Science.gov

Sample records for high-frequency sedimentation cycles

  1. The impact of high-frequency sedimentation cycles on stratigraphic interpretation

    SciTech Connect

    Perlmutter, M.A.; Radovich, B.J.; Matthews, M.D.

    1997-01-01

    Global cyclostratigraphy, a methodology that utilizes climate change to evaluate sediment flux, characterizes the impact of sediment cycles on stratigraphy. Climatic succession, sediment yield cycles, and the phase relationship of sediment cycles to eustatic cycles are all determined in the early stages of basin analysis. Sedimentologic information is then used to assist in sequence evaluations. Climatic successions are intrinsically associated with global position (paleogeography) and are not necessarily synchronous with glacioeustatic sea-level cycles. A preliminary evaluation of the effect of climate on sediment supply from modem river systems indicates that sediment yield may vary by well over two orders of magnitude during one climate cycle. Consequently, basins in different climatic belts can have distinctly different volumes and lithologies for systems tracts that have similar base-level changes. The stratigraphic computer program Sedpak was utilized to examine the possible impact of different sedimentation cycles on sequence interpretation and reservoir forecasts. The effect of sedimentation cycles on reservoir distribution in real world sequences is demonstrated with a comparison of the Miocene section of the Surma basin, Bangladesh, and the Plio-Pleistocene section of the Gulf of Mexico. In the Surma basin, reservoirs are most likely to occur in transgressive and highstand systems tracts, while reservoirs in the Gulf of Mexico are more likely in lowstand prograding complexes.

  2. Phosphorus geochemical cycling inferences from high frequency lake monitoring

    NASA Astrophysics Data System (ADS)

    Crockford, Lucy; Jordan, Philip; Taylor, David

    2013-04-01

    Freshwater bodies in Europe are required to return to good water quality status under the Water Framework Directive by 2015. A small inter-drumlin lake in the northeast of Ireland has been susceptible to eutrophic episodes and the presence of algal blooms during summer since annual monitoring began in 2002. While agricultural practice has been controlled by the implementation of the Nitrates Directive in 2006, the lake is failing to recover to good water quality status to meet with the Water Framework Directive objectives. Freshwaters in Ireland are regarded, in the main, as phosphorus (P) limited so identifying the sources of P possibly fuelling the algal blooms may provide an insight into how to improve water quality conditions. In a lake, these sources are divided between external catchment driven loads, as a result of farming and point sources, and P released from sediments made available to photic waters through internal lake mechanisms. High frequency sensors on data-sondes, installed on the lake in three locations, have provided chlorophyll a, redox potential, dissolved oxygen, temperature, pH, conductivity and turbidity data since March 2010. A data-sonde was installed in the hypolimnion to observe the change in lake conditions as P is released from lake sediments as a result of geochemical cycling with iron during anoxic periods. As compact high frequency sampling equipment for P analysis is still in its infancy for freshwaters, a proxy measurement of geochemical cycling in lakes would be useful to determine fully the extent of P contribution from sediments to the overall P load. Phosphorus was analysed once per month along with a number of other parameters and initial analysis of the high frequency data has shown changes in readings when known P release from lake sediments has occurred. Importantly, these data have shown when these P enriched hypolimnetic waters may be re-introduced to shallower waters in the photic zone, by changes in dissolved oxygen

  3. High Frequency Acoustic Reflection and Transmission in Ocean Sediments

    DTIC Science & Technology

    2011-09-01

    scattering in ocean environments with special emphasis on propagation in shallow water waveguides and scattering from ocean sediments. 3 ) Development of...TYPE 3 . DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE High Frequency Acoustic Reflection and Transmission in Ocean Sediments...REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 3

  4. High-Frequency Sound Interaction in Ocean Sediments: Modeling Environmental Controls

    DTIC Science & Technology

    2016-06-07

    High-Frequency Sound Interaction in Ocean Sediments: Modeling Environmental Controls Michael Richardson Kevin Briggs Dawn Lavoie Dale Bibee Naval...SUBTITLE High-Frequency Sound Interaction in Ocean Sediments: Modeling Environmental Controls 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...rectangle centered at 30° 07.23’N; 85° 47.54’W was sampled using normal-incidence echo sounding , side-scan sonar, bottom photography with stereo and

  5. Shallow Water Sediment Properties Derived from High-Frequency Shear and Interface Waves

    DTIC Science & Technology

    1992-04-10

    FREQUENCY SHEAR ONR N00014-88-C-1238 AND INTERFACE WAVES 6. AUTHOR(S) JOHN EWING, JERRY A. CARTER, GEORGE H. SUTTON AND NOEL BARSTOW 7. PERFORMING...B4. PAGES 4739--4762. APRIL 10. 1992 Shallow Water Sediment Properties Derived From High-Frequency Shear and Interface Waves JOHN EWING Woods Hole...calculating thickness. The amplitude falloff with range establishes a Q velocity gradients and penetration depths [ Nettleton . 19401 estimate of 40 in

  6. Characterizing riverbed sediment using high-frequency acoustics 1: spectral properties of scattering

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    Bed-sediment classification using high-frequency hydro-acoustic instruments is challenging when sediments are spatially heterogeneous, which is often the case in rivers. The use of acoustic backscatter to classify sediments is an attractive alternative to analysis of topography because it is potentially sensitive to grain-scale roughness. Here, a new method is presented which uses high-frequency acoustic backscatter from multibeam sonar to classify heterogeneous riverbed sediments by type (sand, gravel,rock) continuously in space and at small spatial resolution. In this, the first of a pair of papers that examine the scattering signatures from a heterogeneous riverbed, methods are presented to construct spatially explicit maps of spectral properties from geo-referenced point clouds of geometrically and radiometrically corrected echoes. Backscatter power spectra are computed to produce scale and amplitude metrics that collectively characterize the length scales of stochastic measures of riverbed scattering, termed ‘stochastic geometries’. Backscatter aggregated over small spatial scales have spectra that obey a power-law. This apparently self-affine behavior could instead arise from morphological- and grain-scale roughnesses over multiple overlapping scales, or riverbed scattering being transitional between Rayleigh and geometric regimes. Relationships exist between stochastic geometries of backscatter and areas of rough and smooth sediments. However, no one parameter can uniquely characterize a particular substrate, nor definitively separate the relative contributions of roughness and acoustic impedance (hardness). Combinations of spectral quantities do, however, have the potential to delineate riverbed sediment patchiness, in a data-driven approach comparing backscatter with bed-sediment observations (which is the subject of part two of this manuscript).

  7. Towards in situ and high frequency estimates of suspended sediment properties

    NASA Astrophysics Data System (ADS)

    Martínez-Carreras, Núria; Schwab, Michael Peter; Klaus, Julian; Hissler, Christophe

    2016-04-01

    Sediment properties, including sediment-associated chemical constituents and sediment physical properties (as colour), can exhibit significant variations within and between storm runoff events. However, the number of samples included in suspended sediment studies is often limited by the time consuming and expensive laboratory procedures for suspended sediment analysis after stream water sampling. This, in turn, restricts high frequency sampling campaigns to a limited number of events and reduces accuracy when aiming to estimate fluxes and loads of sediment-associated chemical constituents. Our contribution addresses the potential for portable ultraviolet-visible (UV-VIS) light spectrometers (220-730 nm) to estimate suspended sediment properties in situ and at high temporal resolution. As far as we know, these instruments have primarily been developed and used to quantify solute concentrations (e.g. DOC and NO3-N), total concentrations of dissolved and particulate forms (e.g. TOC) and turbidity. Here we argue that light absorbance values can be calibrated to estimate solely sediment properties. For our proof-of-concept experiment, we measured light absorbance at 15-min intervals at the Weierbach catchment (NW Luxembourg, 0.46 km2) from December 2013 to January 2015. We then performed a local calibration using suspended sediment loss-on-ignition (LOI) measurements (n=34). We assessed the performance of several regression models that relate light absorbance measurements with the percentage weight LOI. The robust regression method presented the lowest standard error of prediction (0.48{%}) and was selected for calibration (adjusted r2 = 0.76 between observed and predicted values). This study demonstrates that spectrometers can be used to estimate suspended sediment properties at high temporal resolution and for long time spans in a simple, non-destructive and affordable manner. The advantages and disadvantages of the method compared to traditional approaches will be

  8. Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXOs

    DTIC Science & Technology

    2015-05-26

    FINAL REPORT Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXOs SERDP...2015 Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXO’s W912HQ-12-C-0049 MR...the acoustic response of the environment as well as the environment’s effect on the acoustic response of munitions [1]. Simulation tools and

  9. Aeolian sediment transport on a beach: Thresholds, intermittency, and high frequency variability

    NASA Astrophysics Data System (ADS)

    Davidson-Arnott, R. G. D.; Bauer, B. O.

    2009-04-01

    During a field experiment designed to measure wind flow and sediment transport over the beach and foredune at Greenwich Dunes, Prince Edward Island National Park, measurements were made on October 11, 2004, during a storm with wind speeds ranging from 4 ms - 1 to over 20 ms - 1 . This paper examines thresholds of sand movement, intermittency and the relationship between fluctuating winds and transport intensity based on high frequency measurements of wind speed and saltation. Wind speed was measured at four points across the beach profile using cup anemometers set at a height of 0.6 m. The anemometers were co-located with saltation probes (set at a height of 0.02 m) that measure the impacts of saltating sand grains. The instruments were sampled at 1 Hz during runs of 1 or 2 h over an eight-hour period. Sand transport was highly intermittent early in the day when winds were only slightly above threshold and became more continuous towards the upper beach because of increasing fetch distance and decreasing surface moisture. Despite more continuous transport and increasing wind speed through the day, a zone of highly intermittent transport migrated landward across the beach as water levels rose due to storm surge. Examination of three thresholds related to measures of wind speed - the maximum wind speed without transport ( Utmax), minimum wind speed with transport ( Utmin) and the intermittency threshold ( Utγ) - showed that none provide a consistently robust measure of the threshold although they all provide some insight into conditions controlling entrainment. While graphs of instantaneous saltation intensity crudely mimic the pattern of fluctuating wind speed, statistical correlations over periods of 2-10 min were generally poor ( R2 < 0.25) even with considerable smoothing applied to the time series. Such poor correlation appears to reflect the spatial and temporal complexity of the beach surface, particularly the pattern of surface moisture as well as saltation

  10. The Laminated Marca Shale: High-Frequency Climate Cycles From the Latest Cretaceous

    NASA Astrophysics Data System (ADS)

    Davies, A.; Kemp, A. E.; Weedon, G.; Barron, J. A.

    2005-12-01

    The Latest Cretaceous (Maastrichtian) Marca Shale Member, California, displays a well-preserved record of alternating terrigenous and diatomaceous laminae couplets, remarkably similar in lithology to recent laminated sediments from the Gulf of California and Santa Barbara Basin. This similarity, together with the recognition of intra- and inter-annual variability in the diatom flora, implies an annual origin for these couplets. High-resolution backscattered electron imagery has identified two sublaminae types within the varved succession; near monospecific lamina of Chaetoceros-type resting spore and of large Azpeitiopsis morenoensis. The composition and occurrence of these laminae is similar to ENSO forced intra-annual variability of diatom flora along the modern Californian margin. Relative thickness variations in terrigenous and biogenic laminae (proxies for precipitation and productivity respectively) also exhibit similar characteristics to variability in Quaternary varves from the Santa Barbara Basin, shown to be imparted by ENSO forcing. In order to track changes in the levels of bottom water oxygenation within the basin, a bioturbation index was established. Periods when bioturbation was minimal (enhanced benthic anoxia) coincide with times of greatest diatomaceous export flux and also lowest flux of detrital material. Conversely, periods of enhanced bioturbation correspond with reduced diatomaceous export flux and an increased flux of detrital material, comparable with ENSO forced variations in diatomaceous and terrigenous export flux and associated benthic oxygenation levels in Pleistocene varves off the Californian margin. Power spectra obtained from time-series analysis of the bioturbation index and laminae thickness variations exhibit strong signals within the ENSO band. This research implies that high-frequency climate perturbations are inherent components of the climate system and that ENSO-type variability was not confined to the dynamic climate

  11. Shallow water sediment properties derived from high-frequency shear and interface waves

    NASA Astrophysics Data System (ADS)

    Ewing, John; Carter, Jerry A.; Sutton, George H.; Barstow, Noel

    1992-04-01

    Low-frequency sound propagation in shallow water environments is not restricted to the water column but also involves the subbottom. Thus, as well as being important for geophysical description of the seabed, subbottom velocity/attenuation structure is essential input for predictive propagation models. To estimate this structure, bottom-mounted sources and receivers were used to make measurements of shear and compressional wave propagation in shallow water sediments of the continental shelf, usually where boreholes and high-resolution reflection profiles give substantial supporting geologic information about the subsurface. This colocation provides an opportunity to compare seismically determined estimates of physical properties of the seabed with the "ground truth" properties. Measurements were made in 1986 with source/detector offsets up to 200 m producing shear wave velocity versus depth profiles of the upper 30-50 m of the seabed (and P wave profiles to lesser depths). Measurements in 1988 were made with smaller source devices designed to emphasize higher frequencies and recorded by an array of 30 sensors spaced at 1-m intervals to improve spatial sampling and resolution of shallow structure. These investigations with shear waves have shown that significant lateral and vertical variations in the physical properties of the shallow seabed are common and are principally created by erosional and depositional processes associated with glacial cycles and sea level oscillations during the Quaternary. When the seabed structure is relatively uniform over the length of the profiles, the shear wave fields are well ordered, and the matching of the data with full waveform synthetics has been successful, producing velocity/attenuation models consistent with the subsurface lithology indicated by coring results. Both body waves and interface waves have been modeled for velocity/attenuation as a function of depth with the aid of synthetic seismograms and other analytical

  12. Characterizing riverbed sediment using high-frequency acoustics: 2. Scattering signatures of Colorado River bed sediment in Marble and Grand Canyons

    NASA Astrophysics Data System (ADS)

    Buscombe, D.; Grams, P. E.; Kaplinski, M. A.

    2014-12-01

    In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length and amplitude scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by georeferenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum and the intercept and slope from a power law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration and surveys made at calibration sites at different times were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well-understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.

  13. Characterizing riverbed sediment using high-frequency acoustics 2: scattering signatures of Colorado River bed sediment in Marble and Grand Canyons

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length- and amplitude-scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by geo-referenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum, and the intercept and slope from a power-law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision-tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration, and surveys made at calibration sites at different times, were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.

  14. Hypoxic cyclicity in sediments of Soledad Basin, Baja Mexico: A record of high-frequency climate fluctuations?

    NASA Astrophysics Data System (ADS)

    Westman, A. E.; Brooks, G. R.; Lea, C.

    2007-05-01

    The sedimentary record in Soledad Basin, 45 km west of Baja, Mexico, shows high-frequency oscillations in hypoxia, which can be linked to fluctuations in climate. Soledad Basin, a semi-enclosed basin with a sill depth of 290m, has been shown to exhibit variable levels of hypoxia throughout the geologic past. Located at the intersection of the California Current and California Undercurrent, Soledad Basin is highly responsive to changes in current strength and upwelling, the combination of which creates fluctuations in hypoxia. During climatic cool periods, the California Current is weakened decreasing upwelling and biologic productivity along the Baja Borderland. This causes increased hypoxia in Soledad Basin. The California Undercurrent is also weakened during these cooler periods and brings less nutrients and oxygen to the basin further increasing hypoxia. Since Soledad Basin sediments are undisturbed and have accumulated rapidly, this is a prime location to study high frequency variations in hypoxia in the sedimentary record. The objective of this study was to examine how and to what extent hypoxic events have been recorded in the sedimentary record of Soledad Basin, and gain insight into what controls these events. Surface sediment samples and a single 1.1m gravity core were collected aboard the S.S.V. Robert C. Seamans on a SEA Semester cruise in October 2005. The core was taken at a depth of 490 m near the deepest point of the basin. The core contained laminated sediments consisting of >95% mud. Using 210Pb analysis, a sedimentation rate of 15 cm over the past 100 years was determined, which is consistent with previous research. Trace metal analyses were performed at the cm-scale on selected intervals between 0.34-0.44m and 0.78-0.92m. These intervals correspond to dark organic-rich (>15% organic content) laminations alternating with lighter layers containing less organic material (<15% organic content). All sediments were found to be enriched in Molybdenum

  15. Quantifying Surface Processes and Stratigraphic Characteristics Resulting from Large Magnitude High Frequency and Small Magnitude Low Frequency Relative Sea Level Cycles: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Yu, L.; Li, Q.; Esposito, C. R.; Straub, K. M.

    2015-12-01

    Relative Sea-Level (RSL) change, which is a primary control on sequence stratigraphic architecture, has a close relationship with climate change. In order to explore the influence of RSL change on the stratigraphic record, we conducted three physical experiments which shared identical boundary conditions but differed in their RSL characteristics. Specifically, the three experiments differed with respect to two non-dimensional numbers that compare the magnitude and periodicity of RSL cycles to the spatial and temporal scales of autogenic processes, respectively. The magnitude of RSL change is quantified with H*, defined as the peak to trough difference in RSL during a cycle divided by a system's maximum autogenic channel depth. The periodicity of RSL change is quantified with T*, defined as the period of RSL cycles divided by the time required to deposit one channel depth of sediment, on average, everywhere in the basin. Experiments performed included: 1) a control experiment lacking RSL cycles, used to define a system's autogenics, 2) a high magnitude, high frequency RSL cycles experiment, and 3) a low magnitude, low frequency cycles experiment. We observe that the high magnitude, high frequency experiment resulted in the thickest channel bodies with the lowest width-to-depth ratios, while the low magnitude, long period experiment preserves a record of gradual shoreline transgression and regression producing facies that are the most continuous in space. We plan to integrate our experimental results with Delft3D numerical experiments models that sample similar non-dimensional characteristics of RSL cycles. Quantifying the influence of RSL change, normalized as a function of the spatial and temporal scales of autogenic processes will strengthen our ability to predict stratigraphic architecture and invert stratigraphy for paleo-environmental conditions.

  16. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    SciTech Connect

    Bhatia, Bikram; Damodaran, Anoop R.; Cho, Hanna; Martin, Lane W.; King, William P.

    2014-11-21

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO{sub 3} film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10{sup 5 }kV/cm-s, and temperature change rates as high as 6 × 10{sup 5 }K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cycles are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems.

  17. Zero Voltage Soft Switching Duty Cycle Pulse Modulated High Frequency Inverter-Fed

    NASA Astrophysics Data System (ADS)

    Ishitobi, Manabu; Matsushige, Takayuki; Nakaoka, Mutsuo; Bessyo, Daisuke; Omori, Hideki; Terai, Haruo

    The utility grid voltage of commercial AC power source in Japan and USA is 100V, but in other Asian and European countries, it is 220V. In recent years, in Japan 200V outputted single-phase three-wire system begins to be used for high power applications. In 100V utility AC power applications and systems, an active voltage clamped quasi-resonant inverter circuit topology sing IGBTs has been effectively used so far for the consumer microwave oven. In this paper, presented is a half bridge type voltage-clamped asymmetrical soft switching PWM high-frequency inverter type AC-DC converter using IGBTs which is designed for consumer magnetron drive used as the consumer microwave oven in 200V utility AC power system. The zero voltage soft switching inverter treated here can use the same power rated switching semiconductor devices and three-winding high frequency transformer as those of the active voltage clamped quasi-resonant inverter using the IGBTs that has already been used for 100V utility AC power source. The operating performances of the voltage source single ended push pull (SEPP) type soft switching PWM inverter are evaluated and discussed for 100V and 200V common use consumer microwave oven. The harmonic line current components in the utility AC power side of the AC-DC power converter with ZVS-PWM SEPP inverter are reduced and improved on the basis of sine wave like pulse frequency modulation and sine wave like pulse width modulation for the utility AC voltage source.

  18. High-frequency oscillations in human and monkey neocortex during the wake–sleep cycle

    PubMed Central

    Le Van Quyen, Michel; Muller, Lyle E.; Telenczuk, Bartosz; Halgren, Eric; Cash, Sydney; Hatsopoulos, Nicholas G.; Dehghani, Nima; Destexhe, Alain

    2016-01-01

    Beta (β)- and gamma (γ)-oscillations are present in different cortical areas and are thought to be inhibition-driven, but it is not known if these properties also apply to γ-oscillations in humans. Here, we analyze such oscillations in high-density microelectrode array recordings in human and monkey during the wake–sleep cycle. In these recordings, units were classified as excitatory and inhibitory cells. We find that γ-oscillations in human and β-oscillations in monkey are characterized by a strong implication of inhibitory neurons, both in terms of their firing rate and their phasic firing with the oscillation cycle. The β- and γ-waves systematically propagate across the array, with similar velocities, during both wake and sleep. However, only in slow-wave sleep (SWS) β- and γ-oscillations are associated with highly coherent and functional interactions across several millimeters of the neocortex. This interaction is specifically pronounced between inhibitory cells. These results suggest that inhibitory cells are dominantly involved in the genesis of β- and γ-oscillations, as well as in the organization of their large-scale coherence in the awake and sleeping brain. The highest oscillation coherence found during SWS suggests that fast oscillations implement a highly coherent reactivation of wake patterns that may support memory consolidation during SWS. PMID:27482084

  19. High-frequency oscillations in human and monkey neocortex during the wake-sleep cycle.

    PubMed

    Le Van Quyen, Michel; Muller, Lyle E; Telenczuk, Bartosz; Halgren, Eric; Cash, Sydney; Hatsopoulos, Nicholas G; Dehghani, Nima; Destexhe, Alain

    2016-08-16

    Beta (β)- and gamma (γ)-oscillations are present in different cortical areas and are thought to be inhibition-driven, but it is not known if these properties also apply to γ-oscillations in humans. Here, we analyze such oscillations in high-density microelectrode array recordings in human and monkey during the wake-sleep cycle. In these recordings, units were classified as excitatory and inhibitory cells. We find that γ-oscillations in human and β-oscillations in monkey are characterized by a strong implication of inhibitory neurons, both in terms of their firing rate and their phasic firing with the oscillation cycle. The β- and γ-waves systematically propagate across the array, with similar velocities, during both wake and sleep. However, only in slow-wave sleep (SWS) β- and γ-oscillations are associated with highly coherent and functional interactions across several millimeters of the neocortex. This interaction is specifically pronounced between inhibitory cells. These results suggest that inhibitory cells are dominantly involved in the genesis of β- and γ-oscillations, as well as in the organization of their large-scale coherence in the awake and sleeping brain. The highest oscillation coherence found during SWS suggests that fast oscillations implement a highly coherent reactivation of wake patterns that may support memory consolidation during SWS.

  20. New Seasonal Shift in In-Stream Diurnal Nitrate Cycles Identified by Mining High-Frequency Data

    PubMed Central

    2016-01-01

    The recent development of in-situ monitoring devices, such as UV-spectrometers, makes the study of short-term stream chemistry variation relevant, especially the study of diurnal cycles, which are not yet fully understood. Our study is based on high-frequency data from an agricultural catchment (Studienlandschaft Schwingbachtal, Germany). We propose a novel approach, i.e. the combination of cluster analysis and Linear Discriminant Analysis, to mine from these data nitrate behavior patterns. As a result, we observe a seasonality of nitrate diurnal cycles, that differs from the most common cycle seasonality described in the literature, i.e. pre-dawn peaks in spring. Our cycles appear in summer and the maximum and minimum shift to a later time in late summer/autumn. This is observed both for water- and energy-limited years, thus potentially stressing the role of evapotranspiration. This concluding hypothesis on the role of evapotranspiration on nitrate stream concentration, which was obtained through data mining, broadens the perspective on the diurnal cycling of stream nitrate concentrations. PMID:27073838

  1. How important is subsidence in evaluating high frequency cycles in the interior of isolated carbonate platforms?

    SciTech Connect

    Lomando, A.J.; Ginsburg, R.

    1995-08-01

    Differential regional subsidence can play a strong role in determining facies composition of adjacent isolated platforms. In the majority of platform oil & gas fields, reservoir architecture is dominated by the composition and stratial geometries in the platform interiors rather than the platform rims. Most work to develop analogues from modern reef-rimmed isolated platforms has focused on the platform margins where reef growths rates are capable of keeping pace with the Holocene sea level rise plus tectonic subsidence. We have focused on platform interiors where accumulation rate and style may be more sensitive to accommodation space generated by regional passive margin subsidence. The Belize platforms are located on a series of parallel ridges which extend progressively eastward, farther from the regional subsidence hingeline near the coast. Greater regional subsidence is reflected in the open, deeper, patch reef and sand rich platform interiors in the outermost platform (Lighthouse and Glovers Platform) in comparison to the mud-dominated interior within the innermost platform (Turneffe), which has filled up due to lesser subsidence rate. The facies response to a portion of a single eustatic cycle produces a {open_quotes}keep-up{close_quotes} transgressive systems tract appearance at Lighthouse and Glovers but a {open_quotes}choked-up{close_quotes} high stand or regressive systems tract appearance within Turneffe. Chinchorro Bank, offshore Yucatan, is a special case where subsidence changes along the length of the platforms. The entire windward margin has a well developed reef system which has uniformly kept pace with the Holocene transgression. The northern platform interior contains a patch reef/sand rich character similar to Lighthouse Platform whereas the southern platform interior is {open_quotes}drowning{close_quotes} due to subsidence along a series of northwest trending faults which downstep southward.

  2. Physical mechanisms of the seasonal, subseasonal, and high-frequency variability in the seasonal cycle of summer precipitation in Korea

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Yul; Roh, Joon-Woo; Lee, Dong-Kyou; Jhun, Jong-Ghap

    2010-07-01

    Three distinct physical mechanisms in the seasonal cycle of the 120 day (19 May to 15 September) summer precipitation in Korea (126°E-130°E, 33°N-38°N) were identified using the 1979-2008 observed precipitation records at 61 Korea Meteorological Administration stations. Detailed space-time structures of the physical mechanisms of precipitation variability were derived using the daily National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis data over Asia (80°E-180°E, 0°-60°N). The seasonal cycle of summertime precipitation in Korea exhibits three principal temporal scales (seasonal, subseasonal, and high-frequency components) of variability, each with distinct physical mechanisms. The seasonal component represents the variability associated with the evolution of the Asian summer monsoon, specifically the East Asia summer monsoon, governed primarily by large-scale circulation as a result of changes in sea level pressure contrasts between the Asian continent and the surrounding oceans. The arrival and the duration of a monsoon front primarily shape the seasonal evolution of precipitation in Korea. The bimodal peaks are due to the low-level circulation change as a result of redistribution of temperature and, subsequently, of sea level pressure during summer. The subseasonal component has characteristic time scales of 10-30 days and is associated with eastward-moving upper-level disturbances at ˜40°N. The upper-level disturbances affect the meridional circulations, resulting in low-level convergence/divergence not only underneath but also to the south and to the north of the disturbance. From mid-July to mid-August, the subseasonal component is more clearly observable, and the period of oscillations is generally shorter, than during early or late summer. The high-frequency component with time scales of less than 10 days is associated with midlatitude baroclinic Rossby waves; synoptic-scale variations of upper

  3. Sulfur cycling in freshwater sediments

    NASA Technical Reports Server (NTRS)

    Klug, M. J.

    1985-01-01

    Organic sulfur containing compounds represent greater than 80% of the total sulfur in sediments of eutrophic freshwater lakes. Although sedimentary sulfur is predominantly in the form of organic compounds, more sulfur is transformed by sulfate reduction than by any other process. Rates of sulfate reduction in these sediments average 7 mmol/sq m/day. This rate is 19 times greater than the net rate of production of inorganic sulfur from organic compounds on an annual basis.

  4. Shallow stratigraphy and sedimentation history during high-frequency sea-level changes on the central California shelf

    USGS Publications Warehouse

    Grossman, E.E.; Eittreim, S.L.; Field, M.E.; Wong, F.L.

    2006-01-01

    Analyses of high-resolution seismic-reflection data and sediment cores indicate that an extensive sediment deposit on the central California continental shelf is comprised of several late-Pleistocene to Holocene age facies. Offshore of the littoral zone, in water depths of 30-90 m, a 3-6 m thick veneer of fine sediment referred to as the mid-shelf mudbelt has formed along 50-100 km of the coast. The mudbelt drapes a parasequence characterized by prograding clinoforms that in places overlies a 1-3 m thick basal transgressive lag deposit. These facies overlie a prominent erosional unconformity that extends from the shore to the outer shelf. Eighteen calibrated 14CAMS ages of marine molluscs and terrestrial wood detritus sampled in cores range 15,800 yr BP to modern indicating a postglacial age for these sediments (one >55,000 yr BP represents relict sand). We model accumulation of these facies using (1) the topography of the underlying erosional unconformity interpreted from seismic reflection profiles, (2) observed sediment facies (grain size) distribution across the shelf (a proxy for wave/current sediment partitioning), and published estimates of (3) eustatic sea-level history, and (4) regional tectonics. Our model and data indicate that deposition of the transgressive lag began during early, slow postglacial sea-level rise and that a notable change in depositional environment occurred across an area of more than 200 km2 of the outer shelf likely in response to abrupt drowning during Meltwater Pulse 1B (11,500 yr BP). We propose that rapid progradation of clinoforms may have occurred during transgression because of the unique interaction of modest rates of sediment input and tectonic uplift, variable rates of eustatic sea-level rise and a complex stepped antecedent topography.

  5. The effective Q values inferred from the high-frequency decay parameter for the sediments in Taipei basin, Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Wey; Wen, Kuo-Liang; Chang, Chi-Ling; Liu, Sheu-Yien

    2016-04-01

    In this study, the high-frequency decay parameter κ, proposed by Anderson and Hough (1984), are measured from the seismograms recorded by stations, which installed in the Taipei basin. The spectral amplitudes decay exponentially with frequency, f, which can be formulated as A(f)=A_0e-πκf, for f > fe, where A(f) is the spectral amplitude, and A0 depends on the earthquake source and epicenter distance, and the value of κ is independent of frequency, unit in second. The time windows applied to seismograms are suggested to be shear waves that are transformed to spectra by the technique of Fourier transform. The seismograms from the downhole array in Taipei Basin by Academia Sinica since 1992, provide a good opportunity to estimate the attenuation factor of the sedimentary strata over the Tertiary base rock beneath the Taipei basin (Wang et al., 2004). The seismograms of 23 earthquakes with magnitude ranges of 5.1-7.1 over the period of 2003-2010 at 9 downhole array stations are taken into calculation of the κ values for the shear waves. The results show that the κ values vary with depth and are in the range of 0.009-0.095 sec. The averaged Δκ values from observations range +/- 0.02 seconds respective to Δκ values at surface of each of station. The effective Q values for the sedimentary layers are inferred from the varied Δκ at each downhole stations following the evaluation method of 1-D analytical transfer function (Safak, 1995).

  6. Temporal Variability and Annual Fluxes of Water, Sediment and Particulate Phosphorus from a Headwater River in the Tropical Andes: Results from a High-frequency Monitoring Program

    NASA Astrophysics Data System (ADS)

    Wemple, B. C.; Schloegel, C.

    2015-12-01

    The Mazar River Project, a high-frequency hydrological monitoring program, aims to generate ecohydrological information to inform watershed management in high-mountain areas of southern Ecuador. Rapid development of hydropower, accompanied by new and improved road networks, has resulted in swift changes in land-use and land cover in Ecuador's tropical Andes, all of which underscore the need for detailed information on flow and sediment production from these river systems. National and regional payment for the protection of ecosystem services (PES) programs seek to target critical areas, such as these, for watershed conservation, but are often informed by minimal information on sustainable flows and impacts of land use activities. As part of a program to inform conservation and sustainable water management in the region, we established a hydrological monitoring station in southern Ecuador on the Mazar River, a tributary of the Paute River Basin, situated on the eastern Andean cordillera. The station is equipped with sensors to continuously monitor stream stage and turbidity and an automated sampler for event-based collection of stream water samples, providing high frequency data that reduces the uncertainty of observations. Here, we report observations of continuous runoff and turbidity over the first year of observation, present relationships between turbidity and concentrations of total suspended solids (TSS) and total particulate phosphorus (TP), and provide estimates of annual loads of TSS and TP. Runoff was highly variable over the monitoring period with flows ranging from less than 3 m3/s during baseflow to nearly 80 m3/s during the flood of record. During measured storm events, TSS exceeded 1000 mg/l with maximum measured concentrations exceeding 13 g/l during storm peaks. Turbidity was highly correlated with TSS, which was in turn highly correlated with TP, providing a robust data set for load estimation. We compare our results to other montane rivers in the

  7. Relevance of different spectral techniques to describe estuarine suspended sediment dynamics based on a high-frequency, long-term turbidity dataset

    NASA Astrophysics Data System (ADS)

    Jalón Rojas, Isabel; Schmidt, Sabine; Sottolichio, Aldo

    2015-04-01

    Sediment dynamics in estuaries are complex and strongly variable over time scales ranging from seconds to years. Various forcings (turbulence, tides, river inflow, wind waves, morphological and climatic changes) may cause the temporal and spatial variability of suspended sediment (SS) concentrations. The evaluation of these SS dynamics by in-situ measurements have traditionally faced three difficulties: (1) the quantification of low-frequency variability that requires continuous measures over long time periods; (2) inevitable gaps in data limiting the post-processing; (3) the need for recording other environmental variables in the same period and at a coherent sampling frequency. To record a high-frequency and long-term turbidity dataset, an automatic monitoring network (MAGEST) has been implemented in the Gironde estuary, a macrotidal and highly turbid system in the South-West France, in 2004. This 10-year turbidity time series is rather unique in European estuaries, enabling the evaluation of SS dynamics at all the significant time scales in one single analysis of the dataset. To achieve this, several methodologies of data analysis using different approaches are available, but their relevance, especially for the more recently developed ones, is almost unexplored. In this work, we present the test of four spectral techniques to the analysis of a high-frequency turbidity time series of an estuary such as the Gironde, to discuss advantages and limitations of each method. We compare the Power Spectral Analysis (PSA), the Singular Spectral Analysis (SSA), the Wavelet Transform (WT) and the Empirical Mode Decomposition (EMD). Advantages and limitations of each method are evaluated on the basis of five criteria: efficiency for incomplete time series, appropriateness for time-varying analysis, ability to recognize processes without the need of complementary environmental variables, capacity to calculate the relative importance of processes, and capacity to identify long

  8. A multivariate analytical method to characterize sediment attributes from high-frequency acoustic backscatter and ground-truthing data (Jade Bay, German North Sea coast)

    NASA Astrophysics Data System (ADS)

    Biondo, Manuela; Bartholomä, Alexander

    2017-04-01

    One of the burning issues on the topic of acoustic seabed classification is the lack of solid, repeatable, statistical procedures that can support the verification of acoustic variability in relation to seabed properties. Acoustic sediment classification schemes often lead to biased and subjective interpretation, as they ultimately aim at an oversimplified categorization of the seabed based on conventionally defined sediment types. However, grain size variability alone cannot be accounted for acoustic diversity, which will be ultimately affected by multiple physical processes, scale of heterogeneity, instrument settings, data quality, image processing and segmentation performances. Understanding and assessing the weight of all of these factors on backscatter is a difficult task, due to the spatially limited and fragmentary knowledge of the seabed from of direct observations (e.g. grab samples, cores, videos). In particular, large-scale mapping requires an enormous availability of ground-truthing data that is often obtained from heterogeneous and multidisciplinary sources, resulting into a further chance of misclassification. Independently from all of these limitations, acoustic segments still contain signals for seabed changes that, if appropriate procedures are established, can be translated into meaningful knowledge. In this study we design a simple, repeatable method, based on multivariate procedures, with the scope to classify a 100 km2, high-frequency (450 kHz) sidescan sonar mosaic acquired in the year 2012 in the shallow upper-mesotidal inlet of the Jade Bay (German North Sea coast). The tool used for the automated classification of the backscatter mosaic is the QTC SWATHVIEWTMsoftware. The ground-truthing database included grab sample data from multiple sources (2009-2011). The method was designed to extrapolate quantitative descriptors for acoustic backscatter and model their spatial changes in relation to grain size distribution and morphology. The

  9. Pleistocene sediment offloading and the global sulfur cycle

    NASA Astrophysics Data System (ADS)

    Markovic, S.; Paytan, A.; Wortmann, U. G.

    2015-05-01

    Quaternary sea level fluctuations have greatly affected the sediment budgets of the continental shelves. Previous studies suggested that this caused a considerable increase in the net loss of shelf sediments. Since sediment accumulation and erosion are closely tied to the formation and re-oxidation of pyrite, we use a high-resolution record of sulfur isotope ratios (34S / 32S) of marine sulfate to evaluate the implications of the so-called "shelf sediment offloading" on the global sulfur cycle. Modeling of our δ34S record suggests that erosion during sea level lowstands was only partly compensated by increased sedimentation during times of rising sea level and sea level highstands. Furthermore, our data suggests that shelf systems reached a new equilibrium state about 700 ka, which considerably slowed or terminated shelf sediment offloading.

  10. Pleistocene sediment offloading and the global sulfur cycle

    NASA Astrophysics Data System (ADS)

    Markovic, S.; Paytan, A.; Wortmann, U. G.

    2015-01-01

    Quaternary sea level fluctuations have greatly affected the sediment budgets of the continental shelves. Previous studies suggested that this caused a considerable increase in the net loss of shelf sediments. Since sediment accumulation and erosion are closely tied to the formation and re-oxidation of pyrite, we use a high resolution record of sulfur isotope ratios (34S / 32S) of marine sulfate to evaluate the implications of the so called "shelf sediment offloading" on the global sulfur cycle. Modeling of our δ34S record suggests that erosion during sea level lowstands was only partly compensated by increased sedimentation during times of rising sea level and sea level highstands. Furthermore, our data suggests that shelf systems reached a new equilibrium state about 700 kyr ago, which considerably slowed or terminated shelf sediment offloading.

  11. High frequency peritidal cycles of the upper Araras Group: Implications for disappearance of the neoproterozoic carbonate platform in southern Amazon Craton

    NASA Astrophysics Data System (ADS)

    Rudnitzki, Isaac Daniel; Romero, Guilherme Raffaeli; Hidalgo, Renata; Nogueira, Afonso Cesar Rodrigues

    2016-01-01

    The Araras Group is an extensive carbonate platform developed at the southeastern margin of the Amazon Craton during the Neoproterozoic. The Nobres Formation corresponds to the upper unit of the Neoproterozoic Araras Group. It is exposed in road cuts and quarries in the Northern Paraguay Belt, and is characterized by meter-scale shallowing upward cycles. Forty-four fourth-to fifth-order parasequence cycles are enclosed into three third order sequences/megacycles, unconformably overlain by siliciclastic deposits of the Alto Paraguay Group. The cycles are generally of peritidal type, limited by exposure surfaces composed of asymmetrical tidal flat/sabkha lithofacies in the basal Nobres Formation. They consist of fine dolostone, intraclastic dolostones with megaripples, stromatolites biostrome, sandy dolostone with enterolithic structures and silicified evaporite molds. Upsection, the cycles progressively become symmetrical, comprising arid tidal flat deposits with abundant stromatolite biostrome, fine-grained sandstone and rare evaporitic molds. The stacking patterns for hundreds of meters indicate continuous and recurrent generation of accommodation space, probably triggered by subsidence concomitant with relative sea-level changes. Palynomorphs found in the upper part of Nobres Formation comprehend spheroidal forms, such as Leiospharidia, rare filamentous and acanthomorphous acritarchs, mostly Tanarium correlated to the Ediacaran Complex Acantomorph Palynoflora of ˜580-570 Ma. Previous data of carbon isotopes and paleogeographic reconstructions, and also the presence of evaporites and storm-influenced deposits in the Araras Group, suggest a wet to tropical setting for Amazonia during the Mid-Ediacaran, which is incompatible with previous claims for Gaskiers-related glacial sedimentation in the region. During the final stages of evolution of the Araras carbonate platform, a progressive input of terrigenous has occurred in the peritidal setting likely due tectonic

  12. Sulfur and carbon cycling in organic-rich marine sediments

    NASA Technical Reports Server (NTRS)

    Martens, C. S.

    1985-01-01

    Nearshore, continental shelf, and slope sediments are important sites of microbially mediated carbon and sulfur cycling. Marine geochemists investigated the rates and mechanisms of cycling processes in these environments by chemical distribution studies, in situ rate measurements, and steady state kinetic modeling. Pore water chemical distributions, sulfate reduction rates, and sediment water chemical fluxes were used to describe cycling on a ten year time scale in a small, rapidly depositing coastal basin, Cape Lookout Bight, and at general sites on the upper continental slope off North Carolina, U.S.A. In combination with 210 Pb sediment accumulation rates, these data were used to establish quantitative carbon and sulfur budgets as well as the relative importance of sulfate reduction and methanogeneis as the last steps in the degradation of organic matter.

  13. Manganese cycles in Arctic marine sediments - Climate signals or diagenesis?

    NASA Astrophysics Data System (ADS)

    März, C.; Stratmann, A.; Eckert, S.; Schnetger, B.; Brumsack, H.-J.

    2009-04-01

    In comparison to sediments from other parts of the world ocean, the inorganic geochemistry of Arctic Ocean sediments is poorly investigated. However, marked light to dark brown layers are well-known features of Quaternary Arctic sediments, and have been related to variable Mn contents. Brown layers represent intervals relatively rich in Mn (often > 1 wt.%), while yellowish-greyish intervals contain less Mn. As these brown layers are widespread in pelagic Quaternary deposits of the Arctic Ocean, there are attempts to use them as stratigraphic, age-equivalent marker horizons that are genetically related to global climate changes (e.g. Jakobsson et al., 2000; Löwemark et al., 2008). In the Arctic Ocean, other conventional stratigraphic methods often fail, therefore the use of Mn-rich layers as a chemostratigraphic tool seems to be a promising approach. However, several inorganic-geochemical and modelling studies of Mn cycles in the Arctic as well as in other parts of the world ocean have shown that multiple Mn layers in marine sediments can be created by non-steady state diagenetic processes, i.e. secondary Mn redistribution in the sediment due to microbially mediated dissolution-reprecipitation reactions (e.g. Li et al., 1969; Gobeil et al., 1997; Burdige, 2006; Katsev et al., 2006). Such biogeochemical processes can lead to rapid migration or fixation of redox boundaries in the sediment, resulting in the formation or (partial) destruction of metal-rich layers several thousands of years after sediment deposition. As this clearly would alter primary paleoenvironmental signals recorded in the sediments, we see an urgent need to unravel the real stratigraphic potential of Arctic Mn cycles before they are readily established as standard tools. For this purpose, we are studying Mn cycles in Arctic Ocean sediments recovered during R/V Polarstern expedition ARK XXIII/3 on the Mendeleev Ridge (East Siberian Sea). First results of pore water and sediment composition

  14. SULFUR CYCLING IN THALASSIA TESTUDINUM SEAGRASS BED SEDIMENTS

    EPA Science Inventory

    Quarles, Robert L., Jessica A. Rivord and Richard Devereux. In press. Sulfur Cycling in Thalassia testudinum Seagrass Bed Sediments (Abstract). To be presented at the SWS/GERS Fall Joint Society Meeting: Communication and Collaboration: Coastal Systems of the Gulf of Mexico and S...

  15. Geochemical evidence for cryptic sulfur cycling in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Mills, Jennifer V.; Antler, Gilad; Turchyn, Alexandra V.

    2016-11-01

    Cryptic sulfur cycling is an enigmatic process in which sulfate is reduced to some lower-valence state sulfur species and subsequently quantitatively reoxidized; the rate and microbial energetics of this process and how prevalent it may be in the environment remain controversial. Here we investigate sulfur cycling in salt marsh sediments from Norfolk, England where we observe high ferrous iron concentrations with no depletion of sulfate or change in the sulfur isotope ratio of that sulfate, but a 5‰ increase in the oxygen isotope ratio in sulfate, indicating that sulfate has been through a reductive cycle replacing its oxygen atoms. This cryptic sulfur cycle was replicated in laboratory incubations using 18O-enriched water, demonstrating that the field results do not solely result from mixing processes in the natural environment. Numerical modeling of the laboratory incubations scaled to represent the salt marsh sediments suggests that the uptake rate of sulfate during this cryptic sulfur cycling is similar to the uptake rate of sulfate during the fastest microbial sulfate reduction that has been measured in the natural environment. The difference is that during cryptic sulfur cycling, all of the sulfur is subsequently reoxidized to sulfate. We discuss mechanisms for this pathway of sulfur cycling including the possible link to the subsurface iron cycle.

  16. Self-sedimentation of fossil phytoplankton blooms, laminated hemipelagic sediments and the oceanic carbon cycle

    SciTech Connect

    Grimm, K.A.; Lange, C.B.

    1996-12-31

    The flux of phytoplankton-derived organic carbon from the surface ocean to the deep sea and underlying sediments is a nonuniform process that significantly impacts biogeochemical cycles, atmospheric pCO{sub 2} / O{sub 2} and organic carbon enrichment in marine sediments. Some marine phytoplankton actively drive the sedimentation process by the formation of sticky transparent gels which facilitate aggregation, rapid sinking and efficient export flux. Here we present fossil evidence of unfragmented, low-diversity phytoplankton assemblages preserved as sedimentary laminations and as preserved aggregates that are attributable to a similar phytoplankton-driven sedimentary mechanism, here termed {open_quotes}self-sedimentation{close_quotes}. Heterogeneities in the texture and/or composition of sediment supply are necessary for the production of laminatedhemipelagic sediments; the absence of hydraulic and biological reworking permits preservation of these sedimentary laminae. Distinctly-laminated core intervals are characterized by large compositional contrasts between adjacent laminae; many such high-bimodality couplets are attributable to self-sedimentation of phytoplankton blooms. Self-sedimentation propels the formation of some conspicuous hemipelagic sedimentary laminations and results in efficient carbon and opal flux to the sediments. These records suggest that phytoplankton-mediated changes in the efficiency of the biological carbon pump may govern many accumulations of organic-rich hydrocarbon source rock as well as many abrupt changes in atmospheric pCO{sub 2} and climate.

  17. Self-sedimentation of fossil phytoplankton blooms, laminated hemipelagic sediments and the oceanic carbon cycle

    SciTech Connect

    Grimm, K.A. ); Lange, C.B. )

    1996-01-01

    The flux of phytoplankton-derived organic carbon from the surface ocean to the deep sea and underlying sediments is a nonuniform process that significantly impacts biogeochemical cycles, atmospheric pCO[sub 2] / O[sub 2] and organic carbon enrichment in marine sediments. Some marine phytoplankton actively drive the sedimentation process by the formation of sticky transparent gels which facilitate aggregation, rapid sinking and efficient export flux. Here we present fossil evidence of unfragmented, low-diversity phytoplankton assemblages preserved as sedimentary laminations and as preserved aggregates that are attributable to a similar phytoplankton-driven sedimentary mechanism, here termed [open quotes]self-sedimentation[close quotes]. Heterogeneities in the texture and/or composition of sediment supply are necessary for the production of laminatedhemipelagic sediments; the absence of hydraulic and biological reworking permits preservation of these sedimentary laminae. Distinctly-laminated core intervals are characterized by large compositional contrasts between adjacent laminae; many such high-bimodality couplets are attributable to self-sedimentation of phytoplankton blooms. Self-sedimentation propels the formation of some conspicuous hemipelagic sedimentary laminations and results in efficient carbon and opal flux to the sediments. These records suggest that phytoplankton-mediated changes in the efficiency of the biological carbon pump may govern many accumulations of organic-rich hydrocarbon source rock as well as many abrupt changes in atmospheric pCO[sub 2] and climate.

  18. Sediment flux modeling: Simulating nitrogen, phosphorus, and silica cycles

    NASA Astrophysics Data System (ADS)

    Testa, Jeremy M.; Brady, Damian C.; Di Toro, Dominic M.; Boynton, Walter R.; Cornwell, Jeffrey C.; Kemp, W. Michael

    2013-10-01

    Sediment-water exchanges of nutrients and oxygen play an important role in the biogeochemistry of shallow coastal environments. Sediments process, store, and release particulate and dissolved forms of carbon and nutrients and sediment-water solute fluxes are significant components of nutrient, carbon, and oxygen cycles. Consequently, sediment biogeochemical models of varying complexity have been developed to understand the processes regulating porewater profiles and sediment-water exchanges. We have calibrated and validated a two-layer sediment biogeochemical model (aerobic and anaerobic) that is suitable for application as a stand-alone tool or coupled to water-column biogeochemical models. We calibrated and tested a stand-alone version of the model against observations of sediment-water flux, porewater concentrations, and process rates at 12 stations in Chesapeake Bay during a 4-17 year period. The model successfully reproduced sediment-water fluxes of ammonium (NH4+), nitrate (NO3-), phosphate (PO43-), and dissolved silica (Si(OH)4 or DSi) for diverse chemical and physical environments. A root mean square error (RMSE)-minimizing optimization routine was used to identify best-fit values for many kinetic parameters. The resulting simulations improved the performance of the model in Chesapeake Bay and revealed (1) the need for an aerobic-layer denitrification formulation to account for NO3- reduction in this zone, (2) regional variability in denitrification that depends on oxygen levels in the overlying water, (3) a regionally-dependent solid-solute PO43- partitioning that accounts for patterns in Fe availability, and (4) a simplified model formulation for DSi, including limited sorption of DSi onto iron oxyhydroxides. This new calibration balances the need for a universal set of parameters that remain true to biogeochemical processes with site-specificity that represents differences in physical conditions. This stand-alone model can be rapidly executed on a

  19. Working Memory Impairment in Calcineurin Knock-out Mice Is Associated with Alterations in Synaptic Vesicle Cycling and Disruption of High-Frequency Synaptic and Network Activity in Prefrontal Cortex

    PubMed Central

    Cottrell, Jeffrey R.; Levenson, Jonathan M.; Kim, Sung Hyun; Gibson, Helen E.; Richardson, Kristen A.; Sivula, Michael; Li, Bing; Ashford, Crystle J.; Heindl, Karen A.; Babcock, Ryan J.; Rose, David M.; Hempel, Chris M.; Wiig, Kjesten A.; Laeng, Pascal; Levin, Margaret E.; Ryan, Timothy A.

    2013-01-01

    Working memory is an essential component of higher cognitive function, and its impairment is a core symptom of multiple CNS disorders, including schizophrenia. Neuronal mechanisms supporting working memory under normal conditions have been described and include persistent, high-frequency activity of prefrontal cortical neurons. However, little is known about the molecular and cellular basis of working memory dysfunction in the context of neuropsychiatric disorders. To elucidate synaptic and neuronal mechanisms of working memory dysfunction, we have performed a comprehensive analysis of a mouse model of schizophrenia, the forebrain-specific calcineurin knock-out mouse. Biochemical analyses of cortical tissue from these mice revealed a pronounced hyperphosphorylation of synaptic vesicle cycling proteins known to be necessary for high-frequency synaptic transmission. Examination of the synaptic vesicle cycle in calcineurin-deficient neurons demonstrated an impairment of vesicle release enhancement during periods of intense stimulation. Moreover, brain slice and in vivo electrophysiological analyses showed that loss of calcineurin leads to a gene dose-dependent disruption of high-frequency synaptic transmission and network activity in the PFC, correlating with selective working memory impairment. Finally, we showed that levels of dynamin I, a key presynaptic protein and calcineurin substrate, are significantly reduced in prefrontal cortical samples from schizophrenia patients, extending the disease relevance of our findings. Our data provide support for a model in which impaired synaptic vesicle cycling represents a critical node for disease pathologies underlying the cognitive deficits in schizophrenia. PMID:23825400

  20. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  1. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  2. [High frequency ultrasound].

    PubMed

    Sattler, E

    2015-07-01

    Diagnostic ultrasound has become a standard procedure in clinical dermatology. Devices with intermediate high frequencies of 7.5-15 MHz are used in dermato-oncology for the staging and postoperative care of skin tumor patients and in angiology for improved vessel diagnostics. In contrast, the high frequency ultrasound systems with 20-100 MHz probes offer a much higher resolution, yet with a lower penetration depth of about 1 cm. The main indications are the preoperative measurements of tumor thickness in malignant melanoma and other skin tumors and the assessment of inflammatory and soft tissue diseases, offering information on the course of these dermatoses and allowing therapy monitoring. This article gives an overview on technical principles, devices, mode of examination, influencing factors, interpretation of the images, indications but also limitations of this technique.

  3. Ni cycling in mangrove sediments from New Caledonia

    NASA Astrophysics Data System (ADS)

    Noël, Vincent; Morin, Guillaume; Juillot, Farid; Marchand, Cyril; Brest, Jessica; Bargar, John R.; Muñoz, Manuel; Marakovic, Grégory; Ardo, Sandy; Brown, Gordon E.

    2015-11-01

    sediment layers. Ni-incorporation in pyrite is especially observed beneath an inland Avicennia stand where anoxic conditions are dominant. In contrast, beneath a Rhizophora stand closer to the ocean, where the redox cycle is intensified due to the tide cycle, partial re-oxidation of Ni-bearing pyrites favors nickel mobility, as confirmed by Ni-mass balance estimates and by higher Ni concentration in the pore waters. These findings have important environmental implications for better evaluating the protective role of mangroves against trace metal dispersion into marine ecosystems. They may also help in predicting the response of mangrove ecosystems to increasing anthropogenic pressure on coastal areas.

  4. Relationship between high-frequency sediment-level oscillations in the swash zone and inner surf zone wave characteristics under calm wave conditions

    NASA Astrophysics Data System (ADS)

    Li, Zhiqiang

    2016-01-01

    Swash zone topography rapidly responds to the surf zone waves. Understanding how sandy beaches respond to wave action is critical for beach erosion research, and plays a critical role in the design and maintenance of shore protection structures. The main objectives of this study were to detect the relationship between high-frequency beachface oscillations and surf zone wave characteristics under plunging breakers by using Canonical Correlation Analysis (CCA). The study site is located in Houjiangwan Bay, eastern Guangdong. Topography data were sampled at 6 min intervals. The wave characteristic parameters were calculated by spectrum method. During the field work, the beach showed a reflective state and plunging breakers controlled the surf zone. The beach cusp topography was destructed gradually. The analysis provides 4 canonical correlation processes between the beachface variations and surf zone waves, which explained 95.28% of the overall variation in the data. The result shows wave steepness, the irregularity factor and spectral broadness factor had strong impacts on the topography. The wave steepness was the most important factor for beach profile variations. The results of the present study indicate that data-driven statistical analysis, such as CCA, is useful for analyzing profile response to waves if there is strong correlation between the two variables (beach profiles and wave).

  5. Temporal variability of exchange between groundwater and surface water based on high-frequency direct measurements of seepage at the sediment-water interface

    USGS Publications Warehouse

    Rosenberry, Donald O.; Sheibley, Rich W.; Cox, Stephen E.; Simonds, Frederic W.; Naftz, David L.

    2013-01-01

    Seepage at the sediment-water interface in several lakes, a large river, and an estuary exhibits substantial temporal variability when measured with temporal resolution of 1 min or less. Already substantial seepage rates changed by 7% and 16% in response to relatively small rain events at two lakes in the northeastern USA, but did not change in response to two larger rain events at a lake in Minnesota. However, seepage at that same Minnesota lake changed by 10% each day in response to withdrawals from evapotranspiration. Seepage increased by more than an order of magnitude when a seiche occurred in the Great Salt Lake, Utah. Near the head of a fjord in Puget Sound, Washington, seepage in the intertidal zone varied greatly from −115 to +217 cm d−1 in response to advancing and retreating tides when the time-averaged seepage was upward at +43 cm d−1. At all locations, seepage variability increased by one to several orders of magnitude in response to wind and associated waves. Net seepage remained unchanged by wind unless wind also induced a lake seiche. These examples from sites distributed across a broad geographic region indicate that temporal variability in seepage in response to common hydrological events is much larger than previously realized. At most locations, seepage responded within minutes to changes in surface-water stage and within minutes to hours to groundwater recharge associated with rainfall. Likely implications of this dynamism include effects on water residence time, geochemical transformations, and ecological conditions at and near the sediment-water interface.

  6. Tempo and scale of biogenic effects on high-frequency acoustic propagation near the marine sediment-water interface in shallow water

    NASA Astrophysics Data System (ADS)

    Jumars, Peter

    2003-04-01

    Organisms have natural scales, such as lifetimes, body sizes, frequencies of movement to new locations, and residence times of material in digestive systems, and each scale has potential implications for acoustic effects. The effects of groups of organisms, like organisms themselves, aggregate in space and time. This review, including an assortment of unpublished information, examines examples of such aggregations, many of them documented acoustically. Light synchronizes many activities. Macroscopic animals forage primarily under cover of darkness. This phasing applies both to animals that extend appendages above the sediment-water interface and to animals that leave the seabed at night. Whereas their bottom-modifying activities are concentrated in nocturnal or crepuscular fashion, the bottom-modifying activities of the visual feeders follow a different phasing and often dominate the rate of change in acoustic backscatter from the interface. Light also acts through its effects on primary production, often concentrated in a very thin surficial layer atop the seabed. The supersaturation of oxygen does, and microbubble nucleation may, result. Where tidal velocities are large, light-set patterns are often tidally modulated. Activities of animals living below the seabed, however, remain a mystery, whose primary hope for solution is acoustic. [Work supported by ONR and DEPSCoR.

  7. Linking Soil and Sediment Properties for research on Biogeochemical Cycles

    NASA Astrophysics Data System (ADS)

    Kuhn, N. J.

    2012-04-01

    Conventional perspectives on soil erosion include the on-site damage to soil and reductions in crop yield, as well as the resulting off-site effects on water quality, runoff and sediment loads in rivers. Our evolving understanding of the Earth System has added a new dimension to the role of soil erosion within the global geochemical cycles. First, the relevance of soil as a nutrient and Carbon (C) pool was recognized. Initially, the role of soils in the global C cycle was largely considered to be limited to a vertical exchange of greenhouse house gases (GHG) between vegetation, soil and atmosphere and thus mostly studied by soil scientists, plant ecologists and climatologists. Even Critical Zone research focused mostly on weathering and regolith properties and ignored lateral fluxes of dissolved or particulate organic matter. Since the late 1990s, a wider role of soils in biogeochemical cycles has emerged. Recent estimates place the lateral movement of C between soil and sediment pools in terrestrial ecosystems (including rivers and lakes) at approximately 0.6 to 1.5 Gt per year. Some of the eroded C is replaced by photosynthesis from the atmosphere, but at a cost of additional emissions, for example due to fertilizer production. The long-term fate of the eroded and deposited soil organic matter is subject to an open debate and suffers from a lack of reliable spatial information on lateral C fluxes and its subsequent fate in terrestrial ecosystems. The connection between soil C pool, GHG emissions and erosion illustrates the relevance of surface processes for the C fluxes between Earth's spheres. Accordingly, soil is now considered as mobile system to make accurate predictions about the consequences of global change for terrestrial biogeochemical cycles and climate feedbacks. This expanded perspective on soils as dynamic pool of weathering regolith, sediment, nutrients and C at the interface between the geospheres requires the analysis of relevant soil properties

  8. Linking soil and sediment properties for research on biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.

    2013-04-01

    Conventional perspectives on soil erosion include the on-site damage to soil and reductions in crop yield, as well as the resulting off-site effects on water quality, runoff and sediment loads in rivers. Our evolving understanding of the Earth System has added a new dimension to the role of soil erosion within the global geochemical cycles. First, the relevance of soil as a nutrient and Carbon (C) pool was recognized. Initially, the role of soils in the global C cycle was largely considered to be limited to a vertical exchange of greenhouse house gases (GHG) between vegetation, soil and atmosphere and thus mostly studied by soil scientists, plant ecologists and climatologists. Even Critical Zone research focused mostly on weathering and regolith properties and ignored lateral fluxes of dissolved or particulate organic matter. Since the late 1990s, a wider role of soils in biogeochemical cycles has emerged. Recent estimates place the lateral movement of C between soil and sediment pools in terrestrial ecosystems (including rivers and lakes) at approximately 0.6 to 1.5 Gt per year. Some of the eroded C is replaced by photosynthesis from the atmosphere, but at a cost of additional emissions, for example due to fertilizer production. The long-term fate of the eroded and deposited soil organic matter is subject to an open debate and suffers from a lack of reliable spatial information on lateral C fluxes and its subsequent fate in terrestrial ecosystems. The connection between soil C pool, GHG emissions and erosion illustrates the relevance of surface processes for the C fluxes between Earth's spheres. Accordingly, soil is now considered as mobile system to make accurate predictions about the consequences of global change for terrestrial biogeochemical cycles and climate feedbacks. This expanded perspective on soils as dynamic pool of weathering regolith, sediment, nutrients and C at the interface between the geospheres requires the analysis of relevant soil properties

  9. High-frequency in situ optical measurements during a storm event: Assessing relationships between dissolved organic matter, sediment concentrations, and hydrologic processes

    USGS Publications Warehouse

    Saraceno, John F.; Pellerin, Brian A.; Downing, Bryan D.; Boss, Emmanuel; Bachand, Philip A. M.; Bergamaschi, Brian A.

    2009-01-01

    Dissolved organic matter (DOM) dynamics during storm events has received considerable attention in forested watersheds, but the extent to which storms impart rapid changes in DOM concentration and composition in highly disturbed agricultural watersheds remains poorly understood. In this study, we used identical in situ optical sensors for DOM fluorescence (FDOM) with and without filtration to continuously evaluate surface water DOM dynamics in a 415 km2agricultural watershed over a 4 week period containing a short-duration rainfall event. Peak turbidity preceded peak discharge by 4 h and increased by over 2 orders of magnitude, while the peak filtered FDOM lagged behind peak turbidity by 15 h. FDOM values reported using the filtered in situ fluorometer increased nearly fourfold and were highly correlated with dissolved organic carbon (DOC) concentrations (r2 = 0.97), providing a highly resolved proxy for DOC throughout the study period. Discrete optical properties including specific UV absorbance (SUVA254), spectral slope (S290–350), and fluorescence index (FI) were also strongly correlated with in situ FDOM and indicate a shift toward aromatic, high molecular weight DOM from terrestrially derived sources during the storm. The lag of the peak in FDOM behind peak discharge presumably reflects the draining of watershed soils from natural and agricultural landscapes. Field and experimental evidence showed that unfiltered FDOM measurements underestimated filtered FDOM concentrations by up to ∼60% at particle concentrations typical of many riverine systems during hydrologic events. Together, laboratory and in situ data provide insights into the timing and magnitude of changes in DOM quantity and quality during storm events in an agricultural watershed, and indicate the need for sample filtration in systems with moderate to high suspended sediment loads.

  10. High frequency pulsed electromigration

    NASA Astrophysics Data System (ADS)

    Malone, David Wayne

    Electromigration life tests were performed on copper-alloyed aluminum test structures that were representative of modern CMOS metallization schemes, complete with Ti/TiN cladding layers and a tungsten-plug contact at the cathode. A total of 18 electrical stress treatments were applied. One was a DC current of 15 mA. The other 17 were pulsed currents, varied according to duty cycle and frequency. The pulse amplitude was 15 mA (˜2.7 × 10sp6 A/cmsp2) for all treatments. Duty cycles ranged from 33.3% to 80%, and frequencies fell into three rough ranges-100 KHz, 1 MHz, and 100 MHz. The ambient test temperature was 200sp°C in all experiments. Six to 9 samples were subjected to each treatment. Experimental data were gathered in the form of test stripe resistance versus time, R(t). For purposes of lifetime analysis, "failure" was defined by the criterion R(t)/R(0) = 1.10, and the median time to failure, tsb{50}, was used as the primary basis of comparison between test groups. It was found that the dependence of tsb{50} on pulse duty cycle conformed rather well to the so-called "average current density model" for duty cycles of 50% and higher. Lifetimes were less enhanced for a duty cycle of 33.3%, but they were still considerably longer than an "on-time" model would predict. No specific dependence of tsb{50} on pulse frequency was revealed by the data, that is, reasonably good predictions of tsb{50} could be made by recognizing the dominant influence of duty cycle. These findings confirm that IC miniaturization can be more aggressively pursued than an on-time prediction would allow. It is significant that this was found to be true for frequencies on the order of 100 MHz, where many present day digital applications operate. Post-test optical micrographs were obtained for each test subject in order to determine the location of electromigration damage. The pulse duty cycle was found to influence the location. Most damage occurred at the cathode contact, regardless of

  11. High-frequency ECG

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  12. Carbon and nitrogen cycling in thermally heated sediments

    NASA Astrophysics Data System (ADS)

    Meyer-Dombard, D. R.; Burton, M.; Vennelakanti, S.; Havig, J. R.; Shock, E.

    2009-12-01

    Hydrothermally heated sediment environments, such as are found in abundance throughout Yellowstone National Park, host fully functional microbial ecosystems. As with any ecosystem, both sources and sinks of carbon, nitrogen, and a myriad of other nutrients and energy-driving factors must be supplied. While we know microbial communities in hydrothermal environments can be surprisingly diverse, we know little about basic ecological functions such as carbon and nitrogen cycling. Previous work has shown that carbon cycling in one hot spring in Yellowstone National Park [“Bison Pool”] and its associated runoff channel functions as a complex system. Analysis of carbon and nitrogen isotopes in sediments and biofilms across a temperature and chemical gradient at this location revealed that the four best studied carbon fixation pathways [Calvin, reverse tricarboxylic acid, acetyl-CoA, 3-hydroxypropionate cycles] may all be functioning in this system, and nitrogen fixation varies across the chemosynthetic/photosynthetic ecotone [1]. Microcosm experiments using biofilms from this hot spring as inoculae with 13C labeled carbon substrates indicate heterotrophic growth [2]. In addition, metagenomic analysis of environmental DNA has indicated the presence of genes involved in carbon fixation [both phototrophic and autotrophic], and heterotrophy, as well as nitrogen fixation [3]. Studies from other Yellowstone locations have also found genetic evidence for carbon and nitrogen fixation [4, 5]. Of particular interest is the role of individuals in carbon and nitrogen cycling as environmental conditions suitable for chemosynthetic and photosynthetic growth vary. This study explores the diversity of cbbM/cbbL [Calvin cycle], aclB/oor/porA [rTCA cycle], nifH [nitrogen fixation], nirK [nitrite reduction] and amoA [ammonia oxidation] genes across a variety of Yellowstone environments. The transition of genetic diversity within sediments and biofilms is focused on the chemosynthetic

  13. Frequency-Dependent Low Cycle Fatigue of Sn1Ag0.1Cu(In/Ni) Solder Joints Subjected to High-Frequency Loading

    NASA Astrophysics Data System (ADS)

    Wong, E. H.; Seah, S. K. W.; Shim, V. P. W.

    2014-02-01

    The low-cycle-fatigue characteristics of solder joints, formed by reflowing Sn98.8/Ag1.0/Cu0.1/In0.05/Ni0.02 solder over electroless nickel immersion gold-plated copper pads, were investigated by dynamic cyclic bending of printed circuit boards (PCBs). The PCB strain amplitudes were varied from 1.2 × 10-3 to 2.4 × 10-3 and the flexural frequencies ranged from 30 Hz to 150 Hz, to simulate drop impact-induced PCB resonant frequencies. A trend of drastically decreasing fatigue life with cyclic frequency was observed, in contrast with previous reports indicating the reverse; this is attributed to the different failure mechanisms activated. A systematic procedure involving optimization followed by transformation was used to condense the strain-frequency-life data into a master curve expressed in strain-life space.

