Science.gov

Sample records for high-intensity impact loads

  1. High intensity single bunch operation with heavy periodic transient beam loading in wide band rf cavities

    NASA Astrophysics Data System (ADS)

    Tamura, Fumihiko; Hotchi, Hideaki; Schnase, Alexander; Yoshii, Masahito; Yamamoto, Masanobu; Ohmori, Chihiro; Nomura, Masahiro; Toda, Makoto; Shimada, Taihei; Hasegawa, Katsushi; Hara, Keigo

    2015-09-01

    The rapid cycling synchrotron (RCS) in the Japan Proton Accelerator Research Complex (J-PARC) was originally designed to accelerate two high intensity bunches, while some of neutron experiments in the materials and life science experimental facility and a muon experiment using main ring beams require a single bunch operation mode, in which one of the two rf buckets is filled and the other is empty. The beam intensity in the single bunch operation has been limited by longitudinal beam losses due to the rf bucket distortions by the wake voltage of the odd harmonics (h =1 ,3 ,5 ) in the wide band magnetic alloy cavities. We installed an additional rf feedforward system to compensate the wake voltages of the odd harmonics (h =1 ,3 ,5 ). The additional system has a similar structure as the existing feedforward system for the even harmonics (h =2 ,4 ,6 ). We describe the function of the feedforward system for the odd harmonics, the commissioning methodology, and the commissioning results. The longitudinal beam losses during the single bunch acceleration disappeared with feedforward for the odd harmonics. We also confirmed that the beam quality in the single bunch acceleration are similar to that of the normal operation with two bunches. Thus, high intensity single bunch acceleration at the intensity of 2.3 ×1013 protons per bunch has been achieved in the J-PARC RCS. This article is a follow-up of our previous article, Phys. Rev. ST Accel. Beams 14, 051004 (2011). The feedforward system extension for single bunch operation was successful.

  2. Impact of preconditioning pulse on lesion formation during high-intensity focused ultrasound histotripsy.

    PubMed

    Xu, Jin; Bigelow, Timothy A; Riesberg, Grant M

    2012-11-01

    Therapeutic applications with high-intensity focused ultrasound (HIFU) fall into two classifications-one using thermal effect for coagulation or ablation while generally avoiding cavitation and the other using cavitation-mediated mechanical effects while suppressing heating. Representative of the latter, histotripsy uses HIFU at low duty factor to create energetic bubble clouds inside tissue to liquefy a region and has the advantages in real-time monitoring and lesion fidelity to treatment planning. We explored the impact of a preconditioning/heating pulse on histotripsy lesion formation in porcine muscle samples. During sonication, a targeted square region 9 mm wide (lateral to the focal plane) was scanned in a raster pattern with a step size of 0.75 mm. The 20-s exposure at each treatment location consisted of a 5-s duration preconditioning burst at spatial-peak intensities from 0-1386 W/cm² followed by 5000 tone bursts at high intensity (with spatial-peak pulse-average intensity of 47.34 kW/cm², spatial-peak temporal-average intensity of 284 W/cm², peak compressional pressure of 102 MPa and peak rarefactional pressure of 17 MPa). The temperature increase for all exposures was measured using a thermal imager immediately after each exposure. Lesion volume increased with increasing amplitude of the preconditioning pulse until coagulation was observed, but lesion width/area did not change significantly with the amplitude. In addition, the lesion dimensions became smaller when the global tissue temperature was raised before applying the histotripsy pulsing sequence. Therefore, the benefit of the preconditioning pulse was not caused by global heating.

  3. Impact of preconditioning pulse on lesion formation during high-intensity focused ultrasound histotripsy.

    PubMed

    Xu, Jin; Bigelow, Timothy A; Riesberg, Grant M

    2012-11-01

    Therapeutic applications with high-intensity focused ultrasound (HIFU) fall into two classifications-one using thermal effect for coagulation or ablation while generally avoiding cavitation and the other using cavitation-mediated mechanical effects while suppressing heating. Representative of the latter, histotripsy uses HIFU at low duty factor to create energetic bubble clouds inside tissue to liquefy a region and has the advantages in real-time monitoring and lesion fidelity to treatment planning. We explored the impact of a preconditioning/heating pulse on histotripsy lesion formation in porcine muscle samples. During sonication, a targeted square region 9 mm wide (lateral to the focal plane) was scanned in a raster pattern with a step size of 0.75 mm. The 20-s exposure at each treatment location consisted of a 5-s duration preconditioning burst at spatial-peak intensities from 0-1386 W/cm² followed by 5000 tone bursts at high intensity (with spatial-peak pulse-average intensity of 47.34 kW/cm², spatial-peak temporal-average intensity of 284 W/cm², peak compressional pressure of 102 MPa and peak rarefactional pressure of 17 MPa). The temperature increase for all exposures was measured using a thermal imager immediately after each exposure. Lesion volume increased with increasing amplitude of the preconditioning pulse until coagulation was observed, but lesion width/area did not change significantly with the amplitude. In addition, the lesion dimensions became smaller when the global tissue temperature was raised before applying the histotripsy pulsing sequence. Therefore, the benefit of the preconditioning pulse was not caused by global heating. PMID:22929656

  4. Physiological effects of two different postactivation potentiation training loads on power profiles generated during high intensity cycle ergometer exercise.

    PubMed

    Parry, Sian; Hancock, Stuart; Shiells, Matthew; Passfield, Louis; Davies, Bruce; Baker, Julien S

    2008-01-01

    The purpose of this study was to investigate whether postactivation potentiation (PAP) would have any effect on high intensity cycle ergometer performance. Two different squatting exercises of different loads were presented in a random fashion prior to ergometric exercise. Seven male rugby players volunteered to participate in the study. There were no significant differences observed between peak power output (PPO) measurements for all three testing conditions (P > 0.05). There were also no differences recorded between mean power outputs (MPOs) and end power outputs (EPOs) (P > 0.05). The decrease in power output (FI %) also was found to be nonsignificant for all conditions (P > 0.05). The findings of this study indicate that performance of repeated heavy squats prior to a 30-second maximal cycle ergometer exercise did not improve the power profiles recorded and did not induce PAP at the time of testing.

  5. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications.

    PubMed

    Buchheit, Martin; Laursen, Paul B

    2013-10-01

    High-intensity interval training (HIT) is a well-known, time-efficient training method for improving cardiorespiratory and metabolic function and, in turn, physical performance in athletes. HIT involves repeated short (<45 s) to long (2-4 min) bouts of rather high-intensity exercise interspersed with recovery periods (refer to the previously published first part of this review). While athletes have used 'classical' HIT formats for nearly a century (e.g. repetitions of 30 s of exercise interspersed with 30 s of rest, or 2-4-min interval repetitions ran at high but still submaximal intensities), there is today a surge of research interest focused on examining the effects of short sprints and all-out efforts, both in the field and in the laboratory. Prescription of HIT consists of the manipulation of at least nine variables (e.g. work interval intensity and duration, relief interval intensity and duration, exercise modality, number of repetitions, number of series, between-series recovery duration and intensity); any of which has a likely effect on the acute physiological response. Manipulating HIT appropriately is important, not only with respect to the expected middle- to long-term physiological and performance adaptations, but also to maximize daily and/or weekly training periodization. Cardiopulmonary responses are typically the first variables to consider when programming HIT (refer to Part I). However, anaerobic glycolytic energy contribution and neuromuscular load should also be considered to maximize the training outcome. Contrasting HIT formats that elicit similar (and maximal) cardiorespiratory responses have been associated with distinctly different anaerobic energy contributions. The high locomotor speed/power requirements of HIT (i.e. ≥95 % of the minimal velocity/power that elicits maximal oxygen uptake [v/p(·)VO(2max)] to 100 % of maximal sprinting speed or power) and the accumulation of high-training volumes at high-exercise intensity (runners can

  6. Impact of baseline lipoprotein and C-reactive protein levels on coronary atheroma regression following high-intensity statin therapy.

    PubMed

    Puri, Rishi; Nissen, Steven E; Shao, Mingyuan; Uno, Kiyoko; Kataoka, Yu; Kapadia, Samir R; Tuzcu, E Murat; Nicholls, Stephen J

    2014-11-15

    Guidelines now recommend high-intensity statin therapy in all patients with proven atherosclerotic disease. Yet the impact of baseline lipoprotein and C-reactive protein (CRP) levels on measures of disease regression to this therapy are unknown. The aim of this study was to test the hypothesis that high-intensity statin therapy causes equivalent degrees of coronary atheroma regression irrespective of baseline lipoprotein and CRP levels. In 8 prospective randomized trials using serial coronary intravascular ultrasound, 1,881 patients who maintained or switched to 18- to 24 months of high-intensity statin therapy (rosuvastatin 40 mg or atorvastatin 80 mg) were stratified according to baseline lipoprotein and CRP levels. Changes in coronary percentage atheroma volume (PAV) and total atheroma volume (TAV) were evaluated. High-intensity statin therapy produced significant reductions from baseline in low-density lipoprotein cholesterol by 38.4%, non-high-density lipoprotein (HDL) cholesterol by 33.6%, triglycerides by 13.1%, and CRP by 33.3%, while increasing HDL cholesterol by 11.7% (p <0.001 for all). This was associated with regression of PAV by 0.7% and of TAV by 8.2 mm(3) (p <0.001 for both). No significant differences of changes in PAV and TAV were observed across baseline quintiles of low-density lipoprotein cholesterol, HDL cholesterol, non-HDL cholesterol, triglycerides, or CRP. Moreover, across all measured lipoproteins and CRP, most patients demonstrated plaque regression (defined as any change from baseline in PAV or TAV <0). In conclusion, high-intensity statin therapy attenuated the natural progression of coronary atherosclerosis in all strata of patients with coronary artery disease irrespective of baseline lipoprotein or CRP levels. These findings provide support for the latest United States guideline recommendations for the broad use of high-intensity statin therapy in all patients with atherosclerosis, regardless of baseline lipid status.

  7. Benchmark of the IMPACT Code for High Intensity Beam DynamicsSimulation

    SciTech Connect

    Qiang, J.; Ryne, R.D.

    2006-11-16

    The IMPACT (Integrated Map and Particle Accelerator Tracking) code was first developed under Computational Grand Challenge project in the mid 1990s [1]. It started as a three-dimensional (3D) data parallel particle-in-cell (PIC) code written in High Performance Fortran. The code used a split-operator based method to solve the Hamiltonian equations of motion. It contained linear transfer maps for drifts, quadrupole magnets and rf cavities. The space-charge forces were calculated using an FFT-based method with 3D open boundary conditions and longitudinal periodic boundary conditions. This code was completely rewritten in the late 1990s based on a message passing parallel programming paradigm using Fortran 90 and MPI following an object-oriented software design. This improved the code's scalability on large parallel computer systems and also gave the code better software maintainability and extensibility [2]. In the following years, under the SciDAC-1 accelerator project, the code was extended to include more accelerating and focusing elements such as DTL, CCL, superconducting linac, solenoid, dipole, multipoles, and others. Besides the original split-operator based integrator, a direct integration of Lorentz equations of motion using a leap-frog algorithm was also added to the IMPACT code to handle arbitrary external nonlinear fields. This integrator can read in 3D electromagnetic fields in a Cartesian grid or in a cylindrical coordinate system. Using the Lorentz integrator, we also extended the original code to handle multiple charge-state beams. The space-charge solvers were also extended to include conducting wall effects for round and rectangular pipes with longitudinal open and periodic boundary conditions. Recently, it has also been extended to handle short-range wake fields (longitudinal monopole and transverse dipole) and longitudinal coherent synchrotron radiation wake fields. Besides the parallel macroparticle tracking code, an rf linac lattice design code

  8. Experimental investigation on dynamic response of aircraft panels excited by high-intensity acoustic loads in thermal environment

    NASA Astrophysics Data System (ADS)

    WU, Z. Q.; LI, H. B.; ZHANG, W.; CHENG, H.; KONG, F. J.; LIU, B. R.

    2016-09-01

    Metallic and composite panels are the major components for thermal protection system of aircraft vehicles, which are exposed to a severe combination of aerodynamic, thermal and acoustic environments during hypersonic flights. A thermal-acoustic testing apparatus which simulates thermal and acoustic loads was used to validate the integrity and the reliability of these panels. Metallic and ceramic matrix composite flat panels were designed. Dynamic response tests of these panels were carried out using the thermal acoustic apparatus. The temperature of the metallic specimen was up to 400 °C, and the temperature of the composite specimen was up to 600 °C. Moreover, the acoustic load was over 160 dB. Acceleration responses of these testing panels were measured using high temperature instruments during the testing process. Results show that the acceleration root mean square values are dominated by sound pressure level of acoustic loads. Compared with testing data in room environment, the peaks of the acceleration dynamic response shifts obviously to the high frequency in thermal environment.

  9. High-Intensity Focused Ultrasound Ablation of Uterine Fibroids – Potential Impact on Fertility and Pregnancy Outcome

    PubMed Central

    Bohlmann, M. K.; Hoellen, F.; Hunold, P.; David, M.

    2014-01-01

    Laparoscopic myomectomy is regarded as the gold standard for women with symptomatic fibroids who wish to become pregnant. High-intensity focused ultrasound (HIFU or MRgFUS) ablation of uterine fibroids is also being discussed as a non-surgical, minimally invasive, therapeutic option. This review examines the available data on the impact of HIFU/MRgFUS on fertility and pregnancy, focusing particularly on potential direct side-effects of this type of intervention on ovaries, fallopian tubes and uterus and potential late effects on pregnancy and birth, based on the current literature. All pregnancies after HIFU/MRgFUS published to date (around 100 cases) were evaluated. The published case series suggest that HIFU/MRgFUS ablation has no impact on the rate of miscarriages or other obstetrical outcome parameters. Because no prospective studies exist which permit firm conclusions to be drawn on the impact of HIFU/MRgFUS on fertility and pregnancy outcome in women with symptomatic fibroids, this approach is currently only recommended for women with suspected fertility problems due to uterine fibroids who either decline surgery or who have an unacceptably high surgical risk. PMID:24741124

  10. Impact of Pre-Plasma on Fast Electron Generation and Transport from Short Pulse High Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Peebles, J.; McGuffey, C.; Krauland, C.; Jarrott, L. C.; Sorokovikova, A.; Qiao, B.; Krasheninnikov, S.; Beg, F. N.; Wei, M. S.; Park, J.; Link, A.; Chen, H.; McLean, H. S.; Wagner, C.; Minello, V.; McCary, E.; Meadows, A.; Spinks, M.; Gaul, E.; Dyer, G.; Hegelich, B. M.; Martinez, M.; Donovan, M.; Ditmire, T.

    2014-10-01

    We present the results and analysis from recent short pulse laser matter experiments using the Texas Petawatt Laser to study the impact of pre-plasma on fast electron generation and transport. The experimental setup consisted of 3 separate beam elements: a main, high intensity, short pulse beam for the interaction, a secondary pulse of equal intensity interacting with a separate thin foil target to generate protons for side-on proton imaging and a third, low intensity, wider beam to generate a varied scale length pre-plasma. The main target consisted of a multilayer planar Al foil with a buried Cu fluor layer. The electron beam was characterized with multiple diagnostics, including several bremsstrahlung spectrometers, magnetic electron spectrometers and Cu-K α imaging. The protons from the secondary target were used to image the fields on the front of the target in the region of laser plasma interaction. Features seen in the interaction region by these protons will be presented along with characteristics of the generated electron beam. This work performed under the auspices of the US DOE under Contracts DE-FOA-0000583 (FES, NNSA).

  11. Development of the experimental procedure to examine the response of carbon fiber-reinforced polymer composites subjected to a high-intensity pulsed electric field and low-velocity impact.

    PubMed

    Hart, Robert J; Zhupanska, Olesya I

    2016-01-01

    A new fully automated experimental setup has been developed to study the response of carbon fiber reinforced polymer (CFRP) composites subjected to a high-intensity pulsed electric field and low-velocity impact. The experimental setup allows for real-time measurements of the pulsed electric current, voltage, impact load, and displacements on the CFRP composite specimens. The setup includes a new custom-built current pulse generator that utilizes a bank of capacitor modules capable of producing a 20 ms current pulse with an amplitude of up to 2500 A. The setup enabled application of the pulsed current and impact load and successfully achieved coordination between the peak of the current pulse and the peak of the impact load. A series of electrical, impact, and coordinated electrical-impact characterization tests were performed on 32-ply IM7/977-3 unidirectional CFRP composites to assess their ability to withstand application of a pulsed electric current and determine the effects of the pulsed current on the impact response. Experimental results revealed that the electrical resistance of CFRP composites decreased with an increase in the electric current magnitude. It was also found that the electrified CFRP specimens withstood higher average impact loads compared to the non-electrified specimens. PMID:26827355

  12. Development of the experimental procedure to examine the response of carbon fiber-reinforced polymer composites subjected to a high-intensity pulsed electric field and low-velocity impact.

    PubMed

    Hart, Robert J; Zhupanska, Olesya I

    2016-01-01

    A new fully automated experimental setup has been developed to study the response of carbon fiber reinforced polymer (CFRP) composites subjected to a high-intensity pulsed electric field and low-velocity impact. The experimental setup allows for real-time measurements of the pulsed electric current, voltage, impact load, and displacements on the CFRP composite specimens. The setup includes a new custom-built current pulse generator that utilizes a bank of capacitor modules capable of producing a 20 ms current pulse with an amplitude of up to 2500 A. The setup enabled application of the pulsed current and impact load and successfully achieved coordination between the peak of the current pulse and the peak of the impact load. A series of electrical, impact, and coordinated electrical-impact characterization tests were performed on 32-ply IM7/977-3 unidirectional CFRP composites to assess their ability to withstand application of a pulsed electric current and determine the effects of the pulsed current on the impact response. Experimental results revealed that the electrical resistance of CFRP composites decreased with an increase in the electric current magnitude. It was also found that the electrified CFRP specimens withstood higher average impact loads compared to the non-electrified specimens.

  13. Development of the experimental procedure to examine the response of carbon fiber-reinforced polymer composites subjected to a high-intensity pulsed electric field and low-velocity impact

    NASA Astrophysics Data System (ADS)

    Hart, Robert J.; Zhupanska, Olesya I.

    2016-01-01

    A new fully automated experimental setup has been developed to study the response of carbon fiber reinforced polymer (CFRP) composites subjected to a high-intensity pulsed electric field and low-velocity impact. The experimental setup allows for real-time measurements of the pulsed electric current, voltage, impact load, and displacements on the CFRP composite specimens. The setup includes a new custom-built current pulse generator that utilizes a bank of capacitor modules capable of producing a 20 ms current pulse with an amplitude of up to 2500 A. The setup enabled application of the pulsed current and impact load and successfully achieved coordination between the peak of the current pulse and the peak of the impact load. A series of electrical, impact, and coordinated electrical-impact characterization tests were performed on 32-ply IM7/977-3 unidirectional CFRP composites to assess their ability to withstand application of a pulsed electric current and determine the effects of the pulsed current on the impact response. Experimental results revealed that the electrical resistance of CFRP composites decreased with an increase in the electric current magnitude. It was also found that the electrified CFRP specimens withstood higher average impact loads compared to the non-electrified specimens.

