Sample records for high-intensity compression waves

  1. Cellular characterization of compression-induceddamage in live biological samples

    NASA Astrophysics Data System (ADS)

    Bo, Chiara; Balzer, Jens; Hahnel, Mark; Rankin, Sara M.; Brown, Katherine A.; Proud, William

    2012-03-01

    Understanding the damage that high intensity compression waves induce in human tissues is critical for developing improved therapies for patients suffering from blast injuries. Experimentally based models of blast injury using live biological samples are needed. In this study we have developed a system to directly assess the effects of dynamic loading conditions on live cells. Here, we describe a confinement chamber designed to subject live cell cultures in a liquid environment to high intensity compression waves using a split Hopkinson pressure bar system. Signals from the strain gauges mounted on the bars and the chamber allow the measurement of parameters such as pressure and duration of the stimulus. The chamber itself also allows recovery of cells subjected to compression for assessment of cellular damage. In these studies we present evidence of increased levels of damage and loss of cellular integrity in cultured mouse mesenchymal stem cells subjected to a high-intensity compression wave with a peak pressure of 7.6 ± 0.8 MPa.

  2. Elucidating the Role of Compression Waves and Impact Duration for Generating mild Traumatic Brain Injury in Rats

    PubMed Central

    Lucke-Wold, Brandon P.; Phillips, Michael; Turner, Ryan C.; Logsdon, Aric F.; Smith, Kelly E.; Huber, Jason D.; Rosen, Charles L.; Regele, Jonathan D.

    2016-01-01

    3 million concussions occur each year in the United States. The mechanisms linking acute injury to chronic deficits are poorly understood. Mild traumatic brain injury has been described clinically in terms of acute functional deficits, but the underlying histopathologic changes that occur are relatively unknown due to limited high-function imaging modalities. In order to improve our understanding of acute injury mechanisms, appropriately designed preclinical models must be utilized. The clinical relevance of compression wave injury models revolves around the ability to produce consistent histopathologic deficits. Repetitive mild traumatic brain injuries activate similar neuroinflammatory cascades, cell death markers, and increases in amyloid precursor protein in both humans and rodents. Humans however infrequently succumb to mild traumatic brain injuries and therefore the intensity and magnitude of impacts must be inferred. Understanding compression wave properties and mechanical loading could help link the histopathologic deficits seen in rodents to what might be happening in human brains following repetitive concussions. Advances in mathematical and computer modeling can help characterize the wave properties generated by the compression wave model. While this concept of linking duration and intensity of impact to subsequent histopathologic deficits makes sense, numerical modeling of compression waves has not been performed in this context. In this collaborative interdisciplinary work, numerical simulations were performed to study the creation of compression waves in our experimental model. This work was conducted in conjunction with a repetitive compression wave injury paradigm in rats in order to better understand how the wave generation correlates with validated histopathologic deficits. PMID:27880054

  3. Laser-pulse compression using magnetized plasmas

    DOE PAGES

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2017-02-28

    Proposals to reach the next generation of laser intensities through Raman or Brillouin backscattering have centered on optical frequencies. Higher frequencies are beyond the range of such methods mainly due to the wave damping that accompanies the higher-density plasmas necessary for compressing higher frequency lasers. However, we find that an external magnetic field transverse to the direction of laser propagation can reduce the required plasma density. Using parametric interactions in magnetized plasmas to mediate pulse compression, both reduces the wave damping and alleviates instabilities, thereby enabling higher frequency or lower intensity pumps to produce pulses at higher intensities and longermore » durations. Finally, in addition to these theoretical advantages, our method in which strong uniform magnetic fields lessen the need for high-density uniform plasmas also lessens key engineering challenges or at least exchanges them for different challenges.« less

  4. On the Theory of High-Power Ultrashort Pulse Propagation in Raman-Active Media

    NASA Technical Reports Server (NTRS)

    Belenov, E. M.; Isakov, V. A.; Kanavin, A. P.; Smetanin, I. V.

    1996-01-01

    The propagation of an intense femtosecond pulse in a Raman-active medium is analyzed. An analytic solution which describes in explicit form the evolution of the light pulse is derived. The field of an intense light wave undergoes a substantial transformation as the wave propagates through the medium. The nature of this transformation can change over time scales comparable to the period of the optical oscillations. As a result, the pulse of sufficiently high energy divides into stretched and compressed domains where the field decreases and increases respectively.

  5. Unusual plasticity and strength of metals at ultra-short load durations

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Zaretsky, E. B.; Razorenov, S. V.; Ashitkov, S. I.; Fortov, V. E.

    2017-08-01

    This paper briefly reviews recent experimental results on the temperature-rate dependences of flow and fracture stresses in metals under high strain rate conditions for pulsed shock-wave loads with durations from tens of picoseconds up to microseconds. In the experiments, ultimate (‘ideal’) values of the shear and tensile strengths have been approached and anomalous growth of the yield stress with temperature at high strain rates has been confirmed for some metals. New evidence is obtained for the intense dislocation multiplication immediately originating in the elastic precursor of a compression shock wave. It is found that under these conditions inclusions and other strengthening factors may have a softening effect. Novel and unexpected features are observed in the evolution of elastoplastic compression shock waves.

  6. An electromagnetic railgun accelerator: a generator of strong shock waves in channels

    NASA Astrophysics Data System (ADS)

    Bobashev, S. V.; Zhukov, B. G.; Kurakin, R. O.; Ponyaev, S. A.; Reznikov, B. I.

    2014-11-01

    Processes that accompany the generation of strong shock waves during the acceleration of a free plasma piston (PP) in the electromagnetic railgun channel have been experimentally studied. The formation of shock waves in the railgun channel and the motion of a shock-wave-compressed layer proceed (in contrast to the case of a classical shock tube) in a rather strong electric field (up to 300 V/cm). The experiments were performed at the initial gas pressures in the channel ranging from 25 to 500 Torr. At 25 Torr, the shock-wave Mach numbers reached 32 in argon and 16 in helium. At high concentrations of charged particles behind the shock wave, the electric field causes the passage of a part of the discharge current through the volume of the shock-wave-compressed layer, which induces intense glow comparable with that of the PP glow.

  7. Possible Mechanisms for Generation of Anomalously High PGA During the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Pavlenko, O. V.

    2017-08-01

    Mechanisms are suggested that could explain anomalously high PGAs (peak ground accelerations) exceeding 1 g recorded during the 2011 Tohoku earthquake ( M w = 9.0). In my previous research, I studied soil behavior during the Tohoku earthquake based on KiK-net vertical array records and revealed its `atypical' pattern: instead of being reduced in the near-source zones as usually observed during strong earthquakes, shear moduli in soil layers increased, indicating soil hardening, and reached their maxima at the moments of the highest intensity of strong motion, then reduced. We could explain this assuming that the soils experienced some additional compression. The observed changes in the shapes of acceleration time histories with distance from the source, such as a decrease of the duration and an increase of the intensity of strong motion, indicate phenomena similar to overlapping of seismic waves and a shock wave generation, which led to the compression of soils. The phenomena reach their maximum in the vicinity of stations FKSH10, TCGH16, and IBRH11, where the highest PGAs were recorded; at larger epicentral distances, PGAs sharply fall. Thus, the occurrence of anomalously high PGAs on the surface can result from the combination of the overlapping of seismic waves at the bottoms of soil layers and their increased amplification by the pre-compressed soils.

  8. Suppressing bubble shielding effect in shock wave lithotripsy by low intensity pulsed ultrasound.

    PubMed

    Wang, Jen-Chieh; Zhou, Yufeng

    2015-01-01

    Extracorporeal shock wave lithotripsy (ESWL) has been used as an effective modality to fragment kidney calculi. Because of the bubble shielding effect in the pre-focal region, the acoustic energy delivered to the focus is reduced. Low pulse repetition frequency (PRF) will be applied to dissolve these bubbles for better stone comminution efficiency. In this study, low intensity pulsed ultrasound (LIPUS) beam was aligned perpendicular to the axis of a shock wave (SW) lithotripter at its focus. The light transmission was used to evaluate the compressive wave and cavitation induced by SWs without or with a combination of LIPUS for continuous sonication. It is found that bubble shielding effect becomes dominated with the SW exposure and has a greater significant effect on cavitation than compressive wave. Using the combined wave scheme, the improvement began at the 5th pulse and gradually increased. Suppression effect on bubble shielding is independent on the trigger delay, but increases with the acoustic intensity and pulse duration of LIPUS. The peak negative and integral area of light transmission signal, which present the compressive wave and cavitation respectively, using our strategy at PRF of 1 Hz are comparable to those using SW alone at PRF of 0.1 Hz. In addition, high-speed photography confirmed the bubble activities in both free field and close to a stone surface. Bubble motion in response to the acoustic radiation force by LIPUS was found to be the major mechanism of suppressing bubble shielding effect. There is a 2.6-fold increase in stone fragmentation efficiency after 1000 SWs at PRF of 1 Hz in combination with LIPUS. In summary, combination of SWs and LIPUS is an effective way of suppressing bubble shielding effect and, subsequently, improving cavitation at the focus for a better outcome. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Pressure pulse induced-damage in live biological samples

    NASA Astrophysics Data System (ADS)

    Bo, C.; Balzer, J.; Godfrey, S.; Francois, M.; Saffell, J. L.; Rankin, S. M.; Proud, W. G.; Brown, K. A.

    2012-08-01

    Developing a cellular and molecular understanding of the nature of traumatic and post-traumatic effects of blast on live biological samples is critical for improving clinical outcomes. To analyze the effects of blast waves upon the cellular structures and the underlying physiological and biochemical changes, we have constructed an experimental platform capable of delivering compression waves, of amplitudes relevant to blast, to cell suspensions in a contained environment. Initial characterization of the system shows that cell cultures can be subjected to high-intensity compression waves up to 15 MPa in pressure and duration of 80 ± 10μs. Studies of mouse mesenchymal stem cells subjected to two different pressure impulses were analysed by cell counting, cell viability assays and microscopic evaluation: the experiments present evidence suggestive of increased levels of damage and loss of cellular integrity compared to uncompressed cell cultures.

  10. Steepened magnetosonic waves in the high beta plasma surrounding Comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Smith, E. J.; Thorne, R. M.; Gosling, J. T.; Matsumoto, H.

    1986-01-01

    Studies of intense hydromagnetic waves at Giacobini-Zinner are extended to investigate the mode and direction of wave propagation. Simultaneous high-resolution measurements of electron density fluctuations demonstrate that long period waves propagate in the magnetosonic mode. Principal axis analyses of the long period waves and accompanying partial rotations show that the sum of the wave phase rotations is 360 deg, indicating that both are parts of the same wave oscillation. The time sequence of the steepened waveforms observed by ICE shows that the waves must propagate towards the Sun with Cph less than Vsw. Observations are consistent with wave generation by resonant ion ring or ion beam instability which predicts right-hand polarized waves propagating in the ion beam (solar) direction. The large amplitudes and small scale sizes of the cometary waves suggest that rapid pitch-angle scattering and energy transfer with energetic ions should occur. Since the waves are highly compressive, first-order Fermi acceleration is forecast.

  11. Transcatheter Replacement of Stenotic Aortic Valve Normalizes Cardiac-Coronary Interaction by Restoration of Systolic Coronary Flow Dynamics as Assessed by Wave Intensity Analysis.

    PubMed

    Rolandi, M Cristina; Wiegerinck, Esther M A; Casadonte, Lorena; Yong, Ze-Yie; Koch, Karel T; Vis, Marije; Piek, Jan J; Baan, Jan; Spaan, Jos A E; Siebes, Maria

    2016-04-01

    Aortic valve stenosis (AS) can cause angina despite unobstructed coronary arteries, which may be related to increased compression of the intramural microcirculation, especially at the subendocardium. We assessed coronary wave intensity and phasic flow velocity patterns to unravel changes in cardiac-coronary interaction because of transcatheter aortic valve implantation (TAVI). Intracoronary pressure and flow velocity were measured at rest and maximal hyperemia in undiseased vessels in 15 patients with AS before and after TAVI and in 12 control patients. Coronary flow reserve, systolic and diastolic velocity time integrals, and the energies of forward (aorta-originating) and backward (microcirculatory-originating) coronary waves were determined. Coronary flow reserve was 2.8±0.2 (mean±SEM) in control and 1.8±0.1 in AS (P<0.005) and was not restored by TAVI. Compared with control, the resting backward expansion wave was 45% higher in AS. The peak of the systolic forward compression wave was delayed in AS, consistent with a delayed peak aortic pressure, which was partially restored after TAVI. The energy of forward waves doubled after TAVI, whereas the backward expansion wave increased by >30%. The increase in forward compression wave with TAVI was related to an increase in systolic velocity time integral. AS or TAVI did not alter diastolic velocity time integral. Reduced coronary forward wave energy and systolic velocity time integral imply a compromised systolic flow velocity with AS that is restored after TAVI, suggesting an acute relief of excess compression in systole that likely benefits subendocardial perfusion. Vasodilation is observed to be a major determinant of backward waves. © 2016 American Heart Association, Inc.

  12. Wave energy patterns of counterpulsation: a novel approach with wave intensity analysis.

    PubMed

    Lu, Pong-Jeu; Yang, Chi-Fu Jeffrey; Wu, Meng-Yu; Hung, Chun-Hao; Chan, Ming-Yao; Hsu, Tzu-Cheng

    2011-11-01

    In counterpulsation, diastolic augmentation increases coronary blood flow and systolic unloading reduces left ventricular afterload. We present a new approach with wave intensity analysis to revisit and explain counterpulsation principles. In an acute porcine model, a standard intra-aortic balloon pump was placed in descending aorta in 4 pigs. We measured pressure and velocity with probes in left anterior descending artery and aorta during and without intra-aortic balloon pump assistance. Wave intensities of aortic and left coronary waves were derived from pressure and flow measurements with synchronization correction. We identified predominating waves in counterpulsation. In the aorta, during diastolic augmentation, intra-aortic balloon inflation generated a backward compression wave, with a "pushing" effect toward the aortic root that translated to a forward compression wave into coronary circulation. During systolic unloading, intra-aortic balloon pump deflation generated a backward expansion wave that "sucked" blood from left coronary bed into the aorta. While this backward expansion wave translated to reduced left ventricular afterload, the "sucking" effect resulted in left coronary blood steal, as demonstrated by a forward expansion wave in left anterior descending coronary flow. The waves were sensitive to inflation and deflation timing, with just 25 ms delay from standard deflation timing leading to weaker forward expansion wave and less coronary regurgitation. Intra-aortic balloon pumps generate backward-traveling waves that predominantly drive aortic and coronary blood flow during counterpulsation. Wave intensity analysis of arterial circulations may provide a mechanism to explain diastolic augmentation and systolic unloading of intra-aortic balloon pump counterpulsation. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  13. Major influence of a 'smoke and mirrors' effect caused by wave reflection on early diastolic coronary arterial wave intensity.

    PubMed

    Mynard, Jonathan P; Penny, Daniel J; Smolich, Joseph J

    2018-03-15

    Coronary wave intensity analysis (WIA) is an emerging technique for assessing upstream and downstream influences on myocardial perfusion. It is thought that a dominant backward decompression wave (BDW dia ) is generated by a distal suction effect, while early-diastolic forward decompression (FDW dia ) and compression (FCW dia ) waves originate in the aorta. We show that wave reflection also makes a substantial contribution to FDW dia , FCW dia and BDW dia , as quantified by a novel method. In 18 sheep, wave reflection accounted for ∼70% of BDW dia , whereas distal suction dominated in a computer model representing a hypertensive human. Non-linear addition/subtraction of mechanistically distinct waves (e.g. wave reflection and distal suction) obfuscates the true contribution of upstream and downstream forces on measured waves (the 'smoke and mirrors' effect). The mechanisms underlying coronary WIA are more complex than previously thought and the impact of wave reflection should be considered when interpreting clinical and experimental data. Coronary arterial wave intensity analysis (WIA) is thought to provide clear insight into upstream and downstream forces on coronary flow, with a large early-diastolic surge in coronary flow accompanied by a prominent backward decompression wave (BDW dia ), as well as a forward decompression wave (FDW dia ) and forward compression wave (FCW dia ). The BDW dia is believed to arise from distal suction due to release of extravascular compression by relaxing myocardium, while FDW dia and FCW dia are thought to be transmitted from the aorta into the coronary arteries. Based on an established multi-scale computational model and high-fidelity measurements from the proximal circumflex artery (Cx) of 18 anaesthetized sheep, we present evidence that wave reflection has a major impact on each of these three waves, with a non-linear addition/subtraction of reflected waves obscuring the true influence of upstream and downstream forces through concealment and exaggeration, i.e. a 'smoke and mirrors' effect. We also describe methods, requiring additional measurement of aortic WIA, for unravelling the separate influences of wave reflection versus active upstream/downstream forces on coronary waves. Distal wave reflection accounted for ∼70% of the BDW dia in sheep, but had a lesser influence (∼25%) in the computer model representing a hypertensive human. Negative reflection of the BDW dia at the coronary-aortic junction attenuated the Cx FDW dia (by ∼40% in sheep) and augmented Cx FCW dia (∼5-fold), relative to the corresponding aortic waves. We conclude that wave reflection has a major influence on early-diastolic WIA, and thus needs to be considered when interpreting coronary WIA profiles. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  14. A Review of Alfvénic Turbulence in High-Speed Solar Wind Streams: Hints From Cometary Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Tsurutani, Bruce T.; Lakhina, Gurbax S.; Sen, Abhijit; Hellinger, Petr; Glassmeier, Karl-Heinz; Mannucci, Anthony J.

    2018-04-01

    Solar wind turbulence within high-speed streams is reviewed from the point of view of embedded single nonlinear Alfvén wave cycles, discontinuities, magnetic decreases (MDs), and shocks. For comparison and guidance, cometary plasma turbulence is also briefly reviewed. It is demonstrated that cometary nonlinear magnetosonic waves phase-steepen, with a right-hand circular polarized foreshortened front and an elongated, compressive trailing edge. The former part is a form of "wave breaking" and the latter that of "period doubling." Interplanetary nonlinear Alfvén waves, which are arc polarized, have a 180° foreshortened front and with an elongated trailing edge. Alfvén waves have polarizations different from those of cometary magnetosonic waves, indicating that helicity is a durable feature of plasma turbulence. Interplanetary Alfvén waves are noted to be spherical waves, suggesting the possibility of additional local generation. They kinetically dissipate, forming MDs, indicating that the solar wind is partially "compressive" and static. The 2 MeV protons can nonresonantly interact with MDs leading to rapid cross-field ( 5.5% Bohm) diffusion. The possibility of local ( 1 AU) generation of Alfvén waves may make it difficult to forecast High-Intensity, Long-Duration AE Activity and relativistic magnetospheric electrons with great accuracy. The future Solar Orbiter and Solar Probe Plus missions should be able to not only test these ideas but to also extend our knowledge of plasma turbulence evolution.

  15. Dynamic Behaviors of Materials under Ramp Wave Loading on Compact Pulsed Power Generators

    NASA Astrophysics Data System (ADS)

    Zhao, Jianheng; Luo, Binqiang; Wang, Guiji; Chong, Tao; Tan, Fuli; Liu, Cangli; Sun, Chengwei

    The technique using intense current to produce magnetic pressure provides a unique way to compress matter near isentrope to high density without obvious temperature increment, which is characterized as ramp wave loading, and firstly developed by Sandia in 1998. Firstly recent advances on compact pulsed power generators developed in our laboratory, such as CQ-4, CQ-3-MMAF and CQ-7 devices, are simply introduced here, which devoted to ramp wave loading from 50GPa to 200 GPa, and to ultrahigh-velocity flyer launching up to 30 km/s. And then, we show our progress in data processing methods and experiments of isentropic compression conducted on these devices mentioned above. The suitability of Gruneisen EOS and Vinet EOS are validated by isentropic experiments of tantalum, and the parameters of SCG constitutive equation of aluminum and copper are modified to give better prediction under isentropic compression. Phase transition of bismuth and tin are investigated under different initial temperatures, parameters of Helmholtz free energy and characteristic relaxation time in kinetic phase transition equation are calibrated. Supported by NNSF of China under Contract No.11327803 and 11176002

  16. Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL

    DOE PAGES

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; ...

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnifiedmore » x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.« less

  17. Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL.

    PubMed

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G; Beckwith, Martha A; Collins, Gilbert W; Higginbotham, Andrew; Wark, Justin S; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B; Schroer, Christian G

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.

  18. Large Amplitude IMF Fluctuations in Corotating Interaction Regions: Ulysses at Midlatitudes

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Ho, Christian M.; Arballo, John K.; Goldstein, Bruce E.; Balogh, Andre

    1995-01-01

    Corotating Interaction Regions (CIRs), formed by high-speed corotating streams interacting with slow speed streams, have been examined from -20 deg to -36 deg heliolatitudes. The high-speed streams emanate from a polar coronal hole that Ulysses eventually becomes fully embedded in as it travels towards the south pole. We find that the trailing portion of the CIR, from the interface surface (IF) to the reverse shock (RS), contains both large amplitude transverse fluctuations and magnitude fluctuations. Similar fluctuations have been previously noted to exist within CIRs detected in the ecliptic plane, but their existence has not been explained. The normalized magnetic field component variances within this portion of the CIR and in the trailing high-speed stream are approximately the same, indicating that the fluctuations in the CIR are compressed Alfven waves. Mirror mode structures with lower intensities are also observed in the trailing portion of the CIR, presumably generated from a local instability driven by free energy associated with compression of the high-speed solar wind plasma. The mixture of these two modes (compressed Alfven waves and mirror modes) plus other modes generated by three wave processes (wave-shock interactions) lead to a lower Alfvenicity within the trailing portion of the CfR than in the high-speed stream proper. The results presented in this paper suggest a mechanism for generation of large amplitude B(sub z) fluctuations within CIRS. Such phenomena have been noted to be responsible for the generation of moderate geomagnetic storms during the declining phase of the solar cycle.

  19. Optimisation of parameters of Raman laser pulse compression in a plasma for its implementation using the PEARL laser facility (IAP RAS)

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Levin, D. S.; Skobelev, S. A.

    2018-04-01

    We consider Raman compression of laser pulses in a plasma under the conditions of an experiment planned at the Institute of Applied Physics of the Russian Academy of Sciences on the PEARL laser facility. The analysis is based on the equations describing, among other things, the effect of plasma dispersion and relativistic nonlinearity, as well as the dynamics of the field near the plasma wave breaking threshold. It is shown that the main limiting factors are excessive frequency modulation of the pump pulse and a too low plasma density in which the plasma wave breaking can occur. To reduce the negative influence of these effects, we suggest using an intense and short (on the order of the plasma period) seed laser pulse. Numerical simulation shows the possibility of a hundredfold increase in the intensity of the compressed pulse in comparison with the intensity of the pump pulse at a length of uniform plasma of 2 cm.

  20. Increased aortic wave reflection contributes to higher systolic blood pressure in adolescents born preterm.

    PubMed

    Kowalski, Remi R; Beare, Richard; Mynard, Jonathan P; Cheong, Jeanie L Y; Doyle, Lex W; Smolich, Joseph J; Cheung, Michael M H

    2018-03-29

    To evaluate the wave reflection characteristics in the aortic arch and common carotid artery of ex-preterm adolescents and assess their relationship to central blood pressure in a cohort followed prospectively since birth. Central blood pressures, pulse wave velocity, augmentation index, microvascular reactive hyperemia, arterial distensibility, compliance and stiffness index, and also aortic and carotid wave intensity were measured in 18-year-olds born extremely preterm at below 28 weeks' gestation (n = 76) and term-born controls (n = 42). Compared with controls, ex-preterm adolescents had higher central systolic (111 ± 11 vs. 105 ± 10 mmHg; P < 0.001) and diastolic blood pressures (73 ± 7 vs. 67 ± 7 mmHg; P < 0.001). Although conventional measures of arterial function and biomechanics such as pulse wave velocity and augmentation index were no different between groups, wave intensity analysis revealed elevated backward compression wave area (-0.39 ± 0.21 vs. -0.29 ± 0.17 W/m/s × 10; P = 0.03), backward compression wave pressure change (9.0 ± 3.5 vs. 6.6 ± 2.5 mmHg; P = 0.001) and reflection index (0.44 ± 0.15 vs. 0.32 ± 0.08; P < 0.001) in the aorta of ex-preterm adolescents compared with controls. These changes were less pronounced in the carotid artery. On multivariable analysis, forward and backward compression wave areas were the only biomechanical variables associated with central systolic pressure. Ex-preterm adolescents demonstrate elevated wave reflection indices in the aortic arch, which correlate with central systolic pressure. Wave intensity analysis may provide a sensitive novel marker of evolving vascular dysfunction in ex-preterm survivors.

  1. Jet crackle: skewness transport budget and a mechanistic source model

    NASA Astrophysics Data System (ADS)

    Buchta, David; Freund, Jonathan

    2016-11-01

    The sound from high-speed (supersonic) jets, such as on military aircraft, is distinctly different than that from lower-speed jets, such as on commercial airliners. Atop the already loud noise, a higher speed adds an intense, fricative, and intermittent character. The observed pressure wave patterns have strong peaks which are followed by relatively long shallows; notably, their pressure skewness is Sk >= 0 . 4 . Direct numerical simulation of free-shear-flow turbulence show that these skewed pressure waves occur immediately adjacent to the turbulence source for M >= 2 . 5 . Additionally, the near-field waves are seen to intersect and nonlinearly merge with other waves. Statistical analysis of terms in a pressure skewness transport equation show that starting just beyond δ99 the nonlinear wave mechanics that add to Sk are balanced by damping molecular effects, consistent with this aspect of the sound arising in the source region. A gas dynamics description is developed that neglects rotational turbulence dynamics and yet reproduces the key crackle features. At its core, this mechanism shows simply that nonlinear compressive effects lead directly to stronger compressions than expansions and thus Sk > 0 .

  2. Direct numerical simulations of premixed autoignition in compressible uniformly-sheared turbulence

    NASA Astrophysics Data System (ADS)

    Towery, Colin; Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter

    2017-11-01

    High-speed combustion systems, such as scramjet engines, operate at high temperatures and pressures, extremely short combustor residence times, very high rates of shear stress, and intense turbulent mixing. As a result, the reacting flow can be premixed and have highly-compressible turbulence fluctuations. We investigate the effects of compressible turbulence on the ignition delay time, heat-release-rate (HRR) intermittency, and mode of autoignition of premixed Hydrogen-air fuel in uniformly-sheared turbulence using new three-dimensional direct numerical simulations with a multi-step chemistry mechanism. We analyze autoignition in both the Eulerian and Lagrangian reference frames at eight different turbulence Mach numbers, Mat , spanning the quasi-isentropic, linear thermodynamic, and nonlinear compressibility regimes, with eddy shocklets appearing in the nonlinear regime. Results are compared to our previous study of premixed autoignition in isotropic turbulence at the same Mat and with a single-step reaction mechanism. This previous study found large decreases in delay times and large increases in HRR intermittency between the linear and nonlinear compressibility regimes and that detonation waves could form in both regimes.

  3. Dissipative processes under the shock compression of glass

    NASA Astrophysics Data System (ADS)

    Savinykh, A. S.; Kanel, G. I.; Cherepanov, I. A.; Razorenov, S. V.

    2016-03-01

    New experimental data on the behavior of the K8 and TF1 glasses under shock-wave loading conditions are obtained. It is found that the propagation of shock waves is close to the self-similar one in the maximum compression stress range 4-12 GPa. Deviations from a general deformation diagram, which are related to viscous dissipation, take place when the final state of compression is approached. The parameter region in which failure waves form in glass is found not to be limited to the elastic compression stress range, as was thought earlier. The failure front velocity increases with the shock compression stress. Outside the region covered by a failure wave, the glasses demonstrate a high tensile dynamic strength (6-7 GPa) in the case of elastic compression, and this strength is still very high after transition through the elastic limit in a compression wave.

  4. Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Tetrick, S. S.; Engebretson, M. J.; Posch, J. L.; Olson, C. N.; Smith, C. W.; Denton, R. E.; Thaller, S. A.; Wygant, J. R.; Reeves, G. D.; MacDonald, E. A.; Fennell, J. F.

    2017-04-01

    We have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 RE relative to the PP. Very few events occurred only within 0.1 RE of the PP, and events with a width in L of < 0.2 RE occurred both inside and outside the PP. Wave occurrence was always associated with high densities of ring current ions; plasma density gradients or enhancements were associated with some events but were not dominant factors in determining the sites of wave generation. Storm main and recovery phase events in the dusk sector were often inside the PP, and dayside events during quiet times and compressions of the magnetosphere were more evenly distributed both inside and outside the PP. Superposed epoch analyses of the dependence of wave onset on solar wind dynamic pressure (Psw), the SME (SuperMAG auroral electrojet) index, and the SYM-H index showed that substorm injections and solar wind compressions were temporally closely associated with EMIC wave onset but to an extent that varied with frequency band, magnetic local time, and storm phase, and location relative to the PP. The fact that increases in SME and Psw were less strongly correlated with events at the PP than with other events might suggest that the occurrence of those events was affected by the density gradient.

  5. Signal processing for the profoundly deaf.

    PubMed

    Boothyroyd, A

    1990-01-01

    Profound deafness, defined here as a hearing loss in excess of 90 dB, is characterized by high thresholds, reduced hearing range in the intensity and frequency domains, and poor resolution in the frequency and time domains. The high thresholds call for hearing aids with unusually high gains or remote microphones that can be placed close to the signal source. The former option creates acoustic feedback problems for which digital signal processing may yet offer solutions. The latter option calls for carrier wave technology that is already available. The reduced frequency and intensity ranges would appear to call for frequency and/or amplitude compression. It might also be argued, however, that any attempts to compress the acoustic signal into the limited hearing range of the profoundly deaf will be counterproductive because of poor frequency and time resolution, especially when the signal is present in noise. In experiments with a 2-channel compression system, only 1 of 9 subjects showed an improvement of perception with the introduction of fast-release (20 ms) compression. The other 8 experienced no benefit or a slight deterioration of performance. These results support the concept of providing the profoundly deaf with simpler, rather than more complex, patterns, perhaps through the use of feature extraction hearing aids. Data from users of cochlear implants already employing feature extraction techniques also support this concept.

  6. The compression and expansion waves of the forward and backward flows: an in-vitro arterial model.

    PubMed

    Feng, J; Khir, A W

    2008-05-01

    Although the propagation of arterial waves of forward flows has been studied before, that of backward flows has not been thoroughly investigated. The aim of this research is to investigate the propagation of the compression and expansion waves of backward flows in terms of wave speed and dissipation, in flexible tubes. The aim is also to compare the propagation of these waves with those of forward flows. A piston pump generated a flow waveform in the shape of approximately half-sinusoid, in flexible tubes (12 mm and 16 mm diameter). The pump produced flow in either the forward or the backward direction by moving the piston forward, in a 'pushing action' or backward, in a 'pulling action', using a graphite brushes d.c. motor. Pressure and flow were measured at intervals of 5 cm along each tube and wave speed was determined using the PU-loop method. The simultaneous measurements of diameter were also taken at the same position of the pressure and flow in the 16 mm tube. Wave intensity analysis was used to determine the magnitude of the pressure and velocity waveforms and wave intensity in the forward and backward directions. Under the same initial experimental conditions, wave speed was higher during the pulling action (backward flow) than during the pushing action (forward flow). The amplitudes of pressure and velocity in the pulling action were significantly higher than those in the pushing action. The tube diameter was approximately 20 per cent smaller in the pulling action than in the pushing action in the 16 mm tube. The compression and expansion waves resulting from the pushing and pulling actions dissipated exponentially along the travelling distance, and their dissipation was greater in the smaller than in the larger tubes. Local wave speed in flexible tubes is flow direction- and wave nature-dependent and is greater with expansion than with compression waves. Wave dissipation has an inverse relationship with the vessel diameter, and dissipation of the expansion wave of the pulling action was greater than that of the pushing action.

  7. Isochoric heating and strong blast wave formation driven by fast electrons in solid-density targets

    NASA Astrophysics Data System (ADS)

    Santos, J. J.; Vauzour, B.; Touati, M.; Gremillet, L.; Feugeas, J.-L.; Ceccotti, T.; Bouillaud, R.; Deneuville, F.; Floquet, V.; Fourment, C.; Hadj-Bachir, M.; Hulin, S.; Morace, A.; Nicolaï, Ph; d'Oliveira, P.; Reau, F.; Samaké, A.; Tcherbakoff, O.; Tikhonchuk, V. T.; Veltcheva, M.; Batani, D.

    2017-10-01

    We experimentally investigate the fast (< 1 {ps}) isochoric heating of multi-layer metallic foils and subsequent high-pressure hydrodynamics induced by energetic electrons driven by high-intensity, high-contrast laser pulses. The early-time temperature profile inside the target is measured from the streaked optical pyrometry of the target rear side. This is further characterized from benchmarked simulations of the laser-target interaction and the fast electron transport. Despite a modest laser energy (< 1 {{J}}), the early-time high pressures and associated gradients launch inwards a strong compression wave developing over ≳ 10 ps into a ≈ 140 {Mbar} blast wave, according to hydrodynamic simulations, consistent with our measurements. These experimental and numerical findings pave the way to a short-pulse-laser-based platform dedicated to high-energy-density physics studies.

  8. A study of phase explosion of metal using high power Nd:YAG laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoh, Jack J.; Lee, H. H.; Choi, J. H.

    2007-12-12

    The interaction of high-power pulsed-laser beam with metal targets in air from 1.06 {mu}m, 5 ns, 3 J/pulse max, Nd:YAG pulsed laser is investigated together with hydrodynamic theories of laser-supported detonation (LSD) wave and multi-material reactive Euler equations. The high speed blast wave generated by the laser ablation of metal reaches maximum velocity of several thousand meters per second. The apparently similar flow conditions to those of reactive shock wave allow one to apply the equations of motion for energetic materials and to understand the explosive behavior of metal vaporization upon laser ablation. The characteristic time at which planar tomore » spherical wave transition occurs is confirmed at low (20 mJ/pulse) to higher (200 mJ/pulse) beam intensities. The flow structure behind the leading shock wave during the early planar shock state is confirmed by the high-resolution multi-material hydrocode originally developed for shock compression of condensed matter.« less

  9. Activities report in quantum optics

    NASA Astrophysics Data System (ADS)

    1985-03-01

    Soft X-ray radiation from laser plasmas, intense Planck radiation, X-ray spectroscopy with transmission gratings, simulation of laser-produced shock waves, self-similar expansion in vacuum, radiation hydrodynamics, electronic structure of highly compressed matter, and heavy-ion beams for inertial confinement were investigated, and a high power iodine laser was developed. Laser-spectroscopy experiments, as well as a gravitational wave experiments were conducted. The fundamentals of light-matter interaction and nonlinear dynamics were studied. Many-photon ionization of molecules; spectroscopy of shock pairs; interaction of excited molecules with surfaces; IR laser applications; organic photochemistry with UV lasers; theoretical chemistry; and a ClF laser were investigated. Thin layers, and a high-pressure CO2 laser were studied.

  10. Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tetrick, S. S.; Engebretson, M. J.; Posch, J. L.

    In this paper, we have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 R E relative to the PP. Very few events occurred only within 0.1 R E of the PP, and events with a width in L of < 0.2 R E occurred both inside and outside the PP. Wave occurrence was always associated with high densities of ringmore » current ions; plasma density gradients or enhancements were associated with some events but were not dominant factors in determining the sites of wave generation. Storm main and recovery phase events in the dusk sector were often inside the PP, and dayside events during quiet times and compressions of the magnetosphere were more evenly distributed both inside and outside the PP. Superposed epoch analyses of the dependence of wave onset on solar wind dynamic pressure (Psw), the SME (SuperMAG auroral electrojet) index, and the SYM-H index showed that substorm injections and solar wind compressions were temporally closely associated with EMIC wave onset but to an extent that varied with frequency band, magnetic local time, and storm phase, and location relative to the PP. Finally, the fact that increases in SME and Psw were less strongly correlated with events at the PP than with other events might suggest that the occurrence of those events was affected by the density gradient.« less

  11. Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations

    DOE PAGES

    Tetrick, S. S.; Engebretson, M. J.; Posch, J. L.; ...

    2017-03-17

    In this paper, we have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 R E relative to the PP. Very few events occurred only within 0.1 R E of the PP, and events with a width in L of < 0.2 R E occurred both inside and outside the PP. Wave occurrence was always associated with high densities of ringmore » current ions; plasma density gradients or enhancements were associated with some events but were not dominant factors in determining the sites of wave generation. Storm main and recovery phase events in the dusk sector were often inside the PP, and dayside events during quiet times and compressions of the magnetosphere were more evenly distributed both inside and outside the PP. Superposed epoch analyses of the dependence of wave onset on solar wind dynamic pressure (Psw), the SME (SuperMAG auroral electrojet) index, and the SYM-H index showed that substorm injections and solar wind compressions were temporally closely associated with EMIC wave onset but to an extent that varied with frequency band, magnetic local time, and storm phase, and location relative to the PP. Finally, the fact that increases in SME and Psw were less strongly correlated with events at the PP than with other events might suggest that the occurrence of those events was affected by the density gradient.« less

  12. Cellular characterization of compression induced-damage in live biological samples

    NASA Astrophysics Data System (ADS)

    Bo, Chiara; Balzer, Jens; Hahnel, Mark; Rankin, Sara M.; Brown, Katherine A.; Proud, William G.

    2011-06-01

    Understanding the dysfunctions that high-intensity compression waves induce in human tissues is critical to impact on acute-phase treatments and requires the development of experimental models of traumatic damage in biological samples. In this study we have developed an experimental system to directly assess the impact of dynamic loading conditions on cellular function at the molecular level. Here we present a confinement chamber designed to subject live cell cultures in liquid environment to compression waves in the range of tens of MPa using a split Hopkinson pressure bars system. Recording the loading history and collecting the samples post-impact without external contamination allow the definition of parameters such as pressure and duration of the stimulus that can be related to the cellular damage. The compression experiments are conducted on Mesenchymal Stem Cells from BALB/c mice and the damage analysis are compared to two control groups. Changes in Stem cell viability, phenotype and function are assessed flow cytometry and with in vitro bioassays at two different time points. Identifying the cellular and molecular mechanisms underlying the damage caused by dynamic loading in live biological samples could enable the development of new treatments for traumatic injuries.

  13. Laser Driven Compression Equations of State and Hugoniot Pressure Measurements in Thick Solid Metallic Targets at ˜0.17-13 TW/cm2

    NASA Astrophysics Data System (ADS)

    Remo, John L.

    2010-10-01

    An electro-optic laser probe was developed to obtain parameters for high energy density equations of state (EoS), Hugoniot pressures (PH), and strain rates for high energy density laser irradiation intensity, I, experiments at ˜170 GW/cm2 (λ = 1064 nm) to ˜13 TW/cm2 (λ = 527 nm) on Al, Cu, Ti, Fe, Ni metal targets in a vacuum. At I ˜7 TW/cm2 front surface plasma pressures and temperatures reached 100's GPa and over two million K. Rear surface PH ranged from 7-120 GPa at average shock wave transit velocities 4.2-8.5 km/s, depending on target thickness and I. A surface plasma compression ˜100's GPa generated an impulsive radial expanding shock wave causing compression, rarefactions, and surface elastic and plastic deformations depending on I. A laser/fiber optic system measured rear surface shock wave emergence and particle velocity with ˜3 GHz resolution by monitoring light deflection from diamond polished rear surfaces of malleable metallic targets, analogous to an atomic force microscope. Target thickness, ˜0.5-2.9 mm, prevented front surface laser irradiation penetration, due to low radiation skin depth, from altering rear surface reflectivity (refractive index). At ˜10 TW electromagnetic plasma pulse noise generated from the target chamber overwhelmed detector signals. Pulse frequency analysis using Moebius loop antennae probed transient noise characteristics. Average shock (compression) and particle (rear surface displacement) velocity measurements determined rear surface PH and GPa) EoS that are compared with gas guns.

  14. Ablation driven by hot electrons generated during the ignitor laser pulse in shock ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Rodriguez Prieto, G.; Tahir, N. A.

    2012-12-15

    An analytical model for the ablation driven by hot electrons is presented. The hot electrons are assumed to be generated during the high intensity laser spike used to produce the ignitor shock wave in the shock ignition driven inertial fusion concept, and to carry on the absorbed laser energy in its totality. Efficient energy coupling requires to keep the critical surface sufficiently close to the ablation front and this goal can be achieved for high laser intensities provided that the laser wavelength is short enough. Scaling laws for the ablation pressure and the other relevant magnitudes of the ablation cloudmore » are found in terms of the laser and target parameters. The effect of the preformed plasma assembled by the compression pulse, previous to the ignitor, is also discussed. It is found that a minimum ratio between the compression and the ignitor pulses would be necessary for the adequate matching of the corresponding scale lengths.« less

  15. Passage of the discharge current through the plasma-electrode interface in the electromagnetic rail accelerator channel

    NASA Astrophysics Data System (ADS)

    Zhukov, B. G.; Reznikov, B. I.; Kurakin, R. O.; Ponyaev, S. A.; Bobashev, S. V.

    2016-11-01

    We investigate the phenomena that accompany the acceleration of a free plasma piston (without a striker) in the electromagnetic rail accelerator channel filled with different gases (argon, helium). An intense glow appears in the shock-compressed layer (SCL) in the case of strong shock waves that produce a high electron concentration ( 1017-1018 cm-3) behind the front. We have proposed that explosive electron emission (EEE) ensures the high-intensity emission of electrons, the passage of a part of the discharge current through the SCL, and the glow of the SCL. The velocity of a shock wave for which the strong electric field in the Debye layer at the cathode causes EEE from its surface and the passage of the current in the SCL has been determined. It has been concluded that, for high velocities of the plasma, the EEE is a universal mechanism that ensure the passage of a strong current through the interface between the cold electrode and the plasma.

  16. Density Fluctuations in the Solar Wind Driven by Alfvén Wave Parametric Decay

    NASA Astrophysics Data System (ADS)

    Bowen, Trevor A.; Badman, Samuel; Hellinger, Petr; Bale, Stuart D.

    2018-02-01

    Measurements and simulations of inertial compressive turbulence in the solar wind are characterized by anti-correlated magnetic fluctuations parallel to the mean field and density structures. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures, kinetic ion-acoustic waves, as well as the MHD slow-mode. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggestive of a local driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the Alfvén wave parametric instability. Here, we test the parametric decay process as a source of compressive waves in the solar wind by comparing the collisionless damping rates of compressive fluctuations with growth rates of the parametric decay instability daughter waves. Our results suggest that generation of compressive waves through parametric decay is overdamped at 1 au, but that the presence of slow-mode-like density fluctuations is correlated with the parametric decay of Alfvén waves.

  17. Visualization and analysis of flow structures in an open cavity

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Cai, Jinsheng; Yang, Dangguo; Wu, Junqiang; Wang, Xiansheng

    2018-05-01

    A numerical study is performed on the supersonic flow over an open cavity at Mach number of 1.5. A newly developed visualization method is employed to visualize the complicated flow structures, which provide an insight into major flow physics. Four types of shock/compressive waves which existed in experimental schlieren are observed in numerical visualization results. Furthermore, other flow structures such as multi-scale vortices are also obtained in the numerical results. And a new type of shocklet which is beneath large vortices is found. The shocklet beneath the vortex originates from leading edge, then, is strengthened by successive interactions between feedback compressive waves and its attached vortex. Finally, it collides against the trailing surface and generates a large number of feedback compressive waves and intensive pressure fluctuations. It is suggested that the shocklets beneath vortex play an important role of cavity self-sustained oscillation.

  18. Wave intensity analysis and its application to the coronary circulation

    PubMed Central

    Davies, JE; Escaned, JE; Hughes, A; Parker, K

    Wave intensity analysis (WIA) is a technique developed from the field of gas dynamics that is now being applied to assess cardiovascular physiology. It allows quantification of the forces acting to alter flow and pressure within a fluid system, and as such it is highly insightful in ascribing cause to dynamic blood pressure or velocity changes. When co-incident waves arrive at the same spatial location they exert either counteracting or summative effects on flow and pressure. WIA however allows waves of different origins to be measured uninfluenced by other simultaneously arriving waves. It therefore has found particular applicability within the coronary circulation where both proximal (aortic) and distal (myocardial) ends of the coronary artery can markedly influence blood flow. Using these concepts, a repeating pattern of 6 waves has been consistently identified within the coronary arteries, 3 originating proximally and 3 distally. Each has been associated with a particular part of the cardiac cycle. The most clinically relevant wave to date is the backward decompression wave, which causes the marked increase in coronary flow velocity observed at the start of the diastole. It has been proposed that this wave is generated by the elastic re-expansion of the intra-myocardial blood vessels that are compressed during systolic contraction. Particularly by quantifying this wave, WIA has been used to provide mechanistic and prognostic insight into a number of conditions including aortic stenosis, left ventricular hypertrophy, coronary artery disease and heart failure. It has proven itself to be highly sensitive and as such a number of novel research directions are encouraged where further insights would be beneficial. PMID:28971104

  19. Influence of a thin compressible insoluble liquid film on the eddy currents generated by interacting surface waves

    NASA Astrophysics Data System (ADS)

    Parfenyev, Vladimir M.; Vergeles, Sergey S.

    2018-06-01

    Recently the generation of eddy currents by interacting surface waves was observed experimentally. The phenomenon provides the possibility for manipulation of particles which are immersed in the fluid. The analysis shows that the amplitude of the established eddy currents produced by stationary surface waves does not depend on the fluid viscosity in the free surface case. The currents become parametrically larger, being inversely proportional to the square root of the fluid viscosity in the case when the fluid surface is covered by an almost incompressible thin liquid (i.e., shear elasticity is zero) film formed by an insoluble agent with negligible internal viscous losses as compared to the dissipation in the fluid bulk. Here we extend the theory for a thin insoluble film with zero shear elasticity and small shear and dilational viscosities on the case of an arbitrary elastic compression modulus. We find both contributions into the Lagrangian motion of passive tracers, which are the advection by the Eulerian vertical vorticity and the Stokes drift. Whereas the Stokes drift contribution preserves its value for the free surface case outside a thin viscous sublayer, the Eulerian vertical vorticity strongly depends on the fluid viscosity at high values of the film compression modulus. The Stokes drift acquires a strong dependence on the fluid viscosity inside the viscous sublayer; however, the change is compensated by an opposite change in the Eulerian vertical vorticity. As a result, the vertical dependence of the intensity of eddy currents is given by a sum of two decaying exponents with both decrements being of the order of the wave number. The decrements are numerically different, so the Eulerian contribution becomes dominant at some depth for the surface film with any compression modulus.

  20. The formation of massive molecular filaments and massive stars triggered by a magnetohydrodynamic shock wave

    NASA Astrophysics Data System (ADS)

    Inoue, Tsuyoshi; Hennebelle, Patrick; Fukui, Yasuo; Matsumoto, Tomoaki; Iwasaki, Kazunari; Inutsuka, Shu-ichiro

    2018-05-01

    Recent observations suggest an that intensive molecular cloud collision can trigger massive star/cluster formation. The most important physical process caused by the collision is a shock compression. In this paper, the influence of a shock wave on the evolution of a molecular cloud is studied numerically by using isothermal magnetohydrodynamics simulations with the effect of self-gravity. Adaptive mesh refinement and sink particle techniques are used to follow the long-time evolution of the shocked cloud. We find that the shock compression of a turbulent inhomogeneous molecular cloud creates massive filaments, which lie perpendicularly to the background magnetic field, as we have pointed out in a previous paper. The massive filament shows global collapse along the filament, which feeds a sink particle located at the collapse center. We observe a high accretion rate \\dot{M}_acc> 10^{-4} M_{⊙}yr-1 that is high enough to allow the formation of even O-type stars. The most massive sink particle achieves M > 50 M_{⊙} in a few times 105 yr after the onset of the filament collapse.

  1. Ultra-Flexibility and Unusual Electronic, Magnetic and Chemical Properties of Waved Graphenes and Nanoribbons

    PubMed Central

    Pan, Hui; Chen, Bin

    2014-01-01

    Two-dimensional materials have attracted increasing attention because of their particular properties and potential applications in next-generation nanodevices. In this work, we investigate the physical and chemical properties of waved graphenes/nanoribbons based on first-principles calculations. We show that waved graphenes are compressible up to a strain of 50% and ultra-flexible because of the vanishing in-plane stiffness. The conductivity of waved graphenes is reduced due to charge decoupling under high compression. Our analysis of pyramidalization angles predicts that the chemistry of waved graphenes can be easily controlled by modulating local curvatures. We further demonstrate that band gaps of armchair waved graphene nanoribbons decrease with the increase of compression if they are asymmetrical in geometry, while increase if symmetrical. For waved zigzag nanoribbons, their anti-ferromagnetic states are strongly enhanced by increasing compression. The versatile functions of waved graphenes enable their applications in multi-functional nanodevices and sensors. PMID:24569444

  2. Normal compression wave scattering by a permeable crack in a fluid-saturated poroelastic solid

    NASA Astrophysics Data System (ADS)

    Song, Yongjia; Hu, Hengshan; Rudnicki, John W.

    2017-04-01

    A mathematical formulation is presented for the dynamic stress intensity factor (mode I) of a finite permeable crack subjected to a time-harmonic propagating longitudinal wave in an infinite poroelastic solid. In particular, the effect of the wave-induced fluid flow due to the presence of a liquid-saturated crack on the dynamic stress intensity factor is analyzed. Fourier sine and cosine integral transforms in conjunction with Helmholtz potential theory are used to formulate the mixed boundary-value problem as dual integral equations in the frequency domain. The dual integral equations are reduced to a Fredholm integral equation of the second kind. It is found that the stress intensity factor monotonically decreases with increasing frequency, decreasing the fastest when the crack width and the slow wave wavelength are of the same order. The characteristic frequency at which the stress intensity factor decays the fastest shifts to higher frequency values when the crack width decreases.

  3. System for generating pluralities of optical pulses with predetermined frequencies in a temporally and spatially overlapped relationship

    DOEpatents

    Meyerhofer, David D.; Schmid, Ansgar W.; Chuang, Yung-ho

    1992-01-01

    Ultra short (pico second and shorter) laser pulses having components of different frequency which are overlapped coherently in space and with a predetermined constant relationship in time, are generated and may be used in applications where plural spectrally separate, time-synchronized pulses are needed as in wave-length resolved spectroscopy and spectral pump probe measurements for characterization of materials. A Chirped Pulse Amplifier (CPA), such as a regenerative amplifier, which provides amplified, high intensity pulses at the output thereof which have the same spatial intensity profile, is used to process a series of chirped pulses, each with a different central frequency (the desired frequencies contained in the output pulses). Each series of chirped pulses is obtained from a single chirped pulse by spectral windowing with a mask in a dispersive expansion stage ahead of the laser amplifier. The laser amplifier amplifies the pulses and provides output pulses with like spatial and temporal profiles. A compression stage then compresses the amplified pulses. All the individual pulses of different frequency, which originated in each single chirped pulse, are compressed and thereby coherently overlapped in space and time. The compressed pulses may be used for the foregoing purposes and other purposes wherien pulses having a plurality of discrete frequency components are required.

  4. System for generating pluralities of optical pulses with predetermined frequencies in a temporally and spatially overlapped relationship

    DOEpatents

    Meyerhofer, D.D.; Schmid, A.W.; Chuang, Y.

    1992-03-10

    Ultrashort (pico second and shorter) laser pulses having components of different frequency which are overlapped coherently in space and with a predetermined constant relationship in time, are generated and may be used in applications where plural spectrally separate, time-synchronized pulses are needed as in wave-length resolved spectroscopy and spectral pump probe measurements for characterization of materials. A Chirped Pulse Amplifier (CPA), such as a regenerative amplifier, which provides amplified, high intensity pulses at the output thereof which have the same spatial intensity profile, is used to process a series of chirped pulses, each with a different central frequency (the desired frequencies contained in the output pulses). Each series of chirped pulses is obtained from a single chirped pulse by spectral windowing with a mask in a dispersive expansion stage ahead of the laser amplifier. The laser amplifier amplifies the pulses and provides output pulses with like spatial and temporal profiles. A compression stage then compresses the amplified pulses. All the individual pulses of different frequency, which originated in each single chirped pulse, are compressed and thereby coherently overlapped in space and time. The compressed pulses may be used for the foregoing purposes and other purposes wherien pulses having a plurality of discrete frequency components are required. 4 figs.

  5. Hydraulic concentration of magnetic fields in the solar photosphere. III - Fields of one or two kilogauss

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1976-01-01

    Detailed analysis of weak and strong lines suggests that the magnetic fields in isolated intense flux tubes in supergranule boundaries in the solar photosphere may be as large as 2000 gauss. This paper is a concise systematic review of hydrodynamic effects that might compress a magnetic field to great intensity. The properties of force-free fields are reviewed to show that they do not contribute to concentration of magnetic fields, in spite of the popular notion to the contrary. Of the seven effects considered, it is concluded that only cooling of the gas within the field can produce the high field densities inferred from observation. It is shown that inhibition of convection appears not to possess the necessary qualitative cooling features and that overstability, generating transverse hydromagnetic waves - essentially Alfven waves - is the only way to account for the cooling and field intensification.

  6. Perturbation method for the second-order nonlinear effect of focused acoustic field around a scatterer in an ideal fluid.

    PubMed

    Liu, Gang; Jayathilake, Pahala Gedara; Khoo, Boo Cheong

    2014-02-01

    Two nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied. This model permits the decoupling between the velocity potential and enthalpy to second order, with the first potential solutions satisfying the linear wave equation (Helmholtz equation), whereas the second order solutions are associated with the linear non-homogeneous equation. Based on the model, the local nonlinear effects of focused acoustic waves on certain volume are studied in which the findings may have important implications for bubble cavitation/initiation via focused ultrasound called HIFU (High Intensity Focused Ultrasound). The calculated results show that for the domain encompassing less than ten times the radius away from the center of the scatterer, the non-linear effect exerts a significant influence on the focused high intensity acoustic wave. Moreover, at the comparatively higher frequencies, for the model of spherical wave, a lower Mach number may result in stronger nonlinear effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Analytic and computational modelling of super-radiant pulse compression in plasma and comparisons with experiment

    NASA Astrophysics Data System (ADS)

    Shvets, Gennady; Kalmykov, Serguei; Dreher, Matthias; Meyer-Ter-Vehn, Juergen

    2003-10-01

    The strongly non-linear regime of Raman backscattering [1,2] holds the promise of compressing long low-intensity laser beams into ultra-short high intensity pulses. As the short pulse is amplified by the long counter-propagating pump via backscattering the pump off the nonlinear plasma wave, its duration shrinks and intensity grows. The increase of the bandwidth of the amplified pulse only occurs in the nonlinear amplification regime, and is its most telling signature. Recent experiments at MPQ carried out in the strongly nonlinear regime reveal two previously unobserved features: (i) bandwidth expansion, and (ii) breakdown of the initially smooth amplified pulse into several spikes. Using semi-analytic model and particle-in-cell simulations, we explain the multiple pulse formation by the synchrotron motion of plasma electrons in the ponderomotive potential. Self-similar solutions consisting of multiple spikes are derived, and their nonlinear frequency shifts evaluated. The nonlinear focusing of the pulse by the pump is predicted and compared with experimental observations. [1] G. Shvets et. al., Phys. Rev. Lett. 81, 4879 (1998). [2] A. Pukhov, Rep. Progr. Phys. 66, 47 (1998).

  8. Love-type wave propagation in a pre-stressed viscoelastic medium influenced by smooth moving punch

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Parween, Z.; Chatterjee, M.; Chattopadhyay, A.

    2015-04-01

    In the present paper, a mathematical model studying the effect of smooth moving semi-infinite punch on the propagation of Love-type wave in an initially stressed viscoelastic strip is developed. The dynamic stress concentration due to the punch for the force of a constant intensity has been obtained in the closed form. Method based on Weiner-hopf technique which is indicated by Matczynski has been employed. The study manifests the significant effect of various affecting parameters viz. speed of moving punch associated with Love-type wave speed, horizontal compressive/tensile initial stress, vertical compressive/tensile initial stress, frequency parameter, and viscoelastic parameter on dynamic stress concentration due to semi-infinite punch. Moreover, some important peculiarities have been traced out and depicted by means of graphs.

  9. Pulse Power Compression by Cutting a Dense Z-Pinch with a Laser Beam

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    1999-07-01

    A thin cut made through a z-pinch by an intense laser beam can become a magnetically insulated diode crossed by an intense ion beam. For larger cuts, the gap is crossed by an intense relativistic electron beam, stopped by magnetic bremsstrahlung resulting in a pointlike intense x-ray source. In either case, the impedance of the pinch discharge is increased, with the power delivered rising in the same pro-portion. A magnetically insulated cut is advantageous for three reasons: First, with the ion current com-parable to the Alfvèn ion current, the pinch instabilities are reduced. Second, with the energy deposit-ed into fast ions, a non-Maxwellian velocity distribution is established increasing<σ ν> value for nuclear fusion reactions taking place in the pinch discharge. Third, in a high density z-pinch plasma, the intense ion beam can launch a thermonuclear detonation wave propagating along the pinch discharge channel. For larger cuts the soft x-rays produced by magnetic bremsstrahlung can be used to drive a thermonuclear hohlraum target. Finally, the proposed pulse power compression scheme permits to use a cheap low power d.c. source charging a magnetic storage coil delivering the magnetically stored energy to the pinch discharge load by an exploding wire opening switch.

  10. Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J.; Li, L. Y.; Cao, J. B.

    By examining the compression-induced changes in the electron phase space density and pitch angle distribution observed by two satellites of Van Allen Probes (RBSP-A/B), we find that the relativistic electrons (>2 MeV) outside the heart of outer radiation belt (L*≥5) undergo multiple losses during a storm sudden commencement. The relativistic electron loss mainly occurs in the field-aligned direction (pitch angle α < 30° or >150°), and the flux decay of the field-aligned electrons is independent of the spatial location variations of the two satellites. However, the relativistic electrons in the pitch angle range of 30°–150° increase (decrease) with the decreasingmore » (increasing) geocentric distance (|ΔL|<0.25) of the RBSP-B (RBSP-A) location, and the electron fluxes in the quasi-perpendicular direction display energy-dispersive oscillations in the Pc5 period range (2–10 min). The relativistic electron loss is confirmed by the decrease of electron phase space density at high-L shell after the magnetospheric compressions, and their loss is associated with the intense plasmaspheric hiss, electromagnetic ion cyclotron (EMIC) waves, relativistic electron precipitation (observed by POES/NOAA satellites at 850 km), and magnetic field fluctuations in the Pc5 band. Finally, the intense EMIC waves and whistler mode hiss jointly cause the rapidly pitch angle scattering loss of the relativistic electrons within 10 h. Moreover, the Pc5 ULF waves also lead to the slowly outward radial diffusion of the relativistic electrons in the high-L region with a negative electron phase space density gradient.« less

  11. Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement

    DOE PAGES

    Yu, J.; Li, L. Y.; Cao, J. B.; ...

    2015-11-10

    By examining the compression-induced changes in the electron phase space density and pitch angle distribution observed by two satellites of Van Allen Probes (RBSP-A/B), we find that the relativistic electrons (>2 MeV) outside the heart of outer radiation belt (L*≥5) undergo multiple losses during a storm sudden commencement. The relativistic electron loss mainly occurs in the field-aligned direction (pitch angle α < 30° or >150°), and the flux decay of the field-aligned electrons is independent of the spatial location variations of the two satellites. However, the relativistic electrons in the pitch angle range of 30°–150° increase (decrease) with the decreasingmore » (increasing) geocentric distance (|ΔL|<0.25) of the RBSP-B (RBSP-A) location, and the electron fluxes in the quasi-perpendicular direction display energy-dispersive oscillations in the Pc5 period range (2–10 min). The relativistic electron loss is confirmed by the decrease of electron phase space density at high-L shell after the magnetospheric compressions, and their loss is associated with the intense plasmaspheric hiss, electromagnetic ion cyclotron (EMIC) waves, relativistic electron precipitation (observed by POES/NOAA satellites at 850 km), and magnetic field fluctuations in the Pc5 band. Finally, the intense EMIC waves and whistler mode hiss jointly cause the rapidly pitch angle scattering loss of the relativistic electrons within 10 h. Moreover, the Pc5 ULF waves also lead to the slowly outward radial diffusion of the relativistic electrons in the high-L region with a negative electron phase space density gradient.« less

  12. Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.

    PubMed

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko

    2014-08-28

    It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Effect of shock waves on the statistics and scaling in compressible isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Jianchun; Wan, Minping; Chen, Song; Xie, Chenyue; Chen, Shiyi

    2018-04-01

    The statistics and scaling of compressible isotropic turbulence in the presence of large-scale shock waves are investigated by using numerical simulations at turbulent Mach number Mt ranging from 0.30 to 0.65. The spectra of the compressible velocity component, density, pressure, and temperature exhibit a k-2 scaling at different turbulent Mach numbers. The scaling exponents for structure functions of the compressible velocity component and thermodynamic variables are close to 1 at high orders n ≥3 . The probability density functions of increments of the compressible velocity component and thermodynamic variables exhibit a power-law region with the exponent -2 . Models for the conditional average of increments of the compressible velocity component and thermodynamic variables are developed based on the ideal shock relations and are verified by numerical simulations. The overall statistics of the compressible velocity component and thermodynamic variables are similar to one another at different turbulent Mach numbers. It is shown that the effect of shock waves on the compressible velocity spectrum and kinetic energy transfer is different from that of acoustic waves.

  14. The Origin of Compressible Magnetic Turbulence in the Very Local Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Du, S.; Hunana, P.

    2017-06-01

    Voyager 1 observed compressible magnetic turbulence in the very local interstellar medium (VLISM). We show that inner heliosheath (IHS) fast- and slow-mode waves incident on the heliopause (HP) generate VLISM fast-mode waves only that propagate into the VLISM. We suggest that this is the origin of compressible turbulence in the VLISM. We show that fast- and slow-mode waves transmitted across a tangential discontinuity such as the HP are strongly refracted on crossing the HP and subsequently propagate at highly oblique angles to the VLISM magnetic field. Thus, fast-mode waves in the VLISM contribute primarily to the compressible and not the transverse components of the VLISM fluctuating magnetic field variance < δ {\\hat{B}}2> since < δ {\\hat{B}}{fz}2> \

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pankaj; Innes, D. E.; Inhester, B., E-mail: pankaj@kasi.re.kr

    We report high resolution observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) of intensity oscillations in a hot, T ∼ 8-10 MK, loop. The AIA images show a large coronal loop that was rapidly heated following plasma ejection from one of the loop's footpoints. A wave-like intensity enhancement, seen very clearly in the 131 and 94 Å channel images, propagated ahead of the ejecta along the loop, and was reflected at the opposite footpoint. The wave reflected four times before fading. It was only seen in the hot, 131 and 94 Å channels. The characteristic period and the decaymore » time of the oscillation were ∼630 and ∼440 s, respectively. The phase speed was about 460-510 km s{sup –1} which roughly matches the sound speed of the loop (430-480 km s{sup –1}). The observed properties of the oscillation are consistent with the observations of Dopper-shift oscillations discovered by the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation and with their interpretation as slow magnetoacoustic waves. We suggest that the impulsive injection of plasma, following reconnection at one of the loop footpoints, led to rapid heating and the propagation of a longitudinal compressive wave along the loop. The wave bounces back and forth a couple of times before fading.« less

  16. Probe-controlled soliton frequency shift in the regime of optical event horizon.

    PubMed

    Gu, Jie; Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2015-08-24

    In optical analogy of the event horizon, temporal pulse collision and mutual interactions are mainly between an intense solitary wave (soliton) and a dispersive probe wave. In such a regime, here we numerically investigate the probe-controlled soliton frequency shift as well as the soliton self-compression. In particular, in the dispersion landscape with multiple zero dispersion wavelengths, bi-directional soliton spectral tunneling effects is possible. Moreover, we propose a mid-infrared soliton self-compression to the generation of few-cycle ultrashort pulses, in a bulk of quadratic nonlinear crystals in contrast to optical fibers or cubic nonlinear media, which could contribute to the community with a simple and flexible method to experimental implementations.

  17. LLE Review 116 (July-September 2008)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marozas, J.A., editor

    2010-03-12

    This issue has the following articles: (1) Optimizing Electron-Positron Pair Production on kJ-Class High-Intensity Lasers for the Purpose of Pair-Plasma Creation; (2) Neutron Yield Study of Direct-Drive, Low-Adiabat Cryogenic D2 Implosions on OMEGA; (3) Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil; (4) A Measurable Lawson Criterion and Hydro-Equivalent Curves for Inertial Confinement Fusion; (5) Pulsed-THz Characterization of Hg-Based, High-Temperature Superconductors; (6) LLE's Summer High School Research Program; (7) FY08 Laser Facility Report; and (8) National Laser Users Facility and External Users Programs.

  18. Aerodynamic heating in transitional hypersonic boundary layers: Role of second-mode instability

    NASA Astrophysics Data System (ADS)

    Zhu, Yiding; Chen, Xi; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed

    2018-01-01

    The evolution of second-mode instabilities in hypersonic boundary layers and its effects on aerodynamic heating are investigated. Experiments are conducted in a Mach 6 wind tunnel using fast-response pressure sensors, fluorescent temperature-sensitive paint, and particle image velocimetry. Calculations based on parabolic stability equations and direct numerical simulations are also performed. It is found that second-mode waves, accompanied by high-frequency alternating fluid compression and expansion, produce intense aerodynamic heating in a small region that rapidly heats the fluid passing through it. As the second-mode waves decay downstream, the dilatation-induced aerodynamic heating decreases while its shear-induced counterpart keeps growing. The latter brings about a second growth of the surface temperature when transition is completed.

  19. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew

    2015-01-01

    Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6).

  20. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

    PubMed Central

    Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O’Donnell, Matthew

    2015-01-01

    Abstract. Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6). PMID:25554970

  1. Development of a broadband reflectivity diagnostic for laser driven shock compression experiments

    DOE PAGES

    Ali, S. J.; Bolme, C. A.; Collins, G. W.; ...

    2015-04-16

    Here, a normal-incidence visible and near-infrared shock wave optical reflectivity diagnostic was constructed to investigate changes in the optical properties of materials under dynamic laser compression. Documenting wavelength- and time-dependent changes in the optical properties of laser-shock compressed samples has been difficult, primarily due to the small sample sizes and short time scales involved, but we succeeded in doing so by broadening a series of time delayed 800-nm pulses from an ultrafast Ti:sapphire laser to generate high-intensity broadband light at nanosecond time scales. This diagnostic was demonstrated over the wavelength range 450–1150 nm with up to 16 time displaced spectramore » during a single shock experiment. Simultaneous off-normal incidence velocity interferometry (velocity interferometer system for any reflector) characterized the sample under laser-compression and also provided an independent reflectivity measurement at 532 nm wavelength. The shock-driven semiconductor-to-metallic transition in germanium was documented by the way of reflectivity measurements with 0.5 ns time resolution and a wavelength resolution of 10 nm.« less

  2. Mechanics of the Mammalian Cochlea

    PubMed Central

    Robles, Luis; Ruggero, Mario A.

    2013-01-01

    In mammals, environmental sounds stimulate the auditory receptor, the cochlea, via vibrations of the stapes, the innermost of the middle ear ossicles. These vibrations produce displacement waves that travel on the elongated and spirally wound basilar membrane (BM). As they travel, waves grow in amplitude, reaching a maximum and then dying out. The location of maximum BM motion is a function of stimulus frequency, with high-frequency waves being localized to the “base” of the cochlea (near the stapes) and low-frequency waves approaching the “apex” of the cochlea. Thus each cochlear site has a characteristic frequency (CF), to which it responds maximally. BM vibrations produce motion of hair cell stereocilia, which gates stereociliar transduction channels leading to the generation of hair cell receptor potentials and the excitation of afferent auditory nerve fibers. At the base of the cochlea, BM motion exhibits a CF-specific and level-dependent compressive nonlinearity such that responses to low-level, near-CF stimuli are sensitive and sharply frequency-tuned and responses to intense stimuli are insensitive and poorly tuned. The high sensitivity and sharp-frequency tuning, as well as compression and other nonlinearities (two-tone suppression and intermodulation distortion), are highly labile, indicating the presence in normal cochleae of a positive feedback from the organ of Corti, the “cochlear amplifier.” This mechanism involves forces generated by the outer hair cells and controlled, directly or indirectly, by their transduction currents. At the apex of the cochlea, nonlinearities appear to be less prominent than at the base, perhaps implying that the cochlear amplifier plays a lesser role in determining apical mechanical responses to sound. Whether at the base or the apex, the properties of BM vibration adequately account for most frequency-specific properties of the responses to sound of auditory nerve fibers. PMID:11427697

  3. Density Shock Waves in Confined Microswimmers

    NASA Astrophysics Data System (ADS)

    Tsang, Alan Cheng Hou; Kanso, Eva

    2016-01-01

    Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior, from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from "subsonic" with compression at the back to "supersonic" with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a nontrivial interplay between hydrodynamic interactions and geometric confinement, and it is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechanisms for controlling the emergent density distribution and the average population speed, with potentially profound implications on various processes in industry and biotechnology, such as the transport and sorting of cells in flow channels.

  4. The role of stress waves in thoracic visceral injury from blast loading: modification of stress transmission by foams and high-density materials.

    PubMed

    Cooper, G J; Townend, D J; Cater, S R; Pearce, B P

    1991-01-01

    Materials have been applied to the thoracic wall of anaesthetised experimental animals exposed to blast overpressure to investigate the coupling of direct stress waves into the thorax and the relative contribution of compressive stress waves and gross thoracic compression to lung injury. The ultimate purpose of the work is to develop effective personal protection from the primary effects of blast overpressure--efficient protection can only be achieved if the injury mechanism is identified and characterized. Foam materials acted as acoustic couplers and resulted in a significant augmentation of the visceral injury; decoupling and elimination of injury were achieved by application of a high acoustic impedance layer on top of the foam. In vitro experiments studying stress wave transmission from air through various layers into an anechoic water chamber showed a significant increase in power transmitted by the foams, principally at high frequencies. Material such as copper or resin bonded Kevlar incorporated as a facing upon the foam achieved substantial decoupling at high frequencies--low frequency transmission was largely unaffected. An acoustic transmission model replicated the coupling of the blast waves into the anechoic water chamber. The studies suggest that direct transmission of stress waves plays a dominant role in lung parenchymal injury from blast loading and that gross thoracic compression is not the primary injury mechanism. Acoustic decoupling principles may therefore be employed to reduce the direct stress coupled into the body and thus reduce the severity of lung injury--the most simple decoupler is a high acoustic impedance material as a facing upon a foam, but decoupling layers may be optimized using acoustic transmission models. Conventional impacts producing high body wall velocities will also lead to stress wave generation and transmission--stress wave effects may dominate the visceral response to the impact with direct compression and shear contributing little to the aetiology of the injury.

  5. The role of Shabansky orbits in the generation of compression-related EMIC waves

    NASA Astrophysics Data System (ADS)

    McCollough, J. P.; Elkington, S. R.; Baker, D.

    2009-12-01

    Electromagnetic ion-cyclotron (EMIC) waves arise from temperature anisotropies in trapped warm plasma populations. In particular, EMIC waves at high L values near local noon are often found to be related to magnetospheric compression events. There are several possible mechanisms that can generate these temperature anisotropies: energizing processes, including adiabatic compression and shock-induced and radial transport; and non-energizing processes, such as drift shell splitting and the effects of off-equatorial minima on particle populations. In this work we investigate the role of off-equatorial minima in the generation of temperature anisotropies both at the magnetic equator and at higher latitudes. There are two kinds of behavior particles undergo in response: particles with high equatorial pitch angles (EPAs) are forced to execute so-called Shabanksy orbits and mirror at high latitudes without passing through the equator, and those with lower EPAs will pass through the equator with higher EPAs than before; as a result, perpendicular energies increase at the cost of parallel energies. By using a 3D particle tracing code in a tunable analytic compressed-dipole field, we parameterize the effects of Shabansky orbits on the anisotropy of the warm plasma. These results as well as evidence from simulations of a real event in which EMIC waves were observed (the compression event of 29 June 2007) are presented.

  6. Laser and acoustic lens for lithotripsy

    DOEpatents

    Visuri, Steven R.; Makarewicz, Anthony J.; London, Richard A.; Benett, William J.; Krulevitch, Peter; Da Silva, Luiz B.

    2002-01-01

    An acoustic focusing device whose acoustic waves are generated by laser radiation through an optical fiber. The acoustic energy is capable of efficient destruction of renal and biliary calculi and deliverable to the site of the calculi via an endoscopic procedure. The device includes a transducer tip attached to the distal end of an optical fiber through which laser energy is directed. The transducer tip encapsulates an exogenous absorbing dye. Under proper irradiation conditions (high absorbed energy density, short pulse duration) a stress wave is produced via thermoelastic expansion of the absorber for the destruction of the calculi. The transducer tip can be configured into an acoustic lens such that the transmitted acoustic wave is shaped or focused. Also, compressive stress waves can be reflected off a high density/low density interface to invert the compressive wave into a tensile stress wave, and tensile stresses may be more effective in some instances in disrupting material as most materials are weaker in tension than compression. Estimations indicate that stress amplitudes provided by this device can be magnified more than 100 times, greatly improving the efficiency of optical energy for targeted material destruction.

  7. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition.

    PubMed

    Kodama, R; Norreys, P A; Mima, K; Dangor, A E; Evans, R G; Fujita, H; Kitagawa, Y; Krushelnick, K; Miyakoshi, T; Miyanaga, N; Norimatsu, T; Rose, S J; Shozaki, T; Shigemori, K; Sunahara, A; Tampo, M; Tanaka, K A; Toyama, Y; Yamanaka, T; Zepf, M

    2001-08-23

    Modern high-power lasers can generate extreme states of matter that are relevant to astrophysics, equation-of-state studies and fusion energy research. Laser-driven implosions of spherical polymer shells have, for example, achieved an increase in density of 1,000 times relative to the solid state. These densities are large enough to enable controlled fusion, but to achieve energy gain a small volume of compressed fuel (known as the 'spark') must be heated to temperatures of about 108 K (corresponding to thermal energies in excess of 10 keV). In the conventional approach to controlled fusion, the spark is both produced and heated by accurately timed shock waves, but this process requires both precise implosion symmetry and a very large drive energy. In principle, these requirements can be significantly relaxed by performing the compression and fast heating separately; however, this 'fast ignitor' approach also suffers drawbacks, such as propagation losses and deflection of the ultra-intense laser pulse by the plasma surrounding the compressed fuel. Here we employ a new compression geometry that eliminates these problems; we combine production of compressed matter in a laser-driven implosion with picosecond-fast heating by a laser pulse timed to coincide with the peak compression. Our approach therefore permits efficient compression and heating to be carried out simultaneously, providing a route to efficient fusion energy production.

  8. High-frequency Oscillations in Small Magnetic Elements Observed with Sunrise/SuFI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarzadeh, S.; Solanki, S. K.; Cameron, R. H.

    2017-04-01

    We characterize waves in small magnetic elements and investigate their propagation in the lower solar atmosphere from observations at high spatial and temporal resolution. We use the wavelet transform to analyze oscillations of both horizontal displacement and intensity in magnetic bright points found in the 300 nm and the Ca ii H 396.8 nm passbands of the filter imager on board the Sunrise balloon-borne solar observatory. Phase differences between the oscillations at the two atmospheric layers corresponding to the two passbands reveal upward propagating waves at high frequencies (up to 30 mHz). Weak signatures of standing as well as downward propagating waves are alsomore » obtained. Both compressible and incompressible (kink) waves are found in the small-scale magnetic features. The two types of waves have different, though overlapping, period distributions. Two independent estimates give a height difference of approximately 450 ± 100 km between the two atmospheric layers sampled by the employed spectral bands. This value, together with the determined short travel times of the transverse and longitudinal waves provide us with phase speeds of 29 ± 2 km s{sup −1} and 31 ± 2 km s{sup −1}, respectively. We speculate that these phase speeds may not reflect the true propagation speeds of the waves. Thus, effects such as the refraction of fast longitudinal waves may contribute to an overestimate of the phase speed.« less

  9. Shock waves in weakly compressed granular media.

    PubMed

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  10. Energy Flux in the Cochlea: Evidence Against Power Amplification of the Traveling Wave.

    PubMed

    van der Heijden, Marcel; Versteegh, Corstiaen P C

    2015-10-01

    Traveling waves in the inner ear exhibit an amplitude peak that shifts with frequency. The peaking is commonly believed to rely on motile processes that amplify the wave by inserting energy. We recorded the vibrations at adjacent positions on the basilar membrane in sensitive gerbil cochleae and tested the putative power amplification in two ways. First, we determined the energy flux of the traveling wave at its peak and compared it to the acoustic power entering the ear, thereby obtaining the net cochlear power gain. For soft sounds, the energy flux at the peak was 1 ± 0.6 dB less than the middle ear input power. For more intense sounds, increasingly smaller fractions of the acoustic power actually reached the peak region. Thus, we found no net power amplification of soft sounds and a strong net attenuation of intense sounds. Second, we analyzed local wave propagation on the basilar membrane. We found that the waves slowed down abruptly when approaching their peak, causing an energy densification that quantitatively matched the amplitude peaking, similar to the growth of sea waves approaching the beach. Thus, we found no local power amplification of soft sounds and strong local attenuation of intense sounds. The most parsimonious interpretation of these findings is that cochlear sensitivity is not realized by amplifying acoustic energy, but by spatially focusing it, and that dynamic compression is realized by adjusting the amount of dissipation to sound intensity.

  11. Observational Signatures of Parametric Instability at 1AU

    NASA Astrophysics Data System (ADS)

    Bowen, T. A.; Bale, S. D.; Badman, S.

    2017-12-01

    Observations and simulations of inertial compressive turbulence in the solar wind are characterized by density structures anti-correlated with magnetic fluctuations parallel to the mean field. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures (PBS), kinetic ion acoustic waves, as well as the MHD slow mode. Recent work, specifically Verscharen et al. (2017), has highlighted the unexpected fluid like nature of the solar wind. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggests the presence of a driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the parametric instability, in which large amplitude Alfvenic fluctuations decay into parallel propagating compressive waves. This work employs 10 years of WIND observations in order to test the parametric decay process as a source of compressive waves in the solar wind through comparing collisionless damping rates of compressive fluctuations with growth rates of the parametric instability. Preliminary results suggest that generation of compressive waves through parametric decay is overdamped at 1 AU. However, the higher parametric decay rates expected in the inner heliosphere likely allow for growth of the slow mode-the remnants of which could explain density fluctuations observed at 1AU.

  12. Estimation of static parameters based on dynamical and physical properties in limestone rocks

    NASA Astrophysics Data System (ADS)

    Ghafoori, Mohammad; Rastegarnia, Ahmad; Lashkaripour, Gholam Reza

    2018-01-01

    Due to the importance of uniaxial compressive strength (UCS), static Young's modulus (ES) and shear wave velocity, it is always worth to predict these parameters from empirical relations that suggested for other formations with same lithology. This paper studies the physical, mechanical and dynamical properties of limestone rocks using the results of laboratory tests which carried out on 60 the Jahrum and the Asmari formations core specimens. The core specimens were obtained from the Bazoft dam site, hydroelectric supply and double-curvature arch dam in Iran. The Dynamic Young's modulus (Ed) and dynamic Poisson ratio were calculated using the existing relations. Some empirical relations were presented to estimate uniaxial compressive strength, as well as static Young's modulus and shear wave velocity (Vs). Results showed the static parameters such as uniaxial compressive strength and static Young's modulus represented low correlation with water absorption. It is also found that the uniaxial compressive strength and static Young's modulus had high correlation with compressional wave velocity and dynamic Young's modulus, respectively. Dynamic Young's modulus was 5 times larger than static Young's modulus. Further, the dynamic Poisson ratio was 1.3 times larger than static Poisson ratio. The relationship between shear wave velocity (Vs) and compressional wave velocity (Vp) was power and positive with high correlation coefficient. Prediction of uniaxial compressive strength based on Vp was better than that based on Vs . Generally, both UCS and static Young's modulus (ES) had good correlation with Ed.

  13. Method of achieving the controlled release of thermonuclear energy

    DOEpatents

    Brueckner, Keith A.

    1986-01-01

    A method of achieving the controlled release of thermonuclear energy by illuminating a minute, solid density, hollow shell of a mixture of material such as deuterium and tritium with a high intensity, uniformly converging laser wave to effect an extremely rapid build-up of energy in inwardly traveling shock waves to implode the shell creating thermonuclear conditions causing a reaction of deuterons and tritons and a resultant high energy thermonuclear burn. Utilizing the resulting energy as a thermal source and to breed tritium or plutonium. The invention also contemplates a laser source wherein the flux level is increased with time to reduce the initial shock heating of fuel and provide maximum compression after implosion; and, in addition, computations and an equation are provided to enable the selection of a design having a high degree of stability and a dependable fusion performance by establishing a proper relationship between the laser energy input and the size and character of the selected material for the fusion capsule.

  14. Squeezing the muscle: compression clothing and muscle metabolism during recovery from high intensity exercise.

    PubMed

    Sperlich, Billy; Born, Dennis-Peter; Kaskinoro, Kimmo; Kalliokoski, Kari K; Laaksonen, Marko S

    2013-01-01

    The purpose of this experiment was to investigate skeletal muscle blood flow and glucose uptake in m. biceps (BF) and m. quadriceps femoris (QF) 1) during recovery from high intensity cycle exercise, and 2) while wearing a compression short applying ~37 mmHg to the thigh muscles. Blood flow and glucose uptake were measured in the compressed and non-compressed leg of 6 healthy men by using positron emission tomography. At baseline blood flow in QF (P = 0.79) and BF (P = 0.90) did not differ between the compressed and the non-compressed leg. During recovery muscle blood flow was higher compared to baseline in both compressed (P<0.01) and non-compressed QF (P<0.001) but not in compressed (P = 0.41) and non-compressed BF (P = 0.05; effect size = 2.74). During recovery blood flow was lower in compressed QF (P<0.01) but not in BF (P = 0.26) compared to the non-compressed muscles. During baseline and recovery no differences in blood flow were detected between the superficial and deep parts of QF in both, compressed (baseline P = 0.79; recovery P = 0.68) and non-compressed leg (baseline P = 0.64; recovery P = 0.06). During recovery glucose uptake was higher in QF compared to BF in both conditions (P<0.01) with no difference between the compressed and non-compressed thigh. Glucose uptake was higher in the deep compared to the superficial parts of QF (compression leg P = 0.02). These results demonstrate that wearing compression shorts with ~37 mmHg of external pressure reduces blood flow both in the deep and superficial regions of muscle tissue during recovery from high intensity exercise but does not affect glucose uptake in BF and QF.

  15. Detonation duct gas generator demonstration program

    NASA Technical Reports Server (NTRS)

    Wortman, Andrew; Brinlee, Gayl A.; Othmer, Peter; Whelan, Michael A.

    1991-01-01

    The feasibility of the generation of detonation waves moving periodically across high speed channel flow is experimentally demonstrated. Such waves are essential to the concept of compressing requirements and increasing the engine pressure compressor with the objective of reducing conventional compressor requirements and increasing the engine thermodynamic efficiency through isochoric energy addition. By generating transient transverse waves, rather than standing waves, shock wave losses are reduced by an order of magnitude. The ultimate objective is to use such detonation ducts downstream of a low pressure gas turbine compressor to produce a high overall pressure ratio thermodynamic cycle. A 4 foot long, 1 inch x 12 inch cross-section, detonation duct was operated in a blow-down mode using compressed air reservoirs. Liquid or vapor propane was injected through injectors or solenoid valves located in the plenum or the duct itself. Detonation waves were generated when the mixture was ignited by a row of spark plugs in the duct wall. Problems with fuel injection and mixing limited the air speeds to about Mach 0.5, frequencies to below 10 Hz, and measured pressure ratios of about 5 to 6. The feasibility of the gas dynamic compression was demonstrated and the critical problem areas were identified.

  16. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa.

    PubMed

    Knudson, M D; Hanson, D L; Bailey, J E; Hall, C A; Asay, J R

    2003-01-24

    A novel approach was developed to probe density compression of liquid deuterium (L-D2) along the principal Hugoniot. Relative transit times of shock waves reverberating within the sample are shown to be sensitive to the compression due to the first shock. This technique has proven to be more sensitive than the conventional method of inferring density from the shock and mass velocity, at least in this high-pressure regime. Results in the range of 22-75 GPa indicate an approximately fourfold density compression, and provide data to differentiate between proposed theories for hydrogen and its isotopes.

  17. Numerical analysis of laser-driven reservoir dynamics for shockless loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Mu; Zhang Hongping; Sun Chengwei

    2011-05-01

    Laser-driven plasma loader for shockless compression provides a new approach to study the rapid compression response of materials not attainable in conventional shock experiments. In this method, the strain rate is varied from {approx}10{sup 6}/s to {approx}10{sup 8}/s, significantly higher than other shockless compression methods. Thus, this loading process is attractive in the research of solid material dynamics and astrophysics. The objective of the current study is to demonstrate the dynamic properties of the jet from the rear surface of the reservoir, and how important parameters such as peak load, rise time, shockless compression depth, and stagnating melt depth inmore » the sample vary with laser intensity, laser pulse length, reservoir thickness, vacuum gap size, and even the sample material. Numerical simulations based on the space-time conservation element and solution element method, together with the bulk ablation model, were used. The dynamics of the reservoir depend on the laser intensity, pulse length, equation of state, as well as the molecular structure of the reservoir. The critical pressure condition at which the reservoir will unload, similar to a gas or weak plasma, is 40-80 GPa before expansion. The momentum distribution bulges downward near the front of the plasma jet, which is an important characteristic that determines shockless compression. The total energy density is the most important parameter, and has great influence on the jet characteristics, and consequently on the shockless compression characteristics. If the reservoir is of a single material irradiated at a given laser condition, the relation of peak load and shockless compression depth is in conflict, and the highest loads correspond to the smallest thickness of sample. The temperature of jet front runs up several electron volts after impacting on the sample, and the heat transfer between the stagnating plasma and the sample is sufficiently significant to induce the melting of the sample surface. However, this diffusion heat wave propagates much more slowly than the stress wave, and has minimal effect on the shockless compression progress at a deeper position.« less

  18. Multiple light scattering in metallic ejecta produced under intense shockwave compression.

    PubMed

    Franzkowiak, J-E; Mercier, P; Prudhomme, G; Berthe, L

    2018-04-10

    A roughened metallic plate, subjected to intense shock wave compression, gives rise to an expanding ejecta particle cloud. Photonic Doppler velocimetry (PDV), a fiber-based heterodyne velocimeter, is often used to track ejecta velocities in dynamic compression experiments and on nanosecond time scales. Shortly after shock breakout at the metal-vacuum interface, a particular feature observed in many experiments in the velocity spectrograms is what appear to be slow-moving ejecta, below the free-surface velocity. Using Doppler Monte Carlo simulations incorporating the transport of polarization in the ejecta, we show that this feature is likely to be explained by the multiple scattering of light, rather than by possible collisions among particles, slowing down the ejecta. As the cloud expands in a vacuum, the contribution of multiple scattering decreases due to the limited field of view of the pigtailed collimator used to probe the ejecta, showing that the whole geometry of the system must be taken into account in the calculations to interpret and predict PDV measurements.

  19. Compressive Spectral Method for the Simulation of the Nonlinear Gravity Waves

    PubMed Central

    Bayındır, Cihan

    2016-01-01

    In this paper an approach for decreasing the computational effort required for the spectral simulations of the fully nonlinear ocean waves is introduced. The proposed approach utilizes the compressive sampling algorithm and depends on the idea of using a smaller number of spectral components compared to the classical spectral method. After performing the time integration with a smaller number of spectral components and using the compressive sampling technique, it is shown that the ocean wave field can be reconstructed with a significantly better efficiency compared to the classical spectral method. For the sparse ocean wave model in the frequency domain the fully nonlinear ocean waves with Jonswap spectrum is considered. By implementation of a high-order spectral method it is shown that the proposed methodology can simulate the linear and the fully nonlinear ocean waves with negligible difference in the accuracy and with a great efficiency by reducing the computation time significantly especially for large time evolutions. PMID:26911357

  20. Experimental investigation on aero-optical aberration of shock wave/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Ding, Haolin; Yi, Shihe; Fu, Jia; He, Lin

    2016-10-01

    After streaming through the flow field which including the expansion, shock wave, boundary, etc., the optical wave would be distorted by fluctuations in the density field. Interactions between laminar/turbulent boundary layer and shock wave contain large number complex flow structures, which offer a condition for studying the influences that different flow structures of the complex flow field have on the aero-optical aberrations. Interactions between laminar/turbulent boundary layer and shock wave are investigated in a Mach 3.0 supersonic wind tunnel, based on nanoparticle-tracer planar laser scattering (NPLS) system. Boundary layer separation/attachment, induced suppression waves, induced shock wave, expansion fan and boundary layer are presented by NPLS images. Its spatial resolution is 44.15 μm/pixel. Time resolution is 6ns. Based on the NPLS images, the density fields with high spatial-temporal resolution are obtained by the flow image calibration, and then the optical path difference (OPD) fluctuations of the original 532nm planar wavefront are calculated using Ray-tracing theory. According to the different flow structures in the flow field, four parts are selected, (1) Y=692 600pixel; (2) Y=600 400pixel; (3) Y=400 268pixel; (4) Y=268 0pixel. The aerooptical effects of different flow structures are quantitatively analyzed, the results indicate that: the compressive waves such as incident shock wave, induced shock wave, etc. rise the density, and then uplift the OPD curve, but this kind of shock are fixed in space position and intensity, the aero-optics induced by it can be regarded as constant; The induced shock waves are induced by the coherent structure of large size vortex in the interaction between turbulent boundary layer, its unsteady characteristic decides the induced waves unsteady characteristic; The space position and intensity of the induced shock wave are fixed in the interaction between turbulent boundary layer; The boundary layer aero-optics are induced by the coherent structure of large size vortex, which result in the fluctuation of OPD.

  1. Velocity measurement using frequency domain interferometer and chirped pulse laser

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Nishimura, Y.; Mori, Y.; Hanayama, R.; Kitagawa, Y.; Sekine, T.; Sato, N.; Kurita, T.; Kawashima, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.

    2017-02-01

    An ultra-intense short pulse laser induces a shock wave in material. The pressure of shock compression is stronger than a few tens GPa. To characterize shock waves, time-resolved velocity measurement in nano- or pico-second time scale is needed. Frequency domain interferometer and chirped pulse laser provide single-shot time-resolved measurement. We have developed a laser-driven shock compression system and frequency domain interferometer with CPA laser. In this paper, we show the principle of velocity measurement using a frequency domain interferometer and a chirped pulse laser. Next, we numerically calculated spectral interferograms and show the time-resolved velocity measurement can be done from the phase analysis of spectral interferograms. Moreover we conduct the laser driven shock generation and shock velocity measurement. From the spectral fringes, we analyze the velocities of the sample and shockwaves.

  2. Lattice preferred orientation in MnGeO3 post-perovskite at high-temperature

    NASA Astrophysics Data System (ADS)

    Nagaya, Y.; Hirose, K.; Sata, N.; Ohishi, Y.

    2009-12-01

    In the Earth’s lowermost mantle which is called D” layer, shear-wave splitting is often observed. The velocity of horizontally polarized S-waves are faster than polarized S-waves in many areas of the D” layer. The D” layer is now recognized as being made up with the post-perovskite (PPv)-type MgSiO3 phase. MgSiO3 PPv has a strong elastic anisotropy because of its layered crystal structure. Therefore, it is expected that a lattice preferred orientation (LPO) of PPv may explain the observed seismic anisotropy. LPOs of PPv have been investigated by the high-pressure experiments using a diamond anvil cell (DAC) (Merkel et al., 2006; 2007; Okada et al., 2009). However, the reported experiments using the DAC were made only at the room temperature. In order to understand the nature of PPv deformation under the lower mantle conditions, it is necessary to operate the deformation experiments at high-temperature (~2500 K). In this study, so as to examine the LPO and the dominant slip plane of PPv at simultaneously high P-T conditions, we conducted the high-temperature plastic deformation experiments in a laser-heated diamond anvil cell (LHDAC) using synchrotron radial X-ray diffraction techniques at the beamline BL10XU, SPring-8. In the radial X-ray diffraction experiments, X-ray was irradiated to the sample perpendicular to the compression axis through gasket. LPO was investigated on the basis of the variations of diffraction intensity. We adopted a cubic boron nitride and beryllium composite gasket to obtain a radial X-ray diffraction pattern. In order to deform a sample at high temperature, we had newly developed a membrane system for the deformation experiments. We are able to regulate the gas pressure in the membrane of the DAC, and therefore compress the sample at high temperature during the laser heating. Starting material was orthopyroxene (OPx) with a composition of MnGeO3, which is an analogue of MgSiO3. First, MnGeO3 PPv was synthesized directly from OPx around 60 GPa in the LHDAC. Subsequently, PPv was plastically deformed by further compression at high-temperature during the laser heating. We also conducted the room-temperature deformation experiments. We will discuss the deformation mechanism of the PPv at high P-T conditions.

  3. Tollmien-Schlichting/vortex interactions in compressible boundary layer flows

    NASA Technical Reports Server (NTRS)

    Blackaby, Nicholas D.

    1993-01-01

    The weakly nonlinear interaction of oblique Tollmien-Schlichting waves and longitudinal vortices in compressible, high Reynolds number, boundary-layer flow over a flat plate is considered for all ranges of the Mach number. The interaction equations comprise of equations for the vortex which is indirectly forced by the waves via a boundary condition, whereas a vortex term appears in the amplitude equation for the wave pressure. The downstream solution properties of interaction equations are found to depend on the sign of an interaction coefficient. Compressibility is found to have a significant effect on the interaction properties; principally through its impact on the waves and their governing mechanism, the triple-deck structure. It is found that, in general, the flow quantities will grow slowly with increasing downstream co-ordinate; i.e. in general, solutions do not terminate in abrupt, finite-distance 'break-ups'.

  4. Practicality of magnetic compression for plasma density control

    DOE PAGES

    Gueroult, Renaud; Fisch, Nathaniel J.

    2016-03-16

    Here, plasma densification through magnetic compression has been suggested for time-resolved control of the wave properties in plasma-based accelerators [P. F. Schmit and N. J. Fisch, Phys. Rev. Lett. 109, 255003 (2012)]. Using particle in cell simulations with real mass ratio, the practicality of large magnetic compression on timescales shorter than the ion gyro-period is investigated. For compression times shorter than the transit time of a compressional Alfven wave across the plasma slab, results show the formation of two counter-propagating shock waves, leading to a highly non-uniform plasma density profile. Furthermore, the plasma slab displays large hydromagnetic like oscillations aftermore » the driving field has reached steady state. Peak compression is obtained when the two shocks collide in the mid-plane. At this instant, very large plasma heating is observed, and the plasmaβ is estimated to be about 1. Although these results point out a densification mechanism quite different and more complex than initially envisioned, these features still might be advantageous in particle accelerators.« less

  5. The Contribution of Compressional Magnetic Pumping to the Energization of the Earth's Outer Electron Radiation Belt During High-Speed Stream-Driven Storms

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.; Horne, Richard B.; Meredith, Nigel P.

    2017-12-01

    Compressional magnetic pumping is an interaction between cyclic magnetic compressions and pitch angle scattering with the scattering acting as a catalyst to allow the cyclic compressions to energize particles. Compressional magnetic pumping of the outer electron radiation belt at geosynchronous orbit in the dayside magnetosphere is analyzed by means of computer simulations, wherein solar wind compressions of the dayside magnetosphere energize electrons with electron pitch angle scattering by chorus waves and by electromagnetic ion cyclotron (EMIC) waves. The magnetic pumping is found to produce a weak bulk heating of the electron radiation belt, and it also produces an energetic tail on the electron energy distribution. The amount of energization depends on the robustness of the solar wind compressions and on the amplitude of the chorus and/or EMIC waves. Chorus-catalyzed pumping is better at energizing medium-energy (50-200 keV) electrons than it is at energizing higher-energy electrons; at high energies (500 keV-2 MeV) EMIC-catalyzed pumping is a stronger energizer. The magnetic pumping simulation results are compared with energy diffusion calculations for chorus waves in the dayside magnetosphere; in general, compressional magnetic pumping is found to be weaker at accelerating electrons than is chorus-driven energy diffusion. In circumstances when solar wind compressions are robust and when EMIC waves are present in the dayside magnetosphere without the presence of chorus, EMIC-catalyzed magnetic pumping could be the dominant energization mechanism in the dayside magnetosphere, but at such times loss cone losses will be strong.

  6. Fusion in a staged Z-pinch

    NASA Astrophysics Data System (ADS)

    Wessel, F. J.; Rahman, H. U.; Ney, P.; Valenzuela, J.; Beg, F.; McKee, E.; Darling, T.

    2016-03-01

    This paper is dedicated to Norman Rostoker, our (FJW and HUR) mentor and long-term collaborator, who will always be remembered for the incredible inspiration that he has provided us. Norman's illustrious career dealt with a broad range of fundamental-physics problems and we were fortunate to have worked with him on many important topics: intense-charged-particle beams, field-reversed configurations, and Z-pinches. Rostoker 's group at the University of CA, Irvine was well known for having implemented many refinements to the Z-pinch, that make it more stable, scalable, and efficient, including the development of: the gas-puff Z-pinch [1], which provides for the use of an expanded range of pinch-load materials; the gas-mixture Z-pinch [2], which enhances the pinch stability and increases its radiation efficiency; e-beam pre-ionization [3], which enhances the uniformity of the initial-breakdown process in a gas pinch; magnetic-flux-compression [4, 5], which allows for the amplification of an axial-magnetic field Bz; the Z-θ pinch [6], which predicts fusion in a pinch-on-fiber configuration; the Staged Z-pinch (SZP) [7], which allows for the amplification of the pinch self-magnetic field, Bθ , in addition to a Bz, and leads to a stable implosion and high-gain fusion [8, 9, 10]. This paper describes the physical basis for a magneto-inertial compression in a liner-on-target SZP [11]. Initially a high-atomic-number liner implodes under the action of the J →×B → , Lorentz Force. As the implosion becomes super Alfvénic, magnetosonic waves form, transporting current and magnetic field through the liner toward the interface of the low-atomic-number target. The target implosion remains subsonic with its surface bounded by a stable-shock front. Shock waves that pass into the target provide a source of target plasma pre-heat. At peak compression the assembly is compressed by liner inertia, with flux compression producing an intense-magnetic field near the target. Instability develops at the interface, as the plasma decelerates, which promotes the formation of target-hot spots. Early experiments provide evidence for the magneto-inertial implosion [8, 9, 10]. Studies underway are designed to verify these predictions on the National Terawatt Facility, Zebra Generator, located at the University of Nevada, Reno. Simulations for an unmagnetized, silver-plasma liner imploding onto a deuterium-tritium plasma target, driven by a 200 TW generator, predict fusion beyond break-even, with a 200 MJ yield in an ignited plasma, with an engineering gain factor of, G = Efusion/Estored˜20.

  7. Characterization of compressed earth blocks using low frequency guided acoustic waves.

    PubMed

    Ben Mansour, Mohamed; Ogam, Erick; Fellah, Z E A; Soukaina Cherif, Amel; Jelidi, Ahmed; Ben Jabrallah, Sadok

    2016-05-01

    The objective of this work was to analyze the influence of compaction pressure on the intrinsic acoustic parameters (porosity, tortuosity, air-flow resistivity, viscous, and thermal characteristic lengths) of compressed earth blocks through their identification by solving an inverse acoustic wave transmission problem. A low frequency acoustic pipe (60-6000 Hz of length 22 m, internal diameter 3.4 cm) was used for the experimental characterization of the samples. The parameters were identified by the minimization of the difference between the transmissions coefficients data obtained in the pipe with that from an analytical interaction model in which the compressed earth blocks were considered as having rigid frames. The viscous and thermal effects in the pores were accounted for by employing the Johnson-Champoux-Allard-Lafarge model. The results obtained by inversion for high-density compressed earth blocks showed some discordance between the model and experiment especially for the high frequency limit of the acoustic characteristics studied. This was as a consequence of applying high compaction pressure rendering them very highly resistive therefore degrading the signal-to-noise ratios of the transmitted waves. The results showed that the airflow resistivity was very sensitive to the degree of the applied compaction pressure used to form the blocks.

  8. Multifrequency Raman amplifiers

    NASA Astrophysics Data System (ADS)

    Barth, Ido; Fisch, Nathaniel J.

    2018-03-01

    In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the total fluence is split between the different spectral components.

  9. A Self-consistent Model of the Coronal Heating and Solar Wind Acceleration Including Compressible and Incompressible Heating Processes

    NASA Astrophysics Data System (ADS)

    Shoda, Munehito; Yokoyama, Takaaki; Suzuki, Takeru K.

    2018-02-01

    We propose a novel one-dimensional model that includes both shock and turbulence heating and qualify how these processes contribute to heating the corona and driving the solar wind. Compressible MHD simulations allow us to automatically consider shock formation and dissipation, while turbulent dissipation is modeled via a one-point closure based on Alfvén wave turbulence. Numerical simulations were conducted with different photospheric perpendicular correlation lengths {λ }0, which is a critical parameter of Alfvén wave turbulence, and different root-mean-square photospheric transverse-wave amplitudes δ {v}0. For the various {λ }0, we obtain a low-temperature chromosphere, high-temperature corona, and supersonic solar wind. Our analysis shows that turbulence heating is always dominant when {λ }0≲ 1 {Mm}. This result does not mean that we can ignore the compressibility because the analysis indicates that the compressible waves and their associated density fluctuations enhance the Alfvén wave reflection and therefore the turbulence heating. The density fluctuation and the cross-helicity are strongly affected by {λ }0, while the coronal temperature and mass-loss rate depend weakly on {λ }0.

  10. Ultrafast dynamic response of single crystal β-HMX

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph M.; Armstrong, Michael R.; Crowhurst, Jonathan C.; Radousky, Harry B.; Ferranti, Louis; Swan, Raymond; Gross, Rick; Teslich, Nick E.; Wall, Mark A.; Austin, Ryan A.; Fried, Laurence E.

    2017-01-01

    We report results from ultrafast compression experiments conducted on β-HMX single crystals. Results consist of nominally 12 picosecond time-resolved wave profile data, (ultrafast time domain interferometry -TDI measurements), that were analyzed to determine high-velocity wave speeds as a function of piston velocity. TDI results are used to validate calculations of anisotropic stress-strain behavior of shocked loaded energetic materials. Our previous results derived using a 350 ps duration compression drive revealed anisotropic elastic wave response in single crystal β-HMX from (110) and (010) impact planes. Here we present results using a 1.05 ns duration compression drive with a 950 ps interferometry window to extend knowledge of the anisotropic dynamic response of β-HMX within eight microns of the initial impact plane. We observe two distinct wave profiles from (010) and three wave profiles from (010) impact planes. The (110) impact plane wave speeds typically exceed (010) impact plane wave speeds at the same piston velocities. The development of multiple hydrodynamic wave profiles begins at 20 GPa for the (110) impact plane and 28 GPa for the (10) impact plane. We compare our ultrafast TDI results with previous gun and plate impact results on β-HMX and PBX9501.

  11. Statistical modeling of compressible turbulence - Shock-wave/turbulence interactions and buoyancy effects

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Akira

    1991-12-01

    A mass-weighted mean compressible turbulence model is presented with the aid of the results from a two-scale DIA. This model aims at dealing with two typical aspects in compressible flows: the interaction of a shock wave with turbulence in high-speed flows and strong buoyancy effects in thermally-driven flows as in stellar convection and conflagration. The former is taken into account through the effect of turbulent dilatation that is related to the density fluctuation and leads to the enhanced kinetic-energy dissipation. The latter is incorporated through the interaction between the gravitational and density-fluctuation effects.

  12. Wave phenomena in a high Reynolds number compressible boundary layer

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Maestrello, L.; Parikh, P.; Turkel, E.

    1985-01-01

    Growth of unstable disturbances in a high Reynolds number compressible boundary layer is numerically simulated. Localized periodic surface heating and cooling as a means of active control of these disturbances is studied. It is shown that compressibility in itself stabilizes the flow but at a lower Mach number, significant nonlinear distortions are produced. Phase cancellation is shown to be an effective mechanism for active boundary layer control.

  13. Modeling of turbulent separated flows for aerodynamic applications

    NASA Technical Reports Server (NTRS)

    Marvin, J. G.

    1983-01-01

    Steady, high speed, compressible separated flows modeled through numerical simulations resulting from solutions of the mass-averaged Navier-Stokes equations are reviewed. Emphasis is placed on benchmark flows that represent simplified (but realistic) aerodynamic phenomena. These include impinging shock waves, compression corners, glancing shock waves, trailing edge regions, and supersonic high angle of attack flows. A critical assessment of modeling capabilities is provided by comparing the numerical simulations with experiment. The importance of combining experiment, numerical algorithm, grid, and turbulence model to effectively develop this potentially powerful simulation technique is stressed.

  14. Shock wave compression of iron-silicate garnet.

    NASA Technical Reports Server (NTRS)

    Graham, E. K.; Ahrens, T. J.

    1973-01-01

    Shock wave compression data to over 650 kb are presented for single-crystal almandine garnet. The data indicate the initiation of a phase transformation near 200 kb. Total transition to the high-pressure polymorph occurs at approximately 300 kb. The elastic properties of the high-pressure phase are calculated from the metastable Hugoniot data by using the linear shock velocity-particle velocity relationships. The overall results obtained strongly suggest that upper mantle minerals are likely to occur in the ilmenite structure over a substantial part of the lower mantle.

  15. Viscosity and compressibility of diacylglycerol under high pressure

    NASA Astrophysics Data System (ADS)

    Malanowski, Aleksander; Rostocki, A. J.; Kiełczyński, P.; Szalewski, M.; Balcerzak, A.; Kościesza, R.; Tarakowski, R.; Ptasznik, S.; Siegoczyński, R. M.

    2013-03-01

    The influence of high pressure on viscosity and compressibility of diacylglycerol (DAG) oil has been presented in this paper. The investigated DAG oil was composed of 82% of DAGs and 18% TAGs (triacylglycerols). The dynamic viscosity of DAG was investigated as a function of the pressure up to 400 MPa. The viscosity was measured by means of the surface acoustic wave method, where the acoustic waveguides were used as sensing elements. As the pressure was rising, the larger ultrasonic wave attenuation was observed, whereas amplitude decreased with the liquid viscosity augmentation. Measured changes of physical properties were most significant in the pressure range near the phase transition. Deeper understanding of DAG viscosity and compressibility changes versus pressure could shed more light on thermodynamic properties of edible oils.

  16. Hybrid fluid-particle simulation of whistler-mode waves in a compressed dipole magnetic field: Implications for dayside high-latitude chorus

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.; Wu, S.; Denton, R. E.; Hudson, M. K.; Millan, R. M.

    2017-01-01

    In this work we present a methodology for simulating whistler-mode waves self-consistently generated by electron temperature anisotropy in the inner magnetosphere. We present simulation results using a hybrid fluid/particle-in-cell code that treats the hot, anisotropic (i.e., ring current) electron population as particles and the background (i.e., the cold and inertialess) electrons as fluid. Since the hot electrons are only a small fraction of the total population, warm (and isotropic) particle electrons are added to the simulation to increase the fraction of particles with mass, providing a more accurate characterization of the wave dispersion relation. Ions are treated as a fixed background of positive charge density. The plasma transport equations are coupled to Maxwell's equations and solved in a meridional plane (a 2-D simulation with 3-D fields). We use a curvilinear coordinate system that follows the topological curvature of Earth's geomagnetic field lines, based on an analytic expression for a compressed dipole magnetic field. Hence, we are able to simulate whistler wave generation at dawn (pure dipole field lines) and dayside (compressed dipole) by simply adjusting one scalar quantity. We demonstrate how, on the dayside, whistler-mode waves can be locally generated at a range of high latitudes, within pockets of minimum magnetic field, and propagate equatorward. The obtained dayside waves (in a compressed dipole field) have similar amplitude and frequency content to their dawn sector counterparts (in a pure dipole field) but tend to propagate more field aligned.

  17. Simulation of systems for shock wave/compression waves damping in technological plants

    NASA Astrophysics Data System (ADS)

    Sumskoi, S. I.; Sverchkov, A. M.; Lisanov, M. V.; Egorov, A. F.

    2016-09-01

    At work of pipeline systems, flow velocity decrease can take place in the pipeline as a result of the pumps stop, the valves shutdown. As a result, compression waves appear in the pipeline systems. These waves can propagate in the pipeline system, leading to its destruction. This phenomenon is called water hammer (water hammer flow). The most dangerous situations occur when the flow is stopped quickly. Such urgent flow cutoff often takes place in an emergency situation when liquid hydrocarbons are being loaded into sea tankers. To prevent environment pollution it is necessary to stop the hydrocarbon loading urgently. The flow in this case is cut off within few seconds. To prevent an increase in pressure in a pipeline system during water hammer flow, special protective systems (pressure relief systems) are installed. The approaches to systems of protection against water hammer (pressure relief systems) modeling are described in this paper. A model of certain pressure relief system is considered. It is shown that in case of an increase in the intensity of hydrocarbons loading at a sea tanker, presence of the pressure relief system allows to organize safe mode of loading.

  18. The History of the APS Topical Group on Shock Compression of Condensed Matter

    NASA Astrophysics Data System (ADS)

    Forbes, Jerry W.

    2002-07-01

    In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wave/high pressure sessions at APS general meetings in even numbered years.

  19. Shock-wave studies of anomalous compressibility of glassy carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Savinykh, A. S.

    2016-02-15

    The physico-mechanical properties of amorphous glassy carbon are investigated under shock compression up to 10 GPa. Experiments are carried out on the continuous recording of the mass velocity of compression pulses propagating in glassy carbon samples with initial densities of 1.502(5) g/cm{sup 3} and 1.55(2) g/cm{sup 3}. It is shown that, in both cases, a compression wave in glassy carbon contains a leading precursor with amplitude of 0.135(5) GPa. It is established that, in the range of pressures up to 2 GPa, a shock discontinuity in glassy carbon is transformed into a broadened compression wave, and shock waves are formedmore » in the release wave, which generally means the anomalous compressibility of the material in both the compression and release waves. It is shown that, at pressure higher than 3 GPa, anomalous behavior turns into normal behavior, accompanied by the formation of a shock compression wave. In the investigated area of pressure, possible structural changes in glassy carbon under shock compression have a reversible character. A physico-mechanical model of glassy carbon is proposed that involves the equation of state and a constitutive relation for Poisson’s ratio and allows the numerical simulation of physico-mechanical and thermophysical properties of glassy carbon of different densities in the region of its anomalous compressibility.« less

  20. PLASMA DIAGNOSTICS OF AN EIT WAVE OBSERVED BY HINODE/EIS AND SDO/AIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veronig, A. M.; Kienreich, I. W.; Muhr, N.

    2011-12-10

    We present plasma diagnostics of an Extreme-Ultraviolet Imaging Telescope (EIT) wave observed with high cadence in Hinode/Extreme-Ultraviolet Imaging Spectrometer (EIS) sit-and-stare spectroscopy and Solar Dynamics Observatory/Atmospheric Imaging Assembly imagery obtained during the HOP-180 observing campaign on 2011 February 16. At the propagating EIT wave front, we observe downward plasma flows in the EIS Fe XII, Fe XIII, and Fe XVI spectral lines (log T Almost-Equal-To 6.1-6.4) with line-of-sight (LOS) velocities up to 20 km s{sup -1}. These redshifts are followed by blueshifts with upward velocities up to -5 km s{sup -1} indicating relaxation of the plasma behind the wave front.more » During the wave evolution, the downward velocity pulse steepens from a few km s{sup -1} up to 20 km s{sup -1} and subsequently decays, correlated with the relative changes of the line intensities. The expected increase of the plasma densities at the EIT wave front estimated from the observed intensity increase lies within the noise level of our density diagnostics from EIS Fe XIII 202/203 A line ratios. No significant LOS plasma motions are observed in the He II line, suggesting that the wave pulse was not strong enough to perturb the underlying chromosphere. This is consistent with the finding that no H{alpha} Moreton wave was associated with the event. The EIT wave propagating along the EIS slit reveals a strong deceleration of a Almost-Equal-To -540 m s{sup -2} and a start velocity of v{sub 0} Almost-Equal-To 590 km s{sup -1}. These findings are consistent with the passage of a coronal fast-mode MHD wave, pushing the plasma downward and compressing it at the coronal base.« less

  1. Evidence of thermal conduction depression in hot coronal loops

    NASA Astrophysics Data System (ADS)

    Wang, Tongjiang; Ofman, Leon; Sun, Xudong; Provornikova, Elena; Davila, Joseph

    2015-08-01

    Slow magnetoacoustic waves were first detected in hot (>6 MK) flare loops by the SOHO/SUMER spectrometer as Doppler shift oscillations in Fe XIX and Fe XXI lines. These oscillations are identified as standing slow-mode waves because the estimated phase speeds are close to the sound speed in the loop and some cases show a quarter period phase shift between velocity and intensity oscillations. The observed very rapid excitation and damping of standing slow mode waves have been studied by many authors using theories and numerical simulations, however, the exact mechanisms remain not well understood. Recently, flare-induced longitudinal intensity oscillations in hot post-flare loops have been detected by SDO/AIA. These oscillations have the similar physical properties as SUMER loop oscillations, and have been interpreted as the slow-mode waves. The multi-wavelength AIA observations with high spatio-temporal resolution and wide temperature coverage allow us to explore the wave excitation and damping mechanisms with an unprecedented detail to develope new coronal seismology. In this paper, we present accurate measurements of the effective adiabatic index (γeff) in the hot plasma from the electron temperature and density wave signals of a flare-induced longitudinal wave event using SDO/AIA data. Our results strikingly and clearly reveal that thermal conduction is highly depressed in hot (˜10 MK) post-flare loops and suggest that the compressive viscosity is the dominant wave damping mechanism which allows determination of the viscosity coefficient from the observables by coronal seismology. This new finding challenges our current understanding of thermal energy transport in solar and stellar flares, and may provide an alternative explanation of long-duration events and enhance our understand of coronal heating mechanism. We will discuss our results based on non-ideal MHD theory and simulations. We will also discuss the flare trigger mechanism based on magnetic topology derived from SDO/HMI vector magnetic fields using nonlinear force-free field extrapolations and discuss the wave excitation mechanism based on 3D MHD modeling of the active region.

  2. Experimental Study of Shock Generated Compressible Vortex Ring

    NASA Astrophysics Data System (ADS)

    Das, Debopam; Arakeri, Jaywant H.; Krothapalli, Anjaneyulu

    2000-11-01

    Formation of a compressible vortex ring and generation of sound associated with it is studied experimentally. Impulse of a shock wave is used to generate a vortex ring from the open end of a shock-tube. Vortex ring formation process has been studied in details using particle image Velocimetry (PIV). As the shock wave exits the tube it diffracts and expands. A circular vortex sheet forms at the edge and rolls up into a vortex ring. Far field microphone measurement shows that the acoustic pressure consists of a spike due to shock wave followed by a low frequency pressure wave of decaying nature, superimposed with high frequency pressure wave. Acoustic waves consist of waves due to expansion, waves formed in the tube during diaphragm breakage and waves associated with the vortex ring and shear-layer vortices. Unsteady evolution of the vortex ring and shear-layer vortices in the jet behind the ring is studied by measuring the velocity field using PIV. Corresponding vorticity field, circulation around the vortex core and growth rate of the vortex core is calculated from the measured velocity field. The velocity field in a compressible vortex ring differs from that of an incompressible ring due to the contribution from both shock and vortex ring.

  3. Compression and reflection of visually evoked cortical waves

    PubMed Central

    Xu, Weifeng; Huang, Xiaoying; Takagaki, Kentaroh; Wu, Jian-young

    2007-01-01

    Summary Neuronal interactions between primary and secondary visual cortical areas are important for visual processing, but the spatiotemporal patterns of the interaction are not well understood. We used voltage-sensitive dye imaging to visualize neuronal activity in rat visual cortex and found novel visually evoked waves propagating from V1 to other visual areas. A primary wave originated in the monocular area of V1 and was “compressed” when propagating to V2. A reflected wave initiated after compression and propagated backward into V1. The compression occurred at the V1/V2 border, and local GABAA inhibition is important for the compression. The compression/reflection pattern provides a two-phase modulation: V1 is first depolarized by the primary wave and then V1 and V2 are simultaneously depolarized by the reflected and primary waves, respectively. The compression/reflection pattern only occurred for evoked but not for spontaneous waves, suggesting that it is organized by an internal mechanism associated with visual processing. PMID:17610821

  4. Self-sustained oscillations with acoustic feedback in flows over a backward-facing step with a small upstream step

    NASA Astrophysics Data System (ADS)

    Yokoyama, Hiroshi; Tsukamoto, Yuichi; Kato, Chisachi; Iida, Akiyoshi

    2007-10-01

    Self-sustained oscillations with acoustic feedback take place in a flow over a two-dimensional two-step configuration: a small forward-backward facing step, which we hereafter call a bump, and a relatively large backward-facing step (backstep). These oscillations can radiate intense tonal sound and fatigue nearby components of industrial products. We clarify the mechanism of these oscillations by directly solving the compressible Navier-Stokes equations. The results show that vortices are shed from the leading edge of the bump and acoustic waves are radiated when these vortices pass the trailing edge of the backstep. The radiated compression waves shed new vortices by stretching the vortex formed by the flow separation at the leading edge of the bump, thereby forming a feedback loop. We propose a formula based on a detailed investigation of the phase relationship between the vortices and the acoustic waves for predicting the frequencies of the tonal sound. The frequencies predicted by this formula are in good agreement with those measured in the experiments we performed.

  5. First Observation of Bright Solitons in Bulk Superfluid ^{4}He.

    PubMed

    Ancilotto, Francesco; Levy, David; Pimentel, Jessica; Eloranta, Jussi

    2018-01-19

    The existence of bright solitons in bulk superfluid ^{4}He is demonstrated by time-resolved shadowgraph imaging experiments and density functional theory (DFT) calculations. The initial liquid compression that leads to the creation of nonlinear waves is produced by rapidly expanding plasma from laser ablation. After the leading dissipative period, these waves transform into bright solitons, which exhibit three characteristic features: dispersionless propagation, negligible interaction in a two-wave collision, and direct dependence between soliton amplitude and the propagation velocity. The experimental observations are supported by DFT calculations, which show rapid evolution of the initially compressed liquid into bright solitons. At high amplitudes, solitons become unstable and break down into dispersive shock waves.

  6. New Experimental Capabilities and Theoretical Insights of High Pressure Compression Waves

    NASA Astrophysics Data System (ADS)

    Orlikowski, Daniel; Nguyen, Jeffrey H.; Patterson, J. Reed; Minich, Roger; Martin, L. Peter; Holmes, Neil C.

    2007-12-01

    Currently there are three platforms that offer quasi-isentropic compression or ramp-wave compression (RWC): light-gas gun, magnetic flux (Z-pinch), and laser. We focus here on the light-gas gun technique and on some current theoretical insights from experimental data. An impedance gradient through the length of the impactor provides the pressure pulse upon impact to the subject material. Applications and results are given concerning high-pressure strength and the liquid-to-solid, phase transition of water giving its first associated phase fraction history. We also introduce the Korteweg-deVries-Burgers equation as a means to understand the evolution of these RWC waves as they propagate through the thickness of the subject material. This model equation has the necessary competition between non-linear, dispersion, and dissipation processes, which is shown through observed structures that are manifested in the experimental particle velocity histories. Such methodology points towards a possibility of quantifying dissipation, through which RWC experiments may be analyzed.

  7. Measurement of concrete strength using the emission intensity ratio between Ca(II) 396.8 nm and Ca(I) 422.6 nm in a Nd:YAG laser-induced plasma.

    PubMed

    Tsuyuki, Kenichiro; Miura, Satoru; Idris, Nasrullah; Kurniawan, Koo Hendrik; Lie, Tjung Jie; Kagawa, Kiichiro

    2006-01-01

    An experiment to investigate the potential of a laser-induced plasma method for determining concrete compressive strength was conducted by focusing a Nd:YAG laser on concrete samples with different degrees of compressive strength. This technique was developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was found that the speed of the shock front depends on the hardness of the sample. It was also found that a positive relationship exists between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Ca(II) 396.8 nm and Ca(I) 422.6 nm emission lines detected from the laser-induced plasma can be used to examine the hardness of the material. In fact, it was observed that the ratio changes with respect to the change in the concrete compressive strength. The findings also show that the ratio increases with time after the cement is mixed with water.

  8. Controlled generation of high-intensity optical rogue waves by induced modulation instability

    PubMed Central

    Zhao, Saili; Yang, Hua; Chen, Nengsong; Zhao, Chujun

    2017-01-01

    Optical rogue waves are featured as the generation of high amplitude events at low probability in optical systems. Moreover, the formation of optical rogue waves is unpredictable and transient in photonic crystal fibers. In this paper, we put forward a method to generate high-intensity optical rogue waves in a more controlled way based on induced modulation instability, which can suppress the noise effect and hence play a leading role in the process of pulse evolution. Our numerical simulations indicate that the generation of rogue wave can be controlled when seeding at the optimal modulation frequency and the intensity of rogue wave can be enhanced with appropriate modulation depth. Further, high-intensity rogue wave can also be ejected in the fiber with a shorter propagation length by regulating the modulation depth. These results all provide a better understanding of optical rogue wave, which can contribute to the generation of tunable long-wavelength spectral components and selective excitation of mid-infrared supercontinuum. PMID:28051149

  9. Controlled generation of high-intensity optical rogue waves by induced modulation instability.

    PubMed

    Zhao, Saili; Yang, Hua; Chen, Nengsong; Zhao, Chujun

    2017-01-04

    Optical rogue waves are featured as the generation of high amplitude events at low probability in optical systems. Moreover, the formation of optical rogue waves is unpredictable and transient in photonic crystal fibers. In this paper, we put forward a method to generate high-intensity optical rogue waves in a more controlled way based on induced modulation instability, which can suppress the noise effect and hence play a leading role in the process of pulse evolution. Our numerical simulations indicate that the generation of rogue wave can be controlled when seeding at the optimal modulation frequency and the intensity of rogue wave can be enhanced with appropriate modulation depth. Further, high-intensity rogue wave can also be ejected in the fiber with a shorter propagation length by regulating the modulation depth. These results all provide a better understanding of optical rogue wave, which can contribute to the generation of tunable long-wavelength spectral components and selective excitation of mid-infrared supercontinuum.

  10. Mechanisms of anomalous compressibility of vitreous silica

    NASA Astrophysics Data System (ADS)

    Clark, Alisha N.; Lesher, Charles E.; Jacobsen, Steven D.; Sen, Sabyasachi

    2014-11-01

    The anomalous compressibility of vitreous silica has been known for nearly a century, but the mechanisms responsible for it remain poorly understood. Using GHz-ultrasonic interferometry, we measured longitudinal and transverse acoustic wave travel times at pressures up to 5 GPa in vitreous silica with fictive temperatures (Tf) ranging between 985 °C and 1500 °C. The maximum in ultrasonic wave travel times-corresponding to a minimum in acoustic velocities-shifts to higher pressure with increasing Tf for both acoustic waves, with complete reversibility below 5 GPa. These relationships reflect polyamorphism in the supercooled liquid, which results in a glassy state possessing different proportions of domains of high- and low-density amorphous phases (HDA and LDA, respectively). The relative proportion of HDA and LDA is set at Tf and remains fixed on compression below the permanent densification pressure. The bulk material exhibits compression behavior systematically dependent on synthesis conditions that arise from the presence of floppy modes in a mixture of HDA and LDA domains.

  11. Formation of rarefaction waves in origami-based metamaterials

    NASA Astrophysics Data System (ADS)

    Yasuda, H.; Chong, C.; Charalampidis, E. G.; Kevrekidis, P. G.; Yang, J.

    2016-04-01

    We investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system. We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.

  12. Fast generation of complex modulation video holograms using temporal redundancy compression and hybrid point-source/wave-field approaches

    NASA Astrophysics Data System (ADS)

    Gilles, Antonin; Gioia, Patrick; Cozot, Rémi; Morin, Luce

    2015-09-01

    The hybrid point-source/wave-field method is a newly proposed approach for Computer-Generated Hologram (CGH) calculation, based on the slicing of the scene into several depth layers parallel to the hologram plane. The complex wave scattered by each depth layer is then computed using either a wave-field or a point-source approach according to a threshold criterion on the number of points within the layer. Finally, the complex waves scattered by all the depth layers are summed up in order to obtain the final CGH. Although outperforming both point-source and wave-field methods without producing any visible artifact, this approach has not yet been used for animated holograms, and the possible exploitation of temporal redundancies has not been studied. In this paper, we propose a fast computation of video holograms by taking into account those redundancies. Our algorithm consists of three steps. First, intensity and depth data of the current 3D video frame are extracted and compared with those of the previous frame in order to remove temporally redundant data. Then the CGH pattern for this compressed frame is generated using the hybrid point-source/wave-field approach. The resulting CGH pattern is finally transmitted to the video output and stored in the previous frame buffer. Experimental results reveal that our proposed method is able to produce video holograms at interactive rates without producing any visible artifact.

  13. Propagation of Sound at Moderate and High Intensities in Absorbent and Hard-Walled Cylindrical Ducts. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mcdaniel, Oliver Herbert

    1975-01-01

    The propagation of plane wave and higher order acoustic modes in both hard-walled and absorbent cylindrical ducts was studied at moderate sound intensities where the linear wave equation is valid, and at high intensities where nonlinear effects can be observed. The experiments were conducted with an anechoically terminated twelve-inch inside-diameter transite pipe. Various types of sound sources were mounted at one end of the duct to generate the desired acoustic fields within the duct. Arrays of conventional loudspeakers were used to generate plane waves and higher order acoustic modes at moderate intensities, and an array of four high intensity electro-pneumatic sound sources was used for the experiments in the nonlinear region. The attenuation of absorbent liners made of several different materials was obtained at moderate intensities for both plane waves and high order modes. It was found that the characteristics of the liners studied did not change appreciably at high intensities.

  14. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity

    PubMed Central

    Park, Dae Woo

    2016-01-01

    Shear wave elasticity imaging (SWEI) can assess the elasticity of tissues, but the shear modulus estimated in SWEI is often less sensitive to a subtle change of the stiffness that produces only small mechanical contrast to the background tissues. Because most soft tissues exhibit mechanical nonlinearity that differs in tissue types, mechanical contrast can be enhanced if the tissues are compressed. In this study, a finite element- (FE-) based simulation was performed for a breast tissue model, which consists of a circular (D: 10 mm, hard) tumor and surrounding tissue (soft). The SWEI was performed with 0% to 30% compression of the breast tissue model. The shear modulus of the tumor exhibited noticeably high nonlinearity compared to soft background tissue above 10% overall applied compression. As a result, the elastic modulus contrast of the tumor to the surrounding tissue was increased from 0.46 at 0% compression to 1.45 at 30% compression. PMID:27293476

  15. Multifrequency Raman amplifiers

    DOE PAGES

    Barth, Ido; Fisch, Nathaniel J.

    2018-03-08

    In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell (PIC) simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the totalmore » fluence is split between the different spectral components.« less

  16. Multifrequency Raman amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, Ido; Fisch, Nathaniel J.

    In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell (PIC) simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the totalmore » fluence is split between the different spectral components.« less

  17. Macroscopic Lagrangian description of warm plasmas. II Nonlinear wave interactions

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.

    1983-01-01

    A macroscopic Lagrangian is simplified to the adiabatic limit and expanded about equilibrium, to third order in perturbation, for three illustrative cases: one-dimensional compression parallel to the static magnetic field, two-dimensional compression perpendicular to the static magnetic field, and three-dimensional compression. As examples of the averaged-Lagrangian method applied to nonlinear wave interactions, coupling coefficients are derived for interactions between two electron plasma waves and an ion acoustic wave, and between an ordinary wave, an electron plasma wave, and an ion acoustic wave.

  18. A test of the Hall-MHD model: Application to low-frequency upstream waves at Venus

    NASA Technical Reports Server (NTRS)

    Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.

    1994-01-01

    Early studies suggested that in the range of parameter space where the wave angular frequency is less than the proton gyrofrequency and the plasma beta, the ratio of the thermal to magnetic pressure, is less than 1 magnetohydrodynamics provides an adequate description of the propagating modes in a plasma. However, recently, Lacombe et al. (1992) have reported significant differences between basic wave characteristics of the specific propagation modes derived from linear Vlasov and Hall-magnetohydrodynamic (MHD) theories even when the waves are only weakly damped. In this paper we compare the magnetic polarization and normalization magnetic compression ratio of ultra low frequency (ULF) upstream waves at Venus with magnetic polarization and normalized magnetic compression ratio derived from both theories. We find that while the 'kinetic' approach gives magnetic polarization and normalized magnetic compression ratio consistent with the data in the analyzed range of beta (0.5 less than beta less than 5) for the fast magnetosonic mode, the same wave characteristics derived from the Hall-MHD model strongly depend on beta and are consistent with the data only at low beta for the fast mode and at high beta for the intermediate mode.

  19. Applications of acoustic-gravity waves numerical modeling to tsunami signals observed by gravimetry satellites in very low orbit

    NASA Astrophysics Data System (ADS)

    Brissaud, Q.; Garcia, R.; Sladen, A.; Martin, R.; Komatitsch, D.

    2016-12-01

    Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground all the way to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale we introduce a high-order finite-difference time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with spatially non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). We present applications of these simulations to the propagation of gravity waves generated by tsunamis for realistic cases for which atmospheric models are extracted from empirical models including variations with altitude of atmospheric parameters, and tsunami forcing at the ocean surface is extracted from shallow water simulations. We describe the specific difficulties induced by the size of the simulation, the boundary conditions and the spherical geometry and compare the simulation outputs to data gathered by gravimetric satellites crossing gravity waves generated by tsunamis.

  20. Shock wave and flame front induced detonation in a rapid compression machine

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Qi, Y.; Xiang, S.; Mével, R.; Wang, Z.

    2018-05-01

    The present study focuses on one mode of detonation initiation observed in a rapid compression machine (RCM). This mode is referred to as shock wave and flame front-induced detonation (SWFID). Experimental high-speed imaging and two-dimensional numerical simulations with skeletal chemistry are combined to unravel the dominant steps of detonation initiation under SWFID conditions. It is shown that the interaction between the shock wave generated by the end-gas auto-ignition and the spherical flame creates a region of high pressure and temperature which enables the acceleration of the flame front and the detonation onset. The experimental observation lacks adequate spatial and temporal resolution despite good reproducibility of the detonation onset. Based on the numerical results, phenomenological interpretation of the event within the framework of shock wave refraction indicates that the formation of a free-precursor shock wave at the transition between regular and irregular refraction may be responsible for detonation onset. The present results along with previous findings on shock wave reflection-induced detonation in the RCM indicate that super-knock occurs after the interaction of the shock wave generated by end-gas auto-ignition with the RCM walls, preignition flame, or another shock wave.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression, i.e.,more » a reduction in peak widths of all species. This peak compression occurs with a modest reduction of resolution, but which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. In addition, approaches for peak compression in traveling wave IMS are also discussed. Ion mobility peak compression can be particularly useful for mitigating diffusion driven peak spreading over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.« less

  2. Plasma waves associated with the AMPTE artificial comet

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Anderson, R. R.; Haeusler, B.; Haerendel, G.; Bauer, O. H.

    1985-01-01

    Numerous plasma wave effects were detected by the AMPTE/IRM spacecraft during the artificial comet experiment on December 27, 1984. As the barium ion cloud produced by the explosion expanded over the spacecraft, emissions at the electron plasma frequency and ion plasma frequency provided a determination of the local electron density. The electron density in the diamagnetic cavity produced by the ion cloud reached a peak of more than 5 x 10 to the 5th per cu cm, then decayed smoothly as the cloud expanded, varying approximately as t exp-2. As the cloud began to move due to interactions with the solar wind, a region of compressed plasma was encountered on the upstream side of the diamagnetic cavity. The peak electron density in the compression region was about 1.5 x 10 to the 4th per cu cm. Later, a very intense (140 mVolt/m) broadband burst of electrostatic noise was encountered on the sunward side of the compression region. This noise has characteristics very similar to noise observed in the earth's bow shock, and is believed to be a shocklike interaction produced by an ion beam-plasma instability between the nearly stationary barium ions and the streaming solar wind protons.

  3. Investigation of Fundamental Processes and Crystal-Level Defect Structures in Metal-Loaded High-Explosive Materials under Dynamic Thermo-Mechanical Loads and their Relationships to Impact Survivability of Munitions (Thrust 4, Topic J)

    DTIC Science & Technology

    2014-06-01

    to better represent the interactions at high compression . Monodisperse systems containing 64, 128, and 256 backbone carbon atoms were studied...was observed that for the sensitive orientation only elastic compression occurred, leading to the propagation of a single wave through the material...whereas for the insensitive direction elastic compression at and immediately behind the shock front was followed by inelastic deformation, leading to

  4. Compression-sensitive magnetic resonance elastography

    NASA Astrophysics Data System (ADS)

    Hirsch, Sebastian; Beyer, Frauke; Guo, Jing; Papazoglou, Sebastian; Tzschaetzsch, Heiko; Braun, Juergen; Sack, Ingolf

    2013-08-01

    Magnetic resonance elastography (MRE) quantifies the shear modulus of biological tissue to detect disease. Complementary to the shear elastic properties of tissue, the compression modulus may be a clinically useful biomarker because it is sensitive to tissue pressure and poromechanical interactions. In this work, we analyze the capability of MRE to measure volumetric strain and the dynamic bulk modulus (P-wave modulus) at a harmonic drive frequency commonly used in shear-wave-based MRE. Gel phantoms with various densities were created by introducing CO2-filled cavities to establish a compressible effective medium. The dependence of the effective medium's bulk modulus on phantom density was investigated via static compression tests, which confirmed theoretical predictions. The P-wave modulus of three compressible phantoms was calculated from volumetric strain measured by 3D wave-field MRE at 50 Hz drive frequency. The results demonstrate the MRE-derived volumetric strain and P-wave modulus to be sensitive to the compression properties of effective media. Since the reconstruction of the P-wave modulus requires third-order derivatives, noise remains critical, and P-wave moduli are systematically underestimated. Focusing on relative changes in the effective bulk modulus of tissue, compression-sensitive MRE may be useful for the noninvasive detection of diseases involving pathological pressure alterations such as hepatic hypertension or hydrocephalus.

  5. Coronal Seismology of Flare-Excited Standing Slow-Mode Waves Observed by SDO/AIA

    NASA Astrophysics Data System (ADS)

    Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.

    2016-05-01

    Flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 Å bandpasses. Based on the interpretation in terms of a slow-mode wave, quantitative evidence of thermal conduction suppression in hot (>9 MK) loops has been obtained for the first time from measurements of the polytropic index and phase shift between the temperature and density perturbations (Wang et al. 2015, ApJL, 811, L13). This result has significant implications in two aspects. One is that the thermal conduction suppression suggests the need of greatly enhanced compressive viscosity to interpret the observed strong wave damping. The other is that the conduction suppression provides a reasonable mechanism for explaining the long-duration events where the thermal plasma is sustained well beyond the duration of impulsive hard X-ray bursts in many flares, for a time much longer than expected by the classical Spitzer conductive cooling. In this study, we model the observed standing slow-mode wave in Wang et al. (2015) using a 1D nonlinear MHD code. With the seismology-derived transport coefficients for thermal conduction and compressive viscosity, we successfully simulate the oscillation period and damping time of the observed waves. Based on the parametric study of the effect of thermal conduction suppression and viscosity enhancement on the observables, we discuss the inversion scheme for determining the energy transport coefficients by coronal seismology.

  6. Formation of rarefaction waves in origami-based metamaterials

    DOE PAGES

    Yasuda, H.; Chong, C.; Charalampidis, E. G.; ...

    2016-04-15

    Here, we investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system.more » We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.« less

  7. Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields

    NASA Astrophysics Data System (ADS)

    Agui, Juan H.; Briassulis, George; Andreopoulos, Yiannis

    2005-02-01

    The unsteady interaction of a moving shock wave with nearly homogeneous and isotropic decaying compressible turbulence has been studied experimentally in a large-scale shock tube facility. Rectangular grids of various mesh sizes were used to generate turbulence with Reynolds numbers based on Taylor's microscale ranging from 260 to 1300. The interaction has been investigated by measuring the three-dimensional velocity and vorticity vectors, the full velocity gradient and rate-of-strain tensors with instrumentation of high temporal and spatial resolution. This allowed estimates of dilatation, compressible dissipation and dilatational stretching to be obtained. The time-dependent signals of enstrophy, vortex stretching/tilting vector and dilatational stretching vector were found to exhibit a rather strong intermittent behaviour which is characterized by high-amplitude bursts with values up to 8 times their r.m.s. within periods of less violent and longer lived events. Several of these bursts are evident in all the signals, suggesting the existence of a dynamical flow phenomenon as a common cause. Fluctuations of all velocity gradients in the longitudinal direction are amplified significantly downstream of the interaction. Fluctuations of the velocity gradients in the lateral directions show no change or a minor reduction through the interaction. Root mean square values of the lateral vorticity components indicate a 25% amplification on average, which appears to be very weakly dependent on the shock strength. The transmission of the longitudinal vorticity fluctuations through the shock appears to be less affected by the interaction than the fluctuations of the lateral components. Non-dissipative vortex tubes and irrotational dissipative motions are more intense in the region downstream of the shock. There is also a significant increase in the number of events with intense rotational and dissipative motions. Integral length scales and Taylor's microscales were reduced after the interaction with the shock in all investigated flow cases. The integral length scales in the lateral direction increase at low Mach numbers and decrease during strong interactions. It appears that in the weakest of the present interactions, turbulent eddies are compressed drastically in the longitudinal direction while their extent in the normal direction remains relatively the same. As the shock strength increases the lateral integral length scales increase while the longitudinal ones decrease. At the strongest interaction of the present flow cases turbulent eddies are compressed in both directions. However, even at the highest Mach number the issue is more complicated since amplification of the lateral scales has been observed in flows with fine grids. Thus the outcome of the interaction strongly depends on the initial conditions.