  14. Characterizing seasonal variability of storm events based on very high frequency monitoring of hydrological and chemical variables: comparing patterns in hot spots and hot moments for nutrient and sediment export

    NASA Astrophysics Data System (ADS)

    Fovet, Ophelie; Thelusma, Gilbert; Humbert, Guillaume; Dupas, Rémi; Faucheux, Mikael; Gilliet, Nicolas; Hamon, Yannick; Jaffrezic, Anne; Grimaldi, Catherine; Gruau, Gerard

    2016-04-01

    Storm events are critical hot moments of emission for several dissolved and particulate chemical species at major stake for water quality (e.g. dissolved organic carbon DOC, suspended sediments, phosphorus). During such events, the solutes or particles are exported from heterogeneous sources through various pathways to stream leading to specific integrated signals at the outlet characterized by very short dynamics. This is merely true in headwater catchments where the total duration of such events ranges over 10h to 3 days, with very quick variations in stream flow and concentrations at the outlet occurring in a few hours. Thus for investigating properly event processes, high frequency monitoring of flow and water quality is required. We analysed 103 storm events in a 5 km2 agricultural headwater catchment, part of the AgrHys Observatory, on the basis of a 3-year-long data set which combined meterological (Rainfall), hydrological (flow and piezometry), and water quality (turbidity, conductivity, DOC and NO3 concentrations) data recorded at very high frequencies (from 1 to 20 min) thanks to dedicated sensors. We proposed a range of quantitative storm descriptors for characterizing input (rainfall), antecedent and initial conditions (groundwater levels and saturated area), and stream response in terms of level and dynamics of flow (Q), groundwater levels, and concentrations (C) but also the C-Q relationships. Three intra annual periods have been previously defined for base flow dynamic according to shallow groundwater table variations so that they correspond to different connectivity status in the catchment. The seasonal and inter-annual variability of the storm events have been analysed using the descriptors and based on these predefined periods. Results show that the hydrological flowpaths and the consequent storm chemistry were controlled by the hydrological base flow regime rather than by the rain input characteristics. This highlights that the exports of NO3

  15. Biogeochemical Cycle of Methanol in Anoxic Deep-Sea Sediments.

    PubMed

    Yanagawa, Katsunori; Tani, Atsushi; Yamamoto, Naoya; Hachikubo, Akihiro; Kano, Akihiro; Matsumoto, Ryo; Suzuki, Yohey

    2016-06-25

    The biological flux and lifetime of methanol in anoxic marine sediments are largely unknown. We herein reported, for the first time, quantitative methanol removal rates in subsurface sediments. Anaerobic incubation experiments with radiotracers showed high rates of microbial methanol consumption. Notably, methanol oxidation to CO2 surpassed methanol assimilation and methanogenesis from CO2/H2 and methanol. Nevertheless, a significant decrease in methanol was not observed after the incubation, and this was attributed to the microbial production of methanol in parallel with its consumption. These results suggest that microbial reactions play an important role in the sources and sinks of methanol in subseafloor sediments.

  16. Binaural beats at high frequencies.

    PubMed

    McFadden, D; Pasanen, E G

    1975-10-24

    Binaural beats have long been believed to be audible only at low frequencies, but an interaction reminiscent of a binaural beat can sometimes be heard when different two-tone complexes of high frequency are presented to the two ears. The primary requirement is that the frequency separation in the complex at one ear be slightly different from that in the other--that is, that there be a small interaural difference in the envelope periodicities. This finding is in accord with other recent demonstrations that the auditory system is not deaf to interaural time differences at high frequencies.

  17. The carbon cycle and biogeochemical dynamics in lake sediments

    USGS Publications Warehouse

    Dean, W.E.

    1999-01-01

    The concentrations of organic carbon (OC) and CaCO3 in lake sediments are often inversely related. This relation occurs in surface sediments from different locations in the same lake, surface sediments from different lakes, and with depth in Holocene sediments. Where data on accumulation rates are available, the relation holds for organic carbon and CaCO3 accumulation rates as well. An increase of several percent OC is accompanied by a decrease of several tens of percent CaCO3 indicating that the inverse relation is not due to simple dilution of one component by another. It appears from core data that once the OC concentration in the sediments becomes greater than about 12%, the CO2 produced by decomposition of that OC and production of organic acids lowers the pH of anoxic pore waters enough to dissolve any CaCO3 that reaches the sediment-water interface. In a lake with a seasonally anoxic hypolimnion, processes in the water column also can produce an inverse relation between OC and CaCO3 over time. If productivity of the lake increases, the rain rate of OC from the epilimnion increases. Biogenic removal of CO2 and accompanying increase in pH also may increase the production of CaCO3. However, the decomposition of organic matter in the hypolimnion will decrease the pH of the hypolimnion causing greater dissolution of CaCO3 and therefore a decrease in the rain rate of CaCO3 to the sediment-water interface.

  18. High-frequency broadband transformers

    NASA Astrophysics Data System (ADS)

    London, S. E.; Tomashevich, S. V.

    1981-05-01

    A systematic review of the theory and design principles of high-frequency broadband transformers is presented. It is shown that the transformers of highest performance are those whose coils consist of strips of double-wire and multiwire transmission lines. Such devices are characterized by a wide operating frequency range, and make possible operation at microwave frequencies at high levels of transmitted power.

  19. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment

    NASA Astrophysics Data System (ADS)

    Rao, Alexandra M. F.; Malkin, Sairah Y.; Hidalgo-Martinez, Silvia; Meysman, Filip J. R.

    2016-01-01

    Filamentous sulfide oxidizing cable bacteria are capable of linking the oxidation of free sulfide in deep anoxic layers of marine sediments to the reduction of oxygen or nitrate in surface sediments by conducting electrons over centimeter-scale distances. Previous studies have shown that this newly discovered microbial process, referred to as electrogenic sulfide oxidation (e-SOx), may alter elemental cycling in sediments, but the nature and rates of the resulting biogeochemical transformations and their influence on benthic-pelagic coupling remain largely unknown. Here we quantify changes in sediment geochemistry and solute fluxes at the sediment-water interface as e-SOx develops and declines over time in laboratory incubations of organic-rich sediments from a seasonally hypoxic coastal basin (Marine Lake Grevelingen, The Netherlands). Our results show that e-SOx enhanced sediment O2 consumption and acidified subsurface sediment, resulting in the dissolution of calcium carbonate and iron sulfide minerals in deeper sediment horizons and the associated accumulation of dissolved iron, manganese, and calcium in porewater. Remobilized Fe diffusing upward was reoxidized at the sediment-water interface, producing an amorphous Fe oxide crust, while dissolved Fe diffusing downward was reprecipitated in the form of FeS as it encountered the free sulfide horizon. The development of e-SOx enhanced the diffusive release of dissolved Mn at the sediment-water interface, capped the phosphate efflux, generated a buildup of organic matter in surface sediments, and strongly stimulated the release of alkalinity from the sediment. About 75% of this alkalinity production was associated with net CaCO3 dissolution, while the remaining 25% was attributed to a pumping mechanism that transfers alkalinity from anodic H2S oxidation (an alkalinity sink) in deeper sediments to cathodic O2 reduction (an alkalinity source) near the sediment-water interface. The resulting sediment alkalinity

  20. Viral activities and life cycles in deep subseafloor sediments.

    PubMed

    Engelhardt, Tim; Orsi, William D; Jørgensen, Bo Barker

    2015-12-01

    Viruses are highly abundant in marine subsurface sediments and can even exceed the number of prokaryotes. However, their activity and quantitative impact on microbial populations are still poorly understood. Here, we use gene expression data from published continental margin subseafloor metatranscriptomes to qualitatively assess viral diversity and activity in sediments up to 159 metres below seafloor (mbsf). Mining of the metatranscriptomic data revealed 4651 representative viral homologues (RVHs), representing 2.2% of all metatranscriptome sequence reads, which have close translated homology (average 77%, range 60-97% amino acid identity) to viral proteins. Archaea-infecting RVHs are exclusively detected in the upper 30 mbsf, whereas RVHs for filamentous inoviruses predominate in the deepest sediment layers. RVHs indicative of lysogenic phage-host interactions and lytic activity, notably cell lysis, are detected at all analysed depths and suggest a dynamic virus-host association in the marine deep biosphere studied here. Ongoing lytic viral activity is further indicated by the expression of clustered, regularly interspaced, short palindromic repeat-associated cascade genes involved in cellular defence against viral attacks. The data indicate the activity of viruses in subsurface sediment of the Peruvian margin and suggest that viruses indeed cause cell mortality and may play an important role in the turnover of subseafloor microbial biomass.

  1. Enzymatic assays of sediments from North Pond (IODP Expedition 336) to elucidate microbial phosphorus cycling strategies

    NASA Astrophysics Data System (ADS)

    Defforey, D.; Paytan, A.

    2015-12-01

    Phosphorus (P) is a key macronutrient for living cells and its availability is limited in the deep subseafloor environment, a habitat estimated to contain up to 1% of Earth's total biomass. The existence and activity of deep subseafloor microbial populations have profound implications on global biogeochemical cycles and our understanding of the limits of life. However, little is known about the impact of the deep biosphere on sedimentary P cycling and P diagenetic processes. Our previous work has shown that sedimentary P at North Pond is mainly present in mineral phases, and that refractory organic P is detectable throughout the sediment column. The latter could constitute a P source to the deep biosphere. Alternatively, microorganisms could have mechanisms to harvest P from recalcitrant mineral phases. The aim of this study is to determine the presence and maximum potential activity of enzymes involved in microbial P uptake in deep-sea sediments. These include phosphomonoesterases, such as alkaline phosphatase, phosphodiesterases, pyrophosphatase and phosphonatases. The sediment samples used for this study were collected at North Pond, a sediment pond located on the western flank of the Mid-Atlantic Ridge, during IODP Expedition 336. This work will provide key insights into the microbial P uptake mechanisms at play in open ocean sediments, and their effects on sedimentary P cycling. These results, in conjunction with our previous work investigating P geochemistry at North Pond, will yield valuable information regarding the impact of the deep biosphere on P cycling in open ocean sediments.

  2. Biogeochemistry of the coupled manganese-iron-sulfur cycles of intertidal surface sediments

    NASA Astrophysics Data System (ADS)

    Bosselmann, K.; Boettcher, M. E.; Billerbeck, M.; Walpersdorf, E.; Debeer, D.; Brumsack, H.-J.; Huettel, M.; Joergensen, B. B.

    2003-04-01

    The biogeochemistry of the coupled iron-manganese-sulfur-carbon cycles was studied in temperate intertidal surface sediments of the German Wadden Sea (North Sea). Coastal sampling sites include sand, mixed and mud flats with different organic matter and metal contents and permeability reflecting different hydrodynamic regimes. The field study focusses on the influence of temperature, organic matter load, and sediment types on the dynamics of biogeochemical reactions on different time scales (season, day-night, tidal cycles). One of the main interests was related to the cycling of metals (Mn, Fe) in relation to the activity of sulfate-reducing bacteria. Pore water profiles were investigated by sediment sectioning and high resolution gel sampling techniques. Microbial sulfate reduction rates were measured using radiolabeled sulfate with the whole core incubation technique and the spatial distribution of bacterial activity was visualised by using "2D-photoemulsion-monitoring technique". The biogeochemical sulfur cycle was additionally characterised by the stable isotope ratios (S,O) of different sulfur species (e.g., SO_4, AVS, pyrite). Element transfers (metals, nutrients) across the sediment-water interface were additionally quantified by the application of benthic flux chambers. Microbial sulfate reduction was generally highest in the suboxic zone of the surface sediments indicating its potential importance for the mobilization of iron and manganese. In organic matter poor permeable sediments tidal effects additionally influence the spatial and temporal distribution of dissolved redox-sensitive metals. In organic matter-rich silty and muddy sediments, temperature controlled the microbial sulfate reduction rates. Depth-integrated sulfate reduction rates in sandy sediments were much lower and controlled by both temperature and organic matter. Formation of anoxic sediment surfaces due to local enhanced organic matter load (so-called "black spots") may create windows

  3. Ni cycling in mangrove sediments from New Caledonia

    NASA Astrophysics Data System (ADS)

    Noel, V. S.; Morin, G.; Juillot, F.; Marchand, C.; Brest, J.; Bargar, J.; Munoz, M.; Ardo, S.; Brown, G. E.

    2014-12-01

    In New Caledonia, mangroves receive large inputs of lateritic materials eroded from massive ultramafic deposits enriched in Fe, Ni, Mn, Cr, and Co. Because of the major physicochemical gradients, especially redox gradients, that characterize these ecosystems, mineralogical transformations may influence the crystal-chemistry and bioavailability of Ni and its mobility towards a lagoon of over 20,000 km2. Bulk and spatially resolved chemical analyses by SEM-EDXS were coupled with Ni K-edge X-ray absorption fine structure (XAFS) spectroscopy analysis to characterize the vertical and lateral changes in Ni speciation across the intertidal zone of a mangrove forest in the Vavouto Bay (New Caledonia) where Ni concentrations range from 1000 to 5300 mg•kg-1. XAFS results indicate that phyllosilicates and goethite inherited from the eroded lateritic materials are the dominant Ni-bearing phases in the surface horizons of the mangrove sediments. They are fully preserved at depth in the dry and oxic salt flat area, located on the inland side of the coast. In contrast, beneath the vegetated Rhizophoras and Avicennias stands Ni-bearing goethites rapidly diminish with increasing depth in the anoxic horizons of the sediments, and pyrite and organic complexes become the dominant Ni-containing species. Moreover, Ni incorporation in pyrite is more developed in the sediments beneath the intermediate Avicennia stand than beneath the Rhizophora stand that is closest to the shore. Such lateral changes in Ni speciation may be related to reoxidation of Ni-bearing pyrites in the Rhizophora stand, which is subject to periodic alternation of reducing and oxidizing events due to tidal fluctuations. These major changes in Ni speciation could significantly influence Ni mobility across the interidal zone. Indeed, as estimated with respect to Ti concentration, which is taken as a geochemical invariant, Ni is found to be immobile in the salt flat, to accumulate beneath the Avicennia stand, and to

  4. Constraining magnesium cycling in marine sediments using magnesium isotopes

    NASA Astrophysics Data System (ADS)

    Higgins, J. A.; Schrag, D. P.

    2010-09-01

    Magnesium concentrations in deep-sea sediment pore-fluids typically decrease down core due to net precipitation of dolomite or clay minerals in the sediments or underlying crust. To better characterize and differentiate these processes, we have measured magnesium isotopes in pore-fluids and sediment samples from Ocean Drilling Program sites (1082, 1086, 1012, 984, 1219, and 925) that span a range of oceanographic settings. At all sites, magnesium concentrations decrease with depth. At sites where diagenetic reactions are dominated by the respiration of organic carbon, pore-fluid δ 26Mg values increase with depth by as much as 2‰. Because carbonates preferentially incorporate 24Mg (low δ 26Mg), the increase in pore-fluid δ 26Mg values at these sites is consistent with the removal of magnesium in Mg-carbonate (dolomite). In contrast, at sites where the respiration of organic carbon is not important and/or weatherable minerals are abundant, pore-fluid δ 26Mg values decrease with depth by up to 2‰. The decline in pore-fluid δ 26Mg at these sites is consistent with a magnesium sink that is isotopically enriched relative to the pore-fluid. The identity of this enriched magnesium sink is likely clay minerals. Using a simple 1D diffusion-advection-reaction model of pore-fluid magnesium, we estimate rates of net magnesium uptake/removal and associated net magnesium isotope fractionation factors for sources and sinks at all sites. Independent estimates of magnesium isotope fractionation during dolomite precipitation from measured δ 26Mg values of dolomite samples from sites 1082 and 1012 are very similar to modeled net fractionation factors at these sites, suggesting that local exchange of magnesium between sediment and pore-fluid at these sites can be neglected. Our results indicate that the magnesium incorporated in dolomite is 2.0-2.7‰ depleted in δ 26Mg relative to the precipitating fluid. Assuming local exchange of magnesium is minor at the rest of the

  5. The microbial nitrogen cycling potential is impacted by polyaromatic hydrocarbon pollution of marine sediments.

    PubMed

    Scott, Nicole M; Hess, Matthias; Bouskill, Nick J; Mason, Olivia U; Jansson, Janet K; Gilbert, Jack A

    2014-01-01

    During hydrocarbon exposure, the composition and functional dynamics of marine microbial communities are altered, favoring bacteria that can utilize this rich carbon source. Initial exposure of high levels of hydrocarbons in aerobic surface sediments can enrich growth of heterotrophic microorganisms having hydrocarbon degradation capacity. As a result, there can be a localized reduction in oxygen potential within the surface layer of marine sediments causing anaerobic zones. We hypothesized that increasing exposure to elevated hydrocarbon concentrations would positively correlate with an increase in denitrification processes and the net accumulation of dinitrogen. This hypothesis was tested by comparing the relative abundance of genes associated with nitrogen metabolism and nitrogen cycling identified in 6 metagenomes from sediments contaminated by polyaromatic hydrocarbons from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico, and 3 metagenomes from sediments associated with natural oil seeps in the Santa Barbara Channel. An additional 8 metagenomes from uncontaminated sediments from the Gulf of Mexico were analyzed for comparison. We predicted relative changes in metabolite turnover as a function of the differential microbial gene abundances, which showed predicted accumulation of metabolites associated with denitrification processes, including anammox, in the contaminated samples compared to uncontaminated sediments, with the magnitude of this change being positively correlated to the hydrocarbon concentration and exposure duration. These data highlight the potential impact of hydrocarbon inputs on N cycling processes in marine sediments and provide information relevant for system scale models of nitrogen metabolism in affected ecosystems.

  6. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial

    USGS Publications Warehouse

    Stallard, R.F.

    1998-01-01

    This paper examines the linkages between the carbon cycle and sedimentary processes on land. Available data suggest that sedimentation on land can bury vast quantities of organic carbon, roughly 1015 g C yr-1. To evaluate the relative roles of various classes of processes in the burial of carbon on land, terrestrial sedimentation was modeled as a series of 864 scenarios. Each scenario represents a unique choice of intensities for seven classes of processes and two different global wetland distributions. Comparison was made with presumed preagricultural conditions. The classes of processes were divided into two major component parts: clastic sedimentation of soil-derived carbon and organic sedimentation of autochthonous carbon. For clastic sedimentation, masses of sediment were considered for burial as reservoir sediment, lake sediment, and combined colluvium, alluvium, and aeolian deposits. When the ensemble of models is examined, the human-induced burial of 0.6-1.5.1015 g yr-1 of carbon on land is entirely plausible. This sink reaches its maximum strength between 30 ?? and 50??N. Paddy lands stand out as a type of land use that warrants future study, but the many faces of rice agriculture limit generalization. In an extreme scenario, paddy lands alone could be made to bury about 1.1015 g C yr-1. Arguing that terrestrial sedimentation processes could be much of the sink for the so called 'missing carbon' is reasonable. Such a hypothesis, however, requires major redesign of how the carbon cycle is modeled. Unlike ecosystem processes that are amenable to satellite monitoring and parallel modeling, many aspects of terrestrial sedimentation are hidden from space.

  7. H2 cycling and microbial bioenergetics in anoxic sediments

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The simple biochemistry of H2 is central to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. In anoxic sediments, the great majority of microbial redox processes involve H2 as a reactant, product, or potential by-product, and the thermodynamics of these processes are thus highly sensitive to fluctuations in environmental H2 concentrations. In turn, H2 concentrations are controlled by the activity of H2-consuming microorganisms, which efficiently utilize this substrate down to levels which correspond to their bioenergetic limitations. Consequently, any environmental change which impacts the thermodynamics of H2-consuming organisms is mirrored by a corresponding change in H2 concentrations. This phenomenon is illustrated in anoxic sediments from Cape Lookout Bight, NC, USA: H2 concentrations are controlled by a suite of environmental parameters (e.g., temperature, sulfate concentrations) in a fashion which can be quantitatively described by a simple thermodynamic model. These findings allow us to calculate the apparent minimum quantity of biologically useful energy in situ. We find that sulfate reducing bacteria are not active at energy yields below -18 kJ per mole sulfate, while methanogenic archaea exhibit a minimum close to -10 kJ per mole methane.

  8. Sea-level responses to sediment transport over the last ice age cycle

    NASA Astrophysics Data System (ADS)

    Ferrier, K.; Mitrovica, J. X.

    2013-12-01

    Sea-level changes over the last ice age cycle were instrumental in steering Earth's topographic evolution. These sea-level variations were driven by changes in surface mass loads, including not only ice and ocean mass variations but also the transfer of rock from eroding mountains to sedimentary deposits. Here we use an extended numerical model of ice age sea level (Dalca et al., 2013) to explore how sediment erosion and deposition affected global sea-level variations over the last ice age cycle. The model takes histories of ice and sediment loads as inputs, and it computes gravitationally self-consistent sea level responses by accounting for the deformational, gravitational, and rotational perturbations in the Earth's viscoelastic form. In these model simulations, we use published estimates of erosion rates, sedimentation rates, and ice sheet variations to constrain sediment and ice loading since the Last Interglacial. We explore sea-level responses to several erosional and depositional scenarios, and in each we quantify the relative contributions of crustal deformation and gravitational perturbation to the computed sea-level change. We also present a case study to illustrate the effects that sediment transfer can have on sea level at the regional scale. In particular, we focus on the region surrounding the Indus River, where fluvial sediment fluxes are among the highest on Earth. Preliminary model results suggest that sediment fluxes from Asia to the ocean are large enough to produce a significant response in sea level along the northeastern coast of the Arabian Sea. Moreover, they suggest that modeled sea-level histories are sensitive to the timing and spatial distribution of sediment erosion and deposition. For instance, sediment deposition along the continental shelf - which may have been the primary site of Indus River sediment deposition during the Holocene - produces a different sea-level response than sediment deposition on the deep-sea Indus Fan, where

  9. Temperature and the sulfur cycle control monomethylmercury cycling in high Arctic coastal marine sediments from Allen Bay, Nunavut, Canada.

    PubMed

    St Pierre, K A; Chétélat, J; Yumvihoze, E; Poulain, A J

    2014-01-01

    Monomethylmercury (MMHg) is a neurotoxin of concern in the Canadian Arctic due to its tendency to bioaccumulate and the importance of fish and wildlife in the Inuit diet. In lakes and wetlands, microbial sediment communities are integral to the cycling of MMHg; however, the role of Arctic marine sediments is poorly understood. With projected warming, the effect of temperature on the production and degradation of MMHg in Arctic environments also remains unclear. We examined MMHg dynamics across a temperature gradient (4, 12, 24 °C) in marine sediments collected in Allen Bay, Nunavut. Slurries were spiked with stable mercury isotopes and amended with specific microbial stimulants and inhibitors, and subsampled over 12 days. Maximal methylation and demethylation potentials were low, ranging from below detection to 1.13 pmol g(-1) h(-1) and 0.02 pmol g(-1) h(-1), respectively, suggesting that sediments are likely not an important source of MMHg to overlying water. Our results suggest that warming may result in an increase in Hg methylation - controlled by temperature-dependent sulfate reduction, without a compensatory increase in demethylation. This study highlights the need for further research into the role of high Arctic marine sediments and climate on the Arctic marine MMHg budget.

  10. Temperature and Cyanobacterial Bloom Biomass Influence Phosphorous Cycling in Eutrophic Lake Sediments

    PubMed Central

    Chen, Mo; Ye, Tian-Ran; Krumholz, Lee R.; Jiang, He-Long

    2014-01-01

    Cyanobacterial blooms frequently occur in freshwater lakes, subsequently, substantial amounts of decaying cyanobacterial bloom biomass (CBB) settles onto the lake sediments where anaerobic mineralization reactions prevail. Coupled Fe/S cycling processes can influence the mobilization of phosphorus (P) in sediments, with high releases often resulting in eutrophication. To better understand eutrophication in Lake Taihu (PRC), we investigated the effects of CBB and temperature on phosphorus cycling in lake sediments. Results indicated that added CBB not only enhanced sedimentary iron reduction, but also resulted in a change from net sulfur oxidation to sulfate reduction, which jointly resulted in a spike of soluble Fe(II) and the formation of FeS/FeS2. Phosphate release was also enhanced with CBB amendment along with increases in reduced sulfur. Further release of phosphate was associated with increases in incubation temperature. In addition, CBB amendment resulted in a shift in P from the Fe-adsorbed P and the relatively unreactive Residual-P pools to the more reactive Al-adsorbed P, Ca-bound P and organic-P pools. Phosphorus cycling rates increased on addition of CBB and were higher at elevated temperatures, resulting in increased phosphorus release from sediments. These findings suggest that settling of CBB into sediments will likely increase the extent of eutrophication in aquatic environments and these processes will be magnified at higher temperatures. PMID:24682039

  11. New chronology for the southern Kalahari Group sediments - implications for sediment-cycle dynamics and basin development

    NASA Astrophysics Data System (ADS)

    Matmon, Ari; Hidy, Alan; Vainer, Shlomy; Crouvi, Onn; Fink, David; Erel, Yigal; Aster Team; Horwitz, Liora; Chazan, Michael

    2016-04-01

    Kalahari Group sediments accumulated in the Kalahari basin, which started forming during the breakup of Gondwana in the early Cretaceous. These sediments cover an extensive part of southern Africa and form a low-relief landscape. Current models assume that the Kalahari Group accumulated throughout the entire Cenozoic. However, chronology has been restricted to early-middle Cenozoic biostratigraphic correlations and to OSL dating of only the past ~300 ka. We present a new chronological framework that reveals a dynamic nature of sedimentation in the southern Kalahari. Cosmogenic burial ages obtained from a 55 m section of Kalahari Group sediments from the Mamatwan Mine, southern Kalahari, indicate that the majority of deposition at this location occurred rapidly at 1-1.2 Ma. This Pleistocene sequence overlies the Archaean basement, forming a significant hiatus that permits the possibility of many Phanerozoic cycles of deposition and erosion no longer preserved in the sedimentary record. Our data also establish the existence of a shallow early-middle Pleistocene water body that persisted for >450 ka prior to this rapid period of deposition and suggesting an Okavango-like environment. Evidence from neighboring archaeological excavations in southern Africa suggests an association of high-density hominin occupation with this water body.

  12. Mixing and cycling of uranium, thorium and 210Pb in Puget Sound sediments

    NASA Astrophysics Data System (ADS)

    Carpenter, R.; Peterson, M. L.; Bennett, J. T.; Somayajulu, B. L. K.

    1984-10-01

    Activity profiles of excess 234Th, excess 210Pb, 232Th, 230Th, 234U and 238U, and 228/232Th ratios determined in eight box cores of sediment from six sites in central Puget Sound provide new insights into the dynamic nature of solid phase mixing in surface sediments, the exchange of 228Ra and other soluble species across the sediment-water interface, and the cycling of U, Th and 210Pb in this coastal zone. Comparison of excess 234Th inventories in sediments with its production rate in the overlying water column indicates a mean residence time of at most 14 days for particles in the central Puget Sound water column. Surface sediment horizons with excess 234Th have no excess 228Th which might be used to ascertain sediment accumulation rates over the past decade. Instead, deficiencies of 228Th due to loss of soluble 228Ra from pore water to the overlying water persist to 20-30 cm, revealing that exchange of soluble chemicals between pore and overlying waters reaches these depths in the extensively bioturbated sediments of Puget Sound. Solid phase U isotope concentrations tend to increase by up to a factor of two with depth in sediments, as a result of dissolved U being biologically pumped down into sediments where it is partially removed when conditions become mildly reducing. 232Th and 230Th activities and 230/232Th ratios are constant with depth in sediments, indicating constant detrital phase compositions and essentially no authigenic 230Th. Steady state 210Pb depositional activities in and fluxes to Puget Sound sediments average only about onehalf those for sediments of the open Washington coast north of the Columbia River mouth, primarily because of a much lower supply of dissolved 210Pb in sea waters adverting into Puget Sound. Excess 234Th profiles in sediments reveal much more detail about the depth dependency, dynamic nature and recent history of solid phase mixing processes than excess 210Pb profiles. At least six of eight 234Th profiles show that mixing

  13. The 18.6 yr nodal cycle and its impact on tidal sedimentation

    NASA Astrophysics Data System (ADS)

    Oost, A. P.; de Haas, H.; Ijnsen, F.; van den Boogert, J. M.; de Boer, P. L.

    1993-09-01

    The 18.6 yr nodal cycle modulates tidal amplitudes and currents, and consequently sedimentation in tide-influenced sedimentary environments. Data are presented which show that such effects are obvious along the coast of the Dutch barrier islands and in the sedimentary fill of abandoned channels.

  14. MODELING NITROGEN-CARBON CYCLING AND OXYGEN CONSUMPTION IN BOTTOM SEDIMENTS

    EPA Science Inventory

    A model framework is presented for simulating nitrogen and carbon cycling at the sediment–water interface, and predicting oxygen consumption by oxidation reactions inside the sediments. Based on conservation of mass and invoking simplifying assumptions, a coupled system of diffus...

  15. High frequency power distribution system

    NASA Technical Reports Server (NTRS)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  16. Manganese redox cycling in Lake Imandra: impact on nitrogen and the trace metal sediment record

    NASA Astrophysics Data System (ADS)

    Ingri, J.; Pekka, L.; Dauvalter, V.; Rodushkin, I.; Peinerud, E.

    2011-01-01

    Sediment and water samples from the mine-polluted Yokostrovskaya basin in Lake Imandra have been analysed. Three major processes have influenced the accumulation and distribution of metals in the sediment: (1) Development of the apatite-nepheline and the sulfide ore mining industries. (2) Secondary formation of sulphides in the upper sediment column. (3) Redox cycling of Mn in the surface sediment and in the bottom water. This study demonstrate the dominant role of the Mn redox cycling in controlling distribution of several major and trace elements, especially during the winter stratification period. Mn oxides act as a major scavenger and carrier for the non-detrital fraction of Al, Ca, K, Mg, P, Ba, Co, Cu, Ni, Mo and Zn in the bottom water. Aluminium, Ca, K, Mg, P, Cu, Ni and Zn are mainly sorbed at the surface of the particulate Mn phase, while Ba and Mo form a phase (or inner sphere complex) with Mn. Co is associated with the Mn-rich phase, probably by oxidation of Co(II) to a trivalent state by the particulate Mn surface. Formation and dissolution of Mn particles most likely also control anoxic ammonium oxidation to nitrate and reduction of nitrate to N2. It is shown that secondary sulphides in Lake Imandra sediments are fed with trace metals primarily scavenged from the dissolved phase in the water column. This enrichment process, driven by the Mn-redox cycle, therefore changes the sediment record by the transfer of a dissolved pollution signal to the particulate sediment record, thus making it more complicated to trace direct influence of particles from different pollution sources.

  17. Hydraulic and sediment transport properties of autogenic avulsion cycles on submarine fans with supercritical distributaries

    NASA Astrophysics Data System (ADS)

    Hamilton, Paul B.; Strom, Kyle B.; Hoyal, David C. J. D.

    2015-07-01

    Submarine fans, like other distributive systems, are built by repeated avulsion cycles. However, relative to deltas and alluvial fans, much less is known about avulsions in subaqueous settings. In this study, we ran a set of subaqueous fan experiments to investigate the mechanics associated with autogenic avulsion cycles of self-formed channels and lobe deposits on steep slopes. The experiments used saline density currents with crushed plastic to emulate sustained turbidity currents and bed load transport. We collected detailed hydraulic and bathymetric measurements and made use of a 1-D laterally expanding density current model to better understand different aspects of the avulsion cycle. Our results reveal three major components of the avulsion cycles: (1) distributary channel incision, extension, and stagnation; (2) mouth bar aggradation and hydraulic jump initiation; and (3) hydraulic jump sedimentation and upstream retreat. Interestingly, in all but one experiment, the avulsion cycles led to fans that remained perched above the basin slope break. Experimental data and hydraulic theory were used to unravel actual mechanics associated with cycles. We found that channels stopped extending into the basin due to a decay in sediment transport capacity relative to sediment supply and that the reduction in capacity was primarily an outcome of expansion-driven velocity reduction; dilution played a secondary role. Once channel extension ceased, mouth bar deposits aggraded to a thickness approximately equal to the critical step height needed to create a choked flow condition. The choke then initiated a hydraulic jump on the upstream side of the bar. Once formed, the jump detained a majority of the incoming sediment and forced the channel-to-lobe transition upstream, filling the channel with steep backset bedding and capping the entire channel with a mounded lobate deposit. These intrinsic processes repeated through multiple avulsion cycles to build the fan.

  18. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment.

    PubMed

    Baldwin, Darren S; Mitchell, Alison

    2012-03-15

    The impact of sulfate pollution is increasingly being seen as an issue in the management of inland aquatic ecosystems. In this study we use sediment slurry experiments to explore the addition of sulfate, with or without added carbon, on the anaerobic biogeochemical cycles in a wetland sediment that previously had not been exposed to high levels of sulfate. Specifically we looked at the cycling of S (sulfate, dissolved and particulate sulfide--the latter measured as acid volatile sulfide; AVS), C (carbon dioxide, bicarbonate, methane and the short chain volatile fatty acids formate, acetate, butyrate and propionate), N (dinitrogen, ammonium, nitrate and nitrite) and redox active metals (Fe(II) and Mn(II)). Sulfate had the largest effects on the cycling of S and C. All the added S at lower loadings were converted to AVS over the course of the experiment (30 days). At the highest loading (8 mmol) less than 50% of consumed S was converted to AVS, however this is believed to be a kinetic effect. Although sulfate reduction was occurring in sediments with added sulfate, dissolved sulfide concentrations remained low throughout the study. Sulfate addition affected methanogenesis. In the absence of added carbon, addition of sulfate, even at a loading of 1 mmol, resulted in a halving of methane formation. The initial rate of formation of methane was not affected by sulfate if additional carbon was added to the sediment. However, there was evidence for anaerobic methane oxidation in those sediments with added sulfate and carbon, but not in those sediments treated only with carbon. Surprisingly, sulfate addition had little apparent impact on N dynamics; previous studies have shown that sulfide can inhibit denitrification and stimulate dissimilatory nitrate reduction to ammonia. We propose that because most of the reduced sulfur was in particulate form, levels of dissolved sulfide were too low to interfere with the N cycle.

  19. Short-term cycle of eolian dust (Kosa) recorded in Lake Kawaguchi sediments, central Japan

    NASA Astrophysics Data System (ADS)

    Kyotani, Tomohiro; Koshimizu, Satoshi; Kobayashi, Hiroshi

    The fluctuation during the last 100 yr of the eolian dust (Kosa aerosol) originating from arid and semi-arid areas of China has been reconstructed by using the sediments from Lake Kawaguchi, central Japan with high temporal resolution. The quantification of Kosa contribution to the sediments was carried out by a new method using scanning electron microscopy-energy dispersive X-ray microanalysis (SEM-EDX) proposed by us. The correlation plot of (Na 2O+K 2O) contents against SiO 2 was used for individual Si-rich particles having SiO 2 content over 80%. The Kosa fraction of Si-rich particles in Lake Kawaguchi sediments during the last 100 yr is approximately 10-30%. The fluctuation of the Kosa fraction during the last 100 yr does not coincide with that of the total amount of Si-rich particles, because detrital components from Japanese igneous rocks control the fluctuation of the total number of Si-rich particles. The discrimination method based on single particle analysis is more effective than that of bulk analysis for the lake sediments formed by complex matrix components. We can first show a short-term (approximately 10-20 yr scale) cycle in Kosa aerosol fluctuation. Higher sedimentation rates (5-10 yr-cm) of the Lake Kawaguchi sediments and the new analytical method using SEM-EDX revealed a remarkable fluctuation pattern of Kosa aerosol, suggesting climate cycles much shorter than glacial-interglacial. Such short-term cycles may be related to sun-spots. The number of days of Kosa events during the last 30 yr, obtained by visual observation by Meteorological Agency of Japan, also supports the presence of such a short-term cycle.

  20. Short-chain alkane cycling in deep Gulf of Mexico cold-seep sediments

    NASA Astrophysics Data System (ADS)

    Sibert, R.; Joye, S. B.; Hunter, K.

    2015-12-01

    Mixtures of light hydrocarbon gases are common in deep Gulf of Mexico cold-seep sediments, and are typically dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is usually methane (>80% C1), but ethane (C2) and propane (C3) are nearly always present in trace amounts (<1% total). The processes that control the concentration and isotopic signature of these gases in sediments are well explained for methane, but the controls for C2/C3 cycling are still a relative mystery. Methane production proceeds in deep anoxic sediments by either 1) thermocatalytic cracking of fossil organic matter, or 2) as a direct product of microbial metabolism, i.e. methanogenesis. In surface sediments, it appears that both microbial consumption and chemical deposition of methane (i.e. as methane clathrate) ensures that >95% of the methane produced at depth never reaches the water column. Production of C1 and C2 in deep-sea sediments has been historically attributed only to thermocatalytic processes, though limited data suggests production of C2/C3 compounds through the activity of archaea at depth. Furthermore, carbon isotopic data on ethane and propane from deep cores of Gulf of Mexico sediments suggest alkanogenesis at >3 m depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Additional studies have also isolated microorganisms capable of oxidizing ethane and propane in the laboratory, but field studies of microbial-driven dynamics of C2/C3 gases in cold-seep sediments are rare. Here, we present the results of a series of incubation experiments using sediment slurries culled from surface sediments from one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of alkane oxidation were measured under a variety of conditions to assess the surface-driven microbial controls on C2/C3 cycling in cold-seep environments. Such microbial processes

  1. Organic Matter Remineralization Predominates Phosphorus Cycling in the Mid-Bay Sediments in the Chesapeake Bay

    SciTech Connect

    Sunendra, Joshi R.; Kukkadapu, Ravi K.; Burdige, David J.; Bowden, Mark E.; Sparks, Donald L.; Jaisi, Deb P.

    2015-05-19

    The Chesapeake Bay, the largest and most productive estuary in the US, suffers from varying degrees of water quality issues fueled by both point and non–point source nutrient sources. Restoration of the bay is complicated by the multitude of nutrient sources, their variable inputs and hydrological conditions, and complex interacting factors including climate forcing. These complexities not only restrict formulation of effective restoration plans but also open up debates on accountability issues with nutrient loading. A detailed understanding of sediment phosphorus (P) dynamics enables one to identify the exchange of dissolved constituents across the sediment- water interface and aid to better constrain mechanisms and processes controlling the coupling between the sediments and the overlying waters. Here we used phosphate oxygen isotope ratios (δ18Op) in concert with sediment chemistry, XRD, and Mössbauer spectroscopy on the sediment retrieved from an organic rich, sulfidic site in the meso-haline portion of the mid-bay to identify sources and pathway of sedimentary P cycling and to infer potential feedback effect on bottom water hypoxia and surface water eutrophication. Isotope data indicate that the regeneration of inorganic P from organic matter degradation (remineralization) is the predominant, if not sole, pathway for authigenic P precipitation in the mid-bay sediments. We interpret that the excess inorganic P generated by remineralization should have overwhelmed any bottom-water and/or pore-water P derived from other sources or biogeochemical processes and exceeded saturation with respect to authigenic P precipitation. It is the first research that identifies the predominance of remineralization pathway against remobilization (coupled Fe-P cycling) pathway in the Chesapeake Bay. Therefore, these results are expected to have significant implications for the current understanding of P cycling and benthic-pelagic coupling in the bay, particularly on the

  2. High Frequency Linacs for Hadrontherapy

    NASA Astrophysics Data System (ADS)

    Amaldi, Ugo; Braccini, Saverio; Puggioni, Paolo

    The use of radiofrequency linacs for hadrontherapy was proposed about 20 years ago, but only recently has it been understood that the high repetition rate together with the possibility of very rapid energy variations offers an optimal solution to the present challenge of hadrontherapy: "paint" a moving tumor target in three dimensions with a pencil beam. Moreover, the fact that the energy, and thus the particle range, can be electronically adjusted implies that no absorber-based energy selection system is needed, which, in the case of cyclotron-based centers, is the cause of material activation. On the other side, a linac consumes less power than a synchrotron. The first part of this article describes the main advantages of high frequency linacs in hadrontherapy, the early design studies, and the construction and test of the first high-gradient prototype which accelerated protons. The second part illustrates some technical issues relevant to the design of copper standing wave accelerators, the present developments, and two designs of linac-based proton and carbon ion facilities. Superconductive linacs are not discussed, since nanoampere currents are sufficient for therapy. In the last two sections, a comparison with circular accelerators and an overview of future projects are presented.

  3. High frequency-heated air turbojet

    NASA Technical Reports Server (NTRS)

    Miron, J. H. D.

    1986-01-01

    A description is given of a method to heat air coming from a turbojet compressor to a temperature necessary to produce required expansion without requiring fuel. This is done by high frequency heating, which heats the walls corresponding to the combustion chamber in existing jets, by mounting high frequency coils in them. The current transformer and high frequency generator to be used are discussed.

  4. LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model

    NASA Astrophysics Data System (ADS)

    Zeebe, R. E.

    2011-06-01

    The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, pCO2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to loscar.model@gmail.com.

  5. Sulfur-Oxidizing Bacteria Mediate Microbial Community Succession and Element Cycling in Launched Marine Sediment.

    PubMed

    Ihara, Hideyuki; Hori, Tomoyuki; Aoyagi, Tomo; Takasaki, Mitsuru; Katayama, Yoko

    2017-01-01

    A large amount of marine sediment was launched on land by the Great East Japan earthquake. Here, we employed both on-site and laboratory studies on the launched marine sediment to investigate the succession of microbial communities and its effects on geochemical properties of the sediment. Twenty-two-month on-site survey showed that microbial communities at the uppermost layer (0-2 mm depth) of the sediment changed significantly with time, whereas those at the deeper layer (20-40 mm depth) remained nearly unchanged and kept anaerobic microbial communities. Nine months after the incidence, various sulfur-oxidizing bacteria (SOB) prevailed in the uppermost layer, in which afterwards diverse chemoorganotrophic bacteria predominated. Geochemical analyses indicated that the concentration of metals other than Fe was lower in the uppermost layer than that in the deeper layer. Laboratory study was carried out by incubating the sediment for 57 days, and clearly indicated the dynamic transition of microbial communities in the uppermost layer exposed to atmosphere. SOB affiliated in the class Epsilonproteobacteria rapidly proliferated and dominated at the uppermost layer during the first 3 days, after that Fe(II)-oxidizing bacteria and chemoorganotrophic bacteria were sequentially dominant. Furthermore, the concentration of sulfate ion increased and the pH decreased. Consequently, SOB may have influenced the mobilization of heavy metals in the sediment by metal-bound sulfide oxidation and/or sediment acidification. These results demonstrate that SOB initiated the dynamic shift from the anaerobic to aerobic microbial communities, thereby playing a critical role in element cycling in the marine sediment.

  6. Sulfur-Oxidizing Bacteria Mediate Microbial Community Succession and Element Cycling in Launched Marine Sediment

    PubMed Central

    Ihara, Hideyuki; Hori, Tomoyuki; Aoyagi, Tomo; Takasaki, Mitsuru; Katayama, Yoko

    2017-01-01

    A large amount of marine sediment was launched on land by the Great East Japan earthquake. Here, we employed both on-site and laboratory studies on the launched marine sediment to investigate the succession of microbial communities and its effects on geochemical properties of the sediment. Twenty-two-month on-site survey showed that microbial communities at the uppermost layer (0–2 mm depth) of the sediment changed significantly with time, whereas those at the deeper layer (20–40 mm depth) remained nearly unchanged and kept anaerobic microbial communities. Nine months after the incidence, various sulfur-oxidizing bacteria (SOB) prevailed in the uppermost layer, in which afterwards diverse chemoorganotrophic bacteria predominated. Geochemical analyses indicated that the concentration of metals other than Fe was lower in the uppermost layer than that in the deeper layer. Laboratory study was carried out by incubating the sediment for 57 days, and clearly indicated the dynamic transition of microbial communities in the uppermost layer exposed to atmosphere. SOB affiliated in the class Epsilonproteobacteria rapidly proliferated and dominated at the uppermost layer during the first 3 days, after that Fe(II)-oxidizing bacteria and chemoorganotrophic bacteria were sequentially dominant. Furthermore, the concentration of sulfate ion increased and the pH decreased. Consequently, SOB may have influenced the mobilization of heavy metals in the sediment by metal-bound sulfide oxidation and/or sediment acidification. These results demonstrate that SOB initiated the dynamic shift from the anaerobic to aerobic microbial communities, thereby playing a critical role in element cycling in the marine sediment. PMID:28217124

  7. Modeling studies of dissolved organic matter cycling in Santa Barbara Basin (CA, USA) sediments

    NASA Astrophysics Data System (ADS)

    Burdige, David J.; Komada, Tomoko; Magen, Cédric; Chanton, Jeffrey P.

    2016-12-01

    Here we describe new reaction-transport models for the cycling of dissolved organic matter (DOM, both dissolved organic carbon [DOC] and dissolved organic nitrogen [DON]) in anoxic marine sediments, and apply these models to data from Santa Barbara Basin sediment cores (maximum depth of 4.6 m). Model results show that most organic carbon (and nitrogen) flow in the sediments occurs through reactive DOM intermediates that turn over rapidly to produce inorganic remineralization end-products. Refractory DOM is also produced, and the vast majority of this refractory DOM is not remineralized and either escapes as a benthic flux across the sediment-water interface or is buried. Except near the sediment surface, refractory DOM represents >95% of the total pore water DOM. Pore water DOM appears to be consistently depleted in nitrogen as compared to its source organic matter, which may be the result of differential production of carbon- versus nitrogen-containing refractory DOM during remineralization. Refractory DOC (DOCr) in Santa Barbara Basin sediment pore waters is largely produced from degradation of sediment particulate organic carbon (POC). In addition, there is an upward basal flux of DOCr that is strongly depleted in 14C (-810‰). The Δ14C value of DOCr varies according to its source, ranging from +60‰ (a component of surface sediment POC enriched with radiocarbon from nuclear weapons testing in the 1960's) to -810‰ (the basal DOC flux). Each contributes to the DOCr benthic flux, which has a weighted-average Δ14C value of -40‰. The model-determined DOCr benthic flux is roughly half of the total DOC benthic flux, consistent with observations in the literature that sediments are a source of both labile and refractory DOC to bottom waters. These results support previous arguments that sediment benthic fluxes represent an important source of refractory DOC to the oceans. The benthic flux of refractory DOC from these sediments may also contribute pre-aged DOC

  8. Microbial Fe(III) oxide reduction and Fe cycling in iron-rich freshwater wetland sediments

    SciTech Connect

    Roden, E.E.

    1995-12-31

    The dynamics of Fe cycling and the interaction between microbial Fe(III) oxide reduction and other anaerobic microbial respiratory processes were examined in Fe-rich, sulfate-poor freshwater wetland sediments. Sediment incubation experiments demonstrated that reduction of Fe(III) oxides (amorphous, soluble in dilute HCl) dominated anaerobic carbon mineralization at Fe(III) concentrations in excess of 10 mmol per liter wet sediment. The kinetics of Fe(III) reduction were found to be first-order with respect to the concentration of Fe(III) oxide, although estimated first-order rate constants varied in relation to the absolute rates of Fe(III) reduction, suggesting a co-dependency on the concentration of easily degradable organic carbon. High concentrations of amorphous Fe(III) oxides (10-100 mmol L wet sed {sup -1}) were found in surface sediments (0-3 cm) of unvegetated zones of the wetland and in the rhizosphere (0-10 cm) of emergent aquatic plants, sufficient (based on sediment incubation experiments) to allow Fe(III)-reducing bacteria (FeRB) to dominate anaerobic carbon mineralization. A rapid redox cycling of Fe is apparent in these localized zones based on observed rates of Fe(III) reduction and the abundance/depth distribution of Fe(Ill) oxides. Preliminary culture enrichment studies indicate that FeRB present in these sediments are capable of metabolizing a range of both natural and contaminant aromatic hydrocarbons, which suggests a potential for utilization of natural and/or artificial Fe-rich wetland systems for organic contaminant bioremediation.

  9. Use of life cycle assessments to evaluate the environmental footprint of contaminated sediment remediation.

    PubMed

    Sparrevik, Magnus; Saloranta, Tuomo; Cornelissen, Gerard; Eek, Espen; Fet, Annik Magerholm; Breedveld, Gijs D; Linkov, Igor

    2011-05-15

    Ecological and human risks often drive the selection of remedial alternatives for contaminated sediments. Traditional human and ecological risk assessment (HERA) includes assessing risk for benthic organisms and aquatic fauna associated with exposure to contaminated sediments before and after remediation as well as risk for human exposure but does not consider the environmental footprint associated with implementing remedial alternatives. Assessment of environmental effects over the whole life cycle (i.e., Life Cycle Assessment, LCA) could complement HERA and help in selecting the most appropriate sediment management alternative. Even though LCA has been developed and applied in multiple environmental management cases, applications to contaminated sediments and marine ecosystems are in general less frequent. This paper implements LCA methodology for the case of the polychlorinated dibenzo-p-dioxins and -furans (PCDD/F)-contaminated Grenland fjord in Norway. LCA was applied to investigate the environmental footprint of different active and passive thin-layer capping alternatives as compared to natural recovery. The results showed that capping was preferable to natural recovery when analysis is limited to effects related to the site contamination. Incorporation of impacts related to the use of resources and energy during the implementation of a thin layer cap increase the environmental footprint by over 1 order of magnitude, making capping inferior to the natural recovery alternative. Use of biomass-derived activated carbon, where carbon dioxide is sequestered during the production process, reduces the overall environmental impact to that of natural recovery. The results from this study show that LCA may be a valuable tool for assessing the environmental footprint of sediment remediation projects and for sustainable sediment management.

  10. High Frequency Chandler Wobble Excitation

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Stuck, J.; Thomas, M.

    2003-04-01

    and OMCT forcing fields give no hint for increased excitation power in the Chandler band. Thus it is assumed, that continuous high frequency excitation due to stochastic weather phenomena is responsible for the perpetuation of the Chandler wobble.

  11. Spatial distribution of N-cycling microbial communities showed complex patterns in constructed wetland sediments.

    PubMed

    Correa-Galeote, David; Marco, Diana E; Tortosa, Germán; Bru, David; Philippot, Laurent; Bedmar, Eulogio J

    2013-02-01

    Constructed wetlands are used for biological treatment of wastewater from agricultural lands carrying pollutants such as nitrates. Nitrogen removal in wetlands occurs from direct assimilation by plants and through microbial nitrification and denitrification. We investigated the spatial distribution of N-cycling microbial communities and genes involved in nitrification and denitrification in constructed wetland sediments receiving irrigation water. We used quantitative real-time PCR (qPCR) to characterize microbial communities. Geostatistical variance analysis was used to relate them with vegetation cover and biogeochemical sediment properties. The spatial distribution of the N-cycling microbial communities of sediments was heterogeneous and complex. Total communities of bacteria and crenarchaea showed different spatial distributions. Analysis of autocorrelation patterns through semivariance indicated a tendency towards a patchy distribution over scales around 10 m for genes involved in the nitrification and denitrification processes. In contrast, biogeochemical sediment properties showed diverse spatial distributions. While almost no patchiness was found for pH and moisture, patchiness at scales between 8 and 10 m was detected for carbon, nitrate and ammonia. Denitrification variables showed spatial autocorrelation at scales comparable to genes. However, denitrifying enzyme activity and potential N(2)O production showed a common spatial pattern, different from that of the N(2)O/(N(2)O + N(2)).

  12. Effects of temperature and organic pollution on nutrient cycling in marine sediments

    NASA Astrophysics Data System (ADS)

    Sanz-Lazaro, C.; Valdemarsen, T.; Holmer, M.

    2015-08-01

    Increasing ocean temperature due to climate change is an important anthropogenic driver of ecological change in coastal systems. In these systems sediments play a major role in nutrient cycling. Our ability to predict ecological consequences of climate change is enhanced by simulating real scenarios. Based on predicted climate change scenarios, we tested the effect of temperature and organic pollution on nutrient release from coastal sediments to the water column in a mesocosm experiment. PO43- release rates from sediments followed the same trends as organic matter mineralization rates, increased linearly with temperature and were significantly higher under organic pollution than under nonpolluted conditions. NH4+ release only increased significantly when the temperature rise was above 6 °C, and it was significantly higher in organic polluted compared to nonpolluted sediments. Nutrient release to the water column was only a fraction from the mineralized organic matter, suggesting PO43- retention and NH4+ oxidation in the sediment. Bioturbation and bioirrigation appeared to be key processes responsible for this behavior. Considering that the primary production of most marine basins is N-limited, the excess release of NH4+ at a temperature rise > 6 °C could enhance water column primary productivity, which may lead to the deterioration of the environmental quality. Climate change effects are expected to be accelerated in areas affected by organic pollution.

  13. [Sulfate reduction and microbial processes of the methane cycle in the sediments of the Sevastopol bay].

    PubMed

    Pimenov, N V; Egorov, V N; Kanapatskiĭ, T A; Malakhova, T V; Artemov, Iu G; Sigalevich, P A; Malakhova, L V

    2013-01-01

    The rates of microbial processes of sulfate reduction and of the methane cycle were measured in the bottom sediments of the Sevastopol basin, where seeps of gaseous methane have been previously found. Typically for marine environments, sulfate reduction played the major role in the terminal phase of decomposition of organic matter (OM) in reduced sediments of this area. The rate of this process depended on the amount of available OM. The rate of methanogenesis in the sediments increased with depth, peaking in the subsurface horizons, where decreased sulfate concentration was detected in the pore water. The highest rates of sulfate-dependent anaerobic methane oxidation were found close to the methane-sulfate transition zone as is typical of most investigated marine sediments. The data on the carbon isotopic composition of gaseous methane from the seeps and dissolved CH4 from the bottom sediments, as well as on the rates of microbial methanogenesis and methane oxidation indicate that the activity of the methane seeps results from accumulation of biogenic methane in the cavities of the underlying geological structures with subsequent periodic release of methane bubbles into the water column.

  14. The Link between Microbial Diversity and Nitrogen Cycling in Marine Sediments Is Modulated by Macrofaunal Bioturbation

    PubMed Central

    Yazdani Foshtomi, Maryam; Braeckman, Ulrike; Derycke, Sofie; Sapp, Melanie; Van Gansbeke, Dirk; Sabbe, Koen; Willems, Anne; Vincx, Magda; Vanaverbeke, Jan

    2015-01-01

    Objectives The marine benthic nitrogen cycle is affected by both the presence and activity of macrofauna and the diversity of N-cycling microbes. However, integrated research simultaneously investigating macrofauna, microbes and N-cycling is lacking. We investigated spatio-temporal patterns in microbial community composition and diversity, macrofaunal abundance and their sediment reworking activity, and N-cycling in seven subtidal stations in the Southern North Sea. Spatio-Temporal Patterns of the Microbial Communities Our results indicated that bacteria (total and β-AOB) showed more spatio-temporal variation than archaea (total and AOA) as sedimentation of organic matter and the subsequent changes in the environment had a stronger impact on their community composition and diversity indices in our study area. However, spatio-temporal patterns of total bacterial and β-AOB communities were different and related to the availability of ammonium for the autotrophic β-AOB. Highest bacterial richness and diversity were observed in June at the timing of the phytoplankton bloom deposition, while richness of β-AOB as well as AOA peaked in September. Total archaeal community showed no temporal variation in diversity indices. Macrofauna, Microbes and the Benthic N-Cycle Distance based linear models revealed that, independent from the effect of grain size and the quality and quantity of sediment organic matter, nitrification and N-mineralization were affected by respectively the diversity of metabolically active β-AOB and AOA, and the total bacteria, near the sediment-water interface. Separate models demonstrated a significant and independent effect of macrofaunal activities on community composition and richness of total bacteria, and diversity indices of metabolically active AOA. Diversity of β-AOB was significantly affected by macrofaunal abundance. Our results support the link between microbial biodiversity and ecosystem functioning in marine sediments, and provided

  15. Lightweight, high-frequency transformers

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.

    1983-01-01

    The 25-kVA space transformer was developed under contract by Thermal Technology Laboratory, Buffalo, N. Y. The NASA Lewis transformer technology program attempted to develop the baseline technology. For the 25-kVA transformer the input voltage was chosen as 200 V, the output voltage as 1500 V, the input voltage waveform as square wave, the duty cycle as continuous, the frequency range (within certain constraints) as 10 to 40 kHz, the operating temperatures as 85 deg. and 130 C, the baseplate temperature as 50 C, the equivalent leakage inductance as less than 10 micro-h, the operating environment as space, and the life expectancy as 10 years. Such a transformer can also be used for aircraft, ship and terrestrial applications.

  16. Microbial populations involved in cycling of dimethyl sulfide and methanethiol in freshwater sediments.

    PubMed

    Lomans, B P; Luderer, R; Steenbakkers, P; Pol, A; van Der Drift, C; Vogels, G D; Op den Camp, H J

    2001-03-01

    Although several microorganisms that produce and degrade methanethiol (MT) and dimethyl sulfide (DMS) have been isolated from various habitats, little is known about the numbers of these microorganisms in situ. This study reports on the identification and quantification of microorganisms involved in the cycling of MT and DMS in freshwater sediments. Sediment incubation studies revealed that the formation of MT and DMS is well balanced with their degradation. MT formation depends on the concentrations of both sulfide and methyl group-donating compounds. A most-probable number (MPN) dilution series with syringate as the growth substrate showed that methylation of sulfide with methyl groups derived from syringate is a commonly occurring process in situ. MT appeared to be primarily degraded by obligately methylotrophic methanogens, which were found in the highest positive dilutions on DMS and mixed substrates (methanol, trimethylamine [TMA], and DMS). Amplified ribosomal DNA restriction analysis (ARDRA) and 16S rRNA gene sequence analysis of the total DNA isolated from the sediments and of the DNA isolated from the highest positive dilutions of the MPN series (mixed substrates) revealed that the methanogens that are responsible for the degradation of MT, DMS, methanol, and TMA in situ are all phylogenetically closely related to Methanomethylovorans hollandica. This was confirmed by sequence analysis of the product obtained from a nested PCR developed for the selective amplification of the 16S rRNA gene from M. hollandica. The data from sediment incubation experiments, MPN series, and molecular-genetics detection correlated well and provide convincing evidence for the suggested mechanisms for MT and DMS cycling and the common presence of the DMS-degrading methanogen M. hollandica in freshwater sediments.

  17. Impacts of bioturbation on temporal variation in bacterial and archaeal nitrogen-cycling gene abundance in coastal sediments

    PubMed Central

    Laverock, B; Tait, K; Gilbert, J A; Osborn, A M; Widdicombe, S

    2014-01-01

    In marine environments, macrofauna living in or on the sediment surface may alter the structure, diversity and function of benthic microbial communities. In particular, microbial nitrogen (N)-cycling processes may be enhanced by the activity of large bioturbating organisms. Here, we study the effect of the burrowing mud shrimp Upogebia deltaura upon temporal variation in the abundance of genes representing key N-cycling functional guilds. The abundance of bacterial genes representing different N-cycling guilds displayed different temporal patterns in burrow sediments in comparison with surface sediments, suggesting that the burrow provides a unique environment where bacterial gene abundances are influenced directly by macrofaunal activity. In contrast, the abundances of archaeal ammonia oxidizers varied temporally but were not affected by bioturbation, indicating differential responses between bacterial and archaeal ammonia oxidizers to environmental physicochemical controls. This study highlights the importance of bioturbation as a control over the temporal variation in nitrogen-cycling microbial community dynamics within coastal sediments. PMID:24596269

  18. Natural Organobromine in Marine Sediments: New Evidence of Biogeochemical Br Cycling

    SciTech Connect

    A Leri; J Hakala; M Marcus; A Lanzirotti; C Reddy; S Myneni

    2011-12-31

    Organobromine (Br{sub org}) compounds, commonly recognized as persistent, toxic anthropogenic pollutants, are also produced naturally in terrestrial and marine systems. Several enzymatic and abiotic bromination mechanisms have been identified, as well as an array of natural Br{sub org} molecules associated with various marine organisms. The fate of the carbon-bromine functionality in the marine environment, however, remains largely unexplored. Oceanographic studies have noted an association between bromine (Br) and organic carbon (C{sub org}) in marine sediments. Even so, there has been no direct chemical evidence that Br in the sediments exists in a stable form apart from inorganic bromide (Br{sub inorg}), which is widely presumed conservative in marine systems. To investigate the scope of natural Br{sub org} production and its fate in the environment, we probed Br distribution and speciation in estuarine and marine sediments using in situ X-ray spectroscopy and spectromicroscopy. We show that Br{sub org} is ubiquitous throughout diverse sedimentary environments, occurring in correlation with C{sub org} and metals such as Fe, Ca, and Zn. Analysis of sinking particulate carbon from the seawater column links the Br{sub org} observed in sediments to biologically produced Br{sub org} compounds that persist through humification of natural organic matter (NOM). Br speciation varies with sediment depth, revealing biogeochemical cycling of Br between organic and inorganic forms as part of the burial and degradation of NOM. These findings illuminate the chemistry behind the association of Br with Corg in marine sediments and cast doubt on the paradigmatic classification of Br as a conservative element in seawater systems.

  19. Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture.

    PubMed

    Asami, Hiroki; Aida, Masato; Watanabe, Kazuya

    2005-06-01

    Prokaryotes in marine sediments taken from two neighboring semi-enclosed bays (the Yamada and Kamaishi bays) at the Sanriku coast in Japan were investigated by the culture-independent molecular phylogenetic approach coupled with chemical and activity analyses. These two bays were chosen in terms of their similar hydrogeological and chemical characteristics but different usage modes; the Yamada bay has been used for intensive shellfish aquaculture, while the Kamaishi bay has a commercial port and is not used for aquaculture. Substantial differences were found in the phylogenetic composition of 16S rRNA gene clone libraries constructed for the Yamada and Kamaishi sediments. In the Yamada library, phylotypes affiliated with delta-Proteobacteria were the most abundant, and those affiliated with gamma-Proteobacteria were the second-most abundant. In contrast, the Kamaishi library was occupied by phylotypes affiliated with Planctomycetes, gamma-Proteobacteria, delta-Proteobacteria, and Crenarchaeota. In the gamma-Proteobacteria, many Yamada phylotypes were related to free-living and symbiotic sulfur oxidizers, whereas the Kamaishi phylotype was related to the genus Pseudomonas. These results allowed us to hypothesize that sulfate-reducing and sulfur-oxidizing bacteria have become abundant in the Yamada sediment. This hypothesis was supported by quantitative competitive PCR (qcPCR) with group-specific primers. The qcPCR also suggested that organisms closely related to Desulfotalea in the Desulfobulbaceae were the major sulfate-reducing bacteria in these sediments. In addition, potential sulfate reduction and sulfur oxidation rates in the sediment samples were determined, indicating that the sulfur cycle has become active in the Yamada sediment beneath the areas of intensive shellfish aquaculture.

  20. Iron Cycling in Marine Sediments - New Insights from Isotope Analysis on Sequentially Extracted Fe Fractions

    NASA Astrophysics Data System (ADS)

    Henkel, S.; Kasten, S.; Poulton, S.; Hartmann, J.; Staubwasser, M.

    2014-12-01

    Reactive Fe (oxyhydr)oxides preferentially undergo early diagenetic cycling and may cause a diffusive flux of dissolved Fe2+ from sediments towards the sediment-water interface. The partitioning of Fe in sediments has traditionally been studied by applying sequential extractions based on reductive dissolution of Fe minerals. We complemented the sequential leaching method by Poulton and Canfield [1] in order to be able to gain δ56Fe data for specific Fe fractions, as such data are potentially useful to study Fe cycling in marine environments. The specific mineral fractions are Fe-carbonates, ferrihydrite + lepidocrocite, goethite + hematite, and magnetite. Leaching was performed with acetic acid, hydroxylamine-HCl, Na-dithionite and oxalic acid. The processing of leachates for δ56Fe analysis involved boiling the samples in HCl/HNO3/H2O2, Fe precipitation and anion exchange column chromatography. The new method was applied to short sediment cores from the North Sea and a bay of King George Island (South Shetland Islands, Antarctica). Downcore mineral-specific variations in δ56Fe revealed differing contributions of Fe (oxyhydr)oxides to redox cycling. A slight decrease in easily reducible Fe oxides correlating with a slight increase in δ56Fe for this fraction with depth, which is in line with progessive dissimilatory iron reduction [2,3], is visible in the top 10 cm of the North Sea core, but not in the antarctic sediments. Less reactive (dithionite and oxalate leachable) fractions did not reveal isotopic trends. The acetic acid-soluble fraction displayed pronounced δ56Fe trends at both sites that cannot be explained by acid volatile sulfides that are also extracted by acetic acid [1]. We suggest that low δ56Fe values in this fraction relative to the pool of easily reducible Fe oxides result from adsorbed Fe(II) that was open to isotopic exchange with oxide surfaces, affirming the experimental results of Crosby el al. [2]. Hence, δ56Fe analyses on marine

  1. Effects of drain-fill cycling on chlorpyrifos mineralization in wetland sediment-water microcosms.

    PubMed

    Gebremariam, Seyoum Yami; Beutel, Marc W

    2010-03-01

    Constructed treatment wetlands are efficient at retaining a range of pesticides, however the ultimate fate of many of these compound is not well understood. This study evaluated the effect of drain-fill cycling on the mineralization of chlorpyrifos, a commonly used organophosphate insecticide, in wetland sediment-water microcosms. Monitoring of the fate of (14)C ring-labeled chlorpyrifos showed that drain-fill cycling resulted in significantly lower mineralization rates relative to permanently flooded conditions. The reduction in mineralization was linked to enhanced partitioning of the pesticide to the sediment phase, which could potentially inhibit chlorpyrifos hydrolysis and mineralization. Over the nearly two-month experiment, less than 2.5% of the added compound was mineralized. While rates of mineralization in this experiment were higher than those reported for other soils and sediments, their low magnitude underscores how persistent chlorpyrifos and its metabolites are in aquatic environments, and suggests that management strategies and ecological risk assessment should focus more on ultimate mineralization rather than the simple disappearance of the parent compound.

  2. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  3. Mechanisms for high-frequency cyclicity in the Upper Jurassic limestone of northeastern Mexico

    SciTech Connect

    Johnson, C.R.; Ward, W.C. ); Goldhammer, R.K. )

    1991-03-01

    The 520 m of Upper Jurassic Zuloaga Limestone exposed in the Sierra de Bunuelos in southern Coahuila comprise 118 cycles of peritidal carbonate rock deposited on a gently dipping ramp. Field studies with Fischer plots and time-series analysis suggest that a Milankovitchian glacioeustasy mechanism is inadequate to describe the Zuloaga cycles. Autocyclic progradation may have been the major influence on depositional cyclicity. Depositional cycles in the Zuloaga Formation typically are a few meters thick and asymmetric with subtidal wackestone and packstone grading upward into subtidal grainstone or into intertidal stromatolites. Width of the carbonate ramp is estimated to have been about 150 km. Sedimentation rates for these peritidal carbonate environments apparently exceeded subsidence rates inasmuch as most of the carbonate platform remained near sea level during Zuloaga deposition. The area was tectonically quiescent during the late Jurassic. Autocyclic shoreline progradation is a feasible mechanism for producing the high-frequency cycles, as suggested by (1) poor correlation with predicted Milankovitch periodicity shown by time-series analysis, (2) little evidence of subaerial exposure, (3) development of complete peritidal cycles, (4) general progradational sequences within each third-order unit, and (5) absence of polar glaciation during Late Jurassic.

  4. Genomic reconstruction of novel sediment phyla enlightens roles in sedimentary biogeochemical cycling

    NASA Astrophysics Data System (ADS)

    Baker, B.; Lazar, C.; Seitz, K.; Teske, A.; Hinrichs, K. U.; Dick, G.

    2015-12-01

    Estuaries are among the most productive habitats on the planet. Microbes in estuary sediments control the turnover of organic carbon, and the anaerobic cycling of nitrogen and sulfur. These communities are complex and primarily made up of uncultured lineages, thus little is known about how ecological and metabolic processes are partitioned in sediments. We reconstructed 82 bacterial and 24 archaeal high-quality genomes from different redox regimes (sulfate-rich, sulfate-methane transition zone, and methane-rich zones) of estuary sediments. These bacteria belong to 23 distinct groups, including uncultured candidate phyla (eg. KSB1, TA06, and KD3-62), and three newly described phyla (WOR-1, and -2, and -3). The archaea encompass 8 widespread sediment lineages including MGB-D, RC-III and IV, Z7ME43, Parvarchaeota, Lokiarchoaeta (MBG-B), SAGMEG, Bathyarchaeota (groups MCG-1, -6, -7, and -15) and previously unrecognized deeply branched phylum "Thorarchaeota". The uncultured phyla mediate essential biogeochemical processes of the estuarine environment. Z7ME43 archaea have genes for S disproportionation (S0 reduction and thiosulfate reduction and oxidation). SAGMEG appear to be strict anaerobes capable of coupling CO/H2 oxidation to either S0 or nitrite reduction and have novel RubisCO genes for carbon fixation. Thorarchaeota contain pathways for acetate production from the degradation of detrital proteins and intermediate S cycling. Furthermore, the gene content of this group revealed links in the evolutionary histories of archaea and eukaryotes. This dataset extents our knowledge of the metabolic potential of several uncultured phyla. We were able to chart the flow of carbon and nutrients through the multiple layers of bacterial processing and reveal potential ecological interactions within the communities.

  5. Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments.

    PubMed

    Hunter, Evan M; Mills, Heath J; Kostka, Joel E

    2006-09-01

    Though a large fraction of primary production and organic matter cycling in the oceans occurs on continental shelves dominated by sandy deposits, the microbial communities associated with permeable shelf sediments remain poorly characterized. Therefore, in this study, we provide the first detailed characterization of microbial diversity in marine sands of the South Atlantic Bight through parallel analyses of small-subunit (SSU) rRNA gene (Bacteria), nosZ (denitrifying bacteria), and amoA (ammonia-oxidizing bacteria) sequences. Communities were analyzed by parallel DNA extractions and clone library construction from both sediment core material and manipulated sediment within column experiments designed for geochemical rate determinations. Rapid organic-matter degradation and coupled nitrification-denitrification were observed in column experiments at flow rates resembling in situ conditions over a range of oxygen concentrations. Numerous SSU rRNA phylotypes were affiliated with the phyla Proteobacteria (classes Alpha-, Delta-, and Gammaproteobacteria), Planctomycetes, Cyanobacteria, Chloroflexi, and Bacteroidetes. Detectable sequence diversity of nosZ and SSU rRNA genes increased in stratified redox-stabilized columns compared to in situ sediments, with the Alphaproteobacteria comprising the most frequently detected group. Alternatively, nitrifier communities showed a relatively low and stable diversity that did not covary with the other gene targets. Our results elucidate predominant phylotypes that are likely to catalyze carbon and nitrogen cycling in marine sands. Although overall diversity increased in response to redox stabilization and stratification in column experiments, the major phylotypes remained the same in all of our libraries, indicating that the columns sufficiently mimic in situ conditions.

  6. The microbial methane cycle in subsurface sediments. Final project report, July 1, 1993--August 31, 1997

    SciTech Connect

    Grossman, E.L.; Ammerman, J.W.; Suflita, J.M.

    1997-12-31

    The objectives of this study were to determine the factors controlling microbial activity and survival in the subsurface and, specifically, to determine whether microbial communities in aquitards and in aquifer microenvironments provide electron donors and/or acceptors that enhance microbial survival in aquifers. Although the original objectives were to focus on methane cycling, the authors pursued an opportunity to study sulfur cycling in aquifer systems, a process of much greater importance in microbial activity and survival, and in the mobility of metals in the subsurface. Furthermore, sulfur cycling is pertinent to the Subsurface Science Program`s study at Cerro Negro, New Mexico. The study combined field and laboratory approaches and microbiological, molecular, geochemical, and hydrogeological techniques. During drilling operations, sediments were collected aseptically and assayed for a variety of microorganisms and metabolic capabilities including total counts, viable aerobic heterotrophs, total anaerobic heterotrophs, sulfate reducing bacteria (SRB) and sulfate reduction activity (in situ and in slurries), methanogens, methanotrophs, and Fe- and S-oxidizers, among others. Geochemical analyses of sediments included organic carbon content and {sup 13}C/{sup 12}C ratio, sulfur chemistry (reduced sulfur, sulfate), {sup 34}S/{sup 32}S, {sup 13}C/{sup 12}C, {sup 14}C, tritium, etc. The authors drilled eight boreholes in the Eocene Yegua formation at four localities on the Texas A&M University campus using a hollow-stem auger drilling rig. The drilling pattern forms a T, with three well clusters along the dip direction and two along strike. Four boreholes were sampled for sediments and screened at the deepest sand interval encountered, and four boreholes were drilled to install wells in shallower sands. Boreholes range in depth from 8 to 31 m, with screened intervals ranging from 6 to 31 m. Below are the results of these field studies.

  7. A microbial arsenic cycle in sediments of an acidic mine impoundment: Herman Pit, Clear Lake, California

    USGS Publications Warehouse

    Blum, Jodi S.; McCann, Shelley; Bennett, S.; Miller, Laurence G.; Stolz, J. R.; Stoneburner, B.; Saltikov, C.; Oremland, Ronald S.

    2015-01-01

    The involvement of prokaryotes in the redox reactions of arsenic occurring between its +5 [arsenate; As(V)] and +3 [arsenite; As(III)] oxidation states has been well established. Most research to date has focused upon circum-neutral pH environments (e.g., freshwater or estuarine sediments) or arsenic-rich “extreme” environments like hot springs and soda lakes. In contrast, relatively little work has been conducted in acidic environments. With this in mind we conducted experiments with sediments taken from the Herman Pit, an acid mine drainage impoundment of a former mercury (cinnabar) mine. Due to the large adsorptive capacity of the abundant Fe(III)-rich minerals, we were unable to initially detect in solution either As(V) or As(III) added to the aqueous phase of live sediment slurries or autoclaved controls, although the former consumed added electron donors (i.e., lactate, acetate, hydrogen), while the latter did not. This prompted us to conduct further experiments with diluted slurries using the live materials from the first incubation as inoculum. In these experiments we observed reduction of As(V) to As(III) under anoxic conditions and reduction rates were enhanced by addition of electron donors. We also observed oxidation of As(III) to As(V) in oxic slurries as well as in anoxic slurries amended with nitrate. We noted an acid-tolerant trend for sediment slurries in the cases of As(III) oxidation (aerobic and anaerobic) as well as for anaerobic As(V) reduction. These observations indicate the presence of a viable microbial arsenic redox cycle in the sediments of this extreme environment, a result reinforced by the successful amplification of arsenic functional genes (aioA, and arrA) from these materials.

  8. Nitrogen cycling processes and microbial community composition in bed sediments in the Yukon River at Pilot Station

    NASA Astrophysics Data System (ADS)

    Repert, Deborah A.; Underwood, Jennifer C.; Smith, Richard L.; Song, Bongkeun

    2014-12-01

    Information on the contribution of nitrogen (N)-cycling processes in bed sediments to river nutrient fluxes in large northern latitude river systems is limited. This study examined the relationship between N-cycling processes in bed sediments and N speciation and loading in the Yukon River near its mouth at the Bering Sea. We conducted laboratory bioassays to measure N-cycling processes in sediment samples collected over distinct water cycle seasons. In conjunction, the microbial community composition in the bed sediments using genes involved in N-cycling (narG, napA, nosZ, and amoA) and 16S rRNA gene pyrosequences was examined. Temporal variation was observed in net N mineralization, nitrate uptake, and denitrification rate potentials and correlated strongly with sediment carbon (C) and extractable N content and microbial community composition rather than with river water nutrient concentrations. The C content of the bed sediment was notably impacted by the spring flood, ranging from 1.1% in the midst of an ice-jam to 0.1% immediately after ice-out, suggesting a buildup of organic material (OM) prior to scouring of the bed sediments during ice break up. The dominant members of the microbial community that explained differences in N-processing rates belonged to the genera Crenothrix, Flavobacterium, and the family of Comamonadaceae. Our results suggest that biogeochemical processing rates in the bed sediments appear to be more coupled to hydrology, nutrient availability in the sediments, and microbial community composition rather than river nutrient concentrations at Pilot Station.

  9. Nitrogen cycling processes and microbial community composition in bed sediments in the Yukon River at Pilot Station

    USGS Publications Warehouse

    Repert, Deborah A.; Underwood, Jennifer C.; Smith, Richard L.; Song, Bongkeun

    2014-01-01

    Information on the contribution of nitrogen (N)-cycling processes in bed sediments to river nutrient fluxes in large northern latitude river systems is limited. This study examined the relationship between N-cycling processes in bed sediments and N speciation and loading in the Yukon River near its mouth at the Bering Sea. We conducted laboratory bioassays to measure N-cycling processes in sediment samples collected over distinct water cycle seasons. In conjunction, the microbial community composition in the bed sediments using genes involved in N-cycling (narG, napA, nosZ, and amoA) and 16S rRNA gene pyrosequences was examined. Temporal variation was observed in net N mineralization, nitrate uptake, and denitrification rate potentials and correlated strongly with sediment carbon (C) and extractable N content and microbial community composition rather than with river water nutrient concentrations. The C content of the bed sediment was notably impacted by the spring flood, ranging from 1.1% in the midst of an ice-jam to 0.1% immediately after ice-out, suggesting a buildup of organic material (OM) prior to scouring of the bed sediments during ice break up. The dominant members of the microbial community that explained differences in N-processing rates belonged to the genera Crenothrix,Flavobacterium, and the family of Comamonadaceae. Our results suggest that biogeochemical processing rates in the bed sediments appear to be more coupled to hydrology, nutrient availability in the sediments, and microbial community composition rather than river nutrient concentrations at Pilot Station.

  10. Sediment trapping in the Changjiang Estuary: Observations in the North Passage over a spring-neap tidal cycle

    NASA Astrophysics Data System (ADS)

    Li, Xiangyu; Zhu, Jianrong; Yuan, Rui; Qiu, Cheng; Wu, Hui

    2016-08-01

    Water current, salinity, and suspended sediment concentration (SSC) were measured at three anchored boat sites along the North Passage (NP) of the Changjiang Estuary over a spring-neap tidal cycle, in order to study sediment trapping and siltation in the estuary. Pronounced stratification was observed during the late flood tide and the following early ebb tide, along with an advancing and retreating salt wedge, whereas strong vertical mixing occurred during the late ebb when the effect of the salt wedge faded. Therefore, the SSC in the flood-ebb tidal cycle tended to be asymmetric. In the upper reach of the NP, the seaward advective near-bed sediment transport dominated the total near-bed sediment transport, whereas in the middle reach of the NP, the landward tidal pumping component dominated. Accordingly, a notable convergent near-bed residual sediment transport was generated near the middle reach. Because the convergence of residual sediment transport in the region of a salt wedge is generally recognized as sediment trapping, convergent near-bed residual sediment transport is the cause of the high sedimentation rate in the NP.

  11. Microbial cycling of mercury in contaminated pelagic and wetland sediments of San Pablo Bay, California

    USGS Publications Warehouse

    Marvin-DiPasquale, M. C.; Agee, J.L.; Bouse, R.M.; Jaffe, B.E.

    2003-01-01

    San Pablo Bay is an estuary, within northern San Francisco Bay, containing elevated sediment mercury (Hg) levels because of historic loading of hydraulic mining debris during the California gold-rush of the late 1800s. A preliminary investigation of benthic microbial Hg cycling was conducted in surface sediment (0-4 cm) collected from one salt-marsh and three open-water sites. A deeper profile (0-26 cm) was evaluated at one of the open-water locations. Radiolabeled model Hg-compounds were used to measure rates of both methylmercury (MeHg) production and degradation by bacteria. While all sites and depths had similar total-Hg concentrations (0.3-0.6 ppm), and geochemical signatures of mining debris (as eNd, range: -3.08 to -4.37), in-situ MeHg was highest in the marsh (5.4??3.5 ppb) and ??? 0.7 ppb in all open-water sites. Microbial MeHg production (potential rate) in 0-4 surface sediments was also highest in the marsh (3.1 ng g-1 wet sediment day-1) and below detection (<0.06 ng g-1 wet sediment day-1) in open-water locations. The marsh exhibited a methylation/demethylation (M/D) ratio more than 25x that of all open-water locations. Only below the surface 0-4-cm horizon was significant MeHg production potential evident in the open-water sediment profile (0.2-1.1 ng g-1 wet sediment day-1). In-situ Hg methylation rates, calculated from radiotracer rate constants, and in-situ inorganic Hg(II) concentrations compared well with potential rates. However, similarly calculated in-situ rates of MeHg degradation were much lower than potential rates. These preliminary data indicate that wetlands surrounding San Pablo Bay represent important zones of MeHg production, more so than similarly Hg-contaminated adjacent open-water areas. This has significant implications for this and other Hg-impacted systems, where wetland expansion is currently planned.

  12. Magnetic Properties of Bermuda Rise Sediments Controlled by Glacial Cycles During the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Roud, S.

    2015-12-01

    Sediments from ODP site 1063 (Bermuda Rise, North Atlantic) contain a high-resolution record of geomagnetic field behavior during the Brunhes Chron. We present rock magnetic data of the upper 160 mcd (<900 ka) from hole 1063D that show magnetic properties vary in concert with glacial cycles. Magnetite appears to be the main magnetic carrier in the carbonate-dominated interglacial horizons, yet exhibits contrasting grain size distributions depending on the redox state of the horizons. Higher contributions of single domain magnetite exist above the present day sulfate reduction zone (ca. 44 mcd) with relatively higher multidomain magnetite components below that likely arise from the partial dissolution of SD magnetite in the deeper, anoxic horizons. Glacial horizons on the other hand, characterized by enhanced terrigenous deposition, show no evidence for diagenetic dissolution but do indicate the presence of authigenic greigite close to glacial maxima (acquisition of gyro-remanence, strong magnetostatic interactions and SD properties). Glacial horizons contain hematite (maxima in HIRM and S-Ratio consistent with a reddish hue) and exhibit higher ARM anisotropy and pronounced sedimentary fabrics. We infer that post depositional processes affected the magnetic grain size and mineralogy of Bermuda rise sediments deposited during the late Pleistocene. Hematite concentration is interpreted to reflect primary terrigenous input that is likely derived from the Canadian Maritime Provinces. A close correlation between HIRM and magnetic foliation suggests that changes in sediment composition (terrigenous vs. marine biogenic) were accompanied by changes in the depositional processes at the site.

  13. Investigation of Technetium Redox Cycling in FRC Background Sediments using EXAFS and Gamma Camera Imaging

    SciTech Connect

    Lloyd, J.R.; McBeth, J.M.; Lear, G.; Morris, K.; Burke, I.T.; Livens, F.R.; Ellis, B.; Lawson, R.

    2006-04-05

    Technetium-99 is a priority pollutant at numerous DOE sites, due to its long half-life (2.1 x 105 years), high mobility as Tc(VII) in oxic waters, and bioavailability as a sulfate analogue. {sup 99}Tc is far less mobile under anaerobic conditions, forming insoluble Tc(IV) precipitates. As anaerobic microorganisms can reduce soluble Tc(VII) to insoluble Tc(IV), microbial metabolism may have the potential to treat sediments and waters contaminated with Tc. Baseline studies of fundamental mechanisms of Tc(VII) bioreduction and precipitation (reviewed by Lloyd et al., 2005, in press) have generally used pure cultures of metal-reducing bacteria, in order to develop conceptual models for the biogeochemical cycling of {sup 99}Tc. There is, however, comparatively little known about interactions of metal-reducing bacteria with environmentally relevant trace concentrations of {sup 99}Tc, against a more complex biogeochemical background provided by mixed microbial communities in aquifer sediments. The objective of this project is to probe the site specific biogeochemical conditions that control the mobility of {sup 99}Tc at the US DOE Field Research Center Site (FRC; Oak Ridge, Tennessee). This information is required for the rational design of in situ bioremediation strategies for technetium-contaminated subsurface environments. We are using a combination of geochemical, mineralogical, microbiological and spectroscopic techniques to determine the solubility and phase associations of {sup 99}Tc in FRC sediments, and characterize the underpinning biogeochemical controls.

  14. Sulfur and iron cycling in deep-subsurface, coal bed-containing sediments off Shimokita (Japan)

    NASA Astrophysics Data System (ADS)

    Riedinger, N.; Smirnoff, M. N.; Gilhooly, W.; Phillips, S. C.; Lyons, T. W.; 337 Scientific Party, I.

    2013-12-01

    The main goal of IODP Expedition 337 was the identification and characterization of the deep coal bed biosphere and hydrocarbon system off the Shimokita Peninsula (Japan) in the northwestern Pacific using the D/V Chikyu. To accomplish this scientific objective, it was also necessary to investigate the inorganic biogeochemistry in order to identify possible electron acceptors and bio-essential nutrients. These biogeochemical parameters greatly influence both, the composition and abundance of microbial communities as well as the organic carbon cycle. In turn, the microbially mediated carbon cycle influences the diagenetic reactions in the subsurface, thus, altering geochemical and physical characteristics of the material. Here we present results from metal and sulfur geochemical analyses from the deep-subsurface sediments (about 1250 to 2466 mbsf) at Site C0020 off Shimokita. The measured concentrations of acid volatile sulfur (AVS) as well as chromium reducible sulfur (CRS) reflect the alteration of iron oxides to iron sulfides and indicate that the main sulfur-bearing phase in the investigated sediments is pyrite. Concentrations of intermediate sulfur species are minor and occur mainly in the coal-bearing interval. Our data show that the uppermost sediments contain higher amounts of pyrite (up to 1.2 wt.%) with an average of 0.5 wt.% compared to the deeper deposits (below about 1800 mbsf), which show an average of 0.16 wt.%. In contrast, iron oxide concentrations are highest in the deeper sediment sections (up to 0.4%), where pyrite concentrations are low. The alteration of iron oxides to sulfides in theses lower section was probably governed by the amount of available sulfide in the pore water. The occurrence of (bio-)reactive iron phases in these deeply buried sediments has implications for the deep biosphere as those minerals have the potential to serve as electron acceptors during burial, including reactions involving deep sourced electron donors, such as

  15. Distributions, abundances and activities of microbes associated with the nitrogen cycle in riparian and stream sediments of a river tributary.

    PubMed

    Kim, Haryun; Bae, Hee-Sung; Reddy, K Ramesh; Ogram, Andrew

    2016-12-01

    River tributaries are ecologically important environments that function as sinks of inorganic nitrogen. To gain greater insight into the nitrogen cycle (N-cycle) in these environments, the distributions and activities of microbial populations involved in the N-cycle were studied in riparian and stream sediments of the Santa Fe River (SFR) tributaries located in northern Florida, USA. Riparian sediments were characterized by much higher organic matter content, and extracellular enzyme activities, including cellobiohydrolase, β-d-glucosidase, and phenol oxidase than stream sediments. Compared with stream sediments, riparian sediments exhibited significantly higher activities of nitrification, denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation; correspondingly, with higher copies of amoA (a biomarker for enumerating nitrifiers), nirS and nirK (for denitrifiers), and nrfA (for DNRA bacteria). Among N-cycle processes, denitrification showed the highest activities and the highest concentrations of the corresponding gene (nirK and nirS) copy numbers. In riparian sediments, substantial nitrification activities (6.3 mg-N kg soil(-1)d(-1) average) and numbers of amoA copies (7.3 × 10(7) copies g soil(-1) average) were observed, and nitrification rates correlate with denitrification rates. The guild structures of denitrifiers and nitrifiers in riparian sediments differed significantly from those found in stream sediments, as revealed by analysis of nirS and archaeal amoA sequences. This study shows that riparian sediments serve as sinks for inorganic nitrogen loads from non-point sources of agricultural runoff, with nitrification and denitrification associated with elevated levels of carbon and nitrogen contents and extracellular enzyme activities.

  16. An introduction to high frequency radioteletype systems

    NASA Astrophysics Data System (ADS)

    Pinnau, Roger R.

    1989-10-01

    A basic introductory guide is provided to modern High Frequency (HF) data communications systems. Described are modern commercial radioteletype systems, data communication protocols, and various secrets of the trade.

  17. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  18. High power, high frequency component test facility

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Krawczonek, Walter

    1990-01-01

    The NASA Lewis Research Center has available a high frequency, high power laboratory facility for testing various components of aerospace and/or terrestrial power systems. This facility is described here. All of its capabilities and potential applications are detailed.

  19. High frequency testing of rubber mounts.

    PubMed

    Vahdati, Nader; Saunders, L Ken Lauderbaugh

    2002-04-01

    Rubber and fluid-filled rubber engine mounts are commonly used in automotive and aerospace applications to provide reduced cabin noise and vibration, and/or motion accommodations. In certain applications, the rubber mount may operate at frequencies as high as 5000 Hz. Therefore, dynamic stiffness of the mount needs to be known in this frequency range. Commercial high frequency test machines are practically nonexistent, and the best high frequency test machine on the market is only capable of frequencies as high as 1000 Hz. In this paper, a high frequency test machine is described that allows test engineers to study the high frequency performance of rubber mounts at frequencies up to 5000 Hz.

  20. Overview of the Advanced High Frequency Branch

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  1. Neural coding of high-frequency tones

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1976-01-01

    Available evidence was presented indicating that neural discharges in the auditory nerve display characteristic periodicities in response to any tonal stimulus including high-frequency stimuli, and that this periodicity corresponds to the subjective pitch.

  2. The effects of wastewater discharge on the microbiological nitrogen cycle of the lake sediments

    NASA Astrophysics Data System (ADS)

    Saarenheimo, Jatta; Aalto, Sanni L.; Tiirola, Marja

    2016-04-01

    Anthropogenic wastewater inputs alter the natural dynamics of nitrogen (N) cycle by providing high concentrations of nitrate and organic matter to the sediment microbes. It can also change the microbial community composition and N removal potential but this is currently not that well studied. To study these aspects, we conducted ecosystem-scale experiment in Lake Keurusselkä, Finland. In the experiment, the wastewater discharge to the recipient lake was optimized with sediment filtration, which increased the surface and retention time of the nitrified wastewater with the sediment. In addition to N transformation rates, which showed that optimization enhanced denitrification, we studied the microbial responses at the sediment. Genetic potential of nitrogen transformation processes, such as denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and nitrification were studied by targeting the functional genes (i.e. nirS, nirK, nosZI, nosZII, nrfA, amoAarchaea and amoAbacteria) with quantitative PCR and digital droplet PCR. In addition, changes in the microbial community composition along the wastewater gradient were examined by using next generation sequencing of the 16S rRNA genes. In line with our hypothesis, the relative abundance of denitrifying genes followed the observed denitrification rates, being highest near the nitrate-rich wastewater discharge. Furthermore the microbial community composition in the discharge point differed clearly from the control and downstream sites, having also the highest numbers of rare OTUs. Abundance of nitrifying bacteria was higher than nitrifying archaea near the waste water discharge, whereas the opposite was seen at the control site. The results indicate that wastewater is not only increasing the denitrification rates, but can also alter the structure and genetic potential microbial communities.

  3. Biogeography and diversity of methane and sulfur-cycling ecotypes in deep subsurface sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Biddle, J.; Girguis, P. R.

    2013-12-01

    The microbially mediated anaerobic oxidation of methane (AOM) is critical for regulating the flux of methane from the ocean. AOM is coupled to sulfate availability in many anoxic marine environments, which has been extensively studied at cold seeps, hydrothermal vents, and the sulfate-methane transition zone at the seafloor. The microbes known to catalyze AOM form phylogenetically distinct anaerobic methanotroph (ANME) clusters and sometimes live in concert with sulfate-reducing bacteria (SRB). Strikingly, certain ANME groups and subgroups have been shown to occupy different ecological niches in both hydrocarbon seep and hydrothermal vent sediments. However, the environmental parameters that select for certain phylogenetic variants or 'ecotypes' in a wide range of marine systems are still unknown. A marine environment that remains elusive to characterization of potential ANME and SRB ecotype diversity is methane hydrate formations in the deep subsurface. Current estimates indicate that seafloor hydrates may exceed 10,000 GtC at standard temperature and pressure conditions. However, only a handful of studies have investigated the potential for AOM in the deep subsurface associated with methane hydrates. To gain a better understanding of the distribution of methane- and sulfur- cycling ecotypes in biogeochemically distinct marine subsurface ecosystems, we generated a substantial library of 16S rRNA gene sequences for these uncultivable deep sea microorganisms using Illumina sequencing. Sediment strata were collected from the methane-hydrate associated deep subsurface of Hydrate Ridge (30 - 100 mbsf), hydrocarbon cold seeps of Monterey Bay, metalliferous sedimented hydrothermal vents of Juan de Fuca Ridge, and organic-rich hydrothermally influenced sediments of Guaymas Basin. We used the Illumina MiSeq sequencing platform to assess Archaeal and Bacterial richness in a total of 36 deep sea sediment samples followed by qPCR for quantification of ANME and SRB phylotype

  4. Environmental Controls on Nitrogen and Sulfur Cycles in Surficial Aquatic Sediments

    PubMed Central

    Gu, Chuanhui; Laverman, Anniet M.; Pallud, Céline E.

    2012-01-01

    Enhanced anthropogenic inputs of nitrogen (N) and sulfur (S) have disturbed their biogeochemical cycling in aquatic and terrestrial ecosystems. The N and S cycles interact with one another through competition for labile forms of organic carbon between nitrate-reducing and sulfate-reducing bacteria. Furthermore, the N and S cycles could interact through nitrate (NO3-) reduction coupled to S oxidation, consuming NO3-, and producing sulfate (SO42-). The research questions of this study were: (1) what are the environmental factors explaining variability in N and S biogeochemical reaction rates in a wide range of surficial aquatic sediments when NO3- and SO42- are present separately or simultaneously, (2) how the N and S cycles could interact through S oxidation coupled to NO3- reduction, and (3) what is the extent of sulfate reduction inhibition by nitrate, and vice versa. The N and S biogeochemical reaction rates were measured on intact surface sediment slices using flow-through reactors. The two terminal electron acceptors NO3- and SO42- were added either separately or simultaneously and NO3- and SO42- reduction rates as well as NO3- reduction linked to S oxidation were determined. We used redundancy analysis, to assess how environmental variables were related to these rates. Our analysis showed that overlying water pH and salinity were two dominant environmental factors that explain 58% of the variance in the N and S biogeochemical reaction rates when NO3- and SO42- were both present. When NO3- and SO42- were added separately, however, sediment N content in addition to pH and salinity accounted for 62% of total variance of the biogeochemical reaction rates. The SO42- addition had little effect on NO3- reduction; neither did the NO3- addition inhibit SO42- reduction. The presence of NO3- led to SO42- production most likely due to the oxidation of sulfur. Our observations suggest that metal-bound S, instead of free sulfide produced by SO42- reduction, was responsible

  5. Connecting the cycles: Impact of sediment, carbon and nutrient erosion on GHG emissions

    NASA Astrophysics Data System (ADS)

    Kuhn, N. J.

    2012-04-01

    The role of agriculture in generating greenhouse gas (GHG) emissions through the use of fertilizers and fossil fuels is well documented. The negative impacts of soil erosion on agricultural land and its productivity have also been studied extensively. The lateral movement of soil through terrestrial ecosystems has also been recognized as a significant flux of C within the global C cycle. Soil erosion removes approximately 0.5 Gt of C/a from agricultural land. Much of this C is deposited in the landscape, effectively burying the organic matter from the atmosphere and taking it, at least for an unspecified time, out of the C exchange between soil and atmosphere. Such calculations raise the notion that soil erosion generates an unintentional benefit for climate, owing to the long-term burial of soil organic C. But limiting the assessment of the impact of soil erosion on climate change to organic C burial ignores, apart from economic and social damages, the coupling between biogeochemical cycles. For example, the eroded N has to be replaced, at least in part by artificial fertilizers, to maintain soil fertility. At this point the sediment, C and N cycles meet, because the production of fertilizer generates greenhouse gases. The production of one ton of fertilizer generates on the order of 850 kg of CO2 (West and Marland, 2002). Applying this number to the 0.5 Gt C erosion estimate, the amount of N lost owing to erosion each year yields CO2 emissions of 0.02-0.04 Pg/a. These emissions correspond to 15-30% of the organic C buried owing to soil erosion. In this presentation, the full complexity of biogeochemical cycling on agricultural land is explored and connections between cycles which require consideration for a full GHG emission balance of soil erosion on agricultural land are identified.

  6. Time-dependent behavior of a placed bed of cohesive sediment subjected to erosion and deposition cycles

    NASA Astrophysics Data System (ADS)

    Mariotti, G.; Valentine, K.; Fagherazzi, S.

    2015-02-01

    This study aims to explore the behavior of a cohesive sediment bed that undergoes cycles of erosion and deposition under diluted conditions. A bed of bentonite (montmorillonite) sediment was placed in two annular flumes and subjected to daily erosion tests for a period of 80 days, mimicking intermittent moderate-energy disturbances like tidal currents and wind waves. After each erosion test, the suspended sediment was allowed to settle back in the flumes. The amount of suspended sediment measured at the top of the water column at the end of each erosion test decreased in the first 5 days, concurrently with an increase in the bulk-settling velocity near the bed. This pattern is explained by turbulence-induced flocculation of clay particles and consequent formation of a surface floc layer. After about 20 days, the amount of suspended sediment measured at the top of the water column at the end of each erosion test increased and the settling velocity decreased, whereas the suspended sediment concentration measured near the bed remained nearly constant. We explain such trend by the cumulative release of slow-settling particles from the bed. This experiment suggests that the superficial layer of a placed bed that is periodically eroded and redeposited experiences competing processes: the sediment that is resuspended at every cycle becomes less erodible, but prolonged exposure to shear stress increases the pool of eroded sediment over time. The total amount of resuspended sediment seems to become constant after several tens of cycle, suggesting that the release of particles from the bed by cumulative erosion is balanced by the binding of such particles to the bed.

  7. Life Cycle Sustainability Assessment of Sediment Remediation at the London Olympic Park

    NASA Astrophysics Data System (ADS)

    Hou, D.; Al-Tabbaa, A.

    2013-12-01

    In recent years, there is an emerging 'green and sustainable remediation' (GSR) movement. It is drawing increasing attention from both the government and the industry, because this GSR movement is promising in accelerating process in addressing the contaminated land issue, by overcoming regulatory barriers, encouraging technological innovation, and balancing life cycle environmental stewardship with economic vitality and social well-being. Life cycle assessment (LCA) has been increasingly used by both researchers and industrial practitioners in an initiative to make environmental remediation greener and more sustainable. Life cycle sustainability assessment (LCSA), aiming at expanding the traditional LCA model in both breadth and depth (e.g. to incorporate both environmental and social-economic sustainability), is an important research direction in the existing LCA research field. The present study intends to develop a LCSA method based on a hybrid LCA model and economic input-output (EIO) data. The LCSA method is applied to a contaminated sediment remediation project conducted at the London Olympic Park site.

  8. A geomorphic-geochemical framework for quantifying the cycling of sediment-associated contaminants in fluvial systems

    NASA Astrophysics Data System (ADS)

    Byrne, Patrick; Lopez-Tarazon, Jose; Williams, Richard

    2016-04-01

    Recent high-profile contamination events linked to extreme floods have underlined the persistent environmental risk posed by legacy metals stored in fluvial systems worldwide. While we understand that the fate of sediment-associated metals is largely determined by the dynamics of the fluvial transport system, we still lack a process-based understanding of the spatial and temporal mechanisms that affect the physical and geochemical transfer of metals through catchments. This interdisciplinary project will exploit advances in geomorphic and geochemical analyses to develop a methodological approach and conceptual framework to answer key questions related to the dynamics and timescales of metal cycling in fluvial systems. The approach will be tested in two reaches of the mining-impacted Afon Twymyn, Wales. The main objectives are: (i) quantify the physical transport of sediment and metals over a range of river flows and model sediment pathways; (ii) establish the geochemical mobility and speciation of sediment-associated metals and how this is modified through the sediment pathways. To achieve these objectives a geomorphic-geochemical combined methodology will be applied. It includes: (i) Aerial imagery that will be acquired from UAV surveys pre- and post-high flows and transformed into high-resolution DEMs using Structure-from-Motion; (ii) suspended sediment flux will be estimated indirectly by field calibration with a logging turbidimeter; (iii) 2D hydraulic and sediment transport model (Delft3D) will be used to quantify the transport of sediment and associated metals and to map the source, pathway and sink of contaminated sediment; (iv) soil and sediment samples (including suspended sediment) will be collected pre- and post-high flows for geochemical (concentration, speciation) and mineralogical (XRD, SEM) analyses; (v) finally, a geochemical model (Geochemists Workbench) will be developed to generate hypotheses that explain observed geochemical change as a function

  9. High Frequency Acoustic Reflection and Transmission in Ocean Sediments

    DTIC Science & Technology

    2010-09-30

    interaction with the ocean floor. 3 ) An inversion methodology that can provide input parameters for the resulting physical model from reflection...scattering from rough interfaces in a shallow water waveguide, 2) Development of a fully three dimensional finite element scattering model and 3 ...failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2010 2. REPORT TYPE 3

  10. High-Frequency Sound Interaction in Ocean Sediments: Environmental Controls

    DTIC Science & Technology

    2006-09-30

    mm. Several of the long diver cores were impregnated with resin and scanned using X - ray microfocus computed tomography (XMCT) to determine fine...computed tomography images. In, Proc. GeoX 2006 -2nd Intern. Worksh. X - Ray Comp. Tomogr. Geomaterials, [in press] Richardson, M.D., D.R. Jackson, K.L...and p-wave velocity), X -radiography, core description and photography, and grain-size analysis. Preliminary results indicate that the upper 3 m of

  11. Linking Sediment Microbial Communities to Carbon Cycling in High-Latitude Lakes

    NASA Astrophysics Data System (ADS)

    Emerson, J. B.; Varner, R. K.; Johnson, J. E.; Owusu-Dommey, A.; Binder, M.; Woodcroft, B. J.; Wik, M.; Freitas, N. L.; Boyd, J. A.; Crill, P. M.; Saleska, S. R.; Tyson, G. W.; Rich, V. I.

    2015-12-01

    It is well recognized that thawing permafrost peatlands are likely to provide a positive feedback to climate change via CH4 and CO2 emissions. High-latitude lakes in these landscapes have also been identified as sources of CH4 and CO2 loss to the atmosphere. To investigate microbial contributions to carbon loss from high-latitude lakes, we characterized sediment geochemistry and microbiota via cores collected from deep and shallow regions of two lakes (Inre Harrsjön and Mellersta Harrsjön) in Arctic Sweden in July, 2012. These lakes are within the Stordalen Mire long-term ecological area, a focal site for investigating the impacts of climate change-related permafrost thaw, and the lakes in this area are responsible for ~55% of the CH4 loss from this hydrologically interconnected system. Across 40 samples from 4 to 40 cm deep within four sediment cores, Illumina 16S rRNA gene sequencing revealed that the sedimentary microbiota was dominated by candidate phyla OP9 and OP8 (Atribacteria and Aminicenantes, respectively, including putative fermenters and anaerobic respirers), predicted methanotrophic Gammaproteobacteria, and predicted methanogenic archaea from the Thermoplasmata Group E2 clade. We observed some overlap in community structure with nearby peatlands, which tend to be dominated by methanogens and Acidobacteria. Sediment microbial communities differed significantly between lakes, by overlying lake depth (shallow vs. deep), and by depth within a core, with each trend corresponding to parallel differences in biogeochemical measurements. Overall, our results support the potential for significant microbial controls on carbon cycling in high-latitude lakes associated with thawing permafrost, and ongoing metagenomic analyses of focal samples will yield further insight into the functional potential of these microbial communities and their dominant members.

  12. Impacts of shrimp farming cultivation cycles on macrobenthic assemblages and chemistry of sediments.

    PubMed

    Ribeiro, Luisa F; Eça, Gilmara F; Barros, Francisco; Hatje, Vanessa

    2016-04-01

    The aim of this study was to evaluate the influence of a shrimp farm cultivation cycle in the composition of sediments and on the structure of macrobenthic assemblages. Concentrations of nutrients, Zn and Cu were significantly higher in impact than control areas. In general, the level of contaminants was highest during the harvesting period and in sites closest to the discharge of effluents. Abundances and number of taxa of benthic invertebrates were at least one order of magnitude smaller in impacted areas than in controls. The structure of the benthic assemblages was significantly different at these two treatments. The combined use of biological and chemical data showed to be efficient to provide precise answers regarding the extent of impacts caused by shrimp cultivation. The results provide the basis for a better understanding of impacts of this activity and can subsidize the development of better management practices for coastal areas.

  13. Connecting the dots: linking nitrogen cycle gene expression to nitrogen fluxes in marine sediment mesocosms

    PubMed Central

    Bowen, Jennifer L.; Babbin, Andrew R.; Kearns, Patrick J.; Ward, Bess B.

    2014-01-01

    Connecting molecular information directly to microbial transformation rates remains a challenge, despite the availability of molecular methods to investigate microbial biogeochemistry. By combining information on gene abundance and expression for key genes with quantitative modeling of nitrogen fluxes, we can begin to understand the scales on which genetic signals vary and how they relate to key functions. We used quantitative PCR of DNA and cDNA, along with biogeochemical modeling to assess how the abundance and expression of microbes responsible for two steps in the nitrogen cycle changed over time in estuarine sediment mesocosms. Sediments and water were collected from coastal Massachusetts and maintained in replicated 20 L mesocosms for 45 days. Concentrations of all major inorganic nitrogen species were measured daily and used to derive rates of nitrification and denitrification from a Monte Carlo-based non-negative least-squares analysis of finite difference equations. The mesocosms followed a classic regeneration sequence in which ammonium released from the decomposition of organic matter was subsequently oxidized to nitrite and then further to nitrate, some portion of which was ultimately denitrified. Normalized abundances of ammonia oxidizing archaeal ammonia monoxoygenase (amoA) transcripts closely tracked rates of ammonia oxidation throughout the experiment. No such relationship, however, was evident between denitrification rates and the normalized abundance of nitrite reductase (nirS and nirK) transcripts. These findings underscore the complexity of directly linking the structure of the microbial community to rates of biogeochemical processes. PMID:25191309

  14. Bond cycles recorded in terrestrial Pleistocene sediments of southwestern British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Hicock, Stephen R.; Lian, Olav B.; Mathewes, Rolf W.

    1999-08-01

    Recent data from exposures of terrestrial Pleistocene sediments in the Fraser Lowland of southwestern British Columbia reveal at least two Bond cycles within Oxygen Isotope Stage 2. The maximum of the Coquitlam Stade coincides with the timing of Heinrich event H2, the Port Moody Interstade with Dansgaard-Oeschger (D-O) interstade 2, the maximum of the Vashon Stade with H1, and the Fort Langley interval with D-O interstade 1. The Sumas Stade apparently preceded H0 (Younger Dryas) but could have been in response to the same climatic signal. The timing of Sumas advances may be explained by a combination of glacio-isostatic rebound, destabilisation of the ice margin, and rapid movement over a short distance on soft muddy beds of a rising sea floor, thereby leading the timing of North Atlantic events by hundreds of years. In contrast, Coquitlam and Vashon advances were mainly over permeable glaciofluvial sediments and because of this their maxima probably did not precede the timing of H2 and H1. The Port Moody Interstade coincided with the global Last Glacial Maximum, due in part to the moderating effect of moist summer storms in a southward-shifted jet stream that influenced the Fraser Lowland at that time.

  15. Rates and environmental controls of sediment N and S cycles in diverse aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Gu, C.; Pallud, C. E.

    2010-12-01

    Chuanhui Gu and Celine Pallud Recent studies of coupled NO3- driven SO42- production found chemolithoautotrophic bacterial metabolism may remove NO3- by coupling its reduction with the oxidation of reduced S to SO42-. The objectives of this study were to investigate the magnitude and interaction of NO3- and SO42- metabolic rates (e.g. nitrate reduction rate, ammonium production rate, sulfate production rate, and sulfate reduction rate, etc) across diverse freshwater, saline, and hypersaline water systems. Metabolic rates of major N and S cycles were measured on intact sediment cores using flow through reactors. Single TEA (i.e.NO3- or SO42-) addition and simultaneous TEAs addition caused a variety of responses in the N and S metabolic rates. We used a multivariate statistics tool, redundancy analysis, to access how environmental factors might control the variability of these metabolic rates. Our analysis showed pH, overlying water SO42- concentration, and salinity were three dominant environmental factors that control the N and S metabolic rates. The three factors combined explained 62% of variance of the metabolic rates. When NO3- and SO42- were both present, however, sediment As content, grain size, and N content determined the variability of the metabolic rates. These three factors together accounted for 58% of total variance of the metabolic rates. The different sets of environmental controls over the N and S metabolic rates under single TEA vs. two TEA conditions indicate the interior coupling between N and S cycles. These results showed there is no single set of environmental variables that can be used to predict the spatial variability of N and S metabolic rates, and controls on N processing in landscape subject to S and N pollution are more complex than previously appreciated.

  16. Possible roles of uncultured archaea in carbon cycling in methane-seep sediments

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Marcos Y.; Lazar, Cassandre S.; Elvert, Marcus; Lin, Yu-Shih; Zhu, Chun; Heuer, Verena B.; Teske, Andreas; Hinrichs, Kai-Uwe

    2015-09-01

    Studies on microbial carbon cycling uniformly confirm that anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria represent the dominant and most active fraction of the sedimentary microbial community in methane-seep sediments. However, little is known about other frequently observed and abundant microbial taxa, their role in carbon cycling and association with the anaerobic oxidation of methane (AOM). Here, we provide a comprehensive characterization of stable carbon isotopes (δ13C) from several intact polar lipid (IPL) classes and metabolite pools in a downcore profile at a cold seep within the oxygen minimum zone off Pakistan. We aimed to evaluate microbial carbon metabolism using IPLs in relation to redox conditions, metabolites and 16S rRNA gene libraries. The 13C-depleted signature of carbon pools and microbial metabolites in pore waters (e.g., dissolved inorganic carbon, lactate and acetate) demonstrated high accumulation of AOM-associated biomass and subsequent turnover thereof. ANMEs accounted for a small fraction of the archaeal 16S rRNA gene survey, whereas sequences of other uncultured benthic archaea dominated the clone libraries, particularly the Marine Benthic Group D. On the basis of lipid diversity and carbon isotope information, we suggest that structurally diverse phospho- and glycolipids, including the recently identified unsaturated tetraethers that are particularly abundant in this setting, are likely derived from archaea other than ANMEs. Through the evaluation of δ13C values of individual IPL, our results indicate heterotrophy as a possible metabolic pathway of archaea in these AOM-dominated sediments.

  17. Source-to-sink cycling of aeolian sediment in the north polar region of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Kocurek, G.

    2012-12-01

    Aeolian sand dunes are prominent features on the landscapes of Earth, Mars, Venus and Titan and sedimentary deposits interpreted as aeolian in origin are found in the rock records of Earth and Mars. The widespread occurrence of aeolian dunes on the surface of these worlds and within their deep-time depositional records suggests that aeolian systems are and likely have been a default depositional environment for the Solar System. Within an aeolian source-to-sink context, we hypothesize that planet-specific boundary conditions strongly impact production, transport, accumulation and preservation of aeolian sediment, whereas dunes and dune-field patterns remain largely similar. This hypothesis is explored within the north polar region of Mars, which hosts the most extensive aeolian dune fields and aeolian sedimentary deposits yet recognized on Mars and appears to be a region of dynamic source-to-sink cycling of aeolian sediments. The Planum Boreum Cavi Unit rests beneath north polar ice cap of Mars and is composed of several hundred meters of niveo-aeolian dune cross-stratification. The overall architecture of the unit consists of sets of preserved dune topography with an upward increase in the abundance of ice. Dune sets are defined by stabilized, polygonally fractured bounding surfaces, erosional bounding surfaces and typical internal lee foresets made of sediment and ice. The accumulation of the Cavi Unit is interpreted as occurring through freezing and serves as an example of a cold temperature boundary condition on aeolian sediment accumulation. Preservation of the Cavi Unit arises because of deposition of the overlying ice cap and contrasts with preservation of aeolian sediment on Earth, which is largely driven by eustasy and tectonics. The Cavi Unit is thought to be one source of sediment for the north polar Olympia Undae Dune Field. The region of Olympia Undae near the Cavi Unit shows a reticulate dune field pattern composed of two sets of nearly orthogonal

  18. A high frequency silicon pressure sensor

    NASA Technical Reports Server (NTRS)

    Kahng, S. K.; Gross, C.

    1980-01-01

    Theoretical and design considerations as well as fabrication and experimental work involved in the development of high-frequency silicon pressure sensors with an ultra-small diaphragm are discussed. A sensor is presented with a rectangular diaphragm of 0.0127 cm x 0.0254 cm x 1.06 micron; the sensor has a natural frequency of 625 kHz and a sensitivity of 0.82 mv/v-psi. High-frequency results from shock tube testing and low-frequency (less than 50 kHz) comparison with microphones are given.

  19. Metrology For High-Frequency Nanoelectronics

    SciTech Connect

    Wallis, T. Mitch; Imtiaz, Atif; Nembach, Hans T.; Rice, Paul; Kabos, Pavel

    2007-09-26

    Two metrological tools for high-frequency measurements of nanoscale systems are described: (i) two/N-port analysis of nanoscale devices as well as (ii) near-field scanning microwave microscopy (NSMM) for materials characterization. Calibrated two/N-port measurements were made on multiwalled carbon nanotubes (MWNT) welded to a coplanar waveguide. Significant changes in the extracted high-frequency electrical response of the welded MWNT were measured when the contacts to the MWNT were modified. Additionally, NSMM was used to characterize films of nanotube soot deposited on copper and sapphire substrates. The material properties of the films showed a strong dependence on the substrate material.

  20. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark).

    PubMed

    Parkes, R John; Cragg, Barry A; Banning, Natasha; Brock, Fiona; Webster, Gordon; Fry, John C; Hornibrook, Ed; Pancost, Richard D; Kelly, Sam; Knab, Nina; Jørgensen, Bo B; Rinna, Joachim; Weightman, Andrew J

    2007-05-01

    This biogeochemical, molecular genetic and lipid biomarker study of sediments ( approximately 4 m cores) from the Skagerrak (Denmark) investigated methane cycling in a sediment with a clear sulfate-methane-transition zone (SMTZ) and where CH(4) supply was by diffusion, rather than by advection, as in more commonly studied seep sites. Sulfate reduction removed sulfate by 0.7 m and CH(4) accumulated below. (14)C-radiotracer measurements demonstrated active H(2)/CO(2) and acetate methanogenesis and anaerobic oxidation of CH(4) (AOM). Maximum AOM rates occurred near the SMTZ ( approximately 3 nmol cm(-3) day(-1) at 0.75 m) but also continued deeper, overall, at much lower rates. Maximum rates of H(2)/CO(2) and acetate methanogenesis occurred below the SMTZ but H(2)/CO(2) methanogenesis rates were x 10 those of acetate methanogenesis, and this was consistent with initial values of (13)C-depleted CH(4) (delta(13)C c.-80 per thousand). Areal AOM and methanogenic rates were similar ( approximately 1.7 mmol m(-2) day(-1)), hence, CH(4) flux is finely balanced. A 16S rRNA gene library from 1.39 m combined with methanogen (T-RFLP), bacterial (16S rRNA DGGE) and lipid biomarker depth profiles showed the presence of populations similar to some seep sites: ANME-2a (dominant), ANME-3, Methanomicrobiales, Methanosaeta Archaea, with abundance changes with depth corresponding to changes in activities and sulfate-reducing bacteria (SRB). Below the SMTZ to approximately 1.7 m CH(4) became progressively more (13)C depleted (delta(13)C -82 per thousand) indicating a zone of CH(4) recycling which was consistent with the presence of (13)C-depleted archaeol (delta(13)C -55 per thousand). Pore water acetate concentrations decreased in this zone (to approximately 5 microM), suggesting that H(2), not acetate, was an important CH(4) cycling intermediate. The potential biomarkers for AOM-associated SRB, non-isoprenoidal ether lipids, increased below the SMTZ but this distribution reflected 16S

  1. Iron Cycling in Sediment of the North Atlantic: Preliminary Results from R/V Knorr Expedition 223

    NASA Astrophysics Data System (ADS)

    Anderson, C. H.; Estes, E. R.; Dyar, M. D.; Murray, R. W.; Spivack, A. J.; Sauvage, J.; McKinley, C. C.; Present, T. M.; Homola, K.; Pockalny, R. A.; D'Hondt, S.

    2015-12-01

    Iron (Fe) in marine sediments is a significant microbial electron acceptor [Fe(III)] in suboxic conditions and is an electron donor [Fe(II)] in oxic conditions. In the transition from oxic to suboxic sediment, a portion of solid Fe is reduced and mobilized as soluble Fe(II) into interstitial water during the oxidation of organic matter. The presence of Fe and its oxidation state in oxic sediment provides insight into an important metabolic and mineral reaction pathway in subseafloor sediment. We recovered bulk sediment and interstitial water at western North Atlantic sites during Expedition 223 on the R/V Knorr in November, 2014. The expedition targeted regions with predominantly oxic sediment and regions with predominantly anoxic sediment, ideal for investigating redox Fe cycling between solid and aqueous phases. At Site 10 (14.4008N, 50.6209W, 4455m water depth), interstitial dissolved oxygen is depleted within the upper few meters of sediment. At Site 12 (29.6767N, 58.3285W, 5637m water depth), interstitial dissolved oxygen is present throughout the cored sediment column (10s of meters). Here we present total solid Fe concentration for 45 bulk sediment samples and total aqueous Fe and Mn concentrations for 50 interstitial water samples analyzed via ICP-ES. We additionally present Fe(II) and Fe(III) speciation results from 10 solid sediment samples determined by Mossbauer spectroscopy. We trace downcore fluctuations in Fe in solid and aqueous phases to understand Fe cycling in oxic, suboxic, and transitional regimes. Our preliminary data indicate that solid Fe concentration ranges from 4-6 wt % at the oxic site; aqueous Fe ranges from below detection to 20μM and aqueous Mn ranges from 1 to 125 μM at the anoxic site. In the anoxic sediment (Site 10), 86-90% of the total Fe is oxidized [Fe(III)] and 10-14% as reduced [Fe(II)], compared to 3-6% as reduced [Fe(II)] at the oxic site (Site 12), even in sediment as old as 25 million years.

  2. Advanced Extremely High Frequency Satellite (AEHF)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-261 Advanced Extremely High Frequency Satellite (AEHF) As of FY 2017 President’s Budget...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be

  3. Psychophysical tuning curves at very high frequencies

    NASA Astrophysics Data System (ADS)

    Yasin, Ifat; Plack, Christopher J.

    2005-10-01

    For most normal-hearing listeners, absolute thresholds increase rapidly above about 16 kHz. One hypothesis is that the high-frequency limit of the hearing-threshold curve is imposed by the transmission characteristics of the middle ear, which attenuates the sound input [Masterton et al., J. Acoust. Soc. Am. 45, 966-985 (1969)]. An alternative hypothesis is that the high-frequency limit of hearing is imposed by the tonotopicity of the cochlea [Ruggero and Temchin, Proc. Nat. Acad. Sci. U.S.A. 99, 13206-13210 (2002)]. The aim of this study was to test these hypotheses. Forward-masked psychophysical tuning curves (PTCs) were derived for signal frequencies of 12-17.5 kHz. For the highest signal frequencies, the high-frequency slopes of some PTCs were steeper than the slope of the hearing-threshold curve. The results also show that the human auditory system displays frequency selectivity for characteristic frequencies (CFs) as high as 17 kHz, above the frequency at which absolute thresholds begin to increase rapidly. The findings suggest that, for CFs up to 17 kHz, the high-frequency limitation in humans is imposed in part by the middle-ear attenuation, and not by the tonotopicity of the cochlea.

  4. Landau damping with high frequency impedance

    SciTech Connect

    Blaskiewicz,M.

    2009-05-04

    Coupled bunch longitudinal stability in the presence of high frequency impedances is considered. A frequency domain technique is developed and compared with simulations. The frequency domain technique allows for absolute stability tests and is applied to the problem of longitudinal stability in RHIC with the new 56 MHz RF system.

  5. Determining the Effects of Oiled Sediment on Fish Life Cycle Endpoints using the Sheepshead Minnow (Cyprinodon variegatus)

    EPA Science Inventory

    Determination of long-term effects of exposure to crude oil is critical for ascertaining population-level risk following spill events. A 19-week life-cycle experiment was conducted with the estuarine sheepshead minnow exposed to natural sediment spiked with weathered Louisiana S...

  6. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments.

    PubMed

    Cooper, D Craig; Picardal, Flynn F; Coby, Aaron J

    2006-03-15

    Microbial iron reduction is an important biogeochemical process that can affect metal geochemistry in sediments through direct and indirect mechanisms. With respectto Fe(III) (hydr)oxides bearing sorbed divalent metals, recent reports have indicated that (1) microbial reduction of goethite/ferrihydrite mixtures preferentially removes ferrihydrite, (2) this process can incorporate previously sorbed Zn(II) into an authigenic crystalline phase that is insoluble in 0.5 M HCl, (3) this new phase is probably goethite, and (4) the presence of nonreducible minerals can inhibit this transformation. This study demonstrates that a range of sorbed transition metals can be selectively sequestered into a 0.5 M HCl insoluble phase and that the process can be stimulated through sequential steps of microbial iron reduction and air oxidation. Microbial reduction experiments with divalent Cd, Co, Mn, Ni, Pb, and Zn indicate that all metals save Mn experienced some sequestration, with the degree of metal incorporation into the 0.5 M HCl insoluble phase correlating positively with crystalline ionic radius at coordination number = 6. Redox cycling experiments with Zn adsorbed to synthetic goethite/ferrihydrite or iron-bearing natural sediments indicate that redox cycling from iron reducing to iron oxidizing conditions sequesters more Zn within authigenic minerals than microbial iron reduction alone. In addition, the process is more effective in goethite/ferrihydrite mixtures than in iron-bearing natural sediments. Microbial reduction alone resulted in a -3x increase in 0.5 M HCl insoluble Zn and increased aqueous Zn (Zn-aq) in goethite/ferrihydrite, but did not significantly affect Zn speciation in natural sediments. Redox cycling enhanced the Zn sequestration by approximately 12% in both goethite/ferrihydrite and natural sediments and reduced Zn-aq to levels equal to the uninoculated control in goethite/ferrihydrite and less than the uninoculated control in natural sediments. These

  7. Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments

    PubMed Central

    Benzine, Jason; Xiong, Mai Yia; Kennedy, David W.; McKinley, James P.; Lin, Xueju; Roden, Eric E.

    2013-01-01

    Microorganisms capable of reducing or oxidizing structural iron (Fe) in Fe-bearing phyllosilicate minerals were enriched and isolated from a subsurface redox transition zone at the Hanford 300 Area site in eastern Washington, USA. Both conventional and in situ “i-chip” enrichment strategies were employed. One Fe(III)-reducing Geobacter (G. bremensis strain R1, Deltaproteobacteria) and six Fe(II) phyllosilicate-oxidizing isolates from the Alphaproteobacteria (Bradyrhizobium japonicum strains 22, is5, and in8p8), Betaproteobacteria (Cupriavidus necator strain A5-1, Dechloromonas agitata strain is5), and Actinobacteria (Nocardioides sp. strain in31) were recovered. The G. bremensis isolate grew by oxidizing acetate with the oxidized form of NAu-2 smectite as the electron acceptor. The Fe(II)-oxidizers grew by oxidation of chemically reduced smectite as the energy source with nitrate as the electron acceptor. The Bradyrhizobium isolates could also carry out aerobic oxidation of biotite. This is the first report of the recovery of a Fe(II)-oxidizing Nocardioides, and to date only one other Fe(II)-oxidizing Bradyrhizobium is known. The 16S rRNA gene sequences of the isolates were similar to ones found in clone libraries from Hanford 300 sediments and groundwater, suggesting that such organisms may be present and active in situ. Whole genome sequencing of the isolates is underway, the results of which will enable comparative genomic analysis of mechanisms of extracellular phyllosilicate Fe redox metabolism, and facilitate development of techniques to detect the presence and expression of genes associated with microbial phyllosilicate Fe redox cycling in sediments. PMID:24379809

  8. Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments

    SciTech Connect

    Benzine, Jason; Shelobolina, Evgenya S.; Xiong, Mai Yia; Kennedy, David W.; McKinley, James P.; Lin, Xueju; Roden, Eric E.

    2013-01-01

    Microorganisms capable of reducing or oxidizing structural iron (Fe) in Fe-bearing phyllosilicate minerals were enriched and isolated from a subsurface redox transition zone at the Hanford 300 Area site in eastern Washington, USA. Both conventional and in situ "i-chip" enrichment strategies were employed. One Fe(III)-reducing Geobacter (G. bremensis strain R1, Deltaproteobacteria) and six Fe(II) phyllosilicate-oxidizing isolates from the Alphaproteobacteria (Bradyrhizobium japonicum strains 22, is5, and in8p8), Betaproteobacteria (Cupriavidus necator strain A5-1, Dechloromonas agitata strain is5), and Actinobacteria (Nocardioides sp. strain in31) were recovered. The G. bremensis isolate grew by oxidizing acetate with the oxidized form of NAu-2 smectite as the electron acceptor. The Fe(II)-oxidizers grew by oxidation of chemically reduced smectite as the energy source with nitrate as the electron acceptor. The Bradyrhizobium isolates could also carry out aerobic oxidation of biotite. This is the first report of the recovery of a Fe(II)-oxidizing Nocardioides, and to date only one other Fe(II)-oxidizing Bradyrhizobium is known. The 16S rRNA gene sequences of the isolates were similar to ones found in clone libraries from Hanford 300 sediments and groundwater, suggesting that such organisms may be present and active in situ. Whole genome sequencing of the isolates is underway, the results of which will enable comparative genomic analysis of mechanisms of extracellular phyllosilicate Fe redox metabolism, and facilitate development of techniques to detect the presence and expression of genes associated with microbial phyllosilicate Fe redox cycling in sediments.

  9. Nucleation and growth of todorokite from birnessite: Implications for trace-metal cycling in marine sediments

    NASA Astrophysics Data System (ADS)

    Atkins, Amy L.; Shaw, Samuel; Peacock, Caroline L.

    2014-11-01

    The phyllomanganate birnessite is the main Mn-bearing phase in oxic marine sediments, and through coupled sorption and redox exerts a strong control on the oceanic concentration of micronutrient trace metals. However, under diagenesis and mild hydrothermal conditions, birnessite undergoes transformation to the tectomanganate todorokite. The mechanistic details of this transformation are important for the speciation and mobility of metals sequestered by birnessite, and are necessary in order to quantify the role of marine sediments in global trace element cycles. Here we transform a synthetic, poorly crystalline, hexagonal birnessite, analogous to marine birnessite, into todorokite under a mild reflux procedure, developed to mimic marine diagenesis and mild hydrothermal conditions. We characterize our birnessite and reflux products as a time series, employing X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), BET surface area analysis, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and extended X-ray absorption fine structure spectroscopy (EXAFS). We provide new insight into the crystallization pathway and mechanism of todorokite formation from birnessite under conditions analogous to those found in marine diagenetic and hydrothermal settings. Specifically we propose a new four-stage process for the transformation of birnessite to todorokite, beginning with todorokite nucleation, then crystal growth from solution to form todorokite primary particles, followed by their self-assembly and oriented growth via oriented attachment to form crystalline todorokite laths, culminating in traditional crystal ripening. We suggest that, contrary to current understanding, trace metals like Ni might retard the transformation of birnessite to todorokite and be released to marine sedimentary pore-waters during this diagenetic process, thus potentially providing a benthic flux of these micronutrients to seawater.

  10. Turbulence in unsteady flow at high frequencies

    NASA Technical Reports Server (NTRS)

    Kuhn, Gary D.

    1990-01-01

    Turbulent flows subjected to oscillations of the mean flow were simulated using a large-eddy simulation computer code for flow in a channel. The objective of the simulations was to provide better understanding of the effects of time-dependent disturbances on the turbulence of a boundary layer and of the underlying physical phenomena regarding the basic interaction between the turbulence and external disturbances. The results confirmed that turbulence is sensitive to certain ranges of frequencies of disturbances. However, no direct connection was found between the frequency of imposed disturbances and the characteristic 'burst' frequency of turbulence. New insight into the nature of turbulence at high frequencies was found. Viscous phenomena near solid walls were found to be the dominant influence for high-frequency perturbations.

  11. High-current, high-frequency capacitors

    NASA Astrophysics Data System (ADS)

    Renz, D. D.

    1983-06-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  12. High-current, high-frequency capacitors

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1983-01-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  13. Stable isotope biogeochemistry of the sulfur cycle in modern marine sediments: I. Seasonal dynamics in a temperate intertidal sandy surface sediment.

    PubMed

    Böttcher, Michael; Hespenheide, Britta; Brumsack, Hans-Jürgen; Bosselmann, Katja

    2004-12-01

    A biogeochemical and stable isotope geochemical study was carried out in surface sediments of an organic-matter poor temperate intertidal sandy surface sediment (German Wadden Sea of the North Sea) to investigate the activity of sulfate-reducing bacteria and the dynamics of the vertical partitioning of sedimentary sulfur, iron, and manganese species in relation to the availability of total organic carbon (TOC) and mud contents. The contents and stable isotopic compositions ((34)S/(32)S) of total reduced inorganic sulfur species (TRIS) and dissolved sulfate were measured. Maximum oxygen penetration depths were estimated from the onset of a blackening of the sediments due to FeS accumulation and ranged from 5 to 10 mm below surface (mmbsf). A zone of relatively moderate relative organic-matter enrichment was found between 5 and 20 mmbsf leading to enhanced activities of sulfate-reducing bacteria with sulfate-reduction rates (SRR) up to 350 nmol cm(-3) d(-1). Below this zone, microbial SRR dropped significantly. Depth integrated SRR seem to depend not only on temperature but also on the availability of reactive organic matter. The sulfur-isotopic composition of TRIS was depleted in (34)S by 33-40 per thousand with respect to coexisting dissolved sulfate (constant at about +21 per thousand vs. Vienna-Canyon Diablo Troilite (V-CDT)). Since sulfate reduction is not limited by dissolved sulfate (open system), depth variations of the isotopic composition of TRIS reflect changes in overall isotope effect due to superimposed microbial and abiotic reactions. Most of the solid-phase iron and manganese was bonded to (non-reactive) heavy minerals. However, a layer of reactive Fe(III) and Mn(IV) oxi(hydroxi)des was found in the uppermost sediment section due to re-oxidation of dissolved Fe(II) and Mn(II) species at the sediment-water interface. Metal cycling below the surface is at least partially coupled to intense sulfur cycling.

  14. High Frequency Guided Wave Virtual Array SAFT

    NASA Astrophysics Data System (ADS)

    Roberts, R.; Pardini, A.; Diaz, A.

    2003-03-01

    The principles of the synthetic aperture focusing technique (SAFT) are generalized for application to high frequency plate wave signals. It is shown that a flaw signal received in long-range plate wave propagation can be analyzed as if the signals were measured by an infinite array of transducers in an unbounded medium. It is shown that SAFT-based flaw sizing can be performed with as few as three or less actual measurement positions.

  15. Apparatus for measuring high frequency currents

    NASA Technical Reports Server (NTRS)

    Hagmann, Mark J. (Inventor); Sutton, John F. (Inventor)

    2003-01-01

    An apparatus for measuring high frequency currents includes a non-ferrous core current probe that is coupled to a wide-band transimpedance amplifier. The current probe has a secondary winding with a winding resistance that is substantially smaller than the reactance of the winding. The sensitivity of the current probe is substantially flat over a wide band of frequencies. The apparatus is particularly useful for measuring exposure of humans to radio frequency currents.

  16. [High-frequency oscillatory ventilation in neonates].

    PubMed

    2002-09-01

    High-frequency oscillatory ventilation (HFOV) may be considered as an alternative in the management of severe neonatal respiratory failure requiring mechanical ventilation. In patients with diffuse pulmonary disease, HFOV can applied as a rescue therapy with a high lung volume strategy to obtain adequate alveolar recruitment. We review the mechanisms of gas exchange, as well as the indications, monitoring and special features of the use HVOF in the neonatal period.

  17. Ionospheric modifications in high frequency heating experiments

    SciTech Connect

    Kuo, Spencer P.

    2015-01-15

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  18. Extremely high frequency RF effects on electronics.

    SciTech Connect

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  19. Role of freeze-thaw cycles and chlorpyrifos insecticide use on diffuse Cd loss and sediment accumulation

    PubMed Central

    Wang, Fangli; Ouyang, Wei; Hao, Fanghua; Jiao, Wei; Shan, Yushu; Lin, Chunye

    2016-01-01

    Freeze-thaw cycles are predicted to increase in cold temperate regions. The potential influence of the interactions of freeze-thaw cycles and agrochemicals on the release of Cd into river water is unknown. In this study, the interactions of freeze-thaw cycles and chlorpyrifos (FC) on Cd mobility in soils were analysed. The spatial variability of soil Cd under long-term intensive tillage in a freeze-thaw agro-system was also identified. The temporal variation of sediment Cd was detected based on analysis of the sediment geochemistry. The results showed that FC increased soil Cd mobility, with an increase of approximately 10% in CaCl2-extractable Cd. The increased mobile fractions of water-soluble and exchangeable Cd originated from the decreased fraction of Fe-Mn-oxide-associated Cd and organic matter-bound Cd. The total Cd content in the surface soil followed the zonally decreasing trend of dry land > paddy land > natural land. The Cd concentrations and sedimentation rates of the sediment core generally increased from 1943 to 2013 due to agricultural exploration and farmland irrigation system construction, indicating an increase of the Cd input flux into water. The results provide valuable information about the soil Cd transport response to the influence of climatic and anthropogenic factors in cold intensive agro-systems. PMID:27250820

  20. Role of freeze-thaw cycles and chlorpyrifos insecticide use on diffuse Cd loss and sediment accumulation

    NASA Astrophysics Data System (ADS)

    Wang, Fangli; Ouyang, Wei; Hao, Fanghua; Jiao, Wei; Shan, Yushu; Lin, Chunye

    2016-06-01

    Freeze-thaw cycles are predicted to increase in cold temperate regions. The potential influence of the interactions of freeze-thaw cycles and agrochemicals on the release of Cd into river water is unknown. In this study, the interactions of freeze-thaw cycles and chlorpyrifos (FC) on Cd mobility in soils were analysed. The spatial variability of soil Cd under long-term intensive tillage in a freeze-thaw agro-system was also identified. The temporal variation of sediment Cd was detected based on analysis of the sediment geochemistry. The results showed that FC increased soil Cd mobility, with an increase of approximately 10% in CaCl2-extractable Cd. The increased mobile fractions of water-soluble and exchangeable Cd originated from the decreased fraction of Fe-Mn-oxide-associated Cd and organic matter-bound Cd. The total Cd content in the surface soil followed the zonally decreasing trend of dry land > paddy land > natural land. The Cd concentrations and sedimentation rates of the sediment core generally increased from 1943 to 2013 due to agricultural exploration and farmland irrigation system construction, indicating an increase of the Cd input flux into water. The results provide valuable information about the soil Cd transport response to the influence of climatic and anthropogenic factors in cold intensive agro-systems.

  1. Biostimulation induces syntrophic interactions that impact C, S and N cycling in a sediment microbial community

    SciTech Connect

    Handley, KM; Verberkmoes, Nathan C; Steefel, Carl I; Sharon, I; Williams, Ken; Miller, CS; Frischkorn, Kyle C; Chourey, Karuna; Thomas, Brian; Shah, Manesh B; Long, Phil; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2013-01-01

    Stimulation of subsurface microorganisms to induce reductive immobilization of metals is a promising approach for bioremediation, yet the overall microbial community response is typically poorly understood. Here we used community proteogenomics to test the hypothesis that excess input of acetate activates syntrophic interactions among autotrophs and heterotrophs. A flow-through sediment column was incubated in a groundwater well of an acetate-amended aquifer. Genomic sequences from the community recovered during microbial sulfate reduction were used to econstruct, de novo, near-complete genomes for Desulfobacter (Deltaproteobacteria) and relatives of Sulfurovum and Sulfurimonas (Epsilonproteobacteria), and Bacteroidetes. Partial genomes were obtained for Clostridiales (Firmicutes) and Desulfuromonadales-like Deltaproteobacteria. The majority of proteins identified by mass spectrometry corresponded to Desulfobacter-like species, and demonstrate the role of this organism in sulfate reduction (Dsr and APS), nitrogen-fixation (Nif) and acetate oxidation to CO2 during amendment. Results suggest less abundant Desulfuromonadales and Bacteroidetes also actively contributed to CO2 production via the TCA cycle. Proteomic data indicate that sulfide was partially re-oxidized by Epsilonproteobacteria through nitrate-dependent sulfide oxidation (using Nap, Nir, Nos, SQR and Sox), with CO2 fixed using the reverse TCA cycle. Modeling shows that this reaction was thermodynamically possible, and kinetically favorable relative to acetate-dependent denitrification. We conclude that high-levels of carbon amendment aimed to stimulate anaerobic heterotrophy led to carbon fixation in co-dependent chemoautotrophs. These results have implications for understanding complex ecosystem behavior, and show that high levels of organic carbon supplementation can expand the range of microbial functionalities accessible for ecosystem manipulation.

  2. LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model v2.0.4

    NASA Astrophysics Data System (ADS)

    Zeebe, R. E.

    2012-01-01

    The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. LOSCAR's configuration of ocean geometry is flexible and allows for easy switching between modern and paleo-versions. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, pCO2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to loscar.model@gmail.com.

  3. Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments.

    PubMed

    Nunoura, Takuro; Nishizawa, Manabu; Kikuchi, Tohru; Tsubouchi, Taishi; Hirai, Miho; Koide, Osamu; Miyazaki, Junichi; Hirayama, Hisako; Koba, Keisuke; Takai, Ken

    2013-11-01

    There has been much progress in understanding the nitrogen cycle in oceanic waters including the recent identification of ammonia-oxidizing archaea and anaerobic ammonia oxidizing (anammox) bacteria, and in the comprehensive estimation in abundance and activity of these microbial populations. However, compared with the nitrogen cycle in oceanic waters, there are fewer studies concerning the oceanic benthic nitrogen cycle. To further elucidate the dynamic nitrogen cycle in deep-sea sediments, a sediment core obtained from the Ogasawara Trench at a water depth of 9760 m was analysed in this study. The profiles obtained for the pore-water chemistry, and nitrogen and oxygen stable isotopic compositions of pore-water nitrate in the hadopelagic sediments could not be explained by the depth segregation of nitrifiers and nitrate reducers, suggesting the co-occurrence of nitrification and nitrate reduction in the shallowest nitrate reduction zone. The abundance of SSU rRNA and functional genes related to nitrification and denitrification are consistent with the co-occurrence of nitrification and nitrate reduction observed in the geochemical analyses. This study presents the first example of cooperation between aerobic and anaerobic nitrogen metabolism in the deep-sea sedimentary environments.

  4. In situ sensing to understand diel turbidity cycles, suspended solids, and nutrient transport in Clear Creek, Iowa

    NASA Astrophysics Data System (ADS)

    Loperfido, J. V.; Just, Craig L.; Papanicolaou, Athanasios N.; Schnoor, Jerald L.

    2010-06-01

    Recent advances in sensor technology have made high-frequency environmental data readily available. In this study, high-frequency monitoring of turbidity revealed diel turbidity cycles with peak values during the nighttime and lower values occurring during daytime. Particles responsible for these cycles were fixed suspended solids consisting mostly of aluminosilicates (clay particles) emanating from bed sediments. High-frequency data were used to investigate the transport of total suspended solids (TSS) during base flow. A majority of the base flow TSS loading occurred during the nighttime in a small agricultural catchment in Iowa, United States. Elevated nighttime turbidity coincided with an increased total suspended phosphorus loading during nighttime. Bioturbation, as a result of nocturnal feeding of fishes, is the suspected cause of the diel turbidity cycles. High-frequency monitoring was also used to detect TSS loading during storm events. Results from this study highlight the importance of high-frequency environmental measurements to reveal and understand biogeochemical transport phenomena.

  5. High-frequency Rayleigh-wave method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  6. The LASI high-frequency ellipticity system

    SciTech Connect

    Sternberg, B.K.; Poulton, M.M.

    1995-10-01

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  7. Inverter design for high frequency power distribution

    NASA Technical Reports Server (NTRS)

    King, R. J.

    1985-01-01

    A class of simple resonantly commutated inverters are investigated for use in a high power (100 KW - 1000 KW) high frequency (10 KHz - 20 KHz) AC power distribution system. The Mapham inverter is found to provide a unique combination of large thyristor turn-off angle and good utilization factor, much better than an alternate 'current-fed' inverter. The effects of loading the Mapham inverter entirely with rectifier loads are investigated by simulation and with an experimental 3 KW 20 KHz inverter. This inverter is found to be well suited to a power system with heavy rectifier loading.

  8. The LASI high-frequency ellipticity system

    SciTech Connect

    Sternberg, B.K.; Poulton, M.M.

    1995-12-31

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  9. High frequency dynamic pressure calibration technique

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Zasimowich, R. F.

    1985-01-01

    A high frequency dynamic calibration technique for pressure transducers has been developed using a siren pressure generator (SPG). The SPG is an inlet-area-modulated device generating oscillating waveforms with dynamic pressure amplitudes up to 58.6 kPa (8.5 psi) in a frequency range of 1 to 10 kHz. A description of the generator, its operating characteristics and instrumentation used for pressure amplitude and frequency measurements is given. Waveform oscillographs and spectral analysis of the pressure transducers' output signals are presented.

  10. High frequency dynamic pressure calibration technique

    NASA Astrophysics Data System (ADS)

    Davis, P. A.; Zasimowich, R. F.

    A high frequency dynamic calibration technique for pressure transducers has been developed using a siren pressure generator (SPG). The SPG is an inlet-area-modulated device generating oscillating waveforms with dynamic pressure amplitudes up to 58.6 kPa (8.5 psi) in a frequency range of 1 to 10 kHz. A description of the generator, its operating characteristics and instrumentation used for pressure amplitude and frequency measurements is given. Waveform oscillographs and spectral analysis of the pressure transducers' output signals are presented.

  11. RF Breakdown in High Frequency Accelerators

    SciTech Connect

    Doebert, S

    2004-05-27

    RF breakdown in high-frequency accelerators appears to limit the maximum achievable gradient as well as the reliability of such devices. Experimental results from high power tests, obtained mostly in the framework of the NLC/GLC project at 11 GHz and from the CLIC study at 30 GHz, will be used to illustrate the important issues. The dependence of the breakdown phenomena on rf pulse length, operating frequency and fabrication material will be described. Since reliability is extremely important for large scale accelerators such as a linear collider, the measurements of breakdown rate as a function of the operating gradient will be highlighted.

  12. Nearshore versus offshore copper loading in Lake Superior sediments: Implications for transport and cycling

    USGS Publications Warehouse

    Kolak, J.J.; Long, D.T.; Kerfoot, W.C.; Beals, T.M.; Eisenreich, Steven J.

    1999-01-01

    A thorough understanding of the fate and transport of metals in Lake Superior is necessary in order to predict the ability of Lake Superior to recover from anthropogenic perturbations (copper mining). Sediment cores were collected from nearshore and offshore sites in Lake Superior and used to evaluate spatial and temporal variations in copper loading associated with mining-related activities. Although both settings have been strongly affected by anthropogenic releases of copper, copper concentrations in nearshore cores are significantly greater than those found in offshore cores, implying that nearshore copper loading is dominated by simple deposition and burial of sediment generated from mining activities. Temporal variations in copper profiles in sediments from nearshore environments closely mimic copper production rates. Conversely, copper loading histories derived from offshore sediments are not well correlated to production rates. The offshore sediment cores, when compared with analogous cores from Lakes Ontario and Michigan, show that the average, lake-wide intensity of copper loading in Lake Superior is comparable to the other two lakes, despite the fact that Lake Superior has received the largest total burden of anthropogenic copper. Cu/Zn ratios, used to evaluate the amount of copper loading derived from mining discharges, vary strongly in nearshore environments in response to loading. Cu/Zn ratios in offshore sediments are much less variable, implying that copper loading may be regulated by additional mechanisms (solution chemistry and/or biologic uptake). Study of trace metal partitioning within Lake Superior sediments indicates that the organic fraction of the sediment contains the majority of the copper. Copper concentrations in offshore sediments are significantly correlated to organic carbon content of the sediment whereas copper concentrations in nearshore sediments are not. These findings support the model that transport and deposition of particles

  13. Global synchronous changes in the carbon isotopic composition of carbonate sediments unrelated to changes in the global carbon cycle.

    PubMed

    Swart, Peter K

    2008-09-16

    The carbon isotopic (delta(13)C) composition of bulk carbonate sediments deposited off the margins of four carbonate platforms/ramp systems (Bahamas, Maldives, Queensland Plateau, and Great Australian Bight) show synchronous changes over the past 0 to 10 million years. However, these variations are different from the established global pattern in the delta(13)C measured in the open oceans over the same time period. For example, from 10 Ma to the present, the delta(13)C of open oceanic carbonate has decreased, whereas platform margin sediments analyzed here show an increase. It is suggested that the delta(13)C patterns in the marginal platform deposits are produced through admixing of aragonite-rich sediments, which have relatively positive delta(13)C values, with pelagic materials, which have lower delta(13)C values. As the more isotopically positive shallow-water carbonate sediments are only produced when the platforms are flooded, there is a connection between changes in global sea level and the delta(13)C of sediments in marginal settings. These data indicate that globally synchronous changes in delta(13)C can take place that are completely unrelated to variations in the global carbon cycle. Fluctuations in the delta(13)C of carbonate sediments measured during previous geological periods may also be subject to similar processes, and global synchroniety of delta(13)C can no longer necessarily be considered an indicator that such changes are related to, or caused by, variations in the burial of organic carbon. Inferences regarding the interpretation of changes in the cycling of organic carbon derived from delta(13)C records should be reconsidered in light of the findings presented here.

  14. Global synchronous changes in the carbon isotopic composition of carbonate sediments unrelated to changes in the global carbon cycle

    PubMed Central

    Swart, Peter K.

    2008-01-01

    The carbon isotopic (δ13C) composition of bulk carbonate sediments deposited off the margins of four carbonate platforms/ramp systems (Bahamas, Maldives, Queensland Plateau, and Great Australian Bight) show synchronous changes over the past 0 to 10 million years. However, these variations are different from the established global pattern in the δ13C measured in the open oceans over the same time period. For example, from 10 Ma to the present, the δ13C of open oceanic carbonate has decreased, whereas platform margin sediments analyzed here show an increase. It is suggested that the δ13C patterns in the marginal platform deposits are produced through admixing of aragonite-rich sediments, which have relatively positive δ13C values, with pelagic materials, which have lower δ13C values. As the more isotopically positive shallow-water carbonate sediments are only produced when the platforms are flooded, there is a connection between changes in global sea level and the δ13C of sediments in marginal settings. These data indicate that globally synchronous changes in δ13C can take place that are completely unrelated to variations in the global carbon cycle. Fluctuations in the δ13C of carbonate sediments measured during previous geological periods may also be subject to similar processes, and global synchroniety of δ13C can no longer necessarily be considered an indicator that such changes are related to, or caused by, variations in the burial of organic carbon. Inferences regarding the interpretation of changes in the cycling of organic carbon derived from δ13C records should be reconsidered in light of the findings presented here. PMID:18772393

  15. Distribution and preservation of black carbon in the East China Sea sediments: Perspectives on carbon cycling at continental margins

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Zhang, Jing; Wu, Ying; Wang, Jinlong

    2016-02-01

    We determined the concentrations and radiocarbon (14C) compositions of black carbon (BC) in the sediments of the East China Sea (ECS). The BC concentrations, which were in the range of 0.30-1.52 mg/g, accounted for 12-65% of the total organic carbon (TOC). The distribution of BC in ECS sediments was controlled by factors such as grain size, distance from the coast, and deposition rate. Radiocarbon measurements of BC yielded ages of 6350-10,440 years before present (BP), suggesting that the percentage of BC derived from biomass combustion was in the range of 29-48%. The BC burial flux in sediments of the ECS was estimated to be ∼1.39×106 t/yr, which was similar to burial fluxes reported for shelf sediments in other areas. However, the magnitude of the total BC sink was far greater than that of any other shelf regions studied to date, indicating the global importance of BC accumulation in the ECS, and the magnitude of BC input from large rivers (e.g., the Changjiang). The riverine delivery of BC to the ECS (73%) was far greater than that of atmospheric flux (27%). Further study of the BC cycle and the interactions of BC with other organic compounds in marginal seas was required to better understand the role of BC in the global carbon cycle.

  16. Noise temperature in graphene at high frequencies

    NASA Astrophysics Data System (ADS)

    Rengel, Raúl; Iglesias, José M.; Pascual, Elena; Martín, María J.

    2016-07-01

    A numerical method for obtaining the frequency-dependent noise temperature in monolayer graphene is presented. From the mobility and diffusion coefficient values provided by Monte Carlo simulation, the noise temperature in graphene is studied up to the THz range, considering also the influence of different substrate types. The influence of the applied electric field is investigated: the noise temperature is found to increase with the applied field, dropping down at high frequencies (in the sub-THz range). The results show that the low-frequency value of the noise temperature in graphene on a substrate tends to be reduced as compared to the case of suspended graphene due to the important effect of remote polar phonon interactions, thus indicating a reduced emitted noise power; however, at very high frequencies the influence of the substrate tends to be significantly reduced, and the differences between the suspended and on-substrate cases tend to be minimized. The values obtained are comparable to those observed in GaAs and semiconductor nitrides.

  17. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  18. High Frequency Plasma Generators for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Fosnight, V. V.

    1981-01-01

    The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.

  19. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  20. High-Frequency Fluctuations During Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Jara-Almonte, J.; Ji, H.; Daughton, W. S.; Roytershteyn, V.; Yamada, M.; Yoo, J.; Fox, W. R., II

    2014-12-01

    During collisionless reconnection, the decoupling of the field from the plasma is known to occur only within the localized ion and electron diffusion regions, however predictions from fully kinetic simulations do not agree with experimental observations on the size of the electron diffusion region, implying differing reconnection mechanisms. Previous experiments, along with 2D and 3D simulations, have conclusively shown that this discrepancy cannot be explained by either classical collisions or Lower-Hybrid Drift Instability (Roytershtyn 2010, 2013). Due to computational limitations, however, previous simulations were constrained to have minimal scale separation between the electron skin depth and the Debye length (de/λD ~ 10), much smaller than in experiments (de/λD ~ 300). This lack of scale-separation can drastically modify the electrostatic microphysics within the diffusion layer. Using 3D, fully explicit kinetic simulations with a realistic and unprecedentedly large separation between the Debye length and the electron skin depth, de/λD = 64, we show that high frequency electrostatic waves (ω >> ωLH) can exist within the electron diffusion region. These waves generate small-scale turbulence within the electron diffusion region which acts to broaden the layer. Anomalous resistivity is also generated by the turbulence and significantly modifies the force balance. In addition to simulation results, initial experimental measurements of high frequency fluctuations (electrostatic and electromagnetic, f ≤ 1 GHz) in the Magnetic Reconnection Experiment (MRX) will be presented.

  1. The linkage between marine sediment records and changes in Holocene Saharan landscape: simulating the dust cycle

    NASA Astrophysics Data System (ADS)

    Egerer, Sabine; Claussen, Martin; Reick, Christian; Stanelle, Tanja

    2016-04-01

    Marine sediment records reveal an abrupt and strong increase in dust deposition in the North Atlantic at the end of the African Humid Period about 4.9 ka to 5.5 ka ago (deMenocal et al., 2000; McGee et al., 2013). The change in dust flux has been attributed to varying Saharan land surface cover. Alternatively, the enhanced dust accumulation is linked to enhanced surface winds and a consequent intensification of coastal upwelling. We present simulation results from a recent sensitivity study, where we demonstrate for the first time the direct link between dust accumulation in marine cores and changes in Saharan land surface during the Holocene. We have simulated timeslices of he mid-Holocene (6 ka BP) and pre-industrial (1850 AD) dust cycle as a function of Saharan land surface cover and atmosphere-ocean conditions using the coupled atmosphere-aerosol model ECHAM6.1-HAM2.1. We prescribe mid-Holocene vegetation cover based on a vegetation reconstruction from pollen data (Hoelzmann et al., 1998) and mid-Holocene lake surface area is determined using a water routing and storage model (Tegen et al., 2002). In agreement with data from marine sediment cores, our simulations show that mid-Holocene dust deposition fluxes in the North Atlantic were two to three times lower compared with pre-industrial fluxes. We identify Saharan land surface characteristics to be the main control on dust transport from North Africa to the North Atlantic. We conclude that the variation in dust accumulation in marine cores is likely related to a transition of the Saharan landscape during the Holocene and not due to changes in atmospheric or ocean conditions alone. Reference: deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M.: Abrupt onset and termination of the African Humid Period:: rapid climate responses to gradual insolation forcing, Quaternary Science Reviews, 19, 347-361, 2000. Hoelzmann, P., Jolly, D., Harrison, S. P., Laarif, F

  2. Luminescence Dating of Sediments from the Luthern Valley, Central Switzerland, and Implications for the Chronology of the Last Glacial Cycle

    NASA Astrophysics Data System (ADS)

    Preusser, Frank; Müller, Benjamin U.; Schlüchter, Christian

    2001-03-01

    The advancing glaciers of the last glacial maximum either eroded or deeply buried older sediments in the Swiss Alpine Foreland. However, part of the Swiss Plateau was not covered by ice and is therefore an excellent area for investigating climate and environmental change during the Upper Pleistocene. Repeated fluvial sequences can be studied in several pits along the Luthern Valley. The chronological framework is based on lithostratigraphy, pollen analysis, U/Th dating, and, recently, heavy mineral analysis and luminescence dating. The oldest unit, the Untere Zeller Schotter braided river deposit, represents cold climate conditions and presumably a glaciation prior to the Eemian Interglaciation. The last interglacial period and the very beginning of the last glacial cycle is represented by the Mittlere Zeller Schotter, sediments of a meandering fluvial system. Younger braided river sediments, the Obere Zeller Schotter, seem to correlate with the cold climate of oxygen isotope stage (OIS) 4. Weathering of the top of the Obere Zeller Schotter is likely to represent the OIS 3. The advancing Reuss glacier caused erosion of the recent Luthern Valley, cutting into older sediments, with local loess accumulation during the last glacial maximum as indicated by cover sediments on top of the fluvial sequence.

  3. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling.

    PubMed

    Green, Dannielle Senga; Boots, Bas; Sigwart, Julia; Jiang, Shan; Rocha, Carlos

    2016-01-01

    Effects of microplastic pollution on benthic organisms and ecosystem services provided by sedimentary habitats are largely unknown. An outdoor mesocosm experiment was done to realistically assess the effects of three different types of microplastic pollution (one biodegradable type; polylactic acid and two conventional types; polyethylene and polyvinylchloride) at increasing concentrations (0.02, 0.2 and 2% of wet sediment weight) on the health and biological activity of lugworms, Arenicola marina (Linnaeus, 1758), and on nitrogen cycling and primary productivity of the sediment they inhabit. After 31 days, A. marina produced less casts in sediments containing microplastics. Metabolic rates of A. marina increased, while microalgal biomass decreased at high concentrations, compared to sediments with low concentrations or without microplastics. Responses were strongest to polyvinylchloride, emphasising that different materials may have differential effects. Each material needs to be carefully evaluated in order to assess their risks as microplastic pollution. Overall, both conventional and biodegradable microplastics in sandy sediments can affect the health and behaviour of lugworms and directly or indirectly reduce primary productivity of these habitats.

  4. Nitrogen cycling and community structure of proteobacterial beta-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments.

    PubMed

    McCaig, A E; Phillips, C J; Stephen, J R; Kowalchuk, G A; Harvey, S M; Herbert, R A; Embley, T M; Prosser, J I

    1999-01-01

    A multidisciplinary approach was used to study the effects of pollution from a marine fish farm on nitrification rates and on the community structure of ammonia-oxidizing bacteria in the underlying sediment. Organic content, ammonium concentrations, nitrification rates, and ammonia oxidizer most-probable-number counts were determined in samples of sediment collected from beneath a fish cage and on a transect at 20 and 40 m from the cage. The data suggest that nitrogen cycling was significantly disrupted directly beneath the fish cage, with inhibition of nitrification and denitrification. Although visual examination indicated some slight changes in sediment appearance at 20 m, all other measurements were similar to those obtained at 40 m, where the sediment was considered pristine. The community structures of proteobacterial beta-subgroup ammonia-oxidizing bacteria at the sampling sites were compared by PCR amplification of 16S ribosomal DNA (rDNA), using primers which target this group. PCR products were analyzed by denaturing gradient gel electrophoresis (DGGE) and with oligonucleotide hybridization probes specific for different ammonia oxidizers. A DGGE doublet observed in PCR products from the highly polluted fish cage sediment sample was present at a lower intensity in the 20-m sample but was absent from the pristine 40-m sample station. Band migration, hybridization, and sequencing demonstrated that the doublet corresponded to a marine Nitrosomonas group which was originally observed in 16S rDNA clone libraries prepared from the same sediment samples but with different PCR primers. Our data suggest that this novel Nitrosomonas subgroup was selected for within polluted fish farm sediments and that the relative abundance of this group was influenced by the extent of pollution.

  5. Interactions Between Microbial Iron Reduction and Metal Geochemistry: Effect of Redox Cycling on Transition Metal Speciation in Iron Bearing Sediments

    SciTech Connect

    D. Craig Cooper; Flynn W. Picardal; Aaron J. Coby

    2006-02-01

    Microbial iron reduction is an important biogeochemical process that can affect metal geochemistry in sediments through direct and indirect mechanisms. With respect to Fe(III) (hydr)oxides bearing sorbed divalent metals, recent reports have indicated that (1) microbial reduction of goethite/ferrihydrite mixtures preferentially removes ferrihydrite, (2) this process can incorporate previously sorbed Zn(II) into an authigenic crystalline phase that is insoluble in 0.5 M HCl, (3) this new phase is probably goethite, and (4) the presence of nonreducible minerals can inhibit this transformation. This study demonstrates that a range of sorbed transition metals can be selectively sequestered into a 0.5 M HCl insoluble phase and that the process can be stimulated through sequential steps of microbial iron reduction and air oxidation. Microbial reduction experiments with divalent Cd, Co, Mn, Ni, Pb, and Zn indicate that all metals save Mn experienced some sequestration, with the degree of metal incorporation into the 0.5 M HCl insoluble phase correlating positively with crystalline ionic radius at coordination number = 6. Redox cycling experiments with Zn adsorbed to synthetic goethite/ferrihydrite or iron-bearing natural sediments indicate that redox cycling from iron reducing to iron oxidizing conditions sequesters more Zn within authigenic minerals than microbial iron reduction alone. In addition, the process is more effective in goethite/ferrihydrite mixtures than in iron-bearing natural sediments. Microbial reduction alone resulted in a ~3× increase in 0.5 M HCl insoluble Zn and increased aqueous Zn (Zn-aq) in goethite/ferrihydrite, but did not significantly affect Zn speciation in natural sediments. Redox cycling enhanced the Zn sequestration by ~12% in both goethite/ferrihydrite and natural sediments and reduced Zn-aq to levels equal to the uninoculated control in goethite/ferrihydrite and less than the uninoculated control in natural sediments. These data suggest

  6. Biostimulation of Iron Reduction and Subsequent Oxidation of Sediment Containing Fe-silicates and Fe-oxides: Effect of Redox Cycling on Fe(III) Bioreduction

    SciTech Connect

    Komlos, John; Kukkadapu, Ravi K.; Zachara, John M.; Jaffe, Peter R.

    2007-07-01

    Microbial reduction of iron has been shown to be important in the transformation and remediation of contaminated sediments. Re-oxidation of microbially reduced iron may occur in sediments that experience oxidation-reduction cycling and can thus impact the extent of contaminant remediation. The purpose of this research was to quantify iron oxidation in a flow-through column filled with biologically-reduced sediment and to compare the iron phases in the re-oxidized sediment to both the pristine and biologically-reduced sediment. The sediment contained both Fe(III)-oxides (primarily goethite) and silicate Fe (illite/vermiculite) and was biologically reduced in phosphate buffered (PB) medium during a 497 day column experiment with acetate supplied as the electron donor. Long-term iron reduction resulted in partial reduction of silicate Fe(III) without any goethite reduction, based on Mössbauer spectroscopy measurements. This reduced sediment was treated with an oxygenated PB solution in a flow-through column resulting in the oxidation of 38% of the biogenic Fe(II). Additional batch experiments showed that the Fe(III) in the oxidized sediment was more quickly reduced compared to the pristine sediment, indicating that oxidation of the sediment not only regenerated Fe(III) but also enhanced iron reduction compared to the pristine sediment. Oxidation-reduction cycling may be a viable method to extend iron-reducing conditions during in-situ bioremediation.

  7. High-Frequency Mechanostimulation of Cell Adhesion.

    PubMed

    Kadem, Laith F; Suana, K Grace; Holz, Michelle; Wang, Wei; Westerhaus, Hannes; Herges, Rainer; Selhuber-Unkel, Christine

    2017-01-02

    Cell adhesion is regulated by molecularly defined protein interactions and by mechanical forces, which can activate a dynamic restructuring of adhesion sites. Previous attempts to explore the response of cell adhesion to forces have been limited to applying mechanical stimuli that involve the cytoskeleton. In contrast, we here apply a new, oscillatory type of stimulus through push-pull azobenzenes. Push-pull azobenzenes perform a high-frequency, molecular oscillation upon irradiation with visible light that has frequently been applied in polymer surface relief grating. We here use these oscillations to address single adhesion receptors. The effect of molecular oscillatory forces on cell adhesion has been analyzed using single-cell force spectroscopy and gene expression studies. Our experiments demonstrate a reinforcement of cell adhesion as well as upregulated expression levels of adhesion-associated genes as a result of the nanoscale "tickling" of integrins. This novel type of mechanical stimulus provides a previously unprecedented molecular control of cellular mechanosensing.

  8. Computer modeling of tactical high frequency antennas

    NASA Astrophysics Data System (ADS)

    Gregory, Bobby G., Jr.

    1992-06-01

    The purpose of this thesis was to compare the performance of three tactical high frequency antennas to be used as possible replacement for the Tactical Data Communications Central (TDCC) antennas. The antennas were modeled using the Numerical Electromagnetics Code, Version 3 (NEC3), and the Eyring Low Profile and Buried Antenna Modeling Program (PAT7) for several different frequencies and ground conditions. The performance was evaluated by comparing gain at the desired takeoff angles, the voltage standing wave ratio of each antenna, and its omni-directional capability. The buried antenna models, the ELPA-302 and horizontal dipole, were most effective when employed over poor ground conditions. The best performance under all conditions tested was demonstrated by the HT-20T. Each of these antennas have tactical advantages and disadvantages and can optimize communications under certain conditions. The selection of the best antenna is situation dependent. An experimental test of these models is recommended to verify the modeling results.

  9. Parametric nanomechanical amplification at very high frequency.

    PubMed

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  10. Degradation of PAHs by high frequency ultrasound.

    PubMed

    Manariotis, Ioannis D; Karapanagioti, Hrissi K; Chrysikopoulos, Constantinos V

    2011-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent organic compounds, which have been reported in the literature to efficiently degrade at low (e.g. 20 kHz) and moderate (e.g. 506 kHz) ultrasound frequencies. The present study focuses on degradation of naphthalene, phenanthrene, and pyrene by ultrasound at three different relatively high frequencies (i.e. 582, 862, and 1142 kHz). The experimental results indicate that for all three frequencies and power inputs ≥ 133 W phenanthrene degrades to concentrations lower than our experimental detection limit (<1 μg/L). Phenanthrene degrades significantly faster at 582 kHz than at 862 and 1142 kHz. For all three frequencies, the degradation rates per unit mass are similar for naphthalene and phenanthrene and lower for pyrene. Furthermore, naphthalene degradation requires less energy than phenanthrene, which requires less energy than pyrene under the same conditions. No hexane-extractable metabolites were identified in the solutions.

  11. Fundamentals of bipolar high-frequency surgery.

    PubMed

    Reidenbach, H D

    1993-04-01

    In endoscopic surgery a very precise surgical dissection technique and an efficient hemostasis are of decisive importance. The bipolar technique may be regarded as a method which satisfies both requirements, especially regarding a high safety standard in application. In this context the biophysical and technical fundamentals of this method, which have been known in principle for a long time, are described with regard to the special demands of a newly developed field of modern surgery. After classification of this method into a general and a quasi-bipolar mode, various technological solutions of specific bipolar probes, in a strict and in a generalized sense, are characterized in terms of indication. Experimental results obtained with different bipolar instruments and probes are given. The application of modern microprocessor-controlled high-frequency surgery equipment and, wherever necessary, the integration of additional ancillary technology into the specialized bipolar instruments may result in most useful and efficient tools of a key technology in endoscopic surgery.

  12. High-frequency ultrasonic wire bonding systems

    PubMed

    Tsujino; Yoshihara; Sano; Ihara

    2000-03-01

    The vibration characteristics of longitudinal-complex transverse vibration systems with multiple resonance frequencies of 350-980 kHz for ultrasonic wire bonding of IC, LSI or electronic devices were studied. The complex vibration systems can be applied for direct welding of semiconductor tips (face-down bonding, flip-chip bonding) and packaging of electronic devices. A longitudinal-complex transverse vibration bonding system consists of a complex transverse vibration rod, two driving longitudinal transducers 7.0 mm in diameter and a transverse vibration welding tip. The vibration distributions along ceramic and stainless-steel welding tips were measured at up to 980 kHz. A high-frequency vibration system with a height of 20.7 mm and a weight of less than 15 g was obtained.

  13. Corrosion monitoring using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  14. Corrosion monitoring using high-frequency guided waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  15. Mercury cycling in stream ecosystems. 2. Benthic methylmercury production and bed sediment - Pore water partitioning

    USGS Publications Warehouse

    Marvin-DiPasquale, M.; Lutz, M.A.; Brigham, M.E.; Krabbenhoft, D.P.; Aiken, G.R.; Orem, W.H.; Hall, B.D.

    2009-01-01

    Mercury speciation, controls on methylmercury (MeHg) production, and bed sediment - pore water partitioning of total Hg (THg) and MeHg were examined in bed sediment from eight geochemically diverse streams where atmospheric deposition was the predominant Hg input. Across all streams, sediment THg concentrations were best described as a combined function of sediment percent fines (%fines; particles < 63 ??m) and organic content. MeHg concentrations were best described as a combined function of organic content and the activity of the Hg(II)-methylating microbial community and were comparable to MeHg concentrations in streams with Hg inputs from industrial and mining sources. Whole sediment tin-reducible inorganic reactive Hg (Hg(II)R) was used as a proxy measure for the Hg(II) pool available for microbial methylation. In conjunction with radiotracer-derived rate constants of 203Hg(II) methylation, Hg(II)R was used to calculate MeHg production potential rates and to explain the spatial variability in MeHg concentration. The %Hg(II)R (of THg) was low (2.1 ?? 5.7%) and was inversely related to both microbial sulfate reduction rates and sediment total reduced sulfur concentration. While sediment THg concentrations were higher in urban streams, %MeHg and %Hg(II)R were higher in nonurban streams. Sediment pore water distribution coefficients (log Kd's) for both THg and MeHg were inversely related to the log-transformed ratio of pore water dissolved organic carbon (DOC) to bed sediment %fines. The stream with the highest drainage basin wetland density also had the highest pore water DOC ?? 2009 American Chemical Society.

  16. Sulfur cycling of intertidal Wadden Sea sediments (Konigshafen, Island of Sylt, Germany): sulfate reduction and sulfur gas emission

    NASA Astrophysics Data System (ADS)

    Kristensen, E.; Bodenbender, J.; Jensen, M. H.; Rennenberg, H.; Jensen, K. M.

    2000-05-01

    Sulfate reduction rates (SRR t) and reduced inorganic sulfur pools (RIS) in Wadden Sea sediment as well as sulfur gas emissions directly to the atmosphere were measured at intervals of 2 to 12 months from 1991 to 1994. Three stations were chosen in the intertidal embayment, Königshafen, representing the range of sediments found in the Wadden Sea: Organic-poor coarse sand, organic-poor and Arenicola marina inhabited medium sand, and organic-rich muddy sand. Maximum SRR t were 2 to 5 times higher in muddy sand than in the sandy sediments. The depth-integrated SRR t varied 12 to 13-fold on a seasonal basis at the three stations. Although temperature controls biochemical processes, the overall control is more complex due to the simultaneous influence of other seasonal factors such as availability of organic matter and oxidation level of surface sediment. The sedimentary RIS pools were low due to iron limitation and contained only 30% acid volatile sulfur (AVS). Muddy sand had up to an order of magnitude more RIS than the two sandy sediments. The turnover of RIS was rapid (turnover time from ˜1 to 32 h), fastest during summer and at the sandy stations. The emission of S-gases was dominated by H 2S during summer (45-67% of the total), and was highest in muddy and lowest in coarse sand. H 2S was less important in early spring (3-49% of the total). Other sulfur gases, such as COS, DMS and CS 2, each accounted for less than 20% of the total sulfur emissions with no specific temporal and spatial pattern. Due to the low content of metals in the sediment, the reduced sulfur pools are cycled rapidly with chemical and biological reoxidation at oxic-anoxic boundaries as a major sink. Thus, the emissions of H 2S account for less than 1‰ of the sulfide produced.

  17. The effect of nitrogen enrichment on c(1)-cycling microorganisms and methane flux in salt marsh sediments.

    PubMed

    Irvine, Irina C; Vivanco, Lucía; Bentley, Peris N; Martiny, Jennifer B H

    2012-01-01

    Methane (CH(4)) flux from ecosystems is driven by C(1)-cycling microorganisms - the methanogens and the methylotrophs. Little is understood about what regulates these communities, complicating predictions about how global change drivers such as nitrogen enrichment will affect methane cycling. Using a nitrogen addition gradient experiment in three Southern California salt marshes, we show that sediment CH(4) flux increased linearly with increasing nitrogen addition (1.23 μg CH(4) m(-2) day(-1) for each g N m(-2) year(-1) applied) after 7 months of fertilization. To test the reason behind this increased CH(4) flux, we conducted a microcosm experiment altering both nitrogen and carbon availability under aerobic and anaerobic conditions. Methanogenesis appeared to be both nitrogen and carbon (acetate) limited. N and C each increased methanogenesis by 18%, and together by 44%. In contrast, methanotrophy was stimulated by carbon (methane) addition (830%), but was unchanged by nitrogen addition. Sequence analysis of the sediment methylotroph community with the methanol dehydrogenase gene (mxaF) revealed three distinct clades that fall outside of known lineages. However, in agreement with the microcosm results, methylotroph abundance (assayed by qPCR) and composition (assayed by terminal restriction fragment length polymorphism analysis) did not vary across the experimental nitrogen gradient in the field. Together, these results suggest that nitrogen enrichment to salt marsh sediments increases methane flux by stimulating the methanogen community.

  18. The Effect of Nitrogen Enrichment on C1-Cycling Microorganisms and Methane Flux in Salt Marsh Sediments

    PubMed Central

    Irvine, Irina C.; Vivanco, Lucía; Bentley, Peris N.; Martiny, Jennifer B. H.

    2012-01-01

    Methane (CH4) flux from ecosystems is driven by C1-cycling microorganisms – the methanogens and the methylotrophs. Little is understood about what regulates these communities, complicating predictions about how global change drivers such as nitrogen enrichment will affect methane cycling. Using a nitrogen addition gradient experiment in three Southern California salt marshes, we show that sediment CH4 flux increased linearly with increasing nitrogen addition (1.23 μg CH4 m−2 day−1 for each g N m−2 year−1 applied) after 7 months of fertilization. To test the reason behind this increased CH4 flux, we conducted a microcosm experiment altering both nitrogen and carbon availability under aerobic and anaerobic conditions. Methanogenesis appeared to be both nitrogen and carbon (acetate) limited. N and C each increased methanogenesis by 18%, and together by 44%. In contrast, methanotrophy was stimulated by carbon (methane) addition (830%), but was unchanged by nitrogen addition. Sequence analysis of the sediment methylotroph community with the methanol dehydrogenase gene (mxaF) revealed three distinct clades that fall outside of known lineages. However, in agreement with the microcosm results, methylotroph abundance (assayed by qPCR) and composition (assayed by terminal restriction fragment length polymorphism analysis) did not vary across the experimental nitrogen gradient in the field. Together, these results suggest that nitrogen enrichment to salt marsh sediments increases methane flux by stimulating the methanogen community. PMID:22470369

  19. Active Control of High-Frequency Combustor Instability Demonstrated

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    To reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities-high-pressure oscillations much like sound waves that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the combustor and turbine safe operating life. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Propulsion and Power Program, the NASA Glenn Research Center in partnership with Pratt & Whitney, United Technologies Research Center, and Georgia Institute of Technology is developing technologies for the active control of combustion instabilities.

  20. Benthic sediment composition and nutrient cycling in an Intermittently Closed and Open Lake Lagoon

    NASA Astrophysics Data System (ADS)

    Spooner, D. R.; Maher, W.

    2009-01-01

    Surfical sediments within Corunna Lake, a moderate size Intermittently Closed and Open Lake Lagoon (ICOLL), were examined for solid phase nutrient concentrations (TN, TP, TOC,) and solute exchange rates between the sediment and water column (O 2, NO 3-N, NH 4-N, FRP, and N 2). The surfical sediments in Corunna Lake contained high concentrations of TN (5 mg/g dry mass), total phosphorus (0.6 mg/g dry mass), and TOC (~ 5% dry mass). The carbon stable isotope ratio ( δ13C) and TOC:TN ratios ( δ13C ~ - 24, TOC:TN ~ 11-14) demonstrated that the composition of the organic matter in the sediment was a mixture derived primarily of degraded planktonic matter. The close association between TP and Fe concentrations highlighted the potential role Fe plays in mediating Filterable Reactive Phosphorus (FRP) concentrations in the water column of Corunna Lake. In situ benthic chamber incubations were used to measure benthic fluxes. Solute exchange rates between the sediment and water column in Corunna Lake were similar to other reported studies (O 2 = - 469 to - 1765 µmol m - 2 h - 1, NH 4-N = 0.1-63 µmol m - 2 h - 1, NO 2/NO 3-N = 0 µmol m - 2 h - 1, FRP = - 4-1.6 µmol m - 2 h - 1and N 2 = 12-356 µmol m - 2 h - 1). As more carbon was deposited and mineralized the efficiency of the bacterial population to denitrify nitrogen in the sediment decreases. The linkage between land use and benthic biogeochemistry was also explored. A dairy farm exists in the middle catchment of Corunna Lake, and the receiving bay sediment consistently demonstrated the highest oxygen consumption rates in winter and spring (- 1408 µmol m - 2 h - 1 in winter, - 1691 µmol m - 2 h - 1 in spring) and lowest denitrification efficiencies during summer (~ 3%). Nitrate/nitrite fluxes were not observed during any of the chamber incubations, with the concentrations of nitrate/nitrite being below detection limits (< 10 μg/L). Seasonal changes influenced the rates of solute exchange between the sediment and

  1. Resent developments in high-frequency surface-wave techniques

    NASA Astrophysics Data System (ADS)

    Xia, J.; Pan, Y.; Zeng, C.

    2012-12-01

    calculate phase velocities when wavelengths < 2.5 h (h is the thickness of the topmost layer). Both solutions have been verified using numerical modeling both in the time-space and the frequency-velocity domains. The algorithm that we newly developed can handle any arbitrary velocity models, which is the foundation of high-frequency Rayleigh-wave methods and is critical to near-surface applications. Seismic numerical modeling is a matured technique in oil/gas seismic exploration. Applying algorithms used in oil/gas industry to near-surface seismic modeling needs extra caution. Unconsolidated sediments are most common materials in near surface, which results in extremely high Poisson's ratios, such as 0.49. Numerical modeling of P-Sv data with the perfect match layer technique works successfully in oil/gas industry. When a Poisson's ratio of a medium is 0.38 or higher, however, it fails. With the multiaxial perfect match layer (MPML) technique, we successfully handle this problem of modeling high-frequency P-Sv data due to a medium with a Poisson's ratio being higher than 0.38. Modeling results of high-frequency P-Sv data with high Poisson's ratios in the time-space and the frequency-velocity domains demonstrate the beauty of the MPML.

  2. Effects of Louisiana crude oil on the sheepshead minnow (Cyprinodon variegatus) during a life-cycle exposure to laboratory oiled sediment.

    PubMed

    Raimondo, Sandy; Hemmer, Becky L; Lilavois, Crystal R; Krzykwa, Julie; Almario, Alex; Awkerman, Jill A; Barron, Mace G

    2016-11-01

    Determining the long-term effects of crude oil exposure is critical for ascertaining population-level ecological risks of spill events. A 19-week complete life-cycle experiment was conducted with the estuarine sheepshead minnow (Cyprinodon variegatus) exposed to reference (uncontaminated) sediment spiked with laboratory weathered South Louisiana crude (SLC) oil at five concentrations as well as one unspiked sediment control and one seawater (no sediment) control. Newly hatched larvae were exposed to the oiled sediments at measured concentrations of < 1 (sediment control), 50, 103, 193, 347, and 711 mg total polyaromatic hydrocarbons (tPAH)/kg dry sediment. Juveniles were exposed through the reproductively active adult phase at measured concentrations of <1 (sediment control), 52, 109, 199, 358, and 751 mg tPAH/kg sediment. Throughout the exposure, fish were assessed for growth, survival, and reproduction. Resulting F1 embryos were then collected, incubated, and hatched in clean water to determine if parental full life-cycle exposure to oiled sediment produced trans-generational effects. Larvae experienced significantly reduced standard length (5-13% reduction) and wet weight (13-35% reduction) at concentrations at and above 50 and 103 mg tPAH/kg sediment, respectively. At 92 and 132 days post hatch (dph), standard length was reduced (7-13% reduction) at 199 and 109 mg tPAH/kg dry sediment, respectively, and wet weight for both time periods was reduced at concentrations at and above 109 mg tPAH/kg dry sediment (21-38% reduction). A significant reduction (51-65%) in F0 fecundity occurred at the two highest test concentrations, but no difference was observed in F1 embryo survival. This study is the first to report the effects of chronic laboratory exposure to oiled sediment, and will assist the development of population models for evaluating risk to benthic spawning fish species exposed to oiled sediments. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1627

  3. Analysis of high frequency geostationary ocean colour data using DINEOF

    NASA Astrophysics Data System (ADS)

    Alvera-Azcárate, Aida; Vanhellemont, Quinten; Ruddick, Kevin; Barth, Alexander; Beckers, Jean-Marie

    2015-06-01

    DINEOF (Data Interpolating Empirical Orthogonal Functions), a technique to reconstruct missing data, is applied to turbidity data obtained through the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat Second Generation 2. The aim of this work is to assess if the tidal variability of the southern North Sea in 2008 can be accurately reproduced in the reconstructed dataset. Such high frequency data have not previously been analysed with DINEOF and present new challenges, like a strong tidal signal and long night-time gaps. An outlier detection approach that exploits the high temporal resolution (15 min) of the SEVIRI dataset is developed. After removal of outliers, the turbidity dataset is reconstructed with DINEOF. In situ Smartbuoy data are used to assess the accuracy of the reconstruction. Then, a series of tidal cycles are examined at various positions over the southern North Sea. These examples demonstrate the capability of DINEOF to reproduce tidal variability in the reconstructed dataset, and show the high temporal and spatial variability of turbidity in the southern North Sea. An analysis of the main harmonic constituents (annual cycle, daily cycle, M2 and S2 tidal components) is performed, to assess the contribution of each of these modes to the total variability of turbidity. The variability not explained by the harmonic fit, due to the natural processes and satellite processing errors as noise, is also assessed.

  4. CO2 leakage from carbon dioxide capture and storage (CCS) systems affects organic matter cycling in surface marine sediments.

    PubMed

    Rastelli, Eugenio; Corinaldesi, Cinzia; Dell'Anno, Antonio; Amaro, Teresa; Greco, Silvestro; Lo Martire, Marco; Carugati, Laura; Queirós, Ana M; Widdicombe, Stephen; Danovaro, Roberto

    2016-12-01

    Carbon dioxide capture and storage (CCS), involving the injection of CO2 into the sub-seabed, is being promoted worldwide as a feasible option for reducing the anthropogenic CO2 emissions into the atmosphere. However, the effects on the marine ecosystems of potential CO2 leakages originating from these storage sites have only recently received scientific attention, and little information is available on the possible impacts of the resulting CO2-enriched seawater plumes on the surrounding benthic ecosystem. In the present study, we conducted a 20-weeks mesocosm experiment exposing coastal sediments to CO2-enriched seawater (at 5000 or 20,000 ppm), to test the effects on the microbial enzymatic activities responsible for the decomposition and turnover of the sedimentary organic matter in surface sediments down to 15 cm depth. Our results indicate that the exposure to high-CO2 concentrations reduced significantly the enzymatic activities in the top 5 cm of sediments, but had no effects on subsurface sediment horizons (from 5 to 15 cm depth). In the surface sediments, both 5000 and 20,000 ppm CO2 treatments determined a progressive decrease over time in the protein degradation (up to 80%). Conversely, the degradation rates of carbohydrates and organic phosphorous remained unaltered in the first 2 weeks, but decreased significantly (up to 50%) in the longer term when exposed at 20,000 ppm of CO2. Such effects were associated with a significant change in the composition of the biopolymeric carbon (due to the accumulation of proteins over time in sediments exposed to high-pCO2 treatments), and a significant decrease (∼20-50% at 5000 and 20,000 ppm respectively) in nitrogen regeneration. We conclude that in areas immediately surrounding an active and long-lasting leak of CO2 from CCS reservoirs, organic matter cycling would be significantly impacted in the surface sediment layers. The evidence of negligible impacts on the deeper sediments should be considered with

  5. High frequency, high power capacitor development

    NASA Astrophysics Data System (ADS)

    White, C. W.; Hoffman, P. S.

    1983-03-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  6. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  7. High-Frequency Observations of Blazars

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Marchenko-Jorstad, S. G.; Mattox, J. R.; Wehrle, A. E.; Aller, M. F.

    2000-01-01

    We report on the results of high-frequency VLBA observations of 42 gamma-ray bright blazars monitored at 22 and 43 GHz between 1993.9 and 1997.6. In 1997 the observations included polarization-sensitive imaging. The cores of gamma-ray blazars are only weakly polarized, with EVPAs (electric-vector position angles) usually within 40 deg of the local direction of the jet. The EVPAs of the jet components are usually within 20 deg of the local jet direction. The apparent speeds of the gamma-ray bright blazars are considerably faster than in the general population of bright compact radio sources. Two X-ray flares (observed with RXTE) of the quasar PKS 1510-089 appear to be related to radio flares, but with the radio leading the X-ray variations by about 2 weeks. This can be explained either by synchrotron self-Compton emission in a component whose variations are limited by light travel time or by the Mirror Compton model.

  8. High-Frequency Observations of Blazars

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Marchenko-Jorstad, S. G.; Mattox, J. R.; Wehrle, A. E.; Aller, M. F.

    2000-01-01

    We report on the results of high-frequency VLBA observations of 42 gamma ray bright blazars monitored at 22 and 43 GHz between 1993.9 and 1997-6. In 1997 the observations included polarization-sensitive imaging. The cores of gamma ray blazars are only weakly polarized, with EVPAs (electric-vector position angles) usually within 40 degrees of the local direction of the jet. The EVPAs of the jet components are usually within 20 degrees of the local jet direction. The apparent speeds of the gamma ray bright blazars are considerably faster than in the general population of bright compact radio sources. Two X-ray flares (observed with RXTE) of the quasar PKS 1510-089 appear to be related to radio flares, but with the radio leading the X-ray variations by about 2 weeks. This can be explained either by synchrotron self-Compton emission in a component whose variations are limited by light travel time or by the Mirror Compton model.

  9. A high frequency electromagnetic impedance imaging system

    SciTech Connect

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systems for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.

  10. High-frequency plasma-heating apparatus

    DOEpatents

    Brambilla, Marco; Lallia, Pascal

    1978-01-01

    An array of adjacent wave guides feed high-frequency energy into a vacuum chamber in which a toroidal plasma is confined by a magnetic field, the wave guide array being located between two toroidal current windings. Waves are excited in the wave guide at a frequency substantially equal to the lower frequency hybrid wave of the plasma and a substantially equal phase shift is provided from one guide to the next between the waves therein. For plasmas of low peripheral density gradient, the guides are excited in the TE.sub.01 mode and the output electric field is parallel to the direction of the toroidal magnetic field. For exciting waves in plasmas of high peripheral density gradient, the guides are excited in the TM.sub.01 mode and the magnetic field at the wave guide outlets is parallel to the direction of the toroidal magnetic field. The wave excited at the outlet of the wave guide array is a progressive wave propagating in the direction opposite to that of the toroidal current and is, therefore, not absorbed by so-called "runaway" electrons.

  11. A High Frequency Model of Cascade Noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1998-01-01

    Closed form asymptotic expressions for computing high frequency noise generated by an annular cascade in an infinite duct containing a uniform flow are presented. There are two new elements in this work. First, the annular duct mode representation does not rely on the often-used Bessel function expansion resulting in simpler expressions for both the radial eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an explicit approximate formula for the radial eigenvalues obviating the need for solutions of the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are represented in terms of exponentials eliminating the numerical problems associated with generating the Bessel functions on a computer. The second new element is the construction of an unsteady response model for an annular cascade. The new construction satisfies the boundary conditions on both the cascade and duct walls simultaneously adding a new level of realism to the noise calculations. Preliminary results which demonstrate the effectiveness of the new elements are presented. A discussion of the utility of the asymptotic formulas for calculating cascade discrete tone as well as broadband noise is also included.

  12. High frequency, high power capacitor development

    NASA Technical Reports Server (NTRS)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  13. Metal cycling during sediment early diagenesis in a water reservoir affected by acid mine drainage.

    PubMed

    Torres, E; Ayora, C; Canovas, C R; García-Robledo, E; Galván, L; Sarmiento, A M

    2013-09-01

    The discharge of acid mine drainage (AMD) into a reservoir may seriously affect the water quality. To investigate the metal transfer between the water and the sediment, three cores were collected from the Sancho Reservoir (Iberian Pyrite Belt, SW Spain) during different seasons: turnover event; oxic, stratified period; anoxic and under shallow perennially oxic conditions. The cores were sliced in an oxygen-free atmosphere, after which pore water was extracted by centrifugation and analyzed. A sequential extraction was then applied to the sediments to extract the water-soluble, monosulfide, low crystallinity Fe(III)-oxyhydroxide, crystalline Fe(III)-oxide, organic, pyrite and residual phases. The results showed that, despite the acidic chemistry of the water column (pH<4), the reservoir accumulated a high amount of autochthonous organic matter (up to 12 wt.%). Oxygen was consumed in 1mm of sediment due to organic matter and sulfide oxidation. Below the oxic layer, Fe(III) and sulfate reduction peaks developed concomitantly and the resulting Fe(II) and S(II) were removed as sulfides and probably as S linked to organic matter. During the oxic season, schwertmannite precipitated in the water column and was redissolved in the organic-rich sediment, after which iron and arsenic diffused upwards again to the water column. The flux of precipitates was found to be two orders of magnitude higher than the aqueous one, and therefore the sediment acted as a sink for As and Fe. Trace metals (Cu, Zn, Cd, Pb, Ni, Co) and Al always diffused from the reservoir water and were incorporated into the sediments as sulfides and oxyhydroxides, respectively. In spite of the fact that the benthic fluxes estimated for trace metal and Al were much higher than those reported for lake and marine sediments, they only accounted for less than 10% of their total inventory dissolved in the column water.

  14. Biotic and abiotic pathways of phosphorus cycling in minerals and sediments: insights from oxygen isotopes in phosphate

    SciTech Connect

    Jaisi, Deb P.; Kukkadapu, Ravi K.; Stout, Lisa M.; Varga, Tamas; Blake, Ruth E.

    2011-07-06

    A key question to address in the development of oxygen isotope ratios in phosphate (18Op) as a tracer of biogeochemical cycling of phosphorus in ancient and modern environments is the nature of isotopic signatures associated with uptake and cycling of mineral-bound phosphate by microorganisms. Here we present experimental results aimed at understanding the biotic and abiotic pathway of P cycling during biological uptake of phosphate sorbed to ferrihydrite and the selective uptake of specific sedimentary phosphate phases by Escherichia coli, Vibrio fischeri and Marinobacter aquaeolei. Results indicate that a significant fraction of ferrihydrite-bound phosphate is biologically available. The fraction of phosphate taken up by E. coli attained an equilibrium isotopic composition in a short time (<50 hrs) due to efficient O-isotope exchange between phosphate and water (biotic pathway). The difference in isotopic composition between newly equilibrated aqueous and residual sorbed phosphate promoted the exchange of intact phosphate radicals (abiotic pathway) so that this difference gradually became negligible. In sediment containing different P phases, E. coli and V. fischeri ‘extracted’ loosely sorbed phosphate first while M. aquaeolei preferred iron-oxide bound phosphate. Each bacterium imprinted a biotic isotopic signature on each P phase that it took up and cycled. For example, the 18Op value of the sorbed phosphate phase shifted gradually towards equilibrium isotopic composition and the value of Fe oxide-bound phosphate showed slight changes at first, but when new iron oxides were formed, co-precipitated/occluded phosphate retained 18O values of aqueous phosphate at that time. Concentrations and isotopic compositions of authigenic and detrital phosphates did not change, suggesting that these phosphate phases were not utilized by bacteria. These findings support burgeoning applications of 18Op as a tracer of phosphorus cycling in sediments, soils and aquatic

  15. Long-term (two annual cycles) phytoremediation of heavy metal-contaminated estuarine sediments by Phragmites australis.

    PubMed

    Cicero-Fernández, Diego; Peña-Fernández, Manuel; Expósito-Camargo, Jose A; Antizar-Ladislao, Blanca

    2016-07-20

    The long-term (i.e., two consecutive annual cycles) ability of Phragmites australis to remediate estuarine sediments contaminated with heavy metals (Co, Ni, Mo, Cd, Pb, Cr, Cu, Fe, Mn, Zn and Hg) and trace elements of concern (As, Se, Ba) was investigated using an experimental approach on a pilot plant scale. The accumulation of these elements on belowground and aboveground tissues was monitored during vegetative and senescence periods for two populations of P. australis, originally from contaminated (MIC) and non-contaminated (GAL) estuaries, respectively. The initial concentration of the elements in the contaminated estuarine sediment decreased in the following order: Fe>Mn>Zn>Pb>Ba>Cr>As>Cu>Ni>Co>Mo>Cd>Se>Hg. A similar trend was recorded in the belowground biomass following remediation, suggesting the potential role of P. australis as an effective biomonitoring tool. Hg was not detected in any plant tissue. An overall annual increase of concentration levels in belowground tissue was observed. Overall, this study suggested that P. australis populations from GAL were substantially more efficient in taking up Ni, Mo and Cr during the second annual cycle in both belowground and aboveground tissue than P. australis populations from MIC. Calculated bio-concentration factors (BCF) suggested a clear metal excluder strategy for Co, Cd, Pb, Cu and Fe, with accumulation and stabilisation belowground, with limited translocation into aerial tissues observed during the length of this study. An excluder behaviour for Zn, Ba and Mn was detected during the second annual cycle, coinciding with a substantial increase of concentration levels belowground. This study demonstrated for the first time the long term efficacy of P. australis for phytoremediation of heavy metal contaminated estuarine sediments.

  16. Indirect effects of climate change on zinc cycling in sediments: The role of changing water levels.

    PubMed

    Nedrich, Sara M; Burton, G Allen

    2017-03-06

    Increased variability in lake and river water levels associated with changing climate, could impact the fate and effects of metals in redox sensitive sediments through the alteration of microbial communities, acid-base and redox chemistry. The objective of this study is to determine the influence of water level fluctuation on metal speciation in pore water and predict environmental risk to high carbonate systems. Using experimental microcosms with sediments collected from four metal contaminated coastal freshwater wetlands in Michigan, we conducted water level fluctuation experiments. Porewater and sediment metals (Ca, Cu, Fe, Mg, Mn, Ni, Zn) and important metal binding phases (iron-oxide speciation, acid-volatile sulfide) were quantified. In a short-term drying (seiche) experiment, there were decreases in all porewater metals upon inundation of saturated sediments. During a drought experiment, re-inundation of oxidized sediments increased porewater Cu, Zn, Mg, Ca for most sites. Porewater Zn increased upon inundation to levels exceeding the USEPA threshold for chronic toxicity. These data show the dissolution of metal carbonates and metal sulfates contributes to metal release after re-flooding. These data show we may expect increased ecological risk to organisms present in drought sensitive regions where altered hydroperiods are likely to increase metal bioavailability. This article is protected by copyright. All rights reserved.

  17. Development of a Complete Life Cycle Sediment Toxicity Test for the Sheepshead Minnow (Cyprinodon variegatus)

    EPA Science Inventory

    Existing sediment toxicity test methods are limited to acute and chronic exposure of invertebrates and acute exposure of vertebrates, with limited guidance on the chronic exposure of vertebrates, specifically fishes. A series of life stage-specific studies were conducted to dete...

  18. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  19. Microbial Nitrogen Cycling Associated with the Early Diagenesis of Organic Matter in Subseafloor Sediments

    NASA Astrophysics Data System (ADS)

    Zhao, R.

    2015-12-01

    The early diagenesis of organic matter is the major energy source of marine sedimentary biosphere and thus controls its population size; however, the vertical distribution of any functional groups along with the diagenesis of organic matter is remained unclear, especially for those microbes involved in nitrogen transformation which serve as a major control on the nitrogen flux between reservoirs. Here we investigated the vertical distributions of various functional groups in five sediment cores retrieved from Arctic Mid-Ocean Ridge (AMOR), with emphasis on the nitrifiers, denitrifiers and anaerobic ammonium oxidizing bacteria (anammox). We observed the clear geochemical zonation associated with organic matter diagenesis in the sediments based on the pore water profiles of oxygen, nitrate, ammonium, manganese and sulfate, with distinct geochemical transition zones at the boundaries of geochemical zones, including oxic-anoxic transition zone (OATZ) and nitrate-manganese reduction zone (NMTZ). Nitrate was produced in surface oxygenated sediments and nitrate consumption mainly took place at the NMTZ, splitted between re-oxidation of ammonium and manganese (II). Abundances of ammonia oxidizers, nitrite oxidizers, and denitrifiers, estimated through quantitative PCR targeting their respective functional genes, generally decrease with depth, but constantly elevated around the OATZ, NMTZ, and manganese-reduction zone as well. Anammox bacteria were only detected around the NMTZ where both nitrate/nitrite and ammonium are available. These depth profiles of functional groups were also confirmed by the community structure profiling by prokaryotic 16S rRNA gene tag pyrosequencing. Cell-specific rates of nitrification and denitrification, calculated from the bulk net reaction rates divided by functional group abundances, were similar to those values from oligotrophic sediments like North Pond and thus suggested that nitrifiers and denitirifiers populations were in maintenance

  20. Numerical modelling of subglacial erosion and sediment transport and its application to the North American ice sheets over the Last Glacial cycle

    NASA Astrophysics Data System (ADS)

    Melanson, Alexandre; Bell, Trevor; Tarasov, Lev

    2013-05-01

    Present-day sediment distribution offers a potentially strong constraint on past ice sheet evolution. Glacial system models (GSMs), however, cannot address this constraint while lacking appropriate representations of subglacial sediment production and transport. Incorporating these elements in GSMs is also required in order to quantify the impact of a changing sediment cover on glacial cycle dynamics. Towards these goals, we present a subglacial process model (hereafter referred to as the sediment model) that incorporates mechanisms for sediment production, entrainment, transport, and deposition. Bedrock erosion is calculated by both Hallet's and Boulton's abrasion laws separately, and by a novel quarrying law parametrized as a function of subglacial cavity extent. These process-oriented erosion laws are compared against a simple empirical relationship between erosion rate and the work done by basal stress. Sediment entrainment is represented by Philip's law for regelation intrusion and soft-bed deformation is included as a subglacial sediment transport mechanism. The model is driven by the data-calibrated MUN (3D) GSM and a newly developed subglacial hydrology module. The sediment model is applied to the last North American glacial cycle and predicts sediment thickness and cumulative erosion patterns. Results are obtained in the context of a sensitivity analysis and are compared against the present-day distribution of glacigenic sediment and geological estimates of Laurentide Ice Sheet erosion. Given plausible ranges for the sensitivity parameters, chosen a priori based on available literature or on heuristic arguments, the calculated erosion depths overlap with the geological estimates of Laurentide erosion. Most of the runs in the sensitivity set produce unrealistically thick and continuous moraines along the eastern, southern and western margins of the North American ice complex, which suggests that the model overestimates sediment entrainment and thus

  1. Carbon, nutrient and trace metal cycling in sandy sediments: A comparison of high-energy beaches and backbarrier tidal flats

    NASA Astrophysics Data System (ADS)

    Reckhardt, Anja; Beck, Melanie; Seidel, Michael; Riedel, Thomas; Wehrmann, Achim; Bartholomä, Alexander; Schnetger, Bernhard; Dittmar, Thorsten; Brumsack, Hans-Jürgen

    2015-06-01

    In order to evaluate the importance of coastal sandy sediments and their contribution to carbon, nutrient and metal cycling we investigated two beach sites on Spiekeroog Island, southern North Sea, Germany, and a tidal flat margin, located in Spiekeroog's backbarrier area. We also analyzed seawater and fresh groundwater on Spiekeroog Island, to better define endmember concentrations, which influence our study sites. Intertidal sandy flats and beaches are characterized by pore water advection. Seawater enters the sediment during flood and pore water drains out during ebb and at low tide. This pore water circulation leads to continuous supply of fresh organic substrate to the sediments. Remineralization products of microbial degradation processes, i.e. nutrients, and dissolved trace metals from the reduction of particulate metal oxides, are enriched in the pore water compared to open seawater concentrations. The spatial distribution of dissolved organic carbon (DOC), nutrients (PO43-, NO3-, NO2-, NH4+, Si(OH)4 and total alkalinity), trace metals (dissolved Fe and Mn) as well as sulfate suggests that the exposed beach sites are subject to relatively fast pore water advection, which leads to organic matter and oxygen replenishment. Frequent pore water exchange further leads to comparatively low nutrient concentrations. Sulfate reduction does not appear to play a major role during organic matter degradation. High nitrate concentrations indicate that redox conditions are oxic within the duneward freshwater influenced section, while ammonification, denitrification, manganese and iron reduction seem to prevail in the ammonium-dominated seawater circulation zone. In contrast, the sheltered tidal flat margin site exhibits a different sedimentology (coarser beach sands versus finer tidal flat sands) and nutrients, dissolved manganese and DOC accumulate in the pore water. Ammonium is the dominant pore water nitrogen species and intense sulfate reduction leads to the formation

  2. Bacterial communities potentially involved in iron-cycling in Baltic Sea and North Sea sediments revealed by pyrosequencing.

    PubMed

    Reyes, Carolina; Dellwig, Olaf; Dähnke, Kirstin; Gehre, Matthias; Noriega-Ortega, Beatriz E; Böttcher, Michael E; Meister, Patrick; Friedrich, Michael W

    2016-04-01

    To gain insight into the bacterial communities involved in iron-(Fe) cycling under marine conditions, we analysed sediments with Fe-contents (0.5-1.5 wt %) from the suboxic zone at a marine site in the Skagerrak (SK) and a brackish site in the Bothnian Bay (BB) using 16S rRNA gene pyrosequencing. Several bacterial families, including Desulfobulbaceae, Desulfuromonadaceae and Pelobacteraceae and genera, includingDesulfobacterandGeobacter, known to reduce Fe were detected and showed highest abundance near the Fe(III)/Fe(II) redox boundary. Additional genera with microorganisms capable of coupling fermentation to Fe-reduction, includingClostridiumandBacillus, were observed. Also, the Fe-oxidizing families Mariprofundaceae and Gallionellaceae occurred at the SK and BB sites, respectively, supporting Fe-cycling. In contrast, the sulphate (SO4 (2-)) reducing bacteriaDesulfococcusandDesulfobacteriumwere more abundant at greater depths concurring with a decrease in Fe-reducing activity. The communities revealed by pyrosequencing, thus, match the redox stratification indicated by the geochemistry, with the known Fe-reducers coinciding with the zone of Fe-reduction. Not the intensely studied model organisms, such asGeobacterspp., but rather versatile microorganisms, including sulphate reducers and possibly unknown groups appear to be important for Fe-reduction in these marine suboxic sediments.

  3. S and O Isotope Studies of Microbial S Cycling in the Deep Biosphere of Marine Sediments: Eastern Equatorial Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Blake, R. E.; Bottcher, M. E.; Surkov, A. V.; Ferdelman, T. G.; Jorgensen, B. B.

    2004-12-01

    We have determined the oxygen (18O/16O) and sulfur (34S/32S) isotope ratios of porewater sulfate to depths of over 400 mbsf in sediments from open-ocean and upwelling sites in the Eastern Equatorial Pacific ocean. Sulfate δ 18O ranges from near-normal seawater values (9.5 permil) at organic-poor open-ocean sites, to approximately 30 permil at sites with higher organic matter content and higher associated microbial activity. Depth-correlative trends of δ 18O, δ 34S, alkalinity, methane, ammonium and the presence of sulfide, indicate significant oxidation of sedimentary organic matter by sulfate-reducing microbial populations as well as anaerobic oxidation of methane. δ 18O-SO4 values at low-activity sites reveal the presence of significant microbial sulfur-cycling activity despite relatively flat sulfate concentration and δ 34S profiles. This activity may include contributions from several processes including: enzyme-catalyzed equilibration between oxygen in sulfate and water superimposed upon microbial sulfate reduction, sulfide oxidation, and bacterial disproportionation of sulfur intermediates. Large isotope enrichment factors observed at low-activity sites (40-80 permil) likely reflect concurrent processes of: kinetic isotope fractionation, equilibrium fractionation between sulfate and water, and sulfide oxidation at low rates of sulfate reduction. Results of this study indicate that coupled measurements of S and O isotope ratios of porewater sulfate are a powerful tool for tracing microbial activity and sulfur cycling in marine sediments.

  4. Sensor Measurements and Sediment Incubations Indicate Diurnal Redox Cycling Associate With Arsenic Mobilization at a Bangladeshi Rice Paddy

    NASA Astrophysics Data System (ADS)

    Lin, T.; Lin, C.; Ramanathan, N.; Neumann, R.; Harvey, C.; Jay, J.

    2007-12-01

    The presence of arsenic in the groundwater has led to the largest environmental poisoning in history; tens of millions of people in the Ganges Delta continue to drink groundwater that is dangerously contaminated with arsenic (As). Rice fields receive large loads of arsenic with irrigation water and provide recharge to the underlying aquifer. It is currently not known whether rice fields are a sink or source of arsenic in the hydrologic system. In the dry season, as As(III)-containing minerals are oxidized, As(V) is released and will adhere to Fe hydr(oxide) minerals. When sediments are inundated with water, reducing conditions will then drive reduction of Fe hydr(oxides) and release of As. We have been intensively studying a field site in Munshiganj, Bangladesh with extremely high levels of arsenic in groundwater (up to 1.2 mg/L). To better understand geochemical and microbial processes leading to As mobilization in surface sediment, we deployed sensors to take temporally dense measurements across our experimental rice paddy. Data collected in both 2006 and 2007 showed trends in geochemical parameters indicating that diurnal, possibly plant-induced, processes may be important. Over a two month period, nitrate concentrations decrease consistently each day as ammonium levels increase, presumably through temperature driven reductive processes. Nitrate concentrations in the subsurface then increase while ammonium levels decrease, possibly due to root oxygen leakage or rapid infiltration of oxygen rich surface water. Using sediment from the rice paddy and artificial irrigation water, laboratory microcosms were constructed to simulate the diurnal cycles observed at the field site. In carbon-ammended treatments, Fe and As cycling can occur on the order of days. Oscillations in redox conditions on diurnal as well as seasonal time scales may be important in the mobilization of arsenic into aquifers. By elucidating As mobilization mechanisms at an experimental rice paddy

  5. Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity

    PubMed Central

    Adams, Melissa M.; Hoarfrost, Adrienne L.; Bose, Arpita; Joye, Samantha B.; Girguis, Peter R.

    2013-01-01

    Short-chain alkanes play a substantial role in carbon and sulfur cycling at hydrocarbon-rich environments globally, yet few studies have examined the metabolism of ethane (C2), propane (C3), and butane (C4) in anoxic sediments in contrast to methane (C1). In hydrothermal vent systems, short-chain alkanes are formed over relatively short geological time scales via thermogenic processes and often exist at high concentrations. The sediment-covered hydrothermal vent systems at Middle Valley (MV, Juan de Fuca Ridge) are an ideal site for investigating the anaerobic oxidation of C1–C4 alkanes, given the elevated temperatures and dissolved hydrocarbon species characteristic of these metalliferous sediments. We examined whether MV microbial communities oxidized C1–C4 alkanes under mesophilic to thermophilic sulfate-reducing conditions. Here we present data from discrete temperature (25, 55, and 75°C) anaerobic batch reactor incubations of MV sediments supplemented with individual alkanes. Co-registered alkane consumption and sulfate reduction (SR) measurements provide clear evidence for C1–C4 alkane oxidation linked to SR over time and across temperatures. In these anaerobic batch reactor sediments, 16S ribosomal RNA pyrosequencing revealed that Deltaproteobacteria, particularly a novel sulfate-reducing lineage, were the likely phylotypes mediating the oxidation of C2–C4 alkanes. Maximum C1–C4 alkane oxidation rates occurred at 55°C, which reflects the mid-core sediment temperature profile and corroborates previous studies of rate maxima for the anaerobic oxidation of methane (AOM). Of the alkanes investigated, C3 was oxidized at the highest rate over time, then C4, C2, and C1, respectively. The implications of these results are discussed with respect to the potential competition between the anaerobic oxidation of C2–C4alkanes with AOM for available oxidants and the influence on the fate of C1 derived from these hydrothermal systems. PMID:23717305

  6. Effects of planting Phragmites australis on nitrogen removal, microbial nitrogen cycling, and abundance of ammonia-oxidizing and denitrifying microorganisms in sediments.

    PubMed

    Toyama, Tadashi; Nishimura, Yoshiko; Ogata, Yuka; Sei, Kazunari; Mori, Kazuhiro; Ike, Michihiko

    2015-10-21

    We examined the effect of planting an emergent aquatic plant (Phragmites australis) on nitrogen removal from sediments using a 42-d pot experiment. The experimental pot systems comprised two types of sediments planted with and without young P. australis. Total nitrogen (total N), total dissolved N, and NH4-N in the sediments decreased markedly after planting. In contrast, those levels decreased only slightly in the unplanted sediments. The decrease in total N in the P. australis-planted sediments was 7-20 times those in the unplanted sediments. Abundances of bacterial 16S rRNA, archaeal 16S rRNA, ammonia-oxidizing bacterial ammonia monooxygenase (amoA), ammonia-oxidizing archaeal amoA, and denitrifying bacterial nitrite reductase (nirK) genes increased significantly in sediments after planting. Phragmites australis appears to have released oxygen and created a repeating cycle of oxidizing and reducing conditions in the sediments. These conditions should promote mineralization of organic N, nitrification, and denitrification in the sediments. Phragmites australis absorbed bioavailable nitrogen generated by microbial nitrogen metabolism. During the 42-d period after planting, 31-44% of total N was removed by microbial nitrogen cycling, and 56-69% was removed via absorption by P. australis. These results suggest that planting P. australis can increase microbial populations and their activities, and that nitrogen removal can be accelerated by the combined functions of P. australis and microorganisms in the sediment. Thus, planting P. australis has considerable potential as an effective remediation technology for eutrophic sediments.

  7. Halogens in the Dry Valleys Lakes, Antarctica: dynamic cycling between water, sediment, and cryogenic evaporites

    NASA Astrophysics Data System (ADS)

    Snyder, G. T.; Dowling, C. B.; Harbert, A.; Lu, H.; Lyons, W. B.; Welch, K. A.

    2006-12-01

    Many of the McMurdo Dry Valleys lakes of Antarctica exhibit saline to hypersaline bottom waters whose chemistry is distinct from that of sea water. The source and relative abundance of dissolved Cl, Br, and I in these unusual waters has been modified by several potential processes including: seawater incursions, water- rock interactions, microbial scavenging, glacial melting and precipitation, and atmospheric deposition. Since all of these processes are affected by both long-term and short-term climate change, lake waters and the salts that are deposited around them provide sensitive indicators of lake dessication and refilling in the past. We present elemental analyses, not only of the lake water, but also of bottom sediments and cryogenic evaporites recovered from the Dry Valleys. XRD analyses indicate that gypsum and antarcticite are precipitated around saline lakes presently situated more than 40 km from the ocean (Vanda, Don Juan, Joyce), while mirabilite is found near small pools in the Garwood Valley, only a few km from the ocean. Lake water enrichments in Ca and Cl, relative to Na suggest that either dissolution of gypsum and antarcticite has occurred in Don Juan Pond and Lake Vanda, or that these two small bodies of water previously lost sodium to mirabilite formation. Lakes Fryxell and Joyce, as well as waters in Garwood Valley show near-sea water ratios. Dissolved iodine, and to a lesser extent bromine, are commonly associated with diagenesis of marine organic matter in regions of high productivity, so it is surprising that the Dry Valleys lake waters are enriched in these two elements. These enrichments are also apparent in pore fluids of shallow sediments on the lake bottoms. In addition, the sediments themselves are highly enriched in iodine in the upper 5 cm (up to 77 ppm). This is likely due to remobilization of dissolved iodide, which is mobile in reduced form, but becomes fixed as adsorbed or organic iodine upon diffusing into shallow oxic

  8. Life of fluorescent lamps operated at high frequencies with solid-state ballasts

    NASA Astrophysics Data System (ADS)

    Verderber, R. R.; Morse, O.; Rubinstein, F. M.

    1985-07-01

    Standard 40-watt, F-40, rapid-start, fluorescent lamps were operated with solid-state ballasts following the standard life-testing cycle of 3 hours on and 20 minutes off for more than 20,000 hours at high frequency. Lamp operating characteristics (starting voltage, filament voltage, arc current, and current-crest factor) were studied as factors affecting lamp life. Measurements show that fluorescent lamps can attain rated life at high frequency using solid-state ballasts. When lamps are operated in the dimmed mode, full filament power is required to sustain lamplife. The rate of lamp lumen depreciation is dependent on the lamp loading and not the operating frequency.

  9. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, Eric S.; Campbell, David V.

    1997-01-01

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer.

  10. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, E.S.; Campbell, D.V.

    1997-04-29

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer. 22 figs.

  11. High Frequency Acoustic Propagation using Level Set Methods

    DTIC Science & Technology

    2007-01-01

    solution of the high frequency approximation to the wave equation. Traditional solutions to the Eikonal equation in high frequency acoustics are...curvature can be extracted at any point of the front from the level set function (provided the normal and curvature are well-defined at that point ), and... points per wavelength to resolve the wave). Ray tracing is therefore the current standard for high frequency propagation modeling. LSM may provide

  12. High-frequency Probing Diagnostic for Hall Current Plasma Thrusters

    SciTech Connect

    A.A. Litvak; Y. Raitses; N.J. Fisch

    2001-10-25

    High-frequency oscillations (1-100 MHz) in Hall thrusters have apparently eluded significant experimental scrutiny. A diagnostic setup, consisting of a single Langmuir probe, a special shielded probe connector-positioner, and an electronic impedance-matching circuit, was successfully built and calibrated. Through simultaneous high-frequency probing of the Hall thruster plasma at multiple locations, high-frequency plasma waves have been identified and characterized for various thruster operating conditions.

  13. Redox conditions and trace metal cycling in coastal sediments from the maritime Antarctic

    NASA Astrophysics Data System (ADS)

    Monien, Patrick; Lettmann, Karsten Alexander; Monien, Donata; Asendorf, Sanja; Wölfl, Anne-Cathrin; Lim, Chai Heng; Thal, Janis; Schnetger, Bernhard; Brumsack, Hans-Jürgen

    2014-09-01

    Redox-sensitive trace metals (Mn, Fe, U, Mo, Re), nutrients and terminal metabolic products (NO3-, NH4+, PO43-, total alkalinity) were investigated for the first time in pore waters of Antarctic coastal sediments. The results of this study reveal a high spatial variability in redox conditions in surface sediments from Potter Cove, King George Island, western Antarctic Peninsula. Particularly in the shallower areas of the bay the significant correlation between sulphate depletion and total alkalinity, the inorganic product of terminal metabolism, indicates sulphate reduction to be the major pathway of organic matter mineralisation. In contrast, dissimilatory metal oxide reduction seems to be prevailing in the newly ice-free areas and the deeper troughs, where concentrations of dissolved iron of up to 700 μM were found. We suggest a combination of several factors to be responsible for the domination of metal oxide reduction over sulphate reduction in these areas. These include the increased accumulation of fine-grained material with high amounts of reducible metal oxides, a reduced availability of metabolisable organic matter and an enhanced physical and biological disturbance by bottom water currents, ice scouring and burrowing organisms. Based on modelled iron fluxes we calculate the contribution of the Antarctic shelf to the pool of potentially bioavailable iron (Feb) to be 6.9 × 103 to 790 × 103 t yr-1. Consequently, these shelf sediments would provide an Feb flux of 0.35-39.5 mg m-2 yr-1 (median: 3.8 mg m-2 yr-1) to the Southern Ocean. This contribution is in the same order of magnitude as the flux provided by icebergs and significantly higher than the input by aeolian dust. For this reason suboxic shelf sediments form a key source of iron for the high nutrient-low chlorophyll (HNLC) areas of the Southern Ocean. This source may become even more important in the future due to rising temperatures at the WAP accompanied by enhanced glacier retreat and the

  14. Dynamic Cycling of Barium in Marine Sediments: A Case study From a Gas Hydrate Potential Region Offshore Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, S.; You, C.

    2007-12-01

    The dissociation and dissolution of gas hydrate in marine sediments affects importantly of Ba and methane cycle. Three piston cores, MD052911, MD052912 and MD052913, collected during Marion Dufresne cruise from a potential gas hydrate area offshore southwestern Taiwan, were used for dissolved SO42- and Ba2+ analyses in pore waters, as well as exchangeable Ba2+ in sediments, to study hydrate gas venting history. The formation of barite front was identified in each core at shallow depth and theirs respective accumulation ages were estimated using a simple diffusion model. Dissolved SO42- and Ba2+ indicate that the sulfate hydrate transition (SHT) depth is located at 900, 1100 and 760 cm in MD052911, MD052912 and MD052913, respectively. Dissolved Ba2+ increased largely below the depth where sulfate depletion occurred and reached a maximum concentration of 14.8, 12.4 and 6.2 £gM at 660, 1800 and 760 cm, respectively. The detected sedimentary barite front coincides with the modern boundary of upward diffusion of pore water Ba2+, occurring right above the SHT boundary in all three cores and reaches a Ba concentration of 23, 54 and 40 ppm, respectively. Estimated upwardly diffusive Ba2+ flux is 1.93*10-6, 8.86*10-7 and 6.55*10-7 mmol/cm2/yr, which may take 25,000, 110,000 and 213,000 years respectively to accumulate such barite front. Sulfate reduction rate (SRR) in the study area, average ~70 £gM/yr, falls in a similar range as those of regions with intermediately low methane flux and SHT depth of 10-40m. The calculated downward sulfate fluxes, 1.78*10- 3 - 3.2*10-3 mmol/cm2/yr, agree with observations at methane-rich margins where methane were dominantly consumed by oxidation. The authigenic barite fronts formation above the SHT serves as a useful tool to assess the flux variation of upward methane at present and in the past. The unique low concentration of detritus barite in sediments offshore Taiwan cause rather low Ba2+ in pore waters and low exchangeable Ba2+ (23

  15. On the Importance of High Frequency Gravity Waves for Ice Nucleation in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.

    2016-01-01

    Recent investigations of the influence of atmospheric waves on ice nucleation in cirrus have identified a number of key processes and sensitivities: (1) ice concentrations produced by homogeneous freezing are strongly dependent on cooling rates, with gravity waves dominating upper tropospheric cooling rates; (2) rapid cooling driven by high-frequency waves are likely responsible for the rare occurrences of very high ice concentrations in cirrus; (3) sedimentation and entrainment tend to decrease ice concentrations as cirrus age; and (4) in some situations, changes in temperature tendency driven by high-frequency waves can quench ice nucleation events and limit ice concentrations. Here we use parcel-model simulations of ice nucleation driven by long-duration, constant-pressure balloon temperature time series, along with an extensive dataset of cold cirrus microphysical properties from the recent ATTREX high-altitude aircraft campaign, to statistically examine the importance of high-frequency waves as well as the consistency between our theoretical understanding of ice nucleation and observed ice concentrations. The parcel-model simulations indicate common occurrence of peak ice concentrations exceeding several hundred per liter. Sedimentation and entrainment would reduce ice concentrations as clouds age, but 1-D simulations using a wave parameterization (which underestimates rapid cooling events) still produce ice concentrations higher than indicated by observations. We find that quenching of nucleation events by high-frequency waves occurs infrequently and does not prevent occurrences of large ice concentrations in parcel simulations of homogeneous freezing. In fact, the high-frequency variability in the balloon temperature data is entirely responsible for production of these high ice concentrations in the simulations.

  16. Polluted harbor sediment and the annual reproductive cycle of the female flounder, Platichthys fiesus (L.)

    SciTech Connect

    Janssen, P.A.H.; Lambert, J.G.D.; Goos, H.J.T.; Wezel, A.P. van; Opperhuizen, A.

    1995-12-31

    Compounds such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs),and pesticides are metabolized by enzyme systems, which are also involved in steroid metabolism. Disturbances of reproduction may therefore occur through the interference of these compounds with the endocrine system. Several aspects of reproduction were studied in the flounder, Platichthys fiesus (L.), an euryhaline flatfish which inhabits coastal waters and is therefore a suitable biomonitor for the effects of chemical pollutants. Fish were kept during three years in mesocosm systems of which the first provided a control, while the second one contained polluted sediment, derived from the Rotterdam harbor. In November, all ovaries from both mesocosms contained vitellogenic oocytes. In May, all the control fish were previtellogenic, while the ovaries of fish from the polluted mesocosm contained, besides previtellogenic oocytes, a large number of vitellogenic oocytes, indicating that an estrogenic induction had occurred. The in vitro tissue incubations with androstenedione as precursor revealed that the ovarian capacity to synthesize testosterone (T), estrone (E{sub 2}) and 17{beta}-estradiol (E{sub 2}) didn`t differ between both mesocosms. In May, however, the levels of T and E{sub 2} as well as the level of the yolk-precursor vitellogenin were significantly higher in the polluted mesocosm. The conclusion from this study was that polluted harbor sediment contains compounds that effect normal reproductive development, i.e. the induction of premature vitellogenesis.

  17. Acid-Tolerant Sulfate-Reducing Bacteria Play a Major Role in Iron Cycling in Acidic Iron Rich Sediments

    NASA Astrophysics Data System (ADS)

    Enright, K. A.; Moreau, J. W.

    2008-12-01

    Climate change drives drying and acidification of many rivers and lakes. Abundant sedimentary iron in these systems oxidizes chemically and biologically to form iron-ox(yhydrox)ide crusts and "hardpans". Given generally high sulfate concentrations, the mobilization and cycling of iron in these environments can be strongly influenced by bacterial sulfate reduction. Sulfate-reducing bacteria (SRB) induce reductive dissolution of oxidized iron phases by producing the reductant bisulfide as a metabolic product. These environmentally ubiquitous microbes also recycle much of the fixed carbon in sediment-hosted microbial mat communities. With prevalent drying, the buffering capacity for protons liberated from iron oxidation is exceeded, and the activity of sulfate-reducers is restricted to those species capable of tolerating low pH (and generally highly saline, i.e. sulfate-rich) conditions. These species will sustain the recycling of iron from more crystalline phases to more bioavailable species, as well as act as the only source of bisulfide for photosynthesizing microbial communities. The phylogeny and physiology of acid-tolerant SRB is therefore important to Fe, S and C cycling in iron-rich sedimentary environments, particularly those on a geochemical trajectory towards acidification. Previous studies have shown that these SRB species tend to be highly novel. We studied two distinct environments along a geochemical continuum towards acidification. In both settings, iron redox transformations exert a major, if not controlling, influence on reduction potential. An acidified, iron- rich tidal marsh receiving acid-mine drainage (San Francisco Bay, CA, USA) contained abundant textural evidence for reductive dissolution of Fe(III) in sediments with pH values varying from 2.4 - 3.8. From these sediments, full-length novel dsrAB gene sequences from acid-tolerant SRB were recovered, and sulfur isotope profiles reflected biological fractionation of sulfur under even the most

  18. Impact of glacial/interglacial changes in water column geochemistry on the diagenetic cycling of barium in Black Sea sediments

    NASA Astrophysics Data System (ADS)

    Kasten, S.; Henkel, S.; Mogollón, J. M.; Nöthen, K.; Franke, C.; Bogus, K.; Robin, E.; Bahr, A.; Blumenberg, M.; Pape, T.; Seifert, R.; Marz, C.; De Lange, G. J.

    2012-12-01

    Changes in depositional conditions and redox environment over time affect biogeochemical processes in the seabed and in this way control the variable and selective preservation, alteration and formation of various sediment constituents and attributes - including particulate organic matter, mineral assemblages and magnetic properties. As many of these solid-phase compounds are used as paleo-environmental tracers or stratigraphic tools an assessment of diagenetic influences on the sedimentary record is crucial for accurate environmental reconstructions. We present an integrated approach of pore-water and solid-phase geochemistry as well as transport reaction modeling for sediments of the Black Sea to assess the biogeochemical history of these deposits with particular emphasis on post-depositional redistribution of barium as a consequence of changes in water column geochemistry and redox (Henkel et al., 2012). High-resolution sedimentary records of major and minor elements (Al, Ba, Ca, Sr, Ti), total organic carbon (TOC), and profiles of pore-water constituents (SO42-, CH4, Ca2+, Ba2+, Mg2+, alkalinity) were obtained for two gravity cores (core 755, 501 m water depth and core 214, 1686 m water depth) from the northwestern Black Sea. The records were examined in order to gain insight into the cycling of Ba in anoxic marine sediments characterized by a shallow sulfate-methane transition (SMT) as well as the applicability of barite as a primary productivity proxy in such a setting. The Ba records are strongly overprinted by diagenetic barite (BaSO4) remobilization and precipitation; authigenic Ba enrichments were found at both sites at and slightly above the current SMT. Transport reaction modeling was applied to simulate the migration of the SMT during the changing geochemical conditions after the Holocene seawater intrusion into the Black Sea. Based on this, sediment intervals affected by diagenetic Ba redistribution were identified. Results reveal that the intense

  19. Very high frequency plasma reactant for atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Oh, Il-Kwon; Yoo, Gilsang; Yoon, Chang Mo; Kim, Tae Hyung; Yeom, Geun Young; Kim, Kangsik; Lee, Zonghoon; Jung, Hanearl; Lee, Chang Wan; Kim, Hyungjun; Lee, Han-Bo-Ram

    2016-11-01

    Although plasma-enhanced atomic layer deposition (PE-ALD) results in several benefits in the formation of high-k dielectrics, including a low processing temperature and improved film properties compared to conventional thermal ALD, energetic radicals and ions in the plasma cause damage to layer stacks, leading to the deterioration of electrical properties. In this study, the growth characteristics and film properties of PE-ALD Al2O3 were investigated using a very-high-frequency (VHF) plasma reactant. Because VHF plasma features a lower electron temperature and higher plasma density than conventional radio frequency (RF) plasma, it has a larger number of less energetic reaction species, such as radicals and ions. VHF PE-ALD Al2O3 shows superior physical and electrical properties over RF PE-ALD Al2O3, including high growth per cycle, excellent conformality, low roughness, high dielectric constant, low leakage current, and low interface trap density. In addition, interlayer-free Al2O3 on Si was achieved in VHF PE-ALD via a significant reduction in plasma damage. VHF PE-ALD will be an essential process to realize nanoscale devices that require precise control of interfaces and electrical properties.

  20. Development and optimization of acoustic bubble structures at high frequencies.

    PubMed

    Lee, Judy; Ashokkumar, Muthupandian; Yasui, Kyuichi; Tuziuti, Toru; Kozuka, Teruyuki; Towata, Atsuya; Iida, Yasuo

    2011-01-01

    At high ultrasound frequencies, active bubble structures are difficult to capture due to the decrease in timescale per acoustic cycle and size of bubbles with increasing frequencies. However the current study demonstrates an association between the spatial distribution of visible bubbles and that of the active bubble structure established in the path of the propagating acoustic wave. By monitoring the occurrence of these visible bubbles, the development of active bubbles can be inferred for high frequencies. A series of still images depicting the formation of visible bubble structures suggest that a strong standing wave field exists at early stages of wave propagation and weakens by the increase in the attenuation of the acoustic wave, caused by the formation of large coalesced bubbles. This attenuation is clearly demonstrated by the occurrence of a force which causes bubbles to be driven toward the liquid surface and limit standing wave fields to near the surface. This force is explained in terms of the acoustic streaming and traveling wave force. It is found that a strong standing wave field is established at 168 kHz. At 448 kHz, large coalesced bubbles can significantly attenuate the acoustic pressure amplitude and weaken the standing wave field. When the frequency is increased to 726 kHz, acoustic streaming becomes significant and is the dominant force behind the disruption of the standing wave structure. The disruption of the standing wave structure can be minimized under certain pulse ON and OFF ratios.

  1. EXAFS analysis of iron cycling in mangrove sediments downstream a lateritized ultramafic watershed (Vavouto Bay, New Caledonia)

    NASA Astrophysics Data System (ADS)

    Noël, Vincent; Marchand, Cyril; Juillot, Farid; Ona-Nguema, Georges; Viollier, Eric; Marakovic, Gregory; Olivi, Luca; Delbes, Ludovic; Gelebart, Frédéric; Morin, Guillaume

    2014-07-01

    Mangrove forests are the dominant intertidal ecosystem of tropical coastlines. In New Caledonia, mangroves act as a buffer zone between massive Fe lateritic deposits and a lagoon partly registered by UNESCO as a World Heritage site. The New Caledonian mangroves are characterized by a botanical gradient composed of three main vegetal stands (i.e., Rhizophora spp., Avicennia marina and salt flat), which relies on the duration of tidal immersion that imposes gradients of pore-water salinity, oxygenation, and organic content in the sediment. In the present study, we have determined the distribution and speciation of Fe in mangrove sediments along this botanical gradient by using X-ray absorption spectroscopy (XAS) at the Fe K-edge. Both XANES and EXAFS results show that iron speciation strongly follows the redox boundaries marking the intertidal and depth zonations. Fe-bearing minerals eroded from lateritic outcrops, mainly goethite (α-FeOOH) and phyllosilicates (serpentine and talc), are the major Fe hosts in the upward horizons. These mineral species progressively disappear with increasing depth where pyrite (FeS2) forms, in the hydromorphic Rhizophora and Avicennia zones. Sulfate reduction is not observed in the drier salt flat zone. In addition to these reduction processes, intense re-oxidation of aqueous Fe(II) and pyrite leads to the formation of poorly ordered ferrihydrite, lepidocrocite (γ-FeOOH) and likely goethite in the upper sediments beneath Avicennia and Rhizophora stands. The relative proportion of the newly formed poorly ordered ferrihydrite and lepidocrocite is found to be higher in the Rhizophora mangrove stand, which is the closest to the shore. Tidal fluctuations may thus be a major cause for continuous Fe reduction-oxidation cycles in the vegetated mangrove stands, which could significantly affect the iron mass balance in mangrove systems.

  2. Variation in numbers and behaviour of waders during the tidal cycle: implications for the use of estuarine sediment flats

    NASA Astrophysics Data System (ADS)

    Granadeiro, José P.; Dias, Maria P.; Martins, Ricardo C.; Palmeirim, Jorge M.

    2006-05-01

    Estuarine sediment flats are essential feeding areas for waders, but their exploitation is constrained by the movements of tides. In this cyclic environment the exposure period of sediment flats decreases several fold from upper to lower flats, and the moving tidal waterline briefly creates particular conditions for waders and their prey. This study attempts to determine how the exposure period and the movement of the tide line influence the use of space and food resources by waders across the sediment flats. Wader counts and observations of feeding behaviour were carried out in all phases of the tidal cycle, in plots forming a transect from upper to lower flats, thus representing a gradient of exposure periods. Pecking, prey intake, and success rates varied little along the gradient. Some species actively followed the tide line while foraging, whereas others are evenly spread over the exposed flats. Black-tailed Godwit, Dunlin and Avocet were 'tide followers', whereas Grey Plover, Redshank and Bar-tailed Godwit were 'non-followers'. Densities of 'followers' near the tide line were up to five times higher than elsewhere. Species differed markedly in the way they used space on the flats, but in general the rate of biomass acquisition (in grams of ash-free dry weight per time exposed) was much higher in lower flats. However, this preference was insufficient to counter the much longer exposure of the upper flats, so the total amount of biomass consumed on the latter was greater. Therefore, it was in these upper flats that waders fulfilled most of their energetic needs. Consequently, upper flats are of particular importance for the conservation of wader assemblages, but because they are usually closer to shore they tend to suffer the highest pressure from disturbance and land reclamation.

  3. Hydrologic controls on nitrogen cycling processes and functional gene abundance in sediments of a groundwater flow-through lake

    USGS Publications Warehouse

    Stoliker, Deborah L.; Repert, Deborah A.; Smith, Richard L.; Song, Bongkeun; LeBlanc, Denis R.; McCobb, Timothy D.; Conaway, Christopher; Hyun, Sung Pil; Koh, Dong-Chan; Moon, Hee Sun; Kent, Douglas B.

    2016-01-01

    The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient.

  4. The multiproxy analysis of a lacustrine-palustrine sediment core from Lebanon reveals four climate cycles

    NASA Astrophysics Data System (ADS)

    Gasse, F. A.; van Campo, E.; Demory, F.; Develle, A.; Tachikawa, K.; Buchet, N.; Sonzogni, C.; Thouveny, N.; Bard, E. G.; Vidal, L.

    2013-12-01

    The study of a sediment core retrieved from the small Yammouneh basin (34.06°N-34.09°N, 36.0°E-36.03°E, 1360 m a.s.l.), Lebanon, provides for the first time a nearly continuous record spanning approximately 360 ka in northern Levant. The basin, located on the eastern flank of Mount Lebanon, is mainly supplied by karstic springs which discharge snowmelt water infiltrated through the western highlands. Part of its water inputs is lost by seepage through its faulted bottom. The core, 73 m long, consists of four whitish carbonated intervals rich in lacustrine organism remains, interrupting a thick accumulation of colored silty clays almost devoid of shells but for ostracods. We analyzed sediment features (mineralogical and elemental composition, light microscopy and SEM observations, grain size), magnetic properties, pollen and calcite oxygen isotopes (δc) derived from ostracod shell composition. The chronological framework is based on 14C ages of wood fragments, U/Th dating, and a high resolution reconstruction of relative paleointensity variations correlated with regional (Portuguese margin) and global (Sint-800) master curves down to about 360 ka. Although the chronology still needs improvement, the 3 upper carbonated intervals undoubtedly fit Interglacials MIS 1, MIS 5.5 and MIS 7, respectively. The deepest one (49-60 m) is assigned to MIS 9 by its proxy analogies with dated Interglacials. The sequence covers a large part of MIS 10. Relationships between individual indicators are explored, in addition to visual comparisons of individual records, from the multiproxy matrix after resampling at a common depth scale of 25 cm. We compute simple linear coefficients between 20 variables, perform Principal Component Analyses based on all variables, on terrestrial pollen biomes, on all sedimentological proxies, and cross-correlations between them and δc. During Interglacial maxima, high local and regional efficient moisture is evidenced by dense arboreal vegetation of

  5. Biotic and abiotic controls on co-occurring nitrogen cycling processes in shallow Arctic shelf sediments

    NASA Astrophysics Data System (ADS)

    McTigue, N. D.; Gardner, W. S.; Dunton, K. H.; Hardison, A. K.

    2016-10-01

    The processes that convert bioavailable inorganic nitrogen to inert nitrogen gas are prominent in continental shelf sediments and represent a critical global sink, yet little is known of these pathways in the Arctic where 18% of the world's continental shelves are located. Moreover, few data from the Arctic exist that separate loss processes like denitrification and anaerobic ammonium oxidation (anammox) from recycling pathways like dissimilatory nitrate reduction to ammonium (DNRA) or source pathways like nitrogen fixation. Here we present measurements of these co-occurring processes using 15N tracers. Denitrification was heterogeneous among stations and an order of magnitude greater than anammox and DNRA, while nitrogen fixation was undetectable. No abiotic factors correlated with interstation variability in biogeochemical rates; however, bioturbation potential explained most of the variation. Fauna-enhanced denitrification is a potentially important but overlooked process on Arctic shelves and highlights the role of the Arctic as a significant global nitrogen sink.

  6. Biotic and abiotic controls on co-occurring nitrogen cycling processes in shallow Arctic shelf sediments

    PubMed Central

    McTigue, N. D.; Gardner, W. S.; Dunton, K. H.; Hardison, A. K.

    2016-01-01

    The processes that convert bioavailable inorganic nitrogen to inert nitrogen gas are prominent in continental shelf sediments and represent a critical global sink, yet little is known of these pathways in the Arctic where 18% of the world's continental shelves are located. Moreover, few data from the Arctic exist that separate loss processes like denitrification and anaerobic ammonium oxidation (anammox) from recycling pathways like dissimilatory nitrate reduction to ammonium (DNRA) or source pathways like nitrogen fixation. Here we present measurements of these co-occurring processes using 15N tracers. Denitrification was heterogeneous among stations and an order of magnitude greater than anammox and DNRA, while nitrogen fixation was undetectable. No abiotic factors correlated with interstation variability in biogeochemical rates; however, bioturbation potential explained most of the variation. Fauna-enhanced denitrification is a potentially important but overlooked process on Arctic shelves and highlights the role of the Arctic as a significant global nitrogen sink. PMID:27782213

  7. Anodes Stimulate Anaerobic Toluene Degradation via Sulfur Cycling in Marine Sediments.

    PubMed

    Daghio, Matteo; Vaiopoulou, Eleni; Patil, Sunil A; Suárez-Suárez, Ana; Head, Ian M; Franzetti, Andrea; Rabaey, Korneel

    2015-10-23

    Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m(-2) and 431 mA m(-2) for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the α-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer.

  8. Anodes Stimulate Anaerobic Toluene Degradation via Sulfur Cycling in Marine Sediments

    PubMed Central

    Daghio, Matteo; Vaiopoulou, Eleni; Patil, Sunil A.; Suárez-Suárez, Ana; Head, Ian M.

    2015-01-01

    Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m−2 and 431 mA m−2 for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the α-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer. PMID:26497463

  9. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  10. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, Howard D.

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  11. The impact of acid mine drainage on the methylmercury cycling at the sediment-water interface in Aha Reservoir, Guizhou, China.

    PubMed

    He, Tianrong; Zhu, Yuzhen; Yin, Deliang; Luo, Guangjun; An, Yanlin; Yan, HaiYu; Qian, Xiaoli

    2015-04-01

    The methylmercury (MeHg) cycling at water-sediment interface in an acid mine drainage (AMD)-polluted reservoir (Aha Reservoir) and a reference site (Hongfeng Reservoir) were investigated and compared. Both reservoirs are seasonal anoxic and alkaline. The concentrations of sulfate, sulfide, iron, and manganese in Aha Reservoir were enriched compared to the reference levels in Hongfeng reservoir due to the AMD input. It was found that the MeHg accumulation layer in Aha Reservoir transitioned from the top sediment layer in winter to the water-sediment interface in spring and then to the overlying water above sediment in summer. It supported the assumption that spring methylation activity may start in sediments and migrate into the water column with seasonal variation. The weaker methylation in sediment during spring and summer was caused by the excessive sulfide (∼15-20 μM) that reduced the bioavailability of mercury, while sulfate reduction potential was in the optimal range for the methylation in the overlying water. This led to a transport flux of MeHg from water to sediment in spring and summer. In contrast, such inversion of MeHg accumulation layer did not occur in Hongfeng Reservoir. The sulfate reduction potential was in the optimal range for the methylation in top sediment, and dissolved MeHg was positively related to sulfide in pore water of Hongfeng Reservoir (r = 0.67, p < 0.001). This result suggested that accumulation of MeHg in lake water and cycling of MeHg at sediment-water interface associate with some sensitive environmental factors, such as sulfur.

  12. Phase heterogeneity in carbonate production by marine fish influences their roles in sediment generation and the inorganic carbon cycle.

    PubMed

    Salter, Michael A; Harborne, Alastair R; Perry, Chris T; Wilson, Rod W

    2017-04-10

    Marine teleost fish are important carbonate producers in neritic and oceanic settings. However, the fates of the diverse carbonate phases (i.e., mineral and amorphous forms of CaCO3) they produce, and their roles in sediment production and marine inorganic carbon cycling, remain poorly understood. Here we quantify the carbonate phases produced by 22 Bahamian fish species and integrate these data with regional fish biomass data from The Bahamas to generate a novel platform-scale production model that resolves these phases. Overall carbonate phase proportions, ordered by decreasing phase stability, are: ~20% calcite, ~6% aragonite, ~60% high-Mg calcite, and ~14% amorphous carbonate. We predict that these phases undergo differing fates, with at least ~14% (amorphous carbonate) likely dissolving rapidly. Results further indicate that fisheries exploitation in The Bahamas has potentially reduced fish carbonate production by up to 58% in certain habitats, whilst also driving a deviation from natural phase proportions. These findings have evident implications for understanding sedimentary processes in shallow warm-water carbonate provinces. We further speculate that marked phase heterogeneity may be a hitherto unrecognised feature of fish carbonates across a wide range of neritic and oceanic settings, with potentially major implications for understanding their role in global marine inorganic carbon cycling.

  13. Milankovitch orbital cycles encoded by diagenetic iron sulfides in Neogene sediments, Stirone River section, Northern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Gunderson, K. L.; Kodama, K. P.; Anastasio, D. J.; Pazzaglia, F. J.

    2009-12-01

    We used rock magnetic parameters to identify Milankovitch orbital cycles in the marine sediments of the Messinian-Early Pleistocene Stirone River section, Northern Apennines, Italy. These measurements provide excellent proxies for subtle changes in depositional environment, including climate, in stratigraphic sections where facies variations are not evident. We measured 636 meters of section and collected samples every 1 meter, for which we measured magnetic susceptibility (MS), natural remanent magnetization (NRM), anhysteretic magnetization in a 40 mT peak alternating field(40mT ARM), and anhysteretic remanent magnetization in a 100 mT peak alternating field (100mT ARM). We present the results of our time-series analysis of the MS, 40mT ARM, and 100mT ARM stratigraphic series for 310 meters of section, encompassing the time period between 3.1 My and 1.8 My. During this time period, the power spectra produced from the MS stratigraphic series exhibits peaks with frequencies at 1/24m, 1/10m, and 1/6m. Based on our calculated mean sedimentation rate of 0.24 m/ky, we interpret the spectral peaks to be associated with the eccentricity, obliquity, and precessional orbital cycles, respectively. The 40mT ARM spectra exhibits peaks at similar periodicities, but the corresponding spectral peaks are broader and the spectral power is much lower. The 100mT ARM spectra shows an increase in spectral power with respect to the 40mT ARM, but it also exhibits broad spectral peaks. Low temperature (77 K) susceptibility (LT-MS) and isothermal remanent magnetization (IRM) acquisition experiments were conducted to determine which magnetic minerals carry the MS signal. The observed increase of the MS at low temperature (6-140%) was not large enough to conclude that the MS is dominated by paramagnetic grains. IRM acquisition modeling indicates two components of magnetization: (1) a major component comprising ~85% of the magnetization with a mean coercivity of 67 mT and (2) a minor

  14. Exploring the effects of black mangrove (Avicennia germinans) expansions on nutrient cycling in smooth cordgrass (Spartina alterniflora) marsh sediments of southern Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Henry, K. M.; Twilley, R. R.

    2011-12-01

    Located at the northernmost extent of mangroves in the Gulf of Mexico, coastal Louisiana (LA) provides an excellent opportunity to study the effects of a climate-induced vegetation shift on nutrient cycling within an ecosystem. Climate throughout the Gulf Coast region is experiencing a general warming trend and scientists predict both hotter summers (+1.5 to 4 °C) and warmer winters (+1.5 to 5.5 °C) by 2100. Over the last two decades, mild winter temperatures have facilitated the expansion of black mangrove trees (Avicennia germinans) into the smooth cordgrass (Spartina alterniflora) along parts of the LA coast. Due to differences in morphology and physiology between these two species, the expansion of Avicennia has the potential to greatly alter sediment biogeochemistry, especially nutrient cycling. With such an extensive history of coastal nutrient enrichment and eutrophication in the Mississippi River delta, it is important to understand how nutrient cycling, retention, and removal in this region will be affected by this climate-induced vegetation expansion. We examined the effect of this species shift on porewater salinity, sulfide, and dissolved inorganic nutrient concentrations (nitrite, nitrate, ammonium, and phosphate) as well as sediment oxidation-reduction potential, bulk density, and nutrient content (carbon, nitrogen, phosphorus). We also measured net dinitrogen (N2:Ar), oxygen, and dissolved inorganic nutrient fluxes on intact, non-vegetated sediment cores collected from both Spartina and Avicennia habitats. Spartina sediments were more reducing, with higher concentrations of sulfides and ammonium. We found no significant difference between Spartina and Avicennia sediment dinitrogen, oxygen, or dissolved inorganic nutrient fluxes. Net dinitrogen fluxes for both habitat types were predominately positive, indicating higher rates of denitrification than nitrogen fixation at these sites. Sediments were primarily a nitrate sink, but functioned as both a

  15. Microbial Mercury Cycling in Sediments of the San Francisco Bay-Delta

    USGS Publications Warehouse

    Marvin-DiPasquale, M.; Agee, J.L.

    2003-01-01

    Microbial mercury (Hg) methylation and methylmercury (MeHg) degradation processes were examined using radiolabled model Hg compounds in San Francisco Bay-Delta surface sediments during three seasonal periods: late winter, spring, and fall. Strong seasonal and spatial differences were evident for both processes. MeHg production rates were positively correlated with microbial sulfate reduction rates during late winter only. MeHg production potential was also greatest during this period and decreased during spring and fall. This temporal trend was related both to an increase in gross MeHg degradation, driven by increasing temperature, and to a build-up in pore water sulfide and solid phase reduced sulfur driven by increased sulfate reduction during the warmer seasons. MeHg production decreased sharply with depth at two of three sites, both of which exhibited a corresponding increase in reduced sulfur compounds with depth. One site that was comparatively oxidized and alkaline exhibited little propensity for net MeHg production. These results support the hypothesis that net MeHg production is greatest when and where gross MeHg degradation rates are low and dissolved and solid phase reduced sulfur concentrations are low.

  16. Microbial mercury cycling in sediments of the San Francisco Bay-Delta

    USGS Publications Warehouse

    Marvin-DiPasquale, Mark; Agee, Jennifer L.

    2003-01-01

    Microbial mercury (Hg) methylation and methylmercury (MeHg) degradation processes were examined using radiolabled model Hg compounds in San Francisco Bay-Delta surface sediments during three seasonal periods: late winter, spring, and fall. Strong seasonal and spatial differences were evident for both processes. MeHg production rates were positively correlated with microbial sulfate reduction rates during late winter only. MeHg production potential was also greatest during this period and decreased during spring and fall. This temporal trend was related both to an increase in gross MeHg degradation, driven by increasing temperature, and to a build-up in pore water sulfide and solid phase reduced sulfur driven by increased sulfate reduction during the warmer seasons. MeHg production decreased sharply with depth at two of three sites, both of which exhibited a corresponding increase in reduced sulfur compounds with depth. One site that was comparatively oxidized and alkaline exhibited little propensity for net MeHg production. These results support the hypothesis that net MeHg production is greatest when and where gross MeHg degradation rates are low and dissolved and solid phase reduced sulfur concentrations are low.

  17. [Experiences in high frequency audiometry and possible applications (author's transl)].

    PubMed

    Dieroff, H G

    1976-09-01

    Observations on the ultrasonic perception of noise-impaired persons gave rise to use the high frequency audiometry described by Fletcher for the early recognition of noise-induced damages. Using commercial equipment we found that the earpiece was not adapted to high frequency conditions. The adaptation problem and ways of modification are described in detail. After having improved the coupling features reproducible hearing curves were obtained. Examinations were carried out on workers, whose noise exposure exceeded the critical intensity by only a few dB. The following 3 categories of impairment were found: 1. Normal hearing between 125 and 8,000 Hz as well as in the high frequency region. 2. Unsignificant noise-induced impairments between 125 and 8,000 Hz; no high frequency hearing. 3. Acoustic hearing; no high frequency hearing. The results are discussed. It is supposed that high frequency hearing losses due to noise and chemical noxious exposure (streptomycin) are valuable in diagnostics and prognostics. Accordingly persons are to be assessed as noise sensitive, when there is no more high frequency hearing before practising noise work.

  18. Hydrothermal Fe cycling and deep ocean organic carbon scavenging: Model-based evidence for significant POC supply to seafloor sediments

    NASA Astrophysics Data System (ADS)

    German, C. R.; Legendre, L. L.; Sander, S. G.; Niquil, N.; Luther, G. W.; Bharati, L.; Han, X.; Le Bris, N.

    2015-06-01

    Submarine hydrothermal venting has recently been identified to have the potential to impact ocean biogeochemistry at the global scale. This is the case because processes active in hydrothermal plumes are so vigorous that the residence time of the ocean, with respect to cycling through hydrothermal plumes, is comparable to that of deep ocean mixing caused by thermohaline circulation. Recently, it has been argued that seafloor venting may provide a significant source of bio-essential Fe to the oceans as the result of a close coupling between Fe and organic carbon in hydrothermal plumes. But a complementary question remains to be addressed: does this same intimate Fe-Corg association in hydrothermal plumes cause any related impact to the global C cycle? To address this, SCOR-InterRidge Working Group 135 developed a modeling approach to synthesize site-specific field data from the East Pacific Rise 9°50‧ N hydrothermal field, where the range of requisite data sets is most complete, and combine those inputs with global estimates for dissolved Fe inputs from venting to the oceans to establish a coherent model with which to investigate hydrothermal Corg cycling. The results place new constraints on submarine Fe vent fluxes worldwide, including an indication that the majority of Fe supplied to hydrothermal plumes should come from entrainment of diffuse flow. While this same entrainment is not predicted to enhance the supply of dissolved organic carbon to hydrothermal plumes by more than ∼10% over background values, what the model does indicate is that scavenging of carbon in association with Fe-rich hydrothermal plume particles should play a significant role in the delivery of particulate organic carbon to deep ocean sediments, worldwide.

  19. High-frequency energy in singing and speech

    NASA Astrophysics Data System (ADS)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  20. Effects of near-bottom water oxygen concentration on biogeochemical cycling of C, N and S in sediments of the Gulf of Gdansk (southern Baltic)

    NASA Astrophysics Data System (ADS)

    Lukawska-Matuszewska, Katarzyna; Kielczewska, Joanna

    2016-04-01

    Sediments from four sampling sites in the Gulf of Gdansk were sampled to test how different oxygen concentrations in near-bottom water affects biogeochemical cycling of C, N and S. Vertical distributions of content of organic carbon (OC), total nitrogen (TN) and total sulfur (TS) and number of sulfate-reducing bacteria (SRB) in sediments were determined. Pore water total alkalinity (TA), dissolved inorganic carbon (DIC), sulfate, hydrogen sulfide, ammonium and phosphate were analyzed and benthic fluxes of DIC, hydrogen sulfide and ammonium were calculated. Concentrations of OC and TN decreased and concentration of TS increased with sediment depth. Highest concentrations of OC, TN and TS were observed in silty clay sediments from hypoxic and anoxic sediments below the permanent halocline. Organic matter (OM) accumulation in sediments and oxygen deficiency in near-bottom water stimulate preservation of OC and burial of TS in this area. Concentrations of TA, DIC, hydrogen sulfide, ammonium and phosphate in pore water increased, while concentration of sulfate decreased with sediment depth. Hydrogen sulfide, ammonium and phosphate was a significant additional source of TA in pore water under hypoxic and anoxic conditions. Mineralization of OM at oxygen concentrations <2 ml l-1 occurred mainly via bacterial sulfate reduction. Diurnal hydrogen sulfide fluxes under hypoxic conditions ranged from 400 to 1240 μmol m-2 d-1. Ammonium fluxes were estimated on 534 - 924 μmol m-2 d-1. Corresponding fluxes measured under anoxic conditions were 266 μmol m-2 d-1 and 106 μmol m-2 d-1. Sediments under oxic conditions became a place of the intensive regeneration of carbon - DIC flux from sediment reached 2775 μmol m-2 day-1. Sediment-water DIC fluxes under hypoxic and anoxic conditions were much lower and ranged from 1015 to 1208 μmol m-2 d-1.

  1. Ultrasonic Measurements of Unconsolidated Saline Sediments During Freeze/Thaw Cycles: The Seismic Properties of Cryopeg Environments

    NASA Astrophysics Data System (ADS)

    Dou, S.; Ajo Franklin, J. B.

    2013-12-01

    Saline permafrost and cryopegs (hypersaline unfrozen layers/zones within permafrost) are widespread in the Arctic coastal area as a result of marine transgression and regression in recent geological history. Owing to the freezing-point depression effect of soluble salts, they contain more unfrozen water than non-saline frozen sediments when subjected to the same permafrost temperatures (e.g., from 0 to -15 °C). Mapping subsurface cryopeg structure remains a challenging geophysical task due to the poor penetration of GPR in highly conductive fluids and related limitations for lower frequency EM techniques. Seismic profiling, particularly surface wave characterization, provides one possible approach to delineate the extent of cryopeg bodies. However, interpretation of such surveys is currently limited by the sparse database of measurements examining the seismic properties of unconsolidated materials saturated with saline fluids at sub-zero temperatures. We present the results of experiments examining seismic velocity in the ultrasonic range for both synthetic and natural permafrost sediments during freeze/thaw cycles; in these experiments, use of a range of brine salinities allows us to evaluate the properties of cryopeg sediments at in-situ conditions, a prerequisite for quantitative interpretation of seismic imaging results. Because of the abundant unfrozen water and less developed inter-granular ice structure, the seismic properties of saline permafrost typically falls between frozen and unfrozen soils. We conducted ultrasonic measurements of a freeze-thaw cycle on 20-30 Ottawa sand (grain size 590-840 μm) as well as natural mineral soils from the Barrow Environmental Observatory (BEO) saturated with brines of different salinities (0-2.5 M NaCl). For each salinity, seismic properties were measured using the ultrasonic (~1 MHz) pulse-transmission method in the temperature range from 20 to -30 °C. Similar to sediments saturated with low salinity fluids, seismic

  2. Coral reef sedimentation on Rodrigues and the Western Indian Ocean and its impact on the carbon cycle.

    PubMed

    Rees, Siwan A; Opdyke, Bradley N; Wilson, Paul A; Fifield, L Keith

    2005-01-15

    Coral reefs in the southwest Indian Ocean cover an area of ca. 18,530 km2 compared with a global reef area of nearly 300,000 km2. These regions are important as fishing grounds, tourist attractions and as a significant component of the global carbon cycle. The mass of calcium carbonate stored within Holocene neritic sediments is a number that we are only now beginning to quantify with any confidence, in stark contrast to the mass and sedimentation rates associated with pelagic calcium carbonate, which have been relatively well defined for decades. We report new data that demonstrate that the reefs at Rodrigues, like those at Reunion and Mauritius, only reached a mature state (reached sea level) by 2-3 ka: thousands of years later than most of the reefs in the Australasian region. Yet field observations show that the large lagoon at Rodrigues is already completely full of carbonate detritus (typical lagoon depth less than 1 m at low spring tide). The presence of aeolian dunes at Rodrigues indicates periodic exposure of past lagoons throughout the Pleistocene. The absence of elevated Pleistocene reef deposits on the island indicates that the island has not been uplifted. Most Holocene reefs are between 15 and 20 m in thickness and those in the southwest Indian Ocean appear to be consistent with this observation. We support the view that the CO2 flux associated with coral-reef growth acts as a climate change amplifier during deglaciation, adding CO2 to a warming world. southwest Indian Ocean reefs could have added 7-10% to this global flux during the Holocene.

  3. Catchment Very-High Frequency Hydrochemistry: the Critex Chemical House

    NASA Astrophysics Data System (ADS)

    Floury, P.; Gaillardet, J.; Tallec, G.; Blanchouin, A.; Ansart, P.

    2015-12-01

    Exploring the variations of river quality at very high frequency is still a big challenge that has fundamental implications both for understanding catchment ecosystems and for water quality monitoring. Within the French Critical Zone program CRITEX, we have proposed to develop a prototype called "Chemical House", applying the "lab on field" concept to one of the stream of the Orgeval Critical Zone Observatory. The Orgeval catchment (45 km2) is part of the Critical Zone RBV ("Réseau des bassins versants") network. It is a typical temperate agricultural catchment that has been intensively monitored for the last 50 years for hydrology and nutrient chemistry. Agricultural inputs and land use are also finely monitored making Orgeval an ideal basin to test the response of the Critical Zone to agricultural forcing. Geology consists of a typical sedimentary basin of Cenozoic age with horizontal layers of limestones, silcrete and marls, covered by a thin loamy layer. Two main aquifers are present within the catchment: the Brie and the Champigny aquifers. Mean runoff is 780 mm/yr. The Chemical House is a fully automated lab and installed directly along the river, which performs measurement of all major dissolved elements such as Na, Cl, Mg, Ca, NO3, SO4 and K every half hour. It also records all physical parameters (Temperature, pH, conductivity, O2 dissolved, Turbidity) of the water every minute. Orgeval Chemical House started to measure river chemistry on June 12, 2015 and has successfully now recorded several months of data. We will present the architecture of the Chemical House and the first reproducibility and accuracy tests made during the summer drought 2015 period. Preliminary results show that the chemical house is recoding significant nychtemeral (day/night) cycles for each element. We also observe that each element has its own behaviour along a day. First results open great prospects.

  4. An inkjet vision measurement technique for high-frequency jetting.

    PubMed

    Kwon, Kye-Si; Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-01

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  5. An inkjet vision measurement technique for high-frequency jetting

    SciTech Connect

    Kwon, Kye-Si Jang, Min-Hyuck; Park, Ha Yeong; Ko, Hyun-Seok

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  6. High-frequency matrix converter with square wave input

    DOEpatents

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  7. Basis of Ionospheric Modification by High-Frequency Waves

    DTIC Science & Technology

    2007-06-01

    for conducting ionospheric heating experiments in Gakona, Alaska, as part of the High Frequency Active Auroral Research Program ( HAARP ) [5], is being...upgraded. The upgraded HAARP HF transmitting system will be a phased-array antenna of 180 elements. Each element is a cross dipole, which radiates a...supported by the High Frequency Active Auroral Research Program ( HAARP ), the Air Force Research Laboratory at Hanscom Air Force Base, MA, and by the Office

  8. High frequency ultrasound with color Doppler in dermatology*

    PubMed Central

    Barcaui, Elisa de Oliveira; Carvalho, Antonio Carlos Pires; Lopes, Flavia Paiva Proença Lobo; Piñeiro-Maceira, Juan; Barcaui, Carlos Baptista

    2016-01-01

    Ultrasonography is a method of imaging that classically is used in dermatology to study changes in the hypoderma, as nodules and infectious and inflammatory processes. The introduction of high frequency and resolution equipments enabled the observation of superficial structures, allowing differentiation between skin layers and providing details for the analysis of the skin and its appendages. This paper aims to review the basic principles of high frequency ultrasound and its applications in different areas of dermatology. PMID:27438191

  9. High frequency, small signal MH loops of ferromagnetic thin films

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Ong, K. G.

    2000-01-01

    A method is presented for transforming the high frequency bias susceptibility measurements of ferromagnetic thin films into the form of a MH loop with, depending upon the measurement geometry, the y-axis zero crossing giving a measure of the coercive force or anisotropy field. The loops provide a measure of the quantitative and qualitative high frequency switching properties of ferromagnetic thin films. c2000 American Institute of Physics.

  10. The dynamics of flow and sediment transport during Karakoram surge cycles

    NASA Astrophysics Data System (ADS)

    Quincey, D. J.; Bishop, M. P.; Sevestre, H.; Glasser, N. F.

    2010-12-01

    An increasing number of glaciers have been reported to be advancing and thickening in the Karakoram, which is anomalous in the wider context of Himalayan mountain glacier recession. There has been a coincident increase in the number and magnitude of glacier surges, events that greatly accelerate surface erosional and depositional processes, with an associated impact on tectonic uplift rates. Despite their importance for landscape evolution on a variety of timescales, there remains a paucity of quantitative data relating to glacier surge dynamics, or any rigorous assessment of their impact on landscape geomorphology. In this study, optical matching of Landsat satellite image pairs is used to derive glacier velocity data for three glaciers before, during and after recent surge events. These data show that glacier flow can increase by up to two orders of magnitude during surge events when compared with quiescent velocities, and allow for first order determination of the importance of basal sliding vs internal deformation in glacier motion in the region. Multi-temporal geomorphological mapping highlights the rapid modification of glacier surface features that reflect a progressive re-arrangement of glacier flow within individual flow units and demonstrate that surface debris can be transported several kilometers down-glacier within a single surge cycle. Combined, these data provide a critical first step in understanding the short-term erosional capability of glaciers, which has important implications for understanding landscape evolution within a complex, tectonically active environment.

  11. High-frequency depositional sequences and stratal stacking patterns in lower pliocene coastal deltas, mid-Norwegian continental shelf

    SciTech Connect

    Henriksen, S.; Weimer, P.

    1996-12-01

    Extensive deltaic and coastal progradation occurred along the mid-Norwegian continental shelf during the early Pliocene. Thirty-eight well-developed, high-frequency (fourth-order) sequences are identified within the deltaic complex on multifold seismic data. The fourth-order sequences are arranged in four oblique progradational and two sigmoid progradational sequence sets. Deposition of the high-frequency sequences and their stacking patterns probably were in response to high-frequency cycles of relative changes in sea level cycles produced by variable rates of subsidence and uplift, superimposed on ;high-frequency eustatic cycles within a lower frequency eustatic system. The mixed aggrading/prograding sequence sets are interpreted to represent increased space-added accommodation rates and deposition within third-order highstand systems tracts. Conversely, the progradational sequence sets are interpreted to represent decreasing space-added accommodation rates and deposition within the third-order low-stand systems tracts. The recognition of multiple sequence sets likely reflects the effect of long-term relative fall in sea level (tectonic uplift?) super-imposed on high-frequency eustatic cycles.

  12. Characterizing Earthquake Rupture Properties Using Peak High-Frequency Offset

    NASA Astrophysics Data System (ADS)

    Wen, L.; Meng, L.

    2014-12-01

    Teleseismic array back-projection (BP) of high frequency (~1Hz) seismic waves has been recently applied to image the aftershock sequence of the Tohoku-Oki earthquake. The BP method proves to be effective in capturing early aftershocks that are difficult to be detected due to the contamination of the mainshock coda wave. Furthermore, since the event detection is based on the identification of the local peaks in time series of the BP power, the resulting event location corresponds to the peak high-frequency energy rather than the hypocenter. In this work, we show that the comparison between the BP-determined catalog and conventional phase-picking catalog provides estimates of the spatial and temporal offset between the hypocenter and the peak high-frequency radiation. We propose to measure this peak high-frequency shift of global earthquakes between M4.0 to M7.0. We average the BP locations calibrated by multiple reference events to minimize the uncertainty due to the variation of 3D path effects. In our initial effort focusing on the foreshock and aftershock sequence of the 2014 Iquique earthquake, we find systematic shifts of the peak high-frequency energy towards the down-dip direction. We find that the amount of the shift is a good indication of rupture length, which scales with the earthquake magnitude. Further investigations of the peak high frequency offset may provide constraints on earthquake source properties such as rupture directivity, rupture duration, rupture speed, and stress drop.

  13. Thaumarchaeotal Signature Gene Distribution in Sediments of the Northern South China Sea: an Indicator of the Metabolic Intersection of the Marine Carbon, Nitrogen, and Phosphorus Cycles?

    PubMed Central

    Zhou, Haixia; Yang, Jinying; Ge, Huangmin; Jiao, Nianzhi; Luan, Xiwu; Klotz, Martin G.

    2013-01-01

    Thaumarchaeota are abundant and active in marine waters, where they contribute to aerobic ammonia oxidation and light-independent carbon fixation. The ecological function of thaumarchaeota in marine sediments, however, has rarely been investigated, even though marine sediments constitute the majority of the Earth's surface. Thaumarchaeota in the upper layer of sediments may contribute significantly to the reservoir of nitrogen oxides in ocean waters and thus to productivity, including the assimilation of carbon. We tested this hypothesis in the northern South China Sea (nSCS), a section of a large oligotrophic marginal sea with limited influx of nutrients, including nitrogen, by investigating the diversity, abundance, community structure, and spatial distribution of thaumarchaeotal signatures in surface sediments. Quantitative real-time PCR using primers designed to detect 16S rRNA and amoA genes in sediment community DNA revealed a significantly higher abundance of pertinent thaumarchaeotal than betaproteobacterial genes. This finding correlates with high levels of hcd genes, a signature of thaumarchaeotal autotrophic carbon fixation. Thaumarchaeol, a signature lipid biomarker for thaumarchaeota, constituted the majority of archaeal lipids in marine sediments. Sediment temperature and organic P and silt contents were identified as key environmental factors shaping the community structure and distribution of the monitored thaumarchaeotal amoA genes. When the pore water PO43− concentration was controlled for via partial-correlation analysis, thaumarchaeotal amoA gene abundance significantly correlated with the sediment pore water NO2− concentration, suggesting that the amoA-bearing thaumarchaeota contribute to nitrite production. Statistical analyses also suggest that thaumarchaeotal metabolism could serve as a pivotal intersection of the carbon, nitrogen, and phosphorus cycles in marine sediments. PMID:23335759

  14. Thaumarchaeotal signature gene distribution in sediments of the northern South China Sea: an indicator of the metabolic intersection of the marine carbon, nitrogen, and phosphorus cycles?

    PubMed

    Dang, Hongyue; Zhou, Haixia; Yang, Jinying; Ge, Huangmin; Jiao, Nianzhi; Luan, Xiwu; Zhang, Chuanlun; Klotz, Martin G

    2013-04-01

    Thaumarchaeota are abundant and active in marine waters, where they contribute to aerobic ammonia oxidation and light-independent carbon fixation. The ecological function of thaumarchaeota in marine sediments, however, has rarely been investigated, even though marine sediments constitute the majority of the Earth's surface. Thaumarchaeota in the upper layer of sediments may contribute significantly to the reservoir of nitrogen oxides in ocean waters and thus to productivity, including the assimilation of carbon. We tested this hypothesis in the northern South China Sea (nSCS), a section of a large oligotrophic marginal sea with limited influx of nutrients, including nitrogen, by investigating the diversity, abundance, community structure, and spatial distribution of thaumarchaeotal signatures in surface sediments. Quantitative real-time PCR using primers designed to detect 16S rRNA and amoA genes in sediment community DNA revealed a significantly higher abundance of pertinent thaumarchaeotal than betaproteobacterial genes. This finding correlates with high levels of hcd genes, a signature of thaumarchaeotal autotrophic carbon fixation. Thaumarchaeol, a signature lipid biomarker for thaumarchaeota, constituted the majority of archaeal lipids in marine sediments. Sediment temperature and organic P and silt contents were identified as key environmental factors shaping the community structure and distribution of the monitored thaumarchaeotal amoA genes. When the pore water PO4(3-) concentration was controlled for via partial-correlation analysis, thaumarchaeotal amoA gene abundance significantly correlated with the sediment pore water NO2(-) concentration, suggesting that the amoA-bearing thaumarchaeota contribute to nitrite production. Statistical analyses also suggest that thaumarchaeotal metabolism could serve as a pivotal intersection of the carbon, nitrogen, and phosphorus cycles in marine sediments.

  15. Noninvasive Diagnosis of Coronary Artery Disease Using 12-Lead High-Frequency Electrocardiograms

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian

    2006-01-01

    method is the presence versus the absence of reduced-amplitude zones (RAZs). In terms that must be simplified for the sake of brevity, an RAZ comprises several cycles of a high-frequency QRS signal during which the amplitude of the high-frequency oscillation in a portion of the signal is abnormally low (see figure). A given signal sample exhibiting an interval of reduced amplitude may or may not be classified as an RAZ, depending on quantitative criteria regarding peaks and troughs within the reduced-amplitude portion of the high-frequency QRS signal. This analysis is performed in all 12 leads in real time.

  16. Investigating Sea Ice Regimes and Glacial Cycles of the Early Pleistocene in a Sediment Record from the Northwind Ridge, Western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Dipre, G.; Polyak, L. V.; Ortiz, J. D.; Cook, A.; Oti, E.

    2014-12-01

    We are conducting a comprehensive study of a sediment record from the Arctic Ocean in order to improve our understanding of paleoceanographic conditions during the early Pleistocene, a potential paleo-analog for the current and future states of the Arctic. The study deals with a sediment core raised on the HOTRAX 2005 expedition from the Northwind Ridge, western Arctic Ocean. By comparison with an earlier reported stratigraphy (Polyak et al., 2013), the core dates back to estimated ca. 1.5 Ma. A suite of paleobiological, lithological, and geochemical proxies will be utilized to reconstruct paleoceanographic environments in the early Pleistocene part of the record. In contrast to most Arctic Ocean sediment cores, calcareous microfossils occur in abundance to ca. 1.2 Ma. This enables the use of microfaunal assemblages as proxies for sea-ice conditions, which control the seasonal organic production. Physical properties such as sediment density, grain size, and sediment fabric (based on XCT imagery) will be employed to determine the impact of glaciations on sedimentation. By reconstructing sea-ice history and glacial cycles, we will gain insights into poorly understood controls on the Arctic environments during the early Pleistocene and Mid-Pleistocene Transition.

  17. High-frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus

    NASA Astrophysics Data System (ADS)

    Jensen, Eric J.; Ueyama, Rei; Pfister, Leonhard; Bui, Theopaul V.; Alexander, M. Joan; Podglajen, Aurélien; Hertzog, Albert; Woods, Sarah; Lawson, R. Paul; Kim, Ji-Eun; Schoeberl, Mark R.

    2016-06-01

    The impact of high-frequency gravity waves on homogeneous-freezing ice nucleation in cold cirrus clouds is examined using parcel model simulations driven by superpressure balloon measurements of temperature variability experienced by air parcels in the tropical tropopause region. We find that the primary influence of high-frequency waves is to generate rapid cooling events that drive production of numerous ice crystals. Quenching of ice nucleation events by temperature tendency reversal in the highest-frequency waves does occasionally produce low ice concentrations, but the overall impact of high-frequency waves is to increase the occurrence of high ice concentrations. The simulated ice concentrations are considerably higher than indicated by in situ measurements of cirrus in the tropical tropopause region. One-dimensional simulations suggest that although sedimentation reduces mean ice concentrations, a discrepancy of about a factor of 3 with observed ice concentrations remains. Reconciliation of numerical simulations with the observed ice concentrations will require inclusion of physical processes such as heterogeneous nucleation and entrainment.

  18. Compound specific amino acid δ15N in marine sediments: A new approach for studies of the marine nitrogen cycle

    NASA Astrophysics Data System (ADS)

    Batista, Fabian C.; Ravelo, A. Christina; Crusius, John; Casso, Michael A.; McCarthy, Matthew D.

    2014-10-01

    The nitrogen (N) isotopic composition (δ15N) of bulk sedimentary N (δ15Nbulk) is a common tool for studying past biogeochemical cycling in the paleoceanographic record. Empirical evidence suggests that natural fluctuations in the δ15N of surface nutrient N are reflected in the δ15N of exported planktonic biomass and in sedimentary δ15Nbulk. However, δ15Nbulk is an analysis of total combustible sedimentary N, and therefore also includes mixtures of N sources and/or selective removal or preservation of N-containing compounds. Compound-specific nitrogen isotope analyses of individual amino acids (δ15NAA) are novel measurements with the potential to decouple δ15N changes in nutrient N from trophic effects, two main processes that can influence δ15Nbulk records. As a proof of concept study to examine how δ15NAA can be applied in marine sedimentary systems, we compare the δ15NAA signatures of surface and sinking POM sources with shallow surface sediments from the Santa Barbara Basin, a sub-oxic depositional environmental that exhibits excellent preservation of sedimentary organic matter. Our results demonstrate that δ15NAA signatures of both planktonic biomass and sinking POM are well preserved in such surface sediments. However, we also observed an unexpected inverse correlation between δ15N value of phenylalanine (δ15NPhe; the best AA proxy for N isotopic value at the base of the food web) and calculated trophic position. We used a simple N isotope mass balance model to confirm that over long time scales, δ15NPhe values should in fact be directly dependent on shifts in ecosystem trophic position. While this result may appear incongruent with current applications of δ15NAA in food webs, it is consistent with expectations that paleoarchives will integrate N dynamics over much longer timescales. We therefore propose that for paleoceanographic applications, key δ15NAA parameters are ecosystem trophic position, which determines relative partitioning of 15N

  19. Presence of Nitrate-Accumulating Sulfur Bacteria and Their Influence on Nitrogen Cycling in a Shallow Coastal Marine Sediment

    PubMed Central

    Sayama, Mikio

    2001-01-01

    Nitrate flux between sediment and water, nitrate concentration profile at the sediment-water interface, and in situ sediment denitrification activity were measured seasonally at the innermost part of Tokyo Bay, Japan. For the determination of sediment nitrate concentration, undisturbed sediment cores were sectioned into 5-mm depth intervals and each segment was stored frozen at −30°C. The nitrate concentration was determined for the supernatants after centrifuging the frozen and thawed sediments. Nitrate in the uppermost sediment showed a remarkable seasonal change, and its seasonal maximum of up to 400 μM was found in October. The directions of the diffusive nitrate fluxes predicted from the interfacial concentration gradients were out of the sediment throughout the year. In contrast, the directions of the total nitrate fluxes measured by the whole-core incubation were into the sediment at all seasons. This contradiction between directions indicates that a large part of the nitrate pool extracted from the frozen surface sediments is not a pore water constituent, and preliminary examinations demonstrated that the nitrate was contained in the intracellular vacuoles of filamentous sulfur bacteria dwelling on or in the surface sediment. Based on the comparison between in situ sediment denitrification activity and total nitrate flux, it is suggested that intracellular nitrate cannot be directly utilized by sediment denitrification, and the probable fate of the intracellular nitrate is hypothesized to be dissimilatory reduction to ammonium. The presence of nitrate-accumulating sulfur bacteria therefore may lower nature's self-purification capacity (denitrification) and exacerbate eutrophication in shallow coastal marine environments. PMID:11472923

  20. Interface Strategy To Achieve Tunable High Frequency Attenuation.

    PubMed

    Lv, Hualiang; Zhang, Haiqian; Ji, Guangbin; Xu, Zhichuan J

    2016-03-01

    Among all polarizations, the interface polarization effect is the most effective, especially at high frequency. The design of various ferrite/iron interfaces can significantly enhance the materials' dielectric loss ability at high frequency. This paper presents a simple method to generate ferrite/iron interfaces to enhance the microwave attenuation at high frequency. The ferrites were coated onto carbonyl iron and could be varied to ZnFe2O4, CoFe2O4, Fe3O4, and NiFe2O4. Due to the ferrite/iron interface inducing a stronger dielectric loss effect, all of these materials achieved broad effective frequency width at a coating layer as thin as 1.5 mm. In particular, an effective frequency width of 6.2 GHz could be gained from the Fe@NiFe2O4 composite.

  1. Switch over to the high frequency rf systems near transition

    SciTech Connect

    Brennan, J.M.; Wei, J.

    1988-01-01

    The purpose of this note is to point out that since bunch narrowing naturally occurs in the acceleration process in the vicinity of transition, it should be possible to switch over to the high frequency system close to transition when the bunch has narrowed enough to fit directly into the high frequency bucket. The advantage of this approach is the simplicity, no extra components or gymnastics are required of the low frequency system. The disadvantage, of course, is for protons which do not go through transition. But on the other hand, there is no shortage of intensity for protons and so it should be possible to keep the phase space area low for protons, and then matching to the high frequency bucket should be easily accomplished by adiabatic compression. 3 refs., 7 figs.

  2. Geochemical cycles in sediments deposited on the slopes of the Guaymas and Carmen Basins of the Gulf of California over the last 180 years

    USGS Publications Warehouse

    Dean, W.; Pride, C.; Thunell, R.

    2004-01-01

    Sediments deposited on the slopes of the Guaymas and Carmen Basins in the central Gulf of California were recovered in two box cores. Q-mode factor analyses identified detrital-clastic, carbonate, and redox associations in the elemental composition of these sediments. The detrital-clastic fraction appears to contain two source components, a more mafic component presumably derived from the Sierra Madre Occidental along the west coast of Mexico, and a more felsic component most likely derived from sedimentary rocks (mostly sandstones) of the Colorado Plateau and delivered by the Colorado River. The sediments also contain significant siliceous biogenic components and minor calcareous biogenic components, but those components were not quantified in this study. Redox associations were identified in both cores based on relatively high concentrations of molybdenum, which is indicative of deposition under conditions of sulfate reduction. Decreases in concentrations of molybdenum in younger sediments suggest that the bottom waters of the Gulf have became more oxygenated over the last 100 years. Many geochemical components in both box cores exhibit distinct cyclicity with periodicities of 10-20 years. The most striking are 20-year cycles in the more mafic components (e.g., titanium), particularly in sediments deposited during the 19th century. In that century, the titanium cycles are in very good agreement with warm phases of the Pacific Decadal Oscillation, implying that at times of greater influx of titanium-rich volcanic debris, there were more El Nin??os and higher winter precipitation. The cycles are interpreted as due to greater and lesser riverine influx of volcanic rock debris from the Sierra Madre. There is also spectral evidence for periodicities of 4-8 and 8-16 years, suggesting that the delivery of detrital-clastic material is responding to some multiannual (ENSO?) forcing.

  3. Casimir force between δ -δ' mirrors transparent at high frequencies

    NASA Astrophysics Data System (ADS)

    Braga, Alessandra N.; Silva, Jeferson Danilo L.; Alves, Danilo T.

    2016-12-01

    We investigate, in the context of a real massless scalar field in 1 +1 dimensions, models of partially reflecting mirrors simulated by Dirac δ -δ' point interactions. In the literature, these models do not exhibit full transparency at high frequencies. In order to provide a more realistic feature for these models, we propose a modified δ -δ' point interaction that enables full transparency in the limit of high frequencies. Taking this modified δ -δ' model into account, we investigate the Casimir force, comparing our results with those found in the literature.

  4. High-frequency generation in two coupled semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Matharu, Satpal; Kusmartsev, Feodor V.; Balanov, Alexander G.

    2013-10-01

    We theoretically show that two semiconductor superlattices arranged on the same substrate and coupled with the same resistive load can be used for a generation of high-frequency periodic and quasiperiodic signals. Each superlattice involved is capable to generate current oscillations associated with drift of domains of high charge concentration. However, the coupling with the common load can eventually lead to synchronization of the current oscillations in the interacting superlattices. We reveal how synchronization depends on detuning between devices and the resistance of the common load, and discuss the effects of coupling and detuning on the high-frequency power output from the system.

  5. A MEMS-based high frequency x-ray chopper.

    PubMed

    Siria, A; Dhez, O; Schwartz, W; Torricelli, G; Comin, F; Chevrier, J

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  6. Condenser Microphone Protective Grid Correction for High Frequency Measurements

    NASA Technical Reports Server (NTRS)

    Lee, Erik; Bennett, Reginald

    2010-01-01

    Use of a protective grid on small diameter microphones can prolong the lifetime of the unit, but the high frequency effects can complicate data interpretation. Analytical methods have been developed to correct for the grid effect at high frequencies. Specifically, the analysis pertains to quantifying the microphone protective grid response characteristics in the acoustic near field of a rocket plume noise source. A frequency response function computation using two microphones will be explained. Experimental and instrumentation setup details will be provided. The resulting frequency response function for a B&K 4944 condenser microphone protective grid will be presented, along with associated uncertainties

  7. Real-Time, High-Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed

    2003-01-01

    An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction

  8. Spatiotemporal sequence of Himalayan debris flow from analysis of high-frequency seismic noise

    NASA Astrophysics Data System (ADS)

    Burtin, A.; Bollinger, L.; Cattin, R.; Vergne, J.; Nábělek, J. L.

    2009-10-01

    During the 2003 summer monsoon, the Hi-CLIMB seismological stations deployed across the Himalayan Range detected bursts of high-frequency seismic noise that lasted several hours to days. On the basis of the cross correlation of seismic envelopes recorded at 11 stations, we show that the largest transient event on 15 August was located nearby a village partially destroyed on that day by a devastating debris flow. This consistency in both space and time suggests that high-frequency seismic noise analysis can be used to monitor debris flow generation as well as the evacuation of the sediment. A systematic study of one year of seismic noise, focusing on the detection of similar events, provides information on the spatial and temporal occurrence of mass movements at the front of the Himalayas. With a 50% probability of occurrence of a daily event, a total of 46 debris flows are seismically detected. Most of them were generated in regions of steep slopes, large gullies, and loose soils during the 2003 summer monsoon storms. These events are compared to local meteorological data to determine rainfall thresholds for slope failures, including the cumulative rainfall needed to bring the soil moisture content to failure capacity. The inferred thresholds are consistent with previous estimates deduced from soil studies as well as sediment supply investigations in the area. These results point out the potential of using seismic noise as a dedicated tool for monitoring the spatiotemporal occurrence of landslides and debris flows on a regional scale.

  9. Diversity of Methane-Cycling Archaea in Hydrothermal Sediment Investigated by General and Group-Specific PCR Primers

    PubMed Central

    Teske, Andreas P.

    2014-01-01

    The zonation of anaerobic methane-cycling Archaea in hydrothermal sediment of Guaymas Basin was studied by general primer pairs (mcrI, ME1/ME2, mcrIRD) targeting the alpha subunit of methyl coenzyme M reductase gene (mcrA) and by new group-specific mcrA and 16S rRNA gene primer pairs. The mcrIRD primer pair outperformed the other general mcrA primer pairs in detection sensitivity and phylogenetic coverage. Methanotrophic ANME-1 Archaea were the only group detected with group-specific primers only. The detection of 14 mcrA lineages surpasses the diversity previously found in this location. Most phylotypes have high sequence similarities to hydrogenotrophs, methylotrophs, and anaerobic methanotrophs previously detected at Guaymas Basin or at hydrothermal vents, cold seeps, and oil reservoirs worldwide. Additionally, five mcrA phylotypes belonging to newly defined lineages are detected. Two of these belong to deeply branching new orders, while the others are new species or genera of Methanopyraceae and Methermicoccaceae. Downcore diversity decreases from all groups detected in the upper 6 cm (∼2 to 40°C, sulfate measurable to 4 cm) to only two groups below 6 cm (>40°C). Despite the presence of hyperthermophilic genera (Methanopyrus, Methanocaldococcus) in cooler surface strata, no genes were detected below 10 cm (≥60°C). While mcrA-based and 16S rRNA gene-based community compositions are generally congruent, the deeply branching mcrA cannot be assigned to specific 16S rRNA gene lineages. Our study indicates that even among well-studied metabolic groups and in previously characterized model environments, major evolutionary branches are overlooked. Detecting these groups by improved molecular biological methods is a crucial first step toward understanding their roles in nature. PMID:25527539

  10. Diversity of methane-cycling archaea in hydrothermal sediment investigated by general and group-specific PCR primers.

    PubMed

    Lever, Mark A; Teske, Andreas P

    2015-02-01

    The zonation of anaerobic methane-cycling Archaea in hydrothermal sediment of Guaymas Basin was studied by general primerpairs (mcrI, ME1/ME2, mcrIRD) targeting the alpha subunit of methyl coenzyme M reductase gene (mcrA) and by new group specific mcrA and 16S rRNA gene primer pairs. The mcrIRD primer pair outperformed the other general mcrA primer pairs indetection sensitivity and phylogenetic coverage. Methanotrophic ANME-1 Archaea were the only group detected with group specific primers only. The detection of 14 mcrA lineages surpasses the diversity previously found in this location. Most phylotypes have high sequence similarities to hydrogenotrophs, methylotrophs, and anaerobic methanotrophs previously detected at Guaymas Basin or at hydrothermal vents, cold seeps, and oil reservoirs worldwide. Additionally, five mcrA phylotypes belonging to newly defined lineages are detected. Two of these belong to deeply branching new orders, while the others are new species or genera of Methanopyraceae and Methermicoccaceae. Downcore diversity decreases from all groups detected in the upper 6 cm(2 to 40 °C, sulfate measurable to 4 cm) to only two groups below 6 cm (>40 °C). Despite the presence of hyperthermophilic genera (Methanopyrus, Methanocaldococcus) in cooler surface strata, no genes were detected below 10 cm (>60 °C). While mcrAbased and 16S rRNA gene-based community compositions are generally congruent, the deeply branching mcrA cannot be assigned to specific 16S rRNA gene lineages. Our study indicates that even among well-studied metabolic groups and in previously characterized model environments, major evolutionary branches are overlooked. Detecting these groups by improved molecular biological methods is a crucial first step toward understanding their roles in nature.

  11. Excitation and Ionisation dynamics in high-frequency plasmas

    NASA Astrophysics Data System (ADS)

    O'Connell, D.

    2008-07-01

    excitation and sustainment of the discharge. As the pressure decreases the discharge operates in so-called 'alpha-mode' where the sheath expansion is responsible for discharge sustainment. Decreasing the pressure towards the limit of operation (below 1 Pa) the discharge operates in a regime where kinetic effects dominate plasma sustainment. Wave particle interactions resulting from the flux of highly energetic electrons interacting with thermal bulk electrons give rise to a series of oscillations in the electron excitation phase space at the sheath edge. This instability is responsible for a significant energy deposit in the plasma when so-called 'ohmic heating' is no longer efficient. In addition to this an interesting electron acceleration mechanism occurs during the sheath collapse. The large sheath width, due to low plasma densities at the lower pressure, and electron inertia allows the build up of a local electric field accelerating electrons towards the electrode. Multi-frequency plasmas, provide additional process control for technological applications, and through investigating the excitation dynamics in such discharges the limitations of functional separation is observed. Non-linear frequency coupling is observed in plasma boundary sheaths governed by two frequencies simultaneously. In an alpha-operated discharge the sheath edge velocity governs the excitation and ionisation within the plasma, and it will be shown that this is determined by the time varying sheath width. The nature of the coupling effects strongly depends on the ratio of the applied voltages. Under technologically relevant conditions (low frequency voltage >> high frequency voltage) interesting phenomena depending on the phase relation of the voltages are also observed and will be discussed.

  12. High-frequency hearing in seals and sea lions.

    PubMed

    Cunningham, Kane A; Reichmuth, Colleen

    2016-01-01

    Existing evidence suggests that some pinnipeds (seals, sea lions, and walruses) can detect underwater sound at frequencies well above the traditional high-frequency hearing limits for their species. This phenomenon, however, is not well studied: Sensitivity patterns at frequencies beyond traditional high-frequency limits are poorly resolved, and the nature of the auditory mechanism mediating hearing at these frequencies is unknown. In the first portion of this study, auditory sensitivity patterns in the 50-180 kHz range were measured for one California sea lion (Zalophus californianus), one harbor seal (Phoca vitulina), and one spotted seal (Phoca largha). Results show the presence of two distinct slope-regions at the high-frequency ends of the audiograms of all three subjects. The first region is characterized by a rapid decrease in sensitivity with increasing frequency-i.e. a steep slope-followed by a region of much less rapid sensitivity decrease-i.e. a shallower slope. In the second portion of this study, a masking experiment was conducted to investigate how the basilar membrane of a harbor seal subject responded to acoustic energy from a narrowband masking noise centered at 140 kHz. The measured masking pattern suggests that the initial, rapid decrease in sensitivity on the high-frequency end of the subject's audiogram is not due to cochlear constraints, as has been previously hypothesized, but rather to constraints on the conductive mechanism.

  13. Collocations of High Frequency Noun Keywords in Prescribed Science Textbooks

    ERIC Educational Resources Information Center

    Menon, Sujatha; Mukundan, Jayakaran

    2012-01-01

    This paper analyses the discourse of science through the study of collocational patterns of high frequency noun keywords in science textbooks used by upper secondary students in Malaysia. Research has shown that one of the areas of difficulty in science discourse concerns lexis, especially that of collocations. This paper describes a corpus-based…

  14. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K. Kirk

    2011-01-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol–gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed. PMID:21720451

  15. Factors Affecting the Benefits of High-Frequency Amplification

    ERIC Educational Resources Information Center

    Horwitz, Amy R.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2008-01-01

    Purpose: This study was designed to determine the extent to which high-frequency amplification helped or hindered speech recognition as a function of hearing loss, gain-frequency response, and background noise. Method: Speech recognition was measured monaurally under headphones for nonsense syllables low-pass filtered in one-third-octave steps…

  16. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.

    PubMed

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K Kirk

    2011-02-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol-gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed.

  17. High Frequency Acoustic Channel Characterization for Propagation and Ambient Noise

    DTIC Science & Technology

    2006-09-30

    with Michael Porter and the ONR High Frequency Initiative and the ONR PLUSNet program. REFERENCES M. B. Porter and H. P. Bucker, “Gaussian...Harrison and Michael Porter , “A passive fathometer for determining bottom depth and imaging seabed layering using ambient noise”, J. Acoust. Soc. Am., 120

  18. Fuzzy and conventional control of high-frequency ventilation.

    PubMed

    Noshiro, M; Matsunami, T; Takakuda, K; Ryumae, S; Kagawa, T; Shimizu, M; Fujino, T

    1994-07-01

    A high-frequency ventilator was developed, consisting of a single-phase induction motor, an unbalanced mass and a mechanical vibration system. Intermittent positive pressure respiration was combined with high-frequency ventilation to measure end-tidal pCO2. Hysteresis was observed between the rotational frequency of the high-frequency ventilator and end-tidal pCO2. A fuzzy proportional plus integral control system, designed on the basis of the static characteristics of the controlled system and a knowledge of respiratory physiology, successfully regulated end-tidal pCO2. The characteristics of gas exchange under high-frequency ventilation was approximated by a first-order linear model. A conventional PI control system, designed on the basis of the approximated model, regulated end-tidal pCO2 with a performance similar to that of the fuzzy PI control system. The design of the fuzzy control system required less knowledge about the controlled system than that of the conventional control system.

  19. Measurement of high frequency waves using a wave follower

    NASA Technical Reports Server (NTRS)

    Tang, S.; Shemdin, O. H.

    1983-01-01

    High frequency waves were measured using a laser-optical sensor mounted on a wave follower. Measured down-wind wave slope spectra are shown to be wind speed dependent; the mean square wave-slopes are generally larger than those measured by Cox and Munk (1954) using the sun glitter method.

  20. High-Frequency Oscillations and Seizure Generation in Neocortical Epilepsy

    ERIC Educational Resources Information Center

    Worrell, Greg A.; Parish, Landi; Cranstoun, Stephen D.; Jonas, Rachel; Baltuch, Gordon; Litt, Brian

    2004-01-01

    Neocortical seizures are often poorly localized, explosive and widespread at onset, making them poorly amenable to epilepsy surgery in the absence of associated focal brain lesions. We describe, for the first time in an unselected group of patients with neocortical epilepsy, the finding that high-frequency (60--100 Hz) epileptiform oscillations…

  1. Nutrient cycling at the sediment-water interface and in sediments at Chiricahueto marsh: a subtropical ecosystem associated with agricultural land uses.

    PubMed

    Soto-Jimenez, M F; Paez-Osuna, F; Bojorquez-Leyva, H

    2003-02-01

    A study was conducted to examine the potential role to accumulate and transform nitrogen and phosphorus of a common wetland type marsh; the site is located in a subtropical environment that receives agricultural pollutants. Chiricahueto marsh effectively removes N and P from surface waters. It is clear that the diagenetic processes are mainly controlled by the exponential decomposition of organic matter that takes place at the sediment-water interface and in the sedimentary column, under oxic and suboxic-anoxic conditions, respectively. Mass balances indicated a net sedimentation of 11.3 g Nm(-2)x yr (-1) and 3.9 g Pm(-2) x yr (-1), which results in an annual regeneration of 1.7 g Nm(-2) and 0.8 g Pm(-2) at the sediment-water interface under oxic conditions. A major remineralization rate was estimated in 6.4 g Nm(-2) x yr (-1) and 1.1g Pm(-2) x yr (-1) into the sedimentary column where suboxic to anoxic conditions occur by the utilization of nitrate, Fe and Mn as electron acceptors. The estimated burial fluxes in the deeper sediments (>50 cm) were 1.5 g Nm(-2) x yr (-1) and 0.4 g Pm(-2) x yr (-1).

  2. Sources and cycling of mercury in the paleo Arctic Ocean from Hg stable isotope variations in Eocene and Quaternary sediments

    NASA Astrophysics Data System (ADS)

    Gleason, J. D.; Blum, J. D.; Moore, T. C.; Polyak, L.; Jakobsson, M.; Meyers, P. A.; Biswas, A.

    2017-01-01

    Mercury stable isotopic compositions were determined for marine sediments from eight locations in the Arctic Ocean Basin. Mass dependent fractionation (MDF) and mass independent fractionation (MIF) of Hg stable isotopes were recorded across a variety of depositional environments, water depths, and stratigraphic ages. δ202Hg (MDF) ranges from -2.34‰ to -0.78‰; Δ199Hg (MIF) from -0.18‰ to +0.12‰; and Δ201Hg (MIF) from -0.29‰ to +0.05‰ for the complete data set (n = 33). Holocene sediments from the Chukchi Sea and Morris Jesup Rise record the most negative Δ199Hg values, while Pleistocene sediments from the Central Arctic Ocean record the most positive Δ199Hg values. The most negative δ202Hg values are recorded in Pleistocene sediments. Eocene sediments (Lomonosov Ridge) show some overlap in their Hg isotopic compositions with Quaternary sediments, with a sample of the Arctic Ocean PETM (56 Ma) most closely matching the average Hg isotopic composition of Holocene Arctic marine sediments. Collectively, these data support a terrestrially-dominated Hg source input for Arctic Ocean sediment through time, although other sources, as well as influences of sea ice, atmospheric mercury depletion events (AMDEs), and anthropogenic Hg (in core top samples) on Hg isotopic signatures must also be considered.

  3. Study of the succession of microbial communities for sulfur cycle response to ecological factors change in sediment of sewage system.

    PubMed

    Liu, Yanchen; Dong, Qian; Wu, Chen; Zhou, Xiaohong; Shi, Hanchang

    2015-06-01

    The biological reaction process of sulfur in biofilms and sediments causes serious problems of corrosion and odor in sewage systems. This study aims to reveal the distribution and shift of microbial diversity that survives inside the sediment in response to surrounding changes in sewage systems. The successions of microbial community were compared via denaturing gradient gel electrophoresis and by constructing phylogenetic trees via maximum likelihood method. The results indicated that the shift of microbial diversity is not significant along the vertical layer inside the sediment. The influences of sediment accumulation time on the shift in microbial diversity are evident, particularly with the switch of the accumulation stage. Implementing a control strategy for oxygen injection and nitrate addition evidently inhibits and stimulates some dominant sulfate-reducing bacterial strains in the sediment. The diversity in the total bacteria is positively related with ORP, dissolved oxygen, and sulfide concentration.

  4. Past seismic activity in Eastern Anatolia recorded over several glacial/interglacial cycles in the sediments of Lake Van

    NASA Astrophysics Data System (ADS)

    Stockhecke, M.; Anselmetti, F.; Sturm, M.

    2012-12-01

    Lake sediments document besides paleoenvironmental and paleoclimate conditions also paleoseismic activity through various forms of deformation structures. These are especially visible in finely-laminated sediments. Being situated in a tectonically active region, the partly annually-laminated sedimentary sequence of the terminal Lake Van, recovered in 2010 under the context of the ICDP Paleovan project, shows dozens of earthquake-triggered microdeformations that document past seismic events of the last half a million years. Lithological and multiproxy analysis revealed that the Lake Van's depositional conditions varied in correspondence to Milankovitch and sub-Milankovitch cycles. Glacial/stadial and interglacial/interstadial conditions were recorded continuously over the last half a million years excluding two discontinuities, which indicate major hydrological and geomorphological changes in Lake Van's early history. Two sites were drilled 10 km apart: A primary drill site, situated on a ridge, covers the entire lake history since its initial transgression in the middle Pleistocene; A secondary drill site, located in a more shallow northern basin, covers the past 90'000 years. Multiple coring at both drill sites allows to establish two almost complete 220 m and 145 m long composite sections, respectively. Observing deformation structures in multiple parallel cores at each site is used as a criteria to distinguish 'true' paleoseismic deformation structures from potential drilling artifacts. Deformation structures consist of i) silt-filled vertical fractures, ii) microfaults with displacements at cm-scale, iii) microfolds, iv) liquefaction structures (mushroom, pseudonodules), iv) disturbed varve laminations and v) mixed layers. While the ridge site records the paleoseismic events as microdeformations, the northern basinal site rather records seismic events through the deposition of seismo-turbidites. In some cases, individual earthquake events can even be identified

  5. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2014-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  6. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  7. Suppressing high-frequency temperature oscillations in microchannels with surface structures

    NASA Astrophysics Data System (ADS)

    Zhu, Yangying; Antao, Dion S.; Bian, David W.; Rao, Sameer R.; Sircar, Jay D.; Zhang, Tiejun; Wang, Evelyn N.

    2017-01-01

    Two-phase microchannel heat sinks are attractive for thermal management of high heat flux electronic devices, yet flow instability which can lead to thermal and mechanical fatigue remains a significant challenge. Much work has focused on long-timescale (˜seconds) flow oscillations which are usually related to the compressible volume in the loop. The rapid growth of vapor bubbles which can also cause flow reversal, however, occurs on a much shorter timescale (˜tens of milliseconds). While this high-frequency oscillation has often been visualized with high-speed imaging, its effect on the instantaneous temperature has not been fully investigated due to the typical low sampling rates of the sensors. Here, we investigate the temperature response as a result of the high-frequency flow oscillation in microchannels and the effect of surface microstructures on this temperature oscillation with a measurement data acquisition rate of 1000 Hz. For smooth surface microchannels, fluid flow oscillated between complete dry-out and rewetting annular flow due to the short-timescale flow instability, which caused high-frequency and large amplitude temperature oscillations (10 °C in 25 ms). In comparison, hydrophilic surface structures on the microchannel promoted capillary flow which delayed and suppressed dry-out in each oscillation cycle, and thus significantly reduced the temperature oscillation at high heat fluxes. This work suggests that promoting capillary wicking via surface structures is a promising technique to reduce thermal fatigue in high heat flux two-phase microchannel thermal management devices.

  8. [High-frequency ventilation. I. Distribution of alveolar pressure amplitudes during high frequency oscillation in the lung model].

    PubMed

    Theissen, J; Lunkenheimer, P P; Niederer, P; Bush, E; Frieling, G; Lawin, P

    1987-09-01

    The pattern of intrapulmonary pressure distribution was studied during high-frequency ventilation in order to explain the inconsistent results reported in the literature. Methods. Pressure and flow velocity (hot-wire anemometry) were measured in different lung compartments: 1. In transalveolar chambers sealed to the perforated pleural surfaces of dried pig lungs; 2. In emphysema-simulating airbags sealed to the isolated bronchial trees of dried pig lungs; and 3. In transalveolar chambers sealed to the perforated pleural surfaces of freshly excised pig lungs. Results. 1. The pressure amplitudes change from one area to another and depending on the exciting frequency. 2. High-frequency oscillation is associated with an increase in pressure amplitude when the exciting frequency rises, whereas with conventional high-frequency jet ventilation the pressure amplitude is more likely to decrease with frequency. 3. During high-frequency jet ventilation the local pressure amplitude changes with the position of the tube in the trachea rather than with the exciting frequency. 4. When the volume of the measuring chamber is doubled the resulting pressure amplitude falls to half the control value. 5. The pressure amplitude and mean pressure measured in the transalveolar chamber vary more or less independently from the peak flow velocity. High-frequency ventilation is thus seen to be a frequency-dependant, inhomogeneous mode of ventilation that can essentially be homogenized by systematically changing the exciting frequency. The frequency-dependant response to different lung areas to excitation is likely to result from an intrabronchially-localized aerodynamic effect rather than the mechanical properties of the lung parenchyma.

  9. Capturing temporal variation in phosphorus dynamics in groundwater dominated rivers using automated high-frequency sampling

    NASA Astrophysics Data System (ADS)

    Bieroza, M. Z.; Heathwaite, A. L.; Mullinger, N. J.; Keenan, P. O.

    2012-04-01

    High-frequency river water quality monitoring provides detailed hydrochemical information on the time scale of hydrologic response. Several studies (Kirchner et al., 2004; Johnes, 2007; Cassidy and Jordan, 2011) have shown previously that coarse sampling approaches fail to quantify nutrient and sediment loads and to capture the fine structure of water quality dynamics correctly. A robust analysis of high-frequency nutrient and water quality time series can present a complex conceptual, analytical and computational problem. High-frequency nutrient monitoring provides new evidence of processes and patterns that could not be observed previously using standard coarse resolution sampling schemes. However, to fully utilise the wealth of information contained in high-frequency nutrient data, we need to address the following questions: how to detect complex coupling patterns and processes in high-resolution flow-nutrients data, how do these patterns and processes change throughout the period of observation, and how to distinguish noise signals from an evidence of real processes (Harris and Heathwaite, 2005). Here, hourly measurements of total phosphorus (TP), soluble reactive phosphorus (SRP) and turbidity were carried out using bank side analysers to study the biogeochemical response of a 54 km2 catchment of the River Leith, a tributary of the River Eden (Cumbria, UK). A remote automated mobile lab facilitates real-time high-frequency nutrient and water quality monitoring, with no time delay between collection and analysis of the reactive elements. The objectives of this study were two-fold: first to investigate the intrinsic complexity of the temporal relationship between phosphorus fractions (SRP, TP), turbidity and continuous hydrometric time series and secondly to investigate the possibilities of missing high-frequency phosphorus data infilling using continuous hydrometric time series. Complex non-linear relationships between flow, TP and SRP, turbidity were observed

  10. Biotic and a-biotic Mn and Fe cycling in deep sediments across a gradient of sulfate reduction rates along the California margin

    NASA Astrophysics Data System (ADS)

    Schneider-Mor, A.; Steefel, C.; Maher, K.

    2011-12-01

    The coupling between the biological and a-biotic processes controlling trace metals in deep marine sediments are not well understood, although the fluxes of elements and trace metals across the sediment-water interface can be a major contribution to ocean water. Four marine sediment profiles (ODP leg 167 sites 1011, 1017, 1018 and 1020)were examined to evaluate and quantify the biotic and abiotic reaction networks and fluxes that occur in deep marine sediments. We compared biogeochemical processes across a gradient of sulfate reduction (SR) rates with the objective of studying the processes that control these rates and how they affect major elements as well as trace metal redistribution. The rates of sulfate reduction, methanogenesis and anaerobic methane oxidation (AMO) were constrained using a multicomponent reactive transport model (CrunchFlow). Constraints for the model include: sediment and pore water concentrations, as well as %CaCO3, %biogenic silica, wt% carbon and δ13C of total organic carbon (TOC), particulate organic matter (POC) and mineral associated carbon (MAC). The sites are distinguished by the depth of AMO: a shallow zone is observed at sites 1018 (9 to 19 meters composite depth (mcd)) and 1017 (19 to 30 mcd), while deeper zones occur at sites 1011 (56 to 76 mcd) and 1020 (101 to 116 mcd). Sulfate reduction rates at the shallow AMO sites are on the order 1x10-16 mol/L/yr, much faster than rates in the deeper zone sulfate reduction (1-3x10-17 mol/L/yr), as expected. The dissolved metal ion concentrations varied between the sites, with Fe (0.01-7 μM) and Mn (0.01-57 μM) concentrations highest at Site 1020 and lowest at site 1017. The highest Fe and Mn concentrations occurred at various depths, and were not directly correlated with the rates of sulfate reduction and the maximum alkalinity values. The main processes that control cycling of Fe are the production of sulfide from sulfate reduction and the distribution of Fe-oxides. The Mn distribution

  11. Suspended sediment transport in the Deepwater Navigation Channel, Yangtze River Estuary, China, in the dry season 2009: 1. Observations over spring and neap tidal cycles

    NASA Astrophysics Data System (ADS)

    Song, Dehai; Wang, Xiao Hua; Cao, Zhenyi; Guan, Weibing

    2013-10-01

    The in situ data in the Deepwater Navigation Channel (DNC), Yangtze River Estuary (YRE), China, in the dry season 2009, shows spring tides associated with greater maximum velocities, more mixing, less stratification, and diffused fluid mud; whereas neap tides are associated with smaller maximum velocities, greater stratification, inhibited mixing, and stratified fluid muds. The balance of salt flux indicates the seaward salt transport is dominated by fluvial flows, and the landward salt transport is generated by compensation flows during spring tides, but shear effects during neap tidal cycles. The balance of suspended sediment flux illustrates the offshore sediment transport is dominated by fluvial flows as well, but the onshore transport is induced by tidal-pumping effects on spring tides, and shear effects on neaps. The suspended sediment transport is strongly affected by the salinity distribution and salinity-gradient-induced stratification in the DNC. The spring-neap asymmetry is generated by the estuarine gravitational circulation during low-flow conditions; while the flood-ebb asymmetric stratification within a tidal cycle is due to the semidiurnal tidally movement of the salt front.

  12. Self-integrating inductive loop for measuring high frequency pulses

    NASA Astrophysics Data System (ADS)

    Rojas-Moreno, Mónica V.; Robles, Guillermo; Martínez-Tarifa, Juan M.; Sanz-Feito, Javier

    2011-08-01

    High frequency pulses can be measured by means of inductive sensors. The main advantage of these sensors consists of non-contact measurements that isolate and protect measuring equipment. The objective of this paper is to present the implementation of an inductive sensor for measuring rapidly varying currents. It consists of a rectangular loop with a resistor at its terminals. The inductive loop gives the derivative of the current according to Faraday's law and the resistor connected to the loop modifies the sensor's frequency response to obtain an output proportional to the current pulse. The self-integrating inductive sensor was validated with two sensors, a non-inductive resistor and a commercial high frequency current transformer. The results were compared to determine the advantages and drawbacks of the probe as an adequate inductive transducer.

  13. High-frequency Broadband Modulations of Electroencephalographic Spectra

    PubMed Central

    Onton, Julie; Makeig, Scott

    2009-01-01

    High-frequency cortical potentials in electroencephalographic (EEG) scalp recordings have low amplitudes and may be confounded with scalp muscle activities. EEG data from an eyes-closed emotion imagination task were linearly decomposed using independent component analysis (ICA) into maximally independent component (IC) processes. Joint decomposition of IC log spectrograms into source- and frequency-independent modulator (IM) processes revealed three distinct classes of IMs that separately modulated broadband high-frequency (∼15–200 Hz) power of brain, scalp muscle, and likely ocular motor IC processes. Multi-dimensional scaling revealed significant but spatially complex relationships between mean broadband brain IM effects and the valence of the imagined emotions. Thus, contrary to prevalent assumption, unitary modes of spectral modulation of frequencies encompassing the beta, gamma, and high gamma frequency ranges can be isolated from scalp-recorded EEG data and may be differentially associated with brain sources and cognitive activities. PMID:20076775

  14. High-Frequency Power Gain in the Mammalian Cochlea

    NASA Astrophysics Data System (ADS)

    Maoiléidigh, Dáibhid Ó.; Hudspeth, A. J.

    2011-11-01

    Amplification in the mammalian inner ear is thought to result from a nonlinear active process known as the cochlear amplifier. Although there is much evidence that outer hair cells (OHCs) play a central role in the cochlear amplifier, the mechanism of amplification remains uncertain. In non-mammalian ears hair bundles can perform mechanical work and account for the active process in vitro, yet in the mammalian cochlea membrane-based electromotility is required for amplification in vivo. A key issue is how OHCs conduct mechanical power amplification at high frequencies. We present a physical model of a segment of the mammalian cochlea that can amplify the power of external signals. In this representation both electromotility and active hair-bundle motility are required for mechanical power gain at high frequencies. We demonstrate how the endocochlear potential, the OHC resting potential, Ca2+ gradients, and ATP-fueled myosin motors serve as the energy sources underlying mechanical power gain in the cochlear amplifier.

  15. Parametric Study of High Frequency Pulse Detonation Tubes

    NASA Technical Reports Server (NTRS)

    Cutler, Anderw D.

    2008-01-01

    This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.

  16. Extracting cardiac myofiber orientations from high frequency ultrasound images

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Jiang, Rong; Shen, Ming; Wagner, Mary B.; Kirshbom, Paul; Fei, Baowei

    2013-03-01

    Cardiac myofiber plays an important role in stress mechanism during heart beating periods. The orientation of myofibers decides the effects of the stress distribution and the whole heart deformation. It is important to image and quantitatively extract these orientations for understanding the cardiac physiological and pathological mechanism and for diagnosis of chronic diseases. Ultrasound has been wildly used in cardiac diagnosis because of its ability of performing dynamic and noninvasive imaging and because of its low cost. An extraction method is proposed to automatically detect the cardiac myofiber orientations from high frequency ultrasound images. First, heart walls containing myofibers are imaged by B-mode high frequency (<20 MHz) ultrasound imaging. Second, myofiber orientations are extracted from ultrasound images using the proposed method that combines a nonlinear anisotropic diffusion filter, Canny edge detector, Hough transform, and K-means clustering. This method is validated by the results of ultrasound data from phantoms and pig hearts.

  17. High Frequency Resonant Electromagnetic Generation and Detection of Ultrasonic Waves

    NASA Astrophysics Data System (ADS)

    Kawashima, Katsuhiro; Wright, Oliver; Hyoguchi, Takao

    1994-05-01

    High frequency resonant mode electromagnetic ultrasonic generation and detection in metals is demonstrated at frequencies up to ˜150 MHz with various metal sheet samples. Using a unified theory of the generation and detection process, it is shown how various physical quantities can be measured. The sound velocity or thickness of the sheets can be derived from the resonant frequencies. At resonance the detected amplitude is inversely proportional to the ultrasonic attenuation of the sample, whereas the resonance half-width is proportional to this attenuation. We derive the ultrasonic attenuation coefficient from the half-width, and show how the grain size of the material can be probed. In addition we present results for thin bonded sheets, and show how a measure of the bonding or delamination can be obtained. This high frequency resonant method shows great promise for the non-destructive evaluation of thin sheets and coatings in the sub- 10-µm to 1-mm thickness range.

  18. How High Frequency Trading Affects a Market Index

    PubMed Central

    Kenett, Dror Y.; Ben-Jacob, Eshel; Stanley, H. Eugene; gur-Gershgoren, Gitit

    2013-01-01

    The relationship between a market index and its constituent stocks is complicated. While an index is a weighted average of its constituent stocks, when the investigated time scale is one day or longer the index has been found to have a stronger effect on the stocks than vice versa. We explore how this interaction changes in short time scales using high frequency data. Using a correlation-based analysis approach, we find that in short time scales stocks have a stronger influence on the index. These findings have implications for high frequency trading and suggest that the price of an index should be published on shorter time scales, as close as possible to those of the actual transaction time scale. PMID:23817553

  19. High-frequency oscillations and the neurobiology of schizophrenia.

    PubMed

    Uhlhaas, Peter J; Singer, Wolf

    2013-09-01

    Neural oscillations at low- and high-frequency ranges are a fundamental feature of large-scale networks. Recent evidence has indicated that schizophrenia is associated with abnormal amplitude and synchrony of oscillatory activity, in particular, at high (beta/gamma) frequencies. These abnormalities are observed during task-related and spontaneous neuronal activity which may be important for understanding the pathophysiology of the syndrome. In this paper, we shall review the current evidence for impaired beta/gamma-band oscillations and their involvement in cognitive functions and certain symptoms of the disorder. In the first part, we will provide an update on neural oscillations during normal brain functions and discuss underlying mechanisms. This will be followed by a review of studies that have examined high-frequency oscillatory activity in schizophrenia and discuss evidence that relates abnormalities of oscillatory activity to disturbed excitatory/inhibitory (E/I) balance. Finally, we shall identify critical issues for future research in this area.

  20. Understanding past climatic and hydrological variability in the Mediterranean from Lake Prespa sediment isotope and geochemical record over the Last Glacial cycle

    NASA Astrophysics Data System (ADS)

    Leng, Melanie J.; Wagner, Bernd; Boehm, Anne; Panagiotopoulos, Konstantinos; Vane, Christopher H.; Snelling, Andrea; Haidon, Cheryl; Woodley, Ewan; Vogel, Hendrik; Zanchetta, Gianni; Baneschi, Ilaria

    2013-04-01

    Here we present stable isotope and geochemical data from Lake Prespa (Macedonia/Albania border) over the Last Glacial cycle (Marine Isotope Stages 5-1) and discuss past lake hydrology and climate (TIC, oxygen and carbon isotopes), as well as responses to climate of terrestrial and aquatic vegetation (TOC, Rock Eval pyrolysis, carbon isotopes, pollen). The Lake Prespa sediments broadly fall into 5 zones based on their sedimentology, geochemistry, palynology and the existing chronology. The Glacial sediments suggest low supply of carbon to the lake, but high summer productivity; intermittent siderite layers suggest that although the lake was likely to have mixed regularly leading to enhanced oxidation of organic matter, there must have been within sediment reducing conditions and methanogenesis. MIS 5 and 1 sediments suggest much more productivity, higher rates of organic material preservation possibly due to more limited mixing with longer periods of oxygen-depleted bottom waters. We also calculated lakewater δ18O from siderite (authigenic/Glacial) and calcite (endogenic/Holocene) and show much lower lakewater δ18O values in the Glacial when compared to the Holocene, suggesting the lake was less evaporative in the Glacial, probably as a consequence of cooler summers and longer winter ice cover. In the Holocene the oxygen isotope data suggests general humidity, with just 2 marked arid phases, features observed in other Eastern and Central Mediterranean lakes.

  1. Microstrip antenna modeling and measurement at high frequencies

    SciTech Connect

    Bevensee, R.M.

    1986-04-30

    This report addresses the task C(i) of the Proposal for Microstrip Antenna Modeling and Measurement at High Frequencies by the writer, July 1985. The task is: Assess the advantages and disadvantages of the three computational approaches outlined in the Proposal, including any difficulties to be resolved and an estimate of the time required to implement each approach. The three approaches are (1) Finite Difference, (2) Sommerfeld-GTD-MOM, and (3) Surface Intergral Equations - MOM. These are discussed in turn.

  2. Automated composite ellipsoid modelling for high frequency GTD analysis

    NASA Technical Reports Server (NTRS)

    Sze, K. Y.; Rojas, R. G.; Klevenow, F. T.; Scheick, J. T.

    1991-01-01

    The preliminary results of a scheme currently being developed to fit a composite ellipsoid to the fuselage of a helicopter in the vicinity of the antenna location are discussed under the assumption that the antenna is mounted on the fuselage. The parameters of the close-fit composite ellipsoid would then be utilized as inputs into NEWAIR3, a code programmed in FORTRAN 77 for high frequency Geometrical Theory of Diffraction (GTD) Analysis of the radiation of airborne antennas.

  3. High frequency fishbones excited by near perpendicular neutral beam injection

    SciTech Connect

    Zhou Deng

    2006-07-15

    The high frequency fishbone instability observed in experiments with near perpendicular neutral beam injection is interpreted as the ideal internal kink mode destabilized by circulating energetic ions. The mode frequency is close to the transit frequency of circulating ions. The beta value of the circulating ions is required to peak on the magnetic axis and the average value within the q=1 magnetic surface must exceed a critical value for the mode to grow up.

  4. Modeling high-frequency capacitance in SOI MOS capacitors

    NASA Astrophysics Data System (ADS)

    Łukasiak, Lidia; Jasiński, Jakub; Beck, Romuald B.; Ikraiam, Fawzi A.

    2016-12-01

    This paper presents a model of high frequency capacitance of a SOI MOSCAP. The capacitance in strong inversion is described with minority carrier redistribution in the inversion layer taken into account. The efficiency of the computational process is significantly improved. Moreover, it is suitable for the simulation of thin-film SOI structures. It may also be applied to the characterization of non-standard SOI MOSCAPS e.g. with nanocrystalline body.

  5. High-frequency audiometry: test reliability and procedural considerations.

    PubMed

    Stelmachowicz, P G; Beauchaine, K A; Kalberer, A; Kelly, W J; Jesteadt, W

    1989-02-01

    This study compared the reliability of a recently developed high-frequency audiometer (HFA) [Stevens et al., J. Acoust. Soc. Am. 81, 470-484 (1987)] with a less complicated system that uses supraaural earphones (Koss system). The new approach permits calibration on an individual basis, making it possible to express thresholds at high frequencies in dB SPL. Data obtained from 50 normal-hearing subjects, ranging in age from 10-60 years, were used to evaluate the effects on reliability of threshold variance, earpiece/earphone fitting variance, and the variance associated with the HFA calibration process. Without earpiece/earphone replacement, the reliability of thresholds for the two systems is similar. With replacement, the HFA showed poorer reliability than the Koss system above 11 kHz, largely due to errors in estimating the calibration function. HFA reliability is greater for subjects with valid calibration functions over the entire frequency range. When average correction factors are applied to the Koss data in an effort to convert threshold estimates to dB SPL, individual transfer functions are not represented accurately. Thus the benefit of being able to express thresholds at high frequencies in dB SPL must be weighed against the additional source of variability introduced by the HFA calibration process.

  6. Design of matching layers for high-frequency ultrasonic transducers

    PubMed Central

    Fei, Chunlong; Ma, Jianguo; Chiu, Chi Tat; Williams, Jay A.; Fong, Wayne; Chen, Zeyu; Zhu, BenPeng; Xiong, Rui; Shi, Jing; Hsiai, Tzung K.; Shung, K. Kirk; Zhou, Qifa

    2015-01-01

    Matching the acoustic impedance of high-frequency (≥100 MHz) ultrasound transducers to an aqueous loading medium remains a challenge for fabricating high-frequency transducers. The traditional matching layer design has been problematic to establish high matching performance given requirements on both specific acoustic impedance and precise thickness. Based on both mass-spring scheme and microwave matching network analysis, we interfaced metal-polymer layers for the matching effects. Both methods hold promises for guiding the metal-polymer matching layer design. A 100 MHz LiNbO3 transducer was fabricated to validate the performance of the both matching layer designs. In the pulse-echo experiment, the transducer echo amplitude increased by 84.4% and its −6dB bandwidth increased from 30.2% to 58.3% comparing to the non-matched condition, demonstrating that the matching layer design method is effective for developing high-frequency ultrasonic transducers. PMID:26445518

  7. High frequency resolution terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangala, Bagvanth Reddy

    2013-12-01

    A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.

  8. Neuronal morphology generates high-frequency firing resonance.

    PubMed

    Ostojic, Srdjan; Szapiro, Germán; Schwartz, Eric; Barbour, Boris; Brunel, Nicolas; Hakim, Vincent

    2015-05-06

    The attenuation of neuronal voltage responses to high-frequency current inputs by the membrane capacitance is believed to limit single-cell bandwidth. However, neuronal populations subject to stochastic fluctuations can follow inputs beyond this limit. We investigated this apparent paradox theoretically and experimentally using Purkinje cells in the cerebellum, a motor structure that benefits from rapid information transfer. We analyzed the modulation of firing in response to the somatic injection of sinusoidal currents. Computational modeling suggested that, instead of decreasing with frequency, modulation amplitude can increase up to high frequencies because of cellular morphology. Electrophysiological measurements in adult rat slices confirmed this prediction and displayed a marked resonance at 200 Hz. We elucidated the underlying mechanism, showing that the two-compartment morphology of the Purkinje cell, interacting with a simple spiking mechanism and dendritic fluctuations, is sufficient to create high-frequency signal amplification. This mechanism, which we term morphology-induced resonance, is selective for somatic inputs, which in the Purkinje cell are exclusively inhibitory. The resonance sensitizes Purkinje cells in the frequency range of population oscillations observed in vivo.

  9. UTILITY OF A FULL LIFE-CYCLE COPEPOD BIOASSAY APPROACH FOR ASSESSMENT OF SEDIMENT-ASSOCIATED CONTAMINANT MIXTURES. (R825279)

    EPA Science Inventory

    Abstract

    We compared a 21 day full life-cycle bioassay with an existing 14 day partial life-cycle bioassay for two species of meiobenthic copepods, Microarthridion littorale and Amphiascus tenuiremis. We hypothesized that full life-cycle tests would bette...

  10. Integrating turbulent flow, biogeochemical, and poromechanical processes in rippled coastal sediment (Invited)

    NASA Astrophysics Data System (ADS)

    Cardenas, M. B.; Cook, P. L.; Jiang, H.; Traykovski, P.

    2010-12-01

    Coastal sediments are the locus of multiple coupled processes. Turbulent flow associated with waves and currents induces porewater flow through sediment leading to fluid exchange with the water column. This porewater flow is determined by the hydraulic and elastic properties of the sediment. Porewater flow also ultimately controls biogeochemical reactions in the sediment whose rates depend on delivery of reactants and export of products. We present results from numerical modeling studies directed at integrating these processes with the goal of shedding light on these complex environments. We show how denitrification rates inside ripples are largest at intermediate permeability which represents the optimal balance of reactant delivery and anoxic conditions. It is clear that nutrient cycling and distribution within the sediment is strongly dependent on the character of the multidimensional flow field inside of sediment. More recent studies illustrate the importance of the elastic properties of the saturated sediment on modulating fluid exchange between the water column and the sediment when pressure fluctuations along the sediment-water interface occur at the millisecond scale. Pressure fluctuations occur at this temporal scale due to turbulence and associated shedding of vortices due to the ripple geometry. This suggests that biogeochemical cycling may also be affected by these high-frequency elastic effects. Future studies should be directed towards this and should take advantage of modeling tools such as those we present.

  11. Climatic control of sediment transport from the Himalayas to the proximal NE Bengal Fan during the last glacial-interglacial cycle

    NASA Astrophysics Data System (ADS)

    Joussain, Ronan; Colin, Christophe; Liu, Zhifei; Meynadier, Laure; Fournier, Léa; Fauquembergue, Kelly; Zaragosi, Sébastien; Schmidt, Frédéric; Rojas, Virginia; Bassinot, Franck

    2016-09-01

    Clay mineralogy, siliciclastic grain-size, major elements, 87Sr/86Sr, and εNd analyses of deep-sea sediments cored in the north-eastern Bay of Bengal are used to reconstruct evolution of detrital sources and sediment transport to the proximal part of the Bengal deep-sea fan during the last climatic cycle. εNd values (-13.3 to -9.7) and 87Sr/86Sr ratios (0.721-0.733) indicate a mixture of sediments originating from the Ganges-Brahmaputra rivers and the Indo-Burman ranges. Interglacial Marine Isotopic Stages (MIS) 5 and 1 are associated with a higher contribution of sediments from the Ganges-Brahmaputra river system than is the case for glacial MIS 6, 4, 3, and 2. Siliciclasitic grain-size combined with Si/Al and Si/Fe ratios indicate coarser glacial sediments with numerous turbidite layers. Glacial turbidite layers display similar clay mineralogical compositions to hemipelagic sediments. Only few of turbidite layers (MIS 6, 4, and 2) are slightly unradiogenic (εNd -13.3), suggesting a higher contribution of Ganges-Brahmaputra river sediments. Independently of changes in the sedimentary sources, the smectite/(illite + chlorite) ratio of cores located on the NE Bengal Fan indicates higher inputs of primary minerals (illite and chlorite) from the highlands of the river basins (relief) during glacial MIS 6, 4, 3, and 2 and an increased contribution of pedogenic minerals (smectite and kaolinite) during interglacial MIS 5 and 1. Maximum smectite/(illite + chlorite) ratios during the warm sub-stages of MIS 5 suggest an intensification of summer monsoon rainfall associated with higher rates of physical erosion of the Indo-Gangetic flood-plain and/or dominant summer hydrological conditions transporting a higher proportion of sediments deriving from the Ganges-Brahmaputra rivers to the NE Bengal Fan. In addition, a higher production of smectite in soils of the Indo-Gangetic flood-plain during periods of intensification of monsoon rainfall cannot be excluded.

  12. Quantifying manganese and nitrogen cycle coupling in manganese-rich, organic carbon-starved marine sediments: Examples from the Clarion-Clipperton fracture zone

    NASA Astrophysics Data System (ADS)

    Mogollón, José M.; Mewes, Konstantin; Kasten, Sabine

    2016-07-01

    Extensive deep-sea sedimentary areas are characterized by low organic carbon contents and thus harbor suboxic sedimentary environments where secondary (autotrophic) redox cycling becomes important for microbial metabolic processes. Simulation results for three stations in the Eastern Equatorial Pacific with low organic carbon content (<0.5 dry wt %) and low sedimentation rates (10-1-100 mm ky-1) show that ammonium generated during organic matter degradation may act as a reducing agent for manganese oxides below the oxic zone. Likewise, at these sedimentary depths, dissolved reduced manganese may act as a reducing agent for oxidized nitrogen species. These manganese-coupled transformations provide a suboxic conversion pathway of ammonium and nitrate to dinitrogen. These manganese-nitrogen interactions further explain the presence and production of dissolved reduced manganese (up to tens of μM concentration) in sediments with high nitrate (>20 μM) concentrations.

  13. Porosity and Organic Carbon Controls on Naturally Reduced Zone (NRZ) Formation Creating Microbial ';Hotspots' for Fe, S, and U Cycling in Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Jones, M. E.; Janot, N.; Bargar, J.; Fendorf, S. E.

    2013-12-01

    Previous studies have illustrated the importance of Naturally Reduced Zones (NRZs) within saturated sediments for the cycling of metals and redox sensitive contaminants. NRZs can provide a source of reducing equivalents such as reduced organic compounds or hydrogen to stimulate subsurface microbial communities. These NRZ's are typically characterized by low permeability and elevated concentrations of organic carbon and trace metals. However, both the formation of NRZs and their importance to the overall aquifer carbon remineralization is not fully understood. Within NRZs the hydrolysis of particulate organic carbon (POC) and subsequent fermentation of dissolved organic carbon (DOC) to form low molecular weight dissolved organic carbon (LMW-DOC) provides electron donors necessary for the respiration of Fe, S, and in the case of the Rifle aquifer, U. Rates of POC hydrolysis and subsequent fermentation have been poorly constrained and rates in excess and deficit to the rates of subsurface anaerobic respiratory processes have been suggested. In this study, we simulate the development of NRZ sediments in diffusion-limited aggregates to investigate the physical and chemical conditions required for NRZ formation. Effects of sediment porosity and POC loading on Fe, S, and U cycling on molecular and nanoscale are investigated with synchrotron-based Near Edge X-ray Absorption Fine Structure Spectroscopy (NEXAFS). Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Fourier Transform Infrared spectroscopy (FTIR) are used to characterize the transformations in POC and DOC. Sediment aggregates are inoculated with the natural microbial biota from the Rifle aquifer and population dynamics are monitored by 16S RNA analysis. Overall, establishment of low permeability NRZs within the aquifer stimulate microbial respiration beyond the diffusion-limited zones and can limit the transport of U through a contaminated aquifer. However, the long-term stability of

  14. River methane hot-spots: Continuous methane ebullition measurements over an annual cycle linked to river sediment production

    NASA Astrophysics Data System (ADS)

    Wilkinson, Jeremy; Maeck, Andreas; Ashboul, Zeyad; Lorke, Andreas

    2015-04-01

    Hot spot methane ebullition from impounded river reaches matches high rates observed around the globe. Ebullition dominates total methane flux in the Saar River (Germany) and is largely determined by sediment deposition rate. Using automated bubble traps developed in-house, and deployed over a year at four sites, we collected high resolution data showing that hydrodynamic disturbances from shipping, lock operations and hydrograph events trigger ebullition episodes. Reverse smoothing was used to integrate the observed ebullition back in time, and helped in visualizing the data, and provides a time-series closer to methane accumulation in the sediments, whereas ebullition shows the triggering and release of the accumulated gas. One major hydrological disturbance of shallow-water sediment released around 13% of the total annual ebullition at that site, and ebullition generally followed the seasonal sediment temperature variations. The same event damped ebullition from deeper water sites. Total annual ebullition values ranged from 200 to 500 gCH4 m-2 yr-1. Ebullition from shallow water sediments in winter ceased for extended periods, but continued un-broken from deeper sites. With on-going measurements we believe these findings will help to improve estimates and the modelling of methane emissions from impounded river systems.

  15. Cycling of mercury across the sediment-water interface in seepage lakes: Chapter 13, Advances in Chemistry

    USGS Publications Warehouse

    Hurley, James P.; Krabbenhoft, David P.; Babiarz, C.L.; Andren, Anders

    1994-01-01

    The magnitude and direction of Hg fluxes across the sediment—water interface were estimated by groundwater, dry bulk sediment, sediment pore water, sediment trap, and water-column analyses in two northern Wisconsin seepage lakes. Little Rock Lake (Treatment Basin) received no groundwater discharge during the study period (1988—1990), and Follette Lake received continuous groundwater discharge. In Little Rock Lake, settling of particulate matter accounted for the major Hg delivery mechanism to the sediment—water interface. Upward diffusion of Hg from sediment pore waters below 2—4-cm sediment depth was apparently a minor source during summer stratification. Time-series comparisons suggested that the observed buildup of Hg in the hypolimnion of Little Rock Lake was attributable to dissolution and diffusion of Hg from recently fallen particulate matter close to the sediment—water interface. Groundwater inflow represented an important source of new Hg, and groundwater outflow accounted for significant removal of Hg from Pallette Lake. Equilibrium speciation calculations revealed that association of Hg with organic matter may control solubility in well-oxygenated waters, whereas in anoxic environments sulfur (polysulfide and bisulfide) complexation governs dissolved total Hg levels.

  16. Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey Canyon, California.

    PubMed

    Goffredi, Shana K; Wilpiszeski, Regina; Lee, Ray; Orphan, Victoria J

    2008-02-01

    Whale-falls represent localized areas of extreme organic enrichment in an otherwise oligotrophic deep-sea environment. Anaerobic remineralization within these habitats is typically portrayed as sulfidogenic; however, we demonstrate that these systems are also favorable for diverse methane-producing archaeal assemblages, representing up to 40% of total cell counts. Chemical analyses revealed elevated methane and depleted sulfate concentrations in sediments under the whale-fall, as compared to surrounding sediments. Carbon was enriched (up to 3.5%) in whale-fall sediments, as well as the surrounding sea floor to at least 10 m, forming a 'bulls eye' of elevated carbon. The diversity of sedimentary archaea associated with the 2893 m whale-fall in Monterey Canyon (California) varied both spatially and temporally. 16S rRNA diversity, determined by both sequencing and terminal restriction fragment length polymorphism analysis, as well as quantitative PCR of the methyl-coenzyme M reductase gene, revealed that methanogens, including members of the Methanomicrobiales and Methanosarcinales, were the dominant archaea (up to 98%) in sediments immediately beneath the whale-fall. Temporal changes in this archaeal community included the early establishment of methylotrophic methanogens followed by development of methanogens thought to be hydrogenotrophic, as well as members related to the newly described methanotrophic lineage, ANME-3. In comparison, archaeal assemblages in 'reference' sediments collected 10 m from the whale-fall primarily consisted of Crenarchaeota affiliated with marine group I and marine benthic group B. Overall, these results indicate that whale-falls can favor the establishment of metabolically and phylogenetically diverse methanogen assemblages, resulting in an active near-seafloor methane cycle in the deep sea.

  17. A model for microbial phosphorus cycling in bioturbated marine sediments: Significance for phosphorus burial in the early Paleozoic

    NASA Astrophysics Data System (ADS)

    Dale, Andrew W.; Boyle, Richard A.; Lenton, Timothy M.; Ingall, Ellery D.; Wallmann, Klaus

    2016-09-01

    A diagenetic model is used to simulate the diagenesis and burial of particulate organic carbon (Corg) and phosphorus (P) in marine sediments underlying anoxic versus oxic bottom waters. The latter are physically mixed by animals moving through the surface sediment (bioturbation) and ventilated by burrowing, tube-dwelling organisms (bioirrigation). The model is constrained using an empirical database including burial ratios of Corg with respect to organic P (Corg:Porg) and total reactive P (Corg:Preac), burial efficiencies of Corg and Porg, and inorganic carbon-to-phosphorus regeneration ratios. If Porg is preferentially mineralized relative to Corg during aerobic respiration, as many previous studies suggest, then the simulated Porg pool is found to be completely depleted. A modified model that incorporates the redox-dependent microbial synthesis of polyphosphates and Porg (termed the microbial P pump) allows preferential mineralization of the bulk Porg pool relative to Corg during both aerobic and anaerobic respiration and is consistent with the database. Results with this model show that P burial is strongly enhanced in sediments hosting fauna. Animals mix highly labile Porg away from the aerobic sediment layers where mineralization rates are highest, thereby mitigating diffusive PO43- fluxes to the bottom water. They also expand the redox niche where microbial P uptake occurs. The model was applied to a hypothetical shelf setting in the early Paleozoic; a time of the first radiation of benthic fauna. Results show that even shallow bioturbation at that time may have had a significant impact on P burial. Our model provides support for a recent study that proposed that faunal radiation in ocean sediments led to enhanced P burial and, possibly, a stabilization of atmospheric O2 levels. The results also help to explain Corg:Porg ratios in the geological record and the persistence of Porg in ancient marine sediments.

  18. Engineering Graphene Conductivity for Flexible and High-Frequency Applications.

    PubMed

    Samuels, Alexander J; Carey, J David

    2015-10-14

    Advances in lightweight, flexible, and conformal electronic devices depend on materials that exhibit high electrical conductivity coupled with high mechanical strength. Defect-free graphene is one such material that satisfies both these requirements and which offers a range of attractive and tunable electrical, optoelectronic, and plasmonic characteristics for devices that operate at microwave, terahertz, infrared, or optical frequencies. Essential to the future success of such devices is therefore the ability to control the frequency-dependent conductivity of graphene. Looking to accelerate the development of high-frequency applications of graphene, here we demonstrate how readily accessible and processable organic and organometallic molecules can efficiently dope graphene to carrier densities in excess of 10(13) cm(-2) with conductivities at gigahertz frequencies in excess of 60 mS. In using the molecule 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane (F2-HCNQ), a high charge transfer (CT) of 0.5 electrons per adsorbed molecule is calculated, resulting in p-type doping of graphene. n-Type doping is achieved using cobaltocene and the sulfur-containing molecule tetrathiafulvalene (TTF) with a CT of 0.41 and 0.24 electrons donated per adsorbed molecule, respectively. Efficient CT is associated with the interaction between the π electrons present in the molecule and in graphene. Calculation of the high-frequency conductivity shows dispersion-less behavior of the real component of the conductivity over a wide range of gigahertz frequencies. Potential high-frequency applications in graphene antennas and communications that can exploit these properties and the broader impacts of using molecular doping to modify functional materials that possess a low-energy Dirac cone are also discussed.

  19. Cholinergic mechanisms of high-frequency stimulation in entopeduncular nucleus

    PubMed Central

    Luo, Feng

    2015-01-01

    Chronic, high-frequency (>100 Hz) electrical stimulation, known as deep brain stimulation (DBS), of the internal segment of the globus pallidus (GPi) is a highly effective therapy for Parkinson's disease (PD) and dystonia. Despite some understanding of how it works acutely in PD models, there remain questions about its mechanisms of action. Several hypotheses have been proposed, such as depolarization blockade, activation of inhibitory synapses, depletion of neurotransmitters, and/or disruption/alteration of network oscillations. In this study we investigated the cellular mechanisms of high-frequency stimulation (HFS) in entopeduncular nucleus (EP; rat equivalent of GPi) neurons using whole cell patch-clamp recordings. We found that HFS applied inside the EP nucleus induced a prolonged afterdepolarization that was dependent on stimulation frequency, pulse duration, and current amplitude. The high frequencies (>100 Hz) and pulse widths (>0.15 ms) used clinically for dystonia DBS could reliably induce these afterdepolarizations, which persisted under blockade of ionotropic glutamate (kynurenic acid, 2 mM), GABAA (picrotoxin, 50 μM), GABAB (CGP 55845, 1 μM), and acetylcholine nicotinic receptors (DHβE, 2 μM). However, this effect was blocked by atropine (2 μM; nonselective muscarinic antagonist) or tetrodotoxin (0.5 μM). Finally, the muscarinic-dependent afterdepolarizations were sensitive to Ca2+-sensitive nonspecific cationic (CAN) channel blockade. Hence, these data suggest that muscarinic receptor activation during HFS can lead to feedforward excitation through the opening of CAN channels. This study for the first time describes a cholinergic mechanism of HFS in EP neurons and provides new insight into the underlying mechanisms of DBS. PMID:26334006

  20. High Frequency Ground Motion from Finite Fault Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Crempien, Jorge G. F.

    There are many tectonically active regions on earth with little or no recorded ground motions. The Eastern United States is a typical example of regions with active faults, but with low to medium seismicity that has prevented sufficient ground motion recordings. Because of this, it is necessary to use synthetic ground motion methods in order to estimate the earthquake hazard a region might have. Ground motion prediction equations for spectral acceleration typically have geometric attenuation proportional to the inverse of distance away from the fault. Earthquakes simulated with one-dimensional layered earth models have larger geometric attenuation than the observed ground motion recordings. We show that as incident angles of rays increase at welded boundaries between homogeneous flat layers, the transmitted rays decrease in amplitude dramatically. As the receiver distance increases away from the source, the angle of incidence of up-going rays increases, producing negligible transmitted ray amplitude, thus increasing the geometrical attenuation. To work around this problem we propose a model in which we separate wave propagation for low and high frequencies at a crossover frequency, typically 1Hz. The high-frequency portion of strong ground motion is computed with a homogeneous half-space and amplified with the available and more complex one- or three-dimensional crustal models using the quarter wavelength method. We also make use of seismic coda energy density observations as scattering impulse response functions. We incorporate scattering impulse response functions into our Green's functions by convolving the high-frequency homogeneous half-space Green's functions with normalized synthetic scatterograms to reproduce scattering physical effects in recorded seismograms. This method was validated against ground motion for earthquakes recorded in California and Japan, yielding results that capture the duration and spectral response of strong ground motion.

  1. Study of switching transients in high frequency converters

    NASA Technical Reports Server (NTRS)

    Zinger, Donald S.; Elbuluk, Malik E.; Lee, Tony

    1993-01-01

    As the semiconductor technologies progress rapidly, the power densities and switching frequencies of many power devices are improved. With the existing technology, high frequency power systems become possible. Use of such a system is advantageous in many aspects. A high frequency ac source is used as the direct input to an ac/ac pulse-density-modulation (PDM) converter. This converter is a new concept which employs zero voltage switching techniques. However, the development of this converter is still in its infancy stage. There are problems associated with this converter such as a high on-voltage drop, switching transients, and zero-crossing detecting. Considering these problems, the switching speed and power handling capabilities of the MOS-Controlled Thyristor (MCT) makes the device the most promising candidate for this application. A complete insight of component considerations for building an ac/ac PDM converter for a high frequency power system is addressed. A power device review is first presented. The ac/ac PDM converter requires switches that can conduct bi-directional current and block bi-directional voltage. These bi-directional switches can be constructed using existing power devices. Different bi-directional switches for the converter are investigated. Detailed experimental studies of the characteristics of the MCT under hard switching and zero-voltage switching are also presented. One disadvantage of an ac/ac converter is that turn-on and turn-off of the switches has to be completed instantaneously when the ac source is at zero voltage. Otherwise shoot-through current or voltage spikes can occur which can be hazardous to the devices. In order for the devices to switch softly in the safe operating area even under non-ideal cases, a unique snubber circuit is used in each bi-directional switch. Detailed theory and experimental results for circuits using these snubbers are presented. A current regulated ac/ac PDM converter built using MCT's and IGBT's is

  2. Acoustic trapping with a high frequency linear phased array.

    PubMed

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K Kirk

    2012-11-19

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array.

  3. A fast directional algorithm for high-frequency electromagnetic scattering

    SciTech Connect

    Tsuji, Paul; Ying Lexing

    2011-06-20

    This paper is concerned with the fast solution of high-frequency electromagnetic scattering problems using the boundary integral formulation. We extend the O(N log N) directional multilevel algorithm previously proposed for the acoustic scattering case to the vector electromagnetic case. We also detail how to incorporate the curl operator of the magnetic field integral equation into the algorithm. When combined with a standard iterative method, this results in an almost linear complexity solver for the combined field integral equations. In addition, the butterfly algorithm is utilized to compute the far field pattern and radar cross section with O(N log N) complexity.

  4. High frequency columnar silicon microresonators for mass detection

    SciTech Connect

    Kehrbusch, J.; Ilin, E. A.; Hullin, M.; Oesterschulze, E.

    2008-07-14

    A simple but effective technological scheme for the fabrication of high frequency silicon columnar microresonators is presented. With the proposed technique the dimensions of the microresonators are controlled on a scale of at least 1 {mu}m. Characterization of the mechanical properties of silicon columns gave resonant frequencies of the lowest flexural mode of 3-7 MHz with quality factors of up to 2500 in air and {approx}8800 under vacuum condition. Columnar microresonators were operated as mass balance with a sensitivity of 1 Hz/fg. A mass detection limit of 25 fg was deduced from experiments.

  5. High frequency atmospheric gravity wave damping in the mesosphere

    NASA Astrophysics Data System (ADS)

    Swenson, G. R.; Liu, A. Z.; Li, F.; Tang, J.

    2003-09-01

    Correlative measurements of temperature and winds by Na lidar and brightness in OH and O 2 Atmospheric band airglow have been made at Albuquerque, NM and Maui, HI for a study of high frequency (period less than 30 minutes) Atmospheric Gravity Waves. Wave studies from four nights have been made and the correlative information describes the intrinsic wave properties with altitude, their damping characteristics, and resulting accelerations to the large scale circulation in the 85-100 km altitude region. Generally, saturated to super-saturated conditions were observed below 95 km. Above this altitude, they were less saturated to freely propagating.

  6. High frequency SAW devices based on third harmonic generation.

    PubMed

    Le Brizoual, L; Elmazria, O; Sarry, F; El Hakiki, M; Talbi, A; Alnot, P

    2006-12-01

    We demonstrate the third harmonic generation in a ZnO/Si layered structure to obtain high frequency SAW devices. This configuration eliminates the need of high lithography resolution and allows easy integration of such devices and electronics on the same wafer. A theoretical study was carried out for the determination of the phase velocity and the electromechanical coupling coefficient (K(2)) dispersion curves of the surface acoustic waves. These results are also in agreement with those measured on a SAW filter designed for the third harmonic generation and the operating frequency is up to 2468 MHz.

  7. Acoustic trapping with a high frequency linear phased array

    PubMed Central

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K. Kirk

    2012-01-01

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array. PMID:23258939

  8. High frequency plasma generators for ion thruster applications

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Komatsu, G. K.; Christensen, T.

    1981-01-01

    Two concepts for high frequency discharge ion thrusters are described. Both sources are designed for use with 30 cm grid sets and argon propellant and utilize multi-cusp permanent magnet geometries for plasma confinement. The RF induction source is a conventional design representing a synthesis of the RIT and multi-cusp concepts. The preliminary data (without system optimization) indicate a discharge efficiency comparable to that obtained in 30 cm hollow cathode multi-cusp argon thrusters. The electron cyclotron heating source is electrodeless and exhibits plasma characteristics which should lead to greatly reduced discharge chamber and screen sputter rates with the optimization of the magnetic fields, microwave frequency, and feed configuration.

  9. Fluctuation patterns in high-frequency financial asset returns

    NASA Astrophysics Data System (ADS)

    Preis, T.; Paul, W.; Schneider, J. J.

    2008-06-01

    We introduce a new method for quantifying pattern-based complex short-time correlations of a time series. Our correlation measure is 1 for a perfectly correlated and 0 for a random walk time series. When we apply this method to high-frequency time series data of the German DAX future, we find clear correlations on short time scales. In order to subtract trivial autocorrelation parts from the pattern conformity, we introduce a simple model for reproducing the antipersistent regime and use alternatively level 1 quotes. When we remove the pattern conformity of this stochastic process from the original data, remaining pattern-based correlations can be observed.

  10. High-frequency nonreciprocal reflection from magnetic films with overlayers

    SciTech Connect

    Wang, Ying; Nie, Yan; Camley, R. E.

    2013-11-14

    We perform a theoretical study of the nonreciprocal reflection of high-frequency microwave radiation from ferromagnetic films with thin overlayers. Reflection from metallic ferromagnetic films is always near unity and shows no nonreciprocity. In contrast, reflection from a structure which has a dielectric overlayer on top of a film composed of insulated ferromagnetic nanoparticles or nanostructures can show significant nonreciprocity in the 75–80 GHz frequency range, a very high value. This can be important for devices such as isolators or circulators.

  11. Observations and modeling of dynamically triggered high frequency burst events

    NASA Astrophysics Data System (ADS)

    Fischer, Adam David

    2008-10-01

    A series of high-frequency (>20Hz) bursts of energy are observed on strong motion records during the 1999 Chi-Chi, Taiwan Earthquake Mw7.6. We hypothesized that these bursts originated near the individual stations as small, shallow events that were dynamically triggered by the P- and S-waves generated by the Chi-Chi mainshock. These bursts were originally interpreted as a mainshock source signal by Chen et al., [2006] but our observations of events on strong motion records recorded at stations up to 170 km from the mainshock epicenter is consistent with the local triggering hypothesis. If the bursts originated on the Chi-Chi fault plane, as hypothesized by Chen et al. [2006] based on their analysis of recordings within 20Km from the Chelungpu fault, then they should not be observable at this distance assuming any reasonable value of crustal attenuation. The bursts on all strong motion stations in the Taiwan Central Weather Bureau network (TWCB) were identified using a numerical algorithm approach. This data set was analyzed in the context of local dynamic triggering which resulted in a stress threshold for triggering in the range 0.03 to 0.05 MPa for S-wave triggering and 0.0013 to 0.0033 MPa for P-wave triggering, consistent with prior observations of surface wave triggering. In an attempt to better characterize the nature of high frequency bursts, similar analysis of strong motion records was performed on the records of the 2004 Parkfield, CA earthquake (Mw6) at the USGS UPSAR array. The average array spacing was relatively small compared to the instruments in Taiwan so that further constraint of the location of bursts was possible. Bursts were found to be incoherent even for stations spaced 40m apart, suggesting that they occur in a region approximately 20m from the stations. The triggering threshold was found to be ~0.02Mpa, consistent with the observations from Taiwan. To test the possibility of nucleating unstable slip events in the very shallow crust we

  12. ZCS High Frequency Inverter for Aluminum Vessel Induction Heating

    NASA Astrophysics Data System (ADS)

    Ogiwara, Hiroyuki; Nakaoka, Mutsuo

    Recent induction cooking apparatus are utilized for induction heating of ferromagnetic materials at 20-50kHz with a high efficiency. They can not, however, be applied for non-magnetic materials such as aluminum vessels. Here, we present a voltage-clamp reverse conducting ZCS high frequency inverter of half bridge type for induction heating of an aluminum vessel. The switching devices utilized for this inverter are SITs and its operating frequency is determined as 200kHz. This paper describes its circuit constitution and the obtained experimental results from a practical point of view.

  13. Investigation of iron cobalt nanocomposites for high frequency applications

    NASA Astrophysics Data System (ADS)

    Miller, Kelsy J.

    FeCo-based nanocomposite soft magnetic materials were developed in collaboration with Magnetics, Division of Spang and Co., for high frequency and high temperature application. Excellent soft magnetic properties include: low coercivity, high permeability, low energy losses, etc. These and large saturation inductions make these alloys attractive for fundamental studies and industrial applications. In this thesis, nanocrystalline composites will be developed from amorphous precursors for applications in two frequency regimes: 1) High frequency (0.01-30 MHz) such as high temperature power inductors, pulsed power transformers, and radio frequency (rf) magnetic heating; and 2) Ultra high frequency (30 MHz - 30 GHz) for radio frequency materials and electromagnetic interference (EMI) or radio frequency interference (RFI) absorption. New nanocomposites with higher saturation induction and high-temperature stability were developed with reduced glass forming elements such as Zr, Nb, Si and B. The amounts of the magnetic transition metals and early transition metal growth inhibitors were varied to determine trade-offs between higher inductions and fine microstructures and consequently low magnetic losses. Alloys having (Fe1-xCox)80+y+zNb4-y B13-zSi2Cu1 (25 ≤ x ≤ 50 and y = 0-4 and z = 0-3) nominal compositions were cast using planar flow casting (PFC) at Magnetics. Technical magnetic properties: permeability, maximum induction, remanence ratio, coercive field and high frequency magnetic losses as a function of composition and annealing temperature are reported after primary crystallization for 1 hr in a transverse magnetic field (TMF). Of note is the development of inductor cores with maximum inductions in excess of 1.76 T and 1.67 T in cores that exhibit power losses comparable with state of the art commercial soft magnetic alloys. For application in EMI/RFI absorption, FeCo-based alloys have the largest saturation induction and a tunable magnetic anisotropy which may

  14. Explanation of persistent high frequency density structure in coalesced bunches

    SciTech Connect

    Jackson, Gerald P.

    1988-07-01

    It has been observed that after the Main Ring rf manipulation of coalescing (where 5 to 13 primary bunches are transferred into a single rf bucket) the new secondary bunch displays evidence of high frequency density structure superimposed on the approximately Gaussian longitudinal bunch length distribution. This structure is persistent over a period of many seconds (hundreds of synchrotron oscillation periods). With the help of multiparticle simulation programs, an explanation of this phenomenon is given in terms of single particle longitudinal phase space dynamics. No coherent effects need be taken into account. 6 refs., 10 figs.

  15. Material considerations for high frequency, high power capacitors

    NASA Technical Reports Server (NTRS)

    White, W.; Galperin, I.

    1983-01-01

    Dielectric materials chosen for use in this high frequency, high power capacitor must endure hard vacuum conditions, high currents (up to 125 A rms), and frequencies up to 40 kHz. Temperature requirements for this type of capacitor are that capacitor operation must be efficient up to 125 C. A more stringent requirement for the sold dielectric is that the temperature coefficient of dissipation factor should indicate self stabilization well below 125 C. In addition, the dielectric temperature coefficient of capacitance should be negative.

  16. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, D.A.

    1996-05-21

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.

  17. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.

  18. Material considerations for high frequency, high power capacitors

    NASA Astrophysics Data System (ADS)

    White, W.; Galperin, I.

    1983-10-01

    Dielectric materials chosen for use in this high frequency, high power capacitor must endure hard vacuum conditions, high currents (up to 125 A rms), and frequencies up to 40 kHz. Temperature requirements for this type of capacitor are that capacitor operation must be efficient up to 125 C. A more stringent requirement for the sold dielectric is that the temperature coefficient of dissipation factor should indicate self stabilization well below 125 C. In addition, the dielectric temperature coefficient of capacitance should be negative.

  19. The lacustrine carbon cycle as illuminated by the waters and sediments of two hydrologically distinct headwater lakes in North-Central Minnesota, U.S.A

    USGS Publications Warehouse

    Dean, W.E.; Schwalb, A.

    2002-01-01

    The accumulation rates of CaCO3 and organic carbon (OC) in lake sediments are delicately balanced between production in the epilimnion and destruction in the hypolimnion. The cycling of these two forms of carbon makes a "carbon pump" that greatly affects the biogeochemical cycles of other elements. To further understand these biogeochemical dynamics, the lakes, streams, and wetlands of the Shingobee River headwater area of north-central Minnesota have been subjected to intensive hydrologic and biogeochemical studies. Williams Lake, situated close to the highest point in the regional flow system, is hydrologically closed, with no surface inlet or outlet, and ground water and precipitation as the only sources of water. Shingobee Lake, situated at the lowest point in the regional flow system, has the Shingobee River as an inlet and outlet. The surface waters of both lakes are oversaturated, and the bottom waters undersaturated, with respect to CaCO3 during the summer. The small amount of CaCO3 that is precipitated in the epilimnion of Williams Lake during the summer is dissolved in the undersaturated hypolimnion and sediments with the result that no CaCO3 is incorporated into the profundal surface sediments. Because of the high phytoplankton productivity of Shingobee Lake, sufficient CaCO3 is produced in the epilimnion that large amounts survive the corrosive hypolimnion and sediments, and an average of 46 wt. % accumulates in surface sediments. Another consequence of higher phytoplankton productivity in Shingobee Lake is that the hypolimnion becomes oxygen deficient within a month after overturn in both the spring and fall. Because of reducing conditions that develop in the hypolimnion of Shingobee Lake, high concentrations of dissolved Fe and Mn accumulate there during summer stratification. Precipitation of Fe and Mn oxyhydroxides during periods of fall and spring overturn results in high concentrations of Fe and Mn in surface sediments. In Williams Lake, high

  20. High-frequency monitoring reveals nutrient sources and transport processes in an agriculture-dominated lowland water system

    NASA Astrophysics Data System (ADS)

    van der Grift, Bas; Broers, Hans Peter; Berendrecht, Wilbert; Rozemeijer, Joachim; Osté, Leonard; Griffioen, Jasper

    2016-05-01

    Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas or for reducing export loads to downstream water bodies. This paper introduces new insights in nutrient sources and transport processes in a polder in the Netherlands situated below sea level using high-frequency monitoring technology at the outlet, where the water is pumped into a higher situated lake, combined with a low-frequency water quality monitoring programme at six locations within the drainage area. Seasonal trends and short-scale temporal dynamics in concentrations indicated that the NO3 concentration at the pumping station originated from N loss from agricultural lands. The NO3 loads appear as losses via tube drains after intensive rainfall events during the winter months due to preferential flow through the cracked clay soil. Transfer function-noise modelling of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be related to rainfall. The total phosphorus (TP) concentration and turbidity almost doubled during operation of the pumping station, which points to resuspension of particulate P from channel bed sediments induced by changes in water flow due to pumping. Rainfall events that caused peaks in NO3 concentrations did not results in TP concentration peaks. The rainfall induced and NO3 enriched quick interflow, may also be enriched in TP but retention of TP due to sedimentation of particulate P then results in the absence of rainfall induced TP concentration peaks. Increased TP concentrations associated with run-off events is only observed during a rainfall event at the end of a freeze-thaw cycle. All these observations suggest that the P retention potential of polder water systems is primarily due to the artificial pumping regime

  1. High-frequency monitoring reveals nutrient sources and transport processes in an agriculture-dominated lowland water system

    NASA Astrophysics Data System (ADS)

    van der Grift, B.; Broers, H. P.; Berendrecht, W. L.; Rozemeijer, J. C.; Osté, L. A.; Griffioen, J.

    2015-08-01

    Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas. This paper introduces new insights in nutrient sources and transport processes in a low elevated polder in the Netherlands using high-frequency monitoring technology at the outlet, where the water is pumped into a higher situated lake, combined with a low-frequency water quality monitoring program at six locations within the drainage area. Seasonal trends and short scale temporal dynamics in concentrations indicated that the NO3 concentration at the pumping station originated from N-loss from agricultural lands. The NO3 loads appear as losses with drain water discharge after intensive rainfall events during the winter months due to preferential flow through the cracked clay soil. Transfer function-noise modelling of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be related to rainfall. The total phosphorus (TP) concentration almost doubled during operation of the pumping station which points to resuspension of particulate P from channel bed sediments induced by changes in water flow due to pumping. Rainfall events that caused peaks in NO3 concentrations did not results in TP concentration peaks. The by rainfall induced and NO3 enriched quick interflow, may also be enriched in TP but this is then buffered in the water system due to sedimentation of particulate P. Increased TP concentrations associated with run-off events is only observed during a rainfall event at the end of a freeze-thaw cycle. All these observations suggest that the P retention potential of polder water systems is highly due to the artificial pumping regime that buffers high flows. As the TP concentration is affected by operation of the pumping station, timing of sampling

  2. 10 K high frequency pulse tube cryocooler with precooling

    NASA Astrophysics Data System (ADS)

    Liu, Sixue; Chen, Liubiao; Wu, Xianlin; Zhou, Yuan; Wang, Junjie

    2016-07-01

    A high frequency pulse tube cryocooler with precooling (HPTCP) has been developed and tested to meet the requirement of weak magnetic signals measurement, and the performance characteristics are presented in this article. The HPTCP is a two-stage pulse tube cryocooler with the precooling-stage replaced by liquid nitrogen. Two regenerators completely filled with stainless steel (SS) meshes are used in the cooler. Together with cold inertance tubes and cold gas reservoir, a cold double-inlet configuration is used to control the phase relationship of the HPTCP. The experimental result shows that the cold double-inlet configuration has improved the performance of the cooler obviously. The effects of operation parameters on the performance of the cooler are also studied. With a precooling temperature of 78.5 K, the maximum refrigeration capacity is 0.26 W at 15 K and 0.92 W at 20 K when the input electric power are 174 W and 248 W respectively, and the minimum no-load temperature obtained is 10.3 K, which is a new record on refrigeration temperature for high frequency pulse tube cryocooler reported with SS completely used as regenerative matrix.

  3. High-frequency ultrasound imaging for breast cancer biopsy guidance

    PubMed Central

    Cummins, Thomas; Yoon, Changhan; Choi, Hojong; Eliahoo, Payam; Kim, Hyung Ham; Yamashita, Mary W.; Hovanessian-Larsen, Linda J.; Lang, Julie E.; Sener, Stephen F.; Vallone, John; Martin, Sue E.; Kirk Shung, K.

    2015-01-01

    Abstract. Image-guided core needle biopsy is the current gold standard for breast cancer diagnosis. Microcalcifications, an important radiographic finding on mammography suggestive of early breast cancer such as ductal carcinoma in situ, are usually biopsied under stereotactic guidance. This procedure, however, is uncomfortable for patients and requires the use of ionizing radiation. It would be preferable to biopsy microcalcifications under ultrasound guidance since it is a faster procedure, more comfortable for the patient, and requires no radiation. However, microcalcifications cannot reliably be detected with the current standard ultrasound imaging systems. This study is motivated by the clinical need for real-time high-resolution ultrasound imaging of microcalcifications, so that biopsies can be accurately performed under ultrasound guidance. We have investigated how high-frequency ultrasound imaging can enable visualization of microstructures in ex vivo breast tissue biopsy samples. We generated B-mode images of breast tissue and applied the Nakagami filtering technique to help refine image output so that microcalcifications could be better assessed during ultrasound-guided core biopsies. We describe the preliminary clinical results of high-frequency ultrasound imaging of ex vivo breast biopsy tissue with microcalcifications and without Nakagami filtering and the correlation of these images with the pathology examination by hematoxylin and eosin stain and whole slide digital scanning. PMID:26693167

  4. Phase velocity limit of high-frequency photon density waves

    NASA Astrophysics Data System (ADS)

    Haskell, Richard C.; Svaasand, Lars O.; Madsen, Sten; Rojas, Fabio E.; Feng, T.-C.; Tromberg, Bruce J.

    1995-05-01

    In frequency-domain photon migration (FDPM), two factors make high modulation frequencies desirable. First, with frequencies as high as a few GHz, the phase lag versus frequency plot has sufficient curvature to yield both the scattering and absorption coefficients of the tissue under examination. Second, because of increased attenuation, high frequency photon density waves probe smaller volumes, an asset in small volume in vivo or in vitro studies. This trend toward higher modulation frequencies has led us to re-examine the derivation of the standard diffusion equation (SDE) from the Boltzman transport equation. We find that a second-order time-derivative term, ordinarily neglected in the derivation, can be significant above 1 GHz for some biological tissue. The revised diffusion equation, including the second-order time-derivative, is often termed the P1 equation. We compare the dispersion relation of the P1 equation with that of the SDE. The P1 phase velocity is slower than that predicted by the SDE; in fact, the SDE phase velocity is unbounded with increasing modulation frequency, while the P1 phase velocity approaches c/sqrt(3) is attained only at modulation frequencies with periods shorter than the mean time between scatterings of a photon, a frequency regime that probes the medium beyond the applicability of diffusion theory. Finally we caution that values for optical properties deduced from FDPM data at high frequencies using the SDE can be in error by 30% or more.

  5. Advances in high frequency ultrasound separation of particulates from biomass.

    PubMed

    Juliano, Pablo; Augustin, Mary Ann; Xu, Xin-Qing; Mawson, Raymond; Knoerzer, Kai

    2017-03-01

    In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400-600kHz region, which has high radical production, without detectable impact on product quality.

  6. A perspective on high-frequency ultrasound for medical applications

    NASA Astrophysics Data System (ADS)

    Mamou, Jonathan; Aristizába, Orlando; Silverman, Ronald H.; Ketterling, Jeffrey A.

    2010-01-01

    High-frequency ultrasound (HFU, >15 MHz) is a rapidly developing field. HFU is currently used and investigated for ophthalmologic, dermatologic, intravascular, and small-animal imaging. HFU offers a non-invasive means to investigate tissue at the microscopic level with resolutions often better than 100 μm. However, fine resolution is only obtained over the limited depth-of-field (˜1 mm) of single-element spherically-focused transducers typically used for HFU applications. Another limitation is penetration depth because most biological tissues have large attenuation at high frequencies. In this study, two 5-element annular arrays with center frequencies of 17 and 34 MHz were fabricated and methods were developed to obtain images with increased penetration depth and depth-of-field. These methods were used in ophthalmologic and small-animal imaging studies. Improved blood sensitivity was obtained when a phantom mimicking a vitreous hemorrhage was imaged. Central-nervous systems of 12.5-day-old mouse embryos were imaged in utero and in three dimensions for the first time.

  7. High-frequency filtering of strong-motion records

    USGS Publications Warehouse

    Douglas, J.; Boore, D.M.

    2011-01-01

    The influence of noise in strong-motion records is most problematic at low and high frequencies where the signal to noise ratio is commonly low compared to that in the mid-spectrum. The impact of low-frequency noise (5 Hz) on computed pseudo-absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency noise our analysis shows that filtering to remove high-frequency noise is only necessary in certain situations and that PSAs can often be used up to 100 Hz even if much lower high-cut corner frequencies are required to remove the noise. This apparent contradiction can be explained by the fact that PSAs are often controlled by ground accelerations associated with much lower frequencies than the natural frequency of the oscillator because path and site attenuation (often modelled by Q and κ, respectively) have removed the highest frequencies. We demonstrate that if high-cut filters are to be used, then their corner frequencies should be selected on an individual basis, as has been done in a few recent studies.

  8. Saltating Snow Mechanics: High Frequency Particle Response to Mountain Wind

    NASA Astrophysics Data System (ADS)

    Aksamit, N. O.; Pomeroy, J. W.

    2015-12-01

    Blowing snow transport theory is currently limited by its dependency on the coupling of time-averaged measurements of particle saltation and suspension and wind speed. Details of the stochastic process of particle transport and complex bed interactions in the saltation layer, along with the influence of boundary-layer turbulence are unobservable with classic measurement techniques. In contrast, recent advances in two-phase sand transport understanding have been spurred by development of high-frequency wind and particle velocity measurement techniques. To advance the understanding of blowing snow, laser illuminated high-speed videography and ultrasonic anemometry were deployed in a mountain environment to examine saltation of snow over a natural snowpack in detail. A saltating snow measurement site was established at the Fortress Mountain Snow Laboratory, Alberta, Canada and instrumented with two Campbell CSAT3 ultrasonic anemometers, four Campbell SR50 ultrasonic snow depth sounders and a two dimensional Particle Tracking Velocimetry (PTV) system. Measurements were collected during nighttime blowing snow events, quantifying snow particle response to high frequency wind gusts. This novel approach permits PTV to step beyond mean statistics of snow transport by identifying sub-species of saltation motion in the first 20 mm above the surface, as well as previously overlooked initiation processes, such as tumbling aggregate snow crystals ejecting smaller grains, then eventually disintegrating and bouncing into entrainment. Spectral characteristics of snow particle ejection and saltation dynamics were also investigated. These unique observations are starting to inform novel conceptualizations of saltating snow transport mechanisms.

  9. High Frequency PIN-Diode Switches for Radiometer Applications

    NASA Technical Reports Server (NTRS)

    Montes, Oliver; Dawson, Douglas E.; Kangaslahti, Pekka; Reising, Steven C.

    2011-01-01

    Internally calibrated radiometers are needed for ocean topography and other missions. Typically internal calibration is achieved with Dicke switching as one of the techniques. We have developed high frequency single-pole double-throw (SPDT) switches in the form of monolithic microwave integrated circuits (MMIC) that can be easily integrated into Dicke switched radiometers that utilize microstrip technology. In particular, the switches we developed can be used for a radiometer such as the one proposed for the Surface Water and Ocean Topography (SWOT) Satellite Mission whose three channels at 92, 130, and 166 GHz would allow for wet-tropospheric path delay correction near coastal zones and over land. This feat is not possible with the current Jason-class radiometers due to their lower frequency signal measurement and thus lower resolution. The MMIC chips were fabricated at NGST using their InP PIN diode process and measured at JPL using high frequency test equipment. Measurement and simulation results will be presented.

  10. Optoacoustics for high-frequency ultrasonic imaging and manipulation

    NASA Astrophysics Data System (ADS)

    O'Donnell, Matthew; Buma, Takashi

    2004-05-01

    Pulsed lasers can generate ultrasound through thermoelastic expansion of a thin optical absorber. By carefully designing the optical absorbing structure, efficient transduction is possible for a number of biomedical applications including high-frequency imaging, microfluidics, and sensing. The major key for efficient optoacoustic transduction in biomedical applications is to engineer a nearly perfect optical absorber possessing a large coefficient of thermal expansion with acoustic properties well matched to a water medium. We have obtained an optoacoustic efficiency increase of over 20 dB compared to conventional approaches using a thin, optically absorbing layer consisting of polydimethylsiloxane (PDMS) and carbon black spin coated onto a clear PDMS substrate. This structure has been extensively analyzed both experimentally and analytically and seems to provide opportunities for a wide range of optoacoustic devices. In this talk we show how PDMS-based optoacoustic transduction can be used for high-frequency imaging using longitudinal waves and acoustic tweezing using Lamb waves. The basic mechanism of optoacoustic transduction will be described, and specific devices will be presented.

  11. Planck 2013 results. VI. High Frequency Instrument data processing

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bowyer, J. W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herent, O.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marleau, F.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melot, F.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    Wedescribe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857GHz with an angular resolution ranging from 9.´7 to 4.´6. The detector noise per (effective) beam solid angle is respectively, 10, 6 , 12, and 39 μK in the four lowest HFI frequency channels (100-353GHz) and 13 and 14 kJy sr-1 in the 545 and 857 GHz channels. Relative to the 143 GHz channel, these two high frequency channels are calibrated to within 5% and the 353 GHz channel to the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 <ℓ < 2500), are calibrated relative to 143 GHz to better than 0.2%.

  12. [High-frequency transistor tract for UHF therapy device].

    PubMed

    Tamarchak, D Ia

    1998-01-01

    The paper deals with the specific features of construction of a common circuit and individual units of high-frequency transistor tracts for physiotherapeutic UHF apparatuses whose design is a possible way of conversion of radioelectron equipment. The design of UHF tracts gives rise to some radio engineering problems due to the low output resistance of bipolar transistors and to the operational characteristics of physiotherapeutic equipment and, as a result, the load of the tract is a two-conductor long line loaded with complex resistance whose active part changes slightly and the reactive one varies very greatly. The structure of a high-frequency, which transfers power from the generator with external excitement to the active part of complex load by changing its reactive part in the wide range, was analyzed. It is shown that for reliable operation of the UHF apparatus, its tract should have a multichannel structure with subsequent summation of the power and automatic compensation of the reactive component of alternating load. This provides a measuring mode for the power connected to the patient. The tract structure in question may serve the basis for the designing transistor physiotherapy apparatuses of average and high power (Poutput = 50-400 W).

  13. High-frequency wave normals in the solar wind

    SciTech Connect

    Herbert, F.; Smith, L.D.; Sonett, C.P.

    1984-05-01

    High-frequency (0.01--0.04 Hz) magnetic fluctuations in 506 ten-minute intervals of contemporaneous Explorer 35 and Apollo 12 measurements made in the solar wind near the morning side of the Earth's bow shock show the presence of a large population of disturbances resembling Alfven waves. Each wavefront normal n is systematically aligned (median deviation = 35/sup 0/) with , the associated ten-minute average of the magnetic field. Because of variability in the direction of from one interval to another, the coupled distribution of n is nearly isotropic in solar ecliptic coordinates, in contrast with the results of other studies of waves at much lower frequency indicating outward propagation from the sun. Presumably the high frequency waves discussed here are stirred into isotropy (in solar ecliptic coordinates) by following the low frequency fluctuations. As these waves maintain their alignement of n with despite the great variation of , a strong physical alignment constraint is inferred.

  14. High-Frequency Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2009-01-01

    Acoustic measurements made using compressional-wave (P-wave) and shear-wave (S-wave) transducers in aluminum cylinders reveal waveform features with high amplitudes and with velocities that depend on the feature's dominant frequency. In a given waveform, high-frequency features generally arrive earlier than low-frequency features, typical for normal mode propagation. To analyze these waveforms, the elastic equation is solved in a cylindrical coordinate system for the high-frequency case in which the acoustic wavelength is small compared to the cylinder geometry, and the surrounding medium is air. Dispersive P- and S-wave normal mode propagations are predicted to exist, but owing to complex interference patterns inside a cylinder, the phase and group velocities are not smooth functions of frequency. To assess the normal mode group velocities and relative amplitudes, approximate dispersion relations are derived using Bessel functions. The utility of the normal mode theory and approximations from a theoretical and experimental standpoint are demonstrated by showing how the sequence of P- and S-wave normal mode arrivals can vary between samples of different size, and how fundamental normal modes can be mistaken for the faster, but significantly smaller amplitude, P- and S-body waves from which P- and S-wave speeds are calculated.

  15. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  16. High-frequency BiCMOS transconductance integrators

    NASA Astrophysics Data System (ADS)

    Beards, R. Douglas

    1990-10-01

    The capabilities of a fine-line bipolar complementary metal oxide semiconductor (BiCMOS) process in the design of wideband transconductance integrators for precision monolithic continuous time filtering are explored. The design considerations of such an integrator are examined in detail, with an emphasis on tunability and phase compensation as a means for realizing a precision wideband design. The concept of open-loop transconductance filtering is described and possible circuit topologies are investigated. Detailed small-signal and large-signal analysis of one proposed circuit which has both tunable bandwidth and tunable phase compensation is presented. Application of such an integrator to open-loop transconductance filtering in the 10-50 MHz frequency range is studied. Simulation results show specific performance expectations of the proposed circuit. The tunable compensation circuit was seen to restrict the amplitude of signals which the integrator can pass without severe distortion or even instability occurring. A potential solution to this problem is deemed to be unsuitable for high frequency applications. The general design philosophy of applying low-frequency techniques to realize a high frequency circuit was seen to result in several fundamental problems.

  17. A high-frequency electrospray driven by gas volume charges

    SciTech Connect

    Lastochkin, Dmitri; Chang, H.-C.

    2005-06-15

    High-frequency (>10 kHz) ac electrospray is shown to eject volatile dielectric liquid drops by an entirely different mechanism from dc sprays. The steady dc Taylor conic tip is absent and continuous spraying of submicron drops is replaced by individual dynamic pinchoff events involving the entire drop. We attribute this spraying mechanism to a normal Maxwell force produced by an undispersed plasma cloud in front of the meniscus that produces a visible glow at the spherical tip. The volume charge within the cloud is formed by electron-induced gas ionization of the evaporated liquid and produces a large normal field that is much higher than the nominal applied field such that drop ejection occurs at a voltage (at high frequencies) that is as much as ten times lower than that for dc sprays. The ejection force is sensitive to the liquid properties (but not its electrolyte composition), the ac frequency and trace amounts of inert gases, which are believed to catalyze the ionization reactions. As electroneutral drops are ejected, due to the large (>100) ratio between individual drop ejection time and the ac frequency, this mechanism can produce large (microns) electroneutral drops at relatively low voltages.

  18. High-frequency-link based power electronics in power systems

    NASA Astrophysics Data System (ADS)

    Sree, Hari

    Power quality has become a serious concern to many utility customers in recent times. Among the many power quality problems, voltage sags are one of the most common and most mischievous, affecting industrial and commercial customers. They are primarily caused by power system faults at the transmission and distribution level, and thus, are mostly unavoidable. Their effect depends on the equipment sensitivities to the magnitude and duration of these sags and each can cost an industry up to few million dollars. To counter these limitations, many solutions at the customer end have been proposed which include Constant Voltage Transformers (CVT's), UPS and line frequency transformer based Dynamic Voltage Restorer (DVR). These approaches have their respective limitations with regard to capabilities, size and cost. This research proposes a new approach to mitigating these voltage sags involving the use of high frequency transformer link. Suitable switching logic and control strategies have been implemented. The proposed approach in a one-phase application is verified with computer simulations and by a hardware proof-of-concept prototype. Application to three-phase system is verified through simulations. Application of high frequency transformers in other utility applications such as active filters and static compensators is also looked at.

  19. Very High Frequency (Beyond 100 MHz) PZT Kerfless Linear Arrays

    PubMed Central

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K. Kirk

    2010-01-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-µm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-µm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss). PMID:19942516

  20. Trace metal cycling and 238U/235U in New Zealand's fjords: Implications for reconstructing global paleoredox conditions in organic-rich sediments

    NASA Astrophysics Data System (ADS)

    Hinojosa, Jessica L.; Stirling, Claudine H.; Reid, Malcolm R.; Moy, Christopher M.; Wilson, Gary S.

    2016-04-01

    Reconstructing the history of ocean oxygenation provides insight into links between ocean anoxia, biogeochemical cycles, and climate. Certain redox-sensitive elements respond to changes in marine oxygen content through phase shifts and concomitant isotopic fractionation, providing new diagnostic proxies of past ocean hypoxia. Here we explore the behavior and inter-dependence of a suite of commonly utilized redox-sensitive trace metals (U, Mo, Fe, and Mn) and the emerging "stable" isotope system of U (238U/235U, or δ238U) in New Zealand fjords. These semi-restricted basins have chemical conditions spanning the complete redox spectrum from fully oxygenated to suboxic to intermittently anoxic/euxinic. In the anoxic water column, U and Mo concentrations decrease, while Fe and Mn concentrations increase. Similarly, signals of past euxinic conditions can be found by U, Mo, Fe, and Mn enrichment in the underlying sediments. The expected U isotopic shift toward a lower δ238U in the anoxic water column due to U(VI)-U(IV) reduction is not observed; instead, water column δ238U profiles are consistent in fjords of all oxygen content, falling within previously reported ranges for open ocean seawater (δ238U = -0.42 ± 0.07‰). Additionally, surface sediment δ238U results show evidence for competing U isotope fractionation processes. One site indicates increased export of 238U from seawater to the underlying sediments (fractionation between aqueous seawater U and particulate sediment U, or ΔU(aq)-U(solid) = -0.25‰), consistent with redox-driven fractionation. Another site suggests potential U(VI) adsorption-driven fractionation, reflecting increased export of 235U from seawater to sediments (ΔU(aq)-U(solid) = 0.25‰). We discuss several potential factors that could alter δ238U in waters and sediments beyond redox-driven shifts, including adsorption to organic matter in waters of high primary productivity, reaction rates for competing processes of U adsorption and

  1. Endogenic carbonate sedimentation in Bear Lake, Utah and Idaho, over the last two glacial-interglacial cycles

    USGS Publications Warehouse

    Dean, W.E.

    2009-01-01

    Sediments deposited over the past 220,000 years in Bear Lake, Utah and Idaho, are predominantly calcareous silty clay, with calcite as the dominant carbonate mineral. The abundance of siliciclastic sediment indicates that the Bear River usually was connected to Bear Lake. However, three marl intervals containing more than 50% CaCO3 were deposited during the Holocene and the last two interglacial intervals, equivalent to marine oxygen isotope stages (MIS) 5 and 7, indicating times when the Bear River was not connected to the lake. Aragonite is the dominant mineral in two of these three high-carbonate intervals. The high-carbonate, aragonitic intervals coincide with warm interglacial continental climates and warm Pacific sea-surface temperatures. Aragonite also is the dominant mineral in a carbonate-cemented microbialite mound that formed in the southwestern part of the lake over the last several thousand years. The history of carbonate sedimentation in Bear Lake is documented through the study of isotopic ratios of oxygen, carbon, and strontium, organic carbon content, CaCO3 content, X-ray diffraction mineralogy, and HCl-leach chemistry on samples from sediment traps, gravity cores, piston cores, drill cores, and microbialites. Sediment-trap studies show that the carbonate mineral that precipitates in the surface waters of the lake today is high-Mg calcite. The lake began to precipitate high-Mg calcite sometime in the mid-twentieth century after the artificial diversion of Bear River into Bear Lake that began in 1911. This diversion drastically reduced the salinity and Mg2+:Ca2+ of the lake water and changed the primary carbonate precipitate from aragonite to high-Mg calcite. However, sediment-trap and core studies show that aragonite is the dominant mineral accumulating on the lake floor today, even though it is not precipitating in surface waters. The isotopic studies show that this aragonite is derived from reworking and redistribution of shallow-water sediment

  2. Microscale capillary wave turbulence excited by high frequency vibration.

    PubMed

    Blamey, Jeremy; Yeo, Leslie Y; Friend, James R

    2013-03-19

    Low frequency (O(10 Hz-10 kHz)) vibration excitation of capillary waves has been extensively studied for nearly two centuries. Such waves appear at the excitation frequency or at rational multiples of the excitation frequency through nonlinear coupling as a result of the finite displacement of the wave, most often at one-half the excitation frequency in so-called Faraday waves and twice this frequency in superharmonic waves. Less understood, however, are the dynamics of capillary waves driven by high-frequency vibration (>O(100 kHz)) and small interface length scales, an arrangement ideal for a broad variety of applications, from nebulizers for pulmonary drug delivery to complex nanoparticle synthesis. In the few studies conducted to date, a marked departure from the predictions of classical Faraday wave theory has been shown, with the appearance of broadband capillary wave generation from 100 Hz to the excitation frequency and beyond, without a clear explanation. We show that weak wave turbulence is the dominant mechanism in the behavior of the system, as evident from wave height frequency spectra that closely follow the Rayleigh-Jeans spectral response η ≈ ω(-17/12) as a consequence of a period-halving, weakly turbulent cascade that appears within a 1 mm water drop whether driven by thickness-mode or surface acoustic Rayleigh wave excitation. However, such a cascade is one-way, from low to high frequencies. The mechanism of exciting the cascade with high-frequency acoustic waves is an acoustic streaming-driven turbulent jet in the fluid bulk, driving the fundamental capillary wave resonance through the well-known coupling between bulk flow and surface waves. Unlike capillary waves, turbulent acoustic streaming can exhibit subharmonic cascades from high to low frequencies; here it appears from the excitation frequency all the way to the fundamental modes of the capillary wave at some four orders of magnitude in frequency less than the excitation frequency

  3. High resolution chronology of late Cretaceous-early Tertiary events determined from 21,000 yr orbital-climatic cycles in marine sediments

    NASA Technical Reports Server (NTRS)

    Herbert, Timothy D.; Dhondt, Steven

    1988-01-01

    A number of South Atlantic sites cored by the Deep Sea Drilling Project (DSDP) recovered late Cretaceous and early Tertiary sediments with alternating light-dark, high-low carbonate content. The sedimentary oscillations were turned into time series by digitizing color photographs of core segments at a resolution of about 5 points/cm. Spectral analysis of these records indicates prominent periodicity at 25 to 35 cm in the Cretaceous intervals, and about 15 cm in the early Tertiary sediments. The absolute period of the cycles that is determined from paleomagnetic calibration at two sites is 20,000 to 25,000 yr, and almost certainly corresponds to the period of the earth's precessional cycle. These sequences therefore contain an internal chronometer to measure events across the K/T extinction boundary at this scale of resolution. The orbital metronome was used to address several related questions: the position of the K/T boundary within magnetic chron 29R, the fluxes of biogenic and detrital material to the deep sea immediately before and after the K/T event, the duration of the Sr anomaly, and the level of background climatic variability in the latest Cretaceous time. The carbonate/color cycles that were analyzed contain primary records of ocean carbonate productivity and chemistry, as evidenced by bioturbational mixing of adjacent beds and the weak lithification of the rhythmic sequences. It was concluded that sedimentary sequences that contain orbital cyclicity are capable of providing resolution of dramatic events in earth history with much greater precision than obtainable through radiometric methods. The data show no evidence for a gradual climatic deterioration prior to the K/T extinction event, and argue for a geologically rapid revolution at this horizon.

  4. Development of high frequency and wide bandwidth Johnson noise thermometry

    SciTech Connect

    Crossno, Jesse; Liu, Xiaomeng; Kim, Philip; Ohki, Thomas A.; Fong, Kin Chung

    2015-01-12

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law above T ∼ 100 K.

  5. Development oF High Frequency Electromagnetic Mapping (HFEM) technology

    NASA Astrophysics Data System (ADS)

    Jesch, R. L.

    1982-04-01

    High frequency electromagnetic mapping (HFEM) techniques were developed for evaluating rubblized oil shale in the cold retort state in the modified in situ process. This technology development is also applicable for using HFEM techniques for diagnosing, monitoring, controlling and evaluating modified in situ retorts after they are ignited. The baseline data work required to design a high temperature sample holder and experiments for determining the EM properties of oil shale samples at elevated temperatures (200 to 500 C) are described. A theoretical approach is given for modeling oil shale retorts for electromagnetic sensing techniques by a spheroid with an average dielectric constant along with numerical results. Finally, the measurement results are given for the spent and raw shale samples that were obtained from portions of the ten half score samples plus the results of the electromagnetic transmission measurements taken on oil shale samples.

  6. Reduced length fibre Bragg gratings for high frequency acoustic sensing

    NASA Astrophysics Data System (ADS)

    Davis, Claire; Robertson, David; Brooks, Chris; Norman, Patrick; Rosalie, Cedric; Rajic, Nik

    2014-12-01

    In-fibre Bragg gratings (FBGs) are now well established for applications in acoustic sensing. The upper frequency response limit of the Bragg grating is determined by its gauge length, which has typically been limited to about 1 mm for commercially available Type 1 gratings. This paper investigates the effect of FBG gauge length on frequency response for sensing of acoustic waves. The investigation shows that the ratio of wavelength to FBG length must be at least 8.8 in order to reliably resolve the strain response without significant gain roll-off. Bragg gratings with a gauge length of 200 µm have been fabricated and their capacity to measure low amplitude high frequency acoustic strain fields in excess of 2 MHz is experimentally demonstrated. The ultimate goal of this work is to enhance the sensitivity of acoustic damage detection techniques by extending the frequency range over which acoustic waves may be reliably measured using FBGs.

  7. Influence of pore roughness on high-frequency permeability

    NASA Astrophysics Data System (ADS)

    Cortis, Andrea; Smeulders, David M. J.; Guermond, Jean Luc; Lafarge, Denis

    2003-06-01

    The high-frequency behavior of the fluid velocity patterns for smooth and corrugated pore channels is studied. The classical approach of Johnson et al. [J. Fluid Mech. 176, 379 (1987)] for smooth geometries is obtained in different manners, thus clarifying differences with Sheng and Zhou [Phys. Rev. Lett. 61, 1591 (1988)] and Avellaneda and Torquato [Phys. Fluids A 3, 2529 (1991)]. For wedge-shaped pore geometries, the classical approach is modified by a nonanalytic extension proposed by Achdou and Avellaneda [Phys. Fluids A 4, 2561 (1992)]. The dependency of the nonanalytic extension on the apex angle of the wedge was derived. Precise numerical computations for various apex angles in two-dimensional channels confirmed this theoretical dependency, which is somewhat different from the original Achdou and Avellaneda predictions. Moreover, it was found that the contribution of the singularities does not alter the parameters of the classical theory by Johnson et al..

  8. Recording and analysis techniques for high-frequency oscillations.

    PubMed

    Worrell, G A; Jerbi, K; Kobayashi, K; Lina, J M; Zelmann, R; Le Van Quyen, M

    2012-09-01

    In recent years, new recording technologies have advanced such that, at high temporal and spatial resolutions, high-frequency oscillations (HFO) can be recorded in human partial epilepsy. However, because of the deluge of multichannel data generated by these experiments, achieving the full potential of parallel neuronal recordings depends on the development of new data mining techniques to extract meaningful information relating to time, frequency and space. Here, we aim to bridge this gap by focusing on up-to-date recording techniques for measurement of HFO and new analysis tools for their quantitative assessment. In particular, we emphasize how these methods can be applied, what property might be inferred from neuronal signals, and potentially productive future directions.

  9. High frequency conductivity of hot electrons in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac-dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons' source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  10. Design and development of mode launcher for high frequency Gyrotron

    NASA Astrophysics Data System (ADS)

    Alaria, Mukesh Kumar; Sinha, A. K.; Khatun, H.

    2016-03-01

    In this paper, we describe the design and development of helical cut smooth wall mode launcher for high frequency and high power Gyrotron. A Vlasov-type helical cut mode launcher for converting TE22,6 mode to a Gaussian mode has been designed for 120 GHz, 1 MW Gyrotron. The initial design of mode launcher has been optimized using LOT/SURF-3D software. The mode launcher diameter and length are optimized considering the minimum return loss and the minimum insertion loss by using CST microwave studio. The return loss (S11) and insertion loss (S21) performance of helical cut smooth wall mode launcher have been obtained using CST-Microwave Studio. The fabrication of Vlasov-type helical cut mode launcher for 120 GHz Gyrotron has also been carried out.

  11. Diffusion coefficient in hydrogel under high-frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Akira; Tanaka, Kei; Kumata, Tatsuya; Watanabe, Yoshiaki; Miyata, Shogo; Furukawa, Katsuko; Ushida, Takashi

    2007-03-01

    Modulating hydrogel properties by external stimuli can be applied for drug delivery system. For example, ultrasound can enhance drug release from hydrogel by the mechanism which is not fully understood. We measured diffusion coefficient in hydrogel under high-frequency ultrasound to understand mass transport property. To estimate diffusion coefficient, FRAP (fluorescence recovery after photobleaching) technique was applied with time-lapse fluorescence microscopy and we analyzed fluorescence recovery after photobleaching of FITC-dextran (4˜40 kDa) which was fully fused in agarose gel (1˜3 %). As a result, diffusion coefficient was altered when agarose gel was sonicated by 1MHz ultrasound with 400kPa (peak-peak). We discussed several possible underlying mechanisms such as cavitation, heat and phase transition with extended experimental data.

  12. Recording and analysis techniques for high-frequency oscillations

    PubMed Central

    Worrell, G.A.; Jerbi, K.; Kobayashi, K.; Lina, J.M.; Zelmann, R.; Le Van Quyen, M.

    2013-01-01

    In recent years, new recording technologies have advanced such that, at high temporal and spatial resolutions, high-frequency oscillations (HFO) can be recorded in human partial epilepsy. However, because of the deluge of multichannel data generated by these experiments, achieving the full potential of parallel neuronal recordings depends on the development of new data mining techniques to extract meaningful information relating to time, frequency and space. Here, we aim to bridge this gap by focusing on up-to-date recording techniques for measurement of HFO and new analysis tools for their quantitative assessment. In particular, we emphasize how these methods can be applied, what property might be inferred from neuronal signals, and potentially productive future directions. PMID:22420981

  13. Effect of high-frequency modes on singlet fission dynamics.

    PubMed

    Fujihashi, Yuta; Chen, Lipeng; Ishizaki, Akihito; Wang, Junling; Zhao, Yang

    2017-01-28

    Singlet fission is a spin-allowed energy conversion process whereby a singlet excitation splits into two spin-correlated triplet excitations residing on adjacent molecules and has a potential to dramatically increase the efficiency of organic photovoltaics. Recent time-resolved nonlinear spectra of pentacene derivatives have shown the importance of high frequency vibrational modes in efficient fission. In this work, we explore impacts of vibration-induced fluctuations on fission dynamics through quantum dynamics calculations with parameters from fitting measured linear and nonlinear spectra. We demonstrate that fission dynamics strongly depends on the frequency of the intramolecular vibrational mode. Furthermore, we examine the effect of two vibrational modes on fission dynamics. Inclusion of a second vibrational mode creates an additional fission channel even when its Huang-Rhys factor is relatively small. Addition of more vibrational modes may not enhance the fission per se, but can dramatically affect the interplay between fission dynamics and the dominant vibrational mode.

  14. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  15. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  16. Toward a High-Frequency Pulsed-Detonation Actuator

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Drummond, J. Philip

    2006-01-01

    This paper describes the continued development of an actuator, energized by pulsed detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant tube and the products exit the tube as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. Pulsed detonations have been demonstrated in the lambda/4 mode of an 8 inch long tube at approx. 600 Hz. The pulsed jet at the exit of the device has been observed using shadowgraph and an infrared camera.

  17. Toward a High-Frequency Pulsed-Detonation Actuator

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Drummond, J. Philip

    2006-01-01

    This paper describes the continued development of an actuator, energized by pulsed detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant tube and the products exit the tube as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. Pulsed detonations have been demonstrated in the lambda/4 mode of an 8 inch long tube at approximately 600 Hz. The pulsed jet at the exit of the device has been observed using shadowgraph and an infrared camera.

  18. Spectroscopic measurements of high frequency plasma in supercritical carbon dioxide

    SciTech Connect

    Maehara, T.; Mukasa, S.; Takemori, T.; Watanabe, T.; Kurokawa, K.; Toyota, H.; Nomura, S.; Kawashima, A.; Iwamae, A.

    2009-03-15

    Spectroscopic measurements of high frequency (hf) plasma were performed under high pressure conditions (5 and 7 MPa) and supercritical (sc) CO{sub 2} conditions (8-20 MPa). Temperature evaluated from C{sub 2} Swan bands (d {sup 3}{pi}{sub g}{yields}a {sup 3}{pi}{sub u}) increased from 3600 to 4600 K with an increase in pressure. The first observation of broadening and shifting of the O I line profile (3p {sup 5} P{sub 3,2,1}{yields}3s {sup 5} S{sub 2}{sup 0}) of hf plasma under sc CO{sub 2} conditions was carried out. However, the origin of broadening and the shifting cannot be understood because the present theory explaining them is not valid for such high pressure conditions.

  19. Aftershock Prediction for High-Frequency Financial Markets' Dynamics

    NASA Astrophysics Data System (ADS)

    Baldovin, Fulvio; Camana, Francesco; Caraglio, Michele; Stella, Attilio L.; Zamparo, Marco

    The occurrence of aftershocks following a major financial crash manifests the critical dynamical response of financial markets. Aftershocks put additional stress on markets, with conceivable dramatic consequences. Such a phenomenon has been shown to be common to most financial assets, both at high and low frequency. Its present-day description relies on an empirical characterization proposed by Omori at the end of 1800 for seismic earthquakes. We point out the limited predictive power in this phenomenological approach and present a stochastic model, based on the scaling symmetry of financial assets, which is potentially capable to predict aftershocks occurrence, given the main shock magnitude. Comparisons with S&P high-frequency data confirm this predictive potential.

  20. High-frequency health data and spline functions.

    PubMed

    Martín-Rodríguez, Gloria; Murillo-Fort, Carlos

    2005-03-30

    Seasonal variations are highly relevant for health service organization. In general, short run movements of medical magnitudes are important features for managers in this field to make adequate decisions. Thus, the analysis of the seasonal pattern in high-frequency health data is an appealing task. The aim of this paper is to propose procedures that allow the analysis of the seasonal component in this kind of data by means of spline functions embedded into a structural model. In the proposed method, useful adaptions of the traditional spline formulation are developed, and the resulting procedures are capable of capturing periodic variations, whether deterministic or stochastic, in a parsimonious way. Finally, these methodological tools are applied to a series of daily emergency service demand in order to capture simultaneous seasonal variations in which periods are different.

  1. High-Frequency, High-Temperature Fretting Experiments

    NASA Technical Reports Server (NTRS)

    Matlik, J. F.; Farris, T. N.; Haake, F. K.; Swanson, G. R.; Duke, G. C.

    2005-01-01

    Fretting is a structural damage mechanism observed when two nominally clamped surfaces are subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact. These contact stresses drive crack nucleation and propagation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting cracks pose to damage tolerance and structural integrity of in-service components, the objective of this work is to develop a well-characterized experimental fretting rig capable of investigating fretting behavior of advanced aerospace alloys subjected to load and temperature conditions representative of such turbomachinery components.

  2. Gaussian beam decomposition of high frequency wave fields

    SciTech Connect

    Tanushev, Nicolay M. Engquist, Bjoern; Tsai, Richard

    2009-12-10

    In this paper, we present a method of decomposing a highly oscillatory wave field into a sparse superposition of Gaussian beams. The goal is to extract the necessary parameters for a Gaussian beam superposition from this wave field, so that further evolution of the high frequency waves can be computed by the method of Gaussian beams. The methodology is described for R{sup d} with numerical examples for d=2. In the first example, a field generated by an interface reflection of Gaussian beams is decomposed into a superposition of Gaussian beams. The beam parameters are reconstructed to a very high accuracy. The data in the second example is not a superposition of a finite number of Gaussian beams. The wave field to be approximated is generated by a finite difference method for a geometry with two slits. The accuracy in the decomposition increases monotonically with the number of beams.

  3. High-Frequency Cutoff in Type III Bursts

    NASA Astrophysics Data System (ADS)

    Stanislavsky, A. A.; Konovalenko, A. A.; Volvach, Ya. S.; Koval, A. A.

    In this article we report about a group of solar bursts with high-frequency cutoff, observed on 19 August of 2012 near 8:23 UT, simultaneously by three different radio telescopes: the Ukrainian decameter radio telescope (8-33 MHz), the French Nancay Decametric Array (10-70 MHz) and the Italian San Vito Solar Observatory of RSTN (25-180 MHz). Morphologically the bursts are very similar to the type III bursts. The solar activity is connected with the emergency of a new group of solar spots on the far side of the Sun with respect to observers on Earth. The solar bursts accompany many moderate flares over eastern limb. The refraction of the behind-limb radio bursts towards the Earth is favorable, if CMEs generate low-density cavities in solar corona.

  4. High-frequency electric field measurement using a toroidal antenna

    DOEpatents

    Lee, Ki Ha

    2002-01-01

    A simple and compact method and apparatus for detecting high frequency electric fields, particularly in the frequency range of 1 MHz to 100 MHz, uses a compact toroidal antenna. For typical geophysical applications the sensor will be used to detect electric fields for a wide range of spectrum starting from about 1 MHz, in particular in the frequency range between 1 to 100 MHz, to detect small objects in the upper few meters of the ground. Time-varying magnetic fields associated with time-varying electric fields induce an emf (voltage) in a toroidal coil. The electric field at the center of (and perpendicular to the plane of) the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroidal coil one can easily and accurately determine the electric field.

  5. Status asthmaticus treated by high-frequency oscillatory ventilation.

    PubMed

    Duval, E L; van Vught, A J

    2000-10-01

    We present a 2.5-year-old girl in severe asthma crisis who clinically deteriorated on conventional mechanical ventilation, but was successfully ventilated with high-frequency oscillatory ventilation (HFOV). Although HFOV is accepted as a technique for managing pediatric respiratory failure, its use in obstructive airway disease is generally thought to be contraindicated because of the risk of dynamic air-trapping. However, we suggest that obstructive airway disease can safely be managed with HFOV, provided certain conditions are met. These include the application of sufficiently high mean airway pressures to open and stent the airways ("an open airway strategy"), lower frequencies to overcome the greater attenuation of the oscillatory waves in the narrowed airways, permissive hypercapnia to enable reducing pressure swings as much as possible, longer expiratory times, and muscle paralysis to avoid spontaneous breathing.

  6. Effect of high-frequency modes on singlet fission dynamics

    NASA Astrophysics Data System (ADS)

    Fujihashi, Yuta; Chen, Lipeng; Ishizaki, Akihito; Wang, Junling; Zhao, Yang

    2017-01-01

    Singlet fission is a spin-allowed energy conversion process whereby a singlet excitation splits into two spin-correlated triplet excitations residing on adjacent molecules and has a potential to dramatically increase the efficiency of organic photovoltaics. Recent time-resolved nonlinear spectra of pentacene derivatives have shown the importance of high frequency vibrational modes in efficient fission. In this work, we explore impacts of vibration-induced fluctuations on fission dynamics through quantum dynamics calculations with parameters from fitting measured linear and nonlinear spectra. We demonstrate that fission dynamics strongly depends on the frequency of the intramolecular vibrational mode. Furthermore, we examine the effect of two vibrational modes on fission dynamics. Inclusion of a second vibrational mode creates an additional fission channel even when its Huang-Rhys factor is relatively small. Addition of more vibrational modes may not enhance the fission per se, but can dramatically affect the interplay between fission dynamics and the dominant vibrational mode.

  7. High frequency sound propagation in a network of interconnecting streets

    NASA Astrophysics Data System (ADS)

    Hewett, D. P.

    2012-12-01

    We propose a new model for the propagation of acoustic energy from a time-harmonic point source through a network of interconnecting streets in the high frequency regime, in which the wavelength is small compared to typical macro-lengthscales such as street widths/lengths and building heights. Our model, which is based on geometrical acoustics (ray theory), represents the acoustic power flow from the source along any pathway through the network as the integral of a power density over the launch angle of a ray emanating from the source, and takes into account the key phenomena involved in the propagation, namely energy loss by wall absorption, energy redistribution at junctions, and, in 3D, energy loss to the atmosphere. The model predicts strongly anisotropic decay away from the source, with the power flow decaying exponentially in the number of junctions from the source, except along the axial directions of the network, where the decay is algebraic.

  8. High-frequency radar observations of ocean surface currents.

    PubMed

    Paduan, Jeffrey D; Washburn, Libe

    2013-01-01

    This article reviews the discovery, development, and use of high-frequency (HF) radio wave backscatter in oceanography. HF radars, as the instruments are commonly called, remotely measure ocean surface currents by exploiting a Bragg resonant backscatter phenomenon. Electromagnetic waves in the HF band (3-30 MHz) have wavelengths that are commensurate with wind-driven gravity waves on the ocean surface; the ocean waves whose wavelengths are exactly half as long as those of the broadcast radio waves are responsible for the resonant backscatter. Networks of HF radar systems are capable of mapping surface currents hourly out to ranges approaching 200 km with a horizontal resolution of a few kilometers. Such information has many uses, including search and rescue support and oil-spill mitigation in real time and larval population connectivity assessment when viewed over many years. Today, HF radar networks form the backbone of many ocean observing systems, and the data are assimilated into ocean circulation models.

  9. Graphene Quantum Capacitors for High Frequency Tunable Analog Applications.

    PubMed

    Moldovan, Clara F; Vitale, Wolfgang A; Sharma, Pankaj; Tamagnone, Michele; Mosig, Juan R; Ionescu, Adrian M

    2016-08-10

    Graphene quantum capacitors (GQC) are demonstrated to be enablers of radio-frequency (RF) functions through voltage-tuning of their capacitance. We show that GQC complements MEMS and MOSFETs in terms of performance for high frequency analog applications and tunability. We propose a CMOS compatible fabrication process and report the first experimental assessment of their performance at microwaves frequencies (up to 10 GHz), demonstrating experimental GQCs in the pF range with a tuning ratio of 1.34:1 within 1.25 V, and Q-factors up to 12 at 1 GHz. The figures of merit of graphene variable capacitors are studied in detail from 150 to 350 K. Furthermore, we describe a systematic, graphene specific approach to optimize their performance and predict the figures of merit achieved if such a methodology is applied.

  10. High-frequency EPR study of crude oils

    NASA Astrophysics Data System (ADS)

    Volodin, M. A.; Mamin, G. V.; Izotov, V. V.; Orlinskii, S. B.

    2013-12-01

    Four different samples of crude oil were studied by means of high-frequency W-band (94 GHz) electron paramagnetic resonance (EPR) spectroscopy with the aim to develop new methods of crude oil quality control. High spectral resolution of W-band allowed to avoid an overlap of spectra contributors. The ratio K between the integral intensity of the low-field EPR component of the vanadyl complexes to that of free radical line was chosen as an attribute of each sample. Using the K-parameters and EPR spectra simulations the crude oil leaking between adjacent horizons is shown. Pulsed EPR experiments allowed detecting free radicals signals only. It is demonstrated that the extracted transverse relaxation time could be used as an additional parameter which characterizes the origin of the crude oil and nature of the oil paramagnetic centers.

  11. High Frequency Monitoring System of Groundwater Level in Sheliao

    NASA Astrophysics Data System (ADS)

    Lee, C.; Chia, Y.; Chuang, P.

    2012-12-01

    Long-term groundwater monitoring had been executed since 1950s in Taiwan. In 1980s, with improving technology, various types of automatic reorders of groundwater level had become the most widely used equipment in groundwater monitoring. Among these devices, submersible pressure transducer is frequently selected to monitor groundwater level for its high frequency and high resolution. In this study, it is chosen to monitor groundwater level change in Sheliao well. On the other hand, factors which might influence the performance of recorded data were excluded in the early stage of establishment as well. And the final approach is to achieve a comprehensive understanding of the minor groundwater level change of Sheliao well, and specify its connection between precipitation, atmosphere, earth tide and earthquake. The Shelia well is located in central Taiwan, constructed in an unconfined aquifer, recorded hourly groundwater level change since 1997. We tried to establish a 1 Hz sampling rate pressure-sensing system in 2011 June. The groundwater level was monitored in a resolution of 2-mm. According to the records, several small-scale of fluctuations were observed and were all correlate well to the earthquakes. However, during the time that no earthquake occurred, some short-term fluctuations were still occurred, performed in a different pattern to those induced by earthquakes. After further investigation, those anomalous fluctuations of groundwater level were found corresponded to precipitation quite well. The fluctuations were observed under some specific condition, which involving different range of accumulated precipitation, rainfall intensity, and rainfall duration. The result implied groundwater level in Sheliao well changes with loading effect result from runoff on the ground surface and infiltration. And the earth tide lead to regularly change was also observed. We conclude that Sheliao can be characterized as a partial-confined aquifer with high frequency and high

  12. Electrokinetic particle-electrode interactions at high frequencies

    NASA Astrophysics Data System (ADS)

    Yariv, Ehud; Schnitzer, Ory

    2013-01-01

    We provide a macroscale description of electrokinetic particle-electrode interactions at high frequencies, where chemical reactions at the electrodes are negligible. Using a thin-double-layer approximation, our starting point is the set of macroscale equations governing the “bounded” configuration comprising of a particle suspended between two electrodes, wherein the electrodes are governed by a capacitive charging condition and the imposed voltage is expressed as an integral constraint. In the large-cell limit the bounded model is transformed into an effectively equivalent “unbounded” model describing the interaction between the particle and a single electrode, where the imposed-voltage condition is manifested in a uniform field at infinity together with a Robin-type condition applying at the electrode. This condition, together with the standard no-flux condition applying at the particle surface, leads to a linear problem governing the electric potential in the fluid domain in which the dimensionless frequency ω of the applied voltage appears as a governing parameter. In the high-frequency limit ω≫1 the flow is dominated by electro-osmotic slip at the particle surface, the contribution of electrode electro-osmosis being O(ω-2) small. That simplification allows for a convenient analytical investigation of the prevailing case where the clearance between the particle and the adjacent electrode is small. Use of tangent-sphere coordinates allows to calculate the electric and flows fields as integral Hankel transforms. At large distances from the particle, along the electrode, both fields decay with the fourth power of distance.

  13. Development of a Multi-Channel, High Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    DePalma, Jude L.

    2003-01-01

    With the advent of the ISS era and the potential requirement for increased cardiovascular monitoring of crewmembers during extended EVAs, NASA flight surgeons would stand to benefit from an evolving technology that allows for a more rapid diagnosis of myocardial ischemia compared to standard electrocardiography. Similarly, during the astronaut selection process, NASA flight surgeons and other physicians would also stand to benefit from a completely noninvasive technology that, either at rest or during maximal exercise tests, is more sensitive than standard ECG in identifying the presence of ischemia. Perhaps most importantly, practicing cardiologists and emergency medicine physicians could greatly benefit from such a device as it could augment (or even replace) standard electrocardiography in settings where the rapid diagnosis of myocardial ischemia (or the lack thereof) is required for proper clinical decision-making. A multi-channel, high-frequency QRS electrocardiograph is currently under development in the Life Sciences Research Laboratories at JSC. Specifically the project consisted of writing software code, some of which contained specially-designed digital filters, which will be incorporated into an existing commercial software program that is already designed to collect, plot and analyze conventional 12-lead ECG signals on a desktop, portable or palm PC. The software will derive the high-frequency QRS signals, which will be analyzed (in numerous ways) and plotted alongside of the conventional ECG signals, giving the PC-viewing clinician advanced diagnostic information that has never been available previously in all 12 ECG leads simultaneously. After the hardware and software for the advanced digital ECG monitor have been fully integrated, plans are to use the monitor to begin clinical studies both on healthy subjects and on patients with known coronary artery disease in both the outpatient and hospital settings. The ultimate goal is to get the technology

  14. Sensitivity of high-frequency Rayleigh-wave data revisited

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Ivanov, J.

    2007-01-01

    Rayleigh-wave phase velocity of a layered earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity (Vs), density, and thickness of layers. Analysis of the Jacobian matrix (or the difference method) provides a measure of dispersion curve sensitivity to earth properties. Vs is the dominant influence for the fundamental mode (Xia et al., 1999) and higher modes (Xia et al., 2003) of dispersion curves in a high frequency range (>2 Hz) followed by layer thickness. These characteristics are the foundation of determining S-wave velocities by inversion of Rayleigh-wave data. More applications of surface-wave techniques show an anomalous velocity layer such as a high-velocity layer (HVL) or a low-velocity layer (LVL) commonly exists in near-surface materials. Spatial location (depth) of an anomalous layer is usually the most important information that surface-wave techniques are asked to provide. Understanding and correctly defining the sensitivity of high-frequency Rayleigh-wave data due to depth of an anomalous velocity layer are crucial in applying surface-wave techniques to obtain a Vs profile and/or determine the depth of an anomalous layer. Because depth is not a direct earth property of a layered model, changes in depth will result in changes in other properties. Modeling results show that sensitivity at a given depth calculated by the difference method is dependent on the Vs difference (contrast) between an anomalous layer and surrounding layers. The larger the contrast is, the higher the sensitivity due to depth of the layer. Therefore, the Vs contrast is a dominant contributor to sensitivity of Rayleigh-wave data due to depth of an anomalous layer. Modeling results also suggest that the most sensitive depth for an HVL is at about the middle of the depth to the half-space, but for an LVL it is near the ground surface. ?? 2007 Society of Exploration Geophysicists.

  15. High-frequency underwater plasma discharge application in antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  16. The Influence of High-Frequency Gravitational Waves Upon Muscles

    SciTech Connect

    Moy, Lawrence S.; Baker, Robert M. L. Jr

    2007-01-30

    The objective of this paper is to present a theory for the possible influence of high-frequency gravitational waves or HFGWs and pulsed micro-current electromagnetic waves or EMs on biological matter specifically on muscle cells and myofibroblasts. The theory involves consideration of the natural frequency of contractions and relaxations of muscles, especially underlying facial skin, and the possible influence of HFGWs on that process. GWs pass without attenuation through all material thus conventional wisdom would dictate that GWs would have no influence on biological matter. On the other hand, GWs can temporarily modify a gravitational field in some locality if they are of high frequency and such a modification might have an influence in changing the skin muscles' natural frequency. Prior to the actual laboratory generation of HFGWs their influence can be emulated by micro-current EM pulses to the skin and some evidence presented here on that effect may predict the influence of HFGWs. We believe that the HFGW pulsations lead to increased muscle activity and may serve to reverse the aging process. A novel theoretical framework concerning these relaxation phenomena is one result of the paper. Another result is the analysis of the possible delivery system of the FBAR-generated HFGWs, the actual power of the generated HFGWs, and the system's application to nanostructural modification of the skin or muscle cells. It is concluded that a series of non-evasive experiments, which are identified, will have the potential to test theory by detecting and analyzing the possible HFGWs change in polarization, refraction, etc. after their interaction with the muscle cells.

  17. High-Frequency Testing of Composite Fan Vanes With Erosion-Resistant Coating Conducted

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Sutter, James K.; Naik, Subhash; Otten, Kim D.; Perusek, Gail P.

    2003-01-01

    The mechanical integrity of hard, erosion-resistant coatings were tested using the Structural Dynamics Laboratory at the NASA Glenn Research Center. Under the guidance of Structural Mechanics and Dynamics Branch personnel, fixturing and test procedures were developed at Glenn to simulate engine vibratory conditions on coated polymer-matrix- composite bypass vanes using a slip table in the Structural Dynamics Laboratory. Results from the high-frequency mechanical bench testing, along with concurrent erosion testing of coupons and vanes, provided sufficient confidence to engine-endurance test similarly coated vane segments. The knowledge gained from this program will be applied to the development of oxidation- and erosion-resistant coatings for polymer matrix composite blades and vanes in future advanced turbine engines. Fan bypass vanes from the AE3007 (Rolls Royce America, Indianapolis, IN) gas turbine engine were coated by Engelhard (Windsor, CT) with compliant bond coatings and hard ceramic coatings. The coatings were developed collaboratively by Glenn and Allison Advanced Development Corporation (AADC)/Rolls Royce America through research sponsored by the High-Temperature Engine Materials Technology Project (HITEMP) and the Higher Operating Temperature Propulsion Components (HOTPC) project. High-cycle fatigue was performed through high-frequency vibratory testing on a shaker table. Vane resonant frequency modes were surveyed from 50 to 3000 Hz at input loads from 1g to 55g on both uncoated production vanes and vanes with the erosion-resistant coating. Vanes were instrumented with both lightweight accelerometers and strain gauges to establish resonance, mode shape, and strain amplitudes. Two high-frequency dwell conditions were chosen to excite two strain levels: one approaching the vane's maximum allowable design strain and another near the expected maximum strain during engine operation. Six specimens were tested per dwell condition. Pretest and posttest

  18. High-frequency observations of δ2H and δ18O in storm rainfall

    NASA Astrophysics Data System (ADS)

    Stoecker, F.; Klaus, J.; Pangle, L. A.; Garland, C.; McDonnell, J. J.

    2012-12-01

    Stable isotopes ratios of hydrogen (2H/1H) and oxygen (18O/16O) are indispensable tools for investigation of the hydrologic cycle. Recent technological advances with laser spectroscopy now enable high-frequency measurement of key water cycle components. While the controls on rainfall isotope composition have been known generally for some time, our understanding of the effect of inter- and intra-storm processes on fine scale rainfall isotope composition is poorly understood. Here we present a new approach to observe inter- and intra-storm isotope variability in precipitation in high-frequency. We investigate the temporal development of δ2H and δ18O within and between discrete rainstorm. δ2H and δ18O in precipitation was measured from November 2011 to February 2012 in Corvallis, OR using a flow-cell combined with a Liquid Water Isotope Analyzer (LWIA-24d, Los Gatos Research, Inc.). The average sample frequency was 15 samples per hour, resulting in more than 3100 samples during the observation period. 27 separate rainstorms were identified in the dataset based on minimum inter-event time, minimum precipitation depth, and minimum number of isotope measurements. Event meteoric water lines were developed for each event. We observed short-term isotopic patterns (e.g., V-shaped trends), high-rate changes (5.3‰/h) and large absolute changes in isotopic composition (20‰) on intra-event scale. V-shaped trends appeared to be related to individual storm fronts detected by air temperature, cloud heights (NEXRAD radar echo tops) and cloud trajectories (Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT)). Despite this, we could detect no linear correlation between event-based isotopic variables (slope, δ2H-intercept, δ2H, δ18O) and the event meteoric water line. Furthermore, the composite event meteoric water line (i.e. the local meteoric water line) showed a wider spread for heavy isotopes than for light isotopes, caused presumably by different

  19. Single Stock Dynamics on High-Frequency Data: From a Compressed Coding Perspective

    PubMed Central

    Fushing, Hsieh; Chen, Shu-Chun; Hwang, Chii-Ruey

    2014-01-01

    High-frequency return, trading volume and transaction number are digitally coded via a nonparametric computing algorithm, called hierarchical factor segmentation (HFS), and then are coupled together to reveal a single stock dynamics without global state-space structural assumptions. The base-8 digital coding sequence, which is capable of revealing contrasting aggregation against sparsity of extreme events, is further compressed into a shortened sequence of state transitions. This compressed digital code sequence vividly demonstrates that the aggregation of large absolute returns is the primary driving force for stimulating both the aggregations of large trading volumes and transaction numbers. The state of system-wise synchrony is manifested with very frequent recurrence in the stock dynamics. And this data-driven dynamic mechanism is seen to correspondingly vary as the global market transiting in and out of contraction-expansion cycles. These results not only elaborate the stock dynamics of interest to a fuller extent, but also contradict some classical theories in finance. Overall this version of stock dynamics is potentially more coherent and realistic, especially when the current financial market is increasingly powered by high-frequency trading via computer algorithms, rather than by individual investors. PMID:24586235

  20. Single stock dynamics on high-frequency data: from a compressed coding perspective.

    PubMed

    Fushing, Hsieh; Chen, Shu-Chun; Hwang, Chii-Ruey

    2014-01-01

    High-frequency return, trading volume and transaction number are digitally coded via a nonparametric computing algorithm, called hierarchical factor segmentation (HFS), and then are coupled together to reveal a single stock dynamics without global state-space structural assumptions. The base-8 digital coding sequence, which is capable of revealing contrasting aggregation against sparsity of extreme events, is further compressed into a shortened sequence of state transitions. This compressed digital code sequence vividly demonstrates that the aggregation of large absolute returns is the primary driving force for stimulating both the aggregations of large trading volumes and transaction numbers. The state of system-wise synchrony is manifested with very frequent recurrence in the stock dynamics. And this data-driven dynamic mechanism is seen to correspondingly vary as the global market transiting in and out of contraction-expansion cycles. These results not only elaborate the stock dynamics of interest to a fuller extent, but also contradict some classical theories in finance. Overall this version of stock dynamics is potentially more coherent and realistic, especially when the current financial market is increasingly powered by high-frequency trading via computer algorithms, rather than by individual investors.

  1. High-frequency torsional Alfvén waves as an energy source for coronal heating

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhishek Kumar; Shetye, Juie; Murawski, Krzysztof; Doyle, John Gerard; Stangalini, Marco; Scullion, Eamon; Ray, Tom; Wójcik, Dariusz Patryk; Dwivedi, Bhola N.

    2017-03-01

    The existence of the Sun’s hot atmosphere and the solar wind acceleration continues to be an outstanding problem in solar-astrophysics. Although magnetohydrodynamic (MHD) modes and dissipation of magnetic energy contribute to heating and the mass cycle of the solar atmosphere, yet direct evidence of such processes often generates debate. Ground-based 1-m Swedish Solar Telescope (SST)/CRISP, Hα 6562.8 Å observations reveal, for the first time, the ubiquitous presence of high frequency (~12–42 mHz) torsional motions in thin spicular-type structures in the chromosphere. We detect numerous oscillating flux tubes on 10 June 2014 between 07:17 UT to 08:08 UT in a quiet-Sun field-of-view of 60” × 60” (1” = 725 km). Stringent numerical model shows that these observations resemble torsional Alfvén waves associated with high frequency drivers which contain a huge amount of energy (~105 W m‑2) in the chromosphere. Even after partial reflection from the transition region, a significant amount of energy (~103 W m‑2) is transferred onto the overlying corona. We find that oscillating tubes serve as substantial sources of Alfvén wave generation that provide sufficient Poynting flux not only to heat the corona but also to originate the supersonic solar wind.

  2. A noninvasive high frequency oscillation ventilator: Achieved by utilizing a blower and a valve

    NASA Astrophysics Data System (ADS)

    Yuan, YueYang; Sun, JianGuo; Wang, Baicun; Feng, Pei; Yang, ChongChang

    2016-02-01

    After the High Frequency Oscillatory Ventilation (HFOV) has been applied in the invasive ventilator, the new technique of noninvasive High Frequency Oscillatory Ventilation (nHFOV) which does not require opening the patient's airway has attracted much attention from the field. This paper proposes the design of an experimental positive pressure-controlled nHFOV ventilator which utilizes a blower and a special valve and has three ventilation modes: spontaneous controlled ventilation combining HFOV, time-cycled ventilation combining HFOV (T-HFOV), and continuous positive airway pressure ventilation combining HFOV. Experiments on respiratory model are conducted and demonstrated the feasibility of using nHFOV through the control of fan and valve. The experimental ventilator is able to produce an air flow with small tidal volume (VT) and a large minute ventilation volume (MV) using regular breath tubes and nasal mask (e.g., under T-HFOV mode, with a maximum tidal volume of 100 ml, the minute ventilation volume reached 14 400 ml). In the process of transmission, there is only a minor loss of oscillation pressure. (Under experimental condition and with an oscillation frequency of 2-10 Hz, peak pressure loss was around 0%-50% when it reaches the mask.)

  3. High-frequency ultrasound M-mode monitoring of HIFU ablation in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Kumon, R. E.; Gudur, M. S. R.; Zhou, Y.; Deng, C. X.

    2012-10-01

    Effective real-time HIFU lesion detection is important for expanded use of HIFU in interventional electrophysiology (e.g., epicardial ablation of cardiac arrhythmia). The goal of this study was to investigate rapid, high-frequency M-mode ultrasound imaging for monitoring spatiotemporal changes in tissue during HIFU application. The HIFU application (4.33 MHz, 1000 Hz PRF, 50% duty cycle, 1 s exposure, 6100 W/cm2) was perpendicularly applied to porcine cardiac tissue with a high-frequency imaging system (Visualsonics Vevo 770, 55 MHz, 4.5 mm focal distance) confocally aligned. Radiofrequency (RF) M-mode data (1 kHz PRF, 4 s × 7 mm) was acquired before, during, and after HIFU treatment. Gross lesions were compared with M-mode data to correlate lesion and cavity formation. Integrated backscatter, echo-decorrelation parameters, and their cumulative extrema over time were analyzed for automatically identifying lesion width and bubble formation. Cumulative maximum integrated backscatter showed the best results for identifying the final lesion width, and a criterion based on line-to-line decorrelation was proposed for identification of transient bubble activity.

  4. A noninvasive high frequency oscillation ventilator: Achieved by utilizing a blower and a valve.

    PubMed

    Yuan, YueYang; Sun, JianGuo; Wang, Baicun; Feng, Pei; Yang, ChongChang

    2016-02-01

    After the High Frequency Oscillatory Ventilation (HFOV) has been applied in the invasive ventilator, the new technique of noninvasive High Frequency Oscillatory Ventilation (nHFOV) which does not require opening the patient's airway has attracted much attention from the field. This paper proposes the design of an experimental positive pressure-controlled nHFOV ventilator which utilizes a blower and a special valve and has three ventilation modes: spontaneous controlled ventilation combining HFOV, time-cycled ventilation combining HFOV (T-HFOV), and continuous positive airway pressure ventilation combining HFOV. Experiments on respiratory model are conducted and demonstrated the feasibility of using nHFOV through the control of fan and valve. The experimental ventilator is able to produce an air flow with small tidal volume (VT) and a large minute ventilation volume (MV) using regular breath tubes and nasal mask (e.g., under T-HFOV mode, with a maximum tidal volume of 100 ml, the minute ventilation volume reached 14,400 ml). In the process of transmission, there is only a minor loss of oscillation pressure. (Under experimental condition and with an oscillation frequency of 2-10 Hz, peak pressure loss was around 0%-50% when it reaches the mask.).

  5. An Evaluation of High Frequency Acceleration Test at XLPE Cable’s Insulator

    NASA Astrophysics Data System (ADS)

    Iwasaki, Kimihiro; Nakade, Masahiko; Tanaka, Atsushi; Tanimoto, Mihoko; Okashita, Minoru; Ito, Kazumi

    We investigated whether a high frequency acceleration method has validity at the degradation of XLPE in case of no influence of water for realizing a lifetime test at near the operating electric field. The tests was carried out at 50Hz, 1000Hz, and 3000Hz frequency using Recessed specimen and the specimen under Needle-plane electrode system, time-to-breakdown was measured. A clear property of frequency acceleration was checked in both results of tests, and the validity of the frequency acceleration technique was shown. And we realize that frequency acceleration factor is lower than the frequency ratio at both tests of specimens. We think the reason is that the amount of accumulation of the space charge per cycle at a defect or a tree tip at high frequency is less than the accumulation at 50Hz. Moreover, tree growth time effects at the time to breakdown of Needle-plane system specimen, but it effects a little at Recessed specimen, so there is difference of acceleration rate between both specimens. The lifetime exponent of V-t characteristic, n, increases at a 3000Hz examination, so it is suggested that n has a frequency dependence.

  6. High-frequency torsional Alfvén waves as an energy source for coronal heating.

    PubMed

    Srivastava, Abhishek Kumar; Shetye, Juie; Murawski, Krzysztof; Doyle, John Gerard; Stangalini, Marco; Scullion, Eamon; Ray, Tom; Wójcik, Dariusz Patryk; Dwivedi, Bhola N

    2017-03-03

    The existence of the Sun's hot atmosphere and the solar wind acceleration continues to be an outstanding problem in solar-astrophysics. Although magnetohydrodynamic (MHD) modes and dissipation of magnetic energy contribute to heating and the mass cycle of the solar atmosphere, yet direct evidence of such processes often generates debate. Ground-based 1-m Swedish Solar Telescope (SST)/CRISP, Hα 6562.8 Å observations reveal, for the first time, the ubiquitous presence of high frequency (~12-42 mHz) torsional motions in thin spicular-type structures in the chromosphere. We detect numerous oscillating flux tubes on 10 June 2014 between 07:17 UT to 08:08 UT in a quiet-Sun field-of-view of 60" × 60" (1" = 725 km). Stringent numerical model shows that these observations resemble torsional Alfvén waves associated with high frequency drivers which contain a huge amount of energy (~10(5) W m(-2)) in the chromosphere. Even after partial reflection from the transition region, a significant amount of energy (~10(3) W m(-2)) is transferred onto the overlying corona. We find that oscillating tubes serve as substantial sources of Alfvén wave generation that provide sufficient Poynting flux not only to heat the corona but also to originate the supersonic solar wind.

  7. High-frequency torsional Alfvén waves as an energy source for coronal heating

    PubMed Central

    Srivastava, Abhishek Kumar; Shetye, Juie; Murawski, Krzysztof; Doyle, John Gerard; Stangalini, Marco; Scullion, Eamon; Ray, Tom; Wójcik, Dariusz Patryk; Dwivedi, Bhola N.

    2017-01-01

    The existence of the Sun’s hot atmosphere and the solar wind acceleration continues to be an outstanding problem in solar-astrophysics. Although magnetohydrodynamic (MHD) modes and dissipation of magnetic energy contribute to heating and the mass cycle of the solar atmosphere, yet direct evidence of such processes often generates debate. Ground-based 1-m Swedish Solar Telescope (SST)/CRISP, Hα 6562.8 Å observations reveal, for the first time, the ubiquitous presence of high frequency (~12–42 mHz) torsional motions in thin spicular-type structures in the chromosphere. We detect numerous oscillating flux tubes on 10 June 2014 between 07:17 UT to 08:08 UT in a quiet-Sun field-of-view of 60” × 60” (1” = 725 km). Stringent numerical model shows that these observations resemble torsional Alfvén waves associated with high frequency drivers which contain a huge amount of energy (~105 W m−2) in the chromosphere. Even after partial reflection from the transition region, a significant amount of energy (~103 W m−2) is transferred onto the overlying corona. We find that oscillating tubes serve as substantial sources of Alfvén wave generation that provide sufficient Poynting flux not only to heat the corona but also to originate the supersonic solar wind. PMID:28256538

  8. Disentangling the complexity of nitrous oxide cycling in coastal sediments: Results from a novel multi-isotope approach

    NASA Astrophysics Data System (ADS)

    Wankel, S. D.; Buchwald, C.; Charoenpong, C.; Ziebis, W.

    2014-12-01

    Although marine environments contribute approximately 30% of the global atmospheric nitrous oxide (N2O) flux, coastal systems appear to comprise a disproportionately large majority of the ocean-atmosphere flux. However, there exists a wide range of estimates and future projections of N2O production and emission are confounded by spatial and temporal variability of biological sources and sinks. As N2O is produced as an intermediate in both oxidative and reductive microbial processes and can also be consumed as an electron acceptor, a mechanistic understanding of the regulation of these pathways remains poorly understood. To improve our understanding of N2O dynamics in coastal sediments, we conducted a series of intact flow-through sediment core incubations (Sylt, Germany), while manipulating both the O2 and NO3- concentrations in the overlying water. Steady-state natural abundance isotope fluxes (δ15N and δ18O) of nitrate, nitrite, ammonium and nitrous oxide were monitored throughout the experiments. We also measured both the isotopomer composition (site preference (SP) of the 15N in N2O) as well as the Δ17O composition in experiments conducted with the addition of NO3- with an elevated Δ17O composition (19.5‰), which provide complementary information about the processes producing and consuming N2O. Results indicate positive N2O fluxes (to the water column) across all conditions and sediment types. Decreasing dissolved O2 to 30% saturation resulted in reduced N2O fluxes (5.9 ± 6.5 μmol m2 d-1) compared to controls (17.8 ± 6.5 μmol m-2 d-1), while the addition of 100 μM NO3- yielded higher N2O fluxes (49.0 ± 18.5 μmol m-2 d-1). In all NO3- addition experiments, the Δ17O signal from the NO3- was clearly observed in the N2O efflux implicating denitrification as a large source of N2O. However, Δ17O values were always lower (1.9 to 8.6‰) than the starting NO3- indicating an important role for nitrification-based N2O production and/or O isotope exchange

  9. Release of Ni from birnessite during transformation of birnessite to todorokite: Implications for Ni cycling in marine sediments

    NASA Astrophysics Data System (ADS)

    Atkins, Amy L.; Shaw, Samuel; Peacock, Caroline L.

    2016-09-01

    The phyllomanganate birnessite is the main Mn-bearing phase in oxic marine sediments where it exerts a primary control on the concentration of micronutrient trace metals in seawater. However, during sediment diagenesis and under mild hydrothermal conditions birnessite transforms into the tectomanganate todorokite. We have recently shown that the transformation of birnessite to todorokite proceeds via a four-stage nucleation and growth mechanism, beginning with todorokite nucleation, then crystal growth from solution to form todorokite primary particles, followed by their self-assembly and oriented growth via oriented attachment to form crystalline todorokite laths, culminating in traditional crystal ripening (Atkins et al., 2014). Here we determine the fate and mobility of Ni sorbed by birnessite during this transformation process. Specifically, in our recent work we predict that the presence of Ni within the phyllomanganate matrix will disrupt the formation of todorokite primary particles. As such, contrary to current understanding, we suggest that Ni sorbed by birnessite will slow the transformation of birnessite to todorokite and/or be released to marine porewaters during sediment diagenesis. Here we transform a synthetic, poorly crystalline, Ni-sorbed (∼1 wt% Ni) hexagonal birnessite, analogous to marine birnessite, into todorokite under a mild reflux procedure, developed to mimic marine diagenesis and mild hydrothermal conditions. We characterise our birnessite and reflux products as a time series, including X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM) and extended X-ray absorption fine structure (EXAFS) spectroscopy. In addition we determine Ni speciation and mineral phase associations in a suite of natural marine ferromanganese precipitates, containing intermixed phyllomanganate and todorokite. Our work shows for the first time that Ni significantly slows the transformation of birnessite to todorokite and reduces the

  10. Investigations on the "Extreme" Microbial Arsenic Cycle within the Sediments of an Acidic Impoundment of the Former Sulfur Bank Mercury Mine: Herman Pit, Clear Lake, California.

    NASA Astrophysics Data System (ADS)

    Blum, J. S.; Hoeft McCann, S. E.; Bennett, S.; Miller, L. G.; Stoneburner, B.; Saltikov, C.; Oremland, R. S.

    2014-12-01

    results indicate the presence of a viable microbial As(V)/As(III) redox cycle in the sediments of this extreme environment. Further investigations using culture-independent protocols to identify participant prokaryotes and their functional arsenic genes (e.g., aioA, arrA, arxA) are underway at this time.

  11. Horizontal variability of high-frequency nonlinear internal waves in Massachusetts Bay detected by an array of seafloor pressure sensors

    NASA Astrophysics Data System (ADS)

    Thomas, J. A.; Lerczak, J. A.; Moum, J. N.

    2016-08-01

    A two-dimensional array of 14 seafloor pressure sensors was deployed to measure properties of tidally generated, nonlinear, high-frequency internal waves over a 14 km by 12 km area west of Stellwagen Bank in Massachusetts Bay during summer 2009. Thirteen high-frequency internal wave packets propagated through the region over 6.5 days (one packet every semidiurnal cycle). Propagation speed and direction of wave packets were determined by triangulation, using arrival times and distances between triads of sensor locations. Wavefront curvature ranged from straight to radially spreading, with wave speeds generally faster to the south. Waves propagated to the southwest, rotating to more westward with shoreward propagation. Linear theory predicts a relationship between kinetic energy and bottom pressure variance of internal waves that is sensitive to sheared background currents, water depth, and stratification. By comparison to seafloor acoustic Doppler current profiler measurements, observations nonetheless show a strong relationship between kinetic energy and bottom pressure variance. This is presumably due to phase-locking of the wave packets to the internal tide that dominates background currents and to horizontally uniform and relatively constant stratification throughout the study. This relationship was used to qualitatively describe variations in kinetic energy of the high-frequency wave packets. In general, high-frequency internal wave kinetic energy was greater near the southern extent of wavefronts and greatly decreased upon propagating shoreward of the 40 m isobath.

  12. Nanomaterial-assisted PCR based on thermal generation from magnetic nanoparticles under high-frequency AC magnetic fields

    NASA Astrophysics Data System (ADS)

    Higashi, Toshiaki; Minegishi, Hiroaki; Echigo, Akinobu; Nagaoka, Yutaka; Fukuda, Takahiro; Usami, Ron; Maekawa, Toru; Hanajiri, Tatsuro

    2015-08-01

    Here the authors present a nanomaterial-assisted PCR technique based on the use of thermal generation from magnetic nanoparticles (MNPs) under AC magnetic fields. In this approach, MNPs work as internal nano thermal generators to realize PCR thermal cycling. In order to suppress the non-specific absorption of DNA synthetic enzymes, MNPs are decorated with bovine serum albumin (BSA), forming BSA/MNP complexes. Under high-frequency AC magnetic fields, these complexes work as internal nano thermal generators, thereby producing the typical temperature required for PCR thermal cycling, and perform all the reaction processes of PCR amplification in the place of conventional PCR thermal cyclers.

  13. Sequestration of zinc from zinc oxide nanoparticles and life cycle effects in the sediment dweller amphipod Corophium volutator.

    PubMed

    Fabrega, Julia; Tantra, Ratna; Amer, Aisha; Stolpe, Bjorn; Tomkins, Jordan; Fry, Tony; Lead, Jamie R; Tyler, Charles R; Galloway, Tamara S

    2012-01-17

    We studied the effects of ZnO nanoparticles [ZnO NPs, primary particle size 35 ± 10 nm (circular diameter, TEM)], bulk [160 ± 81 nm (circular diameter, TEM)], and Zn ions (from ZnCl(2)) on mortality, growth, and reproductive endpoints in the sediment dwelling marine amphipod Corophium volutator over a complete lifecycle (100 days). ZnO NPs were characterized by size, aggregation, morphology, dissolution, and surface properties. ZnO NPs underwent aggregation and partial dissolution in the seawater exposure medium, resulting in a size distribution that ranged in size from discrete nanoparticles to the largest aggregate of several micrometers. Exposure via water to all forms of zinc in the range of 0.2-1.0 mg L(-1) delayed growth and affected the reproductive outcome of the exposed populations. STEM-EDX analysis was used to characterize insoluble zinc precipitates (sphaerites) of high sulfur content, which accumulated in the hepatopancreas following exposures. The elemental composition of the sphaerites did not differ for ZnO NP, Zn(2+), and bulk ZnO exposed organisms. These results provide an illustration of the comparable toxicity of Zn in bulk, soluble, and nanoscale forms on critical lifecycle parameters in a sediment dwelling organism.

  14. Brightened single-bubble sonoluminescence by phase-adjusted high-frequency acoustic pulse.

    PubMed

    Ogi, Hirotsugu; Matsuda, Atsushi; Wada, Kayo; Hirao, Masahiko

    2003-05-01

    This paper experimentally and numerically studies the effect of a high-frequency acoustic pulse on brightening single-bubble sonoluminescence (SBSL). A polyvinylidene fluoride point-focusing transducer was driven by a 700-W pulse generator to superimpose the acoustic pulse on the sonoluminescing bubble. The center frequency of the pulse was 10 MHz and the duration was 0.15 micros. The pulse was triggered every 100 cycles of the low-frequency standing wave used to make SBSL. The intensity of SBSL was measured as a function of time lag of superimposed pulse. Only the pulse that arrived at the bubble at the early growing stage could increase the brightness. This trend was confirmed with a numerical calculation based on the Rayleigh-Plesset equation. The increased brightness reached 300% of those of the classical SBSL flashes when the time lag was correctly adjusted.

  15. Brightened single-bubble sonoluminescence by phase-adjusted high-frequency acoustic pulse

    NASA Astrophysics Data System (ADS)

    Ogi, Hirotsugu; Matsuda, Atsushi; Wada, Kayo; Hirao, Masahiko

    2003-05-01

    This paper experimentally and numerically studies the effect of a high-frequency acoustic pulse on brightening single-bubble sonoluminescence (SBSL). A polyvinylidene fluoride point-focusing transducer was driven by a 700-W pulse generator to superimpose the acoustic pulse on the sonoluminescing bubble. The center frequency of the pulse was 10 MHz and the duration was 0.15 μs. The pulse was triggered every 100 cycles of the low-frequency standing wave used to make SBSL. The intensity of SBSL was measured as a function of time lag of superimposed pulse. Only the pulse that arrived at the bubble at the early growing stage could increase the brightness. This trend was confirmed with a numerical calculation based on the Rayleigh-Plesset equation. The increased brightness reached 300% of those of the classical SBSL flashes when the time lag was correctly adjusted.

  16. Novel high frequency devices with graphene and GaN

    NASA Astrophysics Data System (ADS)

    Zhao, Pei

    This work focuses on exploring new materials and new device structures to develop novel devices that can operate at very high speed. In chapter 2, the high frequency performance limitations of graphene transistor with channel length less than 100 nm are explored. The simulated results predict that intrinsic cutoff frequency fT of graphene transistor can be close to 2 THz at 15 nm channel length. In chapter 3, we explored the possibility of developing a 2D materials based vertical tunneling device. An analytical model to calculate the channel potentials and current-voltage characteristics in a Symmetric tunneling Field-Effect-Transistor (SymFET) is presented. The symmetric resonant peak in SymFET is a good candidate for high-speed analog applications. Rest of the work focuses on Gallium Nitride (GaN), several novel device concepts based on GaN heterostructure have been proposed for high frequency and high power applications. In chapter 4, we compared the performance of GaN Schottky diodes on bulk GaN substrates and GaN-on-sapphire substrates. In addition, we also discussed the lateral GaN Schottky diode between metal/2DEGs. The advantage of lateral GaN Schottky diodes is the intrinsic cutoff frequency is in the THz range. In chapter 5, a GaN Heterostructure barrier diode (HBD) is designed using the polarization charge and band offset at the AlGaN/GaN heterojunction. The polarization charge at AlGaN/GaN interface behaves as a delta-doping which induces a barrier without any chemical doping. The IV characteristics can be explained by the barrier controlled thermionic emission current. GaN HBDs can be directly integrated with GaN HEMTs, and serve as frequency multipliers or mixers for RF applications. In chapter 6, a GaN based negative effective mass oscillator (NEMO) is proposed. The current in NEMO is estimated under the ballistic limits. Negative differential resistances (NDRs) can be observed with more than 50% of the injected electrons occupied the negative

  17. Feasibility of High Frequency Acoustic Imaging for Inspection of Containments

    SciTech Connect

    C.N. Corrado; J.E. Bondaryk; V. Godino

    1998-08-01

    The Nuclear Regulatory Commission has a program at the Oak Ridge National Laboratory to provide assistance in their assessment of the effects of potential degradation on the structural integrity and Ieaktightness of metal containment vessels and steel liners of concrete containment in nuclear power plants. One of the program objectives is to identify a technique(s) for inspection of inaccessible portions of the containment pressure boundary. Acoustic imaging has been identified as one of these potential techniques. A numerical feasibility study investigated the use of high-frequency bistatic acoustic imaging techniques for inspection of inaccessible portions of the metallic pressure boundary of nuclear power plant containment. The range-dependent version of the OASES Code developed at the Massachusetts Institute of Technology was utilized to perform a series of numerical simulations. OASES is a well developed and extensively tested code for evaluation of the acoustic field in a system of stratified fluid and/or elastic layers. Using the code, an arbitrary number of fluid or solid elastic layers are interleaved, with the outer layers modeled as halfspaces. High frequency vibrational sources were modeled to simulate elastic waves in the steel. The received field due to an arbitrary source array can be calculated at arbitrary depth and range positions. In this numerical study, waves that reflect and scatter from surface roughness caused by modeled degradations (e.g., corrosion) are detected and used to identify and map the steel degradation. Variables in the numerical study included frequency, flaw size, interrogation distance, and sensor incident angle.Based on these analytical simulations, it is considered unlikely that acoustic imaging technology can be used to investigate embedded steel liners of reinforced concrete containment. The thin steel liner and high signal losses to the concrete make this application difficult. Results for portions of steel containment

  18. High-frequency phenomena in magnetic recording and inductive devices

    NASA Astrophysics Data System (ADS)

    Jury, Jason Charles

    At high frequencies (>1 GHz), ferromagnetic materials and associated electronic circuitry show interesting and sometimes undesirable behavior. In this dissertation, we examine high-frequency effects in magnetic recording and magnetic inductive devices. We analyze "impedance profiling" of the disk drive interconnect, as a way of shaping the write current waveform. This proves to be useful under somewhat limited conditions (for write head with low impedance, characteristic time of the shaped waveform less than the one-way interconnect propagation delay). We then analyze a buffer amplifier (consisting of a single transistor in an emitter-follower configuration) as a means of improving the electronic signal to noise ratio (SNR) associated with high-resistance read sensors. We develop and utilize a "matched filter bound" SNR for assessing the performance of the disk drive read-path. For a hypothetical recording system at an areal density of 1 terabit/in2, the buffer amplifier improves SNR anywhere from 0.5 dB for 670 Mb/s up to 1 dB for 4.17 Gb/s. We then present measurements and quantitative analysis for magnetic fluctuation noise in read sensors. The analysis is enabled by rigorous calibration of the noise measurement setup. We are able to explain the behavior of the mag-noise (primary) resonance frequency versus bias current and externally-applied field, by using a micromagnetic model (NIST-OOMMF) where we also account for sensor heating and associated reduction in free-layer and biasing magnet saturation moment. We then analyze the behavior of multi-domain magnetic materials and the associated inductive device behaviors. First we utilize micromagnetic modeling to calculate the spin-resonance modes associated with multi-domain films. We find agreement in trend between the modeling results and experimentally-observed sub-FMR permeability resonances, particularly that both model and experiment predict a power-law dependence of frequency on the ratio of thickness to

  19. Impact of longer-term modest climate shifts on architecture of high-frequency sequences (Cyclothems), Pennsylvanian of midcontinent U.S.A

    USGS Publications Warehouse

    Feldman, H.R.; Franseen, E.K.; Joeckel, R.M.; Heckel, P.H.

    2005-01-01

    Pennsylvanian glacioeustatic cyclothems exposed in Kansas and adjacent areas provide a unique opportunity to test models of the impact of relative sea level and climate on stratal architecture. A succession of eight of these high-frequency sequences, traced along dip for 500 km, reveal that modest climate shifts from relatively dry-seasonal to relatively wet-seasonal with a duration of several sequences (???600,000 to 1 million years) had a dominant impact on facies, sediment dispersal patterns, and sequence architecture. The climate shifts documented herein are intermediate, both in magnitude and duration, between previously documented longer-term climate shifts throughout much of the Pennsylvanian and shorter-term shifts described within individual sequences. Climate indicators are best preserved at sequence boundaries and in incised-valley fills of the lowstand systems tracts (LST). Relatively drier climate indicators include high-chroma paleosols, typically with pedogenic carbonates, and plant assemblages that are dominated by gymnosperms, mostly xerophytic walchian conifers. The associated valleys are small (4 km wide and >20 m deep), and dominated by quartz sandstones derived from distant source areas, reflecting large drainage networks. Transgressive systems tracts (TST) in all eight sequences gen erally are characterized by thin, extensive limestones and thin marine shales, suggesting that the dominant control on TST facies distribution was the sequestration of siliciclastic sediment in updip positions. Highstand systems tracts (HST) were significantly impacted by the intermediate-scale climate cycle in that HSTs from relatively drier climates consist of thin marine shales overlain by extensive, thick regressive limestones, whereas HSTs from relatively wetter climates are dominated by thick marine shales. Previously documented relative sea-level changes do not track the climate cycles, indicating that climate played a role distinct from that of relative sea

  20. High Frequency Climate Variability Over the Last 1400 Years in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Richey, J. N.; Flower, B. P.; Poore, R. Z.; Quinn, T. M.

    2005-12-01

    Low latitude, late Holocene climate is highly dynamic; multiple records show high frequency oscillations and distinct climate events such as the Medieval Warm Period (MWP) and Little Ice Age (LIA). The use of combined δ18O and Mg/Ca enables the determination of the relative contributions of changes in SST and changes in the hydrologic cycle, especially in regions linked to continental climate such as the Gulf of Mexico (GOM). Paired δ18O and Mg/Ca analyses of the planktonic foraminifer Globogerinoides ruber (white variety) from a Pigmy Basin box core (age control provided by 7 AMS radiocarbon dates) indicate persistent high frequency climatic variability in the GOM overprinted on an apparent MWP- LIA oscillation. The change in δ18Ocalcite between the LIA (~1500AD-1850AD) and MWP (~600AD -1400AD) is equivalent to 0.4 ‰, with a positive 0.2‰ departure from the modern values during the LIA, and a negative 0.2‰ departure during the preceding MWP. The combined δ18O and Mg/Ca analysis indicates that the shift in δ18Ocalcite is dominated by changes in salinity, with minimal SST variability during this period. Mg/Ca derived SSTs vary by a magnitude of <0.5 °C between the MWP/LIA. The calculated residual δ18Oseawater yields a 0.2-0.3‰ shift between the LIA and MWP, indicating a significant increase in salinity from the MWP to the LIA. Spectral analysis of δ18Ocalcite and corresponding faunal data (% G. sacculifer) indicates a significant periodicity of ~200 years, close to the 208-year cycle in atmospheric 14C production and suggestive of a solar forcing mechanism. A higher frequency peak occurs in both proxies at a period of ~60-75 years. This may relate to the AMO signal evident in the instrumental record of SST in the North Atlantic.

  1. Sulphur-cycling bacteria and ciliated protozoans in a Beggiatoaceae mat covering organically enriched sediments beneath a salmon farm in a southern Chilean fjord.

    PubMed

    Aranda, Carlos P; Valenzuela, Cristian; Matamala, Yessica; Godoy, Félix A; Aranda, Nicol

    2015-11-15

    The colourless mat covering organically enriched sediments underlying an intensive salmon farm in Estero Pichicolo, southern Chile, was surveyed by combined 454 PyroTag and conventional Sanger sequencing of 16S/18S ribosomal RNA genes for Bacteria and Eukarya. The mat was dominated by the sulphide-oxidizing bacteria (SOB) Candidatus Isobeggiatoa, Candidatus Parabeggiatoa and Arcobacter. By order of their abundances, sulphate-reducing bacteria (SRB) were represented by diverse deltaproteobacterial Desulfobacteraceae, but also within Desulfobulbaceae, Desulfuromonadaceae and Desulfovibrionaceae. The eukaryotic PyroTags were dominated by polychaetes, copepods and nematodes, however, ciliated protozoans were highly abundant in microscopy observations, and were represented by the genera Condylostoma, Loxophyllum and Peritromus. Finally, the abundant Sulfurimonas/Sulfurovum also suggest the occurrence of zero-valence sulphur oxidation, probably derived from Beggiatoaceae as a result of bacteriovorus infaunal activity or generated as free S(0) by the Arcobacter bacteria. The survey suggests an intense and complex sulphur cycle within the surface of salmon-farm impacted sediments.

  2. Phosphorus and iron cycles during early diagenesis of Lake Kai-ike sediments, Kami-koshiki Island, southwest Japan

    NASA Astrophysics Data System (ADS)

    Iida, H.; Yamaguchi, K. E.; Oguri, K.

    2014-12-01

    A meromictic Lake Kai-ike is located on the northeastern margin of Kami-koshiki island, Japan. Permanent density stratification develops due to seawater infiltration through a gravel bar separating the lake from the ocean. The oxygenated surface water overlays a stagnant, saline, and anoxic deep water containing hydrogen sulfide. Purple sulfur bacteria (Chromatium sp.) inhabit the chemocline at 4.5m depth. At the lake bottom, green sulfur bacteria form microbial mat-like structures (Nakajima et al., 2003; Environ. Microbiol.). Such environment can be treated as a model for the past anoxic ocean, such as during Cretaceous OAEs (Oguri et al., 2003; Frontier Res. on Earth Evol.). A 25 cm-long KAI4 sediment core (Yamaguchi et al., 2010; Palaeo3) was used for two sequential extraction methods. SEDEX method (Ruttenberg, 1992; Limnol. Oceanogr.) was used for partitioning phosphorus-bearing species into Pabs (absorbed), PFe (Fe-bound), Pauth (authigenic), Pdet (detrital), and Porg (organic). Iron-bearing species were also divided into FeHCl (HCl-soluble), Fecarb (carbonate), Feox (oxide), Femag (magnetite), and Feresi (residue), following the method of Poulton et al. (2005; Chem. Geol.). At the uppermost part of KAI4 core, Porg was the most abundant P-bearing species (~90% of total P). The Porg content sharply decreased with increasing depth to 5cm. The second most abundant species was PFe; however, PFe and Feox contents remained constant throughout the whole depth. At sediment surface in present-day oxygenated ocean, Fe3+-(oxy)hydroxides trap phosphate diffusing from deeper-anoxic sediment, and the phosphate concentration in pore water becomes high enough to precipitate authigenic apatite (Slomp et al., 1996; J. Mar. Res.). In case of Lake Kai-ike, however, the amount of Fe3+-(oxy)hydroxides was small relative to that of Porg (PFe/Porg = ~0.1). We suggest that the excess phosphate not adsorbed on Fe3+-(oxy)hydroxides was diffused out to the overlying water mass, and the

  3. Challenges in graphene integration for high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Giannazzo, F.; Fisichella, G.; Greco, G.; Roccaforte, F.

    2016-06-01

    This paper provides an overview of the state-of-the-art research on graphene (Gr) for high-frequency (RF) devices. After discussing current limitations of lateral Gr RF transistors, novel vertical devices concepts such as the Gr Base Hot Electron Transistor (GBHET) will be introduced and the main challenges in Gr integration within these architectures will be discussed. In particular, a GBHET device based on Gr/AlGaN/GaN heterostructure will be considered. An approach to the fabrication of this heterostructure by transfer of CVD grown Gr on copper to the AlGaN surface will be presented. The morphological and electrical properties of this system have been investigated at nanoscale by atomic force microscopy (AFM) and conductive atomic force microscopy (CAFM). In particular, local current-voltage measurements by the CAFM probe revealed the formation of a Schottky contact with low barrier height (˜0.41 eV) and excellent lateral uniformity between Gr and AlGaN. Basing on the electrical parameters extracted from this characterization, the theoretical performances of a GBHET formed by a metal/Al2O3/Gr/AlGaN/GaN stack have been evaluated.

  4. LONGITUDINAL DYNAMICS IN HIGH FREQUENCY FFAG RECIRCULATING ACCELERATORS.

    SciTech Connect

    BERG,J.S.

    2002-04-08

    A recirculating accelerator accelerates the beam by passing through accelerating cavities multiple times. An FFAG recirculating accelerator uses a single arc to connect the linacs together, as opposed to multiple arcs for the different energies. For most scenarios using high-frequency RF, it is impractical to change the phase of the RF on each pass, at least for lower energy accelerators. Ideally, therefore, the WAG arc will be isochronous, so that the particles come back to the same phase (on-crest) on each linac pass. However, it is not possible to make the FFAG arcs isochronous (compared to the RF period) over a large energy range. This paper demonstrates that one can nonetheless make an WAG recirculating accelerator work. Given the arc's path length as a function of energy and the number of turns to accelerate for, one can find the minimum voltage (and corresponding initial conditions) required to accelerate a reference particle to the desired energy. I also briefly examine how the longitudinal acceptance varies with the number of turns that one accelerates.

  5. Microfluidic particle manipulation using high frequency surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Ai, Ye; Collins, David J.

    2016-11-01

    Precise manipulation of particles and biological cells remains a very active research area in microfluidics. Among various force fields applied for microfluidic manipulations, acoustic waves have superior propagating properties in solids and fluids, which can readily enable non-contact cell manipulation in long operating distances. Exploiting acoustic waves for fluid and cell manipulation in microfluidics has led to a newly emerging research area, acoustofluidics. In this work, I will present particle and cell manipulation in microfluidics using high frequency surface acoustic waves (SAW). In particular, I will discuss a unique design of a focused IDT (FIDT) structure, which is able to generate a highly localized SAW field on the order of 20 µm wide. This highly focused acoustic beam has an effective manipulation area size that is comparable to individual micron-sized particles. Here, I demonstrate the use of this highly localized SAW field for single particle level sorting with sub-millisecond pulses and selective capture of particles. Based on the presented studies on acoustic particle manipulation, I envision that the merging of acoustics and microfluidics could enable various particle and cell manipulations needed in microfluidic applications. We acknowledge the support received from Singapore University of Technology and Design (SUTD)-Massachusetts Institute of Technology (MIT) International Design Center (IDG11300101) and SUTD Startup Research Grant (SREP13053) awarded to Y.A.

  6. Software for Displaying High-Frequency Test Data

    NASA Technical Reports Server (NTRS)

    Elmore, Jason L.

    2003-01-01

    An easy-to-use, intuitive computer program was written to satisfy a need of test operators and data requestors to quickly view and manipulate high-frequency test data recorded at the East and West Test Areas at Marshall Space Flight Center. By enabling rapid analysis, this program makes it possible to reduce times between test runs, thereby potentially reducing the overall cost of test operations. The program can be used to perform quick frequency analysis, using multiple fast- Fourier-transform windowing and amplitude options. The program can generate amplitude-versus-time plots with full zoom capabilities, frequency-component plots at specified time intervals, and waterfall plots (plots of spectral intensity versus frequency at successive small time intervals, showing the changing frequency components over time). There are options for printing of the plots and saving plot data as text files that can be imported into other application programs. The program can perform all of the aforementioned plotting and plot-data-handling functions on a relatively inexpensive computer; other software that performs the same functions requires computers with large amounts of power and memory.

  7. Dynamic-Receive Focusing with High-Frequency Annular Arrays

    NASA Astrophysics Data System (ADS)

    Ketterling, J. A.; Mamou, J.; Silverman, R. H.

    High-frequency ultrasound is commonly employed for ophthalmic and small-animal imaging because of the fine-resolution images it affords. Annular arrays allow improved depth of field and lateral resolution versus commonly used single-element, focused transducers. The best image quality from an annular array is achieved by using synthetic transmit-to-receive focusing while utilizing data from all transmit-to-receive element combinations. However, annular arrays must be laterally scanned to form an image and this requires one pass for each of the array elements when implementing full synthetic transmit-to-receive focusing. A dynamic-receive focusing approach permits a single pass, although at a sacrifice of depth of field and lateral resolution. A five-element, 20-MHz annular array is examined to determine the acoustic beam properties for synthetic and dynamic-receive focusing. A spatial impulse response model is used to simulate the acoustic beam properties for each focusing case and then data acquired from a human eye-bank eye are processed to demonstrate the effect of each approach on image quality.

  8. Mapping High-Frequency Waves in the Reconnection Diffusion Region

    NASA Astrophysics Data System (ADS)

    Viberg, H.; Khotyaintsev, Y. V.; Vaivads, A.; Andre, M.

    2012-12-01

    We study the occurrence of high frequency waves, between the electron cyclotron and plasma frequency, in a reconnection diffusion region in the Earth's magnetotail at a distance of about 19 RE from the Earth. Most of the wave activity is concentrated in the separatrix regions, with no significant activity observed in the inflow and outflow regions. Different types of waves are observed at the outer part of the separatrix region depending on the plasma characteristics in the inflow region. For the cold ~100 eV lobe plasma in the inflow we observe Langmuir waves which are generated by the bump-on-tail instability of a several keV electron beam propagating in the cold background plasma. For the hotter ~1 keV inflow plasma, which is similar to the plasmasheet population, electron cyclotron waves are observed in this region, most probably generated by low energy (several tens of eV) electron beams. Deeper into the separatrix region (closer to the current sheet), we observe mostly electrostatic solitary waves (ESWs) in association with two counter-streaming electron beams: low energy beam towards the X-line, and high energy beam away from the X-line. Observations of HF waves provide important information about electron dynamics in the diffusion region, and allow for precise mapping of kinetic boundaries.

  9. Cobalt Nanoparticle Inks for Printed High Frequency Applications on Polycarbonate

    NASA Astrophysics Data System (ADS)

    Nelo, Mikko; Myllymäki, Sami; Juuti, Jari; Uusimäki, Antti; Jantunen, Heli

    2015-12-01

    In this work the high frequency properties of low curing temperature cobalt nanoparticle inks printed on polycarbonate substrates were investigated. The inks consisted of 30-70 vol.% metallic cobalt nanoparticles and poly (methylene methacrylate) polymer, having excellent adhesion on polycarbonate and a curing temperature of 110°C. The influence of binder material content on the electromagnetic properties of the ink was investigated using the shorted microstrip transmission-line perturbation method. Changes in mechanical properties were evaluated with adhesion tests using the pull-out strength test and the ASTM D 3359-B cross-hatch tape peel test. The microstructure of the printed patterns was investigated with field emission scanning electron microscopy (FESEM). The inks remained mechanically durable with metal contents up to 60 vol.%, achieving pull-off strength of up to 5.2 MPa and the highest marks in adhesion of the tape peel test. The inks obtained a relative permeability of 1.5-3 in the 45 MHz-10 GHz band with a magnetic loss tangent of 0.01-0.06. The developed inks can be utilized in various printed electronics applications such as antenna miniaturization, antenna substrates and magnetic sensors or sensing.

  10. Low temperature high frequency coaxial pulse tube for space application

    NASA Astrophysics Data System (ADS)

    Charrier, Aurelia; Charles, Ivan; Rousset, Bernard; Duval, Jean-Marc; Daniel, Christophe

    2014-01-01

    The 4K stage is a critical step for space missions. The Hershel mission is using a helium bath, which is consumed day by day (after depletion, the space mission is over) while the Plank mission is equipped with one He4 Joule-Thomson cooler. Cryogenic chain without helium bath is a challenge for space missions and 4.2K Pulse-Tube working at high frequency (around 30Hz) is one option to take it up. A low temperature Pulse-Tube would be suitable for the ESA space mission EChO (Exoplanet Characterisation Observatory, expected launch in 2022), which requires around 30mW cooling power at 6K; and for the ESA space mission ATHENA (Advanced Telescope for High ENergy Astrophysics), to pre-cool the sub-kelvin cooler (few hundreds of mW at 15K). The test bench described in this paper combines a Gifford-McMahon with a coaxial Pulse-Tube. A thermal link is joining the intercept of the Pulse-Tube and the second stage of the Gifford-McMahon. This intercept is a separator between the hot and the cold regenerators of the Pulse-Tube. The work has been focused on the cold part of this cold finger. Coupled with an active phase shifter, this Pulse-Tube has been tested and optimized and temperatures as low as 6K have been obtained at 30Hz with an intercept temperature at 20K.

  11. High temperature pressurized high frequency testing rig and test method

    DOEpatents

    De La Cruz, Jose; Lacey, Paul

    2003-04-15

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  12. High-frequency acoustic for nanostructure wetting characterization.

    PubMed

    Li, Sizhe; Lamant, Sebastien; Carlier, Julien; Toubal, Malika; Campistron, Pierre; Xu, Xiumei; Vereecke, Guy; Senez, Vincent; Thomy, Vincent; Nongaillard, Bertrand

    2014-07-01

    Nanostructure wetting is a key problem when developing superhydrophobic surfaces. Conventional methods do not allow us to draw conclusions about the partial or complete wetting of structures on the nanoscale. Moreover, advanced techniques are not always compatible with an in situ, real time, multiscale (from macro to nanoscale) characterization. A high-frequency (1 GHz) acoustic method is used for the first time to characterize locally partial wetting and the wetting transition between nanostructures according to the surface tension of liquids (the variation is obtained by ethanol concentration modification). We can see that this method is extremely sensitive both to the level of liquid imbibition and to the impalement dynamic. We thus demonstrate the possibility to evaluate the critical surface tension of a liquid for which total wetting occurs according to the aspect ratio of the nanostructures. We also manage to identify intermediate states according to the height of the nanotexturation. Finally, our measurements revealed that the drop impalement depending on the surface tension of the liquid also depends on the aspect ratio of the nanostructures. We do believe that our method may lead to new insights into nanoscale wetting characterization by accessing the dynamic mapping of the liquid imbibition under the droplet.

  13. High frequency of BRAF V600E mutations in ameloblastoma.

    PubMed

    Kurppa, Kari J; Catón, Javier; Morgan, Peter R; Ristimäki, Ari; Ruhin, Blandine; Kellokoski, Jari; Elenius, Klaus; Heikinheimo, Kristiina

    2014-04-01

    Ameloblastoma is a benign but locally infiltrative odontogenic neoplasm. Although ameloblastomas rarely metastasise, recurrences together with radical surgery often result in facial deformity and significant morbidity. Development of non-invasive therapies has been precluded by a lack of understanding of the molecular background of ameloblastoma pathogenesis. When addressing the role of ERBB receptors as potential new targets for ameloblastoma, we discovered significant EGFR over-expression in clinical samples using real-time RT-PCR, but observed variable sensitivity of novel primary ameloblastoma cells to EGFR-targeted drugs in vitro. In the quest for mutations downstream of EGFR that could explain this apparent discrepancy, Sanger sequencing revealed an oncogenic BRAF V600E mutation in the cell line resistant to EGFR inhibition. Further analysis of the clinical samples by Sanger sequencing and BRAF V600E-specific immunohistochemistry demonstrated a high frequency of BRAF V600E mutations (15 of 24 samples, 63%). These data provide novel insight into the poorly understood molecular pathogenesis of ameloblastoma and offer a rationale to test drugs targeting EGFR or mutant BRAF as novel therapies for ameloblastoma.

  14. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  15. High frequency strain measurements with fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Koch, J.; Angelmahr, M.; Schade, W.

    2015-05-01

    In recent years fiber Bragg grating sensors gained interest in structural health monitoring and concepts for smart structures. They are small, lightweight, and immune to electromagnetic interference. Using multiplexing techniques, several sensors can be addressed by a single fiber. Therefore, well-established structures and materials in industrial applications can be easily equipped with fiber optical sensors with marginal influence on their mechanical properties. In return, critical components can be monitored in real-time, leading to reduced maintenance intervals and a great reduction of costs. Beside of generally condition monitoring, the localization of failures in a structure is a desired feature of the condition monitoring system. Detecting the acoustic emission of a sudden event, its place of origin can be determined by analyzing the delay time of distributed sensor signals. To achieve high localization accuracies for the detection of cracks, breaks, and impacts high sampling rates combined with the simultaneous interrogation of several fiber Bragg grating sensors are required. In this article a fiber Bragg grating interrogator for high frequency measurements up to the megahertz range is presented. The interrogator is based on a passive wavelength to intensity conversion applying arrayed waveguide gratings. Light power fluctuations are suppressed by a differential data evaluation, leading to a reduced signal-to-noise ratio and a low strain detection limit. The measurement system is used to detect, inter alia, wire breaks in steel wire ropes for dockside cranes.

  16. High-frequency ultrasonic arrays for ocular imaging

    NASA Astrophysics Data System (ADS)

    Jaeger, M. D.; Kline-Schoder, R. J.; Douville, G. M.; Gagne, J. R.; Morrison, K. T.; Audette, W. E.; Kynor, D. B.

    2007-03-01

    High-resolution ultrasound imaging of the anterior portion of the eye has been shown to provide important information for sizing of intraocular lens implants, diagnosis of pathological conditions, and creation of detailed maps of corneal topography to guide refractive surgery. Current ultrasound imaging systems rely on mechanical scanning of a single acoustic element over the surface of the eye to create the three-dimensional information needed by clinicians. This mechanical scanning process is time-consuming and subject to errors caused by eye movement during the scanning period. This paper describes development of linear ultrasound imaging arrays intended to increase the speed of image acquisition and reduce problems associated with ocular motion. The arrays consist of a linear arrangement of high-frequency transducer elements designed to operate in the 50 - 75 MHz frequency range. The arrays are produced using single-crystal lithium niobate piezoelectric material, thin film electrodes, and epoxy-based acoustic layers. The array elements have been used to image steel test structures and bovine cornea.

  17. High Frequency Scattering from Arbitrarily Oriented Dielectric Disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Meneghini, R.; Lang, R. H.; Seker, S. S.

    1982-01-01

    Calculations have been made of electromagnetic wave scattering from dielectric disks of arbitrary shape and orientation in the high frequency (physical optics) regime. The solution is obtained by approximating the fields inside the disk with the fields induced inside an identically oriented slab (i.e. infinite parallel planes) with the same thickness and dielectric properties. The fields inside the disk excite conduction and polarization currents which are used to calculate the scattered fields by integrating the radiation from these sources over the volume of the disk. This computation has been executed for observers in the far field of the disk in the case of disks with arbitrary orientation and for arbitrary polarization of the incident radiation. The results have been expressed in the form of a dyadic scattering amplitude for the disk. The results apply to disks whose diameter is large compared to wavelength and whose thickness is small compared to diameter, but the thickness need not be small compared to wavelength. Examples of the dependence of the scattering amplitude on frequency, dielectric properties of the disk and disk orientation are presented for disks of circular cross section.

  18. High-frequency electrostatic waves in the magnetosphere.

    NASA Technical Reports Server (NTRS)

    Young, T. S. T.

    1973-01-01

    High-frequency electrostatic microinstabilities in magnetospheric plasmas are considered in detail. Rather special plasma parameters are found to be required to match the theoretical wave spectrum with satellite observations in the magnetosphere. In particular, it is necessary to have a cold and a warm species of electrons such that (1) the warm component has an anomalous velocity distribution function that is nonmonotonic in the perpendicular component of velocity and is the source of free energy driving the instabilities, (2) the density ratio of the cold component to the hot component is greater than about 0.01, and (3) the temperature ratio of the two components for cases of high particle density is no less than 0.1. These requirements and the corresponding instability criteria are satisfied only in the trapping region; this is also the region in which the waves are most frequently observed. The range of unstable wavelengths and an estimate of the diffusion coefficient are also obtained. The wave are found to induce strong diffusion in velocity space for low-energy electrons during periods of moderate wave amplitude.

  19. Design, analysis, and testing of high frequency passively damped struts

    NASA Technical Reports Server (NTRS)

    Yiu, Y. C.; Davis, L. Porter; Napolitano, Kevin; Ninneman, R. Rory

    1993-01-01

    Objectives of the research are: (1) to develop design requirements for damped struts to stabilize control system in the high frequency cross-over and spill-over range; (2) to design, fabricate and test viscously damped strut and viscoelastically damped strut; (3) to verify accuracy of design and analysis methodology of damped struts; and (4) to design and build test apparatus, and develop data reduction algorithm to measure strut complex stiffness. In order to meet the stringent performance requirements of the SPICE experiment, the active control system is used to suppress the dynamic responses of the low order structural modes. However, the control system also inadvertently drives some of the higher order modes unstable in the cross-over and spill-over frequency range. Passive damping is a reliable and effective way to provide damping to stabilize the control system. It also improves the robustness of the control system. Damping is designed into the SPICE testbed as an integral part of the control-structure technology.

  20. High frequency alternating current chip nano calorimeter with laser heating

    SciTech Connect

    Shoifet, E.; Schick, C.; Chua, Y. Z.; Huth, H.

    2013-07-15

    Heat capacity spectroscopy at frequencies up to 100 kHz is commonly performed by thermal effusivity measurements applying the 3ω-technique. Here we show that AC-calorimetry using a thin film chip sensor allows for the measurement of frequency dependent heat capacity in the thin film limit up to about 1 MHz. Using films thinner than the thermal length of the thermal wave (∼1 μm) at such frequencies is advantageous because it provides heat capacity alone and not in combination with other quantities like thermal conductivity, at least on a qualitative basis. The used calorimetric sensor and the sample are each less than 1 μm thick. For high frequency AC-calorimetry, high cooling rates at very small temperature differences are required. This is realized by minimizing the heated spot to the size of the on chip thermocouple (3 × 6 μm{sup 2}). A modulated laser beam shaped and positioned by a glass fiber is used as the heat source. The device was used to measure the complex heat capacity in the vicinity of the dynamic glass transition (structural relaxation) of poly(methyl methacrylate). Combining different calorimeters finally provides data between 10{sup −3} Hz and 10{sup 6} Hz. In this frequency range the dynamic glass transition shifts about 120 K.

  1. High Frequency Mechanical Pyroshock Simulations for Payload Systems

    SciTech Connect

    BATEMAN,VESTA I.; BROWN,FREDERICK A.; CAP,JEROME S.; NUSSER,MICHAEL A.

    1999-12-15

    Sandia National Laboratories (SNL) designs mechanical systems with components that must survive high frequency shock environments including pyrotechnic shock. These environments have not been simulated very well in the past at the payload system level because of weight limitations of traditional pyroshock mechanical simulations using resonant beams and plates. A new concept utilizing tuned resonators attached to the payload system and driven with the impact of an airgun projectile allow these simulations to be performed in the laboratory with high precision and repeatability without the use of explosives. A tuned resonator has been designed and constructed for a particular payload system. Comparison of laboratory responses with measurements made at the component locations during actual pyrotechnic events show excellent agreement for a bandwidth of DC to 4 kHz. The bases of comparison are shock spectra. This simple concept applies the mechanical pyroshock simulation simultaneously to all components with the correct boundary conditions in the payload system and is a considerable improvement over previous experimental techniques and simulations.

  2. Refraction of high frequency noise in an arbitrary jet flow

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Krejsa, Eugene A.

    1994-01-01

    Refraction of high frequency noise by mean flow gradients in a jet is studied using the ray-tracing methods of geometrical acoustics. Both the two-dimensional (2D) and three-dimensional (3D) formulations are considered. In the former case, the mean flow is assumed parallel and the governing propagation equations are described by a system of four first order ordinary differential equations. The 3D formulation, on the other hand, accounts for the jet spreading as well as the axial flow development. In this case, a system of six first order differential equations are solved to trace a ray from its source location to an observer in the far field. For subsonic jets with a small spreading angle both methods lead to similar results outside the zone of silence. However, with increasing jet speed the two prediction models diverge to the point where the parallel flow assumption is no longer justified. The Doppler factor of supersonic jets as influenced by the refraction effects is discussed and compared with the conventional modified Doppler factor.

  3. High-frequency modes of a magnetic antivortex

    NASA Astrophysics Data System (ADS)

    Asmat-Uceda, Martin; Riley, Grant; Haldar, Arabinda; Buchanan, Kristen

    2015-03-01

    Magnetic vortices have attracted considerable attention in recent years not only because of their interesting physical properties but also due to their potential for applications. The magnetic antivortex (AV), the topological counterpart of the magnetic vortex, possesses similarly rich dynamics and its spin configuration may prove advantageous for spin-wave-based devices, however, it has not been studied as intensely. Recent experiments show that AV's will form naturally at the intersections of patterned pound-key-like nanostructures that are magnetically soft. Here we present micromagnetic simulations of the dynamics of AV's in these structures. The simulations show that pound-key-like structures made of 30-nm thick Permalloy exhibit a complex dynamic profile that includes a number of discrete high-frequency modes (>1 GHz). Spatial maps of the dynamic modes that were constructed using Fourier analysis of the simulation results show modes that are in similar in character to the radial and azimuthal modes observed for magnetic vortices but the spin dynamics also differ from those of a vortex due to the presence of the elongated nanowires in the pound-key-like structure. The frequencies of the observed modes tend to decrease with increasing sample size, however, the general features of the modes remains relatively unaffected by the structure size. The simulations will be compared to Brillouin Light Scattering (BLS) experimental results. This work was supported by the US DOE-BES Award #ER 46854.

  4. High to very high frequency metal/anomaly detector

    NASA Astrophysics Data System (ADS)

    Heinz, Daniel C.; Brennan, Michael L.; Steer, Michael B.; Melber, Adam W.; Cua, John T.

    2014-05-01

    Typical metal detectors work at very low to low frequencies. In this paper, a metal/anomaly detector design that operates in the high to very high frequency range is presented. This design uses a high-Q tuned loop antenna for metal/anomaly detection. By measuring the return loss or voltage standing wave ratio a frequency notch can be detected. Tuning to the optimal location of the notch can be accomplished by monitoring the phase response. This phase monitoring technique can be used to ground balance the detector. As a metal object is moved along the longitudinal axis of the loop antenna a substantial shift in the frequency of the notch is detected. For metal targets, the frequency shift is positive, and for ferrite and other targets, the frequency shift is negative. This frequency shift is created by the proximity of the target causing a change in the impedance of the antenna. Experiments with a prototype antenna show long-range detection with low power requirements. The detector requires only one loop with one winding which is used for both transmit and receive. This allows for a metal/anomaly detector with a very simple design. The design is lightweight and, depending on loop size, significantly increases detection depth performance. In the full paper, modeling and further experimental results will be presented. Performance results for various types of soil and for different types of targets are presented.

  5. Ionospheric heating with oblique high-frequency waves

    SciTech Connect

    Field, E.C. Jr.; Bloom, R.M. ); Kossey, P.A. )

    1990-12-01

    This paper presents calculations of ionospheric electron temperature and density perturbations and ground-level signal changes produced by intense oblique high-frequency (HF) radio waves. The analysis takes into account focusing at caustics, the consequent Joule heating of the surrounding plasma, heat conduction, diffusion, and recombination processes, these being the effects of a powerful oblique modifying wave. It neglects whatever plasma instabilities might occur. The authors then seek effects on a secondary test wave that is propagated along the same path as the first. The calculations predict ground-level field strength reductions of several decibels in the test wave for modifying waves having effective radiated power (ERP) in the 85- to 90-dBW range. These field strength changes are similar in sign, magnitude, and location to ones measured in Soviet experiments. The location of the signal change is sensitive to the frequency and the model ionosphere assumed; so future experiments should employ the widest possible range of frequencies and propagation conditions. An ERP of 90 dBW seems to be a sort of threshold that, if exceeded, might result in substantial rather than small signal changes. The conclusions are based solely on Joule heating and subsequent refraction of waves passing through caustic regions.

  6. Planck early results. VI. The High Frequency Instrument data processing

    NASA Astrophysics Data System (ADS)

    Planck HFI Core Team; Ade, P. A. R.; Aghanim, N.; Ansari, R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Banday, A. J.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bradshaw, T.; Bucher, M.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, C.; Church, S.; Clements, D. L.; Colley, J.-M.; Colombi, S.; Couchot, F.; Coulais, A.; Cressiot, C.; Crill, B. P.; Crook, M.; de Bernardis, P.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dolag, K.; Dole, H.; Doré, O.; Douspis, M.; Dunkley, J.; Efstathiou, G.; Filliard, C.; Forni, O.; Fosalba, P.; Ganga, K.; Giard, M.; Girard, D.; Giraud-Héraud, Y.; Gispert, R.; Górski, K. M.; Gratton, S.; Griffin, M.; Guyot, G.; Haissinski, J.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hills, R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; Kaplan, J.; Kneissl, R.; Knox, L.; Kunz, M.; Lagache, G.; Lamarre, J.-M.; Lange, A. E.; Lasenby, A.; Lavabre, A.; Lawrence, C. R.; Le Jeune, M.; Leroy, C.; Lesgourgues, J.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Mann, R.; Marleau, F.; Marshall, D. J.; Masi, S.; Matsumura, T.; McAuley, I.; McGehee, P.; Melin, J.-B.; Mercier, C.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Mortlock, D.; Murphy, A.; Nati, F.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Osborne, S.; Pajot, F.; Patanchon, G.; Peacocke, T.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Ponthieu, N.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Remazeilles, M.; Renault, C.; Riazuelo, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Saha, R.; Santos, D.; Savini, G.; Schaefer, B. M.; Shellard, P.; Spencer, L.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Sygnet, J.-F.; Tauber, J. A.; Thum, C.; Torre, J.-P.; Touze, F.; Tristram, M.; van Leeuwen, F.; Vibert, L.; Vibert, D.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; Wiesemeyer, H.; Woodcraft, A.; Yurchenko, V.; Yvon, D.; Zacchei, A.

    2011-12-01

    We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857 GHz with an angular resolution ranging from 9.9 to 4.4'. The white noise level is around 1.5 μK degree or less in the 3 main CMB channels (100-217 GHz). The photometric accuracy is better than 2% at frequencies between 100 and 353 GHz and around 7% at the two highest frequencies. The maps created by the HFI Data Processing Centre reach our goals in terms