstream end of pools.

  19. Heterometric sediment and benthic micro-habitat: In situ and experimental approaches.

    NASA Astrophysics Data System (ADS)

    Navon, Maxime; Dauvin, Jean-Claude; Lesourd, Sandric

    2016-04-01

    The eastern Bay of Seine and its estuary are characterized by complex sediment structures with high temporal, spatial and vertical heterogeneities. As the result of different hydrodynamics forcing, estuary is a particular area with fine sediment accumulation since the last decades. This complex system involves particular relationships between benthic species and the environment. Dominant species show particular traits of life: bentho-pelagic reproductive cycle, burrowing, tubicoulous, surface and subsurface species. Moreover, species behaviours are different according to the sediment properties: grain size, stratification, texture, silt and clay contents… Although benthic macrofauna and sediment relationship is often describe as the major factor structuring benthic communities, no spatial and temporal relationships has been highlighted in this area. So, our study is focused on the relationship between species and sediment at the individual scale and on micro-habitats. The aim of the study is to define the macrofauna vertical distribution to understand how the sediment structure acts on organisms and the organism behaviour in a heterometric sediment context, i.e. how organisms act in return on the sediment structure. An in situ approach is used to answer these questions with four campaigns on board on the Oceanographic Vessel 'Le Côtes de la Manche'. A total of 43 cores (16 cm diameter, 35 cm high) in three typical sediment facies are sampled. Cores are analysed with Computer-Aided Tomography scan (Cyceron Laboratory, Caen) to 3D visualize organisms and to determine volumetric space occupation by biogenic structures. The same cores are transversally cut to check the species out and to analyse sediment parameters (grain size, organic matter and other chemical components on XRF device). Results show that most of the organism are closed to the surface sediment but also that some species, even small size individuals, are found deeper in the sediment-column until 9 cm

  20. Bloom termination of the toxic dinoflagellate Alexandrium catenella: Vertical migration behavior, sediment infiltration, and benthic cyst yield.

    PubMed

    Brosnahan, Michael L; Ralston, David K; Fischer, Alexis D; Solow, Andrew R; Anderson, Donald M

    2017-11-01

    New resting cyst production is crucial for the survival of many microbial eukaryotes including phytoplankton that cause harmful algal blooms. Production in situ has previously been estimated through sediment trap deployments, but here was instead assessed through estimation of the total number of planktonic cells and new resting cysts produced by a localized, inshore bloom of Alexandrium catenella , a dinoflagellate that is a globally important cause of paralytic shellfish poisoning. Our approach utilizes high frequency, automated water monitoring, weekly observation of new cyst production, and pre- and post-bloom spatial surveys of total resting cyst abundance. Through this approach, new cyst recruitment within the study area was shown to account for at least 10.9% ± 2.6% (SE) of the bloom's decline, ∼ 5× greater than reported from comparable, sediment trap based studies. The observed distribution and timing of new cyst recruitment indicate that: (1) planozygotes, the immediate precursor to cysts in the life cycle, migrate nearer to the water surface than other planktonic stages and (2) encystment occurs after planozygote settlement on bottom sediments. Near surface localization by planozygotes explains the ephemerality of red surface water discoloration by A. catenella blooms, and also enhances the dispersal of new cysts. Following settlement, bioturbation and perhaps active swimming promote sediment infiltration by planozygotes, reducing the extent of cyst redistribution between blooms. The concerted nature of bloom sexual induction, especially in the context of an observed upper limit to A. catenella bloom intensities and heightened susceptibility of planozygotes to the parasite Amoebophrya , is also discussed.

  1. High-frequency, resonance-enhanced microactuators with active structures for high-speed flow control

    NASA Astrophysics Data System (ADS)

    Kreth, Phillip Andrew

    The need for actuators that are adaptable for use in a wide array of applications has been the motivation behind actuator development research over the past few years. Recent developments at the Advanced Aero-Propulsion Laboratory (AAPL) at Florida State University have produced a microactuator that uses the unsteadiness of a small-scale impinging jet to produce pulsed, supersonic microjets -- this is referred to as the Resonance-Enhanced Microjet (REM) actuator. Prior studies on these actuators at AAPL have been somewhat limited in that the actuator response has only been characterized through pressure/acoustic measurements and qualitative flow visualizations. Highly-magnified particle image velocimetry (PIV) measurements were performed to measure the velocity fields of both a 1 mm underexpanded jet and an REM actuator. The results demonstrate that this type of microactuator is capable of producing pulsed, supersonic microjets that have velocities of approximately 400 m/s that are sustained for significant portions of their cycles (> 60 %). These are the first direct velocity measurements of these flowfields, and they allow for a greater understanding of the flow physics associated with this microactuator. The previous studies on the REM actuators have shown that the microactuator volume is among the principal parameters in determining the actuator's maximum-amplitude frequency component. In order to use this actuator in a closed-loop, feedback control system, a modified design that incorporates smart materials is studied. The smart materials (specifically piezoelectric ceramic stack actuators) have been implemented into the microactuator to actively change its geometry, thus permitting controllable changes in the microactuator's resonant frequency. The distinct feature of this design is that the smart materials are not used to produce the primary perturbation or flow from the actuator (which has in the past limited the control authority of other designs) but to

  2. High-frequency welding trials.

    PubMed

    Kelch, R

    2000-09-01

    The high-frequency weldability of a new family of polyolefin films is compared with that of conventional films made of other polymers. A comparison of the optimum weld parameters of all the films and the results of performance testing of all the pouches produced are reported.

  3. Single stock dynamics on high-frequency data: from a compressed coding perspective.

    PubMed

    Fushing, Hsieh; Chen, Shu-Chun; Hwang, Chii-Ruey

    2014-01-01

    High-frequency return, trading volume and transaction number are digitally coded via a nonparametric computing algorithm, called hierarchical factor segmentation (HFS), and then are coupled together to reveal a single stock dynamics without global state-space structural assumptions. The base-8 digital coding sequence, which is capable of revealing contrasting aggregation against sparsity of extreme events, is further compressed into a shortened sequence of state transitions. This compressed digital code sequence vividly demonstrates that the aggregation of large absolute returns is the primary driving force for stimulating both the aggregations of large trading volumes and transaction numbers. The state of system-wise synchrony is manifested with very frequent recurrence in the stock dynamics. And this data-driven dynamic mechanism is seen to correspondingly vary as the global market transiting in and out of contraction-expansion cycles. These results not only elaborate the stock dynamics of interest to a fuller extent, but also contradict some classical theories in finance. Overall this version of stock dynamics is potentially more coherent and realistic, especially when the current financial market is increasingly powered by high-frequency trading via computer algorithms, rather than by individual investors.

  4. Single Stock Dynamics on High-Frequency Data: From a Compressed Coding Perspective

    PubMed Central

    Fushing, Hsieh; Chen, Shu-Chun; Hwang, Chii-Ruey

    2014-01-01

    High-frequency return, trading volume and transaction number are digitally coded via a nonparametric computing algorithm, called hierarchical factor segmentation (HFS), and then are coupled together to reveal a single stock dynamics without global state-space structural assumptions. The base-8 digital coding sequence, which is capable of revealing contrasting aggregation against sparsity of extreme events, is further compressed into a shortened sequence of state transitions. This compressed digital code sequence vividly demonstrates that the aggregation of large absolute returns is the primary driving force for stimulating both the aggregations of large trading volumes and transaction numbers. The state of system-wise synchrony is manifested with very frequent recurrence in the stock dynamics. And this data-driven dynamic mechanism is seen to correspondingly vary as the global market transiting in and out of contraction-expansion cycles. These results not only elaborate the stock dynamics of interest to a fuller extent, but also contradict some classical theories in finance. Overall this version of stock dynamics is potentially more coherent and realistic, especially when the current financial market is increasingly powered by high-frequency trading via computer algorithms, rather than by individual investors. PMID:24586235

  5. Toxicity of sediments from lead-zinc mining areas to juvenile freshwater mussels (Lampsilis siliquoidea) compared to standard test organisms

    USGS Publications Warehouse

    Besser, John M.; Ingersoll, Christopher G.; Brumbaugh, William G.; Kemble, Nile E.; May, Thomas W.; Wang, Ning; MacDonald, Donald D.; Roberts, Andrew D.

    2015-01-01

    Sediment toxicity tests compared chronic effects on survival, growth, and biomass of juvenile freshwater mussels (28-d exposures with Lampsilis siliquoidea) to the responses of standard test organisms—amphipods (28-d exposures with Hyalella azteca) and midges (10-d exposures with Chironomus dilutus)—in sediments from 2 lead–zinc mining areas: the Tri-State Mining District and Southeast Missouri Mining District. Mussel tests were conducted in sediments sieved to <0.25 mm to facilitate recovery of juvenile mussels (2–4 mo old). Sediments were contaminated primarily with lead, zinc, and cadmium, with greater zinc and cadmium concentrations in Tri-State sediments and greater lead concentrations in southeast Missouri sediments. The frequency of highly toxic responses (reduced 10% or more relative to reference sites) in Tri-State sediments was greatest for amphipod survival (25% of samples), midge biomass (20%), and mussel survival (14%). In southeast Missouri sediments, the frequency of highly toxic samples was greatest for mussel biomass (25%) and amphipod biomass (13%). Thresholds for metal toxicity to mussels, expressed as hazard quotients based on probable effect concentrations, were lower for southeast Missouri sediments than for Tri-State sediments. Southeast Missouri sites with toxic sediments had 2 or fewer live mussel taxa in a concurrent mussel population survey, compared with 7 to 26 taxa at reference sites. These results demonstrate that sediment toxicity tests with juvenile mussels can be conducted reliably by modifying existing standard methods; that the sensitivity of mussels to metals can be similar to or greater than standard test organisms; and that responses of mussels in laboratory toxicity tests are consistent with effects on wild mussel populations.

  6. Development of miniature, high frequency pulse tube cryocoolers

    NASA Astrophysics Data System (ADS)

    Radebaugh, Ray; Garaway, Isaac; Veprik, Alexander M.

    2010-04-01

    Because acoustic power density is proportional to frequency, the size of pulse tube cryocoolers for a given refrigeration power can be reduced by operating them at higher frequencies. A frequency of about 60 Hz had been considered the maximum frequency that could be used while maintaining high efficiency. Recently, we have shown through modeling that by decreasing the volume and hydraulic diameter of the regenerator and increasing the average pressure, it is possible to maintain high efficiency even for frequencies of several hundred hertz. Subsequent experimental results have demonstrated high efficiencies for frequencies of 100 to 140 Hz. The very high power density achieved at higher pressures and higher frequencies leads to very short cooldown times and very compact devices. The use of even higher frequencies requires the development of special compressors designed for such conditions and the development of regenerator matrices with hydraulic diameters less than about 30 Μm. To demonstrate the advantages of higher frequency operation, we discuss here the development of a miniature pulse tube cryocooler designed to operate at 80 K with a frequency of 150 Hz and an average pressure of 5.0 MPa. The regenerator diameter and length are 4.4 mm and 27 mm, respectively. The lowest temperature achieved to date has been 97 K, but a net refrigeration power of 530 mW was achieved at 120 K. Acoustic mismatches with existing compressors significantly limit the efficiency, but necessary modifications to improve the acoustic impedance match between the compressor and the cold head are discussed briefly.

  7. Nitrate consumption in sediments of the German Bight (North Sea)

    NASA Astrophysics Data System (ADS)

    Neumann, Andreas; van Beusekom, Justus E. E.; Holtappels, Moritz; Emeis, Kay-Christian

    2017-09-01

    Denitrification on continental margins and in coastal sediments is a major sink of reactive N in the present nitrogen cycle and a major ecosystem service of eutrophied coastal waters. We analyzed the nitrate removal in surface sediments of the Elbe estuary, Wadden Sea, and adjacent German Bight (SE North Sea) during two seasons (spring and summer) along a eutrophication gradient ranging from a high riverine nitrate concentrations at the Elbe Estuary to offshore areas with low nitrate concentrations. The gradient encompassed the full range of sediment types and organic carbon concentrations of the southern North Sea. Based on nitrate penetration depth and concentration gradient in the porewater we estimated benthic nitrate consumption rates assuming either diffusive transport in cohesive sediments or advective transport in permeable sediments. For the latter we derived a mechanistic model of porewater flow. During the peak nitrate discharge of the river Elbe in March, the highest rates of diffusive nitrate uptake were observed in muddy sediments (up to 2.8 mmol m- 2 d- 1). The highest advective uptake rate in that period was observed in permeable sediment and was tenfold higher (up to 32 mmol m- 2 d- 1). The intensity of both diffusive and advective nitrate consumption dropped with the nitrate availability and thus decreased from the Elbe estuary towards offshore stations, and were further decreased during late summer (minimum nitrate discharge) compared to late winter (maximum nitrate discharge). In summary, our rate measurements indicate that the permeable sediment accounts for up to 90% of the total benthic reactive nitrogen consumption in the study area due to the high efficiency of advective nitrate transport into permeable sediment. Extrapolating the averaged nitrate consumption of different sediment classes to the areas of Elbe Estuary, Wadden Sea and eastern German Bight amounts to an N-loss of 3.1 ∗ 106 mol N d- 1 from impermeable, diffusion

  8. Peak high-frequency HRV and peak alpha frequency higher in PTSD.

    PubMed

    Wahbeh, Helané; Oken, Barry S

    2013-03-01

    Posttraumatic stress disorder (PTSD) is difficult to treat and current PTSD treatments are not effective for all people. Despite limited evidence for its efficacy, some clinicians have implemented biofeedback for PTSD treatment. As a first step in constructing an effective biofeedback treatment program, we assessed respiration, electroencephalography (EEG) and heart rate variability (HRV) as potential biofeedback parameters for a future clinical trial. This cross-sectional study included 86 veterans; 59 with and 27 without PTSD. Data were collected on EEG measures, HRV, and respiration rate during an attentive resting state. Measures were analyzed to assess sensitivity to PTSD status and the relationship to PTSD symptoms. Peak alpha frequency was higher in the PTSD group (F(1,84) = 6.14, p = 0.01). Peak high-frequency HRV was lower in the PTSD group (F(2,78) = 26.5, p < 0.00005) when adjusting for respiration rate. All other EEG and HRV measures and respiration were not different between groups. Peak high-frequency HRV and peak alpha frequency are sensitive to PTSD status and may be potential biofeedback parameters for future PTSD clinical trials.

  9. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.

    PubMed

    Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M

    2015-11-01

    A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration--a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder.

  10. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments

    PubMed Central

    Hansel, Colleen M; Lentini, Chris J; Tang, Yuanzhi; Johnston, David T; Wankel, Scott D; Jardine, Philip M

    2015-01-01

    A central tenant in microbial biogeochemistry is that microbial metabolisms follow a predictable sequence of terminal electron acceptors based on the energetic yield for the reaction. It is thereby oftentimes assumed that microbial respiration of ferric iron outcompetes sulfate in all but high-sulfate systems, and thus sulfide has little influence on freshwater or terrestrial iron cycling. Observations of sulfate reduction in low-sulfate environments have been attributed to the presumed presence of highly crystalline iron oxides allowing sulfate reduction to be more energetically favored. Here we identified the iron-reducing processes under low-sulfate conditions within columns containing freshwater sediments amended with structurally diverse iron oxides and fermentation products that fuel anaerobic respiration. We show that despite low sulfate concentrations and regardless of iron oxide substrate (ferrihydrite, Al-ferrihydrite, goethite, hematite), sulfidization was a dominant pathway in iron reduction. This process was mediated by (re)cycling of sulfur upon reaction of sulfide and iron oxides to support continued sulfur-based respiration—a cryptic sulfur cycle involving generation and consumption of sulfur intermediates. Although canonical iron respiration was not observed in the sediments amended with the more crystalline iron oxides, iron respiration did become dominant in the presence of ferrihydrite once sulfate was consumed. Thus, despite more favorable energetics, ferrihydrite reduction did not precede sulfate reduction and instead an inverse redox zonation was observed. These findings indicate that sulfur (re)cycling is a dominant force in iron cycling even in low-sulfate systems and in a manner difficult to predict using the classical thermodynamic ladder. PMID:25871933

  11. Effects of High Mean Stress on High-cycle Fatigue Behavior of PWA 1480

    NASA Technical Reports Server (NTRS)

    Majumdar, S.; Antolovich, S. D.; Milligan, W. W.

    1985-01-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the space shuttle main engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. The present paper describes the results obtained in an ongoing program at the Argonne National Laboratory, sponsored by NASA Lewis, to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material. Straight-gauge high-cycle fatigue specimens, 0.2 inch in diameter and with the specimen axis in the 001 direction, were supplied by NASA Lewis. The nominal room temperature yield and ultimate strength of the material were 146 and 154 ksi, respectively. Each specimen was polished with 1-micron diamond paste prior to testing. However, the surface of each specimen contained many pores, some of which were as large as 50 micron. In the initial tests, specimens were subjected to axial-strain-controlled cycles. However, very little cyclic plasticity was observed.

  12. An inkjet vision measurement technique for high-frequency jetting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Kye-Si, E-mail: kskwon@sch.ac.kr; Jang, Min-Hyuck; Park, Ha Yeong

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation ofmore » high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.« less

  13. High rate and stable cycling of lithium metal anode

    PubMed Central

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark; Borodin, Oleg; Zhang, Ji-Guang

    2015-01-01

    Lithium metal is an ideal battery anode. However, dendrite growth and limited Coulombic efficiency during cycling have prevented its practical application in rechargeable batteries. Herein, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide salt enables the high-rate cycling of a lithium metal anode at high Coulombic efficiency (up to 99.1%) without dendrite growth. With 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane as the electrolyte, a lithium|lithium cell can be cycled at 10 mA cm−2 for more than 6,000 cycles, and a copper|lithium cell can be cycled at 4 mA cm−2 for more than 1,000 cycles with an average Coulombic efficiency of 98.4%. These excellent performances can be attributed to the increased solvent coordination and increased availability of lithium ion concentration in the electrolyte. Further development of this electrolyte may enable practical applications for lithium metal anode in rechargeable batteries. PMID:25698340

  14. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  15. High-frequency resonant-tunneling oscillators

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Parker, C. D.; Calawa, A. R.; Manfra, M. J.; Chen, C. L.

    1991-01-01

    Advances in high-frequency resonant-tunneling-diode (RTD) oscillators are described. Oscillations up to a frequency of 420 GHz have been achieved in the GaAs/AlAs system. Recent results obtained with In0.53Ga0.47As/AlAs and InAs/AlSb RTDs show a greatly increased power density and indicate the potential for fundamental oscillations up to about 1 THz. These results are consistent with a lumped-element equivalent circuit model of the RTD. The model shows that the maximum oscillation frequency of the GaAs/AlAs RTDs is limited primarily by series resistance, and that the power density is limited by low peak-to-valley current ratio.

  16. Geochemistry of Peruvian near-surface sediments

    NASA Astrophysics Data System (ADS)

    Böning, Philipp; Brumsack, Hans-Jürgen; Böttcher, Michael E.; Schnetger, Bernhard; Kriete, Cornelia; Kallmeyer, Jens; Borchers, Sven Lars

    2004-11-01

    Sixteen short sediment cores were recovered from the upper edge (UEO), within (WO) and below (BO) the oxygen minimum zone (OMZ) off Peru during cruise 147 of R/V Sonne. Solids were analyzed for major/trace elements, total organic carbon, total inorganic carbon, total sulfur, the stable sulfur isotope composition (δ 34S) of pyrite, and sulfate reduction rates (SRR). Pore waters were analyzed for dissolved sulfate/sulfide and δ 34S of sulfate. In all cores highest SRR were observed in the top 5 cm where pore water sulfate concentrations varied little due to resupply of sulfate by sulfide oxidation and/or diffusion of sulfate from bottom water. δ 34S of dissolved sulfate showed only minor downcore increases. Strong 32S enrichments in sedimentary pyrite (to -48‰ vs. V-CDT) are due to processes in the oxidative part of the sulfur cycle in addition to sulfate reduction. Manganese and Co are significantly depleted in Peruvian upwelling sediments most likely due to mobilization from particles settling through the OMZ, whereas release of both elements from reducing sediments only seems to occur in near-coastal sites. Cadmium, Mo and Re are exceptionally enriched in WO sediments (<600 m water depth). High Re and moderate Cd and Mo enrichments are seen in BO sediments (>600 m water depth). Re/Mo ratios indicate anoxic and suboxic conditions for WO and BO sediments, respectively. Cadmium and Mo downcore profiles suggest considerable contribution to UEO/WO sediments by a biodetrital phase, whereas Re presumably accumulates via diffusion across the sediment-water interface to precipitation depth. Uranium is distinctly enriched in WO sediments (due to sulfidic conditions) and in some BO sediments (due to phosphorites). Silver transfer to suboxic BO sediments is likely governed by diatomaceous matter input, whereas in anoxic WO sediments Ag is presumably trapped due to sulfide precipitation. Cadmium, Cu, Zn, Ni, Cr, Ag, and T1 predominantly accumulate via biogenic pre

  17. User Friendly Processing of Sediment CT Data: Software and Application in High Resolution Non-Destructive Sediment Core Data Sets

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Wiest, J.; Abbott, M. B.; Francus, P.; Lapointe, F.

    2015-12-01

    Computed Tomography (CT) of sediment cores allow for high resolution images, three dimensional volumes, and down core profiles, generated through the attenuation of X-rays as a function of density and atomic number. When using a medical CT-Scanner, these quantitative data are stored in pixels using the Hounsfield scale, which are relative to the attenuation of X-rays in water and air at standard temperature and pressure. Here we present MATLAB based software specifically designed for sedimentary applications with a user friendly graphical interface to process DICOM files and stitch overlapping CT scans. For visualization, the software allows easy generation of core slice images with grayscale and false color relative to a user defined Hounsfield number range. For comparison to other high resolution non-destructive methods, down core Hounsfield number profiles are extracted using a method robust to coring imperfections, like deformation, bowing, gaps, and gas expansion. We demonstrate the usefulness of this technique with lacustrine sediment cores from the Western United States and Canadian High Arctic, including Fish Lake, Oregon, and Sawtooth Lake, Ellesmere Island. These sites represent two different depositional environments and provide examples for a variety of common coring defects and lithologies. The Hounsfield profiles and images can be used in combination with other high resolution data sets, including sediment magnetic parameters, XRF core scans and many other types of data, to provide unique insights into how lithology influences paleoenvironmental and paleomagnetic records and their interpretations.

  18. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks.

  19. High-frequency plasma-heating apparatus

    DOEpatents

    Brambilla, Marco; Lallia, Pascal

    1978-01-01

    An array of adjacent wave guides feed high-frequency energy into a vacuum chamber in which a toroidal plasma is confined by a magnetic field, the wave guide array being located between two toroidal current windings. Waves are excited in the wave guide at a frequency substantially equal to the lower frequency hybrid wave of the plasma and a substantially equal phase shift is provided from one guide to the next between the waves therein. For plasmas of low peripheral density gradient, the guides are excited in the TE.sub.01 mode and the output electric field is parallel to the direction of the toroidal magnetic field. For exciting waves in plasmas of high peripheral density gradient, the guides are excited in the TM.sub.01 mode and the magnetic field at the wave guide outlets is parallel to the direction of the toroidal magnetic field. The wave excited at the outlet of the wave guide array is a progressive wave propagating in the direction opposite to that of the toroidal current and is, therefore, not absorbed by so-called "runaway" electrons.

  20. Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations

    USGS Publications Warehouse

    Voichick, Nicholas; Topping, David; Griffiths, Ronald

    2018-01-01

    Turbidity, a measure of water clarity, is monitored for a variety of purposes including (1) to help determine whether water is safe to drink, (2) to establish background conditions of lakes and rivers and detect pollution caused by construction projects and stormwater discharge, (3) to study sediment transport in rivers and erosion in catchments, (4) to manage siltation of water reservoirs, and (5) to establish connections with aquatic biological properties, such as primary production and predator–prey interactions. Turbidity is typically measured with an optical probe that detects light scattered from particles in the water. Probes have defined upper limits of the range of turbidity that they can measure. The general assumption is that when turbidity exceeds this upper limit, the values of turbidity will be constant, i.e., the probe is pegged; however, this assumption is not necessarily valid. In rivers with limited variation in the physical properties of the suspended sediment, at lower suspended-sediment concentrations, an increase in suspended-sediment concentration will cause a linear increase in turbidity. When the suspended-sediment concentration in these rivers is high, turbidity levels can exceed the upper measurement limit of an optical probe and record a constant pegged value. However, at extremely high suspended-sediment concentrations, optical turbidity probes do not necessarily stay pegged at a constant value. Data from the Colorado River in Grand Canyon, Arizona, USA, and a laboratory experiment both demonstrate that when turbidity exceeds instrument-pegged conditions, increasing suspended-sediment concentration (and thus increasing turbidity) may cause optical probes to record decreasing false turbidity values that appear to be within the valid measurement range of the probe. Therefore, under high-turbidity conditions, other surrogate measurements of turbidity (e.g., acoustic-attenuation measurements or suspended-sediment samples