  8. Influence of obstacle disturbance in a duct on explosion characteristics of coal gas

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Ma, Tianbao; Lu, Jie

    2010-02-01

    In combination with experimental research, numerical simulation is performed to investigate the influence law of the obstacles in a duct on the explosion flame of premixed coal gas and air. The numerical method uses upwind WENO scheme and two-step chemical reaction model. The interaction mechanism is addressed between the compression wave from reflection on the right end of the duct and flame propagation. The reflected wave is found to result in the decrease of flame velocity. On this basis, we analyze the mechanism of the obstacles on flame as well as the law of flow field variation thus caused. The results suggest that, due to the obstacles, deflagration wave is repeatedly reflected, combustible gas mixture is fully compressed, temperature and pressure rise, chemical reaction speed increases, and hence flame intensity is strengthened. At the same time, a tripe point forms as a result of wall reflection of the deflagration wave from the obstacles and furthermore local flame speed increases. As the triple point propagates forward, the flame speed gradually decreases due to dissipation of energy. These conclusions provide a valuable theoretical foundation for the prediction of explosion field, prevention of fire and explosion and effective control of the combustion speed and flame propagation speed in detonation propulsion.

  9. Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS): Theory of a High-Sensitivity Methodology for the Detection of Early-Stage Tumors in Tissues

    NASA Astrophysics Data System (ADS)

    Choi, S.; Mandelis, A.; Guo, X.; Lashkari, B.; Kellnberger, S.; Ntziachristos, V.

    2015-06-01

    In the field of medical diagnostics, biomedical photoacoustics (PA) is a non-invasive hybrid optical-ultrasonic imaging modality. Due to the unique hybrid capability of optical and acoustic imaging, PA imaging has risen to the frontiers of medical diagnostic procedures such as human breast cancer detection. While conventional PA imaging has been mainly carried out by a high-power pulsed laser, an alternative technology, the frequency domain biophotoacoustic radar (FD-PAR) is under intensive development. It utilizes a continuous wave optical source with the laser intensity modulated by a frequency-swept waveform for acoustic wave generation. The small amplitude of the generated acoustic wave is significantly compensated by increased signal-to-noise ratio (several orders of magnitude) using matched-filter and pulse compression correlation processing in a manner similar to radar systems. The current study introduces the theory of a novel FD-PAR modality for ultra-sensitive characterization of functional information for breast cancer imaging. The newly developed theory of wavelength-modulated differential PA spectroscopy (WM-DPAS) detection has been introduced to address angiogenesis and hypoxia monitoring, two well-known benchmarks of breast tumor formation. Based on the WM-DPAS theory, this modality efficiently suppresses background absorptions and is expected to detect very small changes in total hemoglobin concentration and oxygenation levels, thereby identifying pre-malignant tumors before they are anatomically apparent. An experimental system design for the WM-DPAS is presented and preliminary single-ended laser experimental results were obtained and compared to a limiting case of the developed theoretical formalism.

  10. Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond compression and carrier envelope phase effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizuta, Yo; Nagasawa, Minoru; Ohtani, Morimasa

    2005-12-15

    A numerical approach called Fourier direct method (FDM) is applied to nonlinear propagation of optical pulses with the central wavelength 800 nm, the width 2.67-12.00 fs, and the peak power 25-6870 kW in a fused-silica fiber. Bidirectional propagation, delayed Raman response, nonlinear dispersion (self-steepening, core dispersion), as well as correct linear dispersion are incorporated into 'bidirectional propagation equations' which are derived directly from Maxwell's equations. These equations are solved for forward and backward waves, instead of the electric-field envelope as in the nonlinear Schroedinger equation (NLSE). They are integrated as multidimensional simultaneous evolution equations evolved in space. We investigate, bothmore » theoretically and numerically, the validity and the limitation of assumptions and approximations used for deriving the NLSE. Also, the accuracy and the efficiency of the FDM are compared quantitatively with those of the finite-difference time-domain numerical approach. The time-domain size 500 fs and the number of grid points in time 2048 are chosen to investigate numerically intensity spectra, spectral phases, and temporal electric-field profiles up to the propagation distance 1.0 mm. On the intensity spectrum of a few-optical-cycle pulses, the self-steepening, core dispersion, and the delayed Raman response appear as dominant, middle, and slight effects, respectively. The delayed Raman response and the core dispersion reduce the effective nonlinearity. Correct linear dispersion is important since it affects the intensity spectrum sensitively. For the compression of femtosecond optical pulses by the complete phase compensation, the shortness and the pulse quality of compressed pulses are remarkably improved by the intense initial peak power rather than by the short initial pulse width or by the propagation distance longer than 0.1 mm. They will be compressed as short as 0.3 fs below the damage threshold of fused-silica fiber 6 MW. It is demonstrated that the carrier envelope phase (CEP) causes the difference on the temporal electric-field profile and the intensity spectrum for the initial peak power of the order of megawatts. At the propagation distance longer than the coherence length for third-order harmonics, the difference grows in the spectral components around the third-order and higher-order harmonics. The CEP can be a sensitive marker to monitor the evolution of nonlinear optical process by a few-optical-cycle electric-field wave-packet source.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuda, H.; Chong, C.; Charalampidis, E. G.

    Here, we investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system.more » We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.« less

  12. Shock compression and release of a-axis magnesium single crystals: Anisotropy and time dependent inelastic response

    DOE PAGES

    Renganathan, P.; Winey, J. M.; Gupta, Y. M.

    2017-01-19

    Here, to gain insight into inelastic deformation mechanisms for shocked hexagonal close-packed (hcp) metals, particularly the role of crystal anisotropy, magnesium (Mg) single crystals were subjected to shock compression and release along the a-axis to 3.0 and 4.8 GPa elastic impact stresses. Wave profiles measured at several thicknesses, using laser interferometry, show a sharply peaked elastic wave followed by the plastic wave. Additionally, a smooth and featureless release wave is observed following peak compression. When compared to wave profiles measured previously for c-axis Mg, the elastic wave amplitudes for a-axis Mg are lower for the same propagation distance, and less attenuation of elastic wave amplitude is observed for a given peak stress. The featureless release wave for a-axis Mg is in marked contrast to the structured features observed for c-axis unloading. Numerical simulations, using a time-dependent anisotropic modeling framework, showed that the wave profiles calculated using prismatic slip or (10more » $$\\bar{1}$$2) twinning, individually, do not match the measured compression profiles for a-axis Mg. However, a combination of slip and twinning provides a good overall match to the measured compression profiles. In contrast to compression,prismatic slip alone provides a reasonable match to the measured release wave profiles; (10$$\\bar{1}$$2) twinning due to its uni-directionality is not activated during release. The experimental results and wave profile simulations for a-axis Mg presented here are quite different from the previously published c-axis results, demonstrating the important role of crystal anisotropy on the time-dependent inelastic deformation of Mg single crystals under shock compression and release.« less

  13. Shock compression and release of a-axis magnesium single crystals: Anisotropy and time dependent inelastic response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renganathan, P.; Winey, J. M.; Gupta, Y. M.

    Here, to gain insight into inelastic deformation mechanisms for shocked hexagonal close-packed (hcp) metals, particularly the role of crystal anisotropy, magnesium (Mg) single crystals were subjected to shock compression and release along the a-axis to 3.0 and 4.8 GPa elastic impact stresses. Wave profiles measured at several thicknesses, using laser interferometry, show a sharply peaked elastic wave followed by the plastic wave. Additionally, a smooth and featureless release wave is observed following peak compression. When compared to wave profiles measured previously for c-axis Mg, the elastic wave amplitudes for a-axis Mg are lower for the same propagation distance, and less attenuation of elastic wave amplitude is observed for a given peak stress. The featureless release wave for a-axis Mg is in marked contrast to the structured features observed for c-axis unloading. Numerical simulations, using a time-dependent anisotropic modeling framework, showed that the wave profiles calculated using prismatic slip or (10more » $$\\bar{1}$$2) twinning, individually, do not match the measured compression profiles for a-axis Mg. However, a combination of slip and twinning provides a good overall match to the measured compression profiles. In contrast to compression,prismatic slip alone provides a reasonable match to the measured release wave profiles; (10$$\\bar{1}$$2) twinning due to its uni-directionality is not activated during release. The experimental results and wave profile simulations for a-axis Mg presented here are quite different from the previously published c-axis results, demonstrating the important role of crystal anisotropy on the time-dependent inelastic deformation of Mg single crystals under shock compression and release.« less

  14. Photographic investigation into the mechanism of combustion in irregular detonation waves

    NASA Astrophysics Data System (ADS)

    Kiyanda, C. B.; Higgins, A. J.

    2013-03-01

    Irregular detonations are supersonic combustion waves in which the inherent multi-dimensional structure is highly variable. In such waves, it is questionable whether auto-ignition induced by shock compression is the only combustion mechanism present. Through the use of high-speed schlieren and self-emitted light photography, the velocity of the different components of detonation waves in a {{ CH}}_4+2{ O}_2 mixture is analyzed. The observed burn-out of unreacted pockets is hypothesized to be due to turbulent combustion.

  15. Squeezing of Ion Populations and Peaks in Traveling Wave Ion Mobility Separations and Structures for Lossless Ion Manipulations using Compression Ratio Ion Mobility Programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Venkata BS; Hamid, Ahmed M.; Deng, Liulin

    In this work, we report an approach for spatial and temporal gas phase ion population manipulation, and demonstrate its application for the collapse of the ion distributions in ion mobility (IM) separations into tighter packets providing higher sensitivity measurements in conjunction with mass spectrometry (MS). We do this for ions moving from a conventionally traveling wave (TW)-driven region to a region where the TW is intermittently halted or ‘stuttered’. This approach causes the ion packets spanning a number of TW-created traveling traps (TT) to be redistributed into fewer TT, resulting in spatial compression. The degree of spatial compression is controllablemore » and determined by the ratio of stationary time of the TW in the second region to its moving time. This compression ratio ion mobility programming (CRIMP) approach has been implemented using Structures for Lossless Ion Manipulations (SLIM) in conjunction with MS. CRIMP with the SLIM-MS platform is shown to provide increased peak intensities, reduced peak widths, and improved S/N ratios with MS detection. CRIMP also provides a foundation for extremely long path length and multi-pass IM separations in SLIM providing greatly enhanced IM resolution by reducing the detrimental effects of diffusional peak broadening due to increasing peak widths.« less

  16. Specific Features of the Response of Cerium to Pulsed Actions

    NASA Astrophysics Data System (ADS)

    Atroshenko, S. A.; Zubareva, A. N.; Morozov, V. A.; Savenkov, G. G.; Utkin, A. V.

    2018-02-01

    Experimental studies of cerium at high rates and nanosecond durations of action have been performed. The isomorphic phase transition was studied upon shock compression. The spall strength of cerium has been determined. Cerium demonstrates anomalous compressibility upon dynamic loading. Stress waves dampen under action of a high-current electron beam due to the energy dissipation during fragmentation and twinning.

  17. The STAFF-DWP wave instrument on the DSP equatorial spacecraft: description and first results

    NASA Astrophysics Data System (ADS)

    Cornilleau-Wehrlin, N.; Alleyne, H. St. C.; Yearby, K. H.; de La Porte de Vaux, B.; Meyer, A.; Santolík, O.; Parrot, M.; Belmont, G.; Rezeau, L.; Le Contel, O.; Roux, A.; Attié, D.; Robert, P.; Bouzid, V.; Herment, D.; Cao, J.

    2005-11-01

    The STAFF-DWP wave instrument on board the equatorial spacecraft (TC1) of the Double Star Project consists of a combination of 2 instruments which are a heritage of the Cluster mission: the Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment and the Digital Wave-Processing experiment (DWP). On DSP-TC1 STAFF consists of a three-axis search coil magnetometer, used to measure magnetic fluctuations at frequencies up to 4 kHz and a waveform unit, up to 10 Hz, plus snapshots up to 180 Hz. DWP provides several onboard analysis tools: a complex FFT to fully characterise electromagnetic waves in the frequency range 10 Hz-4 kHz, a particle correlator linked to the PEACE electron experiment, and compression of the STAFF waveform data. The complementary Cluster and TC1 orbits, together with the similarity of the instruments, permits new multi-point studies. The first results show the capabilities of the experiment, with examples in the different regions of the magnetosphere-solar wind system that have been encountered by DSP-TC1 at the beginning of its operational phase. An overview of the different kinds of electromagnetic waves observed on the dayside from perigee to apogee is given, including the different whistler mode waves (hiss, chorus, lion roars) and broad-band ULF emissions. The polarisation and propagation characteristics of intense waves in the vicinity of a bow shock crossing are analysed using the dedicated PRASSADCO tool, giving results compatible with previous studies: the broad-band ULF waves consist of a superimposition of different wave modes, whereas the magnetosheath lion roars are right-handed and propagate close to the magnetic field. An example of a combined Cluster DSP-TC1 magnetopause crossing is given. This first case study shows that the ULF wave power intensity is higher at low latitude (DSP) than at high latitude (Cluster). On the nightside in the tail, a first wave event comparison - in a rather quiet time interval - is shown. It opens the doors to future studies, such as event timing during substorms, to possibly determine their onset location.

  18. A comparison of light spot hydrophone and fiber optic probe hydrophone for lithotripter field characterization.

    PubMed

    Smith, N; Sankin, G N; Simmons, W N; Nanke, R; Fehre, J; Zhong, P

    2012-01-01

    The performance of a newly developed light spot hydrophone (LSHD) in lithotripter field characterization was compared to that of the fiber optic probe hydrophone (FOPH). Pressure waveforms produced by a stable electromagnetic shock wave source were measured by the LSHD and FOPH under identical experimental conditions. In the low energy regime, focus and field acoustic parameters matched well between the two hydrophones. At clinically relevant high energy settings for shock wave lithotripsy, the measured leading compressive pressure waveforms matched closely with each other. However, the LSHD recorded slightly larger |P_| (p < 0.05) and secondary peak compressive pressures (p < 0.01) than the FOPH, leading to about 20% increase in total acoustic pulse energy calculated in a 6 mm radius around the focus (p = 0.06). Tensile pulse durations deviated ~5% (p < 0.01) due to tensile wave shortening from cavitation activity using the LSHD. Intermittent compression spikes and laser light reflection artifacts have been correlated to bubble activity based on simultaneous high-speed imaging analysis. Altogether, both hydrophones are adequate for lithotripter field characterization as specified by the international standard IEC 61846.

  19. APPARATUS FOR THE DENSIFICATION AND ENERGIZATION OF CHARGED PARTICLES

    DOEpatents

    Post, R.F.; Coensgen, F.H.

    1962-12-18

    This patent relates to a device for materially increasing the energy and density of a plasma to produce conditions commensurate with the establishment and promotion of controlled thermonuclear reactions. To this end the device employs three successive stages of magnetic compression, each stage having magnetic mirrors to compress a plasma, the mirrors being moveable to transfer the plasma to successive stages for further compression. Accordingly, a plasma introduced to the first stage is increased in density and energy in stepwide fashion by virtue of the magnetic compression in the successive stages such that the plasma upon reaching the last stage is of extremely high energy and density commensurate the plasma particles undergoing thermonuclear reactions. The principal novelty of the device resides in the provision of a unidirectional magnetic field which increases in stepwise fashion in coaxially communicating compression chambers of progressively decreasing lengths and diameters. Pulsed magnetic fields are superimposed upon the undirectional field and are manipulated to establish resultant magnetic compression fields which increase in intensity and progressively move, with respect to time, through the compression chambers in the direction of the smallest one thereof. The resultant field in the last compression chamber is hence of relatively high intensity, and the density and energy of the plasma confined therein are correspondingly high. (AEC)

  20. Measurements of the equations of state and spectrum of nonideal xenon plasma under shock compression

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Gu, Y. J.; Chen, Z. Y.; Chen, Q. F.

    2010-08-01

    Experimental equations of state on generation of nonideal xenon plasma by intense shock wave compression was presented in the ranges of pressure of 2-16 GPa and temperature of 31-50 kK, and the xenon plasma with the nonideal coupling parameter Γ range from 0.6-2.1 was generated. The shock wave was produced using the flyer plate impact and accelerated up to ˜6km/s with a two-stage light gas gun. Gaseous specimens were shocked from two initial pressures of 0.80 and 4.72 MPa at room temperature. Time-resolved spectral radiation histories were recorded by using a multiwavelength channel pyrometer. The transient spectra with the wavelength range of 460-700 nm were recorded by using a spectrometer to evaluate the shock temperature. Shock velocity was measured and particle velocity was determined by the impedance matching methods. The equations of state of xenon plasma and ionization degree have been discussed in terms of the self-consistent fluid variational theory.

  1. Measurements of the equations of state and spectrum of nonideal xenon plasma under shock compression.

    PubMed

    Zheng, J; Gu, Y J; Chen, Z Y; Chen, Q F

    2010-08-01

    Experimental equations of state on generation of nonideal xenon plasma by intense shock wave compression was presented in the ranges of pressure of 2-16 GPa and temperature of 31-50 kK, and the xenon plasma with the nonideal coupling parameter Γ range from 0.6-2.1 was generated. The shock wave was produced using the flyer plate impact and accelerated up to ∼6 km/s with a two-stage light gas gun. Gaseous specimens were shocked from two initial pressures of 0.80 and 4.72 MPa at room temperature. Time-resolved spectral radiation histories were recorded by using a multiwavelength channel pyrometer. The transient spectra with the wavelength range of 460-700 nm were recorded by using a spectrometer to evaluate the shock temperature. Shock velocity was measured and particle velocity was determined by the impedance matching methods. The equations of state of xenon plasma and ionization degree have been discussed in terms of the self-consistent fluid variational theory.

  2. ULF waves and radiation belts: earthward penetration of Pc 4-5 waves and energetic electron flux enhancements during geospace magnetic storms

    NASA Astrophysics Data System (ADS)

    Georgiou, Marina; Daglis, Ioannis; Zesta, Eftyhia; Balasis, George; Tsinganos, Kanaris

    2013-04-01

    Energetic particle fluxes in the outer radiation belt can vary over orders of magnitude on time scales ranging from minutes, to days and years. Geospace magnetic storms when sufficiently strong to exceed key thresholds of the Dst index may either increase or decrease the fluxes of energetic electrons. We examine the responses of energetic electrons to nine moderate, intense and weak magnetic storms, which occurred at different phases of the solar cycle, and compare these with concurrent variations of ULF wave power. Pc 4-5 waves with frequencies in the range of a few mHz may be generated internally in the magnetosphere by low frequency instabilities of ring current ions and externally by shear instabilities at the magnetopause flanks, or compressive variations in the solar wind. Here, we present multipoint observations from ground-based magnetometer arrays collocated with electron drift orbits, which are complemented and measurements by conjugate multi-point satellites, such as CHAMP, Cluster, GOES and THEMIS. We discuss the excitation, growth and decay characteristics of Pc 4-5 waves during the different phases of the magnetic storms with particular emphasis on the distribution of Pc 4-5 wave power over a variety of L shells. We investigate whether Pc 4-5 wave power penetrates to lower L shell values during periods of relatively intense geomagnetic activity as compared to weak magnetic storms. Structural changes of the magnetosphere during intense geomagnetic storms can play an important role in the generation and penetration of Pc 4-5 waves deep into the inner magnetosphere, which in turn is of significance for the wave-particle interactions contributing to the acceleration, transport and loss of electrons in the outer radiation belt. We present preliminary statistics of Pc 4-5 waves observed during magnetic storms of varying intensity, which occurred over the course of the previous solar cycle. This work is supported by the European Community's Seventh Framework Programme under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  3. Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Hamilton, D. C.

    1993-01-01

    AMPTE/CCE magnetic field and particle data are used to test the suggestion that increased hot proton temperature anisotropy resulting from convection during magnetospheric compression is responsible for the enhancement in Pc 1 emission via generation of electromagnetic ion cyclotron (EMIC) waves in the dayside outer equatorial magnetosphere. The relative increase in magnetic field is used to gauge the strength of the compression, and an image dipole model is used to estimate the motion of the plasma during compression. Proton data are used to analyze the evolution of the proton distribution and the corresponding changes in EMIC wave activity expected during the compression. It is suggested that enhancements in dynamic pressure pump the energetic proton distributions in the outer magnetosphere, driving EMIC waves. Waves are expected to be generated most readily close to the magnetopause, and transient pressure pulses may be associated with bursts of EMIC waves, which would be observed on the ground in association with ionospheric transient signatures.

  4. First-principles molecular dynamics simulations of anorthite (CaAl2Si2O8) glass at high pressure

    NASA Astrophysics Data System (ADS)

    Ghosh, Dipta B.; Karki, Bijaya B.

    2018-06-01

    We report first-principles molecular dynamics study of the equation of state, structural, and elastic properties of CaAl2Si2O8 glass at 300 K as a function of pressure up to 155 GPa. Our results for the ambient pressure glass show that: (1) as with other silicates, Si atoms remain mostly (> 95%) under tetrahedral oxygen surroundings; (2) unlike anorthite crystal, presence of high-coordination (> 4) Al atoms with 30% abundance; (3) and significant presence of both non-bridging (8%) and triply (17%) coordinated oxygen. To achieve the glass configurations at various pressures, we use two different simulation schedules: cold and hot compression. Cold compression refers to sequential compression at 300 K. Compression at 3000 K and subsequent isochoric quenching to 300 K is considered as hot compression. At the initial stages of compression (0-10 GPa), smooth increase in bond distance and coordination occurs in the hot-compressed glass. Whereas in cold compression, Si (also Al to some extent) displays mainly topological changes (without significantly affecting the average bond distance or coordination) in this pressure interval. Further increase in pressure results in gradual increases in mean coordination, with Si-O (Al-O) coordination eventually reaching and remaining 6 (6.5) at the highest compression. Similarly, the ambient pressure Ca-O coordination of 5.9 increases to 9.5 at 155 GPa. The continuous pressure-induced increase in the proportion of oxygen triclusters along with the appearance and increasing abundance of tetrahedral oxygens results in mean O-T (T = Si and Al) coordination of > 3 from a value of 2.1 at ambient pressure. Due to the absence of kinetic barrier, the hot-compressed glasses consistently produce greater densities and higher coordination numbers than the cold compression cases. Decompressed glasses show irreversible compaction along with retention of high-coordination species when decompressed from pressure ≥ 10 GPa. The different density retention amounts (12, 17, and 20% when decompressed from 12, 40, and 155 GPa, respectively) signifies that the degree of irreversibility depends on the peak pressure of decompression. The calculated compressional and shear wave velocities (5 and 3 km/s at 0 GPa) for the cold-compressed case display sluggish pressure response in the 0-10 GPa interval as opposed to smooth increase in the hot-compressed one. Shear velocity saturates rather rapidly with a value of 5 km/s, whereas compressional wave velocity displays continuous increase, reaching/exceeding 12.5 km/s at 155 GPa. These structural details suggest that the pressure response of the cold-compressed glasses is not only inherently different at the 0-10 GPa interval, the density, coordination, and wave velocity data are consistently lower than the hot-compressed glasses. Hot-compressed glasses may, therefore, be the better analog in the study of high-pressure silicate melts.

  5. Deflagration Wave Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2012-04-03

    Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steadymore » deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.« less

  6. Comments on the possibility of cavitation in liquid metal targets for pulsed spallation neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter J.M.

    When short pulses of protons strike the volume of a liquid target, the rapid heating produces a pressurized region which relaxes as the pressure wave propagates outward. Skala and Bauer have modeled the effects of the pressure wave impinging on the container walls of a liquid mercury target under ESS conditions. They find that high pressures and high wall stresses result if the medium is uniform, nearly incompressible liquid. The pressure and the stresses are much reduced if the liquid contains bubbles of helium, due to their high compressibility. However, according to the calculation, the pressure still reaches an atmospheremore » or so at the surface, which reflects the compressive wave as a rarefaction wave of the same magnitude. Even such modest underpressures can lead to the growth of bubbles (cavitation) at or near the surface, which can collapse violently and erode the container surface. It is necessary to avoid this. Leighton provides a wide ranging discussion of pressure waves in bubbly media, which may provide insights into the nature and control of cavitation phenomena. The paper surveys some of the relevant information from that source.« less

  7. High Order Filter Methods for the Non-ideal Compressible MHD Equations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, Bjoern

    2003-01-01

    The generalization of a class of low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous gas dynamic flows to compressible MHD equations for structured curvilinear grids has been achieved. The new scheme is shown to provide a natural and efficient way for the minimization of the divergence of the magnetic field numerical error. Standard divergence cleaning is not required by the present filter approach. For certain non-ideal MHD test cases, divergence free preservation of the magnetic fields has been achieved.

  8. Divergence Free High Order Filter Methods for the Compressible MHD Equations

    NASA Technical Reports Server (NTRS)

    Yea, H. C.; Sjoegreen, Bjoern

    2003-01-01

    The generalization of a class of low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous gas dynamic flows to compressible MHD equations for structured curvilinear grids has been achieved. The new scheme is shown to provide a natural and efficient way for the minimization of the divergence of the magnetic field numerical error. Standard diver- gence cleaning is not required by the present filter approach. For certain MHD test cases, divergence free preservation of the magnetic fields has been achieved.

  9. Converging shock wave focusing and interaction with a target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitishinskiy, M.; Efimov, S.; Antonov, O.

    2016-04-15

    Converging shock waves in liquids can be used efficiently in the research of the extreme state of matter and in various applications. In this paper, the recent results related to the interaction of a shock wave with plasma preliminarily formed in the vicinity of the shock wave convergence are presented. The shock wave is produced by the underwater electrical explosion of a spherical wire array. The plasma is generated prior to the shock wave's arrival by a low-pressure gas discharge inside a quartz capillary placed at the equatorial plane of the array. Analysis of the Stark broadening of H{sub α}more » and H{sub β} spectral lines and line-to-continuum ratio, combined with the ratio of the relative intensities of carbon C III/C II and silicon Si III/Si II lines, were used to determine the plasma density and temperature evolution. It was found that during the first ∼200 ns with respect to the beginning of the plasma compression by the shock wave and when the spectral lines are resolved, the plasma density increases from 2 × 10{sup 17 }cm{sup −3} to 5 × 10{sup 17 }cm{sup −3}, while the temperature remains at the same value of 3–4 eV. Further, following the model of an adiabatically imploding capillary, the plasma density increases >10{sup 19 }cm{sup −3}, leading to the continuum spectra obtained experimentally, and the plasma temperature >30 eV at radii of compression of ≤20 μm. The data obtained indicate that the shock wave generated by the underwater electrical explosion of a spherical wire array retains its uniformity during the main part of its convergence.« less

  10. Distinguishing Raman from strongly coupled Brillouin amplification for short pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Qing; Barth, Ido; Edwards, Matthew R.

    2016-05-15

    Plasma-based amplification by strongly coupled Brillouin scattering has recently been suggested for the compression of a short seed laser to ultrahigh intensities in sub-quarter-critical-density plasmas. However, by employing detailed spectral analysis of particle-in-cell simulations in the same parameter regime, we demonstrate that, in fact, Raman backscattering amplification is responsible for the growth and compression of the high-intensity, leading spike, where most of the energy compression occurs, while the ion mode only affects the low-intensity tail of the amplified pulse. The critical role of the initial seed shape is identified. A number of subtleties in the numerical simulations are also pointedmore » out.« less

  11. New insights into sub-ion scale turbulence in Earth's magnetosheath using MMS data

    NASA Astrophysics Data System (ADS)

    Breuillard, Hugo; Andriopoulou, Maria; Graham, Daniel; Le Contel, Olivier; Huang, Shiyong; Hadid, Lina; Sahraoui, Fouad; Alexandrova, Olga; Berthomier, Matthieu; Retino, Alessandro; Nakamura, Rumi; Baumjohann, Wolfgang

    2017-04-01

    On January 22nd 2016, MMS was located in Earth's magnetosheath and detected intense lion roars showing a secondary bandwidth. Detailed polarization analysis, using burst data from SCM and EDP instruments, and numerical simulation, using WHAMP, are performed in this study. They show that these mainly perpendicular fluctuations are highly nonlinear whistler wave packets, and that a high sampling rate is needed to pick up the peaks of the signal. As a result, their amplitude might have been underestimated in previous missions such as Cluster, which can have a significant impact on electron dynamics. Using FPI burst data, we show that electron velocity distribution functions exhibit a gyrophase-bunched signature in the presence of these lion roars. The analysis of magnetic and density fluctuations, inferred from spacecraft potential, also show the highly-compressible nature of turbulence up to electron scales.

  12. Arterial waves in humans during peripheral vascular surgery.

    PubMed

    Khir, A W; Henein, M Y; Koh, T; Das, S K; Parker, K H; Gibson, D G

    2001-12-01

    The purpose of this study was to investigate the effect of aortic clamping on arterial waves during peripheral vascular surgery. We measured pressure and velocity simultaneously in the ascending aorta, in ten patients (70+/-5 years) with aortic-iliac disease intra-operatively. Pressure was measured using a catheter tip manometer, and velocity was measured using Doppler ultrasound. Data were collected before aortic clamping, during aortic clamping and after unclamping. Hydraulic work in the aortic root was calculated from the measured data, the reflected waves were determined by wave-intensity analysis and wave speed was determined by the PU-loop (pressure-velocity-loop) method; a new technique based on the 'water-hammer' equation. The wave speed is approx. 32% (P<0.05) higher during clamping than before clamping. Although the peak intensity of the reflected wave does not alter with clamping, it arrives 30 ms (P<0.05) earlier and its duration is 25% (P<0.05) longer than before clamping. During clamping, left ventricule (LV) hydraulic systolic work and the energy carried by the reflected wave increased by 27% (P<0.05) and 20% (P<0.05) respectively, compared with before clamping. The higher wave speed during clamping explains the earlier arrival of the reflected waves suggesting an increase in the afterload, since the LV has to overcome earlier reflected compression waves. The longer duration of the reflected wave during clamping is associated with an increase in the total energy carried by the wave, which causes an increase in hydraulic work. Increased hydraulic work during clamping may increase LV oxygen consumption, provoke myocardial ischaemia and hence contribute to the intra-operative impairment of LV function known in patients with peripheral vascular disease.

  13. Advanced application flight experiment breadboard pulse compression radar altimeter program

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design, development and performance of the pulse compression radar altimeter is described. The high resolution breadboard system is designed to operate from an aircraft at 10 Kft above the ocean and to accurately measure altitude, sea wave height and sea reflectivity. The minicomputer controlled Ku band system provides six basic variables and an extensive digital recording capability for experimentation purposes. Signal bandwidths of 360 MHz are obtained using a reflective array compression line. Stretch processing is used to achieve 1000:1 pulse compression. The system range command LSB is 0.62 ns or 9.25 cm. A second order altitude tracker, aided by accelerometer inputs is implemented in the system software. During flight tests the system demonstrated an altitude resolution capability of 2.1 cm and sea wave height estimation accuracy of 10%. The altitude measurement performance exceeds that of the Skylab and GEOS-C predecessors by approximately an order of magnitude.

  14. MHD Wave Propagation at the Interface Between Solar Chromosphere and Corona

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Song, P.; Vasyliunas, V. M.

    2017-12-01

    We study the electromagnetic and momentum constraints at the solar transition region which is a sharp layer interfacing between the solar chromosphere and corona. When mass transfer between the two domains is neglected, the transition region can be treated as a contact discontinuity across which the magnetic flux is conserved and the total forces are balanced. We consider an Alfvénic perturbation that propagates along the magnetic field incident onto the interface from one side. In order to satisfy the boundary conditions at the transition region, only part of the incident energy flux is transmitted through and the rest is reflected. Taking into account the highly anisotropic propagation of waves in magnetized plasmas, we generalize the law of reflection and specify Snell's law for each of the three wave MHD modes: incompressible Alfvén mode and compressible fast and slow modes. Unlike conventional optical systems, the interface between two magnetized plasmas is not rigid but can be deformed by the waves, allowing momentum and energy to be transferred by compression. With compressible modes included, the Fresnel conditions need substantial modification. We derive Fresnel conditions, reflectivities and transmittances, and mode conversion for incident waves propagating along the background magnetic field. The results are well organized when the incident perturbation is decomposed into components in and normal to the incident plane (containing the background magnetic field and the normal direction of the interface). For a perturbation normal to the incident plane, both transmitted and reflected perturbations are incompressible Alfvén mode waves. For a perturbation in the incident plane, they can be compressible slow and fast mode waves which may produce ripples on the transition region.

  15. Experimental Study of Shock-Induced Compression and Vortex Generation in the Shock-Bubble Interaction

    NASA Astrophysics Data System (ADS)

    Ranjan, Devesh; Motl, Bradley; Niederhaus, John; Oakley, Jason; Anderson, Mark; Bonazza, Riccardo; Greenough, Jeffrey

    2006-11-01

    Results are presented from experiments studying the interaction of a planar shock wave of strength 1.4

  16. Compression Ratio Ion Mobility Programming (CRIMP) Accumulation and Compression of Billions of Ions for Ion Mobility-Mass Spectrometry Using Traveling Waves in Structures for Lossless Ion Manipulations (SLIM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Liulin; Garimella, Sandilya V. B.; Hamid, Ahmed M.

    We report on the implementation of a traveling wave (TW) based compression ratio ion mobility programming (CRIMP) approach within Structures for Lossless Ion Manipulations (SLIM) that enables both greatly enlarged trapped ion charge capacities and also their subsequent efficient compression for use in ion mobility (IM) separations. Ion accumulation is conducted in a long serpentine path TW SLIM region after which CRIMP allows the large ion populations to be ‘squeezed’. The compression process occurs at an interface between two SLIM regions, one operating conventionally and the second having an intermittently pausing or ‘stuttering’ TW, allowing the contents of multiple binsmore » of ions from the first region to be merged into a single bin in the second region. In this initial work stationary voltages in the second region were used to block ions from exiting the first (trapping) region, and the resumption of TWs in the second region allows ions to exit, and the population to also be compressed if CRIMP is applied. In our initial evaluation we show that the number of charges trapped for a 40 s accumulation period was ~5×109, more than two orders of magnitude greater than the previously reported charge capacity using an ion funnel trap. We also show that over 1×109 ions can be accumulated with high efficiency in the present device, and that the extent of subsequent compression is only limited by the space charge capacity of the trapping region. Lower compression ratios allow increased IM peak heights without significant loss of signal, while excessively large compression ratios can lead to ion losses and other artifacts. Importantly, we show that extended ion accumulation in conjunction with CRIMP and multiple passes provides the basis for a highly desirable combination of ultra-high sensitivity and ultra-high resolution IM separations using SLIM.« less

  17. Sterilizing effects of high-intensity airborne sonic and ultrasonic waves.

    PubMed

    Pisano, M A; Boucher, M G; Alcamo, I E

    1966-09-01

    The lethal effects of high-intensity airborne sonic (9.9 kc/sec) and ultrasonic waves (30.4 kc/sec) on spores of Bacillus subtilis var. niger ATCC 9372 were determined. The spores, which were deposited on filter-paper strips, were exposed to sound waves for periods varying from 1 to 8 hr, at a temperature of 40 C and a relative humidity of 40%. Significant reductions in the viable counts of spores exposed to airborne sonic or ultrasonic irradiations were obtained. The antibacterial activity of airborne sound waves varied with the sound intensity level, the period of irradiation, and the distance of the sample from the sound source. At similar intensity levels, the amplitude of motion of the sound waves appeared to be a factor in acoustic sterilization.

  18. The α-γ-ɛ triple point and phase boundaries of iron under shock compression

    NASA Astrophysics Data System (ADS)

    Li, Jun; Wu, Qiang; Xue, Tao; Geng, Huayun; Yu, Jidong; Jin, Ke; Li, Jiabo; Tan, Ye; Xi, Feng

    2017-07-01

    The phase transition of iron under shock compression has attracted much attention in recent decades because of its importance in fields such as condensed matter physics, geophysics, and metallurgy. At room temperature, the transition of iron from the α-phase (bcc) to the ɛ-phase (hpc) occurs at a stress of 13 GPa. At high temperature, a triple point followed by transformation to the γ-phase (fcc) is expected. However, the details of the high-temperature phase transitions of iron are still under debate. Here, we investigate the phase-transition behavior of polycrystalline iron under compression from room temperature to 820 K. The results show that the shock-induced phase transition is determined unequivocally from the measured three-wave-structure profiles, which clearly consist of an elastic wave, a plastic wave, and a phase-transition wave. The phase transition is temperature-dependent, with an average rate Δσtr/ΔT of -6.91 MPa/K below 700 K and -34.7 MPa/K at higher temperatures. The shock α-ɛ and α-γ phase boundaries intersect at 10.6 ± 0.53 GPa and 763 K, which agrees with the α-ɛ-γ triple point from early shock wave experiments and recent laser-heated diamond-anvil cell resistivity and in situ X-ray diffraction data but disagrees with the shock pressure-temperature phase diagram reported in 2009 by Zaretsky [J. Appl. Phys. 106, 023510 (2009)].

  19. Electric stimulation and decimeter wave therapy improve the recovery of injured sciatic nerves

    PubMed Central

    Zhao, Feng; He, Wei; Zhang, Yingze; Tian, Dehu; Zhao, Hongfang; Yu, Kunlun; Bai, Jiangbo

    2013-01-01

    Drug treatment, electric stimulation and decimeter wave therapy have been shown to promote the repair and regeneration of the peripheral nerves at the injured site. This study prepared a Mackinnon's model of rat sciatic nerve compression. Electric stimulation was given immediately after neurolysis, and decimeter wave radiation was performed at 1 and 12 weeks post-operation. Histological observation revealed that intraoperative electric stimulation and decimeter wave therapy could improve the local blood circulation of repaired sites, alleviate hypoxia of compressed nerves, and lessen adhesion of compressed nerves, thereby decreasing the formation of new entrapments and enhancing compressed nerve regeneration through an improved microenvironment for regeneration. Immunohistochemical staining results revealed that intraoperative electric stimulation and decimeter wave could promote the expression of S-100 protein. Motor nerve conduction velocity and amplitude, the number and diameter of myelinated nerve fibers, and sciatic functional index were significantly increased in the treated rats. These results verified that intraoperative electric stimulation and decimeter wave therapy contributed to the regeneration and the recovery of the functions in the compressed nerves. PMID:25206506

  20. Fracto-mechanoluminescent light emission of EuD4TEA-PDMS composites subjected to high strain-rate compressive loading

    NASA Astrophysics Data System (ADS)

    Ryu, Donghyeon; Castaño, Nicolas; Bhakta, Raj; Kimberley, Jamie

    2017-08-01

    The objective of this study is to understand light emission characteristics of fracto-mechanoluminescent (FML) europium tetrakis(dibenzoylmethide)-triethylammonium (EuD4TEA) crystals under high strain-rate compressive loading. As a sensing material that can play a pivotal role for the self-powered impact sensor technology, it is important to understand transformative light emission characteristics of the FML EuD4TEA crystals under high strain-rate compressive loading. First, EuD4TEA crystals were synthesized and embedded into polydimethylsiloxane (PDMS) elastomer to fabricate EuD4TEA-PDMS composite test specimens. Second, the prepared EuD4TEA-PDMS composites were tested using the modified Kolsky bar setup equipped with a high-speed camera. Third, FML light emission was captured to yield 12 bit grayscale video footage, which was processed to quantify the FML light emission. Finally, quantitative parameters were generated by taking into account pixel values and population of pixels of the 12 bit grayscale images to represent FML light intensity. The FML light intensity was correlated with high strain-rate compressive strain and strain rate to understand the FML light emission characteristics under high strain-rate compressive loading that can result from impact occurrences.

  1. Interactive calculation procedures for mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Reshotko, Eli

    1983-01-01

    The proper design of engine nacelle installations for supersonic aircraft depends on a sophisticated understanding of the interactions between the boundary layers and the bounding external flows. The successful operation of mixed external-internal compression inlets depends significantly on the ability to closely control the operation of the internal compression portion of the inlet. This portion of the inlet is one where compression is achieved by multiple reflection of oblique shock waves and weak compression waves in a converging internal flow passage. However weak these shocks and waves may seem gas-dynamically, they are of sufficient strength to separate a laminar boundary layer and generally even strong enough for separation or incipient separation of the turbulent boundary layers. An understanding was developed of the viscous-inviscid interactions and of the shock wave boundary layer interactions and reflections.

  2. High-Power, High-Intensity Laser Propagation and Interactions

    DTIC Science & Technology

    2014-03-10

    wave Brillouin mixing [89,90]. transmitted beam is phase conjugated target initial wave front nn  1 turbulent air Figure 14. Using phase and...discussed in connection with both high-power and high-intensity lasers is propagation in a turbulent atmosphere . Laser propagation in atmospheric ... turbulence can results in beam centroid wander, spreading and intensity scintillation. A phase conjugation technique to mitigate the effects of atmospheric

  3. Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew

    2014-01-01

    Assessing the biomechanical properties of soft tissue provides clinically valuable information to supplement conventional structural imaging. In the previous studies, we introduced a dynamic elastography technique based on phase-sensitive optical coherence tomography (PhS-OCT) to characterize submillimetric structures such as skin layers or ocular tissues. Here, we propose to implement a pulse compression technique for shear wave elastography. We performed shear wave pulse compression in tissue-mimicking phantoms. Using a mechanical actuator to generate broadband frequency-modulated vibrations (1 to 5 kHz), induced displacements were detected at an equivalent frame rate of 47 kHz using a PhS-OCT. The recorded signal was digitally compressed to a broadband pulse. Stiffness maps were then reconstructed from spatially localized estimates of the local shear wave speed. We demonstrate that a simple pulse compression scheme can increase shear wave detection signal-to-noise ratio (>12 dB gain) and reduce artifacts in reconstructing stiffness maps of heterogeneous media.

  4. A Study of the Efficiency of High-strength, Steel, Cellular-core Sandwich Plates in Compression

    NASA Technical Reports Server (NTRS)

    Johnson, Aldie E , Jr; Semonian, Joseph W

    1956-01-01

    Structural efficiency curves are presented for high-strength, stainless-steel, cellular-core sandwich plates of various proportions subjected to compressive end loads for temperatures of 80 F and 600 F. Optimum proportions of sandwich plates for any value of the compressive loading intensity can be determined from the curves. The efficiency of steel sandwich plates of optimum proportions is compared with the efficiency of solid plates of high-strength steel and aluminum and titanium alloys at the two temperatures.

  5. Unified solver for fluid dynamics and aeroacoustics in isentropic gas flows

    NASA Astrophysics Data System (ADS)

    Pont, Arnau; Codina, Ramon; Baiges, Joan; Guasch, Oriol

    2018-06-01

    The high computational cost of solving numerically the fully compressible Navier-Stokes equations, together with the poor performance of most numerical formulations for compressible flow in the low Mach number regime, has led to the necessity for more affordable numerical models for Computational Aeroacoustics. For low Mach number subsonic flows with neither shocks nor thermal coupling, both flow dynamics and wave propagation can be considered isentropic. Therefore, a joint isentropic formulation for flow and aeroacoustics can be devised which avoids the need for segregating flow and acoustic scales. Under these assumptions density and pressure fluctuations are directly proportional, and a two field velocity-pressure compressible formulation can be derived as an extension of an incompressible solver. Moreover, the linear system of equations which arises from the proposed isentropic formulation is better conditioned than the homologous incompressible one due to the presence of a pressure time derivative. Similarly to other compressible formulations the prescription of boundary conditions will have to deal with the backscattering of acoustic waves. In this sense, a separated imposition of boundary conditions for flow and acoustic scales which allows the evacuation of waves through Dirichlet boundaries without using any tailored damping model will be presented.

  6. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    PubMed

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.

  7. Isentropic compressive wave generator and method of making same

    DOEpatents

    Barker, L.M.

    An isentropic compressive wave generator and method of making same are disclosed. The wave generator comprises a disk or flat pillow member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.

  8. Implosion of Cylindrical Cavities via Short Duration Impulsive Loading

    NASA Astrophysics Data System (ADS)

    Huneault, Justin; Higgins, Andrew

    2014-11-01

    An apparatus has been developed to study the collapse of a cylindrical cavity in gelatin subjected to a symmetric impact-driven impulsive loading. A gas-driven annular projectile is accelerated to approximately 50 m/s, at which point it impacts a gelatin casting confined by curved steel surfaces that allow a transition from an annular geometry to a cylindrically imploding motion. The implosion is visualized by a high-speed camera through a window which forms the top confining wall of the implosion cavity. The initial size of the cavity is such that the gelatin wall is two to five times thicker than the impacting projectile. Thus, during impact the compression wave which travels towards the cavity is closely followed by a rarefaction resulting from the free surface reflection of the compression wave in the projectile. As the compression wave in the gelatin reaches the inner surface, it will also reflect as a rarefaction wave. The interaction between the rarefaction waves from the gelatin and projectile free surfaces leads to large tensile stresses resulting in the spallation of a relatively thin shell. The study focuses on the effect of impact parameters on the thickness and uniformity of the imploding shell formed by the cavitation in the imploding gelatin cylinder.

  9. Systemic vascular load in calcific degenerative aortic valve stenosis: insight from percutaneous valve replacement.

    PubMed

    Yotti, Raquel; Bermejo, Javier; Gutiérrez-Ibañes, Enrique; Pérez del Villar, Candelas; Mombiela, Teresa; Elízaga, Jaime; Benito, Yolanda; González-Mansilla, Ana; Barrio, Alicia; Rodríguez-Pérez, Daniel; Martínez-Legazpi, Pablo; Fernández-Avilés, Francisco

    2015-02-10

    Systemic arterial load impacts the symptomatic status and outcome of patients with calcific degenerative aortic stenosis (AS). However, assessing vascular properties is challenging because the arterial tree's behavior could be influenced by the valvular obstruction. This study sought to characterize the interaction between valvular and vascular functions in patients with AS by using transcatheter aortic valve replacement (TAVR) as a clinical model of isolated intervention. Aortic pressure and flow were measured simultaneously using high-fidelity sensors in 23 patients (mean 79 ± 7 years of age) before and after TAVR. Blood pressure and clinical response were registered at 6-month follow-up. Systolic and pulse arterial pressures, as well as indices of vascular function (vascular resistance, aortic input impedance, compliance, and arterial elastance), were significantly modified by TAVR, exhibiting stiffer vascular behavior post-intervention (all, p < 0.05). Peak left ventricular pressure decreased after TAVR (186 ± 36 mm Hg vs. 162 ± 23 mm Hg, respectively; p = 0.003) but remained at >140 mm Hg in 70% of patients. Wave intensity analysis showed abnormally low forward and backward compression waves at baseline, increasing significantly after TAVR. Stroke volume decreased (-21 ± 19%; p < 0.001) and correlated with continuous and pulsatile indices of arterial load. In the 48 h following TAVR, a hypertensive response was observed in 12 patients (52%), and after 6-month follow-up, 5 patients required further intensification of discharge antihypertensive therapy. Vascular function in calcific degenerative AS is conditioned by the upstream valvular obstruction that dampens forward and backward compression waves in the arterial tree. An increase in vascular load after TAVR limits the procedure's acute afterload relief. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  10. High-Speed Photography of Detonation Propagation in Dynamically Precompressed Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Petel, Oren; Higgins, Andrew; Yoshinaka, Akio; Zhang, Fan

    2007-06-01

    The propagation of detonation in shock compressed nitromethane was observed with a high speed framing camera. The test explosive, nitromethane, was compressed by a reverberating shock wave to pressures on the order of 10 GPa prior to being detonated by a secondary detonation event. The pressure and density in the test explosive prior to detonation was determined using two methods: manganin strain gauge measurements and LS-DYNA simulations. The velocity of the detonation front was determined from consecutive frames and correlated to the density of the explosive post-reverberating shock wave and prior to being detonated. Observing detonation propagation under these non-ambient conditions provides data which can be useful in the validation of equation of state models.

  11. New Insights into the Nature of Turbulence in the Earth's Magnetosheath Using Magnetospheric MultiScale Mission Data

    NASA Astrophysics Data System (ADS)

    Breuillard, H.; Matteini, L.; Argall, M. R.; Sahraoui, F.; Andriopoulou, M.; Le Contel, O.; Retinò, A.; Mirioni, L.; Huang, S. Y.; Gershman, D. J.; Ergun, R. E.; Wilder, F. D.; Goodrich, K. A.; Ahmadi, N.; Yordanova, E.; Vaivads, A.; Turner, D. L.; Khotyaintsev, Yu. V.; Graham, D. B.; Lindqvist, P.-A.; Chasapis, A.; Burch, J. L.; Torbert, R. B.; Russell, C. T.; Magnes, W.; Strangeway, R. J.; Plaschke, F.; Moore, T. E.; Giles, B. L.; Paterson, W. R.; Pollock, C. J.; Lavraud, B.; Fuselier, S. A.; Cohen, I. J.

    2018-06-01

    The Earth’s magnetosheath, which is characterized by highly turbulent fluctuations, is usually divided into two regions of different properties as a function of the angle between the interplanetary magnetic field and the shock normal. In this study, we make use of high-time resolution instruments on board the Magnetospheric MultiScale spacecraft to determine and compare the properties of subsolar magnetosheath turbulence in both regions, i.e., downstream of the quasi-parallel and quasi-perpendicular bow shocks. In particular, we take advantage of the unprecedented temporal resolution of the Fast Plasma Investigation instrument to show the density fluctuations down to sub-ion scales for the first time. We show that the nature of turbulence is highly compressible down to electron scales, particularly in the quasi-parallel magnetosheath. In this region, the magnetic turbulence also shows an inertial (Kolmogorov-like) range, indicating that the fluctuations are not formed locally, in contrast with the quasi-perpendicular magnetosheath. We also show that the electromagnetic turbulence is dominated by electric fluctuations at sub-ion scales (f > 1 Hz) and that magnetic and electric spectra steepen at the largest-electron scale. The latter indicates a change in the nature of turbulence at electron scales. Finally, we show that the electric fluctuations around the electron gyrofrequency are mostly parallel in the quasi-perpendicular magnetosheath, where intense whistlers are observed. This result suggests that energy dissipation, plasma heating, and acceleration might be driven by intense electrostatic parallel structures/waves, which can be linked to whistler waves.

  12. Laser-driven shock compression of gold foam in the terapascal pressure range

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Duan, Xiaoxi; Jiang, Shaoen; Wang, Zhebin; Sun, Liang; Liu, Hao; Yang, Weiming; Zhang, Huan; Ye, Qing; Wang, Peng; Li, Yulong; Yi, Lin; Dong, Suo

    2018-06-01

    Shock compression experiments are carried out on gold foam with an initial density of 3.2 g/cm3 through indirectly laser-driven shock waves at the SG-III prototype laser facility. The impedance-matching technique is applied to determine the equation-of-state (EOS) data of the shocked gold foam. A passive shock breakout diagnostic system is employed to obtain the shock velocities in both the standard material and gold foam. The gold foams are compressed to a maximum density of 20 g/cm3 under a shock pressure of about 2 TPa. The effects of the unsteadiness of shock waves on the EOS measurement are quantitatively analyzed and corrected. The correction of unsteady waves, as well as the good planarity of the shock waves and the low preheating of the gold foam, contributes high-confidence EOS data for the gold foam. The corrected experimental data are compared with the Hugoniot states from the SESAME library. The comparison suggests that the database is suitable for describing the states of gold foam with an initial density of 3.2 g/cm3 under a pressure of about 2 TPa.

  13. Autocalibrating motion-corrected wave-encoding for highly accelerated free-breathing abdominal MRI.

    PubMed

    Chen, Feiyu; Zhang, Tao; Cheng, Joseph Y; Shi, Xinwei; Pauly, John M; Vasanawala, Shreyas S

    2017-11-01

    To develop a motion-robust wave-encoding technique for highly accelerated free-breathing abdominal MRI. A comprehensive 3D wave-encoding-based method was developed to enable fast free-breathing abdominal imaging: (a) auto-calibration for wave-encoding was designed to avoid extra scan for coil sensitivity measurement; (b) intrinsic butterfly navigators were used to track respiratory motion; (c) variable-density sampling was included to enable compressed sensing; (d) golden-angle radial-Cartesian hybrid view-ordering was incorporated to improve motion robustness; and (e) localized rigid motion correction was combined with parallel imaging compressed sensing reconstruction to reconstruct the highly accelerated wave-encoded datasets. The proposed method was tested on six subjects and image quality was compared with standard accelerated Cartesian acquisition both with and without respiratory triggering. Inverse gradient entropy and normalized gradient squared metrics were calculated, testing whether image quality was improved using paired t-tests. For respiratory-triggered scans, wave-encoding significantly reduced residual aliasing and blurring compared with standard Cartesian acquisition (metrics suggesting P < 0.05). For non-respiratory-triggered scans, the proposed method yielded significantly better motion correction compared with standard motion-corrected Cartesian acquisition (metrics suggesting P < 0.01). The proposed methods can reduce motion artifacts and improve overall image quality of highly accelerated free-breathing abdominal MRI. Magn Reson Med 78:1757-1766, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Spiral waves characterization: Implications for an automated cardiodynamic tissue characterization.

    PubMed

    Alagoz, Celal; Cohen, Andrew R; Frisch, Daniel R; Tunç, Birkan; Phatharodom, Saran; Guez, Allon

    2018-07-01

    Spiral waves are phenomena observed in cardiac tissue especially during fibrillatory activities. Spiral waves are revealed through in-vivo and in-vitro studies using high density mapping that requires special experimental setup. Also, in-silico spiral wave analysis and classification is performed using membrane potentials from entire tissue. In this study, we report a characterization approach that identifies spiral wave behaviors using intracardiac electrogram (EGM) readings obtained with commonly used multipolar diagnostic catheters that perform localized but high-resolution readings. Specifically, the algorithm is designed to distinguish between stationary, meandering, and break-up rotors. The clustering and classification algorithms are tested on simulated data produced using a phenomenological 2D model of cardiac propagation. For EGM measurements, unipolar-bipolar EGM readings from various locations on tissue using two catheter types are modeled. The distance measure between spiral behaviors are assessed using normalized compression distance (NCD), an information theoretical distance. NCD is a universal metric in the sense it is solely based on compressibility of dataset and not requiring feature extraction. We also introduce normalized FFT distance (NFFTD) where compressibility is replaced with a FFT parameter. Overall, outstanding clustering performance was achieved across varying EGM reading configurations. We found that effectiveness in distinguishing was superior in case of NCD than NFFTD. We demonstrated that distinct spiral activity identification on a behaviorally heterogeneous tissue is also possible. This report demonstrates a theoretical validation of clustering and classification approaches that provide an automated mapping from EGM signals to assessment of spiral wave behaviors and hence offers a potential mapping and analysis framework for cardiac tissue wavefront propagation patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Dynamic compression of synthetic diamond windows (final report for LDRD project 93531).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolan, Daniel H.,

    2008-09-01

    Diamond is an attractive dynamic compression window for many reasons: high elastic limit,large mechanical impedance, and broad transparency range. Natural diamonds, however, aretoo expensive to be used in destructive experiments. Chemical vapor deposition techniquesare now able to produce large single-crystal windows, opening up many potential dynamiccompression applications. This project studied the behavior of synthetic diamond undershock wave compression. The results suggest that synthetic diamond could be a usefulwindow in this field, though complete characterization proved elusive.3

  16. Nonlinear model for thermal effects in free-electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter, E., E-mail: peterpeter@uol.com.br; Endler, A., E-mail: aendler@if.ufrgs.br; Rizzato, F. B., E-mail: rizzato@if.ufrgs.br

    2014-11-15

    In the present work, we extend results of a previous paper [Peter et al., Phys. Plasmas 20, 12 3104 (2013)] and develop a semi-analytical model to account for thermal effects on the nonlinear dynamics of the electron beam in free-electron lasers. We relax the condition of a cold electron beam but still use the concept of compressibility, now associated with a warm beam model, to evaluate the time scale for saturation and the peak laser intensity in high-gain regimes. Although vanishing compressibilites and the associated divergent densities are absent in warm models, a series of discontinuities in the electron density precedemore » the saturation process. We show that full wave-particle simulations agree well with the predictions of the model.« less

  17. Experimental characterization and constitutive modeling of the mechanical behavior of molybdenum under electromagnetically applied compression-shear ramp loading

    DOE PAGES

    Alexander, C. Scott; Ding, Jow -Lian; Asay, James Russell

    2016-03-09

    Magnetically applied pressure-shear (MAPS) is a new experimental technique that provides a platform for direct measurement of material strength at extreme pressures. The technique employs an imposed quasi-static magnetic field and a pulsed power generator that produces an intense current on a planar driver panel, which in turn generates high amplitude magnetically induced longitudinal compression and transverse shear waves into a planar sample mounted on the drive panel. In order to apply sufficiently high shear traction to the test sample, a high strength material must be used for the drive panel. Molybdenum is a potential driver material for the MAPSmore » experiment because of its high yield strength and sufficient electrical conductivity. To properly interpret the results and gain useful information from the experiments, it is critical to have a good understanding and a predictive capability of the mechanical response of the driver. In this work, the inelastic behavior of molybdenum under uniaxial compression and biaxial compression-shear ramp loading conditions is experimentally characterized. It is observed that an imposed uniaxial magnetic field ramped to approximately 10 T through a period of approximately 2500 μs and held near the peak for about 250 μs before being tested appears to anneal the molybdenum panel. In order to provide a physical basis for model development, a general theoretical framework that incorporates electromagnetic loading and the coupling between the imposed field and the inelasticity of molybdenum was developed. Based on this framework, a multi-axial continuum model for molybdenum under electromagnetic loading is presented. The model reasonably captures all of the material characteristics displayed by the experimental data obtained from various experimental configurations. Additionally, data generated from shear loading provide invaluable information not only for validating but also for guiding the development of the material model for multiaxial loadings.« less

  18. Failure Waves in Glass and Ceramics under Shock Compression

    NASA Astrophysics Data System (ADS)

    Singh Brar, N.

    1999-06-01

    The response of various types of glasses (fused silica, borosilicates, soda-lime, and lead filled) to shock wave loading, especially the failure of glass behind the shock wave through the ``so called" failure wave or front has been the subject of intense research among a number of investigators. The variations in material properties across this front include complete loss of tensile (spall) strength, loss in shear strength, reduction in acoustic impedance, and opacity to light. Both the Stress and velocity history from VISAR measurements have shown that the failure front propagates at a speed of 1.5 to 2.5 mm/s, depending on the peak shock stress level. The shear strength [τ = 1/2(σ_x-σ_y)] behind the failure front, determined using embedded transverse gauges, is found to decrease to about 2 GPa for soda-lime, borosilicate, and filled glasses. The optical (high-speed photography) observations also confirm the formation of failure front. There is a general agreement among various researchers on these observations. However, three proposed mechanisms for the formation of failure front are based on totally different formulations. The first, due to Clifton is based on the process of nucleation of local densification due to shock compression followed by shear failure around inhomogeneities resulting in phase boundary between the comminuted from the intact material. The second, proposed by Grady involves the transfer of elastic shear strain energy to dilatant strain energy as a result of severe microcracking originating from impact face. The third, by Espinosa and Brar proposes that the front is created through shear microcracks, which nucleate and propagate from the impact face, as originally suggested by Kanel. This mechanism is incorporated in multiple-plane model and simulations predict the increase in lateral stress and an observed reduction in spall strength behind the failure front. Failure front studies, in terms of loss of shear strength, have been recently extended to alumina and SiC ceramics by Bourne et. al.

  19. Compressive passive millimeter wave imager

    DOEpatents

    Gopalsami, Nachappa; Liao, Shaolin; Elmer, Thomas W; Koehl, Eugene R; Heifetz, Alexander; Raptis, Apostolos C

    2015-01-27

    A compressive scanning approach for millimeter wave imaging and sensing. A Hadamard mask is positioned to receive millimeter waves from an object to be imaged. A subset of the full set of Hadamard acquisitions is sampled. The subset is used to reconstruct an image representing the object.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silin, D.; Goloshubin, G.

    Analysis of compression wave propagation in a poroelastic medium predicts a peak of reflection from a high-permeability layer in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of Biot's model of poroelasticity. A review of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and Darcy's law suggests an alternative new physical interpretation of some coefficients ofmore » the classical poroelasticity. The velocity of wave propagation, the attenuation factor, and the wave number, are expressed in the form of power series with respect to a small dimensionless parameter. The absolute value of this parameter is equal to the product of the kinematic reservoir fluid mobility and the wave frequency. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly-permeable layer (a lens). Practical applications of the obtained asymptotic formulae are seismic modeling, inversion, and at-tribute analysis.« less

  1. Evolutions of elastic-plastic shock compression waves in different materials

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Zaretsky, E. B.; Razorenov, S. V.; Savinykh, A. S.; Garkushin, G. V.

    2017-01-01

    In the paper, we discuss such unexpected features in the wave evolution in solids as a departure from self-similar development of the wave process which is accompanied with apparent sub-sonic wave propagation, changes of shape of elastic precursor wave as a result of variations in the material structure and the temperature, unexpected peculiarities of reflection of elastic-plastic waves from free surface, effects of internal friction at shock compression of glasses and some other effects.

  2. Peculiarities of evolutions of elastic-plastic shock compression waves in different materials

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Savinykh, A. S.; Garkushin, G. V.; Razorenov, S. V.; Ashitkov, S. I.; Zaretsky, E. B.

    2016-11-01

    In the paper, we discuss such unexpected features in the wave evolution in solids as strongly nonlinear uniaxial elastic compression in a picosecond time range, a departure from self-similar development of the wave process which is accompanied with apparent sub-sonic wave propagation, changes of shape of elastic precursor wave as a result of variations in the material structure and the temperature, unexpected peculiarities of reflection of elastic-plastic waves from free surface.

  3. Dynamic compression of copper to over 450 GPa: A high-pressure standard

    DOE PAGES

    Kraus, R. G.; Davis, J. -P.; Seagle, C. T.; ...

    2016-04-12

    We obtained an absolute stress-density path for shocklessly compressed copper to over 450 GPa. A magnetic pressure drive is temporally tailored to generate shockless compression waves through over 2.5-mm-thick copper samples. Furthermore, the free-surface velocity data is analyzed for Lagrangian sound velocity using the iterative Lagrangian analysis (ILA) technique, which relies upon the method of characteristics. We correct for the effects of strength and plastic work heating to determine an isentropic compression path. By assuming a Debye model for the heat capacity, we can further correct the isentrope to an isotherm. Finally, our determination of the isentrope and isotherm ofmore » copper represents a highly accurate pressure standard for copper to over 450 GPa.« less

  4. Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light

    NASA Astrophysics Data System (ADS)

    Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander

    2018-02-01

    A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.

  5. High-Speed Photography of Detonation Propagation in Dynamically Precompressed Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Petel, O. E.; Higgins, A. J.; Yoshinaka, A. C.; Zhang, F.

    2007-12-01

    The propagation of detonation in shock-compressed nitromethane was observed with a high-speed framing camera. The test explosive, nitromethane, was compressed by a reverberating shock wave to pressures as high as 10 GPa prior to being detonated by a secondary detonation event. The pressure and density in the test explosive prior to detonation were determined using two methods: manganin stress gauge measurements and LS-DYNA simulations. The velocity of the detonation front was determined from consecutive frames and correlated to the density of the reverberating shock-compressed explosive prior to detonation. Observing detonation propagation under these non-ambient conditions provides data which can be useful in the validation of equation of state models.

  6. High-speed reconstruction of compressed images

    NASA Astrophysics Data System (ADS)

    Cox, Jerome R., Jr.; Moore, Stephen M.

    1990-07-01

    A compression scheme is described that allows high-definition radiological images with greater than 8-bit intensity resolution to be represented by 8-bit pixels. Reconstruction of the images with their original intensity resolution can be carried out by means of a pipeline architecture suitable for compact, high-speed implementation. A reconstruction system is described that can be fabricated according to this approach and placed between an 8-bit display buffer and the display's video system thereby allowing contrast control of images at video rates. Results for 50 CR chest images are described showing that error-free reconstruction of the original 10-bit CR images can be achieved.

  7. Intensity dependence of non-linear kinetic behaviour of stimulated Raman scattering in fusion relevant plasmas

    NASA Astrophysics Data System (ADS)

    Mašek, Martin; Rohlena, Karel

    2015-05-01

    Influence of kinetic effects on 3-wave interaction was examined within the frame of stimulated Raman backward scattering (SRBS) in a rarefied laser corona. The plasma is supposed to be weakly collisional with a negligible density gradient. The model is centred on the physical situation of shock ignition at a large scale direct drive compression experiments. The modelling uses a 1D geometry in a Maxwell-Vlasov model. The method used is a truncated Fourier-Hermite expansion numerically stabilized by a model collisional term with a realistic value of the collision frequency. In parallel, besides the linear theory of SRBS, a coupled mode 3-wave equation system (laser driving wave, Raman back-scattered wave and the daughter forward scattered plasma wave) is solved to demonstrate the correspondence between the full kinetic model and 3-wave interaction with no electron kinetics involved to identify the differences between both the solutions arising due to the electron kinetic effects. We concentrated mainly on the Raman reflectivity, which is one of the important parameters controlling the efficiency of the shock ignition scheme. It was found that the onset of the kinetic effects has a distinct intensity threshold, above which the Raman reflectivity may go down due to the electron kinetics. In addition, we were trying to identify the most important features of the electron phase space behaviour, such as particle trapping in potential minima of the generated plasma wave and its consequences for the 3-wave interaction. The role of the trapped electrons seems to be crucial for a deformation of the plasma wave dispersion curve, as indicated in some earlier work.

  8. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X. T., E-mail: xthe@iapcm.ac.cn; Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871; IFSA Collaborative Innovation Center of MoE, Shanghai Jiao-Tong University, Shanghai 200240

    A new hybrid-drive (HD) nonisobaric ignition scheme of inertial confinement fusion (ICF) is proposed, in which a HD pressure to drive implosion dynamics increases via increasing density rather than temperature in the conventional indirect drive (ID) and direct drive (DD) approaches. In this HD (combination of ID and DD) scheme, an assembled target of a spherical hohlraum and a layered deuterium-tritium capsule inside is used. The ID lasers first drive the shock to perform a spherical symmetry implosion and produce a large-scale corona plasma. Then, the DD lasers, whose critical surface in ID corona plasma is far from the radiationmore » ablation front, drive a supersonic electron thermal wave, which slows down to a high-pressure electron compression wave, like a snowplow, piling up the corona plasma into high density and forming a HD pressurized plateau with a large width. The HD pressure is several times the conventional ID and DD ablation pressure and launches an enhanced precursor shock and a continuous compression wave, which give rise to the HD capsule implosion dynamics in a large implosion velocity. The hydrodynamic instabilities at imploding capsule interfaces are suppressed, and the continuous HD compression wave provides main pdV work large enough to hotspot, resulting in the HD nonisobaric ignition. The ignition condition and target design based on this scheme are given theoretically and by numerical simulations. It shows that the novel scheme can significantly suppress implosion asymmetry and hydrodynamic instabilities of current isobaric hotspot ignition design, and a high-gain ICF is promising.« less

  9. In Situ Detection of Strong Langmuir Turbulence Processes in Solar Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Golla, Thejappa; Macdowall, Robert J.; Bergamo, M.

    2012-01-01

    The high time resolution observations obtained by the WAVES experiment of the STEREO spacecraft in solar type III radio bursts show that Langmuir waves often occur as intense localized wave packets. These wave packets are characterized by short durations of only a few ms and peak intensities, which well exceed the supersonic modulational instability (MI) thresholds. These timescales and peak intensities satisfy the criterion of the solitons collapsed to spatial scales of a few hundred Debye lengths. The spectra of these wave packets consist of primary spectral peaks corresponding to beam-resonant Langmuir waves, two or more sidebands corresponding to down-shifted and up-shifted daughter Langmuir waves, and low frequency enhancements below a few hundred Hz corresponding to daughter ion sound waves. The frequencies and wave numbers of these spectral components satisfy the resonance conditions of the modulational instability (MI). Moreover, the tricoherences, computed using trispectral analysis techniques show that these spectral components are coupled to each other with a high degree of coherency as expected of the MI type of four wave interactions. The high intensities, short scale lengths, sideband spectral structures and low frequency spectral enhancements and, high levels of tricoherences amongst the spectral components of these wave packets provide unambiguous evidence for the supersonic MI and related strong turbulence processes in type III radio bursts. The implication of these observations include: (1) the MI and related strong turbulence processes often occur in type III source regions, (2) the strong turbulence processes probably play very important roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation at the fundamental and second harmonic of the electron plasma frequency, fpe, and (3) the Langmuir collapse probably follows the route of MI in type III radio bursts.

  10. An ultrasonic technique for measuring stress in fasteners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, K. J.; Day, P.; Byron, D.

    1999-12-02

    High temperature bolting alloys are extensively used in the thermal power generation industry as for example, reheat ESV and Governor valve studs. Remnant life assessment methodologies and plant maintenance procedures require the monitoring of the operational stress levels in these fasteners. Some conventional ultrasonic techniques require longitudinal wave measurements to be undertaken when the nut on the bolt is loosened and then re-tightened. Other techniques use a combination of shear waves and longitudinal waves. In this paper, the problems and pitfalls associated with various ultrasonic techniques for measuring stress in bolts, is discussed. An ultrasonic technique developed for measuring themore » stress in Durehete 1055 bolts is presented. Material from a textured rolled bar has been used as a test bed in the development work. The technique uses shear wave birefringence and compression waves at several frequencies to measure texture, fastener length and the average stress. The technique was developed by making ultrasonic measurements on bolts tensioned in universal testing machines and a hydraulic nut. The ultrasonic measurements of residual stress have been checked against strain gauge measurements. The Durehete bolts have a hollow cylinder geometry of restricted dimensions, which significantly alters compression and shear wave velocities from bulk values and introduces hoop stresses which can be measured by rotating the polarization of the shear wave probe. Modelling of the experimental results has been undertaken using theories for the elastic wave propagation through waveguides. The dispersion equations allow the velocity and length of the fastener to be measured ultrasonically in some situations where the length of the fastener can not be measured directly with a vernier caliper or micrometer and/or where it is undesirable to loosen nuts to take calibration readings of the shear and compression wave velocities.« less

  11. Conjugate observations of electromagnetic ion cyclotron waves associated with traveling convection vortex events

    NASA Astrophysics Data System (ADS)

    Kim, Hyomin; Clauer, C. Robert; Gerrard, Andrew J.; Engebretson, Mark J.; Hartinger, Michael D.; Lessard, Marc R.; Matzka, Jürgen; Sibeck, David G.; Singer, Howard J.; Stolle, Claudia; Weimer, Daniel R.; Xu, Zhonghua

    2017-07-01

    We report on simultaneous observations of electromagnetic ion cyclotron (EMIC) waves associated with traveling convection vortex (TCV) events caused by transient solar wind dynamic pressure (Pd) impulse events. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft located near the magnetopause observed radial fluctuations of the magnetopause, and the GOES spacecraft measured sudden compressions of the magnetosphere in response to sudden increases in Pd. During the transient events, EMIC waves were observed by interhemispheric conjugate ground-based magnetometer arrays as well as the GOES spacecraft. The spectral structures of the waves appear to be well correlated with the fluctuating motion of the magnetopause, showing compression-associated wave generation. In addition, the wave features are remarkably similar in conjugate hemispheres in terms of bandwidth, quasiperiodic wave power modulation, and polarization. Proton precipitation was also observed by the DMSP spacecraft during the wave events, from which the wave source region is estimated to be 72°-74° in magnetic latitude, consistent with the TCV center. The confluence of space-borne and ground instruments including the interhemispheric, high-latitude, fluxgate/induction coil magnetometer array allows us to constrain the EMIC source region while also confirming the relationship between EMIC waves and the TCV current system.

  12. High Strain Rate and Shock-Induced Deformation in Metals

    NASA Astrophysics Data System (ADS)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as results from density functional theory calculations.

  13. On the impact of adverse pressure gradient on the supersonic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Wang, Qian-Cheng; Wang, Zhen-Guo; Zhao, Yu-Xin

    2016-11-01

    By employing the particle image velocimetry, the mean and turbulent characteristics of a Mach 2.95 turbulent boundary layer are experimentally investigated without the impact of curvature. The physical mechanism with which the streamwise adverse pressure gradient affects the supersonic boundary layer is revealed. The data are compared to that of the concave boundary layer with similar streamwise distributions of wall static pressure to clarify the separate impacts of the adverse pressure gradient and the concave curvature. The logarithmic law is observed to be well preserved for both of the cases. The dip below the logarithmic law is not observed in present investigation. Theoretical analysis indicates that it could be the result of compromise between the opposite impacts of the compression wave and the increased turbulent intensity. Compared to the zero pressure gradient boundary layer, the principal strain rate and the turbulent intensities are increased by the adverse pressure gradient. The shear layer formed due the hairpin packets could be sharpened by the compression wave, which leads to higher principal strain rate and the associated turbulent level. Due to the additional impact of the centrifugal instability brought by the concave wall, even higher turbulent intensities than that of the adverse pressure gradient case are introduced. The existence of velocity modes within the zero pressure gradient boundary layer suggests that the large scale motions are statistically well organized. The generation of new velocity modes due to the adverse pressure gradient indicates that the turbulent structure is changed by the adverse pressure gradient, through which more turbulence production that cannot be effectively predicted by the Reynolds-stress transport equations could be brought.

  14. Onboard Processing of Electromagnetic Measurements for the Luna - Glob Mission

    NASA Astrophysics Data System (ADS)

    Hruska, F.; Kolmasova, I.; Santolik, O.; Skalski, A.; Pronenko, V.; Belyayev, S.; Lan, R.; Uhlir, L.

    2013-12-01

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  15. Instrumentation for the Future Lunar Missions: Multicomponent Electromagnetic Measurements at Long Wavelengths

    NASA Astrophysics Data System (ADS)

    Kolmasova, Ivana; Santolik, Ondrej; Belyayev, Serhiy; Uhlir, Ludek; Skalsky, Alexander; Pronenko, Vira; Lan, Radek

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  16. Possible method for diagnosing waves in dusty plasmas with magnetized charged dust particulates

    NASA Astrophysics Data System (ADS)

    Rosenberg, M.; Shukla, P. K.

    2005-05-01

    We discuss theoretically a possible method for diagnosing some features of dust wave behavior in a magnetized plasma containing small (tens of nm) charged dust grains whose motion is magnetized. It is easier to magnetize a small dust particle because its charge-to-mass ratio increases as its size decreases. However, it is more difficult to use the backscattering of light from the dust as a diagnostic as the dust size decreases below the diffraction limit. The idea proposed here is to measure the reduction in transmitted UV or optical light intensity due to enhanced extinction by small metal dust particles that have surface plasmon resonances at those wavelengths. Such measurements could indicate the spatial location of the dust density compressions or rarefactions, which may yield information on the dust wave behavior, or perhaps even charged dust transport. Parameters that may be relevant to possible laboratory dusty plasma experiments are discussed.

  17. Solar-flare-induced Forbush decreases - Dependence on shock wave geometry

    NASA Technical Reports Server (NTRS)

    Thomas, B. T.; Gall, R.

    1984-01-01

    It is argued that the principal mechanism for the association of Forbush decreases with the passage of a solar flare shock wave is prolonged containment of cosmic ray particles behind the flare compression region, which acts as a semipermeable obstacle to particle motion along the field lines, leading to additional adiabatic cooling of the particles. Liouville's theorem is used to calculate the instantaneous distribution function at 1 AU for each particle arriving at the earth. By averaging over a large number of individual estimates, a representative estimate of the omnidirectional phase space density and the corresponding particle intensity is obtained. The energy change of individual particles at the shocks is found to be small in comparison to the energy lost by adiabatic cooling of the cosmic rays between the shock wave and the sun. The effects of particle rigidity, diffusion coefficient, and flare longitude on the magnitude of the Forbush decrease are quantitatively investigated.

  18. Shock-induced solitary waves in granular crystals.

    PubMed

    Hasan, M Arif; Nemat-Nasser, Sia

    2018-02-01

    Solitary waves (SWs) are generated in monoatomic (homogeneous) lightly contacting spherical granules by an applied input force of any time-variation and intensity. We consider finite duration shock loads on one-dimensional arrays of granules and focus on the transition regime that leads to the formation of SWs. Based on geometrical and material properties of the granules and the properties of the input shock, we provide explicit analytic expressions to calculate the peak value of the compressive contact force at each contact point in the transition regime that precedes the formation of a primary solitary wave. We also provide explicit expressions to estimate the number of granules involved in the transition regime and show its dependence on the characteristics of the input shock and material/geometrical properties of the interacting granules. Finally, we assess the accuracy of our theoretical results by comparing them with those obtained through numerical integration of the equations of motion.

  19. Compressive evaluation of homogeneous and graded epoxy-glass particulate composites.

    PubMed

    Seaglar, J; Rousseau, C-E

    2015-04-01

    The propagation of stress waves in epoxy-glass particulate composites and graded materials was studied experimentally. Materials tested in this study consisted of an epoxy matrix with various concentrations of spherical glass particles having a mean diameter of 42μm. Plate impact experiments were performed using a gas gun. Embedded within the specimens were manganin stress gauges used to record propagating compressive longitudinal stress waves through the material. High strain rate experiments using a Split Hopkinson Pressure Bar (SHPB) apparatus were also performed to evaluate the dynamic strength of the specimens, while quasi-static compression tests were undertaken to characterize their quasi-static behavior. Ultrasonic wave speed measurements were carried-out in order to obtain additional material properties and characterize the gradation in functionally graded materials (FGM). It was found that low volume fractions of particles are detrimental to the performance of the material under impact loading, while concentrations in the range of about 30 to 45% by volume exhibit characteristics of higher degrees of scattering. This suggests that materials in this latter range would be more effective in the thwarting of destructive shock waves than the homogeneous matrix material. Impact testing of FGM specimens suggests that impact loading on the stiff (high volume fraction) face results in much higher levels of scattering. Therefore, such materials would be effective for use in light weight armor or as shielding materials due to their effective attenuation of mechanical impulses. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Publications - GMC 192 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 192 Publication Details Title: Compressive and shear wave velocity measurements as brine , Compressive and shear wave velocity measurements as brine-saturated measurements (volume 1) and as soltrol

  1. Effect of viscosity on the wave propagation: Experimental determination of compression and expansion pulse wave velocity in fluid-fill elastic tube.

    PubMed

    Stojadinović, Bojana; Tenne, Tamar; Zikich, Dragoslav; Rajković, Nemanja; Milošević, Nebojša; Lazović, Biljana; Žikić, Dejan

    2015-11-26

    The velocity by which the disturbance travels through the medium is the wave velocity. Pulse wave velocity is one of the main parameters in hemodynamics. The study of wave propagation through the fluid-fill elastic tube is of great importance for the proper biophysical understanding of the nature of blood flow through of cardiovascular system. The effect of viscosity on the pulse wave velocity is generally ignored. In this paper we present the results of experimental measurements of pulse wave velocity (PWV) of compression and expansion waves in elastic tube. The solutions with different density and viscosity were used in the experiment. Biophysical model of the circulatory flow is designed to perform measurements. Experimental results show that the PWV of the expansion waves is higher than the compression waves during the same experimental conditions. It was found that the change in viscosity causes a change of PWV for both waves. We found a relationship between PWV, fluid density and viscosity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains

    NASA Astrophysics Data System (ADS)

    Przedborski, Michelle; Anco, Stephen C.

    2017-09-01

    A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.

  3. Nonlinear fractional waves at elastic interfaces

    NASA Astrophysics Data System (ADS)

    Kappler, Julian; Shrivastava, Shamit; Schneider, Matthias F.; Netz, Roland R.

    2017-11-01

    We derive the nonlinear fractional surface wave equation that governs compression waves at an elastic interface that is coupled to a viscous bulk medium. The fractional character of the differential equation comes from the fact that the effective thickness of the bulk layer that is coupled to the interface is frequency dependent. The nonlinearity arises from the nonlinear dependence of the interface compressibility on the local compression, which is obtained from experimental measurements and reflects a phase transition at the interface. Numerical solutions of our nonlinear fractional theory reproduce several experimental key features of surface waves in phospholipid monolayers at the air-water interface without freely adjustable fitting parameters. In particular, the propagation distance of the surface wave abruptly increases at a threshold excitation amplitude. The wave velocity is found to be of the order of 40 cm/s in both experiments and theory and slightly increases as a function of the excitation amplitude. Nonlinear acoustic switching effects in membranes are thus shown to arise purely based on intrinsic membrane properties, namely, the presence of compressibility nonlinearities that accompany phase transitions at the interface.

  4. Dynamic Consolidation and Investigation of Nanostructural W-Cu / W-Y Cylindrical Billets

    NASA Astrophysics Data System (ADS)

    Godibadze, B.; Dgebuadze, A.; Chagelishvili, E.; Mamniashvili, G.; Peikrishvili, A.

    2018-03-01

    The main purpose of presented work is to obtain W-Cu & W-Y cylindrical bulk nanostructured billets by explosive consolidation technology (ECT) in hot condition, with low porosity near to theoretical densities and improved physical / mechanical properties. Nanocomposites were subjected to densification into cylindrical steel tube containers using hot explosive consolidation (HEC) technology to fabricate high dense cylindrical billets. The first stage : Preliminary explosive densification of the precursor powder blend is carried out at room temperature with a loading intensity up to 10GPa to increase the initial density and to activate the particle surfaces in the blend. The second stage investigation were carried out for the same already predensified billets, but consolidation were conducted in hot conditions, after heating of samples in between 940-11000C, the intensity of loading was equal to 10GPa. Consolidated different type of W-Cu composition containing 10-40% of nanoscale W, during investigation showed that the combination of high temperatures (above 940°C) and two-stage shock wave compression was beneficial to the consolidation of the incompatible pair W-Cu composites, resulting in high densities, good integrity and good electronic properties. The structure and property of the samples obtained, depended on the sizes of tungsten particles. It was established that in comparison with W-Cu composites with coarse tungsten the application of nanoscale W precursors and depending of content of W gives different result. Tungsten is a prime material candidate for the first wall of a future fusion reactor. In this study, the microstructure and microhardness of tungsten-yttrium (W-Y) composites were investigated as a function of Y doping content (0.5÷2 wt. %). It was found that the crystallite sizes and the powder particle sizes were increased as a result of the increase of Y content. Nearly fully dense materials were obtained for W-Y alloys when the Y content was higher than 0.5 wt. %. Investigation revealed that the Y rich phases were complex (W-Y) oxides formed during the sintering process. Also very interesting to use doping chromium with yttrium-containing alloys. e.g. (W - 10÷12 Cr -0.5÷2 Y) wt. %. The extent up to which yttrium acts as an active element improving the adherence and stability of the protective Cr 2 O 3 layer formed during oxidation is assessed. The structure and characteristics of the obtained samples depends on the phase content, distribution of phases and processing parameters during explosive synthesis and consolidation. Cu – (10-30%) W powder mixtures were formed into cylindrical rods using a hot shock wave consolidation (HSWC) process. Different type of Cu - W precursor composition containing 10, 20 and 30% of nanoscale W were consolidated near theoretical density under 900°C The loading intensity was under 10 GPa. The investigation showed that the combination of high temperatures (above 800°C) and two stage shock wave compression was beneficial to the consolidation of the W-Cu & W-Y composites, resulting in high densities, good integrity and good electronic properties.

  5. Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity

    NASA Astrophysics Data System (ADS)

    Das, S.; Sahoo, T.; Meylan, M. H.

    2018-01-01

    The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.

  6. Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity.

    PubMed

    Das, S; Sahoo, T; Meylan, M H

    2018-01-01

    The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.

  7. Development of Multi-Physics Dynamics Models for High-Frequency Large-Amplitude Structural Response Simulation

    NASA Technical Reports Server (NTRS)

    Derkevorkian, Armen; Peterson, Lee; Kolaini, Ali R.; Hendricks, Terry J.; Nesmith, Bill J.

    2016-01-01

    An analytic approach is demonstrated to reveal potential pyroshock -driven dynamic effects causing power losses in the Thermo -Electric (TE) module bars of the Mars Science Laboratory (MSL) Multi -Mission Radioisotope Thermoelectric Generator (MMRTG). This study utilizes high- fidelity finite element analysis with SIERRA/PRESTO codes to estimate wave propagation effects due to large -amplitude suddenly -applied pyro shock loads in the MMRTG. A high fidelity model of the TE module bar was created with approximately 30 million degrees -of-freedom (DOF). First, a quasi -static preload was applied on top of the TE module bar, then transient tri- axial acceleration inputs were simultaneously applied on the preloaded module. The applied input acceleration signals were measured during MMRTG shock qualification tests performed at the Jet Propulsion Laboratory. An explicit finite element solver in the SIERRA/PRESTO computational environment, along with a 3000 processor parallel super -computing framework at NASA -AMES, was used for the simulation. The simulation results were investigated both qualitatively and quantitatively. The predicted shock wave propagation results provide detailed structural responses throughout the TE module bar, and key insights into the dynamic response (i.e., loads, displacements, accelerations) of critical internal spring/piston compression systems, TE materials, and internal component interfaces in the MMRTG TE module bar. They also provide confidence on the viability of this high -fidelity modeling scheme to accurately predict shock wave propagation patterns within complex structures. This analytic approach is envisioned for modeling shock sensitive hardware susceptible to intense shock environments positioned near shock separation devices in modern space vehicles and systems.

  8. Ventriculoarterial coupling in palliated hypoplastic left heart syndrome: Noninvasive assessment of the effects of surgical arch reconstruction and shunt type.

    PubMed

    Biglino, Giovanni; Giardini, Alessandro; Ntsinjana, Hopewell N; Schievano, Silvia; Hsia, Tain-Yen; Taylor, Andrew M

    2014-10-01

    To assess the coupling efficiency in hypoplastic left heart syndrome, considering the effect of surgical arch reconstruction and the shunt type received during the Norwood procedure. Ventriculoarterial coupling was assessed before Fontan completion in 32 patients with hypoplastic left heart syndrome (19 modified Blalock-Taussig and 13 Sano shunts at stage 1). Cardiovascular magnetic resonance data were analyzed, deriving functional parameters and 3-dimensional volumes. Dimensional indexes were computed from 3-dimensional data sets as the area ratio of the isthmus to the descending aorta (Risthmus) and the isthmus to surgically enlarged transverse arch (Rarch). Wave intensity was calculated from cardiac magnetic resonance, using the peaks of the forward compression and expansion waves in early and late systole as surrogate indicators of ventriculoarterial coupling. Aortic distensibility (3.6±2.7×10(-3) 1/mm Hg) was not associated with the time elapsed from stage 1 palliation (P=.94), suggesting an early loss of elasticity that did not progress thereafter. Risthmus was 1.0±0.4, and Rarch was 0.3±0.1, indicating the dilated reconstructed arch was the main anatomic feature. The forward compression wave correlated significantly with Rarch (R2=0.23, P=.006) but not with Risthmus (R2<0.01, P=.63). Patients with a reduced ejection fraction exhibited a larger ventricular mass (R2=0.28, P=.003). The Sano shunt patients had a lower ejection fraction (51%±6% vs 57%±6%, P=.02); however, neither the forward compression nor expansion wave varied significantly between shunt type or the other functional parameters. Ventriculoarterial coupling in operated hypoplastic left heart syndrome was affected by aortic arch size mismatch but not by the type of shunt placed at the Norwood operation. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  9. Explorer 45 wave observations during the large magnetic storm of August 4-5, 1972

    NASA Technical Reports Server (NTRS)

    Taylor, W. W. L.; Anderson, R. G.

    1977-01-01

    The magnetospheric compression associated with the very large magnetic storm of August 4-5, 1972, provided an opportunity for Explorer 45 to observe plasma waves in the magnetosphere and the magnetosheath during extremely disturbed conditions. Electrostatic noise bursts were observed near the plasmapause in electric-field channels from 35 Hz to 5.62 kHz. In the outer magnetosphere, electric-field noise bands apparently harmonically related to the electron gyrofrequency with components as low as 3 kHz and as high as 50 kHz were observed. The electric field of the fundamental was perpendicular to the magnetic-field vector. A mechanism including the electron cyclotron instability may generate the noise band. Hiss of 100-1000 Hz was observed in the outer magnetosphere. The electromagnetic hiss was generally weak and was observed in the magnetic wide-band data only when it was strong. In the magnetosheath broad band, incoherent noise (hiss) was observed from 1 Hz to 100 kHz. This magnetosheath hiss was the strongest phenomenon observed by the plasma-wave detectors during the lifetime of Explorer 45. The highest intensities of magnetosheath hiss occurred at the magnetopause. Its broad-band nature suggests that magnetosheath hiss was generated locally. Broad-band noise bursts and short bursts of chorus were also observed in the magnetosheath.

  10. Existence and Stability of Compressible Current-Vortex Sheets in Three-Dimensional Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Qiang; Wang, Ya-Guang

    2008-03-01

    Compressible vortex sheets are fundamental waves, along with shocks and rarefaction waves, in entropy solutions to multidimensional hyperbolic systems of conservation laws. Understanding the behavior of compressible vortex sheets is an important step towards our full understanding of fluid motions and the behavior of entropy solutions. For the Euler equations in two-dimensional gas dynamics, the classical linearized stability analysis on compressible vortex sheets predicts stability when the Mach number M > sqrt{2} and instability when M < sqrt{2} ; and Artola and Majda’s analysis reveals that the nonlinear instability may occur if planar vortex sheets are perturbed by highly oscillatory waves even when M > sqrt{2} . For the Euler equations in three dimensions, every compressible vortex sheet is violently unstable and this instability is the analogue of the Kelvin Helmholtz instability for incompressible fluids. The purpose of this paper is to understand whether compressible vortex sheets in three dimensions, which are unstable in the regime of pure gas dynamics, become stable under the magnetic effect in three-dimensional magnetohydrodynamics (MHD). One of the main features is that the stability problem is equivalent to a free-boundary problem whose free boundary is a characteristic surface, which is more delicate than noncharacteristic free-boundary problems. Another feature is that the linearized problem for current-vortex sheets in MHD does not meet the uniform Kreiss Lopatinskii condition. These features cause additional analytical difficulties and especially prevent a direct use of the standard Picard iteration to the nonlinear problem. In this paper, we develop a nonlinear approach to deal with these difficulties in three-dimensional MHD. We first carefully formulate the linearized problem for the current-vortex sheets to show rigorously that the magnetic effect makes the problem weakly stable and establish energy estimates, especially high-order energy estimates, in terms of the nonhomogeneous terms and variable coefficients. Then we exploit these results to develop a suitable iteration scheme of the Nash Moser Hörmander type to deal with the loss of the order of derivative in the nonlinear level and establish its convergence, which leads to the existence and stability of compressible current-vortex sheets, locally in time, in three-dimensional MHD.

  11. Isentropic compressive wave generator impact pillow and method of making same

    DOEpatents

    Barker, Lynn M.

    1985-01-01

    An isentropic compressive wave generator and method of making same. The w generator comprises a disk or flat "pillow" member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.

  12. Shock-Wave Pulse Compression and Stretching of Dodecane and Mineral Oils

    NASA Astrophysics Data System (ADS)

    Bannikova, I. A.; Zubareva, A. N.; Utkin, A. V.

    2018-04-01

    The behavior of dodecane, vacuum, and transformer oils under shock-wave pulse compression and stretching are studied experimentally. The wave profiles are registered using a VISAR laser interferometer. The shock adiabats, the dependence of the sound velocity on the pressure, and the maximum negative pressures developed in the studied liquids are determined. It is shown that the negative pressure value does not depend on the deformation rate in the case of oils and is a strong function of the compression pulse amplitude in the case of dodecane.

  13. Compression failure of angle-ply laminates

    NASA Technical Reports Server (NTRS)

    Peel, Larry D.; Hyer, Michael W.; Shuart, Mark J.

    1991-01-01

    The present work deals with modes and mechanisms of failure in compression of angle-ply laminates. Experimental results were obtained from 42 angle-ply IM7/8551-7a specimens with a lay-up of ((plus or minus theta)/(plus or minus theta)) sub 6s where theta, the off-axis angle, ranged from 0 degrees to 90 degrees. The results showed four failure modes, these modes being a function of off-axis angle. Failure modes include fiber compression, inplane transverse tension, inplane shear, and inplane transverse compression. Excessive interlaminar shear strain was also considered as an important mode of failure. At low off-axis angles, experimentally observed values were considerably lower than published strengths. It was determined that laminate imperfections in the form of layer waviness could be a major factor in reducing compression strength. Previously developed linear buckling and geometrically nonlinear theories were used, with modifications and enhancements, to examine the influence of layer waviness on compression response. The wavy layer is described by a wave amplitude and a wave length. Linear elastic stress-strain response is assumed. The geometrically nonlinear theory, in conjunction with the maximum stress failure criterion, was used to predict compression failure and failure modes for the angle-ply laminates. A range of wave length and amplitudes were used. It was found that for 0 less than or equal to theta less than or equal to 15 degrees failure was most likely due to fiber compression. For 15 degrees less than theta less than or equal to 35 degrees, failure was most likely due to inplane transverse tension. For 35 degrees less than theta less than or equal to 70 degrees, failure was most likely due to inplane shear. For theta less than 70 degrees, failure was most likely due to inplane transverse compression. The fiber compression and transverse tension failure modes depended more heavily on wave length than on wave amplitude. Thus using a single parameter, such as a ratio of wave amplitude to wave length, to describe waviness in a laminate would be inaccurate. Throughout, results for AS4/3502, studied previously, are included for comparison. At low off-axis angles, the AS4/3502 material system was found to be less sensitive to layer waviness than IM7/8551-7a. Analytical predictions were also obtained for laminates with waviness in only some of the layers. For this type of waviness, laminate compression strength could also be considered a function of which layers in the laminate were wavy, and where those wavy layers were. Overall, the geometrically nonlinear model correlates well with experimental results.

  14. High-Pressure Quasi-Isentropic Loading and Unloading of Interferometer Windows on the Veloce Pulsed Power Generator

    NASA Astrophysics Data System (ADS)

    Ao, Tommy; Asay, James; Knudson, Marcus; Davis, Jean-Paul

    2007-06-01

    The Isentropic Compression Experiment technique has proven to be a valuable complement to the well-established method of shock compression of condensed matter. However, whereas the high-pressure compression response of window materials has been studied extensively under shock loading, similar knowledge of these materials under ICE loading is limited. We present recent experimental results on the isentropic compression of the high-pressure windows sapphire and LiF. It has previously been observed that c-cut sapphire yields under shock loading at the HEL of ˜15-18GPa, and subsequently loses transparency at higher stresses. However, it will be shown that under isentropic ramp wave loading sapphire appears to remain elastic and transparent at stresses well above 20GPa [D.B. Hayes et al, JAP 94, 2331 (2003)]. LiF is another frequently used window material in isentropic loading and unloading experiments, yet the unloading response of LiF is usually neglected. Research is in progress to measure strength properties of LiF for ramp loading and unloading. It will be shown how the strength of LiF may influence wave profile analysis and thus inferred material strength. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the US DOE's NNSA under Contract No.DE-AC04-94AL85000.

  15. Four-Wave Mixing of Gigawatt Power, Long-Wave Infrared Radiation in Gases and Semiconductors

    NASA Astrophysics Data System (ADS)

    Pigeon, Jeremy James

    The nonlinear optics of gigawatt power, 10 microm, 3 and 200 ps long pulses propagating in gases and semiconductors has been studied experimentally and numerically. In this work, the development of a high-repetition rate, picosecond, CO2 laser system has enabled experiments using peak intensities in the range of 1-10 GW/cm2, approximately one thousand times greater than previous nonlinear optics experiments in the long-wave infrared (LWIR) spectral region. The first measurements of the nonlinear refractive index of the atomic and molecular gases Kr, Xe, N2, O2 and the air at a wavelength near 10 microm were accomplished by studying the four-wave mixing (FWM) of dual-wavelength, 200 ps CO2 laser pulses. These measurements indicate that the nonlinearities of the diatomic molecules N2, O2 and the air are dominated by the molecular contribution to the nonlinear refractive index. Supercontinuum (SC) generation covering the infrared spectral range, from 2-20 microm, was realized by propagating 3 ps, 10 microm pulses in an approximately 7 cm long, Cr-doped GaAs crystal. Temporal measurements of the SC radiation show that pulse splitting accompanies the generation of such broadband light in GaAs. The propagation of 3 ps, 10 microm pulses in GaAs was studied numerically by solving the Generalized Nonlinear Schrodinger Equation (GNLSE). These simulations, combined with analytic estimates, were used to determine that stimulated Raman scattering combined with a modulational instability caused by the propagation of intense LWIR radiation in the negative group velocity dispersion region of GaAs are responsible for the SC generation process. The multiple FWM of a 106 GHz, 200 ps CO2 laser beat-wave propagating in GaAs was used to generate a broadband FWM spectrum that was compressed by the negative group velocity dispersion of GaAs and NaCl crystals to form trains of high-power, picosecond pulses at a wavelength near 10 microm. Experimental FWM spectra obtained using 165 and 882 GHz beat-waves revealed an unexpected and rapid decrease in the FWM yield that was not predicted by the GNLSE model that accounts for third-order nonlinearities alone. These results suggest that the effective nonlinear refractive index of GaAs, having formidable second- and third-order susceptibilities, may be altered by quadratic nonlinearities.

  16. Driving Solar Spicules and Jets with Magnetohydrodynamic Turbulence: Testing a Persistent Idea

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.; Woolsey, Lauren N.

    2015-10-01

    The solar chromosphere contains thin, highly dynamic strands of plasma known as spicules. Recently, it has been suggested that the smallest and fastest (Type II) spicules are identical to intermittent jets observed by the Interface Region Imaging Spectrograph. These jets appear to expand out along open magnetic field lines rooted in unipolar network regions of coronal holes. In this paper we revisit a thirty-year-old idea that spicules may be caused by upward forces associated with Alfvén waves. These forces involve the conversion of transverse Alfvén waves into compressive acoustic-like waves that steepen into shocks. The repeated buffeting due to upward shock propagation causes nonthermal expansion of the chromosphere and a transient levitation of the transition region (TR). Some older models of wave-driven spicules assumed sinusoidal wave inputs, but the solar atmosphere is highly turbulent and stochastic. Thus, we model this process using the output of a time-dependent simulation of reduced magnetohydrodynamic turbulence. The resulting mode-converted compressive waves are strongly variable in time, with a higher TR occurring when the amplitudes are large and a lower TR when the amplitudes are small. In this picture, the TR bobs up and down by several Mm on timescales less than a minute. These motions produce narrow, intermittent extensions of the chromosphere that have similar properties as the observed jets and Type II spicules.

  17. DRIVING SOLAR SPICULES AND JETS WITH MAGNETOHYDRODYNAMIC TURBULENCE: TESTING A PERSISTENT IDEA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cranmer, Steven R.; Woolsey, Lauren N.

    The solar chromosphere contains thin, highly dynamic strands of plasma known as spicules. Recently, it has been suggested that the smallest and fastest (Type II) spicules are identical to intermittent jets observed by the Interface Region Imaging Spectrograph. These jets appear to expand out along open magnetic field lines rooted in unipolar network regions of coronal holes. In this paper we revisit a thirty-year-old idea that spicules may be caused by upward forces associated with Alfvén waves. These forces involve the conversion of transverse Alfvén waves into compressive acoustic-like waves that steepen into shocks. The repeated buffeting due to upwardmore » shock propagation causes nonthermal expansion of the chromosphere and a transient levitation of the transition region (TR). Some older models of wave-driven spicules assumed sinusoidal wave inputs, but the solar atmosphere is highly turbulent and stochastic. Thus, we model this process using the output of a time-dependent simulation of reduced magnetohydrodynamic turbulence. The resulting mode-converted compressive waves are strongly variable in time, with a higher TR occurring when the amplitudes are large and a lower TR when the amplitudes are small. In this picture, the TR bobs up and down by several Mm on timescales less than a minute. These motions produce narrow, intermittent extensions of the chromosphere that have similar properties as the observed jets and Type II spicules.« less

  18. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Highly Efficient Lattice Boltzmann Model for Compressible Fluids: Two-Dimensional Case

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Xu, Ai-Guo; Zhang, Guang-Cai; Gan, Yan-Biao; Cheng, Tao; Li, Ying-Jun

    2009-10-01

    We present a highly efficient lattice Boltzmann model for simulating compressible flows. This model is based on the combination of an appropriate finite difference scheme, a 16-discrete-velocity model [Kataoka and Tsutahara, Phys. Rev. E 69 (2004) 035701(R)] and reasonable dispersion and dissipation terms. The dispersion term effectively reduces the oscillation at the discontinuity and enhances numerical precision. The dissipation term makes the new model more easily meet with the von Neumann stability condition. This model works for both high-speed and low-speed flows with arbitrary specific-heat-ratio. With the new model simulation results for the well-known benchmark problems get a high accuracy compared with the analytic or experimental ones. The used benchmark tests include (i) Shock tubes such as the Sod, Lax, Sjogreen, Colella explosion wave, and collision of two strong shocks, (ii) Regular and Mach shock reflections, and (iii) Shock wave reaction on cylindrical bubble problems. With a more realistic equation of state or free-energy functional, the new model has the potential tostudy the complex procedure of shock wave reaction on porous materials.

  19. Plasma wave excitation by intense microwave transmission from a space vehicle

    NASA Astrophysics Data System (ADS)

    Kimura, I.; Matsumoto, H.; Kaya, N.; Miyatake, S.

    An impact of intense microwave upon the ionospheric plasma was empirically investigated by an active rocket experiment (MINIX). The rocket carried two high-power (830W) transmitters of 2.45 GHz microwave on the mother section of the rocket. The ionospheric plasma response to the intense microwave was measured by a diagnostic package installed on both mother and daughter sections. The daughter section was separated from the mother with a slow speed of 15 cm/sec. The plasma wave analyzers revealed that various plasma waves are nonlinearly excited by the microwave. Among them, the most intense are electron cyclotron waves, followed by electron plasma waves. Extremely low frequency waves (several tens of Hz) are also found. The results of the data analysis as well as comparative computer simulations are given in this paper.

  20. Sound Radiated by a Wave-Like Structure in a Compressible Jet

    NASA Technical Reports Server (NTRS)

    Golubev, V. V.; Prieto, A. F.; Mankbadi, R. R.; Dahl, M. D.; Hixon, R.

    2003-01-01

    This paper extends the analysis of acoustic radiation from the source model representing spatially-growing instability waves in a round jet at high speeds. Compared to previous work, a modified approach to the sound source modeling is examined that employs a set of solutions to linearized Euler equations. The sound radiation is then calculated using an integral surface method.

  1. Optimization design and laser damage threshold analysis of pulse compression multilayer dielectric gratings

    NASA Astrophysics Data System (ADS)

    Fan, Shuwei; Bai, Liang; Chen, Nana

    2016-08-01

    As one of the key elements of high-power laser systems, the pulse compression multilayer dielectric grating is required for broader band, higher diffraction efficiency and higher damage threshold. In this paper, the multilayer dielectric film and the multilayer dielectric gratings(MDG) were designed by eigen matrix and optimized with the help of generic algorithm and rigorous coupled wave method. The reflectivity was close to 100% and the bandwith were over 250nm, twice compared to the unoptimized film structure. The simulation software of standing wave field distribution within MDG was developed and the electric field of the MDG was calculated. And the key parameters which affected the electric field distribution were also studied.

  2. Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihatsch, Michael S., E-mail: michael.mihatsch@aer.mw.tum.de; Schmidt, Steffen J.; Adams, Nikolaus A.

    2015-10-15

    Cavitation erosion is the consequence of repeated collapse-induced high pressure-loads on a material surface. The present paper assesses the prediction of impact load spectra of cavitating flows, i.e., the rate and intensity distribution of collapse events based on a detailed analysis of flow dynamics. Data are obtained from a numerical simulation which employs a density-based finite volume method, taking into account the compressibility of both phases, and resolves collapse-induced pressure waves. To determine the spectrum of collapse events in the fluid domain, we detect and quantify the collapse of isolated vapor structures. As reference configuration we consider the expansion ofmore » a liquid into a radially divergent gap which exhibits unsteady sheet and cloud cavitation. Analysis of simulation data shows that global cavitation dynamics and dominant flow events are well resolved, even though the spatial resolution is too coarse to resolve individual vapor bubbles. The inviscid flow model recovers increasingly fine-scale vapor structures and collapses with increasing resolution. We demonstrate that frequency and intensity of these collapse events scale with grid resolution. Scaling laws based on two reference lengths are introduced for this purpose. We show that upon applying these laws impact load spectra recorded on experimental and numerical pressure sensors agree with each other. Furthermore, correlation between experimental pitting rates and collapse-event rates is found. Locations of high maximum wall pressures and high densities of collapse events near walls obtained numerically agree well with areas of erosion damage in the experiment. The investigation shows that impact load spectra of cavitating flows can be inferred from flow data that captures the main vapor structures and wave dynamics without the need for resolving all flow scales.« less

  3. Time-resolved light emission of a, c, and r-cut sapphires shock-compressed to 65 GPa

    NASA Astrophysics Data System (ADS)

    Liu, Q. C.; Zhou, X. M.

    2018-04-01

    To investigate light emission and dynamic deformation behaviors, sapphire (single crystal Al2O3) samples with three crystallographic orientations (a, c, and r-cut) were shock-compressed by the planar impact method, with final stress ranges from 47 to 65 GPa. Emission radiance and velocity versus time profiles were simultaneously measured with a fast pyrometer and a Doppler pin system in each experiment. Wave profile results show anisotropic elastic-plastic transitions, which confirm the literature observations. Under final shock stress of about 52 GPa, lower emission intensity is observed in the r-cut sample, in agreement with the previous report in the literature. When final shock stress increases to 57 GPa and 65 GPa, spectral radiance histories of the r-cut show two stages of distinct features. In the first stage, the emission intensity of r-cut is lower than those of the other two, which agrees with the previous report in the literature. In the second stage, spectral radiance of r-cut increases with time at much higher rate and it finally peaks over those of the a and c-cut. These observations (conversion of intensified emission in the r-cut) may indicate activation of a second slip system and formation of shear bands which are discussed with the resolved shear stress calculations for the slip systems in each of the three cuts under shock compression.

  4. Biomechanical Analysis of an Expandable Lumbar Interbody Spacer.

    PubMed

    Soriano-Baron, Hector; Newcomb, Anna G U S; Malhotra, Devika; Palma, Atilio E; Martinez-Del-Campo, Eduardo; Crawford, Neil R; Theodore, Nicholas; Kelly, Brian P; Kaibara, Taro

    2018-06-01

    Recently developed expandable interbody spacers are widely accepted in spinal surgery; however, the resulting biomechanical effects of their use have not yet been fully studied. We analyzed the biomechanical effects of an expandable polyetheretherketone interbody spacer inserted through a bilateral posterior approach with and without different modalities of posterior augmentation. Biomechanical nondestructive flexibility testing was performed in 7 human cadaveric lumbar (L2-L5) specimens followed by axial compressive loading. Each specimen was tested under 6 conditions: 1) intact, 2) bilateral L3-L4 cortical screw/rod (CSR) alone, 3) WaveD alone, 4) WaveD + CSR, 5) WaveD + bilateral L3-L4 pedicle screw/rod (PSR), and 6) WaveD + CSR/PSR, where CSR/PSR was a hybrid construct comprising bilateral cortical-level L3 and pedicle-level L4 screws interconnected by rods. The range of motion (ROM) with the interbody spacer alone decreased significantly compared with the intact condition during flexion-extension (P = 0.02) but not during lateral bending or axial rotation (P ≥ 0.19). The addition of CSR or PSR to the interbody spacer alone condition significantly decreased the ROM compared with the interbody spacer alone (P ≤ 0.002); and WaveD + CSR, WaveD + PSR, and WaveD + CSR/PSR (hybrid) (P ≥ 0.29) did not differ. The axial compressive stiffness (resistance to change in foraminal height during compressive loading) with the interbody spacer alone did not differ from the intact condition (P = 0.96), whereas WaveD + posterior instrumentation significantly increased compressive stiffness compared with the intact condition and the interbody spacer alone (P ≤ 0.001). The WaveD alone significantly reduced ROM during flexion-extension while maintaining the axial compressive stiffness. CSR, PSR, and CSR/PSR hybrid constructs were all effective in augmenting the expandable interbody spacer system and improving its stability. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Adaptive Integration of the Compressed Algorithm of CS and NPC for the ECG Signal Compressed Algorithm in VLSI Implementation

    PubMed Central

    Tseng, Yun-Hua; Lu, Chih-Wen

    2017-01-01

    Compressed sensing (CS) is a promising approach to the compression and reconstruction of electrocardiogram (ECG) signals. It has been shown that following reconstruction, most of the changes between the original and reconstructed signals are distributed in the Q, R, and S waves (QRS) region. Furthermore, any increase in the compression ratio tends to increase the magnitude of the change. This paper presents a novel approach integrating the near-precise compressed (NPC) and CS algorithms. The simulation results presented notable improvements in signal-to-noise ratio (SNR) and compression ratio (CR). The efficacy of this approach was verified by fabricating a highly efficient low-cost chip using the Taiwan Semiconductor Manufacturing Company’s (TSMC) 0.18-μm Complementary Metal-Oxide-Semiconductor (CMOS) technology. The proposed core has an operating frequency of 60 MHz and gate counts of 2.69 K. PMID:28991216

  6. Al 1s-2p absorption spectroscopy of shock-wave heating and compression in laser-driven planar foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S. P.; Radha, P. B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (T{sub e}{approx}10-40 eV, {rho}{approx}3-11 g/cm{sup 3}) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10{sup 14}-10{sup 15} W/cm{sup 2} and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4-1.7 keV. The laser ablation process launches 10-70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectramore » were analyzed using the atomic physic code PRISMSPECT to infer T{sub e} and {rho} in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f=0.06 and f=0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f=0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  7. Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S.P.; Radha, P.B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (Te ~ 10–40 eV, rho ~ 3–11 g/cm^3) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10^14–10^15 W/cm^2 and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4–1.7 keV. The laser ablation process launches 10–70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra weremore » analyzed using the atomic physic code PRISMSPECT to infer Te and rho in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f =0.06 and f =0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f = 0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  8. Quasi-isentropic Compression of Iron and Magnesium Oxide to 3 Mbar at the Omega Laser Facility

    NASA Astrophysics Data System (ADS)

    Wang, J.; Smith, R. F.; Coppari, F.; Eggert, J. H.; Boehly, T.; Collins, G.; Duffy, T. S.

    2011-12-01

    Developing a high-pressure, modest temperature ramp compression drive permits exploration of new regions of thermodynamic space, inaccessible through traditional methods of shock or static compression, and of particular relevance to material conditions found in planetary interiors both within and outside our solar system. Ramp compression is a developing technique that allows materials to be compressed along a quasi-isentropic path and provides the ability to study materials in the solid state to higher pressures than can be achieved with diamond anvil cell or shock wave methods. Iron and magnesium oxide are geologically important materials each representative of one of the two major interior regions (core and mantle) of terrestrial planets. An experimental platform for ramp loading of iron (Fe) and magnesium oxide (MgO), has been established and tested in experiments at the Omega Laser Facility, University of Rochester. Omega is a 60-beam ultraviolet (352 nm) neodymium glass laser which is capable of delivery kilojoules of energy in ~10 ns pulses onto targets of a few mm in dimension. In the current experiments, we used a composite ramped laser pulse involving typically 15 beams with total energy of 2.6-3.3 kJ. The laser beams were used to launch spatially planar ramp compression waves into Fe and MgO targets. Each target had four steps that were approximately 5-7 μm thick. Detection of the ramp wave arrival and its velocity at the free surface of each step was made using a VISAR velocity interferometer. Through the use of Lagrangian analysis on the measured wave profiles, stress-density states in iron and magnesium oxide have been determined to pressures of 291 GPa and 260 GPa respectively. For Fe, the α-ɛ transition of iron is overdriven by an initial shock pulse of ~90.1 GPa followed by ramp compression to the peak pressure. The results will be compared with shock compression and diamond anvil cell data for both materials.

    We acknowledge the Omega staff at LLE for their assistance, Micro/Nano fabrication laboratory staff at Princeton University and the Target Engineering Team at LLNL for fabrication and metrology of the targets used in these experiments. The research was supported by DOE under DE-FG52-09NA29037.

  9. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound

    PubMed Central

    Canney, Michael S.; Khokhlova, Vera A.; Bessonova, Olga V.; Bailey, Michael R.; Crum, Lawrence A.

    2009-01-01

    Nonlinear propagation causes high intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have previously been investigated and found not to significantly alter high intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm2 was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector, and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared to calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and from measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating due to shock waves is therefore important to HIFU and clinicians should be aware of the potential for very rapid boiling since it alters treatments. PMID:20018433

  10. Ionization Waves of Arbitrary Velocity

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Franke, P.; Katz, J.; Palastro, J. P.; Begishev, I. A.; Boni, R.; Bromage, J.; Milder, A. L.; Shaw, J. L.; Froula, D. H.

    2018-06-01

    Flying focus is a technique that uses a chirped laser beam focused by a highly chromatic lens to produce an extended focal region within which the peak laser intensity can propagate at any velocity. When that intensity is high enough to ionize a background gas, an ionization wave will track the intensity isosurface corresponding to the ionization threshold. We report on the demonstration of such ionization waves of arbitrary velocity. Subluminal and superluminal ionization fronts were produced that propagated both forward and backward relative to the ionizing laser. All backward and all superluminal cases mitigated the issue of ionization-induced refraction that typically inhibits the formation of long, contiguous plasma channels.

  11. Surface roughness measuring system. [synthetic aperture radar measurements of ocean wave height and terrain peaks

    NASA Technical Reports Server (NTRS)

    Jain, A. (Inventor)

    1978-01-01

    Significant height information of ocean waves, or peaks of rough terrain is obtained by compressing the radar signal over different widths of the available chirp or Doppler bandwidths, and cross-correlating one of these images with each of the others. Upon plotting a fixed (e.g., zero) component of the cross-correlation values as the spacing is increased over some empirically determined range, the system is calibrated. To measure height with the system, a spacing value is selected and a cross-correlation value is determined between two intensity images at a selected frequency spacing. The measured height is the slope of the cross-correlation value used. Both electronic and optical radar signal data compressors and cross-correlations are disclosed for implementation of the system.

  12. Generation of Artificial Ionospheric Irregularities in the Midlatitude Ionosphere Modified by High-Power High-Frequency X-Mode Radio Waves

    NASA Astrophysics Data System (ADS)

    Frolov, V. L.; Bolotin, I. A.; Komrakov, G. P.; Pershin, A. V.; Vertogradov, G. G.; Vertogradov, V. G.; Vertogradova, E. G.; Kunitsyn, V. E.; Padokhin, A. M.; Kurbatov, G. A.; Akchurin, A. D.; Zykov, E. Yu.

    2014-11-01

    We consider the properties of the artificial ionospheric irregularities excited in the ionospheric F 2 region modified by high-power high-frequency X-mode radio waves. It is shown that small-scale (decameter) irregularities are not generated in the midlatitude ionosphere. The intensity of irregularities with the scales l ⊥ ≈50 m to 3 km is severalfold weaker compared with the case where the irregularities are excited by high-power O-mode radio waves. The intensity of the larger-scale irregularities is even stronger attenuated. It is found that the generation of large-scale ( l ⊥ ≈5-10 km) artificial ionospheric irregularities is enhanced at the edge of the directivity pattern of a beam of high-power radio waves.

  13. Convection in deep vertically shaken particle beds. III. Convection mechanisms

    NASA Astrophysics Data System (ADS)

    Klongboonjit, Sakon; Campbell, Charles S.

    2008-10-01

    Convection in a deep vertically vibrated two-dimensional cell of granular material occurs in the form of counter-rotating cells that move material from the walls to the center of the channel and back again. At least for deep beds, where for much of the cycle, particles are in long duration contact with their neighbors, convection only appears for a short potion of every third vibrational period. That period is delimited by the interaction of three types of internal waves, a compression wave, and two types of expansion waves. Four mechanisms are identified that drive the four basic motions of convection: (1) particles move upward at the center as the result of compression wave, (2) downward at the wall as a combined effect of frictional holdback by the walls and the downward pull of gravity, (3) from the center to the walls along the free surface due to the heaping of the bed generated by the compression wave, and (4) toward the center in the interior of the box to form the bottom of convection rolls due to the relaxation of compressive stresses caused by an expansion wave. Convection only occurs when the conditions are right for all four mechanisms to be active simultaneously.

  14. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOEpatents

    Benjamin, R.F.

    1983-10-18

    An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.

  15. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOEpatents

    Benjamin, Robert F.

    1987-01-01

    An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.

  16. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOEpatents

    Benjamin, R.F.

    1987-03-10

    An apparatus is disclosed for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously. 3 figs.

  17. Shock wave interaction with laser-generated single bubbles.

    PubMed

    Sankin, G N; Simmons, W N; Zhu, S L; Zhong, P

    2005-07-15

    The interaction of a lithotripter shock wave (LSW) with laser-generated single vapor bubbles in water is investigated using high-speed photography and pressure measurement via a fiber-optic probe hydrophone. The interaction leads to nonspherical collapse of the bubble with secondary shock wave emission and microjet formation along the LSW propagation direction. The maximum pressure amplification is produced during the collapse phase of the bubble oscillation when the compressive pulse duration of the LSW matches with the forced collapse time of the bubble.

  18. Two-Dimensional Imaging Velocimetry of Heterogeneous Flow and Brittle Failure in Diamond

    NASA Astrophysics Data System (ADS)

    Ali, S. J.; Smith, R.; Erskine, D.; Eggert, J.; Celliers, P. M.; Collins, G. W.; Jeanloz, R.

    2014-12-01

    Understanding the nature and dynamics of heterogeneous flow in diamond subjected to shock compression is important for many fields of research, from inertial confinement fusion to the study of carbon rich planets. Waves propagating through a shocked material can be significantly altered by the various deformation mechanisms present in shocked materials, including anisotropic sound speeds, phase transformations, plastic/inelastic flow and brittle failure. Quantifying the spatial and temporal effects of these deformation mechanisms has been limited by a lack of diagnostics capable of obtaining simultaneous micron resolution spatial measurements and nanosecond resolution time measurements. We have utilized the 2D Janus High Resolution Velocimeter at LLNL to study the time and space dependence of fracture in shock-compressed diamond above the Hugoniot elastic limit. Previous work on the OMEGA laser facility (Rochester) has shown that the free-surface reflectivity of μm-grained diamond samples drops linearly with increasing sample pressure, whereas under the same conditions the reflectivity of nm-grained samples remains unaffected. These disparate observations can be understood by way of better documenting fracture in high-strain compression of diamond. To this end, we have imaged the development and evolution of elastic-wave propagation, plastic-wave propagation and fracture networks in the three primary orientations of single-crystal diamond, as well as in microcrystalline and nanocrystalline diamond, and find that the deformation behavior depends sensitively on the orientation and crystallinity of the diamonds.

  19. Space-Charge Waves and Instabilities in Intense Beams

    NASA Astrophysics Data System (ADS)

    Wang, J. G.

    1997-11-01

    Advancced accelerator applications, such as drivers for heavy ion inertial fusion, high-intensity synchrotrons for spallation neutron sources, high energy boosters, free electron lasers, high-power microwave generators, etc., require ever-increasing beam intensity. An important beam dynamics issue in such beams is the collective behavior of charged particles due to their space charge effects. This includes the phenomena of space-charge waves and instabilities excited on beams by external perturbations. It is very crucial to fully understand these phenomena in order to develop advanced accelerators for various applications. At the University of Maryland we have been conducting experimental programs to study space-charge waves and longitudinal instabilities by employing low-energy, high-current, space-charge dominated electron beams. Localized perturbations on the beams are generated from a gridded electron gun. In a conducting transport channel focused by short solenoids, these perturbations evolve into space-charge waves propagating on the beams. The wave speed is measured and many beam parameters are determined with this technique. The reflection of space-charge waves at the shoulder of an initially rectangular beam bunch is also observed. In a resistive-wall channel focused by a uniform long solenoid, the space-charge waves suffer longitudinal instability. The properties of the instabilities are studied in detail in the long wavelength range. In this talk we review our experimental results on the waves and instabilities and compare with theory.

  20. Innovative Technologies for Maskless Lithography and Non-Conventional Patterning

    DTIC Science & Technology

    2008-08-01

    wave sources are used and quantitative data is produced on the local field intensities and scattered plane and plasmon wave amplitudes and phases...transistors”, Transducers 2007, Lyon, France, 3EH5.P, 2007. 9. D. Huang and V. Subramanian “Iodine-doped pentacene schottky diodes for high-frequency RFID...wave sources are used and quantitative data is produced on the local field intensities and scattered plane and plasmon wave amplitudes and phases

  1. Guided elastic waves in a pre-stressed compressible interlayer

    PubMed

    Sotiropoulos

    2000-03-01

    The propagation of guided elastic waves in a pre-stressed elastic compressible layer embedded in a different compressible material is examined. The waves propagate parallel to the planar layer interfaces as a superposed dynamic stress state on the statically pre-stressed layer and host material. The underlying stress condition in the two materials is characterized by equibiaxial in-plane deformations with common principal axes of strain, one of the axes being perpendicular to the layering. Both materials have arbitrary strain energy functions. The dispersion equation is derived in explicit form. Analysis of the dispersion equation reveals the propagation characteristics and their dependence on frequency, material parameters and stress parameters. Combinations of these parameters are also defined for which guided waves cannot propagate.

  2. Radial distribution of compressive waves in the solar corona revealed by Akatsuki radio occultation observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, Mayu; Imamura, Takeshi; Ando, Hiroki

    Radial variations of the amplitude and the energy flux of compressive waves in the solar corona were explored for the first time using a spacecraft radio occultation technique. By applying wavelet analysis to the frequency time series taken at heliocentric distances of 1.5-20.5 R{sub S} (solar radii), quasi-periodic density disturbances were detected at almost all distances. The period ranges from 100 to 2000 s. The amplitude of the fractional density fluctuation increases with distance and reaches ∼30% around 5 R{sub S} , implying that nonlinearity of the wave field is potentially important. We further estimate the wave energy flux onmore » the assumption that the observed periodical fluctuations are manifestations of acoustic waves. The energy flux increases with distance below ∼6 R{sub S} and seems to saturate above this height, suggesting that the acoustic waves do not propagate from the low corona but are generated in the extended corona, probably through nonlinear dissipation of Alfvén waves. The compressive waves should eventually dissipate through shock generation to heat the corona.« less

  3. Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature

    NASA Astrophysics Data System (ADS)

    Austin, Ryan A.

    2018-01-01

    The effect of temperature on the dynamic flow behavior of aluminum is considered in the context of precursor wave decay measurements and simulations. In this regard, a dislocation-based model of high-rate metal plasticity is brought into agreement with previous measurements of evolving wave profiles at 300 to 933 K, wherein the amplification of the precursor structure with temperature arises naturally from the dislocation mechanics treatment. The model suggests that the kinetics of inelastic flow and stress relaxation are governed primarily by phonon scattering and radiative damping (sound wave emission from dislocation cores), both of which intensify with temperature. The manifestation of these drag effects is linked to low dislocation density ahead of the precursor wave and the high mobility of dislocations in the face-centered cubic lattice. Simulations performed using other typical models of shock wave plasticity do not reproduce the observed temperature-dependence of elastic/plastic wave structure.

  4. Experimental and numerical investigations of resonant acoustic waves in near-critical carbon dioxide.

    PubMed

    Hasan, Nusair; Farouk, Bakhtier

    2015-10-01

    Flow and transport induced by resonant acoustic waves in a near-critical fluid filled cylindrical enclosure is investigated both experimentally and numerically. Supercritical carbon dioxide (near the critical or the pseudo-critical states) in a confined resonator is subjected to acoustic field created by an electro-mechanical acoustic transducer and the induced pressure waves are measured by a fast response pressure field microphone. The frequency of the acoustic transducer is chosen such that the lowest acoustic mode propagates along the enclosure. For numerical simulations, a real-fluid computational fluid dynamics model representing the thermo-physical and transport properties of the supercritical fluid is considered. The simulated acoustic field in the resonator is compared with measurements. The formation of acoustic streaming structures in the highly compressible medium is revealed by time-averaging the numerical solutions over a given period. Due to diverging thermo-physical properties of supercritical fluid near the critical point, large scale oscillations are generated even for small sound field intensity. The strength of the acoustic wave field is found to be in direct relation with the thermodynamic state of the fluid. The effects of near-critical property variations and the operating pressure on the formation process of the streaming structures are also investigated. Irregular streaming patterns with significantly higher streaming velocities are observed for near-pseudo-critical states at operating pressures close to the critical pressure. However, these structures quickly re-orient to the typical Rayleigh streaming patterns with the increase operating pressure.

  5. Role of Compressibility on Tsunami Propagation

    NASA Astrophysics Data System (ADS)

    Abdolali, Ali; Kirby, James T.

    2017-12-01

    In the present paper, we aim to reduce the discrepancies between tsunami arrival times evaluated from tsunami models and real measurements considering the role of ocean compressibility. We perform qualitative studies to reveal the phase speed reduction rate via a modified version of the Mild Slope Equation for Weakly Compressible fluid (MSEWC) proposed by Sammarco et al. (2013). The model is validated against a 3-D computational model. Physical properties of surface gravity waves are studied and compared with those for waves evaluated from an incompressible flow solver over realistic geometry for 2011 Tohoku-oki event, revealing reduction in phase speed.Plain Language SummarySubmarine earthquakes and submarine mass failures (SMFs), can generate long gravitational waves (or tsunamis) that propagate at the free surface. Tsunami waves can travel long distances and are known for their dramatic effects on coastal areas. Nowadays, numerical models are used to reconstruct the tsunamigenic events for many scientific and socioeconomic aspects i.e. Tsunami Early Warning Systems, inundation mapping, risk and hazard analysis, etc. A number of typically neglected parameters in these models cause discrepancies between model outputs and observations. Most of the tsunami models predict tsunami arrival times at distant stations slightly early in comparison to observations. In this study, we show how ocean compressibility would affect the tsunami wave propagation speed. In this framework, an efficient two-dimensional model equation for the weakly compressible ocean has been developed, validated and tested for simplified and real cases against three dimensional and incompressible solvers. Taking the effect of compressibility, the phase speed of surface gravity waves is reduced compared to that of an incompressible fluid. Then, we used the model for the case of devastating Tohoku-Oki 2011 tsunami event, improving the model accuracy. This study sheds light for future model development to include ocean compressibility among other typically neglected parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007Tectp.431...83P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007Tectp.431...83P"><span>Fabric symmetry of low anisotropic rocks inferred from ultrasonic sounding: Implications for the geomechanical models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Přikryl, Richard; Lokajíček, Tomáš; Pros, Zdeněk; Klíma, Karel</p> <p>2007-02-01</p> <p>The geomechanical models were established based on the absence or presence of certain rock fabric elements — texture (crystallographic preferred orientation), microstructure (shape preferred orientation) and microcracks (flat voids). The proposed models include both (i) the ideal material showing random texture and structure but no microcracks, i.e. the material which is hardly to be found in nature, and (ii) the materials possessing various combinations of fabric elements that show different spatial arrangements. The mutual relationship between those parameters and seismic and geomechanical properties are discussed. Selected models were experimentally verified during laboratory experiments. These consist of measurement of P-wave velocities in 132 independent directions under several confining pressures in the range 0.1-400 MPa. From measured data 3D P-wave patterns can be constructed and the influence of microcracks and of texture and structure on the rock seismic anisotropy can be determined. The seismic anisotropy established at different levels of confining pressure can be used for the interpretation of rock fabric symmetry of rocks showing low anisotropy in macroscale and for the selection of directions in which the geomechanical test can be performed. The measured P-wave velocities were then mathematically processed by using a fitting function V=V+k·P-v·10 which reflects contribution of P-wave velocity in the mineral skeleton of an ideal sample without microcracks extrapolated to the atmospheric pressure level from high confining pressure interval (ca. 200-400 MPa) ( v0), linear compressibility of the samples ( kv), and confining pressure during which most of the cracks are closed ( P0). These parameters improve the understanding of the response of various rock fabric elements on increasing confinement and corresponding changes in elasticity. The observed seismic and geomechanical anisotropies reflect intensity of the fabric of rock-forming minerals and microcracks. The magnitude of seismic anisotropy measured at atmospheric pressure corresponds to the anisotropy of static elastic modulus and is governed by the spatial arrangement of microcracks. The magnitude of strength anisotropy (uniaxial compressive strength) correlates more likely to the seismic anisotropy determined at high confining pressure and is connected to the preferred orientations (either CPO or SPO or both) of rock-forming minerals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4646516','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4646516"><span>Digital micromirror device-based laser-illumination Fourier ptychographic microscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Lee, Justin; Barbastathis, George; Dasari, Ramachandra R.; Yaqoob, Zahid; So, Peter T. C.</p> <p>2015-01-01</p> <p>We report a novel approach to Fourier ptychographic microscopy (FPM) by using a digital micromirror device (DMD) and a coherent laser source (532 nm) for generating spatially modulated sample illumination. Previously demonstrated FPM systems are all based on partially-coherent illumination, which offers limited throughput due to insufficient brightness. Our FPM employs a high power coherent laser source to enable shot-noise limited high-speed imaging. For the first time, a digital micromirror device (DMD), imaged onto the back focal plane of the illumination objective, is used to generate spatially modulated sample illumination field for ptychography. By coding the on/off states of the micromirrors, the illumination plane wave angle can be varied at speeds more than 4 kHz. A set of intensity images, resulting from different oblique illuminations, are used to numerically reconstruct one high-resolution image without obvious laser speckle. Experiments were conducted using a USAF resolution target and a fiber sample, demonstrating high-resolution imaging capability of our system. We envision that our approach, if combined with a coded-aperture compressive-sensing algorithm, will further improve the imaging speed in DMD-based FPM systems. PMID:26480361</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26480361','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26480361"><span>Digital micromirror device-based laser-illumination Fourier ptychographic microscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kuang, Cuifang; Ma, Ye; Zhou, Renjie; Lee, Justin; Barbastathis, George; Dasari, Ramachandra R; Yaqoob, Zahid; So, Peter T C</p> <p>2015-10-19</p> <p>We report a novel approach to Fourier ptychographic microscopy (FPM) by using a digital micromirror device (DMD) and a coherent laser source (532 nm) for generating spatially modulated sample illumination. Previously demonstrated FPM systems are all based on partially-coherent illumination, which offers limited throughput due to insufficient brightness. Our FPM employs a high power coherent laser source to enable shot-noise limited high-speed imaging. For the first time, a digital micromirror device (DMD), imaged onto the back focal plane of the illumination objective, is used to generate spatially modulated sample illumination field for ptychography. By coding the on/off states of the micromirrors, the illumination plane wave angle can be varied at speeds more than 4 kHz. A set of intensity images, resulting from different oblique illuminations, are used to numerically reconstruct one high-resolution image without obvious laser speckle. Experiments were conducted using a USAF resolution target and a fiber sample, demonstrating high-resolution imaging capability of our system. We envision that our approach, if combined with a coded-aperture compressive-sensing algorithm, will further improve the imaging speed in DMD-based FPM systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998AIPC..426..372B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998AIPC..426..372B"><span>Propagation in compressed matter of hot electrons created by short intense lasers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Batani, D.; Bernardinello, A.; Masella, V.; Pisani, F.; Koenig, M.; Krishnan, J.; Benuzzi, A.; Ellwi, S.; Hall, T.; Norreys, P.; Djaoui, A.; Neely, D.; Rose, S.; Fews, P.; Key, M.</p> <p>1998-02-01</p> <p>We performed the first experimental study of propagation in compressed matter of hot electrons created by a short pulse intense laser. The experiment has been carried out with the VULCAN laser at Rutherford compressing plastic targets with two ns laser beams at an intensity ⩾1014W/cm2. A CPA beam with an intensity ⩾1016W/cm2 irradiated the rear side of the target and created hot electrons propagating through the compressed matter. K-α emission was used as diagnostics of hot electron penetration by putting a chloride plastic layer inside the target.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JInst..13C1013A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JInst..13C1013A"><span>X-ray absorption radiography for high pressure shock wave studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Antonelli, L.; Atzeni, S.; Batani, D.; Baton, S. D.; Brambrink, E.; Forestier-Colleoni, P.; Koenig, M.; Le Bel, E.; Maheut, Y.; Nguyen-Bui, T.; Richetta, M.; Rousseaux, C.; Ribeyre, X.; Schiavi, A.; Trela, J.</p> <p>2018-01-01</p> <p>The study of laser compressed matter, both warm dense matter (WDM) and hot dense matter (HDM), is relevant to several research areas, including materials science, astrophysics, inertial confinement fusion. X-ray absorption radiography is a unique tool to diagnose compressed WDM and HDM. The application of radiography to shock-wave studies is presented and discussed. In addition to the standard Abel inversion to recover a density map from a transmission map, a procedure has been developed to generate synthetic radiographs using density maps produced by the hydrodynamics code DUED. This procedure takes into account both source-target geometry and source size (which plays a non negligible role in the interpretation of the data), and allows to reproduce transmission data with a good degree of accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RJPCA..91.2157K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RJPCA..91.2157K"><span>Molecular-dynamic simulations of the thermophysical properties of hexanitrohexaazaisowurtzitane single crystal at high pressures and temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kozlova, S. A.; Gubin, S. A.; Maklashova, I. V.; Selezenev, A. A.</p> <p>2017-11-01</p> <p>Molecular dynamic simulations of isothermal compression parameters are performed for a hexanitrohexaazaisowurtzitane single crystal (C6H6O12N12) using a modified ReaxFF-log reactive force field. It is shown that the pressure-compression ratio curve for a single C6H6O12N12 crystal at constant temperature T = 300 K in pressure range P = 0.05-40 GPa is in satisfactory agreement with experimental compression isotherms obtained for a single C6H6O12N12 crystal. Hugoniot molecular-dynamic simulations of the shock-wave hydrostatic compression of a single C6H6O12N12 crystal are performed. Along with Hugoniot temperature-pressure curves, calculated shock-wave pressure-compression ratios for a single C6H6O12N12 crystal are obtained for a wide pressure range of P = 1-40 GPa. It is established that the percussive adiabat obtained for a single C6H6O12N12 crystal is in a good agreement with the experimental data. All calculations are performed using a LAMMPS molecular dynamics simulation software package that provides a ReaxFF-lg reactive force field to support the approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JCoPh.343..340L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JCoPh.343..340L"><span>Thermodynamical effects and high resolution methods for compressible fluid flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Jiequan; Wang, Yue</p> <p>2017-08-01</p> <p>One of the fundamental differences of compressible fluid flows from incompressible fluid flows is the involvement of thermodynamics. This difference should be manifested in the design of numerical schemes. Unfortunately, the role of entropy, expressing irreversibility, is often neglected even though the entropy inequality, as a conceptual derivative, is verified for some first order schemes. In this paper, we refine the GRP solver to illustrate how the thermodynamical variation is integrated into the design of high resolution methods for compressible fluid flows and demonstrate numerically the importance of thermodynamic effects in the resolution of strong waves. As a by-product, we show that the GRP solver works for generic equations of state, and is independent of technical arguments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27081007','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27081007"><span>Compression Garments, Muscle Contractile Function, and Economy in Trail Runners.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vercruyssen, Fabrice; Gruet, Mathieu; Colson, Serge S; Ehrstrom, Sabine; Brisswalter, Jeanick</p> <p>2017-01-01</p> <p>Physiological mechanisms behind the use of compression garments (CGs) during off-road running are unknown. To investigate the influence of wearing CGs vs conventional running clothing (CON) on muscle contractile function and running economy before and after short-distance trail running. Knee-extensor neuromuscular function and running economy assessed from two 5-min treadmill runs (11 and 14 km/h) were evaluated before and after an 18.6-km short-distance trail run in 12 trained athletes wearing either CGs (stocking + short-tight) or CON. Quadriceps neuromuscular function was assessed from mechanical and EMG recording after maximal percutaneous electrical femoral-nerve stimulations (single-twitch doublets at 10 [Db 10 ] and 100 Hz [Db 100 ] delivered at rest and during maximal quadriceps voluntary contraction [MVC]). Running economy (in mL O 2 · km -1 · kg -1 ) increased after trail running independent of the clothing condition and treadmill speeds (P < .001). Similarly, MVC decreased after CON and CGs conditions (-11% and -13%, respectively, P < .001). For both clothing conditions, a significant decrease in quadriceps voluntary activation, Db 10 , Db 100 , and the low-to-high frequency doublet ratio were observed after trail running (time effect, all P < .01), without any changes in rectus femoris maximal M-wave. Wearing CGs does not reduce physiological alterations induced during short-distance trail running. Further studies should determine whether higher intensity of compression pressure during exercises of longer duration may be effective to induce any physiological benefits in experienced trail runners.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFD.M7005H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFD.M7005H"><span>Modeling Encapsulated Microbubble Dynamics at High Pressure Amplitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heyse, Jan F.; Bose, Sanjeeb; Iaccarino, Gianluca</p> <p>2017-11-01</p> <p>Encapsulated microbubbles are commonly used in ultrasound contrast imaging and are of growing interest in therapeutic applications where local cavitation creates temporary perforations in cell membranes allowing for enhanced drug delivery. Clinically used microbubbles are encapsulated by a shell commonly consisting of protein, polymer, or phospholipid; the response of these bubbles to externally imposed ultrasound waves is sensitive to the compressibility of the encapsulating shell. Existing models approximate the shell compressibility via an effective surface tension (Marmottant et al. 2005). We present simulations of microbubbles subjected to high amplitude ultrasound waves (on the order of 106 Pa) and compare the results with the experimental measurements of Helfield et al. (2016). Analysis of critical points (corresponding to maximum and minimum expansion) in the governing Rayleigh-Plesset equation is used to make estimates of the parameters used to characterize the effective surface tension of the encapsulating shell. Stanford Graduate Fellowship.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23005891','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23005891"><span>Parametric decay of oblique Alfvén waves in two-dimensional hybrid simulations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Verscharen, D; Marsch, E; Motschmann, U; Müller, J</p> <p>2012-08-01</p> <p>Certain types of plasma waves are known to become parametrically unstable under specific plasma conditions, in which the pump wave will decay into several daughter waves with different wavenumbers and frequencies. In the past, the related plasma instabilities have been treated analytically for various parameter regimes and by use of various numerical methods, yet the oblique propagation with respect to the background magnetic field has rarely been dealt with in two dimensions, mainly because of the high computational demand. Here we present a hybrid-simulation study of the parametric decay of a moderately oblique Alfvén wave having elliptical polarization. It is found that such a compressive wave can decay into waves with higher and lower wavenumbers than the pump.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28504936','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28504936"><span>Wave Mode Discrimination of Coded Ultrasonic Guided Waves Using Two-Dimensional Compressed Pulse Analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Malo, Sergio; Fateri, Sina; Livadas, Makis; Mares, Cristinel; Gan, Tat-Hean</p> <p>2017-07-01</p> <p>Ultrasonic guided waves testing is a technique successfully used in many industrial scenarios worldwide. For many complex applications, the dispersive nature and multimode behavior of the technique still poses a challenge for correct defect detection capabilities. In order to improve the performance of the guided waves, a 2-D compressed pulse analysis is presented in this paper. This novel technique combines the use of pulse compression and dispersion compensation in order to improve the signal-to-noise ratio (SNR) and temporal-spatial resolution of the signals. The ability of the technique to discriminate different wave modes is also highlighted. In addition, an iterative algorithm is developed to identify the wave modes of interest using adaptive peak detection to enable automatic wave mode discrimination. The employed algorithm is developed in order to pave the way for further in situ applications. The performance of Barker-coded and chirp waveforms is studied in a multimodal scenario where longitudinal and flexural wave packets are superposed. The technique is tested in both synthetic and experimental conditions. The enhancements in SNR and temporal resolution are quantified as well as their ability to accurately calculate the propagation distance for different wave modes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SPIE.8856E..1MX','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SPIE.8856E..1MX"><span>Compression of computer generated phase-shifting hologram sequence using AVC and HEVC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xing, Yafei; Pesquet-Popescu, Béatrice; Dufaux, Frederic</p> <p>2013-09-01</p> <p>With the capability of achieving twice the compression ratio of Advanced Video Coding (AVC) with similar reconstruction quality, High Efficiency Video Coding (HEVC) is expected to become the newleading technique of video coding. In order to reduce the storage and transmission burden of digital holograms, in this paper we propose to use HEVC for compressing the phase-shifting digital hologram sequences (PSDHS). By simulating phase-shifting digital holography (PSDH) interferometry, interference patterns between illuminated three dimensional( 3D) virtual objects and the stepwise phase changed reference wave are generated as digital holograms. The hologram sequences are obtained by the movement of the virtual objects and compressed by AVC and HEVC. The experimental results show that AVC and HEVC are efficient to compress PSDHS, with HEVC giving better performance. Good compression rate and reconstruction quality can be obtained with bitrate above 15000kbps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25484609','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25484609"><span>Wave energy devices with compressible volumes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kurniawan, Adi; Greaves, Deborah; Chaplin, John</p> <p>2014-12-08</p> <p>We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m 3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4241014','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4241014"><span>Wave energy devices with compressible volumes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kurniawan, Adi; Greaves, Deborah; Chaplin, John</p> <p>2014-01-01</p> <p>We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s. PMID:25484609</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000AIPC..505..601B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000AIPC..505..601B"><span>Failure waves in glass and ceramics under shock compression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brar, N. S.</p> <p>2000-04-01</p> <p>The response of various types of glasses (fused silica, borosilicates, soda-lime, and lead filled) to shock wave loading, especially the failure of glass behind the shock wave through the "so called" failure wave or front, has been the subject of intense research among a number of investigators. The variations in material properties across this front include complete loss of tensile (spall) strength, loss in shear strength, reduction in acoustic impedance and opacity to light. Both the Stress and velocity history from VISAR measurements have shown that the failure front propagates at a speed of 1.5 to 2.5 mm/s, depending on the peak shock stress. The shear strength [τ=1/2(σ1-σ2)] behind the failure front, determined using embedded transverse gauges, is found to decrease to about 1 GPa for soda-lime, borosilicate, and filled glasses. Optical (high-speed photography) observations also confirm formation of this failure front. There is a general agreement among various researchers on these failure observations. However, three proposed mechanisms for the formation of failure front are based on totally different formulations. The first, due to Clifton, is based on the hypothesis of densification of glass under shock compression. Densification is followed by shear failure around inhomogeneities resulting in a phase boundary between the comminuted and the intact material. The second, proposed by Grady, involves the transfer of elastic shear strain energy to dilatant strain energy as a result of severe micro-cracking originating from impact. The third, by Espinosa and Brar, proposes that the front is created through shear micro-cracks, which nucleate and propagate from the impact face; as originally suggested by Kanel. This later mechanism is supported by the observed loss of shear strength of glass by Clifton et al. at shock stress above the threshold level. Espinosa has incorporated this mechanism in multiple-plane model and simulations predict the increase in lateral stress and an observed reduction in spall strength behind the failure front. Failure front studies, in terms of loss of shear strength, have been recently extended to alumina and SiC ceramics by Bourne et al.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH21A2512G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH21A2512G"><span>Wave Phenomena Associated with Interplanetary Shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Golla, T.; MacDowall, R. J.</p> <p>2016-12-01</p> <p>Although laboratory and space-based experiments were used for the last several decades to study the collisionless shocks, several questions remain less than fully understood. These include: (1) what type of wave-particle energy dissipation is responsible for the shock formation, (2) what type of in-situ waves occur in the upstream, transition and downstream regions, and (3) which physical processes are responsible for the excitation of the fundamental and second harmonic solar type II radio emissions. In this study, we will address these issues using (1) the in situ and radio wave data obtained by the WAVES experiments of the STEREO A and B, and WIND spacecraft, especially the high time resolution data from the time domain samplers (TDS) of these WAVES experiments and (2) the Fourier, wavelet and higher order spectral analysis techniques. Using the in situ wave data, especially the high time resolution data observed during the local type II bursts, we will identify the nonlinear processes associated with these solar radio emissions. Comparing the estimated radio intensities by the known emission mechanisms for the observed peak Langmuir wave intensities with the observed peak radio intensities of type II bursts, we will identify the emission mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ArRMA.tmp...66L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ArRMA.tmp...66L"><span>Stability of Planar Rarefaction Wave to 3D Full Compressible Navier-Stokes Equations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Lin-an; Wang, Teng; Wang, Yi</p> <p>2018-05-01</p> <p>We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier-Stokes equations with the heat-conductivities in an infinite long flat nozzle domain {R × T^2} . Compared with one-dimensional case, the proof here is based on our new observations on the cancellations on the flux terms and viscous terms due to the underlying wave structures, which are crucial for overcoming the difficulties due to the wave propagation in the transverse directions x 2 and x 3 and its interactions with the planar rarefaction wave in x 1 direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599906-pic-simulation-compressive-rarefactive-dust-ion-acoustic-solitary-waves','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599906-pic-simulation-compressive-rarefactive-dust-ion-acoustic-solitary-waves"><span>PIC simulation of compressive and rarefactive dust ion-acoustic solitary waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, Zhong-Zheng; Zhang, Heng; Hong, Xue-Ren</p> <p></p> <p>The nonlinear propagations of dust ion-acoustic solitary waves in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated by the particle-in-cell method. By comparing the simulation results with those obtained from the traditional reductive perturbation method, it is observed that the rarefactive KdV solitons propagate stably at a low amplitude, and when the amplitude is increased, the prime wave form evolves and then gradually breaks into several small amplitude solitary waves near the tail of soliton structure. The compressive KdV solitons propagate unstably andmore » oscillation arises near the tail of soliton structure. The finite amplitude rarefactive and compressive Gardner solitons seem to propagate stably.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApPhA.123..156F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApPhA.123..156F"><span>Flow speed of the ablation vapors generated during laser drilling of CFRP with a continuous-wave laser beam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Faas, S.; Freitag, C.; Boley, S.; Berger, P.; Weber, R.; Graf, T.</p> <p>2017-03-01</p> <p>The hot plume of ablation products generated during the laser drilling process of carbon fiber reinforced plastics (CFRP) with a continuous-wave laser beam was analyzed by means of high-speed imaging. The formation of compression shocks was observed within the flow of the evaporated material, which is an indication of flow speeds well above the local speed of sound. The flow speed of the hot ablation products can be estimated by analyzing the position of these compression shocks. We investigated the temporal evolution of the flow speed during the drilling process and the influence of the average laser power on the flow speed. The flow speed increases with increasing average laser powers. The moment of drilling through the material changes the conditions for the drilling process and was confirmed to influence the flow speed of the ablated material. Compression shocks can also be observed during laser cutting of CFRP with a moving laser beam.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000080071','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000080071"><span>Turbofan Acoustic Propagation and Radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eversman, Walter</p> <p>2000-01-01</p> <p>This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22392504-single-hit-energy-resolved-laue-diffraction','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22392504-single-hit-energy-resolved-laue-diffraction"><span>Single Hit Energy-resolved Laue Diffraction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Patel, Shamim; Suggit, Matthew J.; Stubley, Paul G.</p> <p>2015-05-15</p> <p>In situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limitedmore » aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27925228','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27925228"><span>A Mock Circulatory System Incorporating a Compliant 3D-Printed Anatomical Model to Investigate Pulmonary Hemodynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Knoops, Paul G M; Biglino, Giovanni; Hughes, Alun D; Parker, Kim H; Xu, Linzhang; Schievano, Silvia; Torii, Ryo</p> <p>2017-07-01</p> <p>A realistic mock circulatory system (MCS) could be a valuable in vitro testbed to study human circulatory hemodynamics. The objective of this study was to design a MCS replicating the pulmonary arterial circulation, incorporating an anatomically representative arterial model suitable for testing clinically relevant scenarios. A second objective of the study was to ensure the system's compatibility with magnetic resonance imaging (MRI) for additional measurements. A latex pulmonary arterial model with two generations of bifurcations was manufactured starting from a 3D-printed mold reconstructed from patient data. The model was incorporated into a MCS for in vitro hydrodynamic measurements. The setup was tested under physiological pulsatile flow conditions and results were evaluated using wave intensity analysis (WIA) to investigate waves traveling in the arterial system. Increased pulmonary vascular resistance (IPVR) was simulated as an example of one pathological scenario. Flow split between right and left pulmonary artery was found to be realistic (54 and 46%, respectively). No substantial difference in pressure waveform was observed throughout the various generations of bifurcations. Based on WIA, three main waves were identified in the main pulmonary artery (MPA), that is, forward compression wave, backward compression wave, and forward expansion wave. For IPVR, a rise in mean pressure was recorded in the MPA, within the clinical range of pulmonary arterial hypertension. The feasibility of using the MCS in the MRI scanner was demonstrated with the MCS running 2 h consecutively while acquiring preliminary MRI data. This study shows the development and verification of a pulmonary MCS, including an anatomically correct, compliant latex phantom. The setup can be useful to explore a wide range of hemodynamic questions, including the development of patient- and pathology-specific models, considering the ease and low cost of producing rapid prototyping molds, and the versatility of the setup for invasive and noninvasive (i.e., MRI) measurements. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5384635','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5384635"><span>A Mock Circulatory System Incorporating a Compliant 3D-Printed Anatomical Model to Investigate Pulmonary Hemodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Knoops, Paul G.M.; Biglino, Giovanni; Hughes, Alun D.; Parker, Kim H.; Xu, Linzhang; Schievano, Silvia; Torii, Ryo</p> <p>2017-01-01</p> <p>A realistic mock circulatory system (MCS) could be a valuable in vitro testbed to study human circulatory hemodynamics. The objective of this study was to design a MCS replicating the pulmonary arterial circulation, incorporating an anatomically representative arterial model suitable for testing clinically relevant scenarios. A second objective of the study was to ensure the system's compatibility with magnetic resonance imaging (MRI) for additional measurements. A latex pulmonary arterial model with two generations of bifurcations was manufactured starting from a 3D-printed mold reconstructed from patient data. The model was incorporated into a MCS for in vitro hydrodynamic measurements. The setup was tested under physiological pulsatile flow conditions and results were evaluated using wave intensity analysis (WIA) to investigate waves traveling in the arterial system. Increased pulmonary vascular resistance (IPVR) was simulated as an example of one pathological scenario. Flow split between right and left pulmonary artery was found to be realistic (54 and 46%, respectively). No substantial difference in pressure waveform was observed throughout the various generations of bifurcations. Based on WIA, three main waves were identified in the main pulmonary artery (MPA), that is, forward compression wave, backward compression wave, and forward expansion wave. For IPVR, a rise in mean pressure was recorded in the MPA, within the clinical range of pulmonary arterial hypertension. The feasibility of using the MCS in the MRI scanner was demonstrated with the MCS running 2 h consecutively while acquiring preliminary MRI data. This study shows the development and verification of a pulmonary MCS, including an anatomically correct, compliant latex phantom. The setup can be useful to explore a wide range of hemodynamic questions, including the development of patient- and pathology-specific models, considering the ease and low cost of producing rapid prototyping molds, and the versatility of the setup for invasive and noninvasive (i.e., MRI) measurements. PMID:27925228</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4060586','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4060586"><span>Hardware Implementation of 32-Bit High-Speed Direct Digital Frequency Synthesizer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ibrahim, Salah Hasan; Ali, Sawal Hamid Md.; Islam, Md. Shabiul</p> <p>2014-01-01</p> <p>The design and implementation of a high-speed direct digital frequency synthesizer are presented. A modified Brent-Kung parallel adder is combined with pipelining technique to improve the speed of the system. A gated clock technique is proposed to reduce the number of registers in the phase accumulator design. The quarter wave symmetry technique is used to store only one quarter of the sine wave. The ROM lookup table (LUT) is partitioned into three 4-bit sub-ROMs based on angular decomposition technique and trigonometric identity. Exploiting the advantages of sine-cosine symmetrical attributes together with XOR logic gates, one sub-ROM block can be removed from the design. These techniques, compressed the ROM into 368 bits. The ROM compressed ratio is 534.2 : 1, with only two adders, two multipliers, and XOR-gates with high frequency resolution of 0.029 Hz. These techniques make the direct digital frequency synthesizer an attractive candidate for wireless communication applications. PMID:24991635</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27548787','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27548787"><span>High-Intensity Interval Cycling Exercise on Wave Reflection and Pulse Wave Velocity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kingsley, J Derek; Tai, Yu Lun; Vaughan, Jeremiah A; Mayo, Xián</p> <p>2017-05-01</p> <p>Kingsley, JD, Tai, YL, Vaughan, J, and Mayo, X. High-intensity interval cycling exercise on wave reflection and pulse wave velocity. J Strength Cond Res 31(5): 1313-1320, 2017-The purpose of this study was to assess the effects of high-intensity exercise on wave reflection and aortic stiffness. Nine young, healthy men (mean ± SD: age: 22 ± 2 years) participated in the study. The high-intensity interval cycling exercise consisted of 3 sets of Wingate Anaerobic Tests (WATs) with 7.5% of bodyweight as resistance and 2 minutes of rest between each set. Measurements were taken at rest and 1 minute after completion of the WATs. Brachial and aortic blood pressures, as well as wave reflection characteristics, were measured through pulse wave analysis. Aortic stiffness was assessed through carotid-femoral pulse wave velocity (cfPWV). A repeated-measures analysis of variance was used to investigate the effects of the WATs on blood pressure and vascular function across time. There was no change in brachial or aortic systolic pressure from rest to recovery. There was a significant (p ≤ 0.05) decrease in brachial diastolic pressure (rest: 73 ± 6 mm Hg; recovery: 67 ± 9 mm Hg) and aortic diastolic pressure (rest: 75 ± 6 mm Hg; recovery: 70 ± 9 mm Hg) from rest to recovery. In addition, there was no significant change in the augmentation index (rest: 111.4 ± 6.5%; recovery: 109.8 ± 5.8%, p = 0.65) from rest to recovery. However, there was a significant (p ≤ 0.05) increase in the augmentation index normalized at 75 b·min (rest: 3.29 ± 9.82; recovery 21.21 ± 10.87) during recovery compared with rest. There was no change in cfPWV (rest: 5.3 ± 0.8 m·s; recovery: 5.7 ± 0.5m·s; p = 0.09) in response to the WAT. These data demonstrate that high-intensity interval cycling exercise with short rest periods has a nonsignificant effect on vascular function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhPl...21l2105P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhPl...21l2105P"><span>Oblique ion-acoustic cnoidal waves in two temperature superthermal electrons magnetized plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panwar, A.; Ryu, C. M.; Bains, A. S.</p> <p>2014-12-01</p> <p>A study is presented for the oblique propagation of ion acoustic cnoidal waves in a magnetized plasma consisting of cold ions and two temperature superthermal electrons modelled by kappa-type distributions. Using the reductive perturbation method, the nonlinear Korteweg de-Vries equation is derived, which further gives the solutions with a special type of cnoidal elliptical functions. Both compressive and rarefactive structures are found for these cnoidal waves. Nonlinear periodic cnoidal waves are explained in terms of plasma parameters depicting the Sagdeev potential and the phase curves. It is found that the density ratio of hot electrons to ions μ significantly modifies compressive/refractive wave structures. Furthermore, the combined effects of superthermality of cold and hot electrons κ c , κ h , cold to hot electron temperature ratio σ, angle of propagation and ion cyclotron frequency ωci have been studied in detail to analyze the height and width of compressive/refractive cnoidal waves. The findings in the present study could have important implications in understanding the physics of electrostatic wave structures in the Saturn's magnetosphere where two temperature superthermal electrons are present.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17353798','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17353798"><span>Thinner plantar fascia predicts decreased pain after extracorporeal shock wave therapy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liang, Huey-Wen; Wang, Tyng-Guey; Chen, Wen-Shiang; Hou, Sheng-Mou</p> <p>2007-07-01</p> <p>Increased plantar fascia thickness is common with chronic plantar fasciitis, and reduction of the thickness after extracorporeal shock wave therapy or steroid injection has been reported. We hypothesized a decrease of plantar fascia thickness was associated with pain reduction after extracorporeal shock wave therapy. Fifty-three eligible patients with 78 symptomatic feet were randomly treated with piezoelectric-type extracorporeal shock wave therapy of two intensity levels (0.12 and 0.56 mJ/mm2). Two thousand shock waves for three consecutive sessions were applied at weekly intervals. A visual analog scale for pain, the Foot Function Index, the Short Form-36 Health Survey, and ultrasonographic measurement of plantar fascia thickness were evaluated at baseline and 3 and 6 months after treatment. We analyzed the association between pain level and plantar fascia thickness with generalized estimating equation analysis and adjusted for demographic and treatment-related variables. Patients with thinner plantar fascia experienced less pain after treatment; high-intensity treatment and regular exercise were associated with lower pain level. The overall success rates were 63% and 60% at the 3- and 6-month followups. High- and low-intensity treatments were associated with similar improvements in pain and function. Receiving high-intensity treatment, although associated with less pain at followup, did not provide a higher success rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA592568','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA592568"><span>Modeling of High-Velocity Flows in ITAM Impulse Facilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-04-01</p> <p>up to 150 ms; Adiabatic compression wind tunnels up to 100 ms; Shock tubes... shock tubes. Basic and applied aerodynamic research has been performed in these wind tunnels in the range of Mach numbers М = 6 20 for many years...passage of a shock wave propagating over a cold rarefied gas filling the wind tunnel . When the gas heated in the shock wave (plug) passes around the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020087943','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020087943"><span>Prediction of the Acoustic Field Associated with Instability Wave Source Model for a Compressible Jet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Golubev, Vladimir; Mankbadi, Reda R.; Dahl, Milo D.; Kiraly, L. James (Technical Monitor)</p> <p>2002-01-01</p> <p>This paper provides preliminary results of the study of the acoustic radiation from the source model representing spatially-growing instability waves in a round jet at high speeds. The source model is briefly discussed first followed by the analysis of the produced acoustic directivity pattern. Two integral surface techniques are discussed and compared for prediction of the jet acoustic radiation field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JCoPh.361...56C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JCoPh.361...56C"><span>Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Capuano, M.; Bogey, C.; Spelt, P. D. M.</p> <p>2018-05-01</p> <p>A computational method for the simulation of viscous and compressible gas-gas flows is presented. It consists in solving the Navier-Stokes equations associated with a convection equation governing the motion of the interface between two gases using high-order finite-difference schemes. A discontinuity-capturing methodology based on sensors and a spatial filter enables capturing shock waves and deformable interfaces. One-dimensional test cases are performed as validation and to justify choices in the numerical method. The results compare well with analytical solutions. Shock waves and interfaces are accurately propagated, and remain sharp. Subsequently, two-dimensional flows are considered including viscosity and thermal conductivity. In Richtmyer-Meshkov instability, generated on an air-SF6 interface, the influence of the mesh refinement on the instability shape is studied, and the temporal variations of the instability amplitude is compared with experimental data. Finally, for a plane shock wave propagating in air and impacting a cylindrical bubble filled with helium or R22, numerical Schlieren pictures obtained using different grid refinements are found to compare well with experimental shadow-photographs. The mass conservation is verified from the temporal variations of the mass of the bubble. The mean velocities of pressure waves and bubble interface are similar to those obtained experimentally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007SPIE.6722E..1XY','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007SPIE.6722E..1XY"><span>Laser shock wave and its applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin</p> <p>2007-12-01</p> <p>The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10990693','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10990693"><span>Anomalous X-Ray yields under surface wave resonance during reflection high energy electron diffraction and adatom site determination</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yamanaka; Ino</p> <p>2000-05-08</p> <p>In L x-ray emissions from a Si(111)-sqrt[3]xsqrt[3]-In surface induced by electron beam irradiation were measured as functions of the incident glancing angle. Under surface wave resonance conditions, anomalous x-ray intensities were clearly observed. Using dynamical calculations, these intensities are well explained as changes in density of the electron wave field at adatom positions. From these intensities, the adatom site was analyzed, and it was found that the T4 model is better than the H3 model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1209349','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1209349"><span>Interferometric millimeter wave and THz wave doppler radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas</p> <p>2015-08-11</p> <p>A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/4014849','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/4014849"><span>Brain stem auditory-evoked response of the nonanesthetized dog.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marshall, A E</p> <p>1985-04-01</p> <p>The brain stem auditory evoked-response was measured from a group of 24 healthy dogs under conditions suitable for clinical diagnostic use. The waveforms were identified, and analysis of amplitude ratios, latencies, and interpeak latencies were done. The group was subdivided into subgroups based on tranquilization, nontranquilization, sex, and weight. Differences were not observed among any of these subgroups. All dogs responded to the click stimulus from 30 dB to 90 dB, but only 62.5% of the dogs responded at 5 dB. The total number of peaks averaged 1.6 at 5 dB, increased linearly to 6.5 at 50 dB, and remained at 6.5 to 90 dB. Frequency of recognizability of each wave was tabulated for each stimulus intensity tested; recognizability increased with increased stimulus intensity. Amplitudes of waves increased with increasing stimulus intensity, but were highly variable. The 4th wave had the greatest amplitude at the lower stimulus intensities, and the 1st wave had the greatest amplitude at the higher stimulus intensities. Amplitude ratio of the 1st to 5th wave was greater than 1 at less than or equal to 50 dB stimulus intensity, and was 1 for stimulus intensities greater than 50 dB. Interpeak latencies did not change relative to stimulus intensities. Peak latencies of each wave averaged at 5-dB hearing level for the 1st to 6th waves were 2.03, 2.72, 3.23, 4.14, 4.41, and 6.05 ms, respectively; latencies of these 6 waves at 90 dB were 0.92, 1.79, 2.46, 3.03, 3.47, and 4.86 ms, respectively. Latency decreased between 0.009 to 0.014 ms/dB for the waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013MicST..25..213F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013MicST..25..213F"><span>Compression Frequency Choice for Compression Mass Gauge Method and Effect on Measurement Accuracy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fu, Juan; Chen, Xiaoqian; Huang, Yiyong</p> <p>2013-12-01</p> <p>It is a difficult job to gauge the liquid fuel mass in a tank on spacecrafts under microgravity condition. Without the presence of strong buoyancy, the configuration of the liquid and gas in the tank is uncertain and more than one bubble may exist in the liquid part. All these will affect the measure accuracy of liquid mass gauge, especially for a method called Compression Mass Gauge (CMG). Four resonance resources affect the choice of compression frequency for CMG method. There are the structure resonance, liquid sloshing, transducer resonance and bubble resonance. Ground experimental apparatus are designed and built to validate the gauging method and the influence of different compression frequencies at different fill levels on the measurement accuracy. Harmonic phenomenon should be considered during filter design when processing test data. Results demonstrate the ground experiment system performances well with high accuracy and the measurement accuracy increases as the compression frequency climbs in low fill levels. But low compression frequencies should be the better choice for high fill levels. Liquid sloshing induces the measurement accuracy to degrade when the surface is excited to wave by external disturbance at the liquid natural frequency. The measurement accuracy is still acceptable at small amplitude vibration.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..SHK.H1003R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..SHK.H1003R"><span>High-energy synchrotron X-ray radiography of shock-compressed materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.</p> <p>2015-06-01</p> <p>This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhRvB..79q4108M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhRvB..79q4108M"><span>Metallization of aluminum hydride AlH3 at high multiple-shock pressures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Molodets, A. M.; Shakhray, D. V.; Khrapak, A. G.; Fortov, V. E.</p> <p>2009-05-01</p> <p>A study of electrophysical and thermodynamic properties of alane AlH3 under multishock compression has been carried out. The increase in specific electroconductivity of alane at shock compression up to pressure 100 GPa has been measured. High pressures and temperatures were obtained with an explosive device, which accelerates the stainless impactor up to 3 km/s. A strong shock wave is generated on impact with a holder containing alane. The impact shock is split into a shock wave reverberating in alane between two stiff metal anvils. This compression loads the alane sample by a multishock manner up to pressure 80-90 GPa, heats alane to the temperature of about 1500-2000 K, and lasts 1μs . The conductivity of shocked alane increases in the range up to 60-75 GPa and is about 30(Ωcm)-1 . In this region the semiconductor regime is true for shocked alane. The conductivity of alane achieves approximately 500(Ωcm)-1 at 80-90 GPa. In this region, conductivity is interpreted in frames of the conception of the “dielectric catastrophe,” taking into consideration significant differences between the electronic states of isolated molecule AlH3 and condensed alane.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012794','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012794"><span>DETERMINATION OF ELASTIC WAVE VELOCITY AND RELATIVE HYPOCENTER LOCATIONS USING REFRACTED WAVES. II. APPLICATION TO THE HAICHENG, CHINA, AFTERSHOCK SEQUENCE.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shedlock, Kaye M.; Jones, Lucile M.; Ma, Xiufang</p> <p>1985-01-01</p> <p>The authors located the aftershocks of the February 4, 1975 Haicheng, China, aftershock sequence using an arrival time difference (ATD) simultaneous inversion method for determining the near-source (in situ) velocity and the location of the aftershocks with respect to a master event. The aftershocks define a diffuse zone, 70 km multiplied by 25 km, trending west-northwest, perpendicular to the major structural trend of the region. The main shock and most of the large aftershocks have strike-slip fault plane solutions. The preferred fault plane strikes west-northwest, and the inferred sense of motion is left-lateral. The entire Haicheng earthauake sequence appears to have been the response of an intensely faulted range boundary to a primarily east-west crustal compression and/or north-south extension.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1325991-theory-bimodal-acceleration-pick-up-ions-compression-solar-wind-turbulence-under-pressure-balance','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1325991-theory-bimodal-acceleration-pick-up-ions-compression-solar-wind-turbulence-under-pressure-balance"><span>A theory of bimodal acceleration of pick up ions by compression solar wind turbulence under pressure balance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhang, Ming; Schlickeiser, Reinhard</p> <p>2012-08-22</p> <p>Recently, it was demonstrated that stochastic acceleration of particles going through a series of compressive plasma waves can be efficient and fast. It could be too fast so that the pressure built up by the accelerated particles may in turn modify the amplitude of waves to prevent the particles from having an exploding pressure. We call this condition pressure balance. In this paper, we take into account the fact that active acceleration of particles only occupies a limited volume of space due to a possible intermittent nature of plasma waves or turbulence. We also develop a bimodal acceleration theory thatmore » treats the populations of particles in the active and inactive acceleration regions separately and allows the two populations to exchange particles efficiently. We show that the system automatically produces a solution of v -5 steady state distribution for the accelerated particles, under the requirement of the pressure balance condition. It is found that the v -5 distribution is more robust and easier to achieve with a small volume of intense particle acceleration. These properties explain why the v -5 distribution is commonly observed in space. We apply our model to pickup ion propagation and acceleration throughout the entire heliosphere. These results can reproduce various observations in some great detail. We also found that this mechanism could be responsible for producing anomalous cosmic rays deep in the heliosheath.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Natur.550..496W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Natur.550..496W"><span>In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wehrenberg, C. E.; McGonegle, D.; Bolme, C.; Higginbotham, A.; Lazicki, A.; Lee, H. J.; Nagler, B.; Park, H.-S.; Remington, B. A.; Rudd, R. E.; Sliwa, M.; Suggit, M.; Swift, D.; Tavella, F.; Zepeda-Ruiz, L.; Wark, J. S.</p> <p>2017-10-01</p> <p>Pressure-driven shock waves in solid materials can cause extreme damage and deformation. Understanding this deformation and the associated defects that are created in the material is crucial in the study of a wide range of phenomena, including planetary formation and asteroid impact sites, the formation of interstellar dust clouds, ballistic penetrators, spacecraft shielding and ductility in high-performance ceramics. At the lattice level, the basic mechanisms of plastic deformation are twinning (whereby crystallites with a mirror-image lattice form) and slip (whereby lattice dislocations are generated and move), but determining which of these mechanisms is active during deformation is challenging. Experiments that characterized lattice defects have typically examined the microstructure of samples after deformation, and so are complicated by post-shock annealing and reverberations. In addition, measurements have been limited to relatively modest pressures (less than 100 gigapascals). In situ X-ray diffraction experiments can provide insights into the dynamic behaviour of materials, but have only recently been applied to plasticity during shock compression and have yet to provide detailed insight into competing deformation mechanisms. Here we present X-ray diffraction experiments with femtosecond resolution that capture in situ, lattice-level information on the microstructural processes that drive shock-wave-driven deformation. To demonstrate this method we shock-compress the body-centred-cubic material tantalum—an important material for high-energy-density physics owing to its high shock impedance and high X-ray opacity. Tantalum is also a material for which previous shock compression simulations and experiments have provided conflicting information about the dominant deformation mechanism. Our experiments reveal twinning and related lattice rotation occurring on the timescale of tens of picoseconds. In addition, despite the common association between twinning and strong shocks, we find a transition from twinning to dislocation-slip-dominated plasticity at high pressure (more than 150 gigapascals), a regime that recovery experiments cannot accurately access. The techniques demonstrated here will be useful for studying shock waves and other high-strain-rate phenomena, as well as a broad range of processes induced by plasticity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1409985-situ-ray-diffraction-measurement-shock-wave-driven-twinning-lattice-dynamics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1409985-situ-ray-diffraction-measurement-shock-wave-driven-twinning-lattice-dynamics"><span>In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wehrenberg, C. E.; McGonegle, D.; Bolme, C.</p> <p></p> <p>We report that pressure-driven shock waves in solid materials can cause extreme damage and deformation. Understanding this deformation and the associated defects that are created in the material is crucial in the study of a wide range of phenomena, including planetary formation and asteroid impact sites, the formation of interstellar dust clouds, ballistic penetrators, spacecraft shielding and ductility in high-performance ceramics. At the lattice level, the basic mechanisms of plastic deformation are twinning (whereby crystallites with a mirror-image lattice form) and slip (whereby lattice dislocations are generated and move), but determining which of these mechanisms is active during deformation ismore » challenging. Experiments that characterized lattice defects have typically examined the microstructure of samples after deformation, and so are complicated by post-shock annealing and reverberations. In addition, measurements have been limited to relatively modest pressures (less than 100 gigapascals). In situ X-ray diffraction experiments can provide insights into the dynamic behaviour of materials, but have only recently been applied to plasticity during shock compression and have yet to provide detailed insight into competing deformation mechanisms. Here we present X-ray diffraction experiments with femtosecond resolution that capture in situ, lattice-level information on the microstructural processes that drive shock-wave-driven deformation. To demonstrate this method we shock-compress the body-centred-cubic material tantalum—an important material for high-energy-density physics owing to its high shock impedance and high X-ray opacity. Tantalum is also a material for which previous shock compression simulations and experiments have provided conflicting information about the dominant deformation mechanism. Our experiments reveal twinning and related lattice rotation occurring on the timescale of tens of picoseconds. In addition, despite the common association between twinning and strong shocks, we find a transition from twinning to dislocation-slip-dominated plasticity at high pressure (more than 150 gigapascals), a regime that recovery experiments cannot accurately access. Lastly, the techniques demonstrated here will be useful for studying shock waves and other high-strain-rate phenomena, as well as a broad range of processes induced by plasticity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1409985-situ-ray-diffraction-measurement-shock-wave-driven-twinning-lattice-dynamics','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1409985-situ-ray-diffraction-measurement-shock-wave-driven-twinning-lattice-dynamics"><span>In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wehrenberg, C. E.; McGonegle, D.; Bolme, C.; ...</p> <p>2017-10-25</p> <p>We report that pressure-driven shock waves in solid materials can cause extreme damage and deformation. Understanding this deformation and the associated defects that are created in the material is crucial in the study of a wide range of phenomena, including planetary formation and asteroid impact sites, the formation of interstellar dust clouds, ballistic penetrators, spacecraft shielding and ductility in high-performance ceramics. At the lattice level, the basic mechanisms of plastic deformation are twinning (whereby crystallites with a mirror-image lattice form) and slip (whereby lattice dislocations are generated and move), but determining which of these mechanisms is active during deformation ismore » challenging. Experiments that characterized lattice defects have typically examined the microstructure of samples after deformation, and so are complicated by post-shock annealing and reverberations. In addition, measurements have been limited to relatively modest pressures (less than 100 gigapascals). In situ X-ray diffraction experiments can provide insights into the dynamic behaviour of materials, but have only recently been applied to plasticity during shock compression and have yet to provide detailed insight into competing deformation mechanisms. Here we present X-ray diffraction experiments with femtosecond resolution that capture in situ, lattice-level information on the microstructural processes that drive shock-wave-driven deformation. To demonstrate this method we shock-compress the body-centred-cubic material tantalum—an important material for high-energy-density physics owing to its high shock impedance and high X-ray opacity. Tantalum is also a material for which previous shock compression simulations and experiments have provided conflicting information about the dominant deformation mechanism. Our experiments reveal twinning and related lattice rotation occurring on the timescale of tens of picoseconds. In addition, despite the common association between twinning and strong shocks, we find a transition from twinning to dislocation-slip-dominated plasticity at high pressure (more than 150 gigapascals), a regime that recovery experiments cannot accurately access. Lastly, the techniques demonstrated here will be useful for studying shock waves and other high-strain-rate phenomena, as well as a broad range of processes induced by plasticity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017FlDyR..49d5504A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017FlDyR..49d5504A"><span>Flow design and simulation of a gas compression system for hydrogen fusion energy production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Avital, E. J.; Salvatore, E.; Munjiza, A.; Suponitsky, V.; Plant, D.; Laberge, M.</p> <p>2017-08-01</p> <p>An innovative gas compression system is proposed and computationally researched to achieve a short time response as needed in engineering applications such as hydrogen fusion energy reactors and high speed hammers. The system consists of a reservoir containing high pressure gas connected to a straight tube which in turn is connected to a spherical duct, where at the sphere’s centre plasma resides in the case of a fusion reactor. Diaphragm located inside the straight tube separates the reservoir’s high pressure gas from the rest of the plenum. Once the diaphragm is breached the high pressure gas enters the plenum to drive pistons located on the inner wall of the spherical duct that will eventually end compressing the plasma. Quasi-1D and axisymmetric flow formulations are used to design and analyse the flow dynamics. A spike is designed for the interface between the straight tube and the spherical duct to provide a smooth geometry transition for the flow. Flow simulations show high supersonic flow hitting the end of the spherical duct, generating a return shock wave propagating upstream and raising the pressure above the reservoir pressure as in the hammer wave problem, potentially giving temporary pressure boost to the pistons. Good agreement is revealed between the two flow formulations pointing to the usefulness of the quasi-1D formulation as a rapid solver. Nevertheless, a mild time delay in the axisymmetric flow simulation occurred due to moderate two-dimensionality effects. The compression system is settled down in a few milliseconds for a spherical duct of 0.8 m diameter using Helium gas and a uniform duct cross-section area. Various system geometries are analysed using instantaneous and time history flow plots.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT........17I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT........17I"><span>Cross-polarized wave generation (XPW) for ultrafast laser pulse characterization and intensity contrast enhancement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iliev, Marin</p> <p></p> <p>Good pulse quality, high peak power and tunable central wavelength are amongst the most desired qualities in modern lasers. The nonlinear effect cross-polarized wave generation (XPW), can be used in ultrafast laser systems to achieve various pulse quality enhancements. The XPW yield depends on the cube of the input intensity and acts as a spatio-temporal filter. It is orthogonally polarized to the input pulse and highly Gaussian. If the input pulse is well compressed, the output spectrum is smoother and broader. These features make XPW an ideal reference signal in pulse characterization techniques. This thesis presents a detailed analysis of the XPW conversion process, and describes novel applications to pulse characterization and high-quality pulse cleaning. An extensive computer model was developed to describe XPW generation via solution of the full coupled non-linear differential equations. The model accounts for dispersion inside the nonlinear crystal and uses split-step Fourier optics beam propagation to simulate the evolution of the electro-magnetic fields of the pump and XPW through free-space and imaging systems. A novel extension to the self-referenced spectral interferometry (SRSI) pulse characterization technique allows the retrieval of the energy and spectral content of the amplified spontaneous emission (ASE) present in ultrashort pulse amplifier systems. A novel double-pass XPW conversion scheme is presented. In it the beam passes through a single XPW crystal (BaF2) and is re-imaged with a curved mirror. The technique resulted in good (˜30%) efficiency without the spatial aberrations commonly seen in another arrangement that uses two crystals in succession. The modeling sheds light on the complicated nonlinear beam dynamics of the double-crystal conversion, including self- and cross-phase modulation, self-focusing, and the effects of, relative on-axis phase-difference, relative beam sizes, and wave-front curvature matching on seeded XPW conversion. Finally, a design is presented for exploiting the clean-up properties of XPW at the output of an optical parametric generation (OPA) setup in conjunction with an extremely compact prism compressor. The prisms material, separation and geometry are designed carefully to work at the correct wavelength of the OPA setup and are extrapolated to accommodate wavelengths, such as 2mum of parametric wave generation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667409-effects-kinetic-instabilities-small-scale-turbulence-earths-magnetosheath','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667409-effects-kinetic-instabilities-small-scale-turbulence-earths-magnetosheath"><span>THE EFFECTS OF KINETIC INSTABILITIES ON SMALL-SCALE TURBULENCE IN EARTH’S MAGNETOSHEATH</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Breuillard, H.; Yordanova, E.; Vaivads, A.</p> <p>2016-09-20</p> <p>The Earth's magnetosheath is the region delimited by the bow shock and the magnetopause. It is characterized by highly turbulent fluctuations covering all scales from MHD down to kinetic scales. Turbulence is thought to play a fundamental role in key processes such as energy transport and dissipation in plasma. In addition to turbulence, different plasma instabilities are generated in the magnetosheath because of the large anisotropies in plasma temperature introduced by its boundaries. In this study we use high-quality magnetic field measurements from Cluster spacecraft to investigate the effects of such instabilities on the small-scale turbulence (from ion down tomore » electron scales). We show that the steepening of the power spectrum of magnetic field fluctuations in the magnetosheath occurs at the largest characteristic ion scale. However, the spectrum can be modified by the presence of waves/structures at ion scales, shifting the onset of the small-scale turbulent cascade toward the smallest ion scale. This cascade is therefore highly dependent on the presence of kinetic instabilities, waves, and local plasma parameters. Here we show that in the absence of strong waves the small-scale turbulence is quasi-isotropic and has a spectral index α ≈ −2.8. When transverse or compressive waves are present, we observe an anisotropy in the magnetic field components and a decrease in the absolute value of α . Slab/2D turbulence also develops in the presence of transverse/compressive waves, resulting in gyrotropy/non-gyrotropy of small-scale fluctuations. The presence of both types of waves reduces the anisotropy in the amplitude of fluctuations in the small-scale range.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.3646S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.3646S"><span>A Distributed Lag Autoregressive Model of Geostationary Relativistic Electron Fluxes: Comparing the Influences of Waves, Seed and Source Electrons, and Solar Wind Inputs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simms, Laura; Engebretson, Mark; Clilverd, Mark; Rodger, Craig; Lessard, Marc; Gjerloev, Jesper; Reeves, Geoffrey</p> <p>2018-05-01</p> <p>Relativistic electron flux at geosynchronous orbit depends on enhancement and loss processes driven by ultralow frequency (ULF) Pc5, chorus, and electromagnetic ion cyclotron (EMIC) waves, seed electron flux, magnetosphere compression, the "Dst effect," and substorms, while solar wind inputs such as velocity, number density, and interplanetary magnetic field Bz drive these factors and thus correlate with flux. Distributed lag regression models show the time delay of highest influence of these factors on log10 high-energy electron flux (0.7-7.8 MeV, Los Alamos National Laboratory satellites). Multiple regression with an autoregressive term (flux persistence) allows direct comparison of the magnitude of each effect while controlling other correlated parameters. Flux enhancements due to ULF Pc5 and chorus waves are of equal importance. The direct effect of substorms on high-energy electron flux is strong, possibly due to injection of high-energy electrons by the substorms themselves. Loss due to electromagnetic ion cyclotron waves is less influential. Southward Bz shows only moderate influence when correlated processes are accounted for. Adding covariate compression effects (pressure and interplanetary magnetic field magnitude) allows wave-driven enhancements to be more clearly seen. Seed electrons (270 keV) are most influential at lower relativistic energies, showing that such a population must be available for acceleration. However, they are not accelerated directly to the highest energies. Source electrons (31.7 keV) show no direct influence when other factors are controlled. Their action appears to be indirect via the chorus waves they generate. Determination of specific effects of each parameter when studied in combination will be more helpful in furthering modeling work than studying them individually.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27076352','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27076352"><span>Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao</p> <p>2016-09-01</p> <p>Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and background.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5495143','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5495143"><span>Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mellema, Daniel C.; Song, Pengfei; Kinnick, Randall R.; Urban, Matthew W.; Greenleaf, James F.; Manduca, Armando; Chen, Shigao</p> <p>2017-01-01</p> <p>Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) “push beam” to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a “strain-like” compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥19 dB) between the target and background. PMID:27076352</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6686G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6686G"><span>Slow waves moving near the openings in highly stressed conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guzev, Michail; Makarov, Vladimir</p> <p>2017-04-01</p> <p>In situ experiments have shown the unusual deformation waves near the openings on high depth of the construction. Process of the wave spreading is beginning after the mining and has two stages of the zonal mesocracking structure formation and development [1]. Extending in a radial direction, the wave poorly fades with distance. For phenomenon modelling the theoretical decision for non-Eucledian models about opening of round cross-section in strongly compressed rock massif is used [2]. The decision qualitatively repeats behaviour of a wave in a rock mass, adjustment of phenomenological parametres is executed. References [1] Vladimir V. Makarov, Mikhail A. Guzev, Vladimir N. Odintsev, Lyudmila S. Ksendzenko (2016) Periodical zonal character of damage near the openings in highly-stressed rock mass conditions. Journal of Rock Mechanics and Geotechnical Engineering. Volume 8, Issue 2, pp. 164-169. [2] M.A. Guzev, V.V. Makarov, 2007. Deforming and failure of the high stressed rocks around the openings, RAS Edit., Vladivostok, 2007, P. 232 (in Russian).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JFM...843..244S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JFM...843..244S"><span>Compressible flow at high pressure with linear equation of state</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sirignano, William A.</p> <p>2018-05-01</p> <p>Compressible flow varies from ideal-gas behavior at high pressures where molecular interactions become important. Density is described through a cubic equation of state while enthalpy and sound speed are functions of both temperature and pressure, based on two parameters, A and B, related to intermolecular attraction and repulsion, respectively. Assuming small variations from ideal-gas behavior, a closed-form solution is obtained that is valid over a wide range of conditions. An expansion in these molecular-interaction parameters simplifies relations for flow variables, elucidating the role of molecular repulsion and attraction in variations from ideal-gas behavior. Real-gas modifications in density, enthalpy, and sound speed for a given pressure and temperature lead to variations in many basic compressible flow configurations. Sometimes, the variations can be substantial in quantitative or qualitative terms. The new approach is applied to choked-nozzle flow, isentropic flow, nonlinear-wave propagation, and flow across a shock wave, all for the real gas. Modifications are obtained for allowable mass-flow through a choked nozzle, nozzle thrust, sonic wave speed, Riemann invariants, Prandtl's shock relation, and the Rankine-Hugoniot relations. Forced acoustic oscillations can show substantial augmentation of pressure amplitudes when real-gas effects are taken into account. Shocks at higher temperatures and pressures can have larger pressure jumps with real-gas effects. Weak shocks decay to zero strength at sonic speed. The proposed framework can rely on any cubic equation of state and be applied to multicomponent flows or to more-complex flow configurations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MCM....51..751K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MCM....51..751K"><span>The Influence of Multiple Nested Layer Waviness on the Compression Strength of Double Nested Wave Formations in a Carbon Fiber Composite Laminate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khan, Z. M.; Adams, D. O.; Anas, S.</p> <p>2016-01-01</p> <p>As advanced composite materials having superior physical and mechanical properties are being developed, the optimization of their processing techniques is eagerly sought. One of the most common defects arising during processing of structural composites is layer waviness. The layer waviness is more pronounced in thick-section flat and cylindrical laminates, which are extensively used in large wind turbine blades, submersibles, and space platforms. The layer waviness undulates the entire layer of a multidirectional laminate in the throughthe-thickness direction, leading to a gross deterioration of its compressive strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wavy 0° layers were fabricated in an IM/8551-7 carbon-epoxy composite laminate on a steel mold by using a single-step fabrication procedure. The test laminates were cured on a heated press according to the specific curing cycle of epoxy. Their static compression testing was performed using a NASA short block compression fixture on an MTS servohydraulic machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of the composite laminate. The experimental and analytical results obtained revealed that the reduction in the compression strength of composite laminate was constant after the fraction of the wavy 0° layers exceeded 35%. This analysis indicated that the percentage of the 0° wavy layer may be used to estimate the reduction in the compression strength of a double nested wave formation in a composite laminate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910012558','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910012558"><span>Fiber optic sensing system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Adamovsky, Grigory (Inventor)</p> <p>1991-01-01</p> <p>A fiber optic interferometer utilizes a low coherence light emitting diode (LED) laser as a light source which is filtered and driven at two RF frequencies, high and low, that are specific to the initial length of the resonator chamber. A displacement of a reflecting mirror changes the length traveled by the nonreferencing signal. The low frequency light undergoes destructive interference which reduces the average intensity of the wave while the high frequency light undergoes constructive interference which increases the average intensity of the wave. The ratio of these two intensity measurements is proportional to the displacement incurred.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10214E..0GM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10214E..0GM"><span>Pulse compression favourable aperiodic infrared imaging approach for non-destructive testing and evaluation of bio-materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mulaveesala, Ravibabu; Dua, Geetika; Arora, Vanita; Siddiqui, Juned A.; Muniyappa, Amarnath</p> <p>2017-05-01</p> <p>In recent years, aperiodic, transient pulse compression favourable infrared imaging methodologies demonstrated as reliable, quantitative, remote characterization and evaluation techniques for testing and evaluation of various biomaterials. This present work demonstrates a pulse compression favourable aperiodic thermal wave imaging technique, frequency modulated thermal wave imaging technique for bone diagnostics, especially by considering the bone with tissue, skin and muscle over layers. In order to find the capabilities of the proposed frequency modulated thermal wave imaging technique to detect the density variations in a multi layered skin-fat-muscle-bone structure, finite element modeling and simulation studies have been carried out. Further, frequency and time domain post processing approaches have been adopted on the temporal temperature data in order to improve the detection capabilities of frequency modulated thermal wave imaging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhPl...23l2702W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhPl...23l2702W"><span>Main drive optimization of a high-foot pulse shape in inertial confinement fusion implosions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.</p> <p>2016-12-01</p> <p>While progress towards hot-spot ignition has been made achieving an alpha-heating dominated state in high-foot implosion experiments [Hurricane et al., Nat. Phys. 12, 800 (2016)] on the National Ignition Facility, improvements are needed to increase the fuel compression for the enhancement of the neutron yield. A strategy is proposed to improve the fuel compression through the recompression of a shock/compression wave generated by the end of the main drive portion of a high-foot pulse shape. Two methods for the peak pulse recompression, namely, the decompression-and-recompression (DR) and simple recompression schemes, are investigated and compared. Radiation hydrodynamic simulations confirm that the peak pulse recompression can clearly improve fuel compression without significantly compromising the implosion stability. In particular, when the convergent DR shock is tuned to encounter the divergent shock from the capsule center at a suitable position, not only the neutron yield but also the stability of stagnating hot-spot can be noticeably improved, compared to the conventional high-foot implosions [Hurricane et al., Phys. Plasmas 21, 056314 (2014)].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1237465','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1237465"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Elizondo-Decanini, Juan M.; Coleman, Phillip D.; Moorman, Matthew W.</p> <p></p> <p>Low- and high-voltage Soliton waves were produced and used to demonstrate collision and compression using diode-based nonlinear transmission lines. Experiments demonstrate soliton addition and compression using homogeneous nonlinear lines. We built the nonlinear lines using commercially available diodes. These diodes are chosen after their capacitance versus voltage dependence is used in a model and the line design characteristics are calculated and simulated. Nonlinear ceramic capacitors are then used to demonstrate high-voltage pulse amplification and compression. The line is designed such that a simple capacitor discharge, input signal, develops soliton trains in as few as 12 stages. We also demonstrated outputmore » voltages in excess of 40 kV using Y5V-based commercial capacitors. The results show some key features that determine efficient production of trains of solitons in the kilovolt range.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1372881-parametric-decay-plasma-waves-near-upper-hybrid-resonance','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1372881-parametric-decay-plasma-waves-near-upper-hybrid-resonance"><span>Parametric decay of plasma waves near the upper-hybrid resonance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Dodin, I. Y.; Arefiev, A. V.</p> <p>2017-03-28</p> <p>An intense X wave propagating perpendicularly to dc magnetic field is unstable with respect to a parametric decay into an electron Bernstein wave and a lower-hybrid wave. A modified theory of this effect is proposed that extends to the high-intensity regime, where the instability rate γ ceases to be a linear function of the incident-wave amplitude. An explicit formula for γ is derived and expressed in terms of cold-plasma parameters. Here, theory predictions are in reasonable agreement with the results of the particle-in-cell simulations presented in a separate publication.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT.......121H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT.......121H"><span>Optimization of the dynamic behavior of strongly nonlinear heterogeneous materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herbold, Eric B.</p> <p></p> <p>New aspects of strongly nonlinear wave and structural phenomena in granular media are developed numerically, theoretically and experimentally. One-dimensional chains of particles and compressed powder composites are the two main types of materials considered here. Typical granular assemblies consist of linearly elastic spheres or layers of masses and effective nonlinear springs in one-dimensional columns for dynamic testing. These materials are highly sensitive to initial and boundary conditions, making them useful for acoustic and shock-mitigating applications. One-dimensional assemblies of spherical particles are examples of strongly nonlinear systems with unique properties. For example, if initially uncompressed, these materials have a sound speed equal to zero (sonic vacuum), supporting strongly nonlinear compression solitary waves with a finite width. Different types of assembled metamaterials will be presented with a discussion of the material's response to static compression. The acoustic diode effect will be presented, which may be useful in shock mitigation applications. Systems with controlled dissipation will also be discussed from an experimental and theoretical standpoint emphasizing the critical viscosity that defines the transition from an oscillatory to monotonous shock profile. The dynamic compression of compressed powder composites may lead to self-organizing mesoscale structures in two and three dimensions. A reactive granular material composed of a compressed mixture of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) fine-grain powders exhibit this behavior. Quasistatic, Hopkinson bar, and drop-weight experiments show that composite materials with a high porosity and fine metallic particles exhibit a higher strength than less porous mixtures with larger particles, given the same mass fraction of constituents. A two-dimensional Eulerian hydrocode is implemented to investigate the mechanical deformation and failure of the compressed powder samples in simulated drop-weight tests. The calculations indicate that the dynamic formation of mesoscale force chains increase the strength of the sample. This is also apparent in three-dimensional finite element calculations of drop-weight test simulations using LS-Dyna despite a higher granular bulk coordination number, and an increased mobility of individual grains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18492876','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18492876"><span>Artifacts in slab average-intensity-projection images reformatted from JPEG 2000 compressed thin-section abdominal CT data sets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Bohyoung; Lee, Kyoung Ho; Kim, Kil Joong; Mantiuk, Rafal; Kim, Hye-ri; Kim, Young Hoon</p> <p>2008-06-01</p> <p>The objective of our study was to assess the effects of compressing source thin-section abdominal CT images on final transverse average-intensity-projection (AIP) images. At reversible, 4:1, 6:1, 8:1, 10:1, and 15:1 Joint Photographic Experts Group (JPEG) 2000 compressions, we compared the artifacts in 20 matching compressed thin sections (0.67 mm), compressed thick sections (5 mm), and AIP images (5 mm) reformatted from the compressed thin sections. The artifacts were quantitatively measured with peak signal-to-noise ratio (PSNR) and a perceptual quality metric (High Dynamic Range Visual Difference Predictor [HDR-VDP]). By comparing the compressed and original images, three radiologists independently graded the artifacts as 0 (none, indistinguishable), 1 (barely perceptible), 2 (subtle), or 3 (significant). Friedman tests and exact tests for paired proportions were used. At irreversible compressions, the artifacts tended to increase in the order of AIP, thick-section, and thin-section images in terms of PSNR (p < 0.0001), HDR-VDP (p < 0.0001), and the readers' grading (p < 0.01 at 6:1 or higher compressions). At 6:1 and 8:1, distinguishable pairs (grades 1-3) tended to increase in the order of AIP, thick-section, and thin-section images. Visually lossless threshold for the compression varied between images but decreased in the order of AIP, thick-section, and thin-section images (p < 0.0001). Compression artifacts in thin sections are significantly attenuated in AIP images. On the premise that thin sections are typically reviewed using an AIP technique, it is justifiable to compress them to a compression level currently accepted for thick sections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SPIE.8434E..19G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SPIE.8434E..19G"><span>All-fiber broadband supercontinuum generation in a single-mode high nonlinear silica fiber</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Weiqing; Liao, Meisong; Yang, Lingzhen; Yan, Xin; Suzuki, Takenobu; Ohishi, Yasutake</p> <p>2012-06-01</p> <p>We demonstrate an all-fiber broadband supercontinuum (SC) source with high efficiency in a single-mode high nonlinear silica fiber. The SC is pumped by the 1557 nm sub-picosecond pulse, which is generated by a homemade passively mode-locked fiber laser, amplified by an EDFA and compressed to 600 fs. The high nonlinear fiber used in experiments has the zero-dispersion wavelength of 1584 nm with low dispersion slope. The pump pulse is in the normal dispersion region and the SC generation is initiated by the SPM effect. When the long-wave band of the spectrum is extended to the anomalous dispersion region, the soliton effects and intra-pulse Raman effects extend the spectrum further. Meanwhile, the dispersive waves shorter than 1100 nm begin to emerge because the phase matching condition is satisfied and the intensity increases with increasing the pump intensity. The broad SC spectrum with the spectral range from 840 to 2390 nm is obtained at the pump peak power of 46.71 kW, and the 10 dB bandwidth from 1120 nm to 2245 nm of the SC covers one octave assuming the peak near 1550 nm is filtered. The temporal trace of the SC has the repetition rate of 16.7 MHz, and some satellite pulses are generated during the nonlinear process. The SC source system is constructed by all-fiber components, which can be fusion spliced together directly with low loss less than 0.1 dB and improves the energy transfer efficiency from the pump source to the SC greatly. The maximum SC average power of 332 mW is obtained for the total spectral range, and the slop efficiency to the pump source is about 70.3%, which will be lower when the peaks near 1550 nm are filtered, but is higher than those in PCFs. The spectral density for the 10 dB bandwidth is in the range from -17.3 to -7.3 dBm/nm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ChPhL..30i7501L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ChPhL..30i7501L"><span>The Impact Induced Demagnetization Mechanism in NdFeB Permanent Magnets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Yan-Feng; Zhu, Ming-Gang; Li, Wei; Zhou, Dong; Lu, Feng; Chen, Lang; Wu, Jun-Ying; Qi, Yan; Du, An</p> <p>2013-09-01</p> <p>Compression of unmagnetized Nd2Fe14B permanent magnets is executed by using shock waves with different pressures in a one-stage light gas gun system. The microstructure, crystal structure, and magnetic properties of the magnets are examined with scanning electronic microscopy, x-ray diffraction, hysteresis loop instruments, and a vibrating sample magnetometer, respectively. The NdFeB magnets display a demagnetization phenomenon after shock wave compression. The coercivity dropped from about 21.4 kOe to 3.2 kOe. The critical pressure of irreversible demagnetization of NdFeB magnets should be less than 4.92 GPa. The coercivity of the NdFeB magnets compressed by shock waves could be recovered after annealing at 900°C and 520°C for 2 h, sequentially. The chaotic orientation of Nd2Fe14B grains in the compressed magnets is the source of demagnetization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4192704','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4192704"><span>Genesis of the characteristic pulmonary venous pressure waveform as described by the reservoir-wave model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bouwmeester, J Christopher; Belenkie, Israel; Shrive, Nigel G; Tyberg, John V</p> <p>2014-01-01</p> <p>Conventional haemodynamic analysis of pulmonary venous and left atrial (LA) pressure waveforms yields substantial forward and backward waves throughout the cardiac cycle; the reservoir wave model provides an alternative analysis with minimal waves during diastole. Pressure and flow in a single pulmonary vein (PV) and the main pulmonary artery (PA) were measured in anaesthetized dogs and the effects of hypoxia and nitric oxide, volume loading, and positive-end expiratory pressure (PEEP) were observed. The reservoir wave model was used to determine the reservoir contribution to PV pressure and flow. Subtracting reservoir pressure and flow resulted in ‘excess’ quantities which were treated as wave-related. Wave intensity analysis of excess pressure and flow quantified the contributions of waves originating upstream (from the PA) and downstream (from the LA and/or left ventricle (LV)). Major features of the characteristic PV waveform are caused by sequential LA and LV contraction and relaxation creating backward compression (i.e. pressure-increasing) waves followed by decompression (i.e. pressure-decreasing) waves. Mitral valve opening is linked to a backwards decompression wave (i.e. diastolic suction). During late systole and early diastole, forward waves originating in the PA are significant. These waves were attenuated less with volume loading and delayed with PEEP. The reservoir wave model shows that the forward and backward waves are negligible during LV diastasis and that the changes in pressure and flow can be accounted for by the discharge of upstream reservoirs. In sharp contrast, conventional analysis posits forward and backward waves such that much of the energy of the forward wave is opposed by the backward wave. PMID:25015922</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030885','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030885"><span>Estimation of elastic moduli in a compressible Gibson half-space by inverting Rayleigh-wave phase velocity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Xia, J.; Xu, Y.; Miller, R.D.; Chen, C.</p> <p>2006-01-01</p> <p>A Gibson half-space model (a non-layered Earth model) has the shear modulus varying linearly with depth in an inhomogeneous elastic half-space. In a half-space of sedimentary granular soil under a geostatic state of initial stress, the density and the Poisson's ratio do not vary considerably with depth. In such an Earth body, the dynamic shear modulus is the parameter that mainly affects the dispersion of propagating waves. We have estimated shear-wave velocities in the compressible Gibson half-space by inverting Rayleigh-wave phase velocities. An analytical dispersion law of Rayleigh-type waves in a compressible Gibson half-space is given in an algebraic form, which makes our inversion process extremely simple and fast. The convergence of the weighted damping solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Calculation efficiency is achieved by reconstructing a weighted damping solution using singular value decomposition techniques. The main advantage of this algorithm is that only three parameters define the compressible Gibson half-space model. Theoretically, to determine the model by the inversion, only three Rayleigh-wave phase velocities at different frequencies are required. This is useful in practice where Rayleigh-wave energy is only developed in a limited frequency range or at certain frequencies as data acquired at manmade structures such as dams and levees. Two real examples are presented and verified by borehole S-wave velocity measurements. The results of these real examples are also compared with the results of the layered-Earth model. ?? Springer 2006.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JPhD...45k5401J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JPhD...45k5401J"><span>Shock wave compression and self-generated electric field repolarization in ferroelectric ceramics Pb0.99[(Zr0.90Sn0.10)0.96Ti0.04]0.98Nb0.02O3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Dongdong; Du, Jinmei; Gu, Yan; Feng, Yujun</p> <p>2012-03-01</p> <p>The shock wave induced depoling current of Pb0.99[(Zr0.90Sn0.10)0.96Ti0.04]0.98Nb0.02O3 ceramics was investigated with a system composed of a resistive load and an unpoled ceramic. Disparity in the depoling current was explained by considering the drawing charge effect of unpoled ceramic. The drawing effect for poled ceramics was analysed by developing a model incorporating a time- and electric-field-dependent repolarization. This model predicts that the high-impedance current eventually becomes higher than the short-circuit current, which is consistent with the experimental results in the literature. This work indicates that both the repolarization of uncompressed ceramics caused by the self-generated electric field and depolarization of compressed ceramics caused by the shock wave govern the output current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR33B0465B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR33B0465B"><span>A Modified Split Hopkinson Pressure Bar Approach for Mimicking Dynamic Oscillatory Stress Fluctuations During Earthquake Rupture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Braunagel, M. J.; Griffith, W. A.</p> <p>2017-12-01</p> <p>Past experimental work has demonstrated that rock failure at high strain rates occurs by fragmentation rather than discrete fracture and is accompanied by a dramatic increase in rock strength. However, these observations are difficult to reconcile with the assertion that pulverized rocks in fault zones are the product of impulsive stresses during the passage of earthquake ruptures, as the distance from the principal slip zones of some pulverized rock is too great to exceed fragmentation transition. One potential explanation to this paradox that has been suggested is that repeated loading over the course of multiple earthquake ruptures may gradually reduce the pulverization threshold, in terms of both strain rate and strength. We propose that oscillatory loading during a single earthquake rupture may further lower these pulverization thresholds, and that traditional dynamic experimental approaches, such as the Split Hopkinson Pressure Bar (SHPB) wherein load is applied as a single, smooth, sinusoidal compressive wave, may not reflect natural loading conditions. To investigate the effects of oscillatory compressive loading expected during earthquake rupture propagation, we develop a controlled cyclic loading model on a SHPB apparatus utilizing two striker bars connected by an elastic spring. Unlike traditional SHPB experiments that utilize a gas gun to fire a projectile bar and generate a single compressive wave on impact with the incident bar, our modified striker bar assembly oscillates while moving down the gun barrel and generates two separate compressive pulses separated by a lag time. By modeling the modified assembly as a mass-spring-mass assembly accelerating due to the force of the released gas, we can predict the compression time of the spring upon impact and therefore the time delay between the generation of the first and second compressive waves. This allows us to predictably control load cycles with durations of only a few hundred microseconds. Initial experimental results demonstrate that fragmentation of Westerly Granite samples occurs at lower stresses and strain rates than those expected from traditional SHPB experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...844..148V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...844..148V"><span>Coronal Jet Collimation by Nonlinear Induced Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vasheghani Farahani, S.; Hejazi, S. M.</p> <p>2017-08-01</p> <p>Our objective is to study the collimation of solar jets by nonlinear forces corresponding to torsional Alfvén waves together with external forces. We consider a straight, initially non-rotating, untwisted magnetic cylinder embedded in a plasma with a straight magnetic field, where a shear between the internal and external flows exists. By implementing magnetohydrodynamic theory and taking into account the second-order thin flux tube approximation, the balance between the internal nonlinear forces is visualized. The nonlinear differential equation containing the ponderomotive, magnetic tension, and centrifugal forces in the presence of the shear flow is obtained. The solution presents the scale of influence of the propagating torsional Alfvén wave on compressive perturbations. Explicit expressions for the compressive perturbations caused by the forces connected to the torsional Alfvén wave show that, in the presence of a shear flow, the magnetic tension and centrifugal forces do not cancel each other’s effects as they did in its absence. This shear flow plays in favor of the magnetic tension force, resulting in a more efficient collimation. Regarding the ponderomotive force, the shear flow has no effect. The phase relations highlight the interplay of the shear flow and the plasma-β. As the shear flow and plasma-β increase, compressive perturbation amplitudes emerge. We conclude that the jet collimation due to the torsional Alfvén wave highly depends on the location of the jet. The shear flow tightens the collimation as the jet elevates up to the solar corona.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5492825','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5492825"><span>3D Imaging Millimeter Wave Circular Synthetic Aperture Radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Renyuan; Cao, Siyang</p> <p>2017-01-01</p> <p>In this paper, a new millimeter wave 3D imaging radar is proposed. The user just needs to move the radar along a circular track, and high resolution 3D imaging can be generated. The proposed radar uses the movement of itself to synthesize a large aperture in both the azimuth and elevation directions. It can utilize inverse Radon transform to resolve 3D imaging. To improve the sensing result, the compressed sensing approach is further investigated. The simulation and experimental result further illustrated the design. Because a single transceiver circuit is needed, a light, affordable and high resolution 3D mmWave imaging radar is illustrated in the paper. PMID:28629140</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........73R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........73R"><span>Nonlinear Ultrasonic Measurements in Nuclear Reactor Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reinhardt, Brian T.</p> <p></p> <p>Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this thesis, two ultrasonic characterization techniques will be explored. The first, finite amplitude wave propagation has been demonstrated to be sensitive to microstructural material property changes. It is a strong candidate to determine fuel evolution; however, it has not been demonstrated for in-situ reactor applications. In this thesis, finite amplitude wave propagation will be used to measure the microstructural evolution in Al-6061. This is the first demonstration of finite amplitude wave propagation at temperatures in excess of 200 °C and during an irradiation test. Second, a method based on contact nonlinear acoustic theory will be developed to identify compressed cracks. Compressed cracks are typically transparent to ultrasonic wave propagation; however, by measuring harmonic content developed during finite amplitude wave propagation, it is shown that even compressed cracks can be characterized. Lastly, piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts Institute of Technology Research reactor to a fast neutron fluence of 8.65x10 20 n/cm2. It is demonstrated that Bismuth Titanate is capable of transduction up to 5 x1020 n/cm2, Zinc Oxide is capable of transduction up to 6.27 x1020 n/cm 2, and Aluminum Nitride is capable of transduction up to 8.65x x10 20 n/cm2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSMG54B2042E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSMG54B2042E"><span>Growth of the shallow Mekong clinoform and the impact of seasonal variability in fluvial and shelf processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eidam, E.; Nittrouer, C.; Ogston, A. S.; Liu, P.; DeMaster, D. J.; Nguyen, T. T.</p> <p>2016-02-01</p> <p>Like many large rivers, the Mekong River has built a compound delta (with subaqueous and subaerial segments) during Holocene sea-level transgression. Unlike many other deltas, the subaqueous part of the Mekong Delta (the clinoform) builds into shallow water in an epicontinental sea. The shallow depths of the Mekong clinoform (rollover at 5 m) may provide additional controls on sediment convergence and deposition through wave and current effects. Knowledge of the shelf dynamics is a key to understanding the total evolution of the Mekong, given that subaqueous and subaerial deltaic growth/erosion are intimately linked. To understand sediment transfer patterns and hydrodynamic controls better, we deployed boundary-layer sensor systems and collected kasten cores offshore of the southernmost Mekong distributary in Sep 2014 and Mar 2015 (high and low river discharge/low and high wave climate, respectively). Sediment accumulates rapidly on the foreset at rates of cm/yr, and sediment fines downslope until merging with relict transgressive sands on the bottomset - as expected for a clinoform system. However, tidal currents are competent to transport silt at all depths on the foreset, and added wave energy during seasonal monsoons creates the capacity to mobilize sand at most (or all) depths on the foreset. During high-flow periods, intense sediment delivery and dominantly shore-perpendicular currents likely drive cross-shelf sediment transfer. During low-flow periods, shoreward- and southwestward-dominant currents compress the sediment-dispersal system against the coast, maintaining a shallow topset while elongating the feature southwestward. These results suggest that for the Mekong, clinoform growth is linked to seasonal changes in shelf currents and in river discharge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008SPIE.6623E..1VX','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008SPIE.6623E..1VX"><span>Hyper-spectral image compression algorithm based on mixing transform of wave band grouping to eliminate redundancy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xie, ChengJun; Xu, Lin</p> <p>2008-03-01</p> <p>This paper presents an algorithm based on mixing transform of wave band grouping to eliminate spectral redundancy, the algorithm adapts to the relativity difference between different frequency spectrum images, and still it works well when the band number is not the power of 2. Using non-boundary extension CDF(2,2)DWT and subtraction mixing transform to eliminate spectral redundancy, employing CDF(2,2)DWT to eliminate spatial redundancy and SPIHT+CABAC for compression coding, the experiment shows that a satisfied lossless compression result can be achieved. Using hyper-spectral image Canal of American JPL laboratory as the data set for lossless compression test, when the band number is not the power of 2, lossless compression result of this compression algorithm is much better than the results acquired by JPEG-LS, WinZip, ARJ, DPCM, the research achievements of a research team of Chinese Academy of Sciences, Minimum Spanning Tree and Near Minimum Spanning Tree, on the average the compression ratio of this algorithm exceeds the above algorithms by 41%,37%,35%,29%,16%,10%,8% respectively; when the band number is the power of 2, for 128 frames of the image Canal, taking 8, 16 and 32 respectively as the number of one group for groupings based on different numbers, considering factors like compression storage complexity, the type of wave band and the compression effect, we suggest using 8 as the number of bands included in one group to achieve a better compression effect. The algorithm of this paper has priority in operation speed and hardware realization convenience.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22038552-mach-bow-shock-control-nanosecond-pulse-surface-dielectric-barrier-discharge','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22038552-mach-bow-shock-control-nanosecond-pulse-surface-dielectric-barrier-discharge"><span>Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nishihara, M.; Takashima, K.; Rich, J. W.</p> <p>2011-06-15</p> <p>Bow shock perturbations in a Mach 5 air flow, produced by low-temperature, nanosecond pulse, and surface dielectric barrier discharge (DBD), are detected by phase-locked schlieren imaging. A diffuse nanosecond pulse discharge is generated in a DBD plasma actuator on a surface of a cylinder model placed in air flow in a small scale blow-down supersonic wind tunnel. Discharge energy coupled to the actuator is 7.3-7.8 mJ/pulse. Plasma temperature inferred from nitrogen emission spectra is a few tens of degrees higher than flow stagnation temperature, T = 340 {+-} 30 K. Phase-locked Schlieren images are used to detect compression waves generatedmore » by individual nanosecond discharge pulses near the actuator surface. The compression wave propagates upstream toward the baseline bow shock standing in front of the cylinder model. Interaction of the compression wave and the bow shock causes its displacement in the upstream direction, increasing shock stand-off distance by up to 25%. The compression wave speed behind the bow shock and the perturbed bow shock velocity are inferred from the Schlieren images. The effect of compression waves generated by nanosecond discharge pulses on shock stand-off distance is demonstrated in a single-pulse regime (at pulse repetition rates of a few hundred Hz) and in a quasi-continuous mode (using a two-pulse sequence at a pulse repetition rate of 100 kHz). The results demonstrate feasibility of hypersonic flow control by low-temperature, repetitive nanosecond pulse discharges.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599947-spatiotemporal-dynamics-gaussian-laser-pulse-multi-ions-plasma','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599947-spatiotemporal-dynamics-gaussian-laser-pulse-multi-ions-plasma"><span>Spatiotemporal dynamics of Gaussian laser pulse in a multi ions plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jafari Milani, M. R., E-mail: mrj.milani@gmail.com</p> <p></p> <p>Spatiotemporal evolutions of Gaussian laser pulse propagating through a plasma with multiple charged ions are studied, taking into account the ponderomotive nonlinearity. Coupled differential equations for beam width and pulse length parameters are established and numerically solved using paraxial ray approximation. In one-dimensional geometry, effects of laser and plasma parameters such as laser intensity, plasma density, and temperature on the longitudinal pulse compression and the laser intensity distribution are analyzed for plasmas with singly and doubly charged ions. The results demonstrate that self-compression occurs in a laser intensity range with a turning point intensity in which the self-compression process hasmore » its strongest extent. The results also show that the multiply ionized ions have different effect on the pulse compression above and below turning point intensity. Finally, three-dimensional geometry is used to analyze the simultaneous evolution of both self-focusing and self-compression of Gaussian laser pulse in such plasmas.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JIMTW..39..546Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JIMTW..39..546Y"><span>A Millimetre-Wave Cuboid Solid Immersion Lens with Intensity-Enhanced Amplitude Mask Apodization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yue, Liyang; Yan, Bing; Monks, James N.; Dhama, Rakesh; Wang, Zengbo; Minin, Oleg V.; Minin, Igor V.</p> <p>2018-06-01</p> <p>Photonic jet is a narrow, highly intensive, weak-diverging beam propagating into a background medium and can be produced by a cuboid solid immersion lens (SIL) in both transmission and reflection modes. Amplitude mask apodization is an optical method to further improve the spatial resolution of a SIL imaging system via reduction of waist size of photonic jet, but always leading to intensity loss due to central masking of the incoming plane wave. In this letter, we report a particularly sized millimetre-wave cuboid SIL with the intensity-enhanced amplitude mask apodization for the first time. It is able to simultaneously deliver extra intensity enhancement and waist narrowing to the produced photonic jet. Both numerical simulation and experimental verification of the intensity-enhanced apodization effect are demonstrated using a copper-masked Teflon cuboid SIL with 22-mm side length under radiation of a plane wave with 8-mm wavelength. Peak intensity enhancement and the lateral resolution of the optical system increase by about 36.0% and 36.4% in this approach, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950047145&hterms=sound+amplitude&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsound%2Bamplitude','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950047145&hterms=sound+amplitude&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsound%2Bamplitude"><span>Nonequilibrium, large-amplitude MHD fluctuations in the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roberts, D. Aaron; Wiltberger, Michael J.</p> <p>1995-01-01</p> <p>Compressible MHD simulations in one dimension with three-dimensional vectors are used to investigate a number of processes relevant to problems in interplanetary physics. The simulations indicate that a large-amplitude nonequilibrium (e.g., linearly polarized) Alfvenic wave, which always starts with small relative fluctuations in the magnitude B of the magnetic field, typically evolves to flatten the magnetic profile in most regions. Under a wide variety of conditions B and the density rho become anticorrelated on average. If the mean magnetic field is allowed to decrease in time, the point where the transverse magnetic fluctuation amplitude delta B(sub T) is greater than the mean field B(sub 0) is not special, and large values of delta B(sub T)/B(sub 0) do not cause the compressive thermal energy to increase remarkably or the wave energy to dissipate at an unusually high rate. Nor does the 'backscatter' of the waves that occurs when the sound speed is less than the Alfven speed result, in itself, in substantial energy dissipation, but rather primarily in a phase change between the magnetic and velocity fields. For isolated wave packets the backscatter does not occur for any of the parameters examined; an initial radiation of acoustic waves away from the packet establishes a stable traveling structure. Thus these simulations, although greatly idealized compared to reality, suggest a picture in which the interplanetary fluctuations should have small deltaB and increasingly quasi-pressure balanced compressive fluctuations, as observed, and in which the dissipation and 'saturation' at delta B(sub T)/B(sub 0) approximately = 1 required by some theories of wave acceleration of the solar wind do not occur. The simulations also provide simple ways to understand the processes of nonlinear steepening and backscattering of Alfven waves and demonstrate the existence of previously unreported types of quasi-steady MHD states.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29738920','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29738920"><span>Non-contact ultrasonic gas flow metering using air-coupled leaky Lamb waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fan, Zichuan; Jiang, Wentao; Wright, William M D</p> <p>2018-04-23</p> <p>This paper describes a completely non-contact ultrasonic method of gas flow metering using air-coupled leaky Lamb waves. To show proof of principle, a simplified representation of gas flow in a duct, comprising two separated thin isotropic plates with a gas flowing between them, has been modelled and investigated experimentally. An airborne compression wave emitted from an air-coupled capacitive ultrasonic transducer excited a leaky Lamb wave in the first plate in a non-contact manner. The leakage of this Lamb wave crossed the gas flow at an angle between the two plates as a compression wave, and excited a leaky Lamb wave in the second plate. An air-coupled capacitive ultrasonic transducer on the opposite side of this second plate then detected the airborne compression wave leakage from the second Lamb wave. As the gas flow shifted the wave field between the two plates, the point of Lamb wave excitation in the second plate was displaced in proportion to the gas flow rate. Two such measurements, in opposite directions, formed a completely non-contact contra-propagating Lamb wave flow meter, allowing measurement of the flow velocity between the plates. A COMSOL Multiphysics® model was used to visualize the wave fields, and accurately predicted the time differences that were then measured experimentally. Experiments using different Lamb wave frequencies and plate materials were also similarly verified. This entirely non-contact airborne approach to Lamb wave flow metering could be applied in place of clamp-on techniques in thin-walled ducts or pipes. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PlPhR..44..149B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PlPhR..44..149B"><span>Formation of ECR Plasma in a Dielectric Plasma Guide under Self-Excitation of a Standing Ion-Acoustic Wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balmashnov, A. A.; Kalashnikov, A. V.; Kalashnikov, V. V.; Stepina, S. P.; Umnov, A. M.</p> <p>2018-01-01</p> <p>The formation of a spatially localized plasma with a high brightness has been experimentally observed in a dielectric plasma guide under the electron cyclotron resonance discharge at the excitation of a standing ion-acoustic wave. The results obtained show the possibility of designing compact high-intensity radiation sources with a spectrum determined by the working gas or gas mixture type, high-intensity chemically active particle flow sources, and plasma thrusters for correcting orbits of light spacecraft.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5552402','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5552402"><span>Solving the jitter problem in microwave compressed ultrafast electron diffraction instruments: Robust sub-50 fs cavity-laser phase stabilization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Otto, M. R.; René de Cotret, L. P.; Stern, M. J.; Siwick, B. J.</p> <p>2017-01-01</p> <p>We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically, and the long-term arrival time stability (>10 h) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization. PMID:28852686</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999APS..DFD..JG05E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999APS..DFD..JG05E"><span>Compressible Vortex Ring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu</p> <p>1999-11-01</p> <p>The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1411387','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1411387"><span>Staged Z-pinch for the production of high-flux neutrons and net energy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wessel, Frank J.; Rahman, Hafiz Ur; Rostoker, Norman</p> <p></p> <p>A fusible target is embedded in a high Z liner, ohmically heated and then shock wave heated by implosion of an enveloping high Z liner. The target is adiabatically heated by compression, fusibly ignited and charged-particle heated as it is being ignited. A shock front forms as the liner implodes which shock front detaches from the more slowly moving liner, collides with the outer surface of the target, accelerates inward, rapidly heating the target, adiabatically compressing the target and liner and amplifying the current to converge the liner mass toward a central axis thereby compressing the target to a fusionmore » condition when it begins to ignite and produce charged particles. The charged particles are trapped in a large magnetic field surrounding the target. The energy of the charged particles is deposited into the target to further heat the target to produce an energy gain.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPA....8e5012L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPA....8e5012L"><span>Electron dynamics in high energy density plasma bunch generation driven by intense picosecond laser pulse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, M.; Yuan, T.; Xu, Y. X.; Luo, S. N.</p> <p>2018-05-01</p> <p>When an intense picosecond laser pulse is loaded upon a dense plasma, a high energy density plasma bunch, including electron bunch and ion bunch, can be generated in the target. We simulate this process through one-dimensional particle-in-cell simulation and find that the electron bunch generation is mainly due to a local high energy density electron sphere originated in the plasma skin layer. Once generated the sphere rapidly expands to compress the surrounding electrons and induce high density electron layer, coupled with that, hot electrons are efficiently triggered in the local sphere and traveling in the whole target. Under the compressions of light pressure, forward-running and backward-running hot electrons, a high energy density electron bunch generates. The bunch energy density is as high as TJ/m3 order of magnitude in our conditions, which is significant in laser driven dynamic high pressure generation and may find applications in high energy density physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868610','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868610"><span>Refrigeration system having standing wave compressor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Lucas, Timothy S.</p> <p>1992-01-01</p> <p>A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010019002','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010019002"><span>Signatures of Nonlinear Waves in Coronal Plumes and Holes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ofman, Leon</p> <p>1999-01-01</p> <p>In recent Ultraviolet Coronagraph Spectrometer/Solar and Heliospheric Observatory (UVCS/SOHO) White Light Channel (WLC) observations we found quasi-periodic variations in the polarized brightness (pB) in the polar coronal holes at heliocentric distances of 1.9-2.45 solar radii. The motivation for the observation is the 2.5D Magnetohydrodynamics (MHD) model of solar wind acceleration by nonlinear waves, that predicts compressive fluctuations in coronal holes. To help identify the waves observed with the UVCS/WLC we model the propagation and dissipation of slow magnetosonic waves in polar plumes using 1D MHD code in spherical geometry, We find that the slow waves nonlinearly steepen in the gravitationally stratified plumes. The nonlinear steepening of the waves leads to enhanced dissipation due to compressive viscosity at the wave-fronts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27283181','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27283181"><span>Basic study of less invasive high-intensity focused ultrasound (HIFU) in fetal therapy for twin reversed arterial perfusion (TRAP) sequence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ichizuka, Kiyotake; Matsuoka, Ryu; Aoki, Hiroko; Hasegawa, Junichi; Okai, Takashi; Umemura, Shin-Ichiro</p> <p>2016-10-01</p> <p>The objective of the present study was to develop a high-intensity focused ultrasound (HIFU) transducer more suitable for clinical use in fetal therapy for twin reversed arterial perfusion (TRAP) sequence. We created a cooling and degassed water-circulating-type HIFU treatment device. HIFU was applied to renal branch vessels in three rabbits. Sequential HIFU irradiation contains a trigger wave, heating wave, and rest time. The duration of HIFU application was 10 s/course. Targeting could be achieved by setting the imaging probe in the center and placing the HIFU beam and imaging ultrasonic wave on the same axis. We confirmed under sequential HIFU irradiation with a total intensity of 1.94 kW/cm(2) (spatial average temporal average intensity) that the vein and artery were occluded in all three rabbits. Simultaneous occluding of the veins and arteries was confirmed with trigger waves and a resting phase using the HIFU transducer treatment device created for this study. Clinical application appears possible and may represent a promising option for fetal therapy involving TRAP sequence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810048727&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dwave%2Boscillation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810048727&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dwave%2Boscillation"><span>Wave transience in a compressible atmosphere. I - Transient internal wave, mean-flow interaction. II - Transient equatorial waves in the quasi-biennial oscillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dunkerton, T. J.</p> <p>1981-01-01</p> <p>Analytical and numerical solutions are obtained in an approximate quasi-linear model, to describe the way in which vertically propagating waves give rise to mean flow accelerations in an atmosphere due to the effects of wave transience. These effects in turn result from compressibility and vertical group velocity feedback, and culminate in the spontaneous formation and descent of regions of strong mean wind shear. The numerical solutions display mean flow accelerations due to Kelvin waves in the equatorial stratosphere, with wave absorption altering the transience mechanism in such significant respects as causing the upper atmospheric mean flow acceleration to be very sensitive to the precise magnitude and distribution of the damping mechanisms. The numerical simulations of transient equatorial waves in the quasi-biennial oscillation are also considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040171605','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040171605"><span>On the Origin of Whistler Mode Radiation in the Plasmasphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Green, James L.; Boardsen, Scott; Garcia, Leonard; Taylor, W. W. L.; Fung, Shing F.; Reinisch, B. W.</p> <p>2004-01-01</p> <p>The origin of whistler mode radiation in the plasmasphere is examined from three years of plasma wave observations from the Dynamics Explorer and three years from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft. These data are used to construct plasma wave intensity maps of whistler mode radiation in the plasmasphere. The highest average intensities of the radiation in the wave maps show source locations and/or sites of wave amplification. Each type of emission is classified based on its magnetic latitude and longitude rather than any spectral feature. Equatorial electromagnetic (EM) emissions (approx. 30-330 Hz), plasmaspheric hiss (approx. 330 Hz - 3.3 kHz), chorus (approx. 2 kHz - 6 kHz), and VLF transmitters (approx. 10-50 kHz) are the main types of waves that are clearly delineated in the plasma wave maps. Observations of the equatorial EM emissions show that the most intense region is on or near the magnetic equator in the afternoon sector and that during times of negative B(sub z) (interplanetary magnetic field),the maximum intensity moves from L values of 3 to less than 2. These observations are consistent with the origin of this emission being particle-wave interactions in or near the magnetic equator. Plasmaspheric hiss shows high intensity at high latitudes and low altitudes (L shells from 2 to 4) and in the magnetic equator over L values from 2 to 3 in the early afternoon sector. The longitudinal distribution of the hiss intensity (excluding the enhancement at the equator) is similar to the distribution of lightning: stronger over continents than over the ocean, stronger in the summer than winter, and stronger on the dayside than nightside. These observations strongly support lightning as the dominant source for plasmaspheric hiss, which through particle-wave interactions, maintains the slot region in the radiation belts. The enhancement of hiss at the magnetic equator is consistent with particle-wave interactions. The chorus emissions are most intense on the morning side as previously reported. At frequencies from approx. 10-50 kHz VLF transmitters dominate the spectrum. The maximum intensity of the VLF transmitters is in the late evening or early morning with enhancements all along L shells from 1.8 to 3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9360864','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9360864"><span>The relationship between loudness intensity functions and the click-ABR wave V latency.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Serpanos, Y C; O'Malley, H; Gravel, J S</p> <p>1997-10-01</p> <p>To assess the relationship of loudness growth and the click-evoked auditory brain stem response (ABR) wave V latency-intensity function (LIF) in listeners with normal hearing or cochlear hearing loss. The effect of hearing loss configuration on the intensity functions was also examined. Behavioral and electrophysiological intensity functions were obtained using click stimuli of comparable intensities in listeners with normal hearing (Group I; n = 10), and cochlear hearing loss of flat (Group II; n = 10) or sloping (Group III; n = 10) configurations. Individual intensity functions were obtained from measures of loudness growth using the psychophysical methods of absolute magnitude estimation and production of loudness (geometrically averaged to provide the measured loudness function), and from the wave V latency measures of the ABR. Slope analyses for the behavioral and electrophysiological intensity functions were separately performed by group. The loudness growth functions for the groups with cochlear hearing loss approximated the normal function at high intensities, with overall slope values consistent with those reported from previous psychophysical research. The ABR wave V LIF for the group with a flat configuration of cochlear hearing loss approximated the normal function at high intensities, and was displaced parallel to the normal function for the group with sloping configuration. The relationship between the behavioral and electrophysiological intensity functions was examined at individual intensities across the range of the functions for each subject. A significant relationship was obtained between loudness and the ABR wave V LIFs for the groups with normal hearing and flat configuration of cochlear hearing loss; the association was not significant (p = 0.10) for the group with a sloping configuration of cochlear hearing loss. The results of this study established a relationship between loudness and the ABR wave V latency for listeners with normal hearing, and flat cochlear hearing loss. In listeners with a sloping configuration of cochlear hearing loss, the relationship was not significant. This suggests that the click-evoked ABR may be used to estimate loudness growth at least for individuals with normal hearing and those with a flat configuration of cochlear hearing loss. Predictive equations were derived to estimate loudness growth for these groups. The use of frequency-specific stimuli may provide more precise information on the nature of the relationship between loudness growth and the ABR wave V latency, particularly for listeners with sloping configurations of cochlear hearing loss.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950058727&hterms=journal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Djournal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950058727&hterms=journal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Djournal"><span>Wave journal bearing with compressible lubricant--Part 1: The wave bearing concept and a comparison to the plain circular bearing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dimofte, Florin</p> <p>1995-01-01</p> <p>To improve hydrodynamic journal bearing steady-state and dynamic performance, a new bearing concept, the wave journal bearing, was developed at the author's lab. This concept features a waved inner bearing diameter. Compared to other alternative bearing geometries used to improve bearing performance such as spiral or herring-bone grooves, steps, etc., the wave bearing's design is relatively simple and allows the shaft to rotate in either direction. A three-wave bearing operating with a compressible lubricant, i.e., gas is analyzed using a numerical code. Its performance is compared to a plain (truly) circular bearing over a broad range of bearing working parameters, e.g., bearing numbers from 0.01 to 100.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11969598','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11969598"><span>Three-wave interaction solitons in optical parametric amplification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ibragimov, E; Struthers, A A; Kaup, D J; Khaydarov, J D; Singer, K D</p> <p>1999-05-01</p> <p>This paper applies three-wave interaction (TWI)-soliton theory to optical parametric amplification when the signal, idler, and pump wave can all contain TWI solitons. We use an analogy between two different velocity regimes to compare the theory with output from an experimental synchronously pumped optical parametric amplifier. The theory explains the observed inability to compress the intermediate group-velocity wave and 20-fold pulse compression in this experiment. The theory and supporting numerics show that one can effectively control the shape and energy of the optical pulses by shifting the TWI solitons in the pulses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28783128','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28783128"><span>Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yoon, Hyejin; Kim, Young Jin; Kim, Hee Seok; Kang, Jun Won; Koh, Hyun-Moo</p> <p>2017-08-07</p> <p>Surface wave velocity measurement of concrete using ultrasonic sensors requires testing on only one side of a member. Thus, it is applicable to concrete cast inside a form and is often used to detect flaws and evaluate the compressive strength of hardened concrete. Predicting the in situ concrete strength at a very early stage inside the form helps with determining the appropriate form removal time and reducing construction time and costs. In this paper, the feasibility of using surface wave velocities to predict the strength of in situ concrete inside the form at a very early stage was evaluated. Ultrasonic sensors were used to measure a series of surface waves for concrete inside a form in the first 24 h after placement. A continuous wavelet transform was used to compute the travel time of the propagating surface waves. The cylindrical compressive strength and penetration resistance tests were also performed during the test period. Four mixtures and five curing temperatures were used for the specimens. The surface wave velocity was confirmed to be applicable to estimating the concrete strength at a very early age in wall-like elements. An empirical formula is proposed for evaluating the early-age compressive strength of concrete considering the 95% prediction intervals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5579736','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5579736"><span>Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yoon, Hyejin; Kim, Young Jin; Kim, Hee Seok; Kang, Jun Won; Koh, Hyun-Moo</p> <p>2017-01-01</p> <p>Surface wave velocity measurement of concrete using ultrasonic sensors requires testing on only one side of a member. Thus, it is applicable to concrete cast inside a form and is often used to detect flaws and evaluate the compressive strength of hardened concrete. Predicting the in situ concrete strength at a very early stage inside the form helps with determining the appropriate form removal time and reducing construction time and costs. In this paper, the feasibility of using surface wave velocities to predict the strength of in situ concrete inside the form at a very early stage was evaluated. Ultrasonic sensors were used to measure a series of surface waves for concrete inside a form in the first 24 h after placement. A continuous wavelet transform was used to compute the travel time of the propagating surface waves. The cylindrical compressive strength and penetration resistance tests were also performed during the test period. Four mixtures and five curing temperatures were used for the specimens. The surface wave velocity was confirmed to be applicable to estimating the concrete strength at a very early age in wall-like elements. An empirical formula is proposed for evaluating the early-age compressive strength of concrete considering the 95% prediction intervals. PMID:28783128</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AnGeo..36...47R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AnGeo..36...47R"><span>Multi-scale analysis of compressible fluctuations in the solar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe</p> <p>2018-01-01</p> <p>Compressible plasma turbulence is investigated in the fast solar wind at proton kinetic scales by the combined use of electron density and magnetic field measurements. Both the scale-dependent cross-correlation (CC) and the reduced magnetic helicity (σm) are used in tandem to determine the properties of the compressible fluctuations at proton kinetic scales. At inertial scales the turbulence is hypothesised to contain a mixture of Alfvénic and slow waves, characterised by weak magnetic helicity and anti-correlation between magnetic field strength B and electron density ne. At proton kinetic scales the observations suggest that the fluctuations have stronger positive magnetic helicities as well as strong anti-correlations within the frequency range studied. These results are interpreted as being characteristic of either counter-propagating kinetic Alfvén wave packets or a mixture of anti-sunward kinetic Alfvén waves along with a component of kinetic slow waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1441349-high-harmonic-generation-zno-driven-self-compressed-mid-infrared-pulses','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1441349-high-harmonic-generation-zno-driven-self-compressed-mid-infrared-pulses"><span>High-harmonic generation in ZnO driven by self-compressed mid-infrared pulses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gholam-Mirzaei, Shima; Beetar, John E.; Chacon, Alexis</p> <p></p> <p>Progress in attosecond science has relied on advancements in few-cycle pulse generation technology and its application to high-order harmonic generation. Traditionally, self-phase modulation in bulk solids has been used for the compression of moderate-energy pulses, additionally exhibiting favorable dispersion properties for mid-infrared (mid-IR) pulses. For this study, we use the anomalous dispersion of Y 3Al 5O 12 (YAG) to self-compress many-cycle pulses from a 50 kHz mid-IR OPA down to produce sub-three-cycle 10 μJ pulses and further use them to generate high-order harmonics in a ZnO crystal. In agreement with theoretical predictions, we observe a boost in the harmonic yieldmore » by a factor of two, and spectral broadening of above-gap harmonics, compared to longer driving pulses. The enhanced yield results from an increase in the intensity for the self-compressed pulses.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1441349-high-harmonic-generation-zno-driven-self-compressed-mid-infrared-pulses','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1441349-high-harmonic-generation-zno-driven-self-compressed-mid-infrared-pulses"><span>High-harmonic generation in ZnO driven by self-compressed mid-infrared pulses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Gholam-Mirzaei, Shima; Beetar, John E.; Chacon, Alexis; ...</p> <p>2018-02-20</p> <p>Progress in attosecond science has relied on advancements in few-cycle pulse generation technology and its application to high-order harmonic generation. Traditionally, self-phase modulation in bulk solids has been used for the compression of moderate-energy pulses, additionally exhibiting favorable dispersion properties for mid-infrared (mid-IR) pulses. For this study, we use the anomalous dispersion of Y 3Al 5O 12 (YAG) to self-compress many-cycle pulses from a 50 kHz mid-IR OPA down to produce sub-three-cycle 10 μJ pulses and further use them to generate high-order harmonics in a ZnO crystal. In agreement with theoretical predictions, we observe a boost in the harmonic yieldmore » by a factor of two, and spectral broadening of above-gap harmonics, compared to longer driving pulses. The enhanced yield results from an increase in the intensity for the self-compressed pulses.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880035805&hterms=ionospheric+modification&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dionospheric%2Bmodification','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880035805&hterms=ionospheric+modification&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dionospheric%2Bmodification"><span>The theory of ionospheric focused heating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bernhardt, P. A.; Duncan, L. M.</p> <p>1987-01-01</p> <p>Ionospheric modification by high power radio waves and by chemical releases are combined in a theoretical study of ionospheric focused heating. The release of materials which promote electron-ion recombination creates a hole in the bottomside ionosphere. The ionospheric hole focuses high power radio waves from a ground-based transmitter to give a 20 dB or greater enhancement in power density. The intense radio beam excites atomic oxygen by collisions with accelerated electrons. Airglow from the excited oxygen provides a visible trace of the focused beam. The large increase in the intensity of the radio beam stimulates new wave-plasma interactions. Numerical simulations show that the threshold for the two-plasmon decay instability is exceeded. The interaction of the pump electromagnetic wave with the backward plasmon produces a scattered electromagnetic wave at 3/2 the pump frequency. The scattered wave provides a unique signature of the two-plasmon decay process for ground-based detection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MSSP..103...89X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MSSP..103...89X"><span>A guided wave dispersion compensation method based on compressed sensing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Cai-bin; Yang, Zhi-bo; Chen, Xue-feng; Tian, Shao-hua; Xie, Yong</p> <p>2018-03-01</p> <p>The ultrasonic guided wave has emerged as a promising tool for structural health monitoring (SHM) and nondestructive testing (NDT) due to their capability to propagate over long distances with minimal loss and sensitivity to both surface and subsurface defects. The dispersion effect degrades the temporal and spatial resolution of guided waves. A novel ultrasonic guided wave processing method for both single mode and multi-mode guided waves dispersion compensation is proposed in this work based on compressed sensing, in which a dispersion signal dictionary is built by utilizing the dispersion curves of the guided wave modes in order to sparsely decompose the recorded dispersive guided waves. Dispersion-compensated guided waves are obtained by utilizing a non-dispersion signal dictionary and the results of sparse decomposition. Numerical simulations and experiments are implemented to verify the effectiveness of the developed method for both single mode and multi-mode guided waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960048434','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960048434"><span>The Gravity Wave Response Above Deep Convection in a Squall Line Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alexander, M. J.; Holton, J. R.; Durran, D. R.</p> <p>1995-01-01</p> <p>High-frequency gravity waves generated by convective storms likely play an important role in the general circulation of the middle atmosphere. Yet little is known about waves from this source. This work utilizes a fully compressible, nonlinear, numerical, two-dimensional simulation of a midlatitude squall line to study vertically propagating waves generated by deep convection. The model includes a deep stratosphere layer with high enough resolution to characterize the wave motions at these altitudes. A spectral analysis of the stratospheric waves provides an understanding of the necessary characteristics of the spectrum for future studies of their effects on the middle atmosphere in realistic mean wind scenarios. The wave spectrum also displays specific characteristics that point to the physical mechanisms within the storm responsible for their forcing. Understanding these forcing mechanisms and the properties of the storm and atmosphere that control them are crucial first steps toward developing a parameterization of waves from this source. The simulation also provides a description of some observable signatures of convectively generated waves, which may promote observational verification of these results and help tie any such observations to their convective source.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..SHK.C1001C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..SHK.C1001C"><span>Shock structures at ultrahigh strain rates: what can they tell us about material behavior on very fast time scales?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crowhurst, Jonathan</p> <p>2013-06-01</p> <p>In recent years, techniques based on table-top laser systems have shown promise for investigating dynamic material behavior at high rates of both compressive and tensile strain. Common to these techniques is a laser pulse that is used in some manner to rapidly deliver energy to the sample; while the energy itself is often comparatively very small, the intensity can be made high by tightly focusing the pump light. In this way pressures or stresses can be obtained that are sufficiently large to have relevance to a wide range of basic and applied fields. Also, when combined with established ultrafast diagnostics these experiments provide very high time resolution which is particularly desirable when studying, for example shock waves, in which the time for the material to pass from undisturbed to fully compressed (the ``rise time'') can be extremely short (order 10 ps or less) even at fairly small peak stresses. Since much of the most interesting physics comes into play during this process it is important to be able to adequately resolve the shock rise. In this context I will discuss our measurements on aluminum and iron thin films and compare the results with known behavior observed at lower strain rates. Specifically, for aluminum, I will compare our assumed steady wave data at strain rates of up to 1010 s-1 to literature data up to ~107 s-1 and show that the well-known fourth power scaling relation of strain rate to shock stress is maintained even at these very high strain rates. For iron, I will show how we have used our nonsteady data (up to ~109 s-1) to infer a number of important properties of the alpha to epsilon polymorphic transition: 1. The transition can occur on the tens of ps time scale at sufficiently high strain rates and corresponding very large deviatoric stresses, and 2, most of the material appears to transform at a substantially higher stress than the nominal value usually inferred from shock wave experiments of about 13 GPa. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with Laboratory directed Research and Development funding (12ERD042), as well as being based on work supported as part of the EFree, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DESC0001057.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.1797F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.1797F"><span>The Triggering of Large-Scale Waves by CME Initiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forbes, Terry</p> <p></p> <p>Studies of the large-scale waves generated at the onset of a coronal mass ejection (CME) can provide important information about the processes in the corona that trigger and drive CMEs. The size of the region where the waves originate can indicate the location of the magnetic forces that drive the CME outward, and the rate at which compressive waves steepen into shocks can provide a measure of how the driving forces develop in time. However, in practice it is difficult to separate the effects of wave formation from wave propagation. The problem is particularly acute for the corona because of the multiplicity of wave modes (e.g. slow versus fast MHD waves) and the highly nonuniform structure of the solar atmosphere. At the present time large-scale numerical simulations provide the best hope for deconvolving wave propagation and formation effects from one another.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFD.K8001C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFD.K8001C"><span>Cavitation in ultrasound and shockwave therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Colonius, Tim</p> <p>2014-11-01</p> <p>Acoustic waves, especially high-intensity ultrasound and shock waves, are used for medical imaging and intra- and extra-corporeal manipulation of cells, tissue, and urinary calculi. Waves are currently used to treat kidney stone disease, plantar fasciitis, and bone nonunion, and they are being investigated as a technique to ablate cancer tumors and mediate drug delivery. In many applications, acoustic waves induce the expansion and collapse of preexisting or newly cavitating bubbles whose presence can either mediate the generation of localized stresses or lead to collateral damage, depending on how effectively they can be controlled. We describe efforts aimed at simulating the collapse of bubbles, both individually and in clusters, with the aim to characterize the induced mechanical stresses and strains. To simulate collapse of one or a few bubbles, compressible Euler and Navier-Stokes simulations of multi-component materials are performed with WENO-based shock and interface capturing schemes. Repetitive insonification generates numerous bubbles that are difficult to resolve numerically. Such clouds are also important in traditional engineering applications such as caveating hydrofoils. Models that incorporate the dynamics of an unresolved dispersed phase consisting of the bubble cloud are also developed. The results of several model problems including bubble collapse near rigid surfaces, bubble collapse near compliant surfaces and in small capillaries are analyzed. The results are processed to determine the potential for micron-sized preexisting gas bubbles to damage capillaries. The translation of the fundamental fluid dynamics into improvements in the design and clinical application of shockwave lithotripters will be discussed. NIH Grant PO1-DK043881.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH51A2480G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH51A2480G"><span>STEREO observations of insitu waves in the vicinity of interplanetary shocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Golla, T.; MacDowall, R. J.</p> <p>2017-12-01</p> <p>We present the high time resolution observations of the in situ waves obtained by the time domain sampler (TDS) of the WAVES experiment on the STEREO spacecraft in the vicinity of typical quasi-perpendicular super-critical interplanetary shocks. We show that often Langmuir waves occur as coherent one dimensional magnetic field aligned wave packets in the upstream regions and persist over large distances. The characteristics of these wave packets are consistent with those of Langmuir solitons formed as a result of oscillatting two stream instability (OTSI). Very intense high frequency waves which are completely different from Langmuir waves occur in the transition regions. These waves occur as very incoherent emissions and exhibit broad fundamental and second harmonic spectral peaks. We identify these waves as electron acoustic waves excited by the electron beams in the transition regions. We also show that very intense low frequency ion sound waves occur in the downstream regions. We discuss the implications of these observations on the theories of (1) strong Langmuir turbulence, (2) beam stabilization, (3) emission mechanisms of solar type II radio bursts, (4) wave-particle interactions responsible for collisionless dissipation, and (5) heating of the downstream plasmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC43F1129C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC43F1129C"><span>More Intense Mega Heat Waves in the Warmer World</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, G.; Robinson, D. A.</p> <p>2017-12-01</p> <p>In this study, changes in the occurrences of heat waves on the globe since the mid- 20th century and the synoptic characteristics of mega heat waves at regional scales in the warmer climate are examined. The NCEP-NCAR reanalysis surface data show that there have been no obvious linear changes in the heat wave frequencies at the continental scales since the mid-20th century, but amplified interdecadal variations led to unprecedented intense heat waves in the recent decades at the regional scales. Such mega heat waves have been more frequently observed in the poleward subtropical climate belts as well as in the interior region of continents. According to the analyses of upper tropospheric data, the occurrences of more intense mega heat waves since the late 20th century may be associated with the expansion of subtropical high pressures. These results suggest that populous cities near the subtropical climate zones should provide proactive mega heat wave warning systems for residents due to their vulnerability to the sudden attack of human lives harvest by mega heat waves in the warmer 21st century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25f3106B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25f3106B"><span>Influence of nonlinear detuning at plasma wavebreaking threshold on backward Raman compression of non-relativistic laser pulses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balakin, A. A.; Fraiman, G. M.; Jia, Q.; Fisch, N. J.</p> <p>2018-06-01</p> <p>Taking into account the nonlinear dispersion of the plasma wave, the fluid equations for the three-wave (Raman) interaction in plasmas are derived. It is found that, in some parameter regimes, the nonlinear detuning resulting from the plasma wave dispersion during Raman compression limits the plasma wave amplitude to noticeably below the generally recognized wavebreaking threshold. Particle-in-cell simulations confirm the theoretical estimates. For weakly nonlinear dispersion, the detuning effect can be counteracted by pump chirping or, equivalently, by upshifting slightly the pump frequency, so that the frequency-upshifted pump interacts with the seed at the point where the plasma wave enters the nonlinear stage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1025388-twin-variant-reorientation-strain-ni-mn-ga-single-crystal-during-quasi-static-mechanical-compression','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1025388-twin-variant-reorientation-strain-ni-mn-ga-single-crystal-during-quasi-static-mechanical-compression"><span>Twin-variant reorientation strain in Ni-Mn-Ga single crystal during quasi-static mechanical compression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pramanick, Abhijit; An, Ke; Stoica, Alexandru Dan</p> <p>2011-01-01</p> <p>Twin variant reorientation in single crystal Ni-Mn-Ga during quasi-static mechanical compression was studied using in-situ neutron diffraction. The volume fraction of reoriented twin variants for different stress amplitudes were obtained from the changes in integrated intensities of high-order neutron diffraction peaks. It is shown that during compressive loading, ~85% of the twins were reoriented parallel to the loading direction resulting in a maximum macroscopic strain of ~5.5%, which is in agreement with measured macroscopic strain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27857337','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27857337"><span>Pulse-compression ghost imaging lidar via coherent detection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Deng, Chenjin; Gong, Wenlin; Han, Shensheng</p> <p>2016-11-14</p> <p>Ghost imaging (GI) lidar, as a novel remote sensing technique, has been receiving increasing interest in recent years. By combining pulse-compression technique and coherent detection with GI, we propose a new lidar system called pulse-compression GI lidar. Our analytical results, which are backed up by numerical simulations, demonstrate that pulse-compression GI lidar can obtain the target's spatial intensity distribution, range and moving velocity. Compared with conventional pulsed GI lidar system, pulse-compression GI lidar, without decreasing the range resolution, is easy to obtain high single pulse energy with the use of a long pulse, and the mechanism of coherent detection can eliminate the influence of the stray light, which is helpful to improve the detection sensitivity and detection range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1091184','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1091184"><span>The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Reeder, Michael J.; Lane, Todd P.; Hankinson, Mai Chi Nguyen</p> <p>2013-09-27</p> <p>All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization ofmore » further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection. The wave activity is strongest in the lower stratosphere below 22 km and, during the suppressed monsoon period, is modulated with a 3-4-day period. The concentration of the wave activity in the lower stratosphere is consistent with the properties of the environment in which these waves propagate, whereas its 3-4-day modulation is explained by the variation of the convection activity in the TWP-ICE domain. At low rainfall intensity the wave activity increases as rainfall intensity increases. At high values of rainfall intensity, however, the wave activity associated with deep convective clouds is independent of the rainfall intensity. The convection and gravity waves observed during TWP-ICE are simulated with the Weather Research and Forecasting (WRF) Model. These simulations are compared with radiosonde observations described above and are used to determine some of the properties of convectively generated gravity waves. The gravity waves appear to be well simulated by the model. The model is used to explore the relationships between the convection, the gravity waves and cirrus.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA013864','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA013864"><span>MCDU-8-A Computer Code for One-Dimensional Blast Wave Problems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1975-07-01</p> <p>medium surrounding the explosion is assuned to be air obeying an ideal gas equation of state with a constant specific heat ratio, y2, of 1.4. The...characteristics Explosive blast Pentolite spheres ■ 20.\\ASSTRACT (Continue on reverie eld* II neceeemry end Identify by block number) he method...INVOLVING THE. SUDDEN RELEASE OF A HIGHLY COMPRESSED AIR SPHERE 11 V. A SAMPLE PROBLEM INVOLVING A BLAST WAVE RESULTING FROM THE DETONATION OF A</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA557564','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA557564"><span>Structural Health Monitoring of M1114 High Mobility Multipurpose Wheeled Vehicle Armor System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-03-01</p> <p>compressional waves or compression waves (Russell, 1999). Pulse Echo Pulse echo method uses the transducer to perform both the sending and the...monolithic system of pure steel will not be sufficient because it would become too heavy and compromise its maneuverability and nimbleness. In order to...produce a limited number of M1114’s with hardened steel armor with bullet-resistant glass for the passenger cabinet against small arms fire. Even with its</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23214575','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23214575"><span>Uniform shock waves in disordered granular matter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gómez, Leopoldo R; Turner, Ari M; Vitelli, Vincenzo</p> <p>2012-10-01</p> <p>The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates continuously decreases as the confining pressure decreases, completely vanishing at the jamming-unjamming transition. This anomalous behavior suggests that the transport of energy at low pressures should not be dominated by phonons. In this work we use simulations and theory to show how the response of granular systems becomes increasingly nonlinear as pressure decreases. In the low-pressure regime the elastic energy is found to be mainly transported through nonlinear waves and shocks. We numerically characterize the propagation speed, shape, and stability of these shocks and model the dependence of the shock speed on pressure and impact intensity by a simple analytical approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000021168','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000021168"><span>Particle Acceleration by Cme-driven Shock Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reames, Donald V.</p> <p>1999-01-01</p> <p>In the largest solar energetic particle (SEP) events, acceleration occurs at shock waves driven out from the Sun by coronal mass ejections (CMEs). Peak particle intensities are a strong function of CME speed, although the intensities, spectra, and angular distributions of particles escaping the shock are highly modified by scattering on Alfven waves produced by the streaming particles themselves. Element abundances vary in complex ways because ions with different values of Q/A resonate with different parts of the wave spectrum, which varies with space and time. Just recently, we have begun to model these systematic variations theoretically and to explore other consequences of proton-generated waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JPhCS.500c2010Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JPhCS.500c2010Z"><span>Experimental investigation of dynamic compression and spallation of Cerium at pressures up to 6 GPa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zubareva, A. N.; Kolesnikov, S. A.; Utkin, A. V.</p> <p>2014-05-01</p> <p>In this study the experiments on one-dimensional dynamic compression of Cerium (Ce) samples to pressures of 0.5 to 6 GPa using various types of explosively driven generators were conducted. VISAR laser velocimeter was used to obtain Ce free surface velocity profiles. The isentropic compression wave was registered for γ-phase of Ce at pressures lower than 0.76 GPa that corresponds to γ-α phase transition pressure in Ce. Shock rarefaction waves were also registered in several experiments. Both observations were the result of the anomalous compressibility of γ-phase of Ce. On the basis of our experimental results the compression isentrope of Ce γ-phase was constructed. Its comparison with volumetric compression curves allowed to estimate the magnitude of shear stress at dynamic compression conditions for Ce. Spall strength measurements were also conducted for several samples. They showed a strong dependence of the spall strength of Ce on the strain rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890016810','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890016810"><span>Turbulence modeling for hypersonic flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marvin, J. G.; Coakley, T. J.</p> <p>1989-01-01</p> <p>Turbulence modeling for high speed compressible flows is described and discussed. Starting with the compressible Navier-Stokes equations, methods of statistical averaging are described by means of which the Reynolds-averaged Navier-Stokes equations are developed. Unknown averages in these equations are approximated using various closure concepts. Zero-, one-, and two-equation eddy viscosity models, algebraic stress models and Reynolds stress transport models are discussed. Computations of supersonic and hypersonic flows obtained using several of the models are discussed and compared with experimental results. Specific examples include attached boundary layer flows, shock wave boundary layer interactions and compressible shear layers. From these examples, conclusions regarding the status of modeling and recommendations for future studies are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1334521-observations-strong-ion-ion-correlations-dense-plasmas','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1334521-observations-strong-ion-ion-correlations-dense-plasmas"><span>Observations of strong ion-ion correlations in dense plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ma, T.; Fletcher, L.; Pak, A.; ...</p> <p>2014-04-24</p> <p>Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ~3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4Å –1. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are howevermore » in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. Furthermore, we have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008CoTPh..50..201G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008CoTPh..50..201G"><span>Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow: Two-Dimensional Case</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gan, Yan-Biao; Xu, Ai-Guo; Zhang, Guang-Cai; Zhang, Ping; Zhang, Lei; Li, Ying-Jun</p> <p>2008-07-01</p> <p>Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/675841','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/675841"><span>Phase-shifting point diffraction interferometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Medecki, H.</p> <p>1998-11-10</p> <p>Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams. 8 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/871971','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/871971"><span>Phase-shifting point diffraction interferometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Medecki, Hector</p> <p>1998-01-01</p> <p>Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..SHK.J3004S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..SHK.J3004S"><span>Numerical predictions of shock propagation through unreactive and reactive liquids with experimental validation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stekovic, Svjetlana; Nissen, Erin; Bhowmick, Mithun; Stewart, Donald S.; Dlott, Dana D.</p> <p>2017-06-01</p> <p>The objective of this work is to numerically analyze shock behavior as it propagates through compressed, unreactive and reactive liquid, such as liquid water and liquid nitromethane. Parameters, such as pressure and density, are analyzed using the Mie-Gruneisen EOS and each multi-material system is modeled using the ALE3D software. The motivation for this study is based on provided high-resolution, optical interferometer (PDV) and optical pyrometer measurements. In the experimental set-up, a liquid is placed between an Al 1100 plate and Pyrex BK-7 glass. A laser-driven Al 1100 flyer impacts the plate, causing the liquid to be highly compressed. The numerical model investigates the influence of the high pressure, shock-compressed behavior in each liquid, the energy transfer, and the wave impedance at the interface of each material in contact. The numerical results using ALE3D will be validated by experimental data. This work aims to provide further understanding of shock-compressed behavior and how the shock influences phase transition in each liquid.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1237465-soliton-production-nonlinear-homogeneous-lines','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1237465-soliton-production-nonlinear-homogeneous-lines"><span>Soliton production with nonlinear homogeneous lines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Elizondo-Decanini, Juan M.; Coleman, Phillip D.; Moorman, Matthew W.; ...</p> <p>2015-11-24</p> <p>Low- and high-voltage Soliton waves were produced and used to demonstrate collision and compression using diode-based nonlinear transmission lines. Experiments demonstrate soliton addition and compression using homogeneous nonlinear lines. We built the nonlinear lines using commercially available diodes. These diodes are chosen after their capacitance versus voltage dependence is used in a model and the line design characteristics are calculated and simulated. Nonlinear ceramic capacitors are then used to demonstrate high-voltage pulse amplification and compression. The line is designed such that a simple capacitor discharge, input signal, develops soliton trains in as few as 12 stages. We also demonstrated outputmore » voltages in excess of 40 kV using Y5V-based commercial capacitors. The results show some key features that determine efficient production of trains of solitons in the kilovolt range.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JPhCS.500j2001B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JPhCS.500j2001B"><span>Integrated experimental platforms to study blast injuries: a bottom-up approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bo, C.; Williams, A.; Rankin, S.; Proud, W. G.; Brown, K. A.</p> <p>2014-05-01</p> <p>We are developing experimental models of blast injury using data from live biological samples. An integrated research strategy is followed to study material and biological properties of cells, tissues and organs, that are subjected to dynamic and static pressures, relevant to those of battlefield blast. We have developed a confined Split Hopkinson Pressure Bar (SHPB) system, which allows cells, either in suspension or as a monolayer, to be subjected to compression waves with pressures on the order of a few MPa and durations of hundreds of microseconds. The chamber design enables recovery of biological samples for cellular and molecular analysis. The SHPB platform, coupled with Quasi-Static experiments, is used to determine stress-strain curves of soft biological tissues under compression at low, medium and high strain rates. Tissue samples are examined, using histological techniques, to study macro- and microscopic changes induced by compression waves. In addition, a shock tube enables application of single or multiple air blasts with pressures on the order of kPa and a few milliseconds duration; this platform was used for initial studies on mesenchymal stem cells responses to blast pressures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAG...141...13S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAG...141...13S"><span>Prediction of reinforced concrete strength by ultrasonic velocities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sabbağ, Nevbahar; Uyanık, Osman</p> <p>2017-06-01</p> <p>This study was aimed to determine the strength of the reinforced concrete and to reveal the reinforcement effect on the concrete strength by Ultrasonic P and S wave velocities. Studies were conducted with prepared 9 different concrete designs of showing low, medium and high strength features. 4 kinds of cubic samples which unreinforced and including 10, 14 or 20 mm diameter reinforcement were prepared for these designs. Studies were carried out on total 324 samples including 9 samples for each design of these 4 kinds. The prepared samples of these designs were subjected to water curing. On some days of the 90-day period, P and S wave measurements were repeated to reveal the changes in seismic velocities of samples depending on whether reinforced or unreinforced of samples and diameter of reinforcement. Besides, comparisons were done by performing uniaxial compressive strength test with crushing of 3 samples on 7th, 28th and 90th days. As a result of studies and evaluations, it was seen that values of seismic velocities and uniaxial compressive strength increased depending on reinforcement and diameter of reinforcement in low strength concretes. However, while the seismic velocities were not markedly affected from reinforcement or reinforcement diameter in high strength concrete, uniaxial compressive strength values were negatively affected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1402591-kinetic-alfven-waves-particle-response-associated-shock-induced-global-ulf-perturbation-terrestrial-magnetosphere','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1402591-kinetic-alfven-waves-particle-response-associated-shock-induced-global-ulf-perturbation-terrestrial-magnetosphere"><span>Kinetic Alfvén waves and particle response associated with a shock-induced, global ULF perturbation of the terrestrial magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Malaspina, David M.; Claudepierre, Seth G.; Takahashi, Kazue; ...</p> <p>2015-11-14</p> <p>On 2 October 2013, the arrival of an interplanetary shock compressed the Earth's magnetosphere and triggered a global ULF (ultra low frequency) oscillation. Furthermore, the Van Allen Probe B spacecraft observed this large-amplitude ULF wave in situ with both magnetic and electric field data. Broadband waves up to approximately 100 Hz were observed in conjunction with, and modulated by, this ULF wave. Detailed analysis of fields and particle data reveals that these broadband waves are Doppler-shifted kinetic Alfvén waves. This event then suggests that magnetospheric compression by interplanetary shocks can induce abrupt generation of kinetic Alfvén waves over large portionsmore » of the inner magnetosphere, potentially driving previously unconsidered wave-particle interactions throughout the inner magnetosphere during the initial response of the magnetosphere to shock impacts.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CEAS....9..485S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CEAS....9..485S"><span>Developments of high frequency and intensity stabilized lasers for space gravitational wave detector DECIGO/B-DECIGO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suemasa, Aru; Shimo-oku, Ayumi; Nakagawa, Ken'ichi; Musha, Mitsuru</p> <p>2017-12-01</p> <p>In Japan, not only the ground-based gravitational wave (GW) detector mission KAGRA but also the space GW detector mission DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) and its milestone mission B-DECIGO have been promoted. The designed strain sensitivity of DECIGO and B-DECIGO are δL/ L < 10-23. Since the GW detector requires high power and highly-stable light source, we have developed the light source with high frequency and intensity stability for DECIGO and B-DECIGO. The frequency of the Yb-doped fiber DFB lasers are stabilized to the iodine saturated absorption at 515 nm, and the intensity of the laser at 1 Hz (observation band) is stabilized by controlling the pump source of an Yb-doped fiber amplifier. The intensity of the laser at 200 kHz (modulation band) is also stabilized using an acousto-optic modulator to improve the frequency stability of the laser. In the consequences, we obtain the frequency stability of δf = 0.4 Hz/√Hz (in-loop) at 1 Hz, and the intensity stability of δI/ I = 1.2 × 10-7/√Hz (out-of-loop) and δI/I = 1.5 × 10-7/√Hz (in-loop) at 1 Hz and 200 kHz, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6352K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6352K"><span>Wave Propagation in Bimodular Geomaterials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuznetsova, Maria; Pasternak, Elena; Dyskin, Arcady; Pelinovsky, Efim</p> <p>2016-04-01</p> <p>Observations and laboratory experiments show that fragmented or layered geomaterials have the mechanical response dependent on the sign of the load. The most adequate model accounting for this effect is the theory of bimodular (bilinear) elasticity - a hyperelastic model with different elastic moduli for tension and compression. For most of geo- and structural materials (cohesionless soils, rocks, concrete, etc.) the difference between elastic moduli is such that their modulus in compression is considerably higher than that in tension. This feature has a profound effect on oscillations [1]; however, its effect on wave propagation has not been comprehensively investigated. It is believed that incorporation of bilinear elastic constitutive equations within theory of wave dynamics will bring a deeper insight to the study of mechanical behaviour of many geomaterials. The aim of this paper is to construct a mathematical model and develop analytical methods and numerical algorithms for analysing wave propagation in bimodular materials. Geophysical and exploration applications and applications in structural engineering are envisaged. The FEM modelling of wave propagation in a 1D semi-infinite bimodular material has been performed with the use of Marlow potential [2]. In the case of the initial load expressed by a harmonic pulse loading strong dependence on the pulse sign is observed: when tension is applied before compression, the phenomenon of disappearance of negative (compressive) strains takes place. References 1. Dyskin, A., Pasternak, E., & Pelinovsky, E. (2012). Periodic motions and resonances of impact oscillators. Journal of Sound and Vibration, 331(12), 2856-2873. 2. Marlow, R. S. (2008). A Second-Invariant Extension of the Marlow Model: Representing Tension and Compression Data Exactly. In ABAQUS Users' Conference.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993ExFl...15..183L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993ExFl...15..183L"><span>Head-on collision of normal shock waves with rigid porous materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Levy, A.; Ben-Dor, G.; Skews, B. W.; Sorek, S.</p> <p>1993-08-01</p> <p>The head-on collision of a planar shock wave with a rigid porous material has been investigated experimentally in a 75 mm × 75 mm shock tube. The experimental study indicated that unlike the reflection from a flexible porous material (e.g., polyurethane foam) where the transmitted compression waves do not converge to a sharp shock wave, in the case of a rigid porous material (e.g., alumina) the transmitted compression waves do converge to a sharp shock wave, which decays as it propagates along the porous material. In addition to this major difference, many other differences were observed. They are outlined in the following sections. Based on these observations a suggestion modifying the phenomenology of the reflection/interaction process in the case a porous material with large permeability is proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFD.L2001D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFD.L2001D"><span>Simulating compressible-incompressible two-phase flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Denner, Fabian; van Wachem, Berend</p> <p>2017-11-01</p> <p>Simulating compressible gas-liquid flows, e.g. air-water flows, presents considerable numerical issues and requires substantial computational resources, particularly because of the stiff equation of state for the liquid and the different Mach number regimes. Treating the liquid phase (low Mach number) as incompressible, yet concurrently considering the gas phase (high Mach number) as compressible, can improve the computational performance of such simulations significantly without sacrificing important physical mechanisms. A pressure-based algorithm for the simulation of two-phase flows is presented, in which a compressible and an incompressible fluid are separated by a sharp interface. The algorithm is based on a coupled finite-volume framework, discretised in conservative form, with a compressive VOF method to represent the interface. The bulk phases are coupled via a novel acoustically-conservative interface discretisation method that retains the acoustic properties of the compressible phase and does not require a Riemann solver. Representative test cases are presented to scrutinize the proposed algorithm, including the reflection of acoustic waves at the compressible-incompressible interface, shock-drop interaction and gas-liquid flows with surface tension. Financial support from the EPSRC (Grant EP/M021556/1) is gratefully acknowledged.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996APS..DPP..7Q30K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996APS..DPP..7Q30K"><span>M = +1, ± 1 and ± 2 mode helicon wave excitation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, J.-H.; Yun, S.-M.; Chang, H.-Y.</p> <p>1996-11-01</p> <p>The characteristics of M=+1, ± 1 and ± 2 modes helicon wave excited using a solenoid antenna, Nagoya type III and quadrupole antenna respectively are first investigated. The solenoid antenna is constructed by winding a copper cable on a quartz discharge tube. Two dimensional cross-field measurements of ArII optical emission induced by hot electrons are made to investigate RF power deposition: Components of the wave magnetic field measured with a single-turn, coaxial magnetic probe were compared with the field patterns computed for M=+1, ± 1 and ± 2 modes. The M=+1 mode plasma produced by the solenoid antenna has a cylindrical high intensity plasma column, which center is empty. This cylindrical high intensity column results from the rotation of the cross-sectional electric field pattern (right hand circularly polarization). The radial plasma density profile has a peak at r=2.5cm with axisymmetry. It has been found that the radial profile of the plasma density is in good agreement with the computed power deposition profile. The radial profiles of the wave magnetic field are in good agreement with computations. The plasma excited by Nagoya type III antenna has two high intensity columns which results from the linear combination of M=+1 and -1 modes (i.e. plane polarization). The radial plasma density profile is in good agreement with emission intensity profile of ArII line (488nm). The plasma excited by quadrupole antenna has four high intensity columns which results from the linear combination of M=+2 and -2 modes (i.e. plane polarization). In the M=± 2 modes, the radial plasma density profile is also in good agreement with emission intensity profile of ArII line.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvA..97e3840C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvA..97e3840C"><span>Efficient extreme-UV-to-extreme-UV conversion by four-wave mixing with intense near-IR pulses in highly charged ion plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chu, Hsu-hsin; Wang, Jyhpyng</p> <p>2018-05-01</p> <p>Nonlinear optics in the extreme-ultraviolet (EUV) has been limited by lack of transparent media and small conversion efficiency. To overcome this problem we explore the advantage of using multiply charged ion plasmas as the interacting media between EUV and intense near-infrared (NIR) pulses. Such media are transparent to EUV and can withstand intense NIR driving pulses without damage. We calculate the third-order nonlinear polarizabilities of Ar2 + and Ar3 + ions for EUV and NIR four-wave mixing by using the well-proven Cowan code and find that the EUV-to-EUV conversion efficiency as high as 26% can be expected for practical experimental configurations using multi-terawatt NIR lasers. Such a high efficiency is possible because the driving pulse intensity can be scaled up to several orders of magnitude higher than in conventional nonlinear media, and the group-velocity and phase mismatch are insignificant at the experimental plasma densities. This effective scheme of wave mixing can be utilized for ultrafast EUV waveform measurement and control as well as wavelength conversion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvF...3e3904B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvF...3e3904B"><span>Instability waves and transition in adverse-pressure-gradient boundary layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bose, Rikhi; Zaki, Tamer A.; Durbin, Paul A.</p> <p>2018-05-01</p> <p>Transition to turbulence in incompressible adverse-pressure-gradient (APG) boundary layers is investigated by direct numerical simulations. Purely two-dimensional instability waves develop on the inflectional base velocity profile. When the boundary layer is perturbed by isotropic turbulence from the free stream, streamwise elongated streaks form and may interact with the instability waves. Subsequent mechanisms that trigger transition depend on the intensity of the free-stream disturbances. All evidence from the present simulations suggest that the growth rate of instability waves is sufficiently high to couple with the streaks. Under very low levels of free-stream turbulence (˜0.1 % ), transition onset is highly sensitive to the inlet disturbance spectrum and is accelerated if the spectrum contains frequency-wave-number combinations that are commensurate with the instability waves. Transition onset and completion in this regime is characterized by formation and breakdown of Λ vortices, but they are more sporadic than in natural transition. Beneath free-stream turbulence with higher intensity (1-2 % ), bypass transition mechanisms are dominant, but instability waves are still the most dominant disturbances in wall-normal and spanwise perturbation spectra. Most of the breakdowns were by disturbances with critical layers close to the wall, corresponding to inner modes. On the other hand, the propensity of an outer mode to occur increases with the free-stream turbulence level. Higher intensity free-stream disturbances induce strong streaks that favorably distort the boundary layer and suppress the growth of instability waves. But the upward displacement of high amplitude streaks brings them to the outer edge of the boundary layer and exposes them to ambient turbulence. Consequently, high-amplitude streaks exhibit an outer-mode secondary instability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800050159&hterms=distribution+normal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddistribution%2Bnormal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800050159&hterms=distribution+normal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddistribution%2Bnormal"><span>Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. I - Pressure distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Messiter, A. F.</p> <p>1980-01-01</p> <p>Asymptotic solutions are derived for the pressure distribution in the interaction of a weak normal shock wave with a turbulent boundary layer. The undisturbed boundary layer is characterized by the law of the wall and the law of the wake for compressible flow. In the limiting case considered, for 'high' transonic speeds, the sonic line is very close to the wall. Comparisons with experiment are shown, with corrections included for the effect of longitudinal wall curvature and for the boundary-layer displacement effect in a circular pipe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002ESASP.508..245C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002ESASP.508..245C"><span>Dynamics and energetics of the solar chromosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carlsson, Mats; Stein, Robert F.</p> <p>2002-06-01</p> <p>We present a summary of results from a number of observational programs carried out with the SUMER instrument on board SOHO. Most datasets show clear quasi-periodic dynamic behavior ("grains") in contiunuum intensities with frequencies 3-10 mHz. Corresponding grains are seen in intensities and velocities in neutral lines, normally with phase differences consistent with upward propagating sound-waves. We compare the observations with 1D radiation hydrodynamic simulations using MDI Doppler-shifts to set the lower boundary. For continua formed in the mid-chromosphere we find that the simulations give a good match to the intensity fluctuations but that the minimum intensity is too low. We find that high frequency acoustic waves (missing from the current simulations) are unlikely to give the extra heating necessary because of the strong radiative damping (90-99%) of such waves in the photosphere. In continua formed in the low chromosphere the mean intensity is similar in the simulations and the observations but the simulated fluctuations are too large. The reported findings are consistent with a picture where a basic intensity level is set by a magnetic heating process even in the darkest internetwork areas with superimposed intensity variations caused by acoustic waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IAM....53..139B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IAM....53..139B"><span>Effect of Prestresses on the Dispersion of Quasi-Lamb Waves in the System Consisting of an Ideal Liquid Layer and a Compressible Elastic Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bagno, A. M.</p> <p>2017-03-01</p> <p>The propagation of quasi-Lamb waves in a prestrained compressible elastic layer interacting with a layer of an ideal compressible fluid is studied. The three-dimensional equations of linearized elasticity and the assumption of finite strains for the elastic layer and the three-dimensional linearized Euler equations for the fluid are used. The dispersion curves for the quasi-Lamb modes are plotted over a wide frequency range. The effect of prestresses and the thickness of the elastic and liquid layers on the frequency spectrum of normal quasi-Lamb waves is analyzed. The localization properties of the lower quasi-Lamb modes in the elastic-fluid waveguides are studied. The numerical results are presented in the form of graphs and analyzed</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ChOE...32...26Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ChOE...32...26Y"><span>Far-Field Noise Induced by Bubble near Free Surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ye, Xi; Li, Jiang-tao; Liu, Jian-hua; Chen, Hai-long</p> <p>2018-03-01</p> <p>The motion of a bubble near the free surface is solved by the boundary element method based on the linear wave equation, and the influence of fluid compressibility on bubble dynamics is analyzed. Based on the solution of the bubble motion, the far-field radiation noise induced by the bubble is calculated using Kirchhoff moving boundary integral equation, and the influence of free surface on far-field noise is researched. As the results, the oscillation amplitude of the bubble is weakened in compressible fluid compared with that in incompressible fluid, and the free surface amplifies the effect of fluid compressibility. When the distance between the bubble and an observer is much larger than that between the bubble and free surface, the sharp wave trough of the sound pressure at the observer occurs. With the increment of the distance between the bubble and free surface, the time of the wave trough appearing is delayed and the value of the wave trough increase. When the distance between the observer and the bubble is reduced, the sharp wave trough at the observer disappears.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AIPC..552.1185R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AIPC..552.1185R"><span>Solar energetic particles and space weather</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reames, Donald V.; Tylka, Allan J.; Ng, Chee K.</p> <p>2001-02-01</p> <p>The solar energetic particles (SEPs) of consequence to space weather are accelerated at shock waves driven out from the Sun by fast coronal mass ejections (CMEs). In the large events, these great shocks fill half of the heliosphere. SEP intensity profiles change appearance with longitude. Events with significant intensities of >10 MeV protons occur at an average rate of ~13 yr-1 near solar maximum and several events with high intensities of >100 MeV protons occur each decade. As particles stream out along magnetic field lines from a shock near the Sun, they generate waves that scatter subsequent particles. At high intensities, wave growth throttles the flow below the ``streaming limit.'' However, if the shock maintains its strength, particle intensities can rise above this limit to a peak when the shock itself passes over the observer creating a `delayed' radiation hazard, even for protons with energies up to ~1 GeV. The streaming limit makes us blind to the intensities at the oncoming shock, however, heavier elements such as He, O, and Fe probe the shape of the wave spectrum, and variation in abundances of these elements allow us to evade the limit and probe conditions at the shock, with the aid of detailed modeling. At high energies, spectra steepen to form a spectral `knee.' The location of the proton spectral knee can vary from ~10 MeV to ~1 GeV, depending on shock conditions, greatly affecting the radiation hazard. Hard spectra are a serious threat to astronauts, placing challenging requirements for shielding, especially on long-duration missions to the moon or Mars. .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000120034','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000120034"><span>Solar Energetic Particles and Space Weather</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reames, Donald V.; Tylka, Allan J.; Ng, Chee K.</p> <p>2001-01-01</p> <p>The solar energetic particles (SEPs) of consequence to space weather are accelerated at shock waves driven out from the Sun by fast coronal mass ejections (CMEs). In the large events, these great shocks fill half of the heliosphere. SEP intensity profiles change appearance with longitude. Events with significant intensities of greater than ten MeV protons occur at an average rate of approx. 13 per year near solar maximum and several events with high intensities of > 100 McV protons occur each decade. As particles stream out along magnetic field lines from a shock near the Sun, they generate waves that scatter subsequent particles. At high intensities, wave growth throttles the flow below the 'streaming limit.' However, if the shock maintains its strength, particle intensities can rise above this limit to a peak when the shock itself passes over the observer creating a 'delayed' radiation hazard, even for protons with energies up to approx. one GeV. The streaming limit makes us blind to the intensities at the oncoming shock, however, heavier elements such as He, O, and Fe probe the shape of the wave spectrum, and variation in abundances of these elements allow us to evade the limit and probe conditions at the shock, with the aid of detailed modeling. At high energies, spectra steepen to form a spectral 'knee'. The location of the proton spectral knee can vary from approx. ten MeV to approx. one GeV, depending on shock conditions, greatly affecting the radiation hazard. Hard spectra are a serious threat to astronauts, placing challenging requirements for shielding, especially on long-duration missions to the moon or Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6514364-turbulence-intensity-spatial-integral-scale-during-compression-expansion-strokes-four-cycle-reciprocating-engine','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6514364-turbulence-intensity-spatial-integral-scale-during-compression-expansion-strokes-four-cycle-reciprocating-engine"><span>Turbulence intensity and spatial integral scale during compression and expansion strokes in a four-cycle reciprocating engine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ikegami, M.; Shioji, M.; Nishimoto, K.</p> <p>1987-01-01</p> <p>A laser homodyne technique is applied to measure turbulence intensities and spatial scales during compression and expansion strokes in a non-fired engine. By using this technique, relative fluid motion in a turbulent flow is detected directly without cyclic variation biases caused by fluctuation in the main flow. Experiments are performed at different engine speeds, compression ratios, and induction swirl ratios. In no-swirl cases the turbulence field near the compression end is almost uniform, whereas in swirled cases both the turbulence intensity and the scale near the cylinder axis are higher than those in the periphery. In addition, based on themore » measured results, the k-epsilon two-equation turbulence model under the influence of compression is discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663309-coronal-jet-collimation-nonlinear-induced-flows','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663309-coronal-jet-collimation-nonlinear-induced-flows"><span>Coronal Jet Collimation by Nonlinear Induced Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vasheghani Farahani, S.; Hejazi, S. M.</p> <p>2017-08-01</p> <p>Our objective is to study the collimation of solar jets by nonlinear forces corresponding to torsional Alfvén waves together with external forces. We consider a straight, initially non-rotating, untwisted magnetic cylinder embedded in a plasma with a straight magnetic field, where a shear between the internal and external flows exists. By implementing magnetohydrodynamic theory and taking into account the second-order thin flux tube approximation, the balance between the internal nonlinear forces is visualized. The nonlinear differential equation containing the ponderomotive, magnetic tension, and centrifugal forces in the presence of the shear flow is obtained. The solution presents the scale ofmore » influence of the propagating torsional Alfvén wave on compressive perturbations. Explicit expressions for the compressive perturbations caused by the forces connected to the torsional Alfvén wave show that, in the presence of a shear flow, the magnetic tension and centrifugal forces do not cancel each other’s effects as they did in its absence. This shear flow plays in favor of the magnetic tension force, resulting in a more efficient collimation. Regarding the ponderomotive force, the shear flow has no effect. The phase relations highlight the interplay of the shear flow and the plasma- β . As the shear flow and plasma- β increase, compressive perturbation amplitudes emerge. We conclude that the jet collimation due to the torsional Alfvén wave highly depends on the location of the jet. The shear flow tightens the collimation as the jet elevates up to the solar corona.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011utfb.book..617G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011utfb.book..617G"><span>Technologies and Applications of Airborne Power Ultrasound in Food Processing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallego-Juárez, Juan A.; Riera, Enrique</p> <p></p> <p>Applications of ultrasonic waves are generally divided into two groups: low intensity and high intensity. Low-intensity applications are those wherein the objective is to obtain information about the propagation medium without producing any modification of its state. On the contrary, high-intensity applications are those wherein ultrasonic energy is used to produce permanent changes in the treated medium.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1890466','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1890466"><span>Achieving high-density states through shock-wave loading of precompressed samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jeanloz, Raymond; Celliers, Peter M.; Collins, Gilbert W.; Eggert, Jon H.; Lee, Kanani K. M.; McWilliams, R. Stewart; Brygoo, Stéphanie; Loubeyre, Paul</p> <p>2007-01-01</p> <p>Materials can be experimentally characterized to terapascal pressures by sending a laser-induced shock wave through a sample that is precompressed inside a diamond-anvil cell. This combination of static and dynamic compression methods has been experimentally demonstrated and ultimately provides access to the 10- to 100-TPa (0.1–1 Gbar) pressure range that is relevant to planetary science, testing first-principles theories of condensed matter, and experimentally studying a new regime of chemical bonding. PMID:17494771</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1000774','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1000774"><span>Littoral Combat Ship: Knowledge of Survivability and Lethality Capabilities Needed Prior to Making Major Funding Decisions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-12-01</p> <p>USS Port Royal hit a coral reef in order to provide an independent review of the damage the ship sustained. Our classified report discussed...explosion. Underwater explosions create a shock wave and a highly compressed gas bubble that expands and contracts. This can cause a type of vertical or...conditions also remains unknown. Due to the dynamic nature of waves , the Navy cannot rely on modeling and simulation alone to provide an accurate</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.V31A0934N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.V31A0934N"><span>Bulk Viscosity of Bubbly Magmas and the Amplification of Pressure Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Navon, O.; Lensky, N. G.; Neuberg, J. W.; Lyakhovsky, V.</p> <p>2001-12-01</p> <p>The bulk viscosity of magma is needed in order to describe the dynamics of a compressible bubbly magma flowing in conduits and to follow the attenuation of pressure waves travelling through a compressible magma. We developed a model for the bulk viscosity of a suspension of gas bubbles in an incompressible Newtonian liquid that exsolves volatiles (e.g. magma). The suspension is modeled as a close pack of spherical cells, consisting of gas bubbles centered in spherical shells of a volatile-bearing liquid. Following a drop in the ambient pressure the resulting dilatational motion and driving pressure are obtained in terms of the two-phase cell parameters, i.e. bubble radius and gas pressure. By definition, the bulk viscosity of a fluid is the relation between changes of the driving pressure with respect to changes in the resulted expansion strain-rate. Thus, we can use the two-phase solution to define the bulk viscosity of a hypothetical cell, composed of a homogeneously compressible, one-phase, continuous fluid. The resulted bulk viscosity is highly non-linear. At the beginning of the expansion process, when gas exsolution is efficient, the expansion rate grows exponentially while the driving pressure decreases slightly. That means that bulk viscosity is formally negative. The negative value reflects the release of the energy stored in the supersaturated liquid (melt) and its conversion to mechanical work during exsolution. Later, when bubbles are large enough and the gas influx decreases significantly, the strain rate decelerates and the bulk viscosity becomes positive as expected in a dissipative system. We demonstrate that amplification of seismic wave travelling through a volcanic conduit filled with a volatile saturated magma may be attributed to the negative bulk viscosity of the compressible magma. Amplification of an expansion wave may, at some level in the conduit, damage the conduit walls and initiate opening of new pathways for magma to erupt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDA21005B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDA21005B"><span>Near-field acoustic radiation by high-speed turbulence: amplitude, structure, gas-stiffness, and dilatational dissipation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buchta, David; Freund, Jonathan</p> <p>2017-11-01</p> <p>High-speed (supersonic) turbulent shear flows are well-known to radiate pressure-wave patterns that have higher positive peaks than negative valleys, which yields a notable skewness, usually with Sk > 0.4 . Direct numerical simulations (DNS) of planar turbulent mixing layers at different Mach numbers (M) are used to examine this. The baseline simulations, of an air-like gas at speeds up to M = 3.5 , reproduced the observed behavior of jets. Simulations initialized with corresponding instability modes show that Sk increases linearly with the velocity amplitude (Mt =√{ui' ui'} /co), reflecting the M dependence of the DNS, which can be related to simpler gas dynamic flows. Simulations with a stiffened-gas equation of state (often used to model liquids) show essentially the same Mach-number dependence, despite the nominally greater resistance to compressibility. Turbulence simulations with an artificial energy reallocation mechanism, imposed to alter its structure, show little change in Sk. Finally, we also consider significantly increased bulk viscosity to suppress dilatation. In this case, Sk diminishes along with the sound-field intensity, though the turbulence stresses themselves are nearly unchanged.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001APS..DPPKP1106F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001APS..DPPKP1106F"><span>Compression of Intense Laser Pulses in Plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fisch, Nathaniel J.; Malkin, Vladimir M.; Shvets, Gennady</p> <p>2001-10-01</p> <p>A counterpropagating short pulse can absorb the energy of a long laser pulse in plasma, resulting in pulse compression. For processing very high power and very high total energy, plasma is an ideal medium. Thus, in plasma one can contemplate the compression of micron light pulses to exawatts per square cm or fluences to kilojoules per square cm, prior to the vacuum focus. Two nonlinear plasma effects have recently been proposed to accomplish compression at very high power in counterpropagating geometry: One is compression by means of Compton or so-called superradiant scattering, where the nonlinear interaction of the plasma electrons with the lasers dominates the plasma restoring motion due to charge imbalance [G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. Lett. v. 81, 4879 (1998)]. The second is fast compression by means of stimulated backward Raman scattering (SBRS), where the amplification process outruns deleterious processes associated with the ultraintense pulse [V. M. Malkin, G. Shvets, N. J. Fisch, Phys. Rev. Lett., v. 82, 4448 (1999)]. In each of these regimes, in a realistic plasma, there are technological challenges that must be met and competing effects that must be kept smaller than the desired interaction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.946a2045E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.946a2045E"><span>Influence of deposited nanoparticles on the spall strength of metals under the action of picosecond pulses of shock compression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ebel, A. A.; Mayer, A. E.</p> <p>2018-01-01</p> <p>Molecular dynamic simulations of the generation and propagation of shock pulses of picosecond duration initiated by nanoscale impactors, and their interaction with the rear surface is carried out for aluminum and copper. It is shown that the presence of deposited nanoparticles on the rear surface increases the threshold value of the impact intensity leading to the rear spallation. The interaction of a shock wave with nanoparticles leads to severe plastic deformation in the surface layer of the metal including nanoparticles. A part of the compression pulse energy is expended on the plastic deformation, which suppresses the spall fracture. Spallation threshold substantially increases at large diameters of deposited nanoparticles, but instability develops on the rear surface of the target, which is accompanied by ejection of droplets. The instability disrupts the integrity of the rear surface, though the loss of integrity occurs through the ejection of mass, rather than a spallation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22525552-formation-rotational-discontinuities-compressive-three-dimensional-mhd-turbulence','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22525552-formation-rotational-discontinuities-compressive-three-dimensional-mhd-turbulence"><span>THE FORMATION OF ROTATIONAL DISCONTINUITIES IN COMPRESSIVE THREE-DIMENSIONAL MHD TURBULENCE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yang, Liping; Feng, Xueshang; Zhang, Lei</p> <p></p> <p>Measurements of solar wind turbulence reveal the ubiquity of discontinuities. In this study we investigate how the discontinuities, especially rotational discontinuities (RDs), are formed in MHD turbulence. In a simulation of the decaying compressive three-dimensional (3D) MHD turbulence with an imposed uniform background magnetic field, we detect RDs with sharp field rotations and little variations of magnetic field intensity, as well as mass density. At the same time, in the de Hoffman–Teller frame, the plasma velocity is nearly in agreement with the Alfvén speed, and is field-aligned on both sides of the discontinuity. We take one of the identified RDsmore » to analyze its 3D structure and temporal evolution in detail. By checking the magnetic field and plasma parameters, we find that the identified RD evolves from the steepening of the Alfvén wave with moderate amplitude, and that steepening is caused by the nonuniformity of the Alfvén speed in the ambient turbulence.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820016577','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820016577"><span>Investigation of laser-induced iodine fluorescence for the measurement of density in compressible flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mcdaniel, J. C., Jr.</p> <p>1982-01-01</p> <p>Laser induced fluorescence is an attractive nonintrusive approach for measuring molecular number density in compressible flows although this technique does not produce a signal that is directly related to the number density. Saturation and frequency detuned excitation are explored as means for minimizing the quenching effect using iodine as the molecular system because of its convenient absorption spectrum. Saturation experiments indicate that with available continuous wave laser sources of Gaussian transverse intensity distribution only partial saturation could be achieved in iodine at the pressures of interest in gas dynamics. Using a fluorescence lineshape theory, it is shown that for sufficiently large detuning of a narrow bandwidth laser from a molecular transition, the quenching can be cancelled by collisional broadening over a large range of pressures and temperatures. Experimental data obtained in a Mach 4.3 underexpanded jet of nitrogen seeded with iodine for various single mode argon laser detunings from a strong iodine transition at 5145 A are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPCI3004S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPCI3004S"><span>Laser-Plasma Interactions in Magnetized Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Yuan</p> <p>2017-10-01</p> <p>Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes magnetized. Starting from mega-Gauss magnetic fields, laser scattering becomes manifestly anisotropic [arXiv 1705.09758]. By arranging beams at special angles, one may be able to optimize laser-plasma coupling in magnetized environment. In stronger giga-Gauss magnetic field, laser propagation becomes modified by relativistic quantum effects [PRA 94.012124]. The modified wave dispersion relation enables correct interpretation of Faraday rotation measurements of strong magnetic fields, as well as correct extraction of plasma parameters from the X-ray spectra of pulsars. In addition, magnetized plasmas can be utilized to mediate laser pulse compression [PRE 95.023211]. Using magnetic resonances, it is not only possible to produce optic pulses of higher intensity, but also possible to amplify UV and soft X-ray pulses that cannot be compressed using existing technology. This research is supported by NNSA Grant No. DE-NA0002948 and DOE Research Grant No. DEAC02- 09CH11466.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ERL.....4d4011C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ERL.....4d4011C"><span>Economic and environmental evaluation of compressed-air cars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Creutzig, Felix; Papson, Andrew; Schipper, Lee; Kammen, Daniel M.</p> <p>2009-10-01</p> <p>Climate change and energy security require a reduction in travel demand, a modal shift, and technological innovation in the transport sector. Through a series of press releases and demonstrations, a car using energy stored in compressed air produced by a compressor has been suggested as an environmentally friendly vehicle of the future. We analyze the thermodynamic efficiency of a compressed-air car powered by a pneumatic engine and consider the merits of compressed air versus chemical storage of potential energy. Even under highly optimistic assumptions the compressed-air car is significantly less efficient than a battery electric vehicle and produces more greenhouse gas emissions than a conventional gas-powered car with a coal intensive power mix. However, a pneumatic-combustion hybrid is technologically feasible, inexpensive and could eventually compete with hybrid electric vehicles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26067742','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26067742"><span>A Coupled Experiment-finite Element Modeling Methodology for Assessing High Strain Rate Mechanical Response of Soft Biomaterials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prabhu, Rajkumar; Whittington, Wilburn R; Patnaik, Sourav S; Mao, Yuxiong; Begonia, Mark T; Williams, Lakiesha N; Liao, Jun; Horstemeyer, M F</p> <p>2015-05-18</p> <p>This study offers a combined experimental and finite element (FE) simulation approach for examining the mechanical behavior of soft biomaterials (e.g. brain, liver, tendon, fat, etc.) when exposed to high strain rates. This study utilized a Split-Hopkinson Pressure Bar (SHPB) to generate strain rates of 100-1,500 sec(-1). The SHPB employed a striker bar consisting of a viscoelastic material (polycarbonate). A sample of the biomaterial was obtained shortly postmortem and prepared for SHPB testing. The specimen was interposed between the incident and transmitted bars, and the pneumatic components of the SHPB were activated to drive the striker bar toward the incident bar. The resulting impact generated a compressive stress wave (i.e. incident wave) that traveled through the incident bar. When the compressive stress wave reached the end of the incident bar, a portion continued forward through the sample and transmitted bar (i.e. transmitted wave) while another portion reversed through the incident bar as a tensile wave (i.e. reflected wave). These waves were measured using strain gages mounted on the incident and transmitted bars. The true stress-strain behavior of the sample was determined from equations based on wave propagation and dynamic force equilibrium. The experimental stress-strain response was three dimensional in nature because the specimen bulged. As such, the hydrostatic stress (first invariant) was used to generate the stress-strain response. In order to extract the uniaxial (one-dimensional) mechanical response of the tissue, an iterative coupled optimization was performed using experimental results and Finite Element Analysis (FEA), which contained an Internal State Variable (ISV) material model used for the tissue. The ISV material model used in the FE simulations of the experimental setup was iteratively calibrated (i.e. optimized) to the experimental data such that the experiment and FEA strain gage values and first invariant of stresses were in good agreement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4542829','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4542829"><span>A Coupled Experiment-finite Element Modeling Methodology for Assessing High Strain Rate Mechanical Response of Soft Biomaterials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Prabhu, Rajkumar; Whittington, Wilburn R.; Patnaik, Sourav S.; Mao, Yuxiong; Begonia, Mark T.; Williams, Lakiesha N.; Liao, Jun; Horstemeyer, M. F.</p> <p>2015-01-01</p> <p>This study offers a combined experimental and finite element (FE) simulation approach for examining the mechanical behavior of soft biomaterials (e.g. brain, liver, tendon, fat, etc.) when exposed to high strain rates. This study utilized a Split-Hopkinson Pressure Bar (SHPB) to generate strain rates of 100-1,500 sec-1. The SHPB employed a striker bar consisting of a viscoelastic material (polycarbonate). A sample of the biomaterial was obtained shortly postmortem and prepared for SHPB testing. The specimen was interposed between the incident and transmitted bars, and the pneumatic components of the SHPB were activated to drive the striker bar toward the incident bar. The resulting impact generated a compressive stress wave (i.e. incident wave) that traveled through the incident bar. When the compressive stress wave reached the end of the incident bar, a portion continued forward through the sample and transmitted bar (i.e. transmitted wave) while another portion reversed through the incident bar as a tensile wave (i.e. reflected wave). These waves were measured using strain gages mounted on the incident and transmitted bars. The true stress-strain behavior of the sample was determined from equations based on wave propagation and dynamic force equilibrium. The experimental stress-strain response was three dimensional in nature because the specimen bulged. As such, the hydrostatic stress (first invariant) was used to generate the stress-strain response. In order to extract the uniaxial (one-dimensional) mechanical response of the tissue, an iterative coupled optimization was performed using experimental results and Finite Element Analysis (FEA), which contained an Internal State Variable (ISV) material model used for the tissue. The ISV material model used in the FE simulations of the experimental setup was iteratively calibrated (i.e. optimized) to the experimental data such that the experiment and FEA strain gage values and first invariant of stresses were in good agreement. PMID:26067742</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5107897','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5107897"><span>Tuning carrier lifetime in InGaN/GaN LEDs via strain compensation for high-speed visible light communication</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Du, Chunhua; Huang, Xin; Jiang, Chunyan; Pu, Xiong; Zhao, Zhenfu; Jing, Liang; Hu, Weiguo; Wang, Zhong Lin</p> <p>2016-01-01</p> <p>In recent years, visible light communication (VLC) technology has attracted intensive attention due to its huge potential in superior processing ability and fast data transmission. The transmission rate relies on the modulation bandwidth, which is predominantly determined by the minority-carrier lifetime in III-group nitride semiconductors. In this paper, the carrier dynamic process under a stress field was studied for the first time, and the carrier recombination lifetime was calculated within the framework of quantum perturbation theory. Owing to the intrinsic strain due to the lattice mismatch between InGaN and GaN, the wave functions for the holes and electrons are misaligned in an InGaN/GaN device. By applying an external strain that “cancels” the internal strain, the overlap between the wave functions can be maximized so that the lifetime of the carrier is greatly reduced. As a result, the maximum speed of a single chip was increased from 54 MHz up to 117 MHz in a blue LED chip under 0.14% compressive strain. Finally, a bandwidth contour plot depending on the stress and operating wavelength was calculated to guide VLC chip design and stress optimization. PMID:27841368</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1176424','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1176424"><span>Low-loss bloch wave guiding in open structures and highly compact efficient waveguide-crossing arrays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Popovic, Milos</p> <p>2011-03-08</p> <p>Low-loss waveguide structures may comprise a multimode waveguide supporting a periodic light intensity pattern, and attachments disposed at the waveguide adjacent low-intensity regions of the light intensity pattern.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910034707&hterms=sound+amplitude&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsound%2Bamplitude','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910034707&hterms=sound+amplitude&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsound%2Bamplitude"><span>Scattering of sound waves by a compressible vortex</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Colonius, Tim; Lele, Sanjiva K.; Moin, Parviz</p> <p>1991-01-01</p> <p>Scattering of plane sound waves by a compressible vortex is investigated by direct computation of the two-dimensional Navier-Stokes equations. Nonreflecting boundary conditions are utilized, and their accuracy is established by comparing results on different sized domains. Scattered waves are directly measured from the computations. The resulting amplitude and directivity pattern of the scattered waves is discussed, and compared to various theoretical predictions. For compact vortices (zero circulation), the scattered waves directly computed are in good agreement with predictions based on an acoustic analogy. Strong scattering at about + or - 30 degrees from the direction of incident wave propagation is observed. Back scattering is an order of magnitude smaller than forward scattering. For vortices with finite circulation refraction of the sound by the mean flow field outside the vortex core is found to be important in determining the amplitude and directivity of the scattered wave field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPIE.7910E..1IG','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPIE.7910E..1IG"><span>Design of graphene nanoparticle undergoing axial compression: quantum study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glukhova, O. E.; Kirillova, I. V.; Saliy, I. N.; Kolesnikova, A. S.; Slepchenkov, M. M.</p> <p>2011-03-01</p> <p>We report the results of quantum mechanical investigations of the atomic structure and deformations of graphene nanoparticle undergoing axial compression. We applied the tight-binding (TB) method. Our transferable tightbinding potential correctly reproduced tight-binding changes in the electronic configuration as a function of the local bonding geometry around each carbon atom. The tight-binding method applied provided the consideration and calculation of the rehybridization between σ- and π-orbitals. To research nanoribbons using tight-binding potential our own program was used. We adapted TB method to be able to run the algorithm on a parallel computing machine (computer cluster). To simulate axial compression of graphene nanoparticles the atoms on the ends were fixed on the plates. The plates were moved towards each other to decrease the length at some percent. Plane atomic network undergoing axial compression became wave-like. The amplitude of wave and its period were not constant and changed along axis. This is a phase transition. The strain energy collapse occurs at the value of axial compression 0.03-0.04. The strain energy increased up to the quantity compression 0.03, then collapsed sharply and decreased. So according to our theoretical investigation, the elasticity of graphene nanoparticles is more than the elasticity of nanotubes the same width and length. The curvature of the atomic network because of compression will decrease the reactivity of graphene nanoparticles. We have calculated the atomic structure and electronic structure of the compression graphene nanopaticle at each step of strain of axial compression. We have come to the conclusion that the wave-like graphenes adsorbing protein and nucleic acid are the effective nanosensors and bionanosensors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006ihy..workE..42D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006ihy..workE..42D"><span>Propagation and Dissipation of MHD Waves in Coronal Holes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dwivedi, B. N.</p> <p>2006-11-01</p> <p>bholadwivedi@gmail.com In view of the landmark result on the solar wind outflow, starting between 5 Mm and 20 Mm above the photosphere in magnetic funnels, we investigate the propagation and dissipation of MHD waves in coronal holes. We underline the importance of Alfvén wave dissipation in the magnetic funnels through the viscous and resistive plasma. Our results show that Alfvén waves are one of the primary energy sources in the innermost part of coronal holes where the solar wind outflow starts. We also consider compressive viscosity and thermal conductivity to study the propagation and dissipation of long period slow longitudinal MHD waves in polar coronal holes. We discuss their likely role in the line profile narrowing, and in the energy budget for coronal holes and the solar wind. We compare the contribution of longitudinal MHD waves with high frequency Alfvén waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29599865','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29599865"><span>Effect of Compression Garments on Physiological Responses After Uphill Running.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Struhár, Ivan; Kumstát, Michal; Králová, Dagmar Moc</p> <p>2018-03-01</p> <p>Limited practical recommendations related to wearing compression garments for athletes can be drawn from the literature at the present time. We aimed to identify the effects of compression garments on physiological and perceptual measures of performance and recovery after uphill running with different pressure and distributions of applied compression. In a random, double blinded study, 10 trained male runners undertook three 8 km treadmill runs at a 6% elevation rate, with the intensity of 75% VO2max while wearing low, medium grade compression garments and high reverse grade compression. In all the trials, compression garments were worn during 4 hours post run. Creatine kinase, measurements of muscle soreness, ankle strength of plantar/dorsal flexors and mean performance time were then measured. The best mean performance time was observed in the medium grade compression garments with the time difference being: medium grade compression garments vs. high reverse grade compression garments. A positive trend in increasing peak torque of plantar flexion (60º·s-1, 120º·s-1) was found in the medium grade compression garments: a difference between 24 and 48 hours post run. The highest pain tolerance shift in the gastrocnemius muscle was the medium grade compression garments, 24 hour post run, with the shift being +11.37% for the lateral head and 6.63% for the medial head. In conclusion, a beneficial trend in the promotion of running performance and decreasing muscle soreness within 24 hour post exercise was apparent in medium grade compression garments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AIPC..706..235K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AIPC..706..235K"><span>Shock Waves Propagation in Scope of the Nonlocal Theory of Dynamical Plasticity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khantuleva, Tatyana A.</p> <p>2004-07-01</p> <p>From the point of view of the modern statistical mechanics the problems on shock compression of solids require a reformulation in terms of highly nonequilibrium effects arising inside the wave front. The self-organization during the multiscale and multistage momentum and energy exchange are originated by the correlation function. The theory of dynamic plasticity has been developed by the author on the base of the self-consistent nonlocal hydrodynamic approach had been applied to the shock wave propagation in solids. Nonlocal balance equations describe both the reversible wave type transport at the initial stage and the diffusive (dissipative) one in the end. The involved inverse influence of the mesoeffects on the wave propagation makes the formulation of problems self-consistent and involves a concept of the cybernetic control close-loop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890022821&hterms=wave+rotor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dwave%2Brotor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890022821&hterms=wave+rotor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dwave%2Brotor"><span>BEM for wave equation with boundary in arbitrary motion and applications to compressible potential aerodynamics of airplanes and helicopters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Morino, Luigi; Bharadvaj, Bala K.; Freedman, Marvin I.; Tseng, Kadin</p> <p>1988-01-01</p> <p>The wave equation for an object in arbitrary motion is investigated analytically using a BEM approach, and practical applications to potential flows of compressible fluids around aircraft wings and helicopter rotors are considered. The treatment accounts for arbitrary combined rotational and translational motion of the reference frame and for the wake motion. The numerical implementation as a computer algorithm is demonstrated on problems with prescribed and free wakes, the former in compressible flows and the latter for incompressible flows; results are presented graphically and briefly characterized.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27038770','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27038770"><span>Low Intensity Extracorporeal Shock Wave Therapy Improves Erectile Function in a Model of Type II Diabetes Independently of NO/cGMP Pathway.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Assaly-Kaddoum, Rana; Giuliano, François; Laurin, Miguel; Gorny, Diane; Kergoat, Micheline; Bernabé, Jacques; Vardi, Yoram; Alexandre, Laurent; Behr-Roussel, Delphine</p> <p>2016-09-01</p> <p>Erectile dysfunction is highly prevalent in type II diabetes mellitus. Low intensity extracorporeal shock wave therapy improves erectile function in patients with erectile dysfunction of vasculogenic origin, including diabetes. However, its mode of action remains unknown. We investigated the effects of low intensity extracorporeal shock wave therapy compared to or combined with sildenafil on erectile dysfunction in a type II diabetes mellitus model. Our purpose was to test our hypothesis of a mode of action targeting the cavernous nitric oxide/cyclic guanosine monophosphate pathway. GK rats, a validated model of type II diabetes mellitus, and age matched Wistar rats were treated with low intensity extracorporeal shock wave therapy twice weekly for 3 weeks. Treatment was repeated after a 3-week no-treatment interval. The penis was stretched and dipped in a specifically designed water-filled cage. Shock waves were delivered by a calibrated probe yielding a controlled energy flux density (0.09 mJ/mm(2)). The probe was attached to an electrohydraulic unit with a focused shock wave source, allowing for accurate extrapolation to humans. Following a 4-week washout period erectile function was assessed as well as endothelium dependent and independent, and nitrergic relaxations of the corpus cavernosum of GK rats. Low intensity extracorporeal shock wave therapy significantly improved erectile function in GK rats to the same extent as sildenafil. Treatment effects were potentiated when combined with sildenafil. Shock wave effects were not associated with improved cavernous endothelium dependent or independent, or nitrergic reactivity. Low intensity extracorporeal shock wave therapy improved erectile function in GK rats. Unexpectedly, this was not mediated by a nitric oxide/cyclic guanosine monophosphate dependent mechanism. Sildenafil increased shock wave efficacy. This preclinical paradigm to deliver low intensity extracorporeal shock wave therapy to the rat penis should help further exploration of the mode of action of this therapy on erectile tissue. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1438754','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1438754"><span>High Order Accurate Finite Difference Modeling of Seismo-Acoustic Wave Propagation in a Moving Atmosphere and a Heterogeneous Earth Model Coupled Across a Realistic Topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Petersson, N. Anders; Sjogreen, Bjorn</p> <p></p> <p>Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1438754-high-order-accurate-finite-difference-modeling-seismo-acoustic-wave-propagation-moving-atmosphere-heterogeneous-earth-model-coupled-across-realistic-topography','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1438754-high-order-accurate-finite-difference-modeling-seismo-acoustic-wave-propagation-moving-atmosphere-heterogeneous-earth-model-coupled-across-realistic-topography"><span>High Order Accurate Finite Difference Modeling of Seismo-Acoustic Wave Propagation in a Moving Atmosphere and a Heterogeneous Earth Model Coupled Across a Realistic Topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Petersson, N. Anders; Sjogreen, Bjorn</p> <p>2017-04-18</p> <p>Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28816352','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28816352"><span>Pulmonary artery wave propagation and reservoir function in conscious man: impact of pulmonary vascular disease, respiration and dynamic stress tests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Su, Junjing; Manisty, Charlotte; Simonsen, Ulf; Howard, Luke S; Parker, Kim H; Hughes, Alun D</p> <p>2017-10-15</p> <p>Wave travel plays an important role in cardiovascular physiology. However, many aspects of pulmonary arterial wave behaviour remain unclear. Wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery in subjects with and without pulmonary hypertension during spontaneous respiration and dynamic stress tests. Arterial wave energy decreased during expiration and Valsalva manoeuvre due to decreased ventricular preload. Wave energy also decreased during handgrip exercise due to increased heart rate. In pulmonary hypertension patients, the asymptotic pressure at which the microvascular flow ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by waves increased. The reservoir and excess pressures decreased during Valsalva manoeuvre but remained unchanged during handgrip exercise. This study provides insights into the influence of pulmonary vascular disease, spontaneous respiration and dynamic stress tests on pulmonary artery wave propagation and reservoir function. Detailed haemodynamic analysis may provide novel insights into the pulmonary circulation. Therefore, wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery to characterize changes in wave propagation and reservoir function during spontaneous respiration and dynamic stress tests. Right heart catheterization was performed using a pressure and Doppler flow sensor tipped guidewire to obtain simultaneous pressure and flow velocity measurements in the pulmonary artery in control subjects and patients with pulmonary arterial hypertension (PAH) at rest. In controls, recordings were also obtained during Valsalva manoeuvre and handgrip exercise. The asymptotic pressure at which the flow through the microcirculation ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by arterial waves increased in PAH patients compared to controls. The systolic and diastolic rate constants also increased, while the diastolic time constant decreased. The forward compression wave energy decreased by ∼8% in controls and ∼6% in PAH patients during expiration compared to inspiration, while the wave speed remained unchanged throughout the respiratory cycle. Wave energy decreased during Valsalva manoeuvre (by ∼45%) and handgrip exercise (by ∼27%) with unaffected wave speed. Moreover, the reservoir and excess pressures decreased during Valsalva manoeuvre but remained unaltered during handgrip exercise. In conclusion, reservoir-excess pressure analysis applied to the pulmonary artery revealed distinctive differences between controls and PAH patients. Variations in the ventricular preload and afterload influence pulmonary arterial wave propagation as demonstrated by changes in wave energy during spontaneous respiration and dynamic stress tests. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23505053','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23505053"><span>Shock wave treatment improves nerve regeneration in the rat.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mense, Siegfried; Hoheisel, Ulrich</p> <p>2013-05-01</p> <p>The aims of the experiments were to: (1) determine whether low-energy shock wave treatment accelerates the recovery of muscle sensitivity and functionality after a nerve lesion; and (2) assess the effect of shock waves on the regeneration of injured nerve fibers. After compression of a muscle nerve in rats the effects of shock wave treatment on the sequelae of the lesion were tested. In non-anesthetized animals, pressure pain thresholds and exploratory activity were determined. The influence of the treatment on the distance of nerve regeneration was studied in immunohistochemical experiments. Both behavioral and immunohistochemical data show that shock wave treatment accelerates the recovery of muscle sensitivity and functionality and promotes regeneration of injured nerve fibers. Treatment with focused shock waves induces an improvement of nerve regeneration in a rodent model of nerve compression. Copyright © 2012 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26737295','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26737295"><span>Spiral wave classification using normalized compression distance: Towards atrial tissue spatiotemporal electrophysiological behavior characterization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alagoz, Celal; Guez, Allon; Cohen, Andrew; Bullinga, John R</p> <p>2015-08-01</p> <p>Analysis of electrical activation patterns such as re-entries during atrial fibrillation (Afib) is crucial in understanding arrhythmic mechanisms and assessment of diagnostic measures. Spiral waves are a phenomena that provide intuitive basis for re-entries occurring in cardiac tissue. Distinct spiral wave behaviors such as stable spiral waves, meandering spiral waves, and spiral wave break-up may have distinct electrogram manifestations on a mapping catheter. Hence, it is desirable to have an automated classification of spiral wave behavior based on catheter recordings for a qualitative characterization of spatiotemporal electrophysiological activity on atrial tissue. In this study, we propose a method for classification of spatiotemporal characteristics of simulated atrial activation patterns in terms of distinct spiral wave behaviors during Afib using two different techniques: normalized compressed distance (NCD) and normalized FFT (NFFTD). We use a phenomenological model for cardiac electrical propagation to produce various simulated spiral wave behaviors on a 2D grid and labeled them as stable, meandering, or breakup. By mimicking commonly used catheter types, a star shaped and a circular shaped both of which do the local readings from atrial wall, monopolar and bipolar intracardiac electrograms are simulated. Virtual catheters are positioned at different locations on the grid. The classification performance for different catheter locations, types and for monopolar or bipolar readings were also compared. We observed that the performance for each case differed slightly. However, we found that NCD performance is superior to NFFTD. Through the simulation study, we showed the theoretical validation of the proposed method. Our findings suggest that a qualitative wavefront activation pattern can be assessed during Afib without the need for highly invasive mapping techniques such as multisite simultaneous electrogram recordings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUSM.S43A..10C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUSM.S43A..10C"><span>The Intracratonic Caraibas-Itacarambi Earthquake of December 9, 2007 (4.9 mb), Minas Gerais, Brazil: predominance of compressional stresses in the middle of the San Francisco craton.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chimpliganond, C. N.; Franca, G. S.; Barros, L. V.; Assumpcao, M.; Carvalho, J.</p> <p>2008-05-01</p> <p>An earthquake with magnitude 4.9 mb, in the central part of the San Francisco craton, shook the village of Caraibas, Minas Gerais state, on December 9, 2007 at 00:03 (local time). The epicentral area is near the city of Itacarambi. This event was the first to cause a fatal victim in Brazil (a little girl 6 years old). The maximum intensity reached VII Modified Mercalli and the isoseismal of VI MM intensity comprise an area of about 100 square kilometers. Since May 25, 2007, when a 3.5 mb magnitude event was widely felt by the population, this region has been shaken by small earthquakes. A field campaign was taken during October 23-28 to implement a local seismographic network composed by 6 tri-axial broadband stations that is operating until now. A seismic gap was observed some days before the main shock of December 9. Two imminent foreshocks preceded the main shock by some minutes, and 162 aftershocks followed the main event during the first day. The earthquakes with clear onset times for P and S waves were located with Hypo71 using a local velocity model with a Vp/Vs ratio of 1.72, obtained with a composite Wadati diagram. The events show a trend in the NE-SW direction, with very shallow depths, less than about 2 kilometers. The aftershocks were distributed over an area about 3 kilometers long in the NE-SW direction. A composite focal mechanism, determined using P-wave polarities with the clearest waveforms at local stations, shows a reverse faulting mechanism. This solution, consistent with P-wave polarity data for the main shock recorded at regional and teleseismic stations, shows a near horizontal P-axis trending E- W, similar to an earthquake swarm occurred 50 km to the north in 1990. Stress inversion using five different focal mechanisms in this part of the San Francisco craton indicates compressional stresses with EW maximum compression (S1) and a NS intermediate compression (S2).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.4387T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.4387T"><span>Formation of multiple energy dispersion of H+, He+, and O+ ions in the inner magnetosphere in response to interplanetary shock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsuji, H.; Ebihara, Y.; Tanaka, T.</p> <p>2017-04-01</p> <p>An interplanetary (IP) shock has a large impact on magnetospheric ions. Satellite observations have shown that soon after arrival of the IP shock, overall intensity of the ions rapidly increases and multiple energy dispersion appears in an energy-time spectrogram of the ions. In order to understand the response of the magnetospheric ions to IP shock, we have performed test particle simulation under the electric and magnetic fields provided by the global magnetohydrodynamic simulation. We reconstructed the differential flux of H+, He+, and O+ ions at (7, 0, 0) Re in GSM coordinates by means of the semi-Lagrangian (phase space mapping) method. Simulation results show that the ions respond to the IP shock in two different ways. First, overall intensity of the flux gradually increases at all pitch angles. As the compressional wave propagates tailward, the magnetic field increases, which accelerates the ions due to the gyrobetatron. Second, multiple energy-time dispersion appears in the reconstructed spectrograms of the ion flux. The energy-time dispersion is caused by the ion moving toward mirror point together with tailward propagating compressional wave at off-equator. The ions are primarily accelerated by the drift betatron under the strong electric field looking dawnward. The dispersion is absent in the spectrogram of equatorially mirroring ions. The dispersion appears at higher energy for heavier ions. These features are consistent with the satellite observations. Because the acceleration depends on bounce phase, the bounce-averaged approximation is probably invalid for the ions during the interval of geomagnetic sudden commencement.<abstract type="synopsis"><title type="main">Plain Language SummarySolar storm can cause a significant compression of the magnetosphere on the dayside. The compression starts at the subsolar point and propagates toward the nightside in the magnetosphere. Some ions bouncing between the Northern Hemisphere and the Southern Hemisphere are found to be accelerated selectively when the ions move together with the propagation of the compressional wave. As a consequence, striped structures appear in the energy versus time spectrum of the ion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22287201','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22287201"><span>Pressure-wave energy relationship during IABP counterpulsation in a mock circulation: changes with angle and assisting frequency.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Biglino, Giovanni; Kolyva, Christina; Khir, Ashraf W</p> <p>2012-01-01</p> <p>Despite decades of successful clinical use of the intra aortic balloon pump (IABP), certain aspects of its operation are not yet fully understood. This work aims to investigate in vitro the mechanism underlying balloon inflation and deflation with varying assisting frequency and operating angle with respect to the horizontal, by studying the corresponding pressure and wave energy changes. A mock circulatory system (MCS), with physiological distribution of peripheral resistance and compliance, presented a controllable test bed. We used Wave Intensity Analysis (WIA) to identify balloon-generated waves and quantify their energy. Conventional hemodynamic parameters were also calculated. Tests were repeated at varying operating angles (0°-45°), resembling the semi-recumbent position in the ICU, and at different assisting frequencies (1:1, 1:2, 1:3). Two balloons (25 cc and 40 cc in volume) were tested. The main waves associated with counterpulsation were identified as a backward compression wave associated with balloon inflation and a backward expansion wave associated with balloon deflation. Results showed that the IABP inflation and deflation benefits are reduced with increasing angle, in terms of the size of the inflation and deflation waves as well as in terms of diastolic pressure augmentation and end-diastolic pressure reduction. Both WIA findings and pressure parameters indicated 1:1 as the most effective mode of pumping. This study shows that, in vitro, a greater benefit of counterpulsation can be achieved in the horizontal position at 1:1 assisting frequency, with a good correlation between wave and pressure results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApPhL.111l3701G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApPhL.111l3701G"><span>Reduced clot debris size using standing waves formed via high intensity focused ultrasound</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Shifang; Du, Xuan; Wang, Xin; Lu, Shukuan; Shi, Aiwei; Xu, Shanshan; Bouakaz, Ayache; Wan, Mingxi</p> <p>2017-09-01</p> <p>The feasibility of utilizing high intensity focused ultrasound (HIFU) to induce thrombolysis has been demonstrated previously. However, clinical concerns still remain related to the clot debris produced via fragmentation of the original clot potentially being too large and hence occluding downstream vessels, causing hazardous emboli. This study investigates the use of standing wave fields formed via HIFU to disintegrate the thrombus while achieving a reduced clot debris size in vitro. The results showed that the average diameter of the clot debris calculated by volume percentage was smaller in the standing wave mode than in the travelling wave mode at identical ultrasound thrombolysis settings. Furthermore, the inertial cavitation dose was shown to be lower in the standing wave mode, while the estimated cavitation bubble size distribution was similar in both modes. These results show that a reduction of the clot debris size with standing waves may be attributed to the particle trapping of the acoustic potential well which contributed to particle fragmentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4317702','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4317702"><span>Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke</p> <p>2015-01-01</p> <p>Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 1018 W/cm2 is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200 MV/m and 7 ps, respectively. PMID:25652694</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1332946-shock-compression-experiments-lithium-deuteride-lid-single-crystals','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1332946-shock-compression-experiments-lithium-deuteride-lid-single-crystals"><span>Shock compression experiments on Lithium Deuteride (LiD) single crystals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.</p> <p>2016-12-21</p> <p>Shock compression experiments in the few hundred GPa (multi-Mabr) regime were performed on Lithium Deuteride (LiD) single crystals. This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17-32 km/s. Measurements included pressure, density, and temperature between ~200-600 GPa along the Principal Hugoniot – the locus of end states achievable through compression by large amplitude shock waves – as well as pressure and density of re - shock states up to ~900 GPa. Lastly, the experimental measurements are compared with recent density functional theorymore » calculations as well as a new tabular equation of state developed at Los Alamos National Labs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866892','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866892"><span>Techniques for optically compressing light intensity ranges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Rushford, Michael C.</p> <p>1989-01-01</p> <p>A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7076983','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7076983"><span>Techniques for optically compressing light intensity ranges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Rushford, M.C.</p> <p>1989-03-28</p> <p>A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter. 18 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25316410','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25316410"><span>Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao</p> <p>2014-10-15</p> <p>Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ExFl...57....7F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ExFl...57....7F"><span>Measurements in the annular shear layer of high subsonic and under-expanded round jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, Tong; McGuirk, James J.</p> <p>2016-01-01</p> <p>An experimental study has been undertaken to document compressibility effects in the annular shear layers of axisymmetric jets. Comparison is made of the measured flow development with the well-documented influence of compressibility in planar mixing layers. High Reynolds number (~106) and high Mach number jets issuing from a convergent nozzle at nozzle pressure ratios (NPRs) from 1.28 to 3.0 were measured using laser Doppler anemometry instrumentation. Detailed radial profile data are reported, particularly within the potential core region, for mean velocity, turbulence rms, and turbulence shear stress. For supercritical NPRs the presence of the pressure waves in the inviscid shock cell region as the jet expanded back to ambient pressure was found to exert a noticeable effect on shear layer location, causing this to shift radially outwards at high supercritical NPR conditions. After a boundary layer to free shear layer transition zone, the turbulence development displayed a short region of similarity before adjustment to near-field merged jet behaviour. Peak turbulence rms reduction due to compressibility was similar to that observed in planar layers with radial rms suppression much stronger than axial. Comparison of the compressibility-modified annular shear layer growth rate with planar shear layer data on the basis of the convective Mach number ( M C) showed notable differences; in the annular shear layer, compressibility effects began at lower M C and displayed a stronger reduction in growth. For high Mach number aerospace propulsion applications involving round jets, the current measurements represent a new data set for the calibration/validation of compressibility-affected turbulence models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1440723-hugoniot-chemistry-ablator-plastic-below-gpa','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1440723-hugoniot-chemistry-ablator-plastic-below-gpa"><span>The Hugoniot and chemistry of ablator plastic below 100 GPa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Akin, M. C.; Fratanduono, D. E.; Chau, R.</p> <p>2016-01-25</p> <p>The equation of state of glow discharge polymer (GDP) was measured to high precision using the two-stage light gas gun at Lawrence Livermore National Laboratory at pressures up to 70 GPa. Both absolute measurements and impedance matching techniques were used to determine the principal and secondary Hugoniots. GDP likely reacts at about 30 GPa, demonstrated by specific emission at 450 nm coupled with changes to the Hugoniot and reshock points. As a result of these reactions, the shock pressure in GDP evolves in time, leading to a possible decrease in pressure as compression increases, or negative compressibility, and causing complexmore » pressure profiles within the plastic. Velocity wave profile variation was observed as a function of position on each shot, suggesting some internal variation of GDP may be present, which would be consistent with previous observations. The complex temporal and possibly structural evolution of GDP under shock compression suggests that calculations of compression and pressure based upon bulk or mean measurements may lead to artificially low pressures and high compressions. Evidence for this includes a large shift in calculating reshock pressures based on the reflected Hugoniot. In conclusion, these changes also suggest other degradation mechanisms for inertial confinement fusion implosions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Ap%26SS.363...99S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Ap%26SS.363...99S"><span>Compressive and rarefactive double layers in non-uniform plasma with q-nonextensive distributed electrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shan, S. Ali; Saleem, H.</p> <p>2018-05-01</p> <p>Electrostatic solitary waves and double layers (DLs) formed by the coupled ion acoustic (IA) and drift waves have been investigated in non-uniform plasma using q-nonextensive distribution function for the electrons and assuming ions to be cold Ti< Te. It is found that both compressive and rarefactive nonlinear structures (solitary waves and DLs) are possible in such a system. The steeper gradients are supportive for compressive solitary (and double layers) and destructive for rarefactive ones. The q-nonextensivity parameter q and the magnitudes of gradient scale lengths of density and temperature have significant effects on the amplitude of the double layers (and double layers) as well as on the speed of these structures. This theoretical model is general which has been applied here to the F-region ionosphere for illustration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NJPh...18i3029Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NJPh...18i3029Z"><span>Generation of quasi-monoenergetic heavy ion beams via staged shock wave acceleration driven by intense laser pulses in near-critical plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, W. L.; Qiao, B.; Shen, X. F.; You, W. Y.; Huang, T. W.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.</p> <p>2016-09-01</p> <p>Laser-driven ion acceleration potentially offers a compact, cost-effective alternative to conventional accelerators for scientific, technological, and health-care applications. A novel scheme for heavy ion acceleration in near-critical plasmas via staged shock waves driven by intense laser pulses is proposed, where, in front of the heavy ion target, a light ion layer is used for launching a high-speed electrostatic shock wave. This shock is enhanced at the interface before it is transmitted into the heavy ion plasmas. Monoenergetic heavy ion beam with much higher energy can be generated by the transmitted shock, comparing to the shock wave acceleration in pure heavy ion target. Two-dimensional particle-in-cell simulations show that quasi-monoenergetic {{{C}}}6+ ion beams with peak energy 168 MeV and considerable particle number 2.1 × {10}11 are obtained by laser pulses at intensity of 1.66 × {10}20 {{W}} {{cm}}-2 in such staged shock wave acceleration scheme. Similarly a high-quality {{Al}}10+ ion beam with a well-defined peak with energy 250 MeV and spread δ E/{E}0=30 % can also be obtained in this scheme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9971E..0VS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9971E..0VS"><span>Compressed digital holography: from micro towards macro</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schretter, Colas; Bettens, Stijn; Blinder, David; Pesquet-Popescu, Béatrice; Cagnazzo, Marco; Dufaux, Frédéric; Schelkens, Peter</p> <p>2016-09-01</p> <p>signal processing methods from software-driven computer engineering and applied mathematics. The compressed sensing theory in particular established a practical framework for reconstructing the scene content using few linear combinations of complex measurements and a sparse prior for regularizing the solution. Compressed sensing found direct applications in digital holography for microscopy. Indeed, the wave propagation phenomenon in free space mixes in a natural way the spatial distribution of point sources from the 3-dimensional scene. As the 3-dimensional scene is mapped to a 2-dimensional hologram, the hologram samples form a compressed representation of the scene as well. This overview paper discusses contributions in the field of compressed digital holography at the micro scale. Then, an outreach on future extensions towards the real-size macro scale is discussed. Thanks to advances in sensor technologies, increasing computing power and the recent improvements in sparse digital signal processing, holographic modalities are on the verge of practical high-quality visualization at a macroscopic scale where much higher resolution holograms must be acquired and processed on the computer.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5015817','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5015817"><span>Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.</p> <p>2016-01-01</p> <p>Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26ES...45a2017S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26ES...45a2017S"><span>Rational preparation of waste coal mixture for production of bricks by the method of compression molding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stolboushkin, A. Yu; Ivanov, A. I.; Temlyantsev, M. V.; Fomina, O. A.</p> <p>2016-10-01</p> <p>Rational preparation of the mixture containing technogenic raw material - waste coal for the production of wall ceramics is developed. It was established that the technology of high-quality ceramic bricks requires: grinding of raw materials to class 0.3 + 0 mm, its aggregation in the intensive mixers into granules 1-3 mm, compression molding of adobe to plastic deformation of granules, drying and firing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890005701','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890005701"><span>On the instability of hypersonic flow past a wedge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cowley, Stephen; Hall, Philip</p> <p>1988-01-01</p> <p>The instability of a compressible flow past a wedge is investigated in the hypersonic limit. Particular attention is given to the Tollmien-Schlichting waves governed by triple-deck theory though some discussion of inviscid modes is given. It is shown that the attached shock has a significant effect on the growth rates of Tollmien-Schlichting waves. Moreover, the presence of the shock allows for more than one unstable Tollmien-Schlichting wave. Indeed, an infinite discrete spectrum of unstable waves is induced by the shock, but these modes are unstable over relatively small but high frequency ranges. The shock is shown to have little effect on the inviscid modes considered by previous authors and an asymptotic description of inviscid modes in the hypersonic limit is given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1793i0006H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1793i0006H"><span>Using phase contrast imaging to measure the properties of shock compressed aerogel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hawreliak, James; Erskine, Dave; Schropp, Andres; Galtier, Eric C.; Heimann, Phil</p> <p>2017-01-01</p> <p>The Hugoniot states of low density materials, such as silica aerogel, are used in high energy density physics research because they can achieve a range of high temperature and pressure states through shock compression. The shock properties of 100mg/cc silica aerogel were studied at the Materials in Extreme Conditions end station using x-ray phase contrast imaging of spherically expanding shock waves. The shockwaves were generated by focusing a high power 532nm laser to a 50μm focal spot on a thin aluminum ablator. The shock speed was measured in separate experiments using line-VISAR measurements from the reflecting shock front. The relative timing between the x-ray probe and the optical laser pump was varied so x-ray PCI images were taken at pressures between 10GPa and 30GPa. Modeling the compression of the foam in the strong shock limit uses a Gruneisen parameter of 0.49 to fit the data rather than a value of 0.66 that would correspond to a plasma state.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.2630G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.2630G"><span>Large-Amplitude High-Frequency Waves at Earth's Magnetopause</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graham, D. B.; Vaivads, A.; Khotyaintsev, Yu. V.; André, M.; Le Contel, O.; Malaspina, D. M.; Lindqvist, P.-A.; Wilder, F. D.; Ergun, R. E.; Gershman, D. J.; Giles, B. L.; Magnes, W.; Russell, C. T.; Burch, J. L.; Torbert, R. B.</p> <p>2018-04-01</p> <p>Large-amplitude waves near the electron plasma frequency are found by the Magnetospheric Multiscale (MMS) mission near Earth's magnetopause. The waves are identified as Langmuir and upper hybrid (UH) waves, with wave vectors either close to parallel or close to perpendicular to the background magnetic field. The waves are found all along the magnetopause equatorial plane, including both flanks and close to the subsolar point. The waves reach very large amplitudes, up to 1 V m-1, and are thus among the most intense electric fields observed at Earth's magnetopause. In the magnetosphere and on the magnetospheric side of the magnetopause the waves are predominantly UH waves although Langmuir waves are also found. When the plasma is very weakly magnetized only Langmuir waves are likely to be found. Both Langmuir and UH waves are shown to have electromagnetic components, which are consistent with predictions from kinetic wave theory. These results show that the magnetopause and magnetosphere are often unstable to intense wave activity near the electron plasma frequency. These waves provide a possible source of radio emission at the magnetopause.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJB...90...16C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJB...90...16C"><span>Molecular dynamics simulation of the plastic behavior anisotropy of shock-compressed monocrystal nickel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Ya-Zhou; Zhou, Liu-Cheng; He, Wei-Feng; Sun, Yu; Li, Ying-Hong; Jiao, Yang; Luo, Si-Hai</p> <p>2017-01-01</p> <p>Molecular dynamics simulations were used to study the plastic behavior of monocrystalline nickel under shock compression along the [100] and [110] orientations. The shock Hugoniot relation, local stress curve, and process of microstructure development were determined. Results showed the apparent anisotropic behavior of monocrystalline nickel under shock compression. The separation of elastic and plastic waves was also obvious. Plastic deformation was more severely altered along the [110] direction than the [100] direction. The main microstructure phase transformed from face-centered cubic to body-centered cubic and generated a large-scale and low-density stacking fault along the family of { 111 } crystal planes under shock compression along the [100] direction. By contrast, the main mechanism of plastic deformation in the [110] direction was the nucleation of the hexagonal, close-packed phase, which generated a high density of stacking faults along the [110] and [1̅10] directions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23432260','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23432260"><span>X-ray scattering measurements of strong ion-ion correlations in shock-compressed aluminum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ma, T; Döppner, T; Falcone, R W; Fletcher, L; Fortmann, C; Gericke, D O; Landen, O L; Lee, H J; Pak, A; Vorberger, J; Wünsch, K; Glenzer, S H</p> <p>2013-02-08</p> <p>The strong ion-ion correlation peak characteristic of warm dense matter (WDM) is observed for the first time using simultaneous angularly, temporally, and spectrally resolved x-ray scattering measurements in laser-driven shock-compressed aluminum. Laser-produced molybdenum x-ray line emission at an energy of 17.9 keV is employed to probe aluminum compressed to a density of ρ>8 g/cm(3). We observe a well pronounced peak in the static structure factor at a wave number of k=4.0 Å(-1). The measurements of the magnitude and position of this correlation peak are precise enough to test different theoretical models for the ion structure and show that only models taking the complex interaction in WDM into account agree with the data. This also demonstrates a new highly accurate diagnostic to directly measure the state of compression of warm dense matter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1339492','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1339492"><span>Wave transmission through silicone foam pads in a compression Kolsky bar apparatus. Comparisons between simulations and measurements.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Corona, Edmundo; Song, Bo</p> <p></p> <p>This memo concerns the transmission of mechanical signals through silicone foam pads in a compression Kolsky bar set-up. The results of numerical simulations for four levels of pad pre-compression and two striker velocities were compared directly to test measurements to assess the delity of the simulations. The nite element model simulated the Kolsky tests in their entirety and used the hyperelastic `hyperfoam' model for the silicone foam pads. Calibration of the hyperfoam model was deduced from quasi-static compression data. It was necessary, however, to augment the material model by adding sti ness proportional damping in order to generate results thatmore » resembled the experimental measurements. Based on the results presented here, it is important to account for the dynamic behavior of polymeric foams in numerical simulations that involve high loading rates.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050192611','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050192611"><span>Ultrasonic Waves in Water Visualized With Schlieren Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Juergens, Jeffrey R.</p> <p>2000-01-01</p> <p>The Acoustic Liquid Manipulation project at the NASA Glenn Research Center at Lewis Field is working with high-intensity ultrasound waves to produce acoustic radiation pressure and acoustic streaming. These effects can be used to propel liquid flows to manipulate floating objects and liquid surfaces. Interest in acoustic liquid manipulation has been shown in acoustically enhanced circuit board electroplating, microelectromechanical systems (MEMS), and microgravity space experiments. The current areas of work on this project include phased-array ultrasonic beam steering, acoustic intensity measurements, and schlieren imaging of the ultrasonic waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1240056-radiative-shocks-produced-from-spherical-cryogenic-implosions-national-ignition-facility','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1240056-radiative-shocks-produced-from-spherical-cryogenic-implosions-national-ignition-facility"><span>Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Pak, A.; Divol, L.; Gregori, G.; ...</p> <p>2013-05-20</p> <p>Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ~20 μm and ~ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ~40 μm and a densitymore » of >500 g/cm 3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. Furthermore, the shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22251975-magnetosonic-waves-interactions-spin-degenerate-quantum-plasma','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22251975-magnetosonic-waves-interactions-spin-degenerate-quantum-plasma"><span>Magnetosonic waves interactions in a spin-1/2 degenerate quantum plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, Sheng-Chang, E-mail: lsc1128lsc@126.com; Han, Jiu-Ning</p> <p>2014-03-15</p> <p>We investigate the magnetosonic waves and their interactions in a spin-1/2 degenerate quantum plasma. With the help of the extended Poincaré-Lighthill-Kuo perturbation method, we derive two Korteweg-de Vries-Burgers equations to describe the magnetosonic waves. The parameter region where exists magnetosonic waves and the phase diagram of the compressive and rarefactive solitary waves with different plasma parameters are shown. We further explore the effects of quantum diffraction, quantum statistics, and electron spin magnetization on the head-on collisions of magnetosonic solitary waves. We obtain the collision-induced phase shifts (trajectory changes) analytically. Both for the compressive and rarefactive solitary waves, it is foundmore » that the collisions only lead to negative phase shifts. Our present study should be useful to understand the collective phenomena related to the magnetosonic wave collisions in degenerate plasmas like those in the outer shell of massive white dwarfs as well as to the potential applications of plasmas.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150001233','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150001233"><span>Characterization of the NASA Langley Arc Heated Scramjet Test Facility Using NO PLIF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kidd, F. Gray, III; Narayanaswamy, Venkateswaran; Danehy, Paul M.; Inman, Jennifer A.; Bathel, Brett F.; Cabell, Karen F.; Hass, Neal E.; Capriotti, Diego P.; Drozda, Tomasz G.; Johansen, Criag T.</p> <p>2014-01-01</p> <p>The nitric oxide planar laser-induced fluorescence (NO PLIF) imaging was used to characterize the air flow of the NASA Langley Arc Heated Scramjet Test Facility (AHSTF) configured with a Mach 6 nozzle. The arc raises the enthalpy of the test gas in AHSTF, producing nitric oxide. Nitric oxide persists as the temperature drops through the nozzle into the test section. NO PLIF was used to qualitatively visualize the flowfield at different experimental conditions, measure the temperature of the gas flow exiting the facility nozzle, and visualize the wave structure downstream of the nozzle at different operating conditions. Uniformity and repeatability of the nozzle flow were assessed. Expansion and compression waves on the free-jet shear layer as the nozzle flow expands into the test section were visualized. The main purpose of these experiments was to assess the uniformity of the NO in the freestream gas for planned experiments, in which NO PLIF will be used for qualitative fuel-mole-fraction sensitive imaging. The shot-to-shot fluctuations in the PLIF signal, caused by variations in the overall laser intensity as well as NO concentration and temperature variations in the flow was 20-25% of the mean signal, as determined by taking the standard deviation of a set of images obtained at constant conditions and dividing by the mean. The fluctuations within individual images, caused by laser sheet spatial variations as well as NO concentration and temperature variations in the flow, were about 28% of the mean in images, determined by taking standard deviation within individual images, dividing by the mean in the same image and averaged over the set of images. Applying an averaged laser sheet intensity correction reduced the within-image intensity fluctuations to about 10% suggesting that the NO concentration is uniform to within 10%. There was no significant difference in flow uniformity between the low and high enthalpy settings. While not strictly quantitative, the temperature maps show qualitative agreement with the computations of the flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1959/0108/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1959/0108/report.pdf"><span>Impact mechanics at Meteor Crater, Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shoemaker, Eugene Merle</p> <p>1959-01-01</p> <p>Meteor Crator is a bowl-shaped depression encompassed by a rim composed chiefly of debris stacked in layers of different composition. Original bedrock stratigraphy is preserved, inverted, in the debris. The debris rests on older disturbed strata, which are turned up at moderate to steep angles in the wall of the crater and are locally overturned near the contact with the debris. These features of Meteor Crater correspond closely to those of a crater produced by nuclear explosion where depth of burial of the device was about 1/5 the diameter of the resultant crater. Studies of craters formed by detonation of nuclear devices show that structures of the crater rims are sensitive to the depth of explosion scaled to the yield of the device. The structure of Meteor Crater is such as would be produced by a very strong shock originating about at the level of the present crater floor, 400 feet below the original surface. At supersonic to hypersonic velocity an impacting meteorite penetrates the ground by a complex mechanism that includes compression of the target rocks and the meteorite by shock as well as hydrodynamic flow of the compressed material under high pressure and temperature. The depth of penetration of the meteorite, before it loses its integrity as a single body, is a function primarily of the velocity and shape of the meteorite and the densities and equations of state of the meteorite and target. The intensely compressed material then becomes dispersed in a large volume of breccia formed in the expanding shock wave. An impact velocity of about 15 km/sec is consonant with the geology of Meteor Crater in light of the experimental equation of state of iron and inferred compressibility of the target rocks. The kinetic energy of the meteorite is estimated by scaling to have been from 1.4 to 1.7 megatons TNT equivalent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......207D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......207D"><span>Inelastic X-ray Scattering Measurements of Ionization in Warm, Dense Matter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davis, Paul F.</p> <p></p> <p>In this work we demonstrate spectrally resolved x-ray scattering from electron-plasma waves in shock-compressed deuterium and proton-heated matter. Because the spectral signature of inelastic x-ray scattering is strongly dependent on the free electron density of the system, it is used to infer ionization in dynamically heated samples. Using 2-6 ns, 500 J laser pulses from LLNL's Janus laser, we shocked liquid deuterium to pressures approaching 50 GPa, reaching compressions of 4 times liquid density. A second laser produced intense 2 keV x-rays. By collecting and spectrally dispersing forward scattered photons at 45°, the onset of ionization was detected at compressions of about 3 times in the form of plasmon oscillations. Backscattered x-rays bolstered this observation by measuring the free electron distribution through Compton scattering. Comparison with simulations shows very close agreement between the pressure dependence of ionization and molecular dissociation in dynamically compressed deuterium. In a second set of experiments, a 10 ps, 200 J Titan laser pulse was split into two beams. One created a stream of MeV protons to heat samples of boron and boron-nitride and the other pumped 4.5 keV K-alpha radiation in a titanium foil to probe the hot target. We observed scattered x-rays 300 ps after heating, noting a strong difference in average ionization between the two target materials at temperatures of 16 eV and very similar mass densities. Comparison with electron structure calculations suggests that this difference is due to a persistence of long-range ion structure in BN resulting in high-temperature band structure. These results underscore the importance of understanding the complex electron structure of materials even at electron-volt temperatures and gigapascal pressures. Our results provide new data to guide the theoretical modeling of warm, dense matter important to understanding giant planets and inertial fusion targets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR34B..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR34B..02D"><span>Ultrahigh Pressure Dynamic Compression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duffy, T. S.</p> <p>2017-12-01</p> <p>Laser-based dynamic compression provides a new opportunity to study the lattice structure and other properties of geological materials to ultrahigh pressure conditions ranging from 100 - 1000 GPa (1 TPa) and beyond. Such studies have fundamental applications to understanding the Earth's core as well as the interior structure of super-Earths and giant planets. This talk will review recent dynamic compression experiments using high-powered lasers on materials including Fe-Si, MgO, and SiC. Experiments were conducted at the Omega laser (University of Rochester) and the Linac Coherent Light Source (LCLS, Stanford). At Omega, laser drives as large as 2 kJ are applied over 10 ns to samples that are 50 microns thick. At peak compression, the sample is probed with quasi-monochromatic X-rays from a laser-plasma source and diffraction is recorded on image plates. At LCLS, shock waves are driven into the sample using a 40-J laser with a 10-ns pulse. The sample is probed with X-rays form the LCLS free electron laser providing 1012 photons in a monochromatic pulse near 10 keV energy. Diffraction is recorded using pixel array detectors. By varying the delay between the laser and the x-ray beam, the sample can be probed at various times relative to the shock wave transiting the sample. By controlling the shape and duration of the incident laser pulse, either shock or ramp (shockless) loading can be produced. Ramp compression produces less heating than shock compression, allowing samples to be probed to ultrahigh pressures without melting. Results for iron alloys, oxides, and carbides provide new constraints on equations of state and phase transitions that are relevant to the interior structure of large, extrasolar terrestrial-type planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667529-chromospheric-coronal-wave-generation-magnetic-flux-sheath','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667529-chromospheric-coronal-wave-generation-magnetic-flux-sheath"><span>CHROMOSPHERIC AND CORONAL WAVE GENERATION IN A MAGNETIC FLUX SHEATH</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kato, Yoshiaki; Hansteen, Viggo; Gudiksen, Boris</p> <p>2016-08-10</p> <p>Using radiation magnetohydrodynamic simulations of the solar atmospheric layers from the upper convection zone to the lower corona, we investigate the self-consistent excitation of slow magneto-acoustic body waves (slow modes) in a magnetic flux concentration. We find that the convective downdrafts in the close surroundings of a two-dimensional flux slab “pump” the plasma inside it in the downward direction. This action produces a downflow inside the flux slab, which encompasses ever higher layers, causing an upwardly propagating rarefaction wave. The slow mode, excited by the adiabatic compression of the downflow near the optical surface, travels along the magnetic field inmore » the upward direction at the tube speed. It develops into a shock wave at chromospheric heights, where it dissipates, lifts the transition region, and produces an offspring in the form of a compressive wave that propagates further into the corona. In the wake of downflows and propagating shock waves, the atmosphere inside the flux slab in the chromosphere and higher tends to oscillate with a period of ν ≈ 4 mHz. We conclude that this process of “magnetic pumping” is a most plausible mechanism for the direct generation of longitudinal chromospheric and coronal compressive waves within magnetic flux concentrations, and it may provide an important heat source in the chromosphere. It may also be responsible for certain types of dynamic fibrils.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9327E..05N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9327E..05N"><span>Amplitude-modulated ultrasound radiation force combined with phase-sensitive optical coherence tomography for shear wave elastography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew</p> <p>2015-03-01</p> <p>Tissue stiffness can be measured from the propagation speed of shear waves. Acoustic radiation force (ARF) can generate shear waves by focusing ultrasound in tissue for ~100 μs. Safety considerations and electronics abilities limit ultrasound pressures. We previously presented shear wave elastography combining ARF and phase-sensitive optical coherence tomography (PhS-OCT) [1]. Here, we use amplitude-modulated ARF to enhance shear wave signal-to-noise ratio (SNR) at low pressures. Experiments were performed on tissue-mimicking phantoms. ARF was applied using a single-element transducer, driven by a 7.5 MHz, 3-ms, sine wave modulated in amplitude by a linear-swept frequency (1 to 7 kHz). Pressures between 1 to 3 MPa were tested. Displacements were tracked using PhS-OCT and numerically compressed using pulse compression methods detailed in previous work [2]. SNR was compared to that of 200-μs bursts. Stiffness maps were reconstructed using time-of-flight computations. 200-μs bursts give barely detectable displacements at 1 MPa (3.7 dB SNR). Pulse compression gives 36.2 dB at 1.5 MPa. In all cases with detectable displacements, shear wave speeds were determined in 5%-gelatin and 10%-gelatin phantoms and compared to literature values. Applicability to ocular tissues (cornea, intraocular lens) is under investigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=air&id=EJ1024887','ERIC'); return false;" href="https://eric.ed.gov/?q=air&id=EJ1024887"><span>How to Use a Candle to Study Sound Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Carvalho, P. Simeão; Briosa, E.; Rodrigues, M.; Pereira, C.; Ataíde, M.</p> <p>2013-01-01</p> <p>It is well known that sound waves in air are longitudinal waves. Although teachers use analogies such as compressing horizontal springs to demonstrate what longitudinal waves look like, students still present some difficulty in understanding that (1) sound waves correspond to oscillations of air particles, and (2) there is no "air flow"…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22551120-frequency-modulation-compression-optical-pulses-optical-fibre-travelling-refractive-index-wave','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22551120-frequency-modulation-compression-optical-pulses-optical-fibre-travelling-refractive-index-wave"><span>Frequency modulation and compression of optical pulses in an optical fibre with a travelling refractive-index wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zolotovskii, I O; Lapin, V A; Sementsov, D I</p> <p>2016-01-31</p> <p>We have studied the conditions for spectral broadening, frequency modulation and compression (both temporal and spectral) of Gaussian pulses propagating in a fibre with a travelling refractive-index wave. Analytical expressions have been derived for the dependences of pulse duration, chirp and spectral width on the distance travelled through the fibre, parameters of the fibre and radiation launched into it. Based on the numerical analysis we have studied the behaviour of these characteristics by changing the coefficient of the refractive-index modulation and other parameters of the travelling refractive-index wave. (nonlinear optical phenomena)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JDE...264.6933L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JDE...264.6933L"><span>Diffusive wave in the low Mach limit for non-viscous and heat-conductive gas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Yechi</p> <p>2018-06-01</p> <p>The low Mach number limit for one-dimensional non-isentropic compressible Navier-Stokes system without viscosity is investigated, where the density and temperature have different asymptotic states at far fields. It is proved that the solution of the system converges to a nonlinear diffusion wave globally in time as Mach number goes to zero. It is remarked that the velocity of diffusion wave is proportional with the variation of temperature. Furthermore, it is shown that the solution of compressible Navier-Stokes system also has the same phenomenon when Mach number is suitably small.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004PhDT.........6X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004PhDT.........6X"><span>Interaction of grid generated turbulence with expansion waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xanthos, Savvas Steliou</p> <p>2004-11-01</p> <p>The interaction of traveling expansion waves with grid-generated turbulence was investigated in a large-scale shock tube research facility. The incident shock and the induced flow behind it passed through a rectangular grid, which generated a nearly homogeneous and nearly isotropic turbulent flow. As the shock wave exited the open end of the shock tube, a system of expansion waves was generated which traveled upstream and interacted with the grid-generated turbulence. The Mach number of the incoming flows investigated was about 0.3 hence interactions are considered as interactions with an almost incompressible flow. Mild interactions with expansion waves, which generated expansion ratios of the order of 1.8, were achieved in the present investigations. In that respect the compressibility effects started to become important during the interaction. A custom designed vorticity probe was used to measure for the first time the rate-of-strain, the rate-of-rotation and the velocity-gradient tensors in several of the present flows. Custom made x-hotwire probes were initially used to measure the flow quantities simultaneously at different locations inside the flow field. Although the strength of the generated expansion waves was mild, S = 6U6x EW = 50 to 100 s-1, the effect on damping fluctuations of turbulence was clear. Vorticity fluctuations were reduced dramatically more than velocity or pressure fluctuations. Attenuation of longitudinal velocity fluctuations has been observed in all experiments. It appears that the attenuation increases in interactions with higher Reynolds number. The data of velocity fluctuations in the lateral directions show no consistent behavior change or some minor attenuation through the interaction. The present results clearly show that in most of the cases, attenuation occurs at large xM distances where length scales of the incoming flow are high and turbulence intensities are low. Thus large in size eddies with low velocity fluctuations are affected the most by the interaction with the expansion waves. Spectral analysis indicated that spectral energy is shifted after the interaction to lower wave numbers suggesting that the typical length scales of turbulence are increased after the interaction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvA..92a3833P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvA..92a3833P"><span>Coherence and dimensionality of intense spatiospectral twin beams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peřina, Jan</p> <p>2015-07-01</p> <p>Spatiospectral properties of twin beams at their transition from low to high intensities are analyzed in parametric and paraxial approximations using decomposition into paired spatial and spectral modes. Intensity auto- and cross-correlation functions are determined and compared in the spectral and temporal domains as well as the transverse wave-vector and crystal output planes. Whereas the spectral, temporal, and transverse wave-vector coherence increases with the increasing pump intensity, coherence in the crystal output plane is almost independent of the pump intensity owing to the mode structure in this plane. The corresponding auto- and cross-correlation functions approach each other for larger pump intensities. The entanglement dimensionality of a twin beam is determined with a comparison of several approaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1438787','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1438787"><span>Flash Kα radiography of laser-driven solid sphere compression for fast ignition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sawada, H.; Lee, S.; Shiroto, T.</p> <p>2016-06-20</p> <p>Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm 2. Lastly, the temporalmore » evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22590833-flash-radiography-laser-driven-solid-sphere-compression-fast-ignition','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22590833-flash-radiography-laser-driven-solid-sphere-compression-fast-ignition"><span>Flash Kα radiography of laser-driven solid sphere compression for fast ignition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sawada, H.; Lee, S.; Nagatomo, H.</p> <p>2016-06-20</p> <p>Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm{sup 2}. The temporal evolution of the experimental andmore » simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1939b0027V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1939b0027V"><span>Numerical simulation of blast wave propagation in vicinity of standalone prism on flat plate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Valger, Svetlana; Fedorova, Natalya; Fedorov, Alexander</p> <p>2018-03-01</p> <p>In the paper, numerical simulation of shock wave propagation in the vicinity of a standalone prism and a prism with a cavity in front of it was carried out. The modeling was based on the solution of 3D Euler equations and Fluent software was used as a main computational tool. The algorithm for local dynamic mesh adaptation to high gradients of pressure was applied. The initial stage of the explosion of condensed explosive was described with the help of "Compressed balloon method". The research allowed describing the characteristic stages of the blast in a semi-closed space, the structure of secondary shock waves and their interaction with obstacles. The numerical approach in Fluent based on combining inviscid gas dynamics methods and "Compressed balloon method" was compared with the method which had been used by the authors earlier with the help of AUTODYN and which is based on the use of the hydrodynamic model of a material to describe state of detonation products. For the problem of shock wave propagation in the vicinity of standalone prism the comparison of the simulation results obtained using both the methods with the experimental data was performed on the dependence of static pressure and effective momentum on time for the characteristic points located on prism walls.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011EL.....9668007M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011EL.....9668007M"><span>Mesoscopic simulations of shock-to-detonation transition in reactive liquid high explosive</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maillet, J. B.; Bourasseau, E.; Desbiens, N.; Vallverdu, G.; Stoltz, G.</p> <p>2011-12-01</p> <p>An extension of the model described in a previous work (see Maillet J. B. et al., EPL, 78 (2007) 68001) based on Dissipative Particle Dynamics is presented and applied to a liquid high explosive (HE), with thermodynamic properties mimicking those of liquid nitromethane. Large scale nonequilibrium simulations of reacting liquid HE with model kinetic under sustained shock conditions allow a better understanding of the shock-to-detonation transition in homogeneous explosives. Moreover, the propagation of the reactive wave appears discontinuous since ignition points in the shocked material can be activated by the compressive waves emitted from the onset of chemical reactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010APS..DPPTI3001T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010APS..DPPTI3001T"><span>Integrated Fast-Ignition Core-Heating Experiments on OMEGA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Theobald, W.</p> <p>2010-11-01</p> <p>Integrated fast-ignition core-heating experiments are carried out at the Omega Laser Facility. Plastic (CD) shell targets with a re-entrant gold cone are compressed with a ˜20-kJ, UV low-adiabat laser pulse. A 1-kJ, 10-ps pulse from OMEGA EP generates fast electrons in the hollow cone that are transported into the compressed core. The experiments demonstrate a significant enhancement of the neutron yield. The neutron-yield enhancement caused by the high-intensity pulse is 1.5 x 10^7, which is more than 150% of the implosion yield. For the first time, measurements of the breakout time of the compression-induced shock wave through the cone were performed for the same targets as used in the integrated experiments. The shock breakout was measured to be ˜100 ps after peak neutron production. The experiments demonstrate that the cone tip is intact at the time when the short-pulse laser interacts with the cone. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement Nos. DE-FC52-08NA28302, DE-FC02-04ER54789, and DE-FG02-05ER54839. [4pt] In collaboration with A. A. Solodov, K. S. Anderson, R. Betti (LLE/FSC); C. Stoeckl, T.R. Boehly, R.S. Craxton, J.A. Delettrez, V.Yu. Glebov, J.P. Knauer, F.J. Marshall, K.L. Marshall, D.D. Meyerhofer,^ P.M. Nilson, T.C. Sangster, W. Seka (LLE); F.N. Beg (UCSD), H. Habara (ILE), P.K. Patel (LLNL), R.B. Stephens (GA); J.A. Frenje, N. Sinenian (PSFC/MIT).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27669244','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27669244"><span>An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Han, Lingyi; Peng, Yuexing; Wang, Peng; Li, Yonghui</p> <p>2016-09-22</p> <p>The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave) frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE) with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC) and estimation of signal parameters via rotation invariant technique (ESPRIT) cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE) algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS) method called improved turbo compressed channel sensing (ITCCS). It iteratively updates the soft information between the linear minimum mean square error (LMMSE) estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle detection resolution greatly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......212P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......212P"><span>Spatial Distribution of Amorphization Intensity in Boron Carbide During Rate-Dependent Indentation and Impact Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parsard, Gregory G.</p> <p></p> <p>Boron carbide is a lightweight ceramic commonly used in applications requiring high hardness. At sufficiently high stresses, the material experiences a localized phase transformation (amorphization) which seemingly weakens its structure. Raman spectroscopy is used to distinguish these transformed regions from crystalline material based on the evolution of new peaks in collected Raman spectra. Vickers indentations of various loads were created at quasistatic and dynamic strain rates to trigger amorphization. The resulting imprints and subsurface regions were scanned with Raman spectroscopy to map amorphization intensity at several depths to generate three-dimensional representations of the amorphized zones, which were analyzed to determine the influence of load and strain rate upon amorphized zone characteristics. The square of amorphized zone depth beneath Vickers indentations increases linearly with load and shows little to no strain rate dependence. Sudden decreases in amorphization intensity at certain depths coincided with the presence of lateral cracks, suggesting that lateral cracks may lead to a loss of amorphized material during mechanical polishing. Experimental results were compared against finite element simulations to estimate critical values of stress and strain associated with amorphization. Raman spectra were also analyzed to determine the indentation-induced residual compressive pressure in crystalline boron carbide. In unstressed crystalline boron carbide, a peak exists near 1088 cm-1 which shifts to higher wavenumbers with the application of compressive pressure. The change in position of this crystalline peak was tracked across surfaces at various depths beneath the indentations and then converted into pressure using the piezospectroscopic coefficient of boron carbide. Residual compressive pressures on the order of gigapascals were found near the indentations, with stress relaxation near regions affected by radial cracks, spall, and graphitic inclusions. These measured residual compressive pressures were consistently higher than those predicted by finite element simulations at various loads, suggesting that amorphization, which was not accounted for by the simulations, may increase compressive residual stress in the crystalline material. Amorphization may cause affected regions to expand relative to their formerly crystalline state and exerting radial compressive forces upon the surrounding crystalline regions and circumferential tension along its boundary, thus promoting crack propagation within the amorphized region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27867797','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27867797"><span>Source of the dayside cusp aurora.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mende, S B; Frey, H U; Angelopoulos, V</p> <p>2016-08-01</p> <p>Monochromatic all-sky imagers at South Pole and other Antarctic stations of the Automatic Geophysical Observatory chain recorded the aurora in the region where the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites crossed the dayside magnetopause. In several cases the magnetic field lines threading the satellites when mapped to the atmosphere were inside the imagers' field of view. From the THEMIS magnetic field and the plasma density measurements, we were able to locate the position of the magnetopause crossings and map it to the ionosphere using the Tsyganenko-96 field model. Field line mapping is reasonably accurate on the dayside subsolar region where the field is strong, almost dipolar even though compressed. From these coordinated observations, we were able to prove that the dayside cusp aurora of high 630 nm brightness is on open field lines, and it is therefore direct precipitation from the magnetosheath. The cusp aurora contained significant highly structured N 2 + 427.8 nm emission. The THEMIS measurements of the magnetosheath particle energy and density taken just outside the magnetopause compared to the intensity of the structured N 2 + 427.8 nm emissions showed that the precipitating magnetosheath particles had to be accelerated. The most likely electron acceleration mechanism is by dispersive Alfvén waves propagating along the field line. Wave-accelerated suprathermal electrons were seen by FAST and DMSP. The 427.8 nm wavelength channel also shows the presence of a lower latitude hard-electron precipitation zone originating inside the magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993uill.rept.....C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993uill.rept.....C"><span>Laser-shock damage of iron-based materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chu, Jinn P.; Banas, Grzegorz; Lawrence, Frederick V.; Rigsbee, James M.; Elsayed-Ali, Hani E.</p> <p>1993-05-01</p> <p>The effects of laser shock processing on the microstructure and mechanical properties of the manganese (1 percent C and 14 percent Mn) steels have been low carbon (0.04 wt. percent C) and Hadfield studied. Laser shock processing was performed with a 1.054 micrometers wavelength Nd-phosphate laser operating in a pulse mode (600 ps pulse length and up to 200 J energy) with power densities above 10 to the 11th power W/cm2. Shock waves were generated by volume expansion of the plasma formed when the material was laser irradiated. Maximum shock wave intensities were obtained using an energy-absorbing black paint coating without a plasma-confining overlay. Maximum modification of compressive residual stresses were achieved when laser shock processing induced deformation occurred without melting. Mechanical properties were improved through modifying the microstructure by laser shock processing. High density arrays of dislocations (greater than 10 to the 11th power/cm2) were generated in low carbon steel by high strain-rate deformation of laser shock processing, resulting in surface hardness increases of 30 to 80 percent. In austenitic Hadfield steel, laser shock processing caused extensive formation of Epsilon-hcp martensite (35 vol. percent), producing increases of 50 to 130 percent in surface hardness. The laser shock processing strengthening effect in Hadfield steel was attributed to the combined effects of the partial dislocation/stacking fault arrays and the grain refinement due to presence of the Epsilon-hcp martensite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26341849','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26341849"><span>Intense cavitation at extreme static pressure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pishchalnikov, Yuri A; Gutierrez, Joel; Dunbar, Wylene W; Philpott, Richard W</p> <p>2016-02-01</p> <p>Cavitation is usually performed at hydrostatic pressures at or near 0.1 MPa. Higher static pressure produces more intense cavitation, but requires an apparatus that can build high amplitude acoustic waves with rarefactions exceeding the cavitation threshold. The absence of such an apparatus has prevented the achievement of intense acoustic cavitation, hindering research and the development of new applications. Here we describe a new high-pressure spherical resonator system, as well as experimental and modeling results in water and liquid metal (gallium), for cavitation at hydrostatic pressures between 10 and 150 MPa. Our computational data, using HYADES plasma hydrodynamics code, show the formation of dense plasma that, under these conditions, reaches peak pressures of about three to four orders of magnitude greater than the hydrostatic pressure in the bulk liquid and temperatures in the range of 100,000 K. Passive cavitation detection (PCD) data validate both a linear increase in shock wave amplitude and the production of highly intense concentrations of mechanical energy in the collapsing bubbles. High-speed camera observations show the formation of bubble clusters from single bubbles. The increased shock wave amplitude produced by bubble clusters, measured using PCD and fiber optic probe hydrophone, was consistent with current understanding that bubble clusters enable amplification of energy produced. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDH21009L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDH21009L"><span>Sound-turbulence interaction in transonic boundary layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lelostec, Ludovic; Scalo, Carlo; Lele, Sanjiva</p> <p>2014-11-01</p> <p>Acoustic wave scattering in a transonic boundary layer is investigated through a novel approach. Instead of simulating directly the interaction of an incoming oblique acoustic wave with a turbulent boundary layer, suitable Dirichlet conditions are imposed at the wall to reproduce only the reflected wave resulting from the interaction of the incident wave with the boundary layer. The method is first validated using the laminar boundary layer profiles in a parallel flow approximation. For this scattering problem an exact inviscid solution can be found in the frequency domain which requires numerical solution of an ODE. The Dirichlet conditions are imposed in a high-fidelity unstructured compressible flow solver for Large Eddy Simulation (LES), CharLESx. The acoustic field of the reflected wave is then solved and the interaction between the boundary layer and sound scattering can be studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22408129-ionospheric-very-low-frequency-transmitter','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22408129-ionospheric-very-low-frequency-transmitter"><span>Ionospheric very low frequency transmitter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kuo, Spencer P.</p> <p>2015-02-15</p> <p>The theme of this paper is to establish a reliable ionospheric very low frequency (VLF) transmitter, which is also broad band. Two approaches are studied that generate VLF waves in the ionosphere. The first, classic approach employs a ground-based HF heater to directly modulate the high latitude ionospheric, or auroral electrojet. In the classic approach, the intensity-modulated HF heater induces an alternating current in the electrojet, which serves as a virtual antenna to transmit VLF waves. The spatial and temporal variations of the electrojet impact the reliability of the classic approach. The second, beat-wave approach also employs a ground-based HFmore » heater; however, in this approach, the heater operates in a continuous wave mode at two HF frequencies separated by the desired VLF frequency. Theories for both approaches are formulated, calculations performed with numerical model simulations, and the calculations are compared to experimental results. Theory for the classic approach shows that an HF heater wave, intensity-modulated at VLF, modulates the electron temperature dependent electrical conductivity of the ionospheric electrojet, which, in turn, induces an ac electrojet current. Thus, the electrojet becomes a virtual VLF antenna. The numerical results show that the radiation intensity of the modulated electrojet decreases with an increase in VLF radiation frequency. Theory for the beat wave approach shows that the VLF radiation intensity depends upon the HF heater intensity rather than the electrojet strength, and yet this approach can also modulate the electrojet when present. HF heater experiments were conducted for both the intensity modulated and beat wave approaches. VLF radiations were generated and the experimental results confirm the numerical simulations. Theory and experimental results both show that in the absence of the electrojet, VLF radiation from the F-region is generated via the beat wave approach. Additionally, the beat wave approach generates VLF radiations over a larger frequency band than by the modulated electrojet.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004SMaS...13..957S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004SMaS...13..957S"><span>An intelligent signal processing and pattern recognition technique for defect identification using an active sensor network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, Zhongqing; Ye, Lin</p> <p>2004-08-01</p> <p>The practical utilization of elastic waves, e.g. Rayleigh-Lamb waves, in high-performance structural health monitoring techniques is somewhat impeded due to the complicated wave dispersion phenomena, the existence of multiple wave modes, the high susceptibility to diverse interferences, the bulky sampled data and the difficulty in signal interpretation. An intelligent signal processing and pattern recognition (ISPPR) approach using the wavelet transform and artificial neural network algorithms was developed; this was actualized in a signal processing package (SPP). The ISPPR technique comprehensively functions as signal filtration, data compression, characteristic extraction, information mapping and pattern recognition, capable of extracting essential yet concise features from acquired raw wave signals and further assisting in structural health evaluation. For validation, the SPP was applied to the prediction of crack growth in an alloy structural beam and construction of a damage parameter database for defect identification in CF/EP composite structures. It was clearly apparent that the elastic wave propagation-based damage assessment could be dramatically streamlined by introduction of the ISPPR technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21513136-relativistic-tennis-photons-frequency-up-shifting-light-intensification-ion-acceleration-flying-mirrors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21513136-relativistic-tennis-photons-frequency-up-shifting-light-intensification-ion-acceleration-flying-mirrors"><span>Relativistic Tennis with Photons: Frequency Up-Shifting, Light Intensification and Ion Acceleration with Flying Mirrors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.</p> <p>2011-01-04</p> <p>We formulate the Flying Mirror Concept for relativistic interaction of ultra-intense electromagnetic waves with plasmas, present its theoretical description and the results of computer simulations and laboratory experiments. In collisionless plasmas, the relativistic flying mirrors are thin and dense electron or electron-ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media and in nonlinear vacuum they are the ionization fronts and the refraction index modulations induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency changemore » due to the double Doppler effect. In the co-propagating configuration, in the radiation pressure dominant regime, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. If the relativistic mirror performs an oscillatory motion as in the case of the electron motion at the plasma-vacuum interface, the reflected light spectrum is enriched with high order harmonics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3044416','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3044416"><span>Kikuchi ultrafast nanodiffraction in four-dimensional electron microscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yurtsever, Aycan; Zewail, Ahmed H.</p> <p>2011-01-01</p> <p>Coherent atomic motions in materials can be revealed using time-resolved X-ray and electron Bragg diffraction. Because of the size of the beam used, typically on the micron scale, the detection of nanoscale propagating waves in extended structures hitherto has not been reported. For elastic waves of complex motions, Bragg intensities contain all polarizations and they are not straightforward to disentangle. Here, we introduce Kikuchi diffraction dynamics, using convergent-beam geometry in an ultrafast electron microscope, to selectively probe propagating transverse elastic waves with nanoscale resolution. It is shown that Kikuchi band shifts, which are sensitive only to the tilting of atomic planes, reveal the resonance oscillations, unit cell angular amplitudes, and the polarization directions. For silicon, the observed wave packet temporal envelope (resonance frequency of 33 GHz), the out-of-phase temporal behavior of Kikuchi’s edges, and the magnitude of angular amplitude (0.3 mrad) and polarization elucidate the nature of the motion: one that preserves the mass density (i.e., no compression or expansion) but leads to sliding of planes in the antisymmetric shear eigenmode of the elastic waveguide. As such, the method of Kikuchi diffraction dynamics, which is unique to electron imaging, can be used to characterize the atomic motions of propagating waves and their interactions with interfaces, defects, and grain boundaries at the nanoscale. PMID:21245348</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867667','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867667"><span>Fluid driven torsional dipole seismic source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Hardee, Harry C.</p> <p>1991-01-01</p> <p>A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12484481','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12484481"><span>Modeling ultrasonic compression wave absorption during the seeded crystallization of copper (II) sulphate pentahydrate from aqueous solution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marshall, Thomas; Challis, Richard E; Holmes, Andrew K; Tebbutt, John S</p> <p>2002-11-01</p> <p>Ultrasonic compression wave absorption is investigated as a means to monitor the seeded crystallization of copper (II) sulphate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution, and the changing nature of the continuous phase. The Allegra-Hawley scattering formulation is used to simulate ultrasonic absorption as crystallization proceeds. Experiments confirm that simulated attenuation is in agreement with measured results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29405762','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29405762"><span>The Distinction of Hot Herbal Compress, Hot Compress, and Topical Diclofenac as Myofascial Pain Syndrome Treatment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boonruab, Jurairat; Nimpitakpong, Netraya; Damjuti, Watchara</p> <p>2018-01-01</p> <p>This randomized controlled trial aimed to investigate the distinctness after treatment among hot herbal compress, hot compress, and topical diclofenac. The registrants were equally divided into groups and received the different treatments including hot herbal compress, hot compress, and topical diclofenac group, which served as the control group. After treatment courses, Visual Analog Scale and 36-Item Short Form Health survey were, respectively, used to establish the level of pain intensity and quality of life. In addition, cervical range of motion and pressure pain threshold were also examined to identify the motional effects. All treatments showed significantly decreased level of pain intensity and increased cervical range of motion, while the intervention groups exhibited extraordinary capability compared with the topical diclofenac group in pressure pain threshold and quality of life. In summary, hot herbal compress holds promise to be an efficacious treatment parallel to hot compress and topical diclofenac.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PlST...19l5303J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PlST...19l5303J"><span>Altitude and intensity characteristics of parametric instability excited by an HF pump wave near the fifth electron harmonic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jun, WU; Jian, WU; M, T. RIETVELD; I, HAGGSTROM; Haisheng, ZHAO; Zhengwen, XU</p> <p>2017-12-01</p> <p>An ionospheric heating experiment involving an O mode pump wave was carried out at European Incoherent Scatter Scientific Association site in Tromsø. The observation of the ultra high frequency radar illustrates the systematic variations of the enhanced ion line and plasma line in altitude and intensity as a function of the pump frequency. The analysis shows that those altitude variations are due to the thermal effect, and the intensity variations of the enhanced ion line are dependent on whether or not the enhanced ion acoustic wave satisfy the Bragg condition of radar. Moreover, a prediction that if the enhancement in electron temperature is suppressed, those systematic variations will be absent, is given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1006842','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1006842"><span>Fast Multiscale Algorithms for Wave Propagation in Heterogeneous Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-01-07</p> <p>methods for waves’’, Nonlinear solvers for high- intensity focused ultrasound with application to cancer treatment, AIMS, Palo Alto, 2012. ``Hermite...formulation but different parametrizations. . . . . . . . . . . . 6 4 Density µ(t) at mode 0 for scattering of a plane Gaussian pulse from a sphere. On the...spatiotemporal scales. Two crucial components of the highly-efficient, general-purpose wave simulator we envision are • Reliable, low -cost methods for truncating</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25749439','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25749439"><span>Factors Affecting Bacterial Inactivation during High Hydrostatic Pressure Processing of Foods: A Review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Syed, Qamar-Abbas; Buffa, Martin; Guamis, Buenaventura; Saldo, Jordi</p> <p>2016-01-01</p> <p>Although, the High Hydrostatic Pressure (HHP) technology has been gaining gradual popularity in food industry since last two decades, intensive research is needed to explore the missing information. Bacterial inactivation in food by using HHP applications can be enhanced by getting deeper insights of the process. Some of these aspects have been already studied in detail (like pressure, time, and temperature, etc.), while some others still need to be investigated in more details (like pH, rates of compression, and decompression, etc.). Selection of process parameters is mainly dependent on type of matrix and target bacteria. This intensive review provides comprehensive information about the variety of aspects that can determine the bacterial inactivation potential of HHP process indicating the fields of future research on this subject including pH shifts of the pressure treated samples and critical limits of compression and decompression rates to accelerate the process efficacy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22365068-large-amplitude-circularly-polarized-compressive-obliquely-propagating-electromagnetic-proton-cyclotron-waves-throughout-earth-magnetosheath-low-plasma-conditions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22365068-large-amplitude-circularly-polarized-compressive-obliquely-propagating-electromagnetic-proton-cyclotron-waves-throughout-earth-magnetosheath-low-plasma-conditions"><span>Large-amplitude, circularly polarized, compressive, obliquely propagating electromagnetic proton cyclotron waves throughout the Earth's magnetosheath: low plasma β conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Remya, B.; Reddy, R. V.; Lakhina, G. S.</p> <p>2014-09-20</p> <p>During 1999 August 18, both Cassini and WIND were in the Earth's magnetosheath and detected transverse electromagnetic waves instead of the more typical mirror-mode emissions. The Cassini wave amplitudes were as large as ∼14 nT (peak to peak) in a ∼55 nT ambient magnetic field B {sub 0}. A new method of analysis is applied to study these waves. The general wave characteristics found were as follows. They were left-hand polarized and had frequencies in the spacecraft frame (f {sub scf}) below the proton cyclotron frequency (f{sub p} ). Waves that were either right-hand polarized or had f {sub scf}more » > f{sub p} are shown to be consistent with Doppler-shifted left-hand waves with frequencies in the plasma frame f{sub pf} < f{sub p} . Thus, almost all waves studied are consistent with their being electromagnetic proton cyclotron waves. Most of the waves (∼55%) were found to be propagating along B {sub 0} (θ{sub kB{sub 0}}<30{sup ∘}), as expected from theory. However, a significant fraction of the waves were found to be propagating oblique to B {sub 0}. These waves were also circularly polarized. This feature and the compressive ([B {sub max} – B {sub min}]/B {sub max}, where B {sub max} and B {sub min} are the maximum and minimum field magnitudes) nature (ranging from 0.27 to 1.0) of the waves are noted but not well understood at this time. The proton cyclotron waves were shown to be quasi-coherent, theoretically allowing for rapid pitch-angle transport of resonant protons. Because Cassini traversed the entire subsolar magnetosheath and WIND was in the dusk-side flank of the magnetosheath, it is surmised that the entire region was filled with these waves. In agreement with past theory, it was the exceptionally low plasma β (0.35) that led to the dominance of the proton cyclotron wave generation during this interval. A high-speed solar wind stream ((V{sub sw} ) = 598 km s{sup –1}) was the source of this low-β plasma.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.213.1731Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.213.1731Z"><span>Application of wavefield compressive sensing in surface wave tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhan, Zhongwen; Li, Qingyang; Huang, Jianping</p> <p>2018-06-01</p> <p>Dense arrays allow sampling of seismic wavefield without significant aliasing, and surface wave tomography has benefitted from exploiting wavefield coherence among neighbouring stations. However, explicit or implicit assumptions about wavefield, irregular station spacing and noise still limit the applicability and resolution of current surface wave methods. Here, we propose to apply the theory of compressive sensing (CS) to seek a sparse representation of the surface wavefield using a plane-wave basis. Then we reconstruct the continuous surface wavefield on a dense regular grid before applying any tomographic methods. Synthetic tests demonstrate that wavefield CS improves robustness and resolution of Helmholtz tomography and wavefield gradiometry, especially when traditional approaches have difficulties due to sub-Nyquist sampling or complexities in wavefield.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11108176','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11108176"><span>Maturation of the auditory system in clinically normal puppies as reflected by the brain stem auditory-evoked potential wave V latency-intensity curve and rarefaction-condensation differential potentials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Poncelet, L C; Coppens, A G; Meuris, S I; Deltenre, P F</p> <p>2000-11-01</p> <p>To evaluate auditory maturation in puppies. Ten clinically normal Beagle puppies. Puppies were examined repeatedly from days 11 to 36 after birth (8 measurements). Click-evoked brain stem auditory-evoked potentials (BAEP) were obtained in response to rarefaction and condensation click stimuli from 90 dB normal hearing level to wave V threshold, using steps of 10 dB. Responses were added, providing an equivalent to alternate polarity clicks, and subtracted, providing the rarefaction-condensation differential potential (RCDP). Steps of 5 dB were used to determine thresholds of RCDP and wave V. Slope of the low-intensity segment of the wave V latency-intensity curve was calculated. The intensity range at which RCDP could not be recorded (ie, pre-RCDP range) was calculated by subtracting the threshold of wave V from threshold of RCDP RESULTS: Slope of the wave V latency-intensity curve low-intensity segment evolved with age, changing from (mean +/- SD) -90.8 +/- 41.6 to -27.8 +/- 4.1 micros/dB. Similar results were obtained from days 23 through 36. The pre-RCDP range diminished as puppies became older, decreasing from 40.0 +/- 7.5 to 20.5 +/- 6.4 dB. Changes in slope of the latency-intensity curve with age suggest enlargement of the audible range of frequencies toward high frequencies up to the third week after birth. Decrease in the pre-RCDP range may indicate an increase of the audible range of frequencies toward low frequencies. Age-related reference values will assist clinicians in detecting hearing loss in puppies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SCPMA..60l4711H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SCPMA..60l4711H"><span>β-distribution for Reynolds stress and turbulent heat flux in relaxation turbulent boundary layer of compression ramp</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, YanChao; Bi, WeiTao; Li, ShiYao; She, ZhenSu</p> <p>2017-12-01</p> <p>A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..DPPNO8010F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..DPPNO8010F"><span>X-ray Scattering Measurement of the Heat Capacity Ratio in Shock Compressed Matter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fortmann, C.; Lee, H. J.; Doeppner, Tilo; Kritcher, A. L.; Landen, O. L.; Falcone, R. W.; Glenzer, S. H.</p> <p>2011-10-01</p> <p>We developed accurate x-ray scattering techniques to measure properties of matter under extreme conditions of density and temperature in intense laser-solid interaction experiments. We report on novel applications of x-ray scattering to measure the heat-capacity ratio γ =cp /cv of a Be plasma which determines the equation of state of the system. Ultraintense laser radiation is focussed onto both sides of a Be foil, creating two counterpropagating planar shock waves that collide in the target center. A second set of lasers produces Zn He- α radiation of 8.9 keV energy that scatters from the shock-compressed matter. We observe temperatures of 10eV and 15eV and mass densities of 5g/cm3 and 11g/cm3 before and after the shock collision. Applying the Rankine-Hugoniot relations for counterpropagating shocks we then infer γ as a function of density using only the measured mass compression ratios. Our results agree with equation of state models and DFT simulations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We acknowledge support from the Alexander von Humboldt-Foundation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27733513','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27733513"><span>Directional amorphization of boron carbide subjected to laser shock compression.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Shiteng; Kad, Bimal; Remington, Bruce A; LaSalvia, Jerry C; Wehrenberg, Christopher E; Behler, Kristopher D; Meyers, Marc A</p> <p>2016-10-25</p> <p>Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4 C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.5339A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.5339A"><span>Quasi-linear diffusion coefficients for highly oblique whistler mode waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albert, J. M.</p> <p>2017-05-01</p> <p>Quasi-linear diffusion coefficients are considered for highly oblique whistler mode waves, which exhibit a singular "resonance cone" in cold plasma theory. The refractive index becomes both very large and rapidly varying as a function of wave parameters, making the diffusion coefficients difficult to calculate and to characterize. Since such waves have been repeatedly observed both outside and inside the plasmasphere, this problem has received renewed attention. Here the diffusion equations are analytically treated in the limit of large refractive index μ. It is shown that a common approximation to the refractive index allows the associated "normalization integral" to be evaluated in closed form and that this can be exploited in the numerical evaluation of the exact expression. The overall diffusion coefficient formulas for large μ are then reduced to a very simple form, and the remaining integral and sum over resonances are approximated analytically. These formulas are typically written for a modeled distribution of wave magnetic field intensity, but this may not be appropriate for highly oblique whistlers, which become quasi-electrostatic. Thus, the analysis is also presented in terms of wave electric field intensity. The final results depend strongly on the maximum μ (or μ∥) used to model the wave distribution, so realistic determination of these limiting values becomes paramount.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V21B2778L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V21B2778L"><span>Insights into Volcanic Tremor: A Linear Stability Analysis of Waves Propagating Along Fluid-Filled Cracks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lipovsky, B.; Dunham, E. M.</p> <p>2012-12-01</p> <p>Crack waves are guided waves along fluid-filled cracks that propagate with phase velocity less than the sound wave speed. Chouet (JGR, 1986) and Ferrazzini and Aki (JGR, 1977) have shown that such waves could explain volcanic tremor in terms of the resonant modes of a finite length magma-filled crack. Based on an idealized lumped-parameter model, Julian (JGR, 1994) further proposed that the steady flow of a viscous magma in a volcanic conduit is unstable to perturbations, leading to self-excited oscillations of the conduit walls and radiation of seismic waves. Our objective is to evaluate the possibility of self-excited oscillations within a rigorous, continuum framework. Our specific focus has been on basaltic fissure eruptions. In a typical basaltic fissure system, the magnitudes of the wave restoring forces, fluid compressibility and wall elasticity, are highly depth dependent. Because of the elevated fluid compressibility from gas exsolution at shallow depths, fluid pressure perturbations in this regime propagate as acoustic waves with effectively rigid conduit walls. Below the exsolution depth, the conduit walls are more compliant relative to the magma compressibility and perturbations propagate as dispersive crack waves. Viscous magma flow through such a fissure will evolve to a fully developed state characterized by a parabolic velocity profile in several to tens of seconds. This time scale is greater than harmonic tremor periods, typically 0.1 to 1 second. A rigorous treatment of the wave response to pressure perturbations therefore requires a general analysis of conduit flow that is not in a fully developed state. We present a linearized analysis of the coupled fluid and elastic response to general flow perturbations. We assume that deformation of the wall is linear elastic. As our focus is on wavelengths greatly exceeding the crack width, fluid flow is described by a quasi-one dimensional, or width-averaged, model. We account for conservation of magma mass and momentum including compressibility and viscous drag. Our analysis further assumes small perturbations about a steady background flow, a linearized isothermal equation of state, and a nominally constant width channel. We confirm Julian's results that sufficiently rapid flow through a deformable-walled conduit is unstable to perturbations in the form of crack waves. Instability occurs when drag reduction from opening the conduit exceeds the increase in drag from increased fluid velocity. Crack waves are most unstable at long wavelengths, where the conduit becomes more compliant. In the long wavelength limit, we find a simple expression for the critical flow speed beyond which crack waves are unstable: u = c / 2, where c is the crack wave phase velocity. The instability condition is remarkably independent of viscosity. This result more rigorously confirms the conclusion of Dunham and Ogden (2012, J. App. Mech.), who found the same instability criterion under the limiting assumption of fully developed flow. In a typical basaltic system the occurrence of this instability requires flow speeds exceeding ~50 m/s at depths where magma is primarily liquid melt with little exsolved gas. At these depths, flow speeds of this order are unlikely to occur. We conclude that harmonic tremor due to self-excited oscillations is unlikely to occur in nature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvA..97c3821L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvA..97c3821L"><span>Subharmonic resonances in high-order wave mixing in the quantized atomic motion in a one-dimensional optical lattice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lopez, J. P.; de Almeida, A. J. F.; Tabosa, J. W. R.</p> <p>2018-03-01</p> <p>We report on the observation of subharmonic resonances in high-order wave mixing associated with the quantized vibrational levels of atoms trapped in a one-dimensional optical lattice created by two intense nearly counterpropagating coupling beams. These subharmonic resonances, occurring at ±1 /2 and ±1 /3 of the frequency separation between adjacent vibrational levels, are observed through phase-match angularly resolved six- and eight-wave mixing processes. We investigate how these resonances evolve with the intensity of the incident probe beam, which couples with one of the coupling beams to create anharmonic coherence gratings between adjacent vibrational levels. Our experimental results also show evidence of high-order processes associated with coherence involving nonadjacent vibrational levels. Moreover, we also demonstrate that these induced high-order coherences can be stored in the medium and the associated optical information retrieved after a controlled storage time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16605669','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16605669"><span>Single-cycle high-intensity electromagnetic pulse generation in the interaction of a plasma wakefield with regular nonlinear structures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bulanov, S S; Esirkepov, T Zh; Kamenets, F F; Pegoraro, F</p> <p>2006-03-01</p> <p>The interaction of regular nonlinear structures (such as subcycle solitons, electron vortices, and wake Langmuir waves) with a strong wake wave in a collisionless plasma can be exploited in order to produce ultrashort electromagnetic pulses. The electromagnetic field of the nonlinear structure is partially reflected by the electron density modulations of the incident wake wave and a single-cycle high-intensity electromagnetic pulse is formed. Due to the Doppler effect the length of this pulse is much shorter than that of the nonlinear structure. This process is illustrated with two-dimensional particle-in-cell simulations. The considered laser-plasma interaction regimes can be achieved in present day experiments and can be used for plasma diagnostics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......170L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......170L"><span>Heating and Acceleration of Charged Particles by Weakly Compressible Magnetohydrodynamic Turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lynn, Jacob William</p> <p></p> <p>We investigate the interaction between low-frequency magnetohydrodynamic (MHD) turbulence and a distribution of charged particles. Understanding this physics is central to understanding the heating of the solar wind, as well as the heating and acceleration of other collisionless plasmas. Our central method is to simulate weakly compressible MHD turbulence using the Athena code, along with a distribution of test particles which feel the electromagnetic fields of the turbulence. We also construct analytic models of transit-time damping (TTD), which results from the mirror force caused by compressible (fast or slow) MHD waves. Standard linear-theory models in the literature require an exact resonance between particle and wave velocities to accelerate particles. The models developed in this thesis go beyond standard linear theory to account for the fact that wave-particle interactions decorrelate over a short time, which allows particles with velocities off resonance to undergo acceleration and velocity diffusion. We use the test particle simulation results to calibrate and distinguish between different models for this velocity diffusion. Test particle heating is larger than the linear theory prediction, due to continued acceleration of particles with velocities off-resonance. We also include an artificial pitch-angle scattering to the test particle motion, representing the effect of high-frequency waves or velocity-space instabilities. For low scattering rates, we find that the scattering enforces isotropy and enhances heating by a modest factor. For much higher scattering rates, the acceleration is instead due to a non-resonant effect, as particles "frozen" into the fluid adiabatically gain and lose energy as eddies expand and contract. Lastly, we generalize our calculations to allow for relativistic test particles. Linear theory predicts that relativistic particles with velocities much higher than the speed of waves comprising the turbulence would undergo no acceleration; resonance-broadening modifies this conclusion and allows for a continued Fermi-like acceleration process. This may affect the observed spectra of black hole accretion disks by accelerating relativistic particles into a quasi-powerlaw tail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850026518','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850026518"><span>the role of shock waves in modulation of galactic cosmic rays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gall, R.; Thomas, B. T.; Durand, H.</p> <p>1985-01-01</p> <p>The understanding of modulation of the galactic cosmic rays has considerably progressed by the exploration by space probes of major heliospheric structures, such as the Corotating Interaction Regions, the neutral sheet, and the compression regions of intense heliospheric magnetic fields. Also relevant in this context were the detections in the outer heliosphere of long lasting Forbush type decreases of cosmic ray intensity. The results of recent theoretical studies on the changes in intensity and energy, at different location from the Sun, induced by the passage of shocks across the heliosphere are presented. In this version of the research, the simplest cases of modulation of uGV and 2GV particles by single or several shocks during periods of positive and negative solar field polarity are reviewed. The results of the theoretical aspects of the search is reported. The comparison of the theoretical predictions with space probe data allows conclusions to be drawn on the role of shocks on the modulation on both the 11 and 22 year galactic cosmic ray cycles in the outer heliosphere and on the plausibility of the models and parameters used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPA24A..05R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPA24A..05R"><span>Identifying "Carrington Events" in Solar, Solar Wind, and Magnetospheric Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russell, C. T.; Riley, P.; Luhmann, J. G.; Lai, H.</p> <p>2016-12-01</p> <p>Extreme space weather begins when extraordinary levels of stored magnetic energy in the photosphere rapidly destabilizes. This destabilization generally releases a rapidly expelled plasma and magnetic flux rope. Large fluxes of highly relativistic particles signal the event and at Earth precede the expelled flux rope. The most recent such solar event did not encounter the Earth, but was recorded by STEREO A on July 23, 2012. The energy density in the relativistic particles that preceded the rapidly expanding magnetic cloud was so intense that the compression front expanded with a sub fast mode speed (i.e. `subsonically') and the compression front became a slow mode wave. The peak magnetic field in the rope was 109 nT, larger than any previously reported field at 1 AU in the solar wind. An equally fast disturbance left the Sun on September 1, 1859, and caused intense induced currents when it reached the Earth. It is likely that at least some of the magnetospheric currents were caused by the accompanying magnetic cloud, but magnetospheric diagnostics were scarce during this event. This first space weather event became the defining occurrence of extreme space weather. A second modern event not generally recognized as "Carrington" class, but arguably super-Carrington, arrived on August 4, 1972. Between the Apollo 16 and 17 missions. It was a strong producer of geomagnetic induced currents, but produced only a weak ring current, possibly because the part of the magnetic cloud in contact with the Earth had a polarity that did not couple the solar wind momentum flux to the magnetosphere. The pressure wave reached 1 AU in the shortest time of any recorded solar event and brought an energetic particle flux that would have harmed the astronauts had they been in space. To identify which solar events are capable of producing the most extreme space weather events, we must identify those that are expelled toward the Earth at the highest speeds. How these events manifest their extreme behavior at Earth depends on the magnetic configuration of the rope that interacts with the Earth's magnetosphere. Thus, predicting the magnetic structure of the rope is also important. In this talk, we compare these three Carrington class events to understand both how they might affect modern society, and how their effects might be predicted and mitigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE10025E..0WK','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE10025E..0WK"><span>Optimizing the loss of one-dimensional photonic crystal towards high-sensitivity Bloch-surface-wave sensors under intensity interrogation scheme</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kong, Weijing; Wan, Yuhang; Du, Kun; Zhao, Wenhui; Wang, Shuang; Zheng, Zheng</p> <p>2016-11-01</p> <p>The reflected intensity change of the Bloch-surface-wave (BSW) resonance influenced by the loss of a truncated onedimensional photonic crystal structure is numerically analyzed and studied in order to enhance the sensitivity of the Bloch-surface-wave-based sensors. The finite truncated one-dimensional photonic crystal structure is designed to be able to excite BSW mode for water (n=1.33) as the external medium and for p-polarized plane wave incident light. The intensity interrogation scheme which can be operated on a typical Kretschmann prism-coupling configuration by measuring the reflected intensity change of the resonance dip is investigated to optimize the sensitivity. A figure of merit (FOM) is introduced to measure the performance of the one-dimensional photonic crystal multilayer structure under the scheme. The detection sensitivities are calculated under different device parameters with a refractive index change corresponding to different solutions of glycerol in de-ionized (DI)-water. The results show that the intensity sensitivity curve varies similarly with the FOM curve and the sensitivity of the Bloch-surface-wave sensor is greatly affected by the device loss, where an optimized loss value can be got. For the low-loss BSW devices, the intensity interrogation sensing sensitivity may drop sharply from the optimal value. On the other hand, the performance of the detection scheme is less affected by the higher device loss. This observation is in accordance with BSW experimental sensing demonstrations as well. The results obtained could be useful for improving the performance of the Bloch-surface-wave sensors for the investigated sensing scheme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........88M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........88M"><span>On the Acceleration and Transport of Electrons Generated by Intense Laser-Plasma Interactions at Sharp Interfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>May, Joshua Joseph</p> <p></p> <p>The continued development of the chirped pulse amplification technique has allowed for the development of lasers with powers of in excess of 10 15W, for pulse lengths with durations of between .01 and 10 picoseconds, and which can be focused to energy densities greater than 100 giga-atmospheres. When such lasers are focused onto material targets, the possibility of creating particle beams with energy fluxes of comparable parameters arises. Such interactions have a number of theorized applications. For instance, in the Fast Ignition concept for Inertial Confinement Fusion [1], a high-intensity laser efficiently transfers its energy into an electron beam with an appropriate spectra which is then transported into a compressed target and initiate a fusion reaction. Another possible use is the so called Radiation Pressure Acceleration mechanism, in which a high-intensity, circularly polarized laser is used to create a mono-energetic ion beam which could then be used for medical imaging and treatment, among other applications. For this latter application, it is important that the laser energy is transferred to the ions and not to the electrons. However the physics of such high energy-density laser-matter interactions is highly kinetic and non-linear, and presently not fully understood. In this dissertation, we use the Particle-in-Cell code OSIRIS [2, 3] to explore the generation and transport of relativistic particle beams created by high intensity lasers focused onto solid density matter at normal incidence. To explore the generation of relativistic electrons by such interactions, we use primarily one-dimensional (1D) and two-dimensional (2D), and a few three-dimensional simulations (3D). We initially examine the idealized case of normal incidence of relatively short, plane-wave lasers on flat, sharp interfaces. We find that in 1D the results are highly dependent on the initial temperature of the plasma, with significant absorption into relativistic electrons only possible when the temperature is high in the direction parallel to the electric field of the laser. In multi-dimensions, absorption into relativistic electrons arises independent of the initial temperature for both fixed and mobile ions, although the absorption is higher for mobile ions. In most cases however, absorption remains at 100s of percent, and as such a standing wave structure from the incoming and reflected wave is setup in front of the plasma surface. The peak momentum of the accelerated electrons is found to be 2 a0mec, where a 0 = eA0/mec 2 is the normalized vector potential of the laser in vacuum, e is the electron charge, me is the electron mass, and c is the speed of light. We consider cases for which a0 > 1. We therefore call this the 2 a0 acceleration process. Using particle tracking, we identify the detailed physics behind the 2a0 process and find it is related to the standing wave structure of the fields. We observe that the particles which gain energy do so by interacting with the laser electric field within a quarter wavelength of the surface where it is at an anti-node (it is a node at the surface). We find that only particles with high initial momentum - in particular high transverse momentum - are able to navigate through the laser magnetic field as its magnitude decreases in time each half laser cycle (it is an anti-node at the surface) to penetrate a quarter wavelength into the vacuum where the laser electric field is large. For a circularly polarized laser the magnetic field amplitude never decreases at the surface, instead its direction simply rotates. This prevents electrons from leaving the plasma and they therefore cannot gain energy from the electric field. (Abstract shortened by ProQuest.).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........24T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........24T"><span>Identifying new saturation mechanisms hindering the development of plasma-based laser amplifiers utilizing Stimulated Raman Backscattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turnbull, David Pearson</p> <p></p> <p>Stimulated Raman Backscattering (SRBS) has the potential to supplement existing laser amplification technology in order to exceed the maximum intensity that is attainable with modern systems. It utilizes a three wave interaction in plasma in order to transfer the energy from a long, low intensity pumping pulse to a short, counterpropagating seed pulse that undergoes temporal compression as it is amplified and should ultimately be able to reach unfocused intensities up to a relativistic limit about five orders of magnitude larger than conventional systems. If proven viable, it could democratize research conducted with ultraintense laser systems as well as open up new realms of physics. Following theoretical suggestions and previous experimental conclusions, longer and more uniform preformed plasma channels were successfully created by focusing one of the plasma-forming beams to a line using an axicon lens. The beams amplified in those plasma channels were in fact more energetic than those previously reported in the published literature. However, results remained far afield of the theoretical predictions, which prompted an effort to reconcile the analytical work suggesting this scheme can be highly efficient with the experimental results demonstrating saturation. A Frequency-Resolved Optical Gating diagnostic was built in order to obtain greater insight into the amplified pulse shape and frequency distribution, data from which indicated that there was very often a frequency shift that seems to detune the interaction. Several mechanisms appear to be potentially viable sources of this shift. One possibility is that an ion acoustic wave induces wave collapse of the primary Langmuir wave mediating SRBS; this would also increase the damping rate and might even facilitate particle trapping. Additional evidence of this scenario later appeared in the time-integrated spectrometer data. Another possibility is that the amplified seed pulse triggers additional ionization of the plasma. Since both of these effects would require a very low initial electron temperature, a method for determining that value using only the gas density and electron density was developed, the results of which were consistent with the requisite conditions. The development of advanced laser technology is relevant to the pursuit of inertial fusion energy. The importance of fusion as a future option for electricity generation was investigated using integrated assessment modeling. The results suggest that fusion energy could be very valuable under imposed limits on carbon dioxide emissions, in particular if other carbon-neutral baseload technologies prove uncompetitive or are otherwise constrained by nonmarket impediments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22004932','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22004932"><span>EEG changes as heat stress reactions in rats irradiated by high intensity 35 GHz millimeter waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xie, Taorong; Pei, Jian; Cui, Yibin; Zhang, Jie; Qi, Hongxing; Chen, Shude; Qiao, Dengjiang</p> <p>2011-06-01</p> <p>As the application of millimeter waves for civilian and military use increases, the possibility of overexposure to millimeter waves will also increase. This paper attempts to evaluate stress reactions evoked by 35 GHz millimeter waves. The stress reactions in Sprague-Dawley (SD) rats were quantitatively studied by analyzing electroencephalogram (EEG) changes induced by overexposure to 35 GHz millimeter waves. The relative changes in average energy of the EEG and its wavelet decompositions were used for extracting the stress reaction indicators. Incident average power densities (IAPDs) of 35 GHz millimeter waves from 0.5 W cm(-2) to 7.5 W cm(-2) were employed to investigate the relation between irradiation dose and the stress reactions in the rats. Different stress reaction periods evoked by irradiation were quantitatively evaluated by EEG results. The results illustrate that stress reactions are more intense during the first part of the irradiation than during the later part. The skin temperature increase produced by millimeter wave irradiation is the principle reason for stress reactions and skin injuries. As expected, at the higher levels of irradiation, the reaction time decreases and the reaction intensity increases.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED467474.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED467474.pdf"><span>Compression of Semesters or Intensity of Study: What is it that Increases Student Success?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Spurling, Steven</p> <p></p> <p>This study examined the relationship between intensity of study (defined as more hours per week of class within a subject matter area) and student success. The researcher identified two possible methods for increasing the intensity of study: (1) Compression Hypothesis--shortening the length of terms and increasing the amount of time per week spent…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000SPIE.3888..294S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000SPIE.3888..294S"><span>Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sano, Yuji; Kimura, Motohiko; Mukai, Naruhiko; Yoda, Masaki; Obata, Minoru; Ogisu, Tatsuki</p> <p>2000-02-01</p> <p>The authors have developed a new process of laser-induced shock compression to introduce a residual compressive stress on material surface, which is effective for prevention of stress corrosion cracking (SCC) and enhancement of fatigue strength of metal materials. The process developed is unique and beneficial. It requires no pre-conditioning for the surface, whereas the conventional process requires that the so-called sacrificial layer is made to protect the surface from damage. The new process can be freely applied to water- immersed components, since it uses water-penetrable green light of a frequency-doubled Nd:YAG laser. The process developed has the potential to open up new high-power laser applications in manufacturing and maintenance technologies. The laser-induced shock compression process (LSP) can be used to improve a residual stress field from tensile to compressive. In order to understand the physics and optimize the process, the propagation of a shock wave generated by the impulse of laser irradiation and the dynamic response of the material were analyzed by time-dependent elasto-plastic calculations with a finite element program using laser-induced plasma pressure as an external load. The analysis shows that a permanent strain and a residual compressive stress remain after the passage of the shock wave with amplitude exceeding the yield strength of the material. A practical system materializing the LSP was designed, manufactured, and tested to confirm the applicability to core components of light water reactors (LWRs). The system accesses the target component and remotely irradiates laser pulses to the heat affected zone (HAZ) along weld lines. Various functional tests were conducted using a full-scale mockup facility, in which remote maintenance work in a reactor vessel could be simulated. The results showed that the system remotely accessed the target weld lines and successfully introduced a residual compressive stress. After sufficient training for operational personnel, the system was applied to the core shroud of an existing nuclear power plant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940002884&hterms=mixed+methods&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmixed%2Bmethods','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940002884&hterms=mixed+methods&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmixed%2Bmethods"><span>FLOW FIELD IN SUPERSONIC MIXED-COMPRESSION INLETS AT ANGLE OF ATTACK USING THE THREE DIMENSIONAL METHOD OF CHARACTERISTICS WITH DISCRETE SHOCK WAVE FITTING</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bishop, A. R.</p> <p>1994-01-01</p> <p>This computer program calculates the flow field in the supersonic portion of a mixed-compression aircraft inlet at non-zero angle of attack. This approach is based on the method of characteristics for steady three-dimensional flow. The results of this program agree with those produced by the two-dimensional method of characteristics when axisymmetric flow fields are calculated. Except in regions of high viscous interaction and boundary layer removal, the results agree well with experimental data obtained for threedimensional flow fields. The flow field in a variety of axisymmetric mixed compression inlets can be calculated using this program. The bow shock wave and the internal shock wave system are calculated using a discrete shock wave fitting procedure. The internal flow field can be calculated either with or without the discrete fitting of the internal shock wave system. The influence of molecular transport can be included in the calculation of the external flow about the forebody and in the calculation of the internal flow when internal shock waves are not discretely fitted. The viscous and thermal diffussion effects are included by treating them as correction terms in the method of characteristics procedure. Dynamic viscosity is represented by Sutherland's law and thermal conductivity is represented as a quadratic function of temperature. The thermodynamic model used is that of a thermally and calorically perfect gas. The program assumes that the cowl lip is contained in a constant plane and that the centerbody contour and cowl contour are smooth and have continuous first partial derivatives. This program cannot calculate subsonic flow, the external flow field if the bow shock wave does not exist entirely around the forebody, or the internal flow field if the bow flow field is injected into the annulus. Input to the program consists of parameters to control execution, to define the geometry, and the vehicle orientation. Output consists of a list of parameters used, solution planes, and a description of the shock waves. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series machine with a central memory requirement of 110K (octal) of 60 bit words when it is overlayed. This flow analysis program was developed in 1978.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDG40008K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDG40008K"><span>Characterization of Diesel and Gasoline Compression Ignition Combustion in a Rapid Compression-Expansion Machine using OH* Chemiluminescence Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krishnan, Sundar Rajan; Srinivasan, Kalyan Kumar; Stegmeir, Matthew</p> <p>2015-11-01</p> <p>Direct-injection compression ignition combustion of diesel and gasoline were studied in a rapid compression-expansion machine (RCEM) using high-speed OH* chemiluminescence imaging. The RCEM (bore = 84 mm, stroke = 110-250 mm) was used to simulate engine-like operating conditions at the start of fuel injection. The fuels were supplied by a high-pressure fuel cart with an air-over-fuel pressure amplification system capable of providing fuel injection pressures up to 2000 bar. A production diesel fuel injector was modified to provide a single fuel spray for both diesel and gasoline operation. Time-resolved combustion pressure in the RCEM was measured using a Kistler piezoelectric pressure transducer mounted on the cylinder head and the instantaneous piston displacement was measured using an inductive linear displacement sensor (0.05 mm resolution). Time-resolved, line-of-sight OH* chemiluminescence images were obtained using a Phantom V611 CMOS camera (20.9 kHz @ 512 x 512 pixel resolution, ~ 48 μs time resolution) coupled with a short wave pass filter (cut-off ~ 348 nm). The instantaneous OH* distributions, which indicate high temperature flame regions within the combustion chamber, were used to discern the characteristic differences between diesel and gasoline compression ignition combustion. The authors gratefully acknowledge facilities support for the present work from the Energy Institute at Mississippi State University.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4662679','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4662679"><span>The effects of ipsilateral, contralateral, and bilateral broadband noise on the mid-level hump in intensity discriminationa)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Roverud, Elin; Strickland, Elizabeth A.</p> <p>2015-01-01</p> <p>Previous psychoacoustical and physiological studies indicate that the medial olivocochlear reflex (MOCR), a bilateral, sound-evoked reflex, may lead to improved sound intensity discrimination in background noise. The MOCR can decrease the range of basilar-membrane compression and can counteract effects of neural adaptation from background noise. However, the contribution of these processes to intensity discrimination is not well understood. This study examined the effect of ipsilateral, contralateral, and bilateral noise on the “mid-level hump.” The mid-level hump refers to intensity discrimination Weber fractions (WFs) measured for short-duration, high-frequency tones which are poorer at mid levels than at lower or higher levels. The mid-level hump WFs may reflect a limitation due to basilar-membrane compression, and thus may be decreased by the MOCR. The noise was either short (50 ms) or long (150 ms), with the long noise intended to elicit the sluggish MOCR. For a tone in quiet, mid-level hump WFs improved with ipsilateral noise for most listeners, but not with contralateral noise. For a tone in ipsilateral noise, WFs improved with contralateral noise for most listeners, but only when both noises were long. These results are consistent with MOCR-induced WF improvements, possibly via decreases in effects of compression and neural adaptation. PMID:26627798</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870034250&hterms=lsd&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3D%25EF%25BF%25BDlsd','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870034250&hterms=lsd&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3D%25EF%25BF%25BDlsd"><span>Investigation of beamed-energy ERH thruster performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Myrabo, Leik N.; Strayer, T. Darton; Bossard, John A.; Richard, Jacques C.; Gallimore, Alec D.</p> <p>1986-01-01</p> <p>The objective of this study was to determine the performance of an External Radiation Heated (ERH) thruster. In this thruster, high intensity laser energy is focused to ignite either a Laser Supported Combustion (LSC) wave or a Laser Supported Detonation (LSD) wave. Thrust is generated as the LSC or LSD wave propagates over the thruster's surface, or in the proposed thruster configuration, the vehicle afterbody. Thrust models for the LSC and LSD waves were developed and simulated on a computer. Performance parameters investigated include the effect of laser intensity, flight Mach number, and altitude on mean-thrust and coupling coefficient of the ERH thruster. Results from these models suggest that the ERH thruster using LSC/LSD wave ignition could provide propulsion performance considerably greater than any propulsion system currently available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH11A2430F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH11A2430F"><span>Dissipation of Alfven Waves at Fluid Scale through Parametric Decay Instabilities in Low-beta Turbulent Plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fu, X.; Li, H.; Guo, F.; Li, X.; Roytershteyn, V.</p> <p>2017-12-01</p> <p>The solar wind is a turbulent magnetized plasma extending from the upper atmosphere of the sun to the edge of the heliosphere. It carries charged particles and magnetic fields originated from the Sun, which have great impact on the geomagnetic environment and human activities in space. In such a magnetized plasma, Alfven waves play a crucial role in carrying energy from the surface of the Sun, injecting into the solar wind and establishing power-law spectra through turbulent energy cascades. On the other hand, in compressible plasmas large amplitude Alfven waves are subject to a parametric decay instability (PDI) which converts an Alfven wave to another counter-propagating Alfven wave and an ion acoustic wave (slow mode). The counter-propagating Alfven wave provides an important ingredient for turbulent cascade, and the slow-mode wave provides a channel for solar wind heating in a spatial scale much larger than ion kinetic scales. Growth and saturation of PDI in quiet plasma have been intensively studied using linear theory and nonlinear simulations in the past. Here using 3D hybrid simulations, we show that PDI is still effective in turbulent low-beta plasmas, generating slow modes and causing ion heating. Selected events in WIND data are analyzed to identify slow modes in the solar wind and the role of PDI, and compared with our simulation results. We also investigate the validity of linear Vlasov theory regarding PDI growth and slow mode damping in turbulent plasmas. Since PDI favors low plasma beta, we expect to see more evidence of PDI in the solar wind close to the Sun, especially from the upcoming NASA's Parker Solar Probe mission which will provide unprecedented wave and plasma data as close as 8.5 solar radii from the Sun.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27773311','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27773311"><span>An experimental study on the coalescence process of binary droplets in oil under ultrasonic standing waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Luo, Xiaoming; Cao, Juhang; He, Limin; Wang, Hongping; Yan, Haipeng; Qin, Yahua</p> <p>2017-01-01</p> <p>The coalescence process of binary droplets in oil under ultrasonic standing waves was investigated with high-speed photography. Three motion models of binary droplets in coalescence process were illustrated: (1) slight translational oscillation; (2) sinusoidal translational oscillation; (3) migration along with acoustic streaming. To reveal the droplets coalescence mechanisms, the influence of main factors (such as acoustic intensity, droplet size, viscosity and interfacial tension, etc) on the motion and coalescence of binary droplets was studied under ultrasonic standing waves. Results indicate that the shortest coalescence time is achieved when binary droplets show sinusoidal translational oscillation. The corresponding acoustic intensity in this case is the optimum acoustic intensity. Under the optimum acoustic intensity, drop size decrease will bring about coalescence time decrease by enhancing the binary droplets oscillation. Moreover, there is an optimum interfacial tension to achieve the shortest coalescence time. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27415249','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27415249"><span>Rogue wave triggered at a critical frequency of a nonlinear resonant medium.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>He, Jingsong; Xu, Shuwei; Porsezian, K; Cheng, Yi; Dinda, P Tchofo</p> <p>2016-06-01</p> <p>We consider a two-level atomic system interacting with an electromagnetic field controlled in amplitude and frequency by a high intensity laser. We show that the amplitude of the induced electric field admits an envelope profile corresponding to a breather soliton. We demonstrate that this soliton can propagate with any frequency shift with respect to that of the control laser, except a critical frequency, at which the system undergoes a structural discontinuity that transforms the breather in a rogue wave. A mechanism of generation of rogue waves by means of an intense laser field is thus revealed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.874a2053L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.874a2053L"><span>Preliminary design of a high-intensity continuous-wave deuteron RFQ</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, X.; Kamigaito, O.; Sakamoto, N.; Yamada, K.</p> <p>2017-07-01</p> <p>A high-intensity deuteron linear accelerator is currently being studied as a promising candidate to treat high-level radioactive waste through the nuclear transmutation process. This paper presents the study on a design of a 75.5 MHz, 400 mA, continuous-wave deuteron radio-frequency quadrupole (RFQ), which is proposed as the front-end of such a linear accelerator. The results of the beam dynamics simulation suggest that the designed RFQ can accelerate a 400-mA deuteron beam from 100 keV to 2.5 MeV with a transmission rate of 92.0 ∼ 93.3%, depending on the assumed input transverse emittance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SCPMA..61f4711L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SCPMA..61f4711L"><span>Interaction of strong converging shock wave with SF6 gas bubble</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, Yu; Zhai, ZhiGang; Luo, XiSheng</p> <p>2018-06-01</p> <p>Interaction of a strong converging shock wave with an SF6 gas bubble is studied, focusing on the effects of shock intensity and shock shape on interface evolution. Experimentally, the converging shock wave is generated by shock dynamics theory and the gas bubble is created by soap film technique. The post-shock flow field is captured by a schlieren photography combined with a high-speed video camera. Besides, a three-dimensional program is adopted to provide more details of flow field. After the strong converging shock wave impact, a wide and pronged outward jet, which differs from that in planar shock or weak converging shock condition, is derived from the downstream interface pole. This specific phenomenon is considered to be closely associated with shock intensity and shock curvature. Disturbed by the gas bubble, the converging shocks approaching the convergence center have polygonal shapes, and the relationship between shock intensity and shock radius verifies the applicability of polygonal converging shock theory. Subsequently, the motion of upstream point is discussed, and a modified nonlinear theory considering rarefaction wave and high amplitude effects is proposed. In addition, the effects of shock shape on interface morphology and interface scales are elucidated. These results indicate that the shape as well as shock strength plays an important role in interface evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25e2301P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25e2301P"><span>Controlling of the electromagnetic solitary waves generation in the wake of a two-color laser</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pan, K. Q.; Li, S. W.; Guo, L.; Yang, D.; Li, Z. C.; Zheng, C. Y.; Jiang, S. E.; Zhang, B. H.; He, X. T.</p> <p>2018-05-01</p> <p>Electromagnetic solitary waves generated by a two-color laser interaction with an underdense plasma are investigated. It is shown that, when the former wave packet of the two-color laser is intense enough, it will excite nonlinear wakefields and generate electron density cavities. The latter wave packets will beat with the nonlinear wakefield and generate both high-frequency and low-frequency components. When the peak density of the cavities exceeds the critical density of the low-frequency component, this part of the electromagnetic field will be trapped to generate electromagnetic solitary waves. By changing the laser and plasma parameters, we can control the wakefield generation, which will also control the generation of the solitary waves. One-dimensional particle-in-cell simulations are performed to prove the controlling of the solitary waves. The simulation results also show that solitary waves generated by higher laser intensities will become moving solitary waves. The two-dimensional particle-in-cell also shows the generation of the solitary waves. In the two-dimensional case, solitary waves are distributed in the transverse directions because of the filamentation instability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-a-hubble-view-of-starburst-galaxy-messier-94_22411319925_o.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-a-hubble-view-of-starburst-galaxy-messier-94_22411319925_o.html"><span>Starburst galaxy Messier 94</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-10-19</p> <p>This image shows the galaxy Messier 94, which lies in the small northern constellation of the Hunting Dogs, about 16 million light-years away. Within the bright ring around Messier 94 new stars are forming at a high rate and many young, bright stars are present within it – thanks to this, this feature is called a starburst ring. The cause of this peculiarly shaped star-forming region is likely a pressure wave going outwards from the galactic centre, compressing the gas and dust in the outer region. The compression of material means the gas starts to collapse into denser clouds. Inside these dense clouds, gravity pulls the gas and dust together until temperature and pressure are high enough for stars to be born.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3303683','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3303683"><span>A High-Performance Lossless Compression Scheme for EEG Signals Using Wavelet Transform and Neural Network Predictors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sriraam, N.</p> <p>2012-01-01</p> <p>Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications. PMID:22489238</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22489238','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22489238"><span>A high-performance lossless compression scheme for EEG signals using wavelet transform and neural network predictors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sriraam, N</p> <p>2012-01-01</p> <p>Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PApGe.tmp....1C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PApGe.tmp....1C"><span>On the Resonant Behavior of a Weakly Compressible Water Layer During Tsunamigenic Earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cecioni, Claudia; Bellotti, Giorgio</p> <p>2018-01-01</p> <p>Tsunamigenic earthquakes trigger pressure waves in the ocean, given the weak compressibility of the sea water. For particular conditions, a resonant behavior of the water layer can occur, which influences the energy transfer from the sea-bed motion to the ocean. In this paper, the resonance conditions are explained and analyzed, focusing on the hydro-acoustic waves in the proximity of the earthquake area. A preliminary estimation of the generation parameters (sea-bed rising time, velocity) is given, by means of parametric numerical simulations for simplified conditions. The results confirm the importance of measuring, modeling, and interpreting such waves for tsunami early detection and warning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PApGe.175.1355C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PApGe.175.1355C"><span>On the Resonant Behavior of a Weakly Compressible Water Layer During Tsunamigenic Earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cecioni, Claudia; Bellotti, Giorgio</p> <p>2018-04-01</p> <p>Tsunamigenic earthquakes trigger pressure waves in the ocean, given the weak compressibility of the sea water. For particular conditions, a resonant behavior of the water layer can occur, which influences the energy transfer from the sea-bed motion to the ocean. In this paper, the resonance conditions are explained and analyzed, focusing on the hydro-acoustic waves in the proximity of the earthquake area. A preliminary estimation of the generation parameters (sea-bed rising time, velocity) is given, by means of parametric numerical simulations for simplified conditions. The results confirm the importance of measuring, modeling, and interpreting such waves for tsunami early detection and warning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900005412','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900005412"><span>Group-kinetic theory and modeling of atmospheric turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tchen, C. M.</p> <p>1989-01-01</p> <p>A group kinetic method is developed for analyzing eddy transport properties and relaxation to equilibrium. The purpose is to derive the spectral structure of turbulence in incompressible and compressible media. Of particular interest are: direct and inverse cascade, boundary layer turbulence, Rossby wave turbulence, two phase turbulence; compressible turbulence, and soliton turbulence. Soliton turbulence can be found in large scale turbulence, turbulence connected with surface gravity waves and nonlinear propagation of acoustical and optical waves. By letting the pressure gradient represent the elementary interaction among fluid elements and by raising the Navier-Stokes equation to higher dimensionality, the master equation was obtained for the description of the microdynamical state of turbulence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910070203&hterms=impulse&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dimpulse','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910070203&hterms=impulse&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dimpulse"><span>Generation of Pc 1 waves by the ion temperature anisotropy associated with fast shocks caused by sudden impulses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mandt, M. E.; Lee, L. C.</p> <p>1991-01-01</p> <p>The high correlation of Pc 1 events with magnetospheric compressions is known. A mechanism is proposed which leads to the generation of Pc 1 waves. The interaction of a dynamic pressure pulse with the earth's bow shock leads to the formation of a weak fast-mode shock propagating into the magnetoshealth. The shock wave can pass right through a tangential discontinuity (magnetopause) and into the magnetosphere, without disturbing either of the structures. In a quasiperpendicular geometry, the shock wave exhibits anisotropic heating. This anisotropy drives unstable ion-cyclotron waves which can contribute to the generation of the Pc 1 waves which are detected. The viability of the mechanism is demonstrated with simulations. This mechanism could explain the peak in the occurrence of observed Pc 1 waves in the postnoon sector where a field-aligned discontinuity in the solar wind would most often be parallel to the magnetopause surface due to the average Parker-spiral magnetic-field configuration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.......156G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.......156G"><span>Modeling and Experimental Validation for 3D mm-wave Radar Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghazi, Galia</p> <p></p> <p>As the problem of identifying suicide bombers wearing explosives concealed under clothing becomes increasingly important, it becomes essential to detect suspicious individuals at a distance. Systems which employ multiple sensors to determine the presence of explosives on people are being developed. Their functions include observing and following individuals with intelligent video, identifying explosives residues or heat signatures on the outer surface of their clothing, and characterizing explosives using penetrating X-rays, terahertz waves, neutron analysis, or nuclear quadrupole resonance. At present, mm-wave radar is the only modality that can both penetrate and sense beneath clothing at a distance of 2 to 50 meters without causing physical harm. Unfortunately, current mm-wave radar systems capable of performing high-resolution, real-time imaging require using arrays with a large number of transmitting and receiving modules; therefore, these systems present undesired large size, weight and power consumption, as well as extremely complex hardware architecture. The overarching goal of this thesis is the development and experimental validation of a next generation inexpensive, high-resolution radar system that can distinguish security threats hidden on individuals located at 2-10 meters range. In pursuit of this goal, this thesis proposes the following contributions: (1) Development and experimental validation of a new current-based, high-frequency computational method to model large scattering problems (hundreds of wavelengths) involving lossy, penetrable and multi-layered dielectric and conductive structures, which is needed for an accurate characterization of the wave-matter interaction and EM scattering in the target region; (2) Development of combined Norm-1, Norm-2 regularized imaging algorithms, which are needed for enhancing the resolution of the images while using a minimum number of transmitting and receiving antennas; (3) Implementation and experimental validation of new calibration techniques, which are needed for coherent imaging with multistatic configurations; and (4) Investigation of novel compressive antennas, which spatially modulate the wavefield in order to enhance the information transfer efficiency between sampling and imaging regions and use of Compressive Sensing algorithms.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>