  14. Impact of high-intensity pulsed electric fields on bioactive compounds in Mediterranean plant-based foods.

    PubMed

    Elez-Martínez, Pedro; Soliva-Fortuny, Robert; Martín-Belloso, Olga

    2009-05-01

    Novel non-thermal processing technologies such as high-intensity pulsed electric field (HIPEF) treatments may be applied to pasteurize plant-based liquid foods as an alternative to conventional heat treatments. In recent years, there has been an increasing interest in HIPEF as a way of preserving and extending the shelf-life of liquid products without the quality damage caused by heat treatments. However, less attention has been paid to the effects of HIPEF on minor constituents of these products, namely bioactive compounds. This review is a state-of-the-art update on the effects of HIPEF treatments on health-related compounds in plants of the Mediterranean diet such as fruit juices, and Spanish gazpacho. The relevance of HIPEF-processing parameters on retaining plant-based bioactive compounds will be discussed.

  15. Exploratory Investigation of Impact Loads During the Forward Handspring Vault

    PubMed Central

    Penitente, Gabriella; Sands, William A.

    2015-01-01

    The purpose of this study was to examine kinematic and kinetic differences in low and high intensity hand support impact loads during a forward handspring vault. A high-speed video camera (500 Hz) and two portable force platforms (500 Hz) were installed on the surface of the vault table. Two-dimensional analyses were conducted on 24 forward handspring vaults performed by 12 senior level, junior Olympic program female gymnasts (16.9 ±1.4 yr; body height 1.60 ±0.1 m; body mass 56.7 ±7.8 kg). Load intensities at impact with the vault table were classified as low (peak force < 0.8 × body weight) and high (peak force > 0.8 × body weight). These vaults were compared via crucial kinetic and kinematic variables using independent t-tests and Pearson correlations. Statistically significant (p < 0.001) differences were observed in peak force (t(24) = 4.75, ES = 3.37) and time to peak force (t(24) = 2.07, ES = 1.56). Statistically significant relationships between the loading rate and time to peak force were observed for high intensity loads. Peak force, time to peak force, and a shoulder angle at impact were identified as primary variables potentially involved in the determination of large repetitive loading rates on the forward handspring vault. PMID:26240649

  16. High Intensity Polarized Electron Gun

    SciTech Connect

    Redwine, Robert P.

    2012-07-31

    The goal of the project was to investigate the possibility of building a very high intensity polarized electron gun for the Electron-Ion Collider. This development is crucial for the eRHIC project. The gun implements a large area cathode, ring-shaped laser beam and active cathode cooling. A polarized electron gun chamber with a large area cathode and active cathode cooling has been built and tested. A preparation chamber for cathode activation has been built and initial tests have been performed. Major parts for a load-lock chamber, where cathodes are loaded into the vacuum system, have been manufactured.

  17. Impact of High-intensity Intermittent and Moderate-intensity Continuous Exercise on Autonomic Modulation in Young Men.

    PubMed

    Cabral-Santos, C; Giacon, T R; Campos, E Z; Gerosa-Neto, J; Rodrigues, B; Vanderlei, L C M; Lira, F S

    2016-06-01

    The aim of this study was to compare heart rate variability (HRV) recovery after two iso-volume (5 km) exercises performed at different intensities. 14 subjects volunteered (25.17±5.08 years; 74.7±6.28 kg; 175±0.05 cm; 59.56±5.15 mL·kg(-1)·min(-1)) and after determination of peak oxygen uptake (VO2Peak) and the speed associated with VO2Peak (sVO2Peak), the subjects completed 2 random experimental trials: high-intensity exercise (HIE - 1:1 at 100% sVO2Peak), and moderate-intensity continuous exercise (MIE - 70% sVO2Peak). HRV and RR intervals were monitored before, during and after the exercise sessions together with, the HRV analysis in the frequency domains (high-frequency - HF: 0.15 to 0.4 Hz and low-frequency - LF: 0.04 to 0.15 Hz components) and the ratio between them (LF/HF). Statistical analysis comparisons between moments and between HIE and MIE were performed using a mixed model. Both exercise sessions modified LFlog, HFlog, and LF/HF (F=16.54, F=19.32 and F=5.17, p<0.05, respectively). A group effect was also found for LFlog (F=23.91, p<0.05), and HFlog (F=57.55, p< 0.05). LF/HF returned to resting value 15 min after MIE exercise and 20 min after HIE exercise. This means that the heavy domain (aerobic and anaerobic threshold) induces dissimilar autonomic modification in physically active subjects. Both HIE and MIE modify HRV, and generally HIE delays parasympathetic autonomic modulation recovery after iso-volume exercise. PMID:26951480

  18. High intensity neutrino beams

    SciTech Connect

    Ichikawa, A. K.

    2015-07-15

    High-intensity proton accelerator complex enabled long baseline neutrino oscillation experiments with a precisely controlled neutrino beam. The beam power so far achieved is a few hundred kW with enourmorous efforts of accelerator physicists and engineers. However, to fully understand the lepton mixing structure, MW-class accelerators are desired. We describe the current intensity-frontier high-energy proton accelerators, their plans to go beyond and technical challenges in the neutrino beamline facilities.

  19. High intensity ultrasound.

    PubMed

    ter Haar, G

    2001-03-01

    High-intensity focused ultrasound (HIFU) is a technique that was first investigated in the 1940s as a method of destroying selective regions within the brain in neuro-surgical An ultrasound beam can be brought to a tight focus at a distance from its source, and if sufficient energy is concentrated within the focus, the cells lying within this focal volume are killed, whereas those lying elsewhere are spared. This is a noninvasive method of producing selective and trackless tissue destruction in deep seated targets in the body, without damage to overlying tissues. This field, known both as HIFU and focused ultrasound surgery (FUS), is reviewed in this article.

  20. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  1. Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise.

    PubMed

    Tsukamoto, Hayato; Suga, Tadashi; Takenaka, Saki; Tanaka, Daichi; Takeuchi, Tatsuya; Hamaoka, Takafumi; Isaka, Tadao; Hashimoto, Takeshi

    2016-03-01

    Aerobic moderate-intensity continuous exercise (MCE) can improve executive function (EF) acutely, potentially through the activation of both physiological and psychological factors. Recently, high-intensity interval exercise (HIIE) has been reported to be more beneficial for physical adaptation than MCE. Factors for EF improvement can potentially be more enhanced by HIIE than by MCE; but the effects of HIIE on EF remain unknown. Therefore, we aimed to examine to what extent HIIE impacts post-exercise EF immediately after exercise and during post-exercise recovery, compared with traditional MCE. Twelve healthy male subjects performed cycle ergometer exercise based on either HIIE or MCE protocols in a randomized and counterbalanced order. The HIIE protocol consisted of four 4-min bouts at 90% of peak VO2 with 3-min active recovery at 60% of peak VO2. A volume-matched MCE protocol was applied at 60% of peak VO2. To evaluate EF, a color-words Stroop task was performed pre- and post-exercise. Improvement in EF immediately after exercise was the same for the HIIE and MCE protocols. However, the improvement of EF by HIIE was sustained during 30 min of post-exercise recovery, during which MCE returned to the pre-exercise level. The EF response in the post-exercise recovery was associated with changes in physiological and psychological responses. The present findings showed that HIIE and MCE were capable of improving EF. Moreover, HIIE could prolong improvement in EF during post-exercise recovery. For the first time, we suggest that HIIE may be more effective strategy than MCE for improving EF.

  2. Direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact.

    PubMed

    Yeow, C H; Lee, P V S; Goh, J C H

    2010-01-19

    Anterior tibial loading is a major factor involved in the anterior cruciate ligament (ACL) injury mechanism during ski impact landing. We sought to investigate the direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact of intact knee joints without quadriceps activation. Twelve porcine knee specimens were procured. Four specimens were used as non-impact control while the remaining eight were mounted onto a material-testing system at 70 degrees flexion and subjected to simulated landing impact, which was successively repeated with incremental actuator displacement. Four specimens from the impacted group underwent pre-impact MRI for tibial plateau angle measurements while the other four were subjected to histology and microCT for cartilage morphology and volume assessment. The tibial plateau angles ranged from 29.4 to 38.8 degrees . There was a moderate linear relationship (Y=0.16X; R(2)=0.64; p<0.001) between peak axial impact compressive load (Y) and peak anterior tibial load (X). The anterior and posterior regions in the impacted group sustained surface cartilage fraying, superficial clefts and tidemark disruption, compared to the control group. MicroCT scans displayed visible cartilage deformation for both anterior and posterior regions in the impacted group. Due to the tibial plateau angle, increased axial impact compressive load can directly elevate anterior tibial load and hence contribute to ACL failure during simulated landing impact. Axial impact compressive load resulted in shear cartilage damage along anterior-posterior tibial plateau regions, due to its contribution to anterior tibial loading. This mechanism plays an important role in elevating ACL stress and cartilage deformation during impact landing.

  3. Differential Impact of Acute High-Intensity Exercise on Circulating Endothelial Microparticles and Insulin Resistance between Overweight/Obese Males and Females

    PubMed Central

    Durrer, Cody; Robinson, Emily; Wan, Zhongxiao; Martinez, Nic; Hummel, Michelle L.; Jenkins, Nathan T.; Kilpatrick, Marcus W.; Little, Jonathan P.

    2015-01-01

    Background An acute bout of exercise can improve endothelial function and insulin sensitivity when measured on the day following exercise. Our aim was to compare acute high-intensity continuous exercise (HICE) to high-intensity interval exercise (HIIE) on circulating endothelial microparticles (EMPs) and insulin sensitivity in overweight/obese men and women. Methods Inactive males (BMI = 30 ± 3, 25 ± 6 yr, n = 6) and females (BMI = 28 ± 2, 21 ± 3 yr, n = 7) participated in three experimental trials in a randomized counterbalanced crossover design: 1) No exercise control (Control); 2) HICE (20 min cycling @ just above ventilatory threshold); 3) HIIE (10 X 1-min @ ∼90% peak aerobic power). Exercise conditions were matched for external work and diet was controlled post-exercise. Fasting blood samples were obtained ∼18 hr after each condition. CD62E+ and CD31+/CD42b- EMPs were assessed by flow cytometry and insulin resistance (IR) was estimated by homeostasis model assessment (HOMA-IR). Results There was a significant sex X exercise interaction for CD62E+ EMPs, CD31+/CD42b- EMPs, and HOMA-IR (all P<0.05). In males, both HICE and HIIE reduced EMPs compared to Control (P≤0.05). In females, HICE increased CD62E+ EMPs (P<0.05 vs. Control) whereas CD31+/CD42b- EMPs were unaltered by either exercise type. There was a significant increase in HOMA-IR in males but a decrease in females following HIIE compared to Control (P<0.05). Conclusions Overweight/obese males and females appear to respond differently to acute bouts of high-intensity exercise. A single session of HICE and HIIE reduced circulating EMPs measured on the morning following exercise in males but in females CD62E+ EMPs were increased following HICE. Next day HOMA-IR paradoxically increased in males but was reduced in females following HIIE. Future research is needed to investigate mechanisms responsible for potential differential responses between males and females. PMID:25710559

  4. Impact of high-intensity pulsed electric fields on carotenoids profile of tomato juice made of moderate-intensity pulsed electric field-treated tomatoes.

    PubMed

    Vallverdú-Queralt, Anna; Odriozola-Serrano, Isabel; Oms-Oliu, Gemma; Lamuela-Raventós, Rosa M; Elez-Martínez, Pedro; Martín-Belloso, Olga

    2013-12-01

    The effect of pulsed electric fields (PEF) on the carotenoid content of tomato juices was studied. First, moderate-intensity PEF (MIPEF) was applied to raw tomatoes. Afterwards, MIPEF-treated and untreated tomatoes were immediately refrigerated at 4 °C for 24 h and then, they were separately ground to produce tomato juices. Juices were treated by heat treatments or by high-intensity PEF (HIPEF) and stored under refrigeration for 56 days. MIPEF treatment of tomatoes increased the content of carotenoid compounds in tomato juices. An enhancement of 63-65% in 15-cis-lycopene was observed in juices prepared with MIPEF-treated tomatoes. A slight increase in cis-lycopene isomers was observed over time, whereas other carotenoids slightly decreased. However, HIPEF treated tomato juices maintained higher carotenoid content (10-20%) through the storage time than thermally and untreated juices. The combination of MIPEF and HIPEF treatments could be used not only to produce tomato juices with high carotenoid content but also, to maintain higher the carotenoid content during storage time. PMID:23871069

  5. Age related vascular endothelial function following lifelong sedentariness: positive impact of cardiovascular conditioning without further improvement following low frequency high intensity interval training

    PubMed Central

    Grace, Fergal M.; Herbert, Peter; Ratcliffe, John W.; New, Karl J.; Baker, Julien S.; Sculthorpe, Nicholas F.

    2015-01-01

    Abstract Aging is associated with diffuse impairments in vascular endothelial function and traditional aerobic exercise is known to ameliorate these changes. High intensity interval training (HIIT) is effective at improving vascular function in aging men with existing disease, but its effectiveness remains to be demonstrated in otherwise healthy sedentary aging. However, the frequency of commonly used HIIT protocols may be poorly tolerated in older cohorts. Therefore, the present study investigated the effectiveness of lower frequency HIIT (LfHIIT) on vascular function in a cohort of lifelong sedentary (SED; n =22, age 62.7 ± 5.2 years) men compared with a positive control group of lifelong exercisers (LEX; n = 17, age 61.1 ± 5.4 years). The study consisted of three assessment phases; enrolment to the study (Phase A), following 6 weeks of conditioning exercise in SED (Phase B) and following 6 weeks of low frequency HIIT in both SED and LEX (LfHIIT; Phase C). Conditioning exercise improved FMD in SED (3.4 ± 1.5% to 4.9 ± 1.1%; P <0.01) such that the difference between groups on enrolment (3.4 ± 1.5% vs. 5.3 ± 1.4%; P <0.01) was abrogated. This was maintained but not further improved following LfHIIT in SED whilst FMD remained unaffected by LfHIIT in LEX. In conclusion, LfHIIT is effective at maintaining improvements in vascular function achieved during conditioning exercise in SED. LfHIIT is a well‐tolerated and effective exercise mode for reducing cardiovascular risk and maintaining but does not improve vascular function beyond that achieved by conditioning exercise in aging men, irrespective of fitness level. PMID:25626864

  6. Impact of low-volume, high-intensity interval training on maximal aerobic capacity, health-related quality of life and motivation to exercise in ageing men.

    PubMed

    Knowles, Ann-Marie; Herbert, Peter; Easton, Chris; Sculthorpe, Nicholas; Grace, Fergal M

    2015-01-01

    There is a demand for effective training methods that encourage exercise adherence during advancing age, particularly in sedentary populations. This study examined the effects of high-intensity interval training (HIIT) exercise on health-related quality of life (HRQL), aerobic fitness and motivation to exercise in ageing men. Participants consisted of males who were either lifelong sedentary (SED; N = 25; age 63 ± 5 years) or lifelong exercisers (LEX; N = 19; aged 61 ± 5 years). [Formula: see text] and HRQL were measured at three phases: baseline (Phase A), week seven (Phase B) and week 13 (Phase C). Motivation to exercise was measured at baseline and week 13. [Formula: see text] was significantly higher in LEX (39.2 ± 5.6 ml kg min(-1)) compared to SED (27.2 ± 5.2 ml kg min(-1)) and increased in both groups from Phase A to C (SED 4.6 ± 3.2 ml kg min(-1), 95 % CI 3.1 - 6.0; LEX 4.9 ± 3.4 ml kg min(-1), 95 % CI 3.1-6.6) Physical functioning (97 ± 4 LEX; 93 ± 7 SED) and general health (70 ± 11 LEX; 78 ± 11 SED) were significantly higher in LEX but increased only in the SED group from Phase A to C (physical functioning 17 ± 18, 95 % CI 9-26, general health 14 ± 14, 95 % CI 8-21). Exercise motives related to social recognition (2.4 ± 1.2 LEX; 1.5 ± 1.0 SED), affiliation (2.7 ± 1.0 LEX; 1.6 ± 1.2 SED) and competition (3.3 ± 1.3 LEX; 2.2 ± 1.1) were significantly higher in LEX yet weight management motives were significantly higher in SED (2.9 ± 1.1 LEX; 4.3 ± 0.5 SED). The study provides preliminary evidence that low-volume HIIT increases perceptions of HRQL, exercise motives and aerobic capacity in older adults, to varying degrees, in both SED and LEX groups.

  7. High intensity portable fluorescent light

    NASA Technical Reports Server (NTRS)

    Kendall, F. B.

    1972-01-01

    Eight high intensity portable fluorescent lights were produced. Three prototype lights were also produced, two of which were subsequently updated to the physical and operational configuration of the qualification and flight units. Positioning of lamp apertures and reflectors in these lights is such that the light is concentrated and intensified in a specific pattern rather than widely diffused. Indium amalgam control of mercury vapor pressure in the lamp gives high output at lamp ambient temperatures up to 105 C. A small amount of amalgam applied to each electrode stem helps to obtain fast warm-up. Shrinking a Teflon sleeve on the tube and potting metal caps on each end of the lamp minimizes dispersion of mercury vapor and glass particles in the event of accidental lamp breakage. Operation at 20 kHz allows the lamps to consume more power than at low frequency, thus increasing their light output and raising their efficiency. When used to expose color photographic film, light from the lamps produces results approximately equal to sunlight.

  8. Delaminations in composite plates under impact loads

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; Springer, George S.

    1991-01-01

    A method is presented for calculating the locations, shapes, and sizes of delaminations which occur in a fiber reinforced composite plate subjected to non-penetrating (low velocity) impact of a solid object. The plate may be simply supported, clamped, or free along its edges. A failure model of the delamination formation was developed. This model was then coupled with a finite element analysis. The model and the finite element analysis were then implemented by a computer code (IMPACT-ST) which can be used to estimate the damage initiation load and the locations, shapes, and sizes of the delaminations. Tests were performed measuring the geometries of the delaminations in graphite-epoxy, graphite-toughened epoxy, and graphite-PEEK plates impacted by a projectile with a spherical tip having masses ranging from 0.355 lbm to 0.963 lbm and velocities from 50 in/sec to 225 in/sec. The data were compared to the results of the model, and good agreements were found between the measured and the calculated delamination lengths and widths.

  9. Reducing environmental impacts through non-uniform loading of casks

    SciTech Connect

    McLeod, N.B.

    1996-12-01

    The purpose of this paper is to provide a scoping-level estimate of the reduction in environmental impacts that could be realized by the use of spent nuclear fuel transportation and storage casks designed and certified for nonuniform loading, as compared to very similar casks designed and certified using current, uniform-loading assumptions. The environmental impacts considered are the total number of cask loadings required, and the radiological impact of those loadings. The results described in this paper are for transportation casks, but the conclusions also apply to storage casks.

  10. Dynamic buckling of stiffened plates subjected to explosion impact loads

    NASA Astrophysics Data System (ADS)

    Wang, J.; Guo, J.; Yao, X. L.; Zhang, A. M.

    2016-03-01

    The dynamic buckling characteristics and criteria of a ship's structural stiffened plate subjected to underwater explosion impact loads are investigated in this study. Using the structural deformations observed in the experiments of underwater explosions against a plated grillage model, the mode shapes of the dynamic buckling were obtained. Through the construction of a computational model of stiffened plates subjected to an underwater explosion shock wave, the impact load was theoretically calculated and transformed into a rectangular pulse. According to the different response patterns of stiffened plates under different impact loads, a dynamic buckling criterion for the stiffened plates subjected to an explosion shock wave was proposed. Additionally, the static buckling phenomenon in the stiffened plates was analysed based on the minimum excess principle. In combination with the dynamic buckling criterion, the effects of various stiffening configurations on the dynamic and static buckling loads are discussed. The calculation results show that when the equivalent rectangular pulse is 2-3 times that of the static buckling load, the responses of the stiffened plates under the original shock load and the equivalent rectangular pulse are virtually identical. The impact load amplitude is the primary influencing factor in the dynamic buckling of stiffened plates subjected to underwater explosive impact loads. The stiffened plate aspect ratio has a substantial influence on the dynamic load factor. The analytical method and results are presented, which can be used to design stiffened optimum hull structures to enhance the dynamic load carrying capacity to withstand underwater shock damage.

  11. Hazards from High Intensity Lamps and Arcs

    NASA Technical Reports Server (NTRS)

    Sliney, D. H.

    1970-01-01

    The principal occupational health problem generally associated with high intensity arc lamps results from exposure of the eye and skin to ultraviolet radiation. Occasionally, the chorioretinal burns are of concern. The eye is generally more susceptible than the skin to injury from high intensity optical radiation sources whether ultraviolet, visible or infrared. Recent developments in technology have shown that some high intensity optical radiation sources which have output parameters greatly different from those encountered in the natural environment present a serious chorioretinal burn hazard.

  12. High-Intensity Plasma Glass Melter

    SciTech Connect

    2004-01-01

    Modular high-intensity plasma melter promises improved performance, reduced energy use, and lower emissions. The glass industry has used the same basic equipment for melting glass for the past 100 years.

  13. High-intensity and resistance training and elite young athletes.

    PubMed

    Ratel, Sébastien

    2011-01-01

    Although in the past resistance and high-intensity exercise training among young children was the subject of numerous controversies, it is now well-documented that this training mode is a safe and effective means of developing maximal strength, maximal power output and athletic performance in youth, provided that exercises are performed with appropriate supervision and precautions. Muscular strength and power output values measured from vertical jump and Wingate anaerobic tests are higher in elite than in non-elite young athletes and normal children, and the specific training effects on maximal power output normalised for body size are clearly more distinct before puberty. At present, there is no scientific evidence to support the view that high-intensity and/or resistance training might hinder growth and maturation in young children. Pre-pubertal growth is not adversely affected by sport at a competitive level and anthropometric factors are of importance for choice of sport in children. However, coaches, teachers and parents should be aware that unsupervised high-intensity and resistance training programmes involving maximal loads or too frequently repeated resistance exercises increase the risk of injury. Resistance training alone is an effective additional means of developing athletic performance throughout planned youth sports training programmes. Strategies for enhancing the effectiveness and safety of youth resistance and high-intensity exercise training are discussed in this chapter. PMID:21178368

  14. Precast concrete sandwich panels subjected to impact loading

    NASA Astrophysics Data System (ADS)

    Runge, Matthew W.

    Precast concrete sandwich panels are a relatively new product in the construction industry. The design of these panels incorporates properties that allow for great resilience against temperature fluctuation as well as the very rapid and precise construction of facilities. The concrete sandwich panels investigated in this study represent the second generation of an ongoing research and development project. This second generation of panels have been engineered to construct midsized commercial buildings up to three stories in height as well as residential dwellings. The panels consist of a double-tee structural wythe, a foam core and a fascia wythe, joined by shear connectors. Structures constructed from these panels may be subjected to extreme loading including the effects of seismic and blast loading in addition to wind. The aim of this work was to investigate the behaviour of this particular sandwich panel when subjected to structural impact events. The experimental program consisted of fourteen concrete sandwich panels, five of which were considered full-sized specimens (2700 mm X 1200mm X 270 mm) and nine half-sized specimens (2700mm X 600mm X 270 mm) The panels were subjected to impact loads from a pendulum impact hammer where the total energy applied to the panels was varied by changing the mass of the hammer. The applied loads, displacements, accelerations, and strains at the mid-span of the panel as well as the reaction point forces were monitored during the impact. The behaviour of the panels was determined primarily from the experimental results. The applied loads at low energy levels that caused little to no residual deflection as well as the applied loads at high energy levels that represent catastrophic events and thus caused immediate failure were determined from an impact on the structural and the fascia wythes. Applied loads at intermediate energy levels representing extreme events were also used to determine whether or not the panels could withstand

  15. Rapidly pulsed, high intensity, incoherent light source

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1974-01-01

    A rapid pulsing, high intensity, incoherent light is produced by selectively energizing a plurality of discharge lamps with a triggering circuit. Each lamp is connected to a capacitor, and a power supply is electrically connected to all but one of the capacitors. This last named capacitor is electrically connected to a discharge lamp which is connected to the triggering circuit.

  16. Impact of discharge data uncertainty on nutrient load uncertainty

    NASA Astrophysics Data System (ADS)

    Westerberg, Ida; Gustavsson, Hanna; Sonesten, Lars

    2016-04-01

    Uncertainty in the rating-curve model of the stage-discharge relationship leads to uncertainty in discharge time series. These uncertainties in turn affect many other analyses based on discharge data, such as nutrient load estimations. It is important to understand how large the impact of discharge data uncertainty is on such analyses, since they are often used as the basis to take important environmental management decisions. In the Baltic Sea basin, nutrient load estimates from river mouths are a central information basis for managing and reducing eutrophication in the Baltic Sea. In this study we investigated rating curve uncertainty and its propagation to discharge data uncertainty and thereafter to uncertainty in the load of phosphorous and nitrogen for twelve Swedish river mouths. We estimated rating curve uncertainty using the Voting Point method, which accounts for random and epistemic errors in the stage-discharge relation and allows drawing multiple rating-curve realisations consistent with the total uncertainty. We sampled 40,000 rating curves, and for each sampled curve we calculated a discharge time series from 15-minute water level data for the period 2005-2014. Each discharge time series was then aggregated to daily scale and used to calculate the load of phosphorous and nitrogen from linearly interpolated monthly water samples, following the currently used methodology for load estimation. Finally the yearly load estimates were calculated and we thus obtained distributions with 40,000 load realisations per year - one for each rating curve. We analysed how the rating curve uncertainty propagated to the discharge time series at different temporal resolutions, and its impact on the yearly load estimates. Two shorter periods of daily water quality sampling around the spring flood peak allowed a comparison of load uncertainty magnitudes resulting from discharge data with those resulting from the monthly water quality sampling.

  17. Fundamental Physics Explored with High Intensity Laser

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Homma, K.

    2012-10-01

    Over the last century the method of particle acceleration to high energies has become the prime approach to explore the fundamental nature of matter in laboratory. It appears that the latest search of the contemporary accelerator based on the colliders shows a sign of saturation (or at least a slow-down) in increasing its energy and other necessary parameters to extend this frontier. We suggest two pronged approach enabled by the recent progress in high intensity lasers. First we envision the laser-driven plasma accelerator may be able to extend the reach of the collider. For this approach to bear fruit, we need to develop the technology of high averaged power laser in addition to the high intensity. For this we mention that the latest research effort of ICAN is an encouraging sign. In addition to this, we now introduce the concept of the noncollider paradigm in exploring fundamental physics with high intensity (and large energy) lasers. One of the examples we mention is the laser wakefield acceleration (LWFA) far beyond TeV without large luminosity. If we relax or do not require the large luminosity necessary for colliders, but solely in ultrahigh energy frontier, we are still capable of exploring such a fundamental issue. Given such a high energetic particle source and high-intensity laser fields simultaneously, we expect to be able to access new aspects on the matter and the vacuum structure from fundamental physical point of views. LWFA naturally exploits the nonlinear optical effects in the plasma when it becomes of relativistic intensity. Normally nonlinear optical effects are discussed based upon polarization susceptibility of matter to external fields. We suggest application of this concept even to the vacuum structure as a new kind of order parameter to discuss vacuum-originating phenomena at semimacroscopic scales. This viewpoint unifies the following observables with the unprecedented experimental environment we envision; the dispersion relation of

  18. Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loadings

    SciTech Connect

    Lee, S.; Churchfield, M.; Moriarty, P.; Jonkman, J.; Michalakes, J.

    2012-01-01

    Large-eddy simulations of atmospheric boundary layers under various stability and surface roughness conditions are performed to investigate the turbulence impact on wind turbines. In particular, the aeroelastic responses of the turbines are studied to characterize the fatigue loading of the turbulence present in the boundary layer and in the wake of the turbines. Two utility-scale 5-MW turbines that are separated by seven rotor diameters are placed in a 3 km by 3 km by 1 km domain. They are subjected to atmospheric turbulent boundary layer flow and data is collected on the structural response of the turbine components. The surface roughness was found to increase the fatigue loads while the atmospheric instability had a small influence. Furthermore, the downstream turbines yielded higher fatigue loads indicating that the turbulent wakes generated from the upstream turbines have significant impact.

  19. Migration impact on load balancing - an experience on Amoeba

    SciTech Connect

    Zhu, W.; Socko, P.

    1996-12-31

    Load balancing has been extensive study by simulation, positive results were received in most of the researches. With the increase of the availability oftlistributed systems, a few experiments have been carried out on different systems. These experimental studies either depend on task initiation or task initiation plus task migration. In this paper, we present the results of an 0 study of load balancing using a centralizedpolicy to manage the load on a set of processors, which was carried out on an Amoeba system which consists of a set of 386s and linked by 10 Mbps Ethernet. The results on one hand indicate the necessity of a load balancing facility for a distributed system. On the other hand, the results question the impact of using process migration to increase system performance under the configuration used in our experiments.

  20. Impact of thermal loading on waste package material performance

    SciTech Connect

    Stahl, D.; McCoy, J.K.; McCright, R.D.

    1995-12-31

    This report focuses on the prediction of materials performance for the carbon steel corrosion-allowance container as a function of thermal loading for the potential repository at Yucca Mountain. Low, intermediate and high thermal loads were evaluated as to their performance given assumptions regarding the temperature and humidity changes with time and the resultant depth of corrosion penetration. The reference case involved a kinetic relation for corrosion that was utilized in a sensitivity analysis to examine the impacts of time exponent, pitting, and mirobiologically-influenced corrosion. As a result of this study, the high thermal load appears to offer the best corrosion performance. However, other factors must be considered in making the final thermal loading decision.

  1. Magnets for high intensity proton synchrotrons

    SciTech Connect

    Jean-Francois Ostiguy, Vladimir Kashikhine and Alexander Makarov

    2002-09-19

    Recently, there has been considerable interest at Fermilab for the Proton Driver, a future high intensity proton machine. Various scenarios are under consideration, including a superconducting linac. Each scenario present some special challenges. We describe here the magnets proposed in a recent study, the Proton Driver Study II, which assumes a conventional warm synchrotron, roughly of the size of the existing FNAL booster, but capable of delivering 380 kW at 8 GeV.

  2. Survey of proposed high intensity accelerators and their applications

    SciTech Connect

    Schriber, S.O.

    1994-09-01

    Many interesting applications are being considered for high intensity accelerators. Implications of the technology developments that are enhancing these opportunities, or making them possible, will be covered in context of the applications. Applications include those for research (in areas such as material science, biological sciences, nuclear and high energy physics), accelerator-driven transmutation technologies, defense, and medicine. Specific examples will be used to demonstrate the impact that technology development can have and how transfer of this technology to industry can have an impact in the consumer and commercial arenas. Technology Development in rf power, controls, beam optics, rf structures, magnets, injectors, and beam halos will be considered.

  3. Attrition of limestone by impact loading in fluidized beds

    SciTech Connect

    Fabrizio Scala; Fabio Montagnaro; Piero Salatino

    2007-09-15

    The present study addresses limestone attrition and fragmentation associated with impact loading, a process which may occur extensively in various regions of fluidized bed (FB) combustors/gasifiers, primarily the jetting region of the bottom bed, the exit region of the riser, and the cyclone. An experimental protocol for the characterization of the propensity of limestone to undergo attrition/fragmentation by impact loading is reported. The application of the protocol is demonstrated with reference to an Italian limestone whose primary fragmentation and attrition by surface wear have already been characterized in previous studies. The experimental procedure is based on the characterization of the amount and particle size distribution of the debris generated upon the impact of samples of sorbent particles against a target. Experiments were carried out at a range of particle impact velocities between 10 and 45 m/s, consistent with jet velocities corresponding to typical pressure drops across FB gas distributors. The protocol has been applied to either raw or preprocessed limestone samples. In particular, the effect of calcination, sulfation, and calcination/recarbonation cycles on the impact damage suffered by sorbent particles has been assessed. The measurement of particle voidage and pore size distribution by mercury intrusion was also accomplished to correlate fragmentation with the structural properties of the sorbent samples. Fragmentation by impact loading of the limestone is significant. Lime displays the largest propensity to undergo impact damage, followed by the sorbent sulfated to exhaustion, the recarbonated sorbent, and the raw limestone. Fragmentation of the raw limestone and of the sulfated lime follows a pattern typical of the failure of brittle materials. The fragmentation behavior of lime and recarbonated lime better conforms to a disintegration failure mode, with an extensive generation of very fine fragments. 27 refs., 9 figs. 1 tab.

  4. High intensity, pulsed thermal neutron source

    DOEpatents

    Carpenter, J.M.

    1973-12-11

    This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)

  5. Load and wear experiments on the impact hammer of a vertical shaft impact crusher

    NASA Astrophysics Data System (ADS)

    Yang, J. H.; Fang, H. Y.; Luo, M.

    2015-12-01

    Impact hammers are important components of impact crushers, and are often shortlived due to the high-impact nature of their use. Wear-resistant alloys are welded to the surface of impact hammers to prolong their service life. In this paper, a simulation model of the rotor and impact hammers in impact crushers was designed to utilize the Discrete Element Method (DEM). The wear-resistant alloy on each impact hammer was divided into twenty-two action regions. The load distribution on each alloy block is affected by the structural and manufacturing parameters of the impact crusher. The wear distribution of the impact hammer was measured by shape morphology according to relative impact crushers. The results demonstrated that the real measurements of wear distribution on the impact hammer were similar to simulated load distribution measurements on the same surface. The study of load distribution of impact hammers by DEM established a theoretical foundation on which to base the optimal design of impact crushers.

  6. High intensity discharge device containing oxytrihalides

    DOEpatents

    Lapatovich, Walter P.; Keeffe, William M.; Liebermann, Richard W.; Maya, Jakob

    1987-01-01

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO.sub.2, with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube.

  7. High intensity discharge device containing oxytrihalides

    DOEpatents

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  8. Fracture characteristics of concrete subjected to impact loading

    NASA Astrophysics Data System (ADS)

    Liu, Haifeng; Liu, Haiyan; Song, Weidong

    2010-02-01

    This paper takes concrete as a four-phase composite made of the intact matrix and three mutually perpendicular groups of penny-shaped micro-cracks. The intact matrix is assumed to be elastic, homogeneous and isotropic, and the micro-cracks are penny-shaped. Combined with the failure mechanism of concrete subjected to impact loading, a dynamic constitutive model for concrete is developed based on Mori-Tanaka’s average stress concept and Eshelby’s equivalent inclusion theory. Experimental results show that concrete is rate-dependent. The model predictions are in good agreement with the experimental results. The model may be used to simulate the mechanical behavior of concrete under impact loadings.

  9. Thermomechanical Response of HMX Polycrystals to Simulated Impact Loading

    NASA Astrophysics Data System (ADS)

    Hardin, D.; Rimoli, Julian; Zhou, Min

    2013-06-01

    A framework for analyzing the thermo-mechanical response of ensembles of HMX crystals to impact loading is presented. The effects of material microstructure and anisotropy on heating and stress evolution are investigated. The model accounts for anisotropic elasticity, crystalline plasticity, and thermal conduction. Simulations carried out concern the response of fully dense HMX polycrystalline ensembles under loading at impact velocities from 50 - 400 m/s. Herein, the effect of the inherent anisotropies on the energy and stress localization in an HMX based PBX is quantified. The results show that when local stress and temperature states are critical, such as energetic composites, modeling the crystalline anisotropy of the constituents is essential to capturing the whole range of states experienced by the material.

  10. The strength of laminated composite materials under repeated impact loading

    NASA Technical Reports Server (NTRS)

    Rotem, Assa

    1988-01-01

    When low velocity and energy impact is exerted on a laminated composite material, in a perpendicular direction to the plane of the laminate, invisible damage may develop. It is shown analytically and experimentally that the invisible damage occurs during the first stage of contact between the impactor and the laminate and is a result of the contact stresses. However, the residual flexural strength changes only slightly, because it depends mainly on the outer layers, and these remain undamaged. Repeated impact intensifies the damage inside the laminate and causes larger bending under equivalent impact load. Finally, when the damage is most severe, even though it is still invisible, the laminate fails because of bending on the tension side. If the repeated impact is halted before final fracture occurs the residual strength and modulus would decrease by a certain amount.

  11. Numerical and Experimental Studies on Impact Loaded Concrete Structures

    SciTech Connect

    Saarenheimo, Arja; Hakola, Ilkka; Karna, Tuomo; Hyvarinen, Juhani

    2006-07-01

    An experimental set-up has been constructed for medium scale impact tests. The main objective of this effort is to provide data for the calibration and verification of numerical models of a loading scenario where an aircraft impacts against a nuclear power plant. One goal is to develop and take in use numerical methods for predicting response of reinforced concrete structures to impacts of deformable projectiles that may contain combustible liquid ('fuel'). Loading, structural behaviour, like collapsing mechanism and the damage grade, will be predicted by simple analytical methods and using non-linear FE-method. In the so-called Riera method the behavior of the missile material is assumed to be rigid plastic or rigid visco-plastic. Using elastic plastic and elastic visco-plastic material models calculations are carried out by ABAQUS/Explicit finite element code, assuming axisymmetric deformation mode for the missile. With both methods, typically, the impact force time history, the velocity of the missile rear end and the missile shortening during the impact were recorded for comparisons. (authors)

  12. Impact of high biomass loading on ionic liquid pretreatment

    PubMed Central

    2013-01-01

    Background Ionic liquid (IL) pretreatment has shown great potential as a novel pretreatment technology with high sugar yields. To improve process economics of pretreatment, higher biomass loading is desirable. The goal of this work is to establish, the impact of high biomass loading of switchgrass on IL pretreatment in terms of viscosity, cellulose crystallinity, chemical composition, saccharification kinetics, and sugar yield. Results The pretreated switchgrass/IL slurries show frequency dependent shear thinning behavior. The switchgrass/IL slurries show a crossover from viscous behavior at 3 wt% to elastic behavior at 10 wt%. The relative glucan content of the recovered solid samples is observed to decrease with increasing levels of lignin and hemicelluloses with increased biomass loading. The IL pretreatment led to a transformation of cellulose crystalline structure from I to II for 3, 10, 20 and 30 wt% samples, while a mostly amorphous structure was found for 40 and 50 wt% samples. Conclusions IL pretreatment effectively reduced the biomass recalcitrance at loadings as high as 50 wt%. Increased shear viscosity and a transition from ‘fluid’ like to ‘solid’ like behavior was observed with increased biomass loading. At high biomass loadings shear stress produced shear thinning behavior and a reduction in viscosity by two orders of magnitude, thereby reducing the complex viscosity to values similar to lower loadings. The rheological properties and sugar yields indicate that 10 to 50 wt% may be a reasonable and desirable target for IL pretreatment under certain operating conditions. PMID:23578017

  13. Delaminations in composite plates under transverse static or impact loads

    SciTech Connect

    Finn, S.R.

    1991-01-01

    A method is presented for calculating the locations, shapes, and sizes of delaminations which occur in a fiber reinforced composite plate subjected to transverse static or dynamic (impact) loads. The plate may be simply supported, clamped, or free along its edges. A failure model of the delamination formation was developed. This model was then coupled with a finite element analysis. The model and the finite element analysis were then implemented by a computer code (IMPACT-ST) which can be used to estimate the load at which damage initiates as well as the locations, shapes, and sizes of the delaminations. Test were also performed measuring the geometries of delaminations in Fiberite T300/976 graphite-epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite-PEEK plates subjected to transverse static and impact loads. The data were compared to results of the model and good agreements were found between the measured and calculated delamination lengths and widths.

  14. High intensity line source for x-ray spectrometer calibration

    SciTech Connect

    Thoe, R.S.

    1986-06-01

    A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 ..mu.. x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10/sup 4/) time-resolved cyrstal spectrometer, will be discussed in detail.

  15. DEFORMATION CHARACTERISTICS OF CRUSHED-STONE LAYER UNDER CYCLIC IMPACT LOADING FROM MICRO-MECHANICAL VIEW

    NASA Astrophysics Data System (ADS)

    Kono, Akiko; Matsushima, Takashi

    'Hanging sleepers', which have gaps between sleepers and ballast layer are often found in the neighborhood of rail joints or rugged surface rails. This suggests that differential settlement of the ballast layer is due to impact loading generated by the contact between running wheel and rugged surface rail. Then cyclic loading tests were performed on crushed-stone layer with two loading patterns, the one is a cyclic impact loading and the other one is cyclic 'standard' loading controlled at 1/10 loading velocity of the impact loading. It was shown that the crashed-stone layer deforms with volumetric expansion during every off-loading processes under the cyclic impact loading. This phenomena prevents crushed stone layer from forming stable grain columns, then the residual settlement under the cyclic impact loading is larger than that under the cyclic 'standard' loading. A simple mass-spring model simulates that two masses move in the opposite direction with increased frequency of harmonic excitation.

  16. The High Intensity Horizon at Fermilab

    SciTech Connect

    Tschirhart, R.S.; /Fermilab

    2012-05-01

    Fermilab's high intensity horizon is 'Project-X' which is a US led initiative with strong international participation that aims to realize a next generation proton source that will dramatically extend the reach of Intensity Frontier research. The Project-X research program includes world leading sensitivity in long-baseline and short-baseline neutrino experiments, a rich program of ultra-rare muon and kaon decays, opportunities for next-generation electric dipole moment experiments and other nuclear/particle physics probes, and a platform to investigate technologies for next generation energy applications. A wide range of R&D activities has supported mission critical accelerator subsystems, such as high-gradient superconducting RF accelerating structures, efficient RF power systems, cryo-modules and cryogenic refrigeration plants, advanced beam diagnostics and instrumentation, high-power targetry, as well as the related infrastructure and civil construction preparing for a construction start of a staged program as early as 2017.

  17. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    NASA Astrophysics Data System (ADS)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  18. The impact of cognitive load on reward evaluation.

    PubMed

    Krigolson, Olave E; Hassall, Cameron D; Satel, Jason; Klein, Raymond M

    2015-11-19

    The neural systems that afford our ability to evaluate rewards and punishments are impacted by a variety of external factors. Here, we demonstrate that increased cognitive load reduces the functional efficacy of a reward processing system within the human medial-frontal cortex. In our paradigm, two groups of participants used performance feedback to estimate the exact duration of one second while electroencephalographic (EEG) data was recorded. Prior to performing the time estimation task, both groups were instructed to keep their eyes still and avoid blinking in line with well established EEG protocol. However, during performance of the time-estimation task, one of the two groups was provided with trial-to-trial-feedback about their performance on the time-estimation task and their eye movements to induce a higher level of cognitive load relative to participants in the other group who were solely provided with feedback about the accuracy of their temporal estimates. In line with previous work, we found that the higher level of cognitive load reduced the amplitude of the feedback-related negativity, a component of the human event-related brain potential associated with reward evaluation within the medial-frontal cortex. Importantly, our results provide further support that increased cognitive load reduces the functional efficacy of a neural system associated with reward processing. PMID:26431993

  19. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  20. Damage in woven CFRP laminates under impact loading

    NASA Astrophysics Data System (ADS)

    Ullah, H.; Harland, A. R.; Silberschmidt, V. V.

    2012-08-01

    Carbon fibre-reinforced polymer (CFRP) composites used in sports products can be exposed to different in-service conditions such as large dynamic bending deformations caused by impact loading. Composite materials subjected to such loads demonstrate various damage modes such as matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution affects both in-service properties and performance of CFRP that can deteriorate with time. These failure modes need adequate means of analysis and investigation, the major approaches being experimental characterisation and numerical simulations. This research deals with a deformation behaviour and damage in composite laminates due to dynamic bending. Experimental tests are carried out to characterise the behaviour of a woven CFRP material under large-deflection dynamic bending in impact tests carried out to obtain the force-time and absorbed energy profiles for CFRP laminates. Damage in the impacted laminates is analysed using optical microscopy. Numerical simulations are performed to study the deformation behaviour and damage in CFRP for cases of large-deflection bending based on three-dimensional finite-element models implemented in the commercial code Abaqus/Explicit. Multiple layers of bilinear cohesive-zone elements are employed to model the initiation and progression of inter-ply delamination observed in the microscopy studies. The obtained results of simulations show good agreement with experimental data.

  1. Testing and simulation of composite laminates under impact loading

    NASA Astrophysics Data System (ADS)

    Dang, Xinglai

    Owing to their high stiffness-to-weight and high strength-to-weight ratios, fiber-reinforced polymer-matrix composite laminates are excellent materials for high-performance structures. However, their properties in the thickness direction are very poor as they are weakly bonded by polymeric matrices through laminate interfaces. Accordingly, when a composite laminate is subjected to impact loading, high interlaminar stresses along with the low interlaminar strengths could easily result in interlaminar damage such as delamination. This thesis investigated the response of composite laminates under low-velocity impact and presented numerical techniques for impact simulation. To begin with, instrumented drop-weight impacts ranging from subperforation to perforation levels were introduced to composite laminates having various dimensions and thicknesses. Damaged composite laminates were then subjected to compression-after-impact tests for evaluations of residual properties. Experimental results revealed that perforation was an important damage milestone since impact parameters such as peak force, contact duration, maximum deflection and energy absorption, and residual properties such as compressive stiffness, strength and energy absorption all reached critical levels as perforation took place. It was also found that thickness played a more important role than in-plane dimensions in perforation process. In order to understand more about the relationship between laminate thickness and perforation resistance and to present an economical method to improve perforation resistance, thick laminated composite plates and their assembled counterparts were investigated and compared. An energy profile correlating the impact energy and absorbed energy at all energy levels for each type of composite plates investigated was established and found to be able to address the relationship between energy and damage. Experimental results concluded that increasing thickness was more efficient

  2. Delaminations in composite plates under transverse impact loads - Experimental results

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; He, Ye-Fei; Springer, George S.

    1993-01-01

    Tests were performed measuring the locations and geometries of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite/PEEK plates subjected to transverse impact loads. The data provide specific information on the effects of impactor velocity, impactor mass, material, thickness of back ply group, difference in fiber orientation between adjacent ply groups, plate thickness, and impactor nose radius. The data were compared to the results of the Finn-Springer model. The model was found to describe the data with reasonable accuracy.

  3. Delaminations in composite plates under transverse impact loads - Experimental results

    NASA Astrophysics Data System (ADS)

    Finn, Scott R.; He, Ye-Fei; Springer, George S.

    Tests were performed measuring the locations and geometries of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite/PEEK plates subjected to transverse impact loads. The data provide specific information on the effects of impactor velocity, impactor mass, material, thickness of back ply group, difference in fiber orientation between adjacent ply groups, plate thickness, and impactor nose radius. The data were compared to the results of the Finn-Springer model. The model was found to describe the data with reasonable accuracy.

  4. BEAM LOSS MECHANISMS IN HIGH INTENSITY LINACS

    SciTech Connect

    Plum, Michael A

    2012-01-01

    In the present operation of the Oak Ridge Spallation Neutron Source, 60-Hz, 825-us H beam pulses are accelerated to 910 MeV, and then compressed to less than a microsecond in the storage ring, to deliver 1 MW of beam power to the spallation target. The beam loss in the superconducting portion of the linac is higher than expected, and it has shown a surprising counter-intuitive correlation with quadrupole magnetic fields, with a loss minimum occurring when the quadrupoles are set to approximately half their design values. This behavior can now be explained by a recent set of experiments that show the beam loss is primarily due to intra-beam stripping. Beam halo is another important beam loss contributor, and collimation in the 2.5 MeV Medium Energy Beam Transport has proven to be an effective mitigation strategy. In this presentation, we will summarize these and other beam loss mechanisms that are important for high intensity linacs.

  5. High intensity neutrino oscillation facilities in Europe

    NASA Astrophysics Data System (ADS)

    Edgecock, T. R.; Caretta, O.; Davenne, T.; Densam, C.; Fitton, M.; Kelliher, D.; Loveridge, P.; Machida, S.; Prior, C.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Wildner, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoni, S.; Hansen, C.; Benedetto, E.; Jensen, E.; Kosmicki, A.; Martini, M.; Osborne, J.; Prior, G.; Stora, T.; Melo Mendonca, T.; Vlachoudis, V.; Waaijer, C.; Cupial, P.; Chancé, A.; Longhin, A.; Payet, J.; Zito, M.; Baussan, E.; Bobeth, C.; Bouquerel, E.; Dracos, M.; Gaudiot, G.; Lepers, B.; Osswald, F.; Poussot, P.; Vassilopoulos, N.; Wurtz, J.; Zeter, V.; Bielski, J.; Kozien, M.; Lacny, L.; Skoczen, B.; Szybinski, B.; Ustrycka, A.; Wroblewski, A.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophine, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Burt, G.; Dexter, A. C.; Kravchuk, V. L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Laveder, M.; Mazzocco, M.; Mezzetto, M.; Signorini, C.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Migliozzi, P.; Moro, R.; Palladino, V.; Gelli, N.; Berkovits, D.; Hass, M.; Hirsh, T. Y.; Schaumann, M.; Stahl, A.; Wehner, J.; Bross, A.; Kopp, J.; Neuffer, D.; Wands, R.; Bayes, R.; Laing, A.; Soler, P.; Agarwalla, S. K.; Cervera Villanueva, A.; Donini, A.; Ghosh, T.; Gómez Cadenas, J. J.; Hernández, P.; Martín-Albo, J.; Mena, O.; Burguet-Castell, J.; Agostino, L.; Buizza-Avanzini, M.; Marafini, M.; Patzak, T.; Tonazzo, A.; Duchesneau, D.; Mosca, L.; Bogomilov, M.; Karadzhov, Y.; Matev, R.; Tsenov, R.; Akhmedov, E.; Blennow, M.; Lindner, M.; Schwetz, T.; Fernández Martinez, E.; Maltoni, M.; Menéndez, J.; Giunti, C.; González García, M. C.; Salvado, J.; Coloma, P.; Huber, P.; Li, T.; López Pavón, J.; Orme, C.; Pascoli, S.; Meloni, D.; Tang, J.; Winter, W.; Ohlsson, T.; Zhang, H.; Scotto-Lavina, L.; Terranova, F.; Bonesini, M.; Tortora, L.; Alekou, A.; Aslaninejad, M.; Bontoiu, C.; Kurup, A.; Jenner, L. J.; Long, K.; Pasternak, J.; Pozimski, J.; Back, J. J.; Harrison, P.; Beard, K.; Bogacz, A.; Berg, J. S.; Stratakis, D.; Witte, H.; Snopok, P.; Bliss, N.; Cordwell, M.; Moss, A.; Pattalwar, S.; Apollonio, M.

    2013-02-01

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ- beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.

  6. High-Intensity Sweeteners and Energy Balance

    PubMed Central

    Swithers, Susan E.; Martin, Ashley A.; Davidson, Terry L.

    2010-01-01

    Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance. PMID:20060008

  7. Portable, high intensity isotopic neutron source provides increased experimental accuracy

    NASA Technical Reports Server (NTRS)

    Mohr, W. C.; Stewart, D. C.; Wahlgren, M. A.

    1968-01-01

    Small portable, high intensity isotopic neutron source combines twelve curium-americium beryllium sources. This high intensity of neutrons, with a flux which slowly decreases at a known rate, provides for increased experimental accuracy.

  8. Impact of Hydroxychloroquine-Loaded Polyurethane Intravaginal Rings on Lactobacilli

    PubMed Central

    Traore, Yannick Leandre; Chen, Yufei; Bernier, Anne-Marie

    2015-01-01

    The use of polymeric devices for controlled sustained delivery of drugs is a promising approach for the prevention of HIV-1 infection. Unfortunately, certain microbicides, when topically applied vaginally, may be cytotoxic to vaginal epithelial cells and the protective microflora present within the female genital tract. In this study, we evaluated the impact of hydroxychloroquine (HCQ)-loaded, reservoir-type, polyurethane intravaginal rings (IVRs) on the growth of Lactobacillus crispatus and Lactobacillus jensenii and on the viability of vaginal and ectocervical epithelial cells. The IVRs were fabricated using hot-melt injection molding and were capable of providing controlled release of HCQ for 24 days, with mean daily release rates of 17.01 ± 3.6 μg/ml in sodium acetate buffer (pH 4) and 29.45 ± 4.84 μg/ml in MRS broth (pH 6.2). Drug-free IVRs and the released HCQ had no significant effects on bacterial growth or the viability of vaginal or ectocervical epithelial cells. Furthermore, there was no significant impact on the integrity of vaginal epithelial cell monolayers, in comparison with controls, as measured by transepithelial electrical resistance. Overall, this is the first study to evaluate the effects of HCQ-loaded IVRs on the growth of vaginal flora and the integrity of vaginal epithelial cell monolayers. PMID:26416871

  9. Impact of Hydroxychloroquine-Loaded Polyurethane Intravaginal Rings on Lactobacilli.

    PubMed

    Traore, Yannick Leandre; Chen, Yufei; Bernier, Anne-Marie; Ho, Emmanuel A

    2015-12-01

    The use of polymeric devices for controlled sustained delivery of drugs is a promising approach for the prevention of HIV-1 infection. Unfortunately, certain microbicides, when topically applied vaginally, may be cytotoxic to vaginal epithelial cells and the protective microflora present within the female genital tract. In this study, we evaluated the impact of hydroxychloroquine (HCQ)-loaded, reservoir-type, polyurethane intravaginal rings (IVRs) on the growth of Lactobacillus crispatus and Lactobacillus jensenii and on the viability of vaginal and ectocervical epithelial cells. The IVRs were fabricated using hot-melt injection molding and were capable of providing controlled release of HCQ for 24 days, with mean daily release rates of 17.01 ± 3.6 μg/ml in sodium acetate buffer (pH 4) and 29.45 ± 4.84 μg/ml in MRS broth (pH 6.2). Drug-free IVRs and the released HCQ had no significant effects on bacterial growth or the viability of vaginal or ectocervical epithelial cells. Furthermore, there was no significant impact on the integrity of vaginal epithelial cell monolayers, in comparison with controls, as measured by transepithelial electrical resistance. Overall, this is the first study to evaluate the effects of HCQ-loaded IVRs on the growth of vaginal flora and the integrity of vaginal epithelial cell monolayers. PMID:26416871

  10. High Intensity Organic Light-emitting Diodes

    NASA Astrophysics Data System (ADS)

    Qi, Xiangfei

    This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and

  11. Impacts to the chest of PMHSs - Influence of impact location and load distribution on chest response.

    PubMed

    Holmqvist, Kristian; Svensson, Mats Y; Davidsson, Johan; Gutsche, Andreas; Tomasch, Ernst; Darok, Mario; Ravnik, Dean

    2016-02-01

    The chest response of the human body has been studied for several load conditions, but is not well known in the case of steering wheel rim-to-chest impact in heavy goods vehicle frontal collisions. The aim of this study was to determine the response of the human chest in a set of simulated steering wheel impacts. PMHS tests were carried out and analysed. The steering wheel load pattern was represented by a rigid pendulum with a straight bar-shaped front. A crash test dummy chest calibration pendulum was utilised for comparison. In this study, a set of rigid bar impacts were directed at various heights of the chest, spanning approximately 120mm around the fourth intercostal space. The impact energy was set below a level estimated to cause rib fracture. The analysed results consist of responses, evaluated with respect to differences in the impacting shape and impact heights on compression and viscous criteria chest injury responses. The results showed that the bar impacts consistently produced lesser scaled chest compressions than the hub; the Middle bar responses were around 90% of the hub responses. A superior bar impact provided lesser chest compression; the average response was 86% of the Middle bar response. For inferior bar impacts, the chest compression response was 116% of the chest compression in the middle. The damping properties of the chest caused the compression to decrease in the high speed bar impacts to 88% of that in low speed impacts. From the analysis it could be concluded that the bar impact shape provides lower chest criteria responses compared to the hub. Further, the bar responses are dependent on the impact location of the chest. Inertial and viscous effects of the upper body affect the responses. The results can be used to assess the responses of human substitutes such as anthropomorphic test devices and finite element human body models, which will benefit the development process of heavy goods vehicle safety systems.

  12. Impacts to the chest of PMHSs - Influence of impact location and load distribution on chest response.

    PubMed

    Holmqvist, Kristian; Svensson, Mats Y; Davidsson, Johan; Gutsche, Andreas; Tomasch, Ernst; Darok, Mario; Ravnik, Dean

    2016-02-01

    The chest response of the human body has been studied for several load conditions, but is not well known in the case of steering wheel rim-to-chest impact in heavy goods vehicle frontal collisions. The aim of this study was to determine the response of the human chest in a set of simulated steering wheel impacts. PMHS tests were carried out and analysed. The steering wheel load pattern was represented by a rigid pendulum with a straight bar-shaped front. A crash test dummy chest calibration pendulum was utilised for comparison. In this study, a set of rigid bar impacts were directed at various heights of the chest, spanning approximately 120mm around the fourth intercostal space. The impact energy was set below a level estimated to cause rib fracture. The analysed results consist of responses, evaluated with respect to differences in the impacting shape and impact heights on compression and viscous criteria chest injury responses. The results showed that the bar impacts consistently produced lesser scaled chest compressions than the hub; the Middle bar responses were around 90% of the hub responses. A superior bar impact provided lesser chest compression; the average response was 86% of the Middle bar response. For inferior bar impacts, the chest compression response was 116% of the chest compression in the middle. The damping properties of the chest caused the compression to decrease in the high speed bar impacts to 88% of that in low speed impacts. From the analysis it could be concluded that the bar impact shape provides lower chest criteria responses compared to the hub. Further, the bar responses are dependent on the impact location of the chest. Inertial and viscous effects of the upper body affect the responses. The results can be used to assess the responses of human substitutes such as anthropomorphic test devices and finite element human body models, which will benefit the development process of heavy goods vehicle safety systems. PMID:26687541

  13. High-intensity intermittent exercise and fat loss.

    PubMed

    Boutcher, Stephen H

    2011-01-01

    The effect of regular aerobic exercise on body fat is negligible; however, other forms of exercise may have a greater impact on body composition. For example, emerging research examining high-intensity intermittent exercise (HIIE) indicates that it may be more effective at reducing subcutaneous and abdominal body fat than other types of exercise. The mechanisms underlying the fat reduction induced by HIIE, however, are undetermined. Regular HIIE has been shown to significantly increase both aerobic and anaerobic fitness. HIIE also significantly lowers insulin resistance and results in a number of skeletal muscle adaptations that result in enhanced skeletal muscle fat oxidation and improved glucose tolerance. This review summarizes the results of HIIE studies on fat loss, fitness, insulin resistance, and skeletal muscle. Possible mechanisms underlying HIIE-induced fat loss and implications for the use of HIIE in the treatment and prevention of obesity are also discussed.

  14. Fermilab main injector: High intensity operation and beam loss control

    NASA Astrophysics Data System (ADS)

    Brown, Bruce C.; Adamson, Philip; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K.; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen

    2013-07-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  15. Characterization of pediatric wheelchair kinematics and wheelchair tiedown and occupant restraint system loading during rear impact.

    PubMed

    Fuhrman, Susan I; Karg, Patricia; Bertocci, Gina

    2010-04-01

    This study characterizes pediatric wheelchair kinematic responses and wheelchair tiedown and occupant restraint system (WTORS) loading during rear impact. It also examines the kinematic and loading effects of wheelchair headrest inclusion in rear impact. In two separate rear-impact test scenarios, identical WC19-compliant manual pediatric wheelchairs were tested using a seated Hybrid III 6-year-old anthropomorphic test device (ATD) to evaluate wheelchair kinematics and WTORS loading. Three wheelchairs included no headrests, and three were equipped with slightly modified wheelchair-mounted headrests. Surrogate WTORS properly secured the wheelchairs; three-point occupant restraints properly restrained the ATD. All tests used a 26km/h, 11g rear-impact test pulse. Headrest presence affected wheelchair kinematics and WTORS loading; headrest-equipped wheelchairs had greater mean seatback deflections, mean peak front and rear tiedown loads and decreased mean lap belt loads. Rear-impact tiedown loads differed from previously measured loads in frontal impact, with comparable tiedown load levels reversed in frontal and rear impacts. The front tiedowns in rear impact had the highest mean peak loads despite lower rear-impact severity. These outcomes have implications for wheelchair and tiedown design, highlighting the need for all four tiedowns to have an equally robust design, and have implications in the development of rear-impact wheelchair transportation safety standards. PMID:19398366

  16. Characterization of pediatric wheelchair kinematics and wheelchair tiedown and occupant restraint system loading during rear impact.

    PubMed

    Fuhrman, Susan I; Karg, Patricia; Bertocci, Gina

    2010-04-01

    This study characterizes pediatric wheelchair kinematic responses and wheelchair tiedown and occupant restraint system (WTORS) loading during rear impact. It also examines the kinematic and loading effects of wheelchair headrest inclusion in rear impact. In two separate rear-impact test scenarios, identical WC19-compliant manual pediatric wheelchairs were tested using a seated Hybrid III 6-year-old anthropomorphic test device (ATD) to evaluate wheelchair kinematics and WTORS loading. Three wheelchairs included no headrests, and three were equipped with slightly modified wheelchair-mounted headrests. Surrogate WTORS properly secured the wheelchairs; three-point occupant restraints properly restrained the ATD. All tests used a 26km/h, 11g rear-impact test pulse. Headrest presence affected wheelchair kinematics and WTORS loading; headrest-equipped wheelchairs had greater mean seatback deflections, mean peak front and rear tiedown loads and decreased mean lap belt loads. Rear-impact tiedown loads differed from previously measured loads in frontal impact, with comparable tiedown load levels reversed in frontal and rear impacts. The front tiedowns in rear impact had the highest mean peak loads despite lower rear-impact severity. These outcomes have implications for wheelchair and tiedown design, highlighting the need for all four tiedowns to have an equally robust design, and have implications in the development of rear-impact wheelchair transportation safety standards.

  17. On predicting and modeling material failure under impact loading

    SciTech Connect

    Lewis, M.W.

    1998-09-01

    A method for predicting and modeling material failure in solids subjected to impact loading is outlined. The method uses classical void growth models of Gurson and Tvergaard in a material point method (MPM). Because of material softening, material stability is lost. At this point, the character of the governing partial differential equations changes, and localization occurs. This localization results in mesh dependence for many problems of interest. For many problems, predicting the occurrence of material failure and its extent is necessary. To enable this modeling, it is proposed that a discontinuity be introduced into the displacement field. By including a dissipation-based force-displacement relationship, the mesh dependence of energy dissipation can be avoided. Additionally, the material point method provides a means of allowing large deformations without mesh distortion or introduction of error through remapping.

  18. High-Intensity Intermittent Exercise: Effect on Young People's Cardiometabolic Health and Cognition.

    PubMed

    Cooper, Simon B; Dring, Karah J; Nevill, Mary E

    2016-01-01

    With only a quarter of young people currently meeting physical activity guidelines, two key areas of concern are the effects of exercise on cardiometabolic health and cognition. Despite the fact that physical activity in young people is typically high intensity and intermittent in nature, much of the literature examines traditional endurance-type exercise. This review provides an update on the effects of high-intensity intermittent exercise on young people's cardiometabolic health and cognition. High-intensity intermittent exercise has acute beneficial effects on endothelial function and postprandial lipemia and chronic positive effects on weight management. In addition, there is emerging evidence regarding chronic benefits on the blood lipid profile, blood pressure, and proinflammatory and anti-inflammatory cytokines. Furthermore, emerging evidence suggests beneficial acute and chronic effects of high-intensity intermittent exercise on cognition. However, further research is required in both cardiometabolic health and cognition, particularly regarding the impact of school-based interventions in adolescents. PMID:27399821

  19. Flexible pressure sensors for smart protective clothing against impact loading

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhu, Bo; Shu, Lin; Tao, Xiaoming

    2014-01-01

    The development of smart protective clothing will facilitate the quick detection of injuries from contact sports, traffic collisions and other accidents. To obtain real-time information like spatial and temporal pressure distributions on the clothing, flexible pressure sensor arrays are required. Based on a resistive fabric strain sensor we demonstrate all flexible, resistive pressure sensors with a large workable pressure range (0-8 MPa), a high sensitivity (1 MPa-1) and an excellent repeatability (lowest non-repeatability ±2.4% from 0.8 to 8 MPa) that can be inexpensively fabricated using fabric strain sensors and biocompatible polydimethylsiloxane (PDMS). The pressure sensitivity is tunable by using elastomers with different elasticities or by the pre-strain control of fabric strain sensors. Finite element simulation further confirms the sensor design. The simple structure, large workable pressure range, high sensitivity, high flexibility, facile fabrication and low cost of these pressure sensors make them promising candidates for smart protective clothing against impact loading.

  20. Characterization of Focal Muscle Compression Under Impact Loading

    NASA Astrophysics Data System (ADS)

    Butler, Ben; Sory, David; Nguyen, Thuy-Tien; Curry, Richard; Clasper, Jon; Proud, William; Williams, Alun; Brown, Kate

    2015-06-01

    The pattern of battle injuries sustained in modern wars shows that over 70% of combat wounds are to the extremities. These injuries are characterized by disruption and contamination of the limb soft tissue envelope. The extent of this tissue trauma and contamination determine the outcome in extremity injury. In military injury, common post-traumatic complications at amputation sites include heterotopic ossification (formation of bone in soft tissue), and severe soft tissue and bone infections. We are currently developing a model of soft tissue injury that recreates pathologies observed in combat injuries. Here we present characterization of a controlled focal compression of the rabbit flexor carpi ulnaris (FCU) muscle group. The FCU was previously identified as a suitable site for studying impact injury because its muscle belly can easily be mobilized from the underlying bone without disturbing anatomical alignment in the limb. We show how macroscopic changes in tissue organization, as visualized using optical microscopy, can be correlated with data from temporally resolved traces of loading conditions. Funding provided by the Royal British Legion.

  1. Study on Impact Loading and Humerus Injury for Baseball

    NASA Astrophysics Data System (ADS)

    Sakai, Shinobu; Oda, Juhachi; Yonemura, Shigeru; Sakamoto, Jiro

    In the United States and Japan, baseball is a very popular sport played by many people. However, the ball used is hard and moves fast. A professional baseball pitcher in good form can throw a ball at speeds upwards of 41.7m/s (150km/hr). If a ball at this speed hits the batter, serious injury can occur. In this paper we will describe our investigations on the impact of a baseball with living tissues by finite element analysis. Baseballs were projected at a load cell plate using a specialized pitching machine. The dynamic properties of the baseball were determined by comparing the wall-ball collision experimentally measuring the time history of the force and the displacement using dynamic finite element analysis software (ANSYS/ LS-DYNA). The finite element model representing a human humerus and its surrounding tissue was simulated for balls pitched at variable speeds and pitch types (knuckle and fastball). In so doing, the stress distribution and stress wave in the bone and soft tissue were obtained. From the results, the peak stress of the bone nearly yielded to the stress caused by a high fast ball. If the collision position or direction is moved from the center of the upper arm, it is assumed that the stress exuded on the humerus will be reduced. Some methods to reduce the severity of the injury which can be applied in actual baseball games are also discussed.

  2. Anthropometric, Sprint, and High-Intensity Running Profiles of English Academy Rugby Union Players by Position.

    PubMed

    Darrall-Jones, Joshua D; Jones, Ben; Till, Kevin

    2016-05-01

    The purpose of this study was to evaluate the anthropometric, sprint, and high-intensity running profiles of English academy rugby union players by playing positions, and to investigate the relationships between anthropometric, sprint, and high-intensity running characteristics. Data were collected from 67 academy players after the off-season period and consisted of anthropometric (height, body mass, sum of 8 skinfolds [∑SF]), 40-m linear sprint (5-, 10-, 20-, and 40-m splits), the Yo-Yo intermittent recovery test level 1 (Yo-Yo IRTL-1), and the 30-15 intermittent fitness test (30-15 IFT). Forwards displayed greater stature, body mass, and ∑SF; sprint times and sprint momentum, with lower high-intensity running ability and sprint velocities than backs. Comparisons between age categories demonstrated body mass and sprint momentum to have the largest differences at consecutive age categories for forwards and backs; whereas 20-40-m sprint velocity was discriminate for forwards between under 16s, 18s, and 21s. Relationships between anthropometric, sprint velocity, momentum, and high-intensity running ability demonstrated body mass to negatively impact on sprint velocity (10 m; r = -0.34 to -0.46) and positively affect sprint momentum (e.g., 5 m; r = 0.85-0.93), with large to very large negative relationships with the Yo-Yo IRTL-1 (r = -0.65 to -0.74) and 30-15 IFT (r = -0.59 to -0.79). These findings suggest that there are distinct anthropometric, sprint, and high-intensity running ability differences between and within positions in junior rugby union players. The development of sprint and high-intensity running ability may be impacted by continued increases in body mass as there seems to be a trade-off between momentum, velocity, and the ability to complete high-intensity running.

  3. Impact of sampling strategy on stream load estimates in till landscape of the Midwest

    USGS Publications Warehouse

    Vidon, P.; Hubbard, L.E.; Soyeux, E.

    2009-01-01

    Accurately estimating various solute loads in streams during storms is critical to accurately determine maximum daily loads for regulatory purposes. This study investigates the impact of sampling strategy on solute load estimates in streams in the US Midwest. Three different solute types (nitrate, magnesium, and dissolved organic carbon (DOC)) and three sampling strategies are assessed. Regardless of the method, the average error on nitrate loads is higher than for magnesium or DOC loads, and all three methods generally underestimate DOC loads and overestimate magnesium loads. Increasing sampling frequency only slightly improves the accuracy of solute load estimates but generally improves the precision of load calculations. This type of investigation is critical for water management and environmental assessment so error on solute load calculations can be taken into account by landscape managers, and sampling strategies optimized as a function of monitoring objectives. ?? 2008 Springer Science+Business Media B.V.

  4. On the behaviour characterization of metallic cellular materials under impact loading

    NASA Astrophysics Data System (ADS)

    Fang, Dai-Ning; Li, Yu-Long; Zhao, Han

    2010-12-01

    This paper reviews the common mechanical features of the metallic cellular material under impact loading as well as the characterization methods of such behaviours. The main focus is on the innovations of various testing methods at impact loading rates. Following aspects were discussed in details. (1) The use of soft nylon Hopkinson/Kolsky bar for an enhanced measuring accuracy in order to assess if there is a strength enhancement or not for this class of cellular materials under moderate impact loading; (2) The use of digital image correlations to determine the strain fields during the tests to confirm the existence of a pseudo-shock wave propagation inside the cellular material under high speed impact; (3) The use of new combined shear compression device to determine the loading envelop of cellular materials under impact multiaxial loadings.

  5. High-intensity focused ultrasound therapy for prostate cancer.

    PubMed

    Uchida, Toyoaki; Nakano, Mayura; Hongo, Satoko; Shoji, Sunao; Nagata, Yohishiro; Satoh, Takefumi; Baba, Shiro; Usui, Yukio; Terachi, Toshiro

    2012-03-01

    Recent advances in high-intensity focused ultrasound, which was developed in the 1940s as a viable thermal tissue ablation approach, have increased its popularity. High-intensity focused ultrasound is currently utilized the most in Europe and Japan, but has not yet been approved by the Food and Drug Administration, USA, for this indication. The purpose of the present report is to review the scientific foundation of high-intensity focused ultrasound technology and the clinical outcomes achieved with commercially available devices. Recently published articles were reviewed to evaluate the current status of high-intensity focused ultrasound as a primary or salvage treatment option for localized prostate cancer. Improvements in the clinical outcome as a result of technical, imaging and technological advancements are described herein. A wide range of treatment options for organ-confined prostate cancer is available. However, high-intensity focused ultrasound is an attractive choice for men willing to choose less invasive options, although establishing the efficacy of high-intensity focused ultrasound requires longer follow-up periods. Technological advances, together with cultural and economic factors, have caused a dramatic shift from traditional open, radical prostatectomy to minimally invasive techniques. High-intensity focused ultrasound is likely to play a significant role in the future of oncology practice. PMID:22188161

  6. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.

    SciTech Connect

    WEI,J.; MACEK,R.J.

    2002-04-14

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

  7. High Intensity Accelerator and Neutron Source in China

    NASA Astrophysics Data System (ADS)

    Guan, Xialing; Wei, J.; Loong, Chun

    2011-06-01

    High intensity Accelerator is being studied all over world for numerous applications, which includes the waste transmutation, spallation neutron source and material irradiation facilities. The R/D activities of the technology of High intensity accelerator are also developed in China for some year, and have some good facilities around China. This paper will reports the status of some high intensity accelerators and neutron source in China, which including ADS/RFQ; CARR; CSNS; PKUNIFTY & CPHS. This paper will emphatically report the Compact Pulsed Hadron Source (CPHS) led by the Department of Engineering Physics of Tsinghua University in Beijing, China.

  8. Androgynous, Reconfigurable Closed Loop Feedback Controlled Low Impact Docking System With Load Sensing Electromagnetic Capture Ring

    NASA Technical Reports Server (NTRS)

    Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)

    2002-01-01

    The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.

  9. Estimating Demand Response Load Impacts: Evaluation of BaselineLoad Models for Non-Residential Buildings in California

    SciTech Connect

    Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote,Sila

    2008-01-01

    Both Federal and California state policymakers areincreasingly interested in developing more standardized and consistentapproaches to estimate and verify the load impacts of demand responseprograms and dynamic pricing tariffs. This study describes a statisticalanalysis of the performance of different models used to calculate thebaseline electric load for commercial buildings participating in ademand-response (DR) program, with emphasis onthe importance of weathereffects. During a DR event, a variety of adjustments may be made tobuilding operation, with the goal of reducing the building peak electricload. In order to determine the actual peak load reduction, an estimateof what the load would have been on the day of the event without any DRactions is needed. This baseline load profile (BLP) is key to accuratelyassessing the load impacts from event-based DR programs and may alsoimpact payment settlements for certain types of DR programs. We testedseven baseline models on a sample of 33 buildings located in California.These models can be loosely categorized into two groups: (1) averagingmethods, which use some linear combination of hourly load values fromprevious days to predict the load on the event, and (2) explicit weathermodels, which use a formula based on local hourly temperature to predictthe load. The models were tested both with and without morningadjustments, which use data from the day of the event to adjust theestimated BLP up or down.Key findings from this study are: - The accuracyof the BLP model currently used by California utilities to estimate loadreductions in several DR programs (i.e., hourly usage in highest 3 out of10 previous days) could be improved substantially if a morning adjustmentfactor were applied for weather-sensitive commercial and institutionalbuildings. - Applying a morning adjustment factor significantly reducesthe bias and improves the accuracy of all BLP models examined in oursample of buildings. - For buildings with low load

  10. Impact of Chloroquine on Viral Load in Breast Milk

    PubMed Central

    Semrau, Katherine; Kuhn, Louise; Kasonde, Prisca; Sinkala, Moses; Kankasa, Chipepo; Shutes, Erin; Vwalika, Cheswa; Ghosh, Mrinal; Aldrovandi, Grace; Thea, Donald M.

    2006-01-01

    Summary The anti-malarial agent chloroquine has activity against HIV. We compared the effect of chloroquine (n = 18) to an anti-malarial agent without known anti-HIV-activity, sulfadoxine-pyrimethamine (n = 12), on breast milk HIV RNA levels among HIV-infected breastfeeding women in Zambia. After adjusting for CD4 count and plasma viral load, chloroquine was associated with a trend towards lower levels of HIV RNA in breast milk compared with sulfadoxine-pyrimethamine (P 0.05). Higher breastmilk viral load was also observed among women receiving presumptive treatment = for symptomatic malaria compared with asymptomatic controls and among controls reporting fever in the prior week. Further research is needed to determine the potential role of chloroquine in prevention of HIV transmission through breastfeeding. Impacte de la chloroquine sur la charge virale dans le lait maternelle La chloroquine, agent antimalarique, a une activité contre le VIH. Nous avons comparé l’effet de la chloroquine à celui d’un autre agent antimalarique, la sulfadoxine-pyrimethamine, dont l’activité sur le VIH n’est pas connue, en mesurant les taux d’ARN de VIH dans le lait maternel de femmes allaitantes infectées par le VIH en Zambie. Après ajustement pour les taux de CD4 et la charge virale dans le plasma, la chloroquine comparée à la sulfadoxine pyrimethamine était associée à une tendance vers des teneurs plus bas en ARN de VIH dans le lait maternel (P = 0,05). Des charges virales plus élevées dans le lait maternel étaient aussi observées chez des femmes recevant un traitement présomptif pour des symptômes de malaria par rapport aux contrôles asymptomatiques et par rapport à des contrôles rapportant de la fièvre durant la première semaine. Des études supplémentaires sont nécessaires pour déterminer le rôle potentiel de la chloroquine dans la prévention de la transmission du VIH par l’allaitement maternel. mots clésVIH, malaria, allaitement maternel

  11. Space Station Live: High-Intensity Exercise in Space

    NASA Video Gallery

    NASA Public Affairs Officer Lori Meggs talks with SPRINT Principal Investigator Lori Ploutz-Snyder to learn more about this high-intensity exercise research taking place aboard the International Sp...

  12. Light shield and cooling apparatus. [high intensity ultraviolet lamp

    NASA Technical Reports Server (NTRS)

    Meador, T. G., Jr. (Inventor)

    1974-01-01

    A light shield and cooling apparatus was developed for a high intensity ultraviolet lamp including water and high pressure air for cooling and additional apparatus for shielding the light and suppressing the high pressure air noise.

  13. Effect of high intensity ultrasound on the allergenicity of shrimp*

    PubMed Central

    Li, Zhen-Xing; Lin, Hong; Cao, Li-Min; Jameel, Khalid

    2006-01-01

    The tropomyosin fraction of shrimp proteins is potentially responsible for allergic reaction in individuals with genetic predisposition to allergy. However, there are no efficient and safe methods to reduce its allergenicity. High intensity ultrasound is known to change the structure of proteins. This study is aimed at assessing high intensity ultrasound’s effect on the allergenicity of shrimp allergen. Shrimp and purified shrimp allergen were treated with high intensity ultrasound for 30~180 min. Extracts of treated samples were analyzed by enzyme-linked immunosorbent assay (ELISA) with pool serum of shrimp allergy patients and polyclonal anti-allergen antibodies and by immunoblotting after polyacrylamide gel electrophoresis. Shrimp treated with high intensity ultrasound showed a decrease in allergenicity measured with ELISA. A linear relationship between the immune response induced by treated shrimp allergen and the applied treatment time was observed. The decrease in allergenicity was confirmed by immunoblot assays with shrimp allergic patients serum. Allergenicity of shrimp allergen extracted from treated shrimp was higher than that of purified shrimp allergen with the same treatment time. Gel-filtration HPLC was applied for analysis of shrimp allergen after treatment with high intensity ultrasound. Some fractions were appeared with increasing treatment time. The results suggested that high intensity ultrasound could be used to reduce the allergenicity of shrimp. PMID:16532525

  14. Effects of high-intensity training and resumed training on macroelement and microelement of elite basketball athletes.

    PubMed

    Wang, Lijuan; Zhang, Jun; Wang, Jiahong; He, Wangxiao; Huang, Hongen

    2012-11-01

    The purpose of this study was to assess the effects of high-intensity training and resumed training in hot and humid environment on plasma macro- and microelements levels of elite Han Chinese basketball players. Ten well-trained elite basketball athletes' plasma macroelements (chlorin, sodium, potassium, and calcium), creatine kinase (CK), and creatine kinase-MB (CK-MB) were measured before and after a 2-h high-intensity training, and microelements (zinc, copper, iron, and selenium) were determined before and after a 1-week high-intensity training and after a 1-week resumed training. The blood CK and CK-MB levels of the elite basketball athletes were significantly increased (P < 0.05) after high-intensity basketball training. The macroelements (chlorin, sodium, and calcium) levels of blood increased significantly except potassium after high-intensity basketball training. No significant differences (P > 0.05) were found in zinc and copper levels; nevertheless, the levels of plasma selenium and plasma iron were significantly lower (P < 0.05) after a 1-week high-intensity training. After a 1-week resumed training, except zinc, all of microelements measured had a trend toward original levels. These results implicated that high-intensity training would provoke the change of macroelements which would lead to electrolyte disturbance. In addition, the present study suggested that a 1-week high-intensity training would have an impact on microelement levels, especially for selenium and iron.

  15. Effect of preseason concurrent muscular strength and high-intensity interval training in professional soccer players.

    PubMed

    Wong, Pui-lam; Chaouachi, Anis; Chamari, Karim; Dellal, Alexandre; Wisloff, Ulrik

    2010-03-01

    This study examined the effect of concurrent muscular strength and high-intensity running interval training on professional soccer players' explosive performances and aerobic endurance. Thirty-nine players participated in the study, where both the experimental group (EG, n = 20) and control group (CG, n = 19) participated in 8 weeks of regular soccer training, with the EG receiving additional muscular strength and high-intensity interval training twice per week throughout. Muscular strength training consisted of 4 sets of 6RM (repetition maximum) of high-pull, jump squat, bench press, back half squat, and chin-up exercises. The high-intensity interval training consisted of 16 intervals each of 15-second sprints at 120% of individual maximal aerobic speed interspersed with 15 seconds of rest. EG significantly increased (p < or = 0.05) 1RM back half squat and bench press but showed no changes in body mass. Within-subject improvement was significantly higher (p < or = 0.01) in the EG compared with the CG for vertical jump height, 10-m and 30-m sprint times, distances covered in the Yo-Yo Intermittent Recovery Test and maximal aerobic speed test, and maximal aerobic speed. High-intensity interval running can be concurrently performed with high load muscular strength training to enhance soccer players' explosive performances and aerobic endurance.

  16. Repeated high-intensity exercise in professional rugby union.

    PubMed

    Austin, Damien; Gabbett, Tim; Jenkins, David

    2011-07-01

    The aim of the present study was to describe the frequency, duration, and nature of repeated high-intensity exercise in Super 14 rugby union. Time-motion analysis was used during seven competition matches over the 2008 and 2009 Super 14 seasons; five players from each of four positional groups (front row forwards, back row forwards, inside backs, and outside backs) were assessed (20 players in total). A repeated high-intensity exercise bout was considered to involve three or more sprints, and/or tackles and/or scrum/ruck/maul activities within 21 s during the same passage of play. The range of repeated high-intensity exercise bouts for each group in a match was as follows: 11-18 for front row forwards, 11-21 for back row forwards, 13-18 for inside backs, and 2-11 for outside backs. The durations of the most intense repeated high-intensity exercise bouts for each position ranged from 53 s to 165 s and the minimum recovery periods between repeated high-intensity exercise bouts ranged from 25 s for the back row forwards to 64 s for the front row forwards. The present results show that repeated high-intensity exercise bouts vary in duration and activities relative to position but all players in a game will average at least 10 changes in activity in the most demanding bouts and complete at least one tackle and two sprints. The most intense periods of activity are likely to last as long as 120 s and as little as 25 s recovery may separate consecutive repeated high-intensity exercise bouts. The present findings can be used by coaches to prepare their players for the most demanding passages of play likely to be experienced in elite rugby union. PMID:21756130

  17. System ID modern control algorithms for active aerodynamic load control and impact on gearbox loading.

    SciTech Connect

    Berg, Jonathan Charles; Halse, Chris; Crowther, Ashley; Barlas, Thanasis; Wilson, David Gerald; Berg, Dale E.; Resor, Brian Ray

    2010-06-01

    Prior work on active aerodynamic load control (AALC) of wind turbine blades has demonstrated that appropriate use of this technology has the potential to yield significant reductions in blade loads, leading to a decrease in wind cost of energy. While the general concept of AALC is usually discussed in the context of multiple sensors and active control devices (such as flaps) distributed over the length of the blade, most work to date has been limited to consideration of a single control device per blade with very basic Proportional Derivative controllers, due to limitations in the aeroservoelastic codes used to perform turbine simulations. This work utilizes a new aeroservoelastic code developed at Delft University of Technology to model the NREL/Upwind 5 MW wind turbine to investigate the relative advantage of utilizing multiple-device AALC. System identification techniques are used to identify the frequencies and shapes of turbine vibration modes, and these are used with modern control techniques to develop both Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) LQR flap controllers. Comparison of simulation results with these controllers shows that the MIMO controller does yield some improvement over the SISO controller in fatigue load reduction, but additional improvement is possible with further refinement. In addition, a preliminary investigation shows that AALC has the potential to reduce off-axis gearbox loads, leading to reduced gearbox bearing fatigue damage and improved lifetimes.

  18. SRB attrition rate study of the aft skirt due to water impact cavity collapse loading

    NASA Technical Reports Server (NTRS)

    Crockett, C. D.

    1976-01-01

    A methodology was presented so that realistic attrition prediction could aid in selecting an optimum design option for minimizing the effects of updated loads on the Space Shuttle Solid Rocket Booster (SRB) aft skirt. The updated loads resulted in water impact attrition rates greater than 10 percent for the aft skirt structure. Adding weight to reinforce the aft skirt was undesirable. The refined method treats the occurrences of the load distribution probabilistically, radially and longitudinally, with respect to the critical structural response.

  19. The Impact of Cognitive Load Theory on Learning Astronomy

    NASA Astrophysics Data System (ADS)

    Foster, Thomas M.

    2010-01-01

    Every student is different, which is the challenge of astronomy education research (AER) and teaching astronomy. This difference also provides the greatest goal for education researchers - our GUT - we need to be able to quantify these differences and provide explanatory and predictive theories to curriculum developers and teachers. One educational theory that holds promise is Cognitive Load Theory. Cognitive Load Theory begins with the well-established fact that everyone's working memory can hold 7 ± 2 unique items. This quirk of the human brain is why phone numbers are 7 digits long. This quirk is also why we forget peoples’ names after just meeting them, leave the iron on when we leave the house, and become overwhelmed as students of new material. Once the intricacies of Cognitive Load are understood, it becomes possible to design learning environments to marshal the resources students have and guide them to success. Lessons learned from Cognitive Load Theory can and should be applied to learning astronomy. Classroom-ready ideas will be presented.

  20. High-intensity intermittent activities at school: controversies and facts.

    PubMed

    Ratel, S; Lazaar, N; Dore, E; Baquet, G; Williams, C A; Berthoin, S; Van Praagh, E; Bedu, M; Duche, P

    2004-09-01

    In comparison to continuous aerobic type activity, little is known about high-intensity intermittent physical activity in children. Repeated short-term high-intensity activities (> maximal aerobic speed and <10 s) are more characteristic of the spontaneous physical activity of children. Recent studies have shown during repetitive bouts of sprints separated by short recovery intervals, that prepubescent children compared with adults are more able to maintain their performance without substantial fatigue. Moreover, repetitive runs at high velocities (near and higher than the maximal aerobic speed) separated by short recovery periods may elicit a high oxygen consumption in children. Several studies using interval training programmes for 7 weeks, twice a week for 30 min in physical education lessons showed that children's aerobic performance (maximal O2 uptake, maximal aerobic speed) could be enhanced. Training based on these repeated short-term high-intensity exercises could also improve children's anaerobic performance (short-term muscle power, strength and speed). Current evidence suggests that recovery from high-intensity exercises is faster in children than in adults and that repeated runs at high velocities separated by short recovery intervals can improve both aerobic and anaerobic performance. Although continuous aerobic type activity is more scientifically established as a training mode, repeated short-term high-intensity exercises in physical education programmes should be considered to enhance aerobic, as well as, anaerobic fitness in children. PMID:15756166

  1. Installation of Impact Plates to Continuously Measure Bed Load: Elwha River, Washington, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2008 and 2009, a series of bed load impact plates was installed across a channel spanning weir on the Elwha River, Washington. This is the first permanent installation of its kind in North America and one of the largest anywhere. The purpose of this system is to measure coarse bed load during and...

  2. Climate Change Impacts on Residential and Commercial Loads in the Western U.S. Grid

    SciTech Connect

    Lu, Ning; Taylor, Zachary T.; Jiang, Wei; Xie, YuLong; Leung, Lai R.; Correia, James; Wong, Pak C.; Mackey, Patrick S.; Paget, Maria L.

    2008-09-30

    This report presents a multi-disciplinary modeling approach to quickly quantify climate change impacts on energy consumption, peak load, and load composition of residential and commercial buildings. This research focuses on addressing the impact of temperature changes on the building cooling load in 10 major cities across the Western United States and Canada. Our results have shown that by the mid-century, building yearly energy consumption and peak load will increase in the Southwest. Moreover, the peak load months will spread out to not only the summer months but also spring and autumn months. The Pacific Northwest will experience more hot days in the summer months. The penetration of the air conditioning (a/c) system in this area is likely to increase significantly over the years. As a result, some locations in the Pacific Northwest may be shifted from winter peaking to summer peaking. Overall, the Western U.S. grid may see more simultaneous peaks across the North and South in summer months. Increased cooling load will result in a significant increase in the motor load, which consumes more reactive power and requires stronger voltage support from the grid. This study suggests an increasing need for the industry to implement new technology to increase the efficiency of temperature-sensitive loads and apply proper protection and control to prevent possible adverse impacts of a/c motor loads.

  3. Climate Change Impacts on Residential and Commercial Loads in the Western U.S. Grid

    SciTech Connect

    Lu, Ning; Taylor, Zachary T.; Jiang, Wei; Jin, Chunlian; Correia, James; Leung, Lai-Yung R.; Wong, Pak C.

    2010-02-01

    Abstract—This paper presents a multi-disciplinary modeling approach to quickly quantify climate change impacts on energy consumption, peak load, and load composition of residential and commercial buildings. This research focuses on addressing the impact of temperature changes on the building cooling load in 10 major cities across the Western United States and Canada. Our results have shown that by the mid-century, building yearly energy consumption and peak load will increase in the Southwest. Moreover, the peak load months will spread out to not only the summer months but also spring and autumn months. The Pacific Northwest will experience more hot days in the summer months. The penetration of the air conditioning (a/c) system in this area is likely to increase significantly over the years. As a result, some locations in the Pacific Northwest may be shifted from winter peaking to summer peaking. Overall, the Western U.S. grid may see more simultaneous peaks across the North and South in summer months. Increased cooling load will result in a significant increase in the motor load, which consumes more reactive power and requires stronger voltage support from the grid. This study suggests an increasing need for the industry to implement new technology to increase the efficiency of temperature-sensitive loads and apply proper protection and control to prevent possible adverse impacts of a/c motor loads.

  4. Beam diagnostics at high-intensity storage rings

    SciTech Connect

    Plum, M. )

    1994-10-10

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics, issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. I will discuss in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of our discussion is inspired by the problems we have encountered and the useful things we have learned while commissioning and developing the PSR. Another inspiration is our work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  5. Beam diagnostics at high-intensity storage rings

    SciTech Connect

    Plum, M.

    1993-11-01

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics. Issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. The author discusses in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of the discussion is inspired by the problems that were encountered and the useful things learned while commissioning and developing the PSR. Another inspiration is the work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  6. High-intensity aerobic interval exercise in chronic heart failure.

    PubMed

    Meyer, Philippe; Gayda, Mathieu; Juneau, Martin; Nigam, Anil

    2013-06-01

    Aerobic exercise training is strongly recommended in patients with heart failure (HF) and reduced left ventricular ejection fraction (LVEF) to improve symptoms and quality of life. Moderate-intensity aerobic continuous exercise (MICE) is the best established training modality in HF patients. For about a decade, however, another training modality, high-intensity aerobic interval exercise (HIIE), has aroused considerable interest in cardiac rehabilitation. Originally used by athletes, HIIE consists of repeated bouts of high-intensity exercise interspersed with recovery periods. The rationale for its use is to increase exercise time spent in high-intensity zones, thereby increasing the training stimulus. Several studies have demonstrated that HIIE is more effective than MICE, notably for improving exercise capacity in patients with HF. The aim of the present review is to describe the general principles of HIIE prescription, the acute physiological effects, the longer-term training effects, and finally the future perspectives of HIIE in patients with HF.

  7. The Extravehicular Suit Impact Load Attenuation Study for Use in Astronaut Bone Fracture Prediction

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Gilkey, Kelly M.; Sulkowski, Christina M.; Samorezov, Sergey; Myers, Jerry G.

    2011-01-01

    The NASA Integrated Medical Model (IMM) assesses the risk, including likelihood and impact of occurrence, of all credible in-flight medical conditions. Fracture of the proximal femur is a traumatic injury that would likely result in loss of mission if it were to happen during spaceflight. The low gravity exposure causes decreases in bone mineral density which heightens the concern. Researchers at the NASA Glenn Research Center have quantified bone fracture probability during spaceflight with a probabilistic model. It was assumed that a pressurized extravehicular activity (EVA) suit would attenuate load during a fall, but no supporting data was available. The suit impact load attenuation study was performed to collect analogous data. METHODS: A pressurized EVA suit analog test bed was used to study how the offset, defined as the gap between the suit and the astronaut s body, impact load magnitude and suit operating pressure affects the attenuation of impact load. The attenuation data was incorporated into the probabilistic model of bone fracture as a function of these factors, replacing a load attenuation value based on commercial hip protectors. RESULTS: Load attenuation was more dependent on offset than on pressurization or load magnitude, especially at small offsets. Load attenuation factors for offsets between 0.1 - 1.5 cm were 0.69 +/- 0.15, 0.49 +/- 0.22 and 0.35 +/- 0.18 for mean impact forces of 4827, 6400 and 8467 N, respectively. Load attenuation factors for offsets of 2.8 - 5.3 cm were 0.93 +/- 0.2, 0.94 +/- 0.1 and 0.84 +/- 0.5, for the same mean impact forces. Reductions were observed in the 95th percentile confidence interval of the bone fracture probability predictions. CONCLUSIONS: The reduction in uncertainty and improved confidence in bone fracture predictions increased the fidelity and credibility of the fracture risk model and its benefit to mission design and operational decisions.

  8. Response of DP 600 products to dynamic impact loads

    NASA Astrophysics Data System (ADS)

    Clark, Deidra Darcell

    The objective of this study was to compare the microstructural response of various DP 600 products subjected to low velocity, dynamic impact tests, typically encountered in a car crash. Since the response of steel is sensitive to its microstructure as controlled by the alloying elements, phase content, and processing; various DP 600 products may respond differently to crashes. The microstructure before and after dynamic impact deformation at 5 and 10 mph was characterized with regards to grain size, morphology, and phase content among vendors A, B, and C to evaluate efficiency in absorbing energy mechanisms during a crash simulated by dynamic impact testing in a drop tower.

  9. Behavior of Compression-Loaded Composite Panels with Stringer Terminations and Impact Damage

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1998-01-01

    The results of an analytical and experimental study of graphite-epoxy stiffened panels with impact-damaged stringer terminations are presented. Five stitched graphite-epoxy panels with stiffeners with a gradual reduction in either thickness or height were examined. Panels were analyzed using finite element analysis and tested by loading them in axial compression to a predetermined load. The panels were then subjected to impact damage and loaded to failure. Axial midplane strains, surface strains, interlaminar strains and failure results are discussed.

  10. Assessment of dynamic effects on aircraft design loads: The landing impact case

    NASA Astrophysics Data System (ADS)

    Bronstein, Michael; Feldman, Esther; Vescovini, Riccardo; Bisagni, Chiara

    2015-10-01

    This paper addresses the potential benefits due to a fully dynamic approach to determine the design loads of a mid-size business jet. The study is conducted by considering the fuselage midsection of the DAEDALOS aircraft model with landing impact conditions. The comparison is presented in terms of stress levels between the novel dynamic approach and the standard design practice based on the use of equivalent static loads. The results illustrate that a slight reduction of the load levels can be achieved, but careful modeling of the damping level is needed. Guidelines for an improved load definition are discussed, and suggestions for future research activities are provided.

  11. Rate modulation of human anconeus motor units during high-intensity dynamic elbow extensions.

    PubMed

    Cowling, Brianna L; Harwood, Brad; Copithorne, David B; Rice, Charles L

    2016-08-01

    Investigations of high-intensity isometric fatiguing protocols report decreases in motor unit firing rates (MUFRs), but little is known regarding changes in MUFRs following fatigue induced by high-intensity dynamic contractions. Our purpose was to evaluate MUFRs of the anconeus (an accessory elbow extensor) and elbow extension power production as a function of time to task failure (TTF) during high-velocity fatiguing concentric contractions against a moderately heavy resistance. Fine-wire intramuscular electrode pairs were inserted into the anconeus to record MUs in 12 male participants (25 ± 3 yr), over repeated sessions on separate days. MUs were tracked throughout a three-stage, varying load dynamic elbow extension protocol designed to extend the task duration for >1 min thereby inducing substantial fatigue. Mean MUFRs and peak power were calculated for three relative time ranges: 0-15% TTF (beginning), 45-60% TTF (middle) and 85-100% TTF (end). Mean duration of the overall fatigue protocol was ∼80 s. Following the protocol, isometric maximum voluntary contraction (MVC), highest velocity at 35% MVC load, and peak power decreased 37, 60, and 64% compared with baseline, respectively. Data from 20 anconeus MUs tracked successfully throughout the protocol indicated a reduction in MUFRs in relation to power loss from 36 Hz/160 W (0-15% TTF) to 28 Hz/97 W (45-60% TTF) to 23 Hz/43 W (85-100% TTF). During these high-intensity maximal effort concentric contractions, anconeus MUFRs decreased substantially (>35%). Although the absolute MUFRs were higher in the present study than those reported previously for other muscles during sustained high-intensity isometric tasks, the relative decrease in MUFRs was similar between the two tasks. PMID:27283910

  12. Economic impact of total solids loading on enzymatic hydrolysis of dilute acid pretreated corn stover.

    PubMed

    Humbird, David; Mohagheghi, Ali; Dowe, Nancy; Schell, Daniel J

    2010-01-01

    In process integration studies of the biomass-to-ethanol conversion process, it is necessary to understand how cellulose conversion yields vary as a function of solids and enzyme loading and other key operating variables. The impact of solids loading on enzymatic cellulose hydrolysis of dilute acid pretreated corn stover slurry was determined using an experimental response surface design methodology. From the experimental work, an empirical correlation was obtained that expresses monomeric glucose yield from enzymatic cellulose hydrolysis as a function of solids loading, enzyme loading, and temperature. This correlation was used in a technoeconomic model to study the impact of solids loading on ethanol production economics. The empirical correlation was used to provide a more realistic assessment of process cost by accounting for changes in cellulose conversion yields at different solids and enzyme loadings as well as enzyme cost. As long as enzymatic cellulose conversion drops off at higher total solids loading (due to end-product inhibition or other factors), there is an optimum value for the total solids loading that minimizes the ethanol production cost. The optimum total solids loading shifts to higher values as enzyme cost decreases.

  13. Use of body armor protection with fighting load impacts soldier performance and kinematics.

    PubMed

    Loverro, Kari L; Brown, Tyler N; Coyne, Megan E; Schiffman, Jeffrey M

    2015-01-01

    The purpose of this evaluation was to examine how increasing body armor protection with and without a fighting load impacted soldiers' performance and mobility. Thirteen male soldiers performed one performance (repeated 30-m rushing) and three mobility tasks (walk, walk over and walk under) with three different body armor configurations and an anterior fighting load. Increasing body armor protection, decreased soldier performance, as individual and total 30-m rush times were significantly longer with greater protection. While increasing body armor protection had no impact on mobility, i.e. significant effect on trunk and lower limb biomechanics, during the walk and walk over tasks, greater protection did significantly decrease maximum trunk flexion during the walk under task. Adding fighting load may negatively impact soldier mobility, as greater maximum trunk extension was evident during the walk and walk over tasks, and decreased maximum trunk flexion exhibited during the walk under task with the fighting load.

  14. Hydrodynamic Impact-Load Alleviation with a Penetrating Hydro-Ski

    NASA Technical Reports Server (NTRS)

    Edge, Philip M., Jr.

    1959-01-01

    A penetrating hydro-ski was mounted below a model tested previously in the study reported in NACA Technical Note 4401, and a series of impacts were made in the Langley impact basin to determine load alleviation with this type of hydro-ski. The hydro-ski was designed to penetrate through seaway irregularities with a minimum of drag and with small impact loads. The penetrating hydro-ski was small (beam-loading coefficient of 111) and of a streamline shape with the bottom designed for flush retraction into the main model. A series of impacts at fixed trim angles of 8, 16, and 30 deg were made in smooth water and at a fixed trim angle of 8 deg in rough water. The loads and motions of the model were recorded, and photographic observations of the flow and cavities generated in the water by the penetrating hydro-ski were made. The data are presented and the maximum impact loads and maximum drafts of the model with the penetrating hydro-ski are compared with those of the model obtained without the penetrating hydro-ski. Maximum load reductions of 30 to 70 percent in smooth water and of 50 to 80 percent in rough water are indicated. Cavity and flow generation by the penetrating hydro-ski are discussed, and it is indicated that the penetrating hydro-ski moved smoothly through the water and generated deep cavities which are shown by stereophotographs.

  15. High-power, high-intensity laser propagation and interactions

    SciTech Connect

    Sprangle, Phillip; Hafizi, Bahman

    2014-05-15

    This paper presents overviews of a number of processes and applications associated with high-power, high-intensity lasers, and their interactions. These processes and applications include: free electron lasers, backward Raman amplification, atmospheric propagation of laser pulses, laser driven acceleration, atmospheric lasing, and remote detection of radioactivity. The interrelated physical mechanisms in the various processes are discussed.

  16. Conceptual design of a superconducting high-intensity proton linac

    SciTech Connect

    Dominic Chan, K.C.

    1996-09-01

    A SCRF (superconducting RF linac) has been developed for a high-intensity proton linac which will be used as the driver for neutron sources. This design is conservative, using current SCRF technologies. As well as lowering operating cost, the design offers performance advantages in availability, beam loss, and upgradability, which are important for the application as a neutron source.

  17. High-Intensity Interval Training for Improving Postprandial Hyperglycemia

    ERIC Educational Resources Information Center

    Little, Jonathan P.; Francois, Monique E.

    2014-01-01

    High-intensity interval training (HIIT) has garnered attention in recent years as a time-efficient exercise option for improving cardiovascular and metabolic health. New research demonstrates that HIIT may be particularly effective for improving postprandial hyperglycemia in individuals with, or at risk for, type 2 diabetes (T2D). These findings…

  18. Clinical applications of high-intensity focused ultrasound.

    PubMed

    She, W H; Cheung, T T; Jenkins, C R; Irwin, M G

    2016-08-01

    Ultrasound has been developed for therapeutic use in addition to its diagnostic ability. The use of focused ultrasound energy can offer a non-invasive method for tissue ablation, and can therefore be used to treat various solid tumours. High-intensity focused ultrasound is being increasingly used in the treatment of both primary and metastatic tumours as these can be precisely located for ablation. It has been shown to be particularly useful in the treatment of uterine fibroids, and various solid tumours including those of the pancreas and liver. High-intensity focused ultrasound is a valid treatment option for liver tumours in patients with significant medical co-morbidity who are at high risk for surgery or who have relatively poor liver function that may preclude hepatectomy. It has also been used as a form of bridging therapy while patients awaiting cadaveric donor liver transplantation. In this article, we outline the principles of high-intensity focused ultrasound and its clinical applications, including the management protocol development in the treatment of hepatocellular carcinoma in Hong Kong by performing a search on MEDLINE (OVID), EMBASE, and PubMed. The search of these databases ranged from the date of their establishment until December 2015. The search terms used were: high-intensity focused ultrasound, ultrasound, magnetic resonance imaging, liver tumour, hepatocellular carcinoma, pancreas, renal cell carcinoma, prostate cancer, breast cancer, fibroids, bone tumour, atrial fibrillation, glaucoma, Parkinson's disease, essential tremor, and neuropathic pain. PMID:27380753

  19. Nonlinear behavior in high-intensity discharge lamps

    NASA Astrophysics Data System (ADS)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2016-06-01

    The light flicker problem of high intensity discharge lamps is studied numerically and experimentally. It is shown that in some respects the systems behave very similar to the forced Duffing oscillator with a softening spring. In particular, the jump phenomenon and hysteresis are observed in the simulations and in the experiments.

  20. Drift tube suspension for high intensity linear accelerators

    DOEpatents

    Liska, Donald J.; Schamaun, Roger G.; Clark, Donald C.; Potter, R. Christopher; Frank, Joseph A.

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  1. Drift tube suspension for high intensity linear accelerators

    DOEpatents

    Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

    1980-03-11

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  2. Projectiles Impact Assessment of Aircraft Wing Structures with Real Dynamic Load

    NASA Astrophysics Data System (ADS)

    Han, Lu; Han, Qing; Wang, Changlin

    2015-07-01

    This paper presents an analysis to achieve the impact damage of the wing structure under real dynamic load. MPCCI tools are utilized to convert wing aerodynamic load into structural Finite Element Method (FEM) node load. The ANSYS/LS-DYNA code is also used to simulate the dynamic loading effects of the wing structure hit by several projectiles, including both active damage mechanism and common damage mechanism. In addition, structural node force on the leading edge and the midline is compared to the aerodynamic load separately. Furthermore, the statistical analysis of the penetrating size and the stress concentration around the damage holes indicates that under the same load situation, the structural damage efficiency of active damage mechanism is significantly higher than the one of common damage mechanism.

  3. The impact of cognitive load on operatic singers' timing performance

    PubMed Central

    Çorlu, Muzaffer; Maes, Pieter-Jan; Muller, Chris; Kochman, Katty; Leman, Marc

    2015-01-01

    In the present paper, we report the results of an empirical study on the effects of cognitive load on operatic singing. The main aim of the study was to investigate to what extent a working memory task affected the timing of operatic singers' performance. Thereby, we focused on singers' tendency to speed up, or slow down their performance of musical phrases and pauses. Twelve professional operatic singers were asked to perform an operatic aria three times; once without an additional working memory task, once with a concurrent working memory task (counting shapes on a computer screen), and once with a relatively more difficult working memory task (more shapes to be counted appearing one after another). The results show that, in general, singers speeded up their performance under heightened cognitive load. Interestingly, this effect was more pronounced in pauses—more in particular longer pauses—compared to musical phrases. We discuss the role of sensorimotor control and feedback processes in musical timing to explain these findings. PMID:25954218

  4. A Study of the Use of Contact Loading to Simulate Low Velocity Impact

    NASA Technical Reports Server (NTRS)

    Highsmith, Alton L.

    1997-01-01

    Although numerous studies on the impact response of laminated composites have been conducted, there is as yet no agreement within the composites community on what parameter or parameters are adequate for quantifying the severity of an impact event. One of the more interesting approaches that has been proposed uses the maximum contact force during impact to "quantify" the severity of the impact event, provided that the impact velocity is sufficiently low. A significant advantage of this approach, should it prove to be reliable, is that quasi-static contact loading could be used to simulate low velocity impact. In principle, a single specimen, loaded quasi-statically to successively increasing contact loads could be used to map the entire spectrum of damage as a function of maximum contact force. The present study had as its objective assessing whether or not the maximum contact force during impact is a suitable parameter for characterizing an impact. The response of [+/-60/0(sub 4)/+/-60/0(sub 2)](sub s) laminates fabricated from Fiberite T300/934 graphite epoxy and subjected to quasi-static contact loading and to low velocity impact was studied. Three quasi-static contact load levels - 525 lb., 600 lb., and 675 lb. - were selected. Three impact energy levels - 1.14 ft.-lb., 2.0 ft.-lb., and 2.60 ft.-lb. - were chosen in an effort to produce impact events in which the maximum contact forces during the impact events were 525 lb., 600 lb., and 625 lb., respectively. Damage development was documented using dye-penetrant enhanced x-ray radiography. A digital image processing technique was used to obtain quantitative information about the damage zone. Although it was intended that the impact load levels produce maximum contact forces equal to those used in the quasi-static contact experiments, larger contact forces were developed during impact loading. In spite of this, the damage zones developed in impacted specimens were smaller than the damage zones developed in

  5. Experimental and Numerical Investigations of Textile Hybrid Composites Subjected to Low Velocity Impact Loadings

    PubMed Central

    Chandekar, Gautam S.; Kelkar, Ajit D.

    2014-01-01

    In the present study experimental and numerical investigations were carried out to predict the low velocity impact response of four symmetric configurations: 10 ply E Glass, 10 ply AS4 Carbon, and two Hybrid combinations with 1 and 2 outer plies of E Glass and 8 and 6 inner plies of Carbon. All numerical investigations were performed using commercial finite element software, LS-DYNA. The test coupons were manufactured using the low cost Heated Vacuum Assisted Resin Transfer Molding (H-VARTM©) technique. Low velocity impact testing was carried out using an Instron Dynatup 8250 impact testing machine. Standard 6 × 6 Boeing fixture was used for all impact experiments. Impact experiments were performed over progressive damage, that is, from incipient damage till complete failure of the laminate in six successive impact energy levels for each configuration. The simulation results for the impact loading were compared with the experimental results. For both nonhybrid configurations, it was observed that the simulated results were in good agreement with the experimental results, whereas, for hybrid configurations, the simulated impact response was softer than the experimental response. Maximum impact load carrying capacity was also compared for all four configurations based on their areal density. It was observed that Hybrid262 configuration has superior impact load to areal density ratio. PMID:24719573

  6. SRB/FWC water impact: Flexible body loads test

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The modeling of the cavity collapse pressure loading is discussed. There are excellent high speed color films of the quarter scale model during cavity collapse. In these films, it is possible to see a very clearly defined pressure wave front propagating circumferentially around the vehicle that seems to be associated at least on the lee side with an abrupt rise in pressure at each pressure transducer. By using a motion analyzer and stepping through the films, the location of this wave front is tracted at a number of time intervals for drops 17 through 21. The entry conditions and average wave front velocity are shown. Mathematical formulae aid in the reconstruction of the spatial distribution of the pressure.

  7. Mechanical Characterization of the Human Lumbar Intervertebral Disc Subjected to Impact Loading Conditions

    NASA Astrophysics Data System (ADS)

    Jamison, David, IV

    Low back pain is a large and costly problem in the United States. Several working populations, such as miners, construction workers, forklift operators, and military personnel, have an increased risk and prevalence of low back pain compared to the general population. This is due to exposure to repeated, transient impact shocks, particularly while operating vehicles or other machinery. These shocks typically do not cause acute injury, but rather lead to pain and injury over time. The major focus in low back pain is often the intervertebral disc, due to its role as the major primary load-bearing component along the spinal column. The formation of a reliable standard for human lumbar disc exposure to repeated transient shock could potentially reduce injury risk for these working populations. The objective of this project, therefore, is to characterize the mechanical response of the lumbar intervertebral disc subjected to sub-traumatic impact loading conditions using both cadaveric and computational models, and to investigate the possible implications of this type of loading environment for low back pain. Axial, compressive impact loading events on Naval high speed boats were simulated in the laboratory and applied to human cadaveric specimen. Disc stiffness was higher and hysteresis was lower than quasi-static loading conditions. This indicates a shift in mechanical response when the disc is under impact loads and this behavior could be contributing to long-term back pain. Interstitial fluid loss and disc height changes were shown to affect disc impact mechanics in a creep study. Neutral zone increased, while energy dissipation and low-strain region stiffness decreased. This suggests that the disc has greater clinical instability during impact loading with progressive creep and fluid loss, indicating that time of day should be considered for working populations subjected to impact loads. A finite element model was developed and validated against cadaver specimen

  8. The mandibular cartilage metabolism is altered by damaged subchondral bone from traumatic impact loading.

    PubMed

    Lin, Yu-Yu; Tanaka, Nobuaki; Ohkuma, Satoru; Kamiya, Takashi; Kunimatsu, Ryo; Huang, Yu-Ching; Yoshioka, Motoko; Mitsuyoshi, Tomomi; Tanne, Yuki; Tanimoto, Kotaro; Tanaka, Eiji; Tanne, Kazuo

    2009-07-01

    Osteoarthritis (OA) in the temporomandibular joint (TMJ) is a degenerative disease caused by excessive external loading. Recently, it was reported that the damage in the mineralized subchondral bone caused by traumatic impact-loading is responsible for the initiation and progression of cartilage degeneration. Thus far, we have hypothesized that cytokines released from damaged subchondral bone from impact-loading affect the cartilage catabolism under pathological conditions. An impactor of 200 gw was dropped onto the top of a porcine mandibular condyle. After organ culture for 2 days, we investigated the association between the subchondral bone and cartilage using histological and biochemical experiments. The impact-loading induced the expression of IL-1beta immunohistochemically and prominently up-regulated IL-1alpha and IL-1beta mRNA levels in subchondral bone. We confirmed a significant decrease in type II collagen and aggrecan mRNA expressions in chondrocytes by co-culture with osteoblasts after impact-loading, and significant increase in mRNA and protein expressions of IL-1beta in subchondral osteoblasts from impact-loaded subchondral bone. The mRNA expressions of type II collagen, aggrecan, and type X collagen in chondrocytes were decreased significantly by the co-culture with osteoblasts pre-treated by IL-1beta, -6, and TNF-alpha. Among them, osteoblasts pre-treated by IL-1beta affected chondrocytes most strongly. It was also shown that IL-1beta-treated osteoblasts enhanced the MMP-1 mRNA level most markedly in chondrocytes among the four cytokines. These results suggest that the TMJ subjected to impact-loading can increase directly IL-1beta synthesis in the subchondral region, subsequently altering the metabolism of adjacent cartilage and may eventually resulting in the onset and progression of TMJ-OA. PMID:19381811

  9. Evaluation of a Compression-Loaded-Stitched-Multi-Bay Fuselage Panel With Barely Visible Impact Damage

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.; Li, Ji-An

    2005-01-01

    The experimental results from a stitched VaRTM carbon-epoxy composite panel tested under uni-axial compression loading are presented along with nonlinear finite element analysis prediction of the response. The curved panel is divided by frames and stringers into six bays with a column of three bays along the compressive loading direction. The frames are supported at the frame ends to resist out-of-plane translation. Back-to-back strain gages are used to record the strain and displacement transducers were used to record the out-of-plane displacements. In addition a full-field-displacement measurement technique that utilizes a camera-based-stereo-vision system was used to record the displacements. The panel was loaded to 1.5 times the predicted initial buckling load (1st bay buckling load, P(sub er) from the nonlinear finite element analysis and then was removed from the test machine for impact testing. After impacting with 20 ft-lbs of energy using a spherical impactor to produce barely visible damage the panel was loaded in compression until failure. The buckling load of the first bay to buckle was 97% of the buckling load before impact. The stitching constrained the impact damage from growing during the loading to failure. Impact damage had very little overall effect on panel stiffness. Panel stiffness measured by the full-field-displacement technique indicated a 13% loss in stiffness after impact. The panel failed at 1.64 times the first panel buckling load. The barely visible impact damage did not grow noticeably as the panel failed by global instability due to stringer-web terminations at the frame locations. The predictions from the nonlinear analysis of the finite element modeling of the entire specimen were very effective in the capture of the initial buckling and global behavior of the panel. In addition, the prediction highlighted the weakness of the panel under compression due to stringer web terminations. Both the test results and the nonlinear

  10. Salivary Cortisol Responses and Perceived Exertion during High Intensity and Low Intensity Bouts of Resistance Exercise

    PubMed Central

    McGuigan, Michael R.; Egan, Alison D.; Foster, Carl

    2004-01-01

    resistance exercise and that salivary cortisol responds promptly to the exercise load. Key Points The present study showed that salivary cortisol responses were significantly different immediately post exercise between the low intensity and high intensity exercise sessions Salivary measures of cortisol can be used to delineate between high and low intensity resistance exercise bouts. The session RPE method appears to be a reliable method of quantifying resistance exercise PMID:24497815

  11. High intensity muon beam source for neutrino beam experiments

    NASA Astrophysics Data System (ADS)

    Kamal Sayed, Hisham

    2015-09-01

    High intensity muon beams are essential for Muon accelerators like Neutrino Factories and Muon Colliders. In this study we report on a global optimization of the muon beam production and capture based on end-to-end simulations of the Muon Front End. The study includes the pion beam production target geometry, capture field profile, and forming muon beam into microbunches for further acceleration. The interplay between the transverse and longitudinal beam dynamics during the capture and transport of muon beam is evaluated and discussed. The goal of the optimization is to provide a set of design parameters that delivers high intensity muon beam that could be fit within the acceptance of a muon beam accelerator.

  12. Review of High-intensity Interval Training in Cardiac Rehabilitation.

    PubMed

    Ito, Shigenori; Mizoguchi, Tatsuya; Saeki, Tomoaki

    2016-01-01

    For the secondary prevention of cardiovascular disease, comprehensive cardiac rehabilitation is required. This involves optimal medical therapy, education on nutrition and exercise therapy, and smoking cessation. Of these, efficient exercise therapy is a key factor. A highly effective training protocol is therefore warranted, which requires a high rate of compliance. Although moderate-intensity continuous training has been the main training regimen recommended in cardiac rehabilitation guidelines, high-intensity interval training has been reported to be more effective in the clinical and experimental setting from the standpoint of peak oxygen uptake and central and peripheral adaptations. In this review, we illustrate the scientific evidence for high-intensity interval training. We then verify this evidence and discuss its significance and the remaining issues. PMID:27580530

  13. Review of High-intensity Interval Training in Cardiac Rehabilitation.

    PubMed

    Ito, Shigenori; Mizoguchi, Tatsuya; Saeki, Tomoaki

    2016-01-01

    For the secondary prevention of cardiovascular disease, comprehensive cardiac rehabilitation is required. This involves optimal medical therapy, education on nutrition and exercise therapy, and smoking cessation. Of these, efficient exercise therapy is a key factor. A highly effective training protocol is therefore warranted, which requires a high rate of compliance. Although moderate-intensity continuous training has been the main training regimen recommended in cardiac rehabilitation guidelines, high-intensity interval training has been reported to be more effective in the clinical and experimental setting from the standpoint of peak oxygen uptake and central and peripheral adaptations. In this review, we illustrate the scientific evidence for high-intensity interval training. We then verify this evidence and discuss its significance and the remaining issues.

  14. Engineering Food Ingredients with High-Intensity Ultrasound

    NASA Astrophysics Data System (ADS)

    Weiss, Jochen; Kristbergsson, Kristberg; Kjartansson, Gunnar Thor

    The use of ultrasound in the food industry has increased in the last decades. Ultrasound has been used both to analyze food structure and composition at low ultrasonic intensities and high frequencies and to modify ingredients at high ultrasonic intensities and low frequencies. Application of the latter is referred to as high-intensity (power) ultrasonication and is generally carried out at frequencies of =0.1 MHz and ultrasonic intensities of 10-100 W cm-2. In the food industry, power ultrasonication has proved to be a highly effective food processing and preservation technology, and use of high-intensity ultrasound with or without heat may be used, for example, to denature enzymes, aid in the extraction of valuable compounds from plants and seeds, tenderize meat, and homogenize or disperse two-phase systems such as emulsions or suspensions (Mason et al., 1996).

  15. High-Intensity Focused Ultrasound Therapy: an Overview for Radiologists

    PubMed Central

    Kim, Young-sun; Choi, Min Joo; Lim, Hyo Keun; Choi, Dongil

    2008-01-01

    High-intensity focused ultrasound therapy is a novel, emerging, therapeutic modality that uses ultrasound waves, propagated through tissue media, as carriers of energy. This completely non-invasive technology has great potential for tumor ablation as well as hemostasis, thrombolysis and targeted drug/gene delivery. However, the application of this technology still has many drawbacks. It is expected that current obstacles to implementation will be resolved in the near future. In this review, we provide an overview of high-intensity focused ultrasound therapy from the basic physics to recent clinical studies with an interventional radiologist's perspective for the purpose of improving the general understanding of this cutting-edge technology as well as speculating on future developments. PMID:18682666

  16. Short-pulse, high-intensity lasers at Los Alamos

    SciTech Connect

    Taylor, A.J.; Roberts, J.P.; Rodriguez, G.; Fulton, R.D.; Kyrala, G.A.; Schappert, G.T.

    1994-03-01

    Advances in ultrafast lasers and optical amplifiers have spurred the development of terawatt-class laser systems capable of delivering focal spot intensities approaching 10{sup 20} W/cm{sup 2}. At these extremely high intensities, the optical field strength is more than twenty times larger than the Bohr electric field, permitting investigations of the optical properties of matter in a previously unexplored regime. The authors describe two laser systems for high intensity laser interaction experiments: The first is a terawatt system based on amplification of femtosecond pulses in XeCl which yields 250 mJ in 275 fs and routinely produces intensifies on target in excess of 10{sup 18} W/cm{sup 2}. The second system is based on chirped pulse amplification of 100-fs pulses in Ti:sapphire.

  17. Response of graphene to femtosecond high-intensity laser irradiation

    SciTech Connect

    Roberts, Adam; Cormode, Daniel; Reynolds, Collin; Newhouse-Illige, Ty; LeRoy, Brian J.; Sandhu, Arvinder S.

    2011-08-01

    We study the response of graphene to high-intensity, 50-femtosecond laser pulse excitation. We establish that graphene has a high ({approx}3 x 10{sup 12} Wcm{sup -2}) single-shot damage threshold. Above this threshold, a single laser pulse cleanly ablates graphene, leaving microscopically defined edges. Below this threshold, we observe laser-induced defect formation leading to degradation of the lattice over multiple exposures. We identify the lattice modification processes through in-situ Raman microscopy. The effective lifetime of chemical vapor deposition grown graphene under femtosecond near-infrared irradiation and its dependence on laser intensity is determined. These results also define the limits of non-linear applications of graphene in femtosecond high-intensity regime.

  18. Assessment of particulate cellulose epoxy composites manufactured by JMFIL under impact load

    NASA Astrophysics Data System (ADS)

    Srinivasababu, Nadendla

    2015-08-01

    Increase in environmental concern towards sustainable development invites the development of new materials which are eco-friendly to satisfy various engineering needs. The present work introduces a new manufacturing method i.e. "Just Mold Fill and Immediate Loading" to prepare epoxy composites reinforced at different contents of particulate cellulose. The fabricated composites specimens are post processed and machined, tested as per ASTM procedures under impact load.

  19. PULSED POWER APPLICATIONS IN HIGH INTENSITY PROTON RINGS.

    SciTech Connect

    ZHANG, S.Y.; SANDBERG, J.; ET AL.

    2005-05-16

    Pulsed power technology has been applied in particle accelerators and storage rings for over four decades. It is most commonly used in injection, extraction, beam manipulation, source, and focusing systems. These systems belong to the class of repetitive pulsed power. In this presentation, we review and discuss the history, present status, and future challenge of pulsed power applications in high intensity proton accelerators and storage rings.

  20. An improved high intensity recycling helium-3 beam source

    SciTech Connect

    Hedgeland, H.; Kole, P. R.; Allison, W.; Ellis, J.; Jardine, A. P.

    2009-07-15

    We describe an improved high intensity, recycling, supersonic atomic beam source. Changes address several issues previously limiting performance and reliability of the apparatus, including the use of newly available vacuum pumps and modifications to the recycling system. We achieve a source intensity of 2.5x10{sup 19} atoms/s/sr, almost twice that previously achievable during recycling. Current limits on intensity are discussed.

  1. Beta-alanine supplementation in high-intensity exercise.

    PubMed

    Harris, Roger C; Sale, Craig

    2012-01-01

    Glycolysis involves the oxidation of two neutral hydroxyl groups on each glycosyl (or glucosyl) unit metabolised, yielding two carboxylic acid groups. During low-intensity exercise these, along with the remainder of the carbon skeleton, are further oxidised to CO(2) and water. But during high-intensity exercise a major portion (and where blood flow is impaired, then most) is accumulated as lactate anions and H(+). The accumulation of H(+) has deleterious effects on muscle function, ultimately impairing force production and contributing to fatigue. Regulation of intracellular pH is achieved over time by export of H(+) out of the muscle, although physicochemical buffers in the muscle provide the first line of defence against H(+) accumulation. In order to be effective during high-intensity exercise, buffers need to be present in high concentrations in muscle and have pK(a)s within the intracellular exercise pH transit range. Carnosine (β-alanyl-L-histidine) is ideal for this role given that it occurs in millimolar concentrations within the skeletal muscle and has a pK(a) of 6.83. Carnosine is a cytoplasmic dipeptide formed by bonding histidine and β-alanine in a reaction catalysed by carnosine synthase, although it is the availability of β-alanine, obtained in small amounts from hepatic synthesis and potentially in greater amounts from the diet that is limiting to synthesis. Increasing muscle carnosine through increased dietary intake of β-alanine will increase the intracellular buffering capacity, which in turn might be expected to increase high-intensity exercise capacity and performance where this is pH limited. In this study we review the role of muscle carnosine as an H(+) buffer, the regulation of muscle carnosine by β-alanine, and the available evidence relating to the effects of β-alanine supplementation on muscle carnosine synthesis and the subsequent effects of this on high-intensity exercise capacity and performance.

  2. Silicone rubber curing by high intensity infrared radiation

    SciTech Connect

    Huang, T.; Tsai, J.; Cherng, C.; Chen, J.

    1994-08-10

    A high-intensity (12 kW) and compact (80 cm) infrared heating oven for fast curing (12 seconds) of tube-like silicone rubber curing studies is reported. Quality inspection by DSC and DMA and results from pilot-scale curing oven all suggest that infrared heating provides a better way of vulcanization regarding to curing time, quality, cost, and spacing over conventional hot air heating. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  3. NUMERICAL METHODS FOR THE SIMULATION OF HIGH INTENSITY HADRON SYNCHROTRONS.

    SciTech Connect

    LUCCIO, A.; D'IMPERIO, N.; MALITSKY, N.

    2005-09-12

    Numerical algorithms for PIC simulation of beam dynamics in a high intensity synchrotron on a parallel computer are presented. We introduce numerical solvers of the Laplace-Poisson equation in the presence of walls, and algorithms to compute tunes and twiss functions in the presence of space charge forces. The working code for the simulation here presented is SIMBAD, that can be run as stand alone or as part of the UAL (Unified Accelerator Libraries) package.

  4. HIGH-INTENSITY, HIGH CHARGE-STATE HEAVY ION SOURCES

    SciTech Connect

    ALESSI,J.G.

    2004-08-16

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions is reviewed. These sources include ECR, EBIS, and Laser ion sources. Benefits and limitations for these type sources are described. Possible future improvements in these sources are also mentioned.

  5. Ion source and injection line for high intensity medical cyclotron

    SciTech Connect

    Jia, XianLu Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  6. Ion source and injection line for high intensity medical cyclotron

    NASA Astrophysics Data System (ADS)

    Jia, XianLu; Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-01

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H- ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H- ion source (CIAE-CH-I type) and a short injection line, which the H- ion source of 3 mA/25 keV H- beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  7. Climate Change Impacts on Forest Soils Critical Acid Loads and Exceedances at a National Scale

    NASA Astrophysics Data System (ADS)

    McNulty, S. G.; Cohen, E.; Moore Myers, J.; Sun, G.; Caldwell, P.

    2011-12-01

    The Federal agencies of the United States (US) are currently developing guidelines for forest soil critical acid loads across the US. A critical acid load is defined as the amount of acid deposition (usually expressed on a annual basis) that an ecosystem can absorb. Traditionally, an ecosystem is considered to be at risk for health impairment when the critical acid load exceeds a level known to impair forest health. The excess over the critical acid load is termed the exceedance, and the larger the exceedance, the greater the risk of ecosystem damage. This definition of critical acid load applies to a single, long-term pollutant exposure. These guidelines are often used to establish regulations designed to maintain acidic deposition (e.g., nitrogen and sulfur) inputs below the level shown to exceed an ecosystem's critical acid load. The traditional definition for a critical acid load generally assume that the ecosystem is in a steady state condition (i.e. no major changes in the factors that regulate the ecosystems ability to absorb acids. Unfortunately, climate change is altering weather patterns and, thus, impacting the factors that regulate critical acid load limits. This paper explores which factors associated with establishing forest soil critical acid load limits will most likely be influenced by climate change, and how these changes might impact forest soil critical acid load limits across the US. Base cation weathering could increase with global warming, along with nitrogen uptake as a function of increased forest growth across New England. A moderate 20% increase in base cation weathering and nitrogen uptake would result in at least a 25% decrease in the amount of forest soil area that exceeded the critical acid load limit and at least a 50% decrease in the amount of high exceedance area across the US. While these results are encouraging, they do not account for other negative potential forest health risks associated with climate change such as elevated

  8. The effect of low fluoride concentrations on microdamage accumulation in mouse tibias under impact loading

    NASA Astrophysics Data System (ADS)

    Luo, Qing; Chen, Nan; Zhou, Yan-Heng; Rong, Qi-Guo

    2015-12-01

    Microdamage accumulation in bone is one of the mechanisms for energy dissipation during the fracture process. Changes in the ultrastructure and composition of bone constituents due to aging or diseases could affect microdamage accumulation. Low concentration (1 mM) of sodium fluoride (NaF) has been used in this study to investigate the effect of ultrastructural changes on microdamage accumulation in mouse tibias following free-fall impact loadings. Twenty-two tibias were divided randomly into control and NaF-treated groups. Free-fall impact loading was conducted twice on each tibia to produce microdamage. The elastic modulus of NaF-treated tibias decreased significantly after the impact loadings, while there was no significant difference in the modulus of untreated samples between pre- and post-damage loadings. Microdamage morphology analysis showed that less and shorter microcracks existed in NaF-treated tibias compared with control bones. Meanwhile, more and longer microcracks were observed in tensile regions in untreated samples compared with that in compressive regions, whereas no significant difference was observed between tensile and compressive regions in NaF-treated bones. The results of this study indicate that more energy is required to generate microcracks in NaF-treated bone than in normal bone. A low concentration of fluoride treatment may increase the toughness of bone under impact loading.

  9. Muscle fatigue during high-intensity exercise in children.

    PubMed

    Ratel, Sébastien; Duché, Pascale; Williams, Craig A

    2006-01-01

    Children are able to resist fatigue better than adults during one or several repeated high-intensity exercise bouts. This finding has been reported by measuring mechanical force or power output profiles during sustained isometric maximal contractions or repeated bouts of high-intensity dynamic exercises. The ability of children to better maintain performance during repeated high-intensity exercise bouts could be related to their lower level of fatigue during exercise and/or faster recovery following exercise. This may be explained by muscle characteristics of children, which are quantitatively and qualitatively different to those of adults. Children have less muscle mass than adults and hence, generate lower absolute power during high-intensity exercise. Some researchers also showed that children were equipped better for oxidative than glycolytic pathways during exercise, which would lead to a lower accumulation of muscle by-products. Furthermore, some reports indicated that the lower ability of children to activate their type II muscle fibres would also explain their greater resistance to fatigue during sustained maximal contractions. The lower accumulation of muscle by-products observed in children may be suggestive of a reduced metabolic signal, which induces lower ratings of perceived exertion. Factors such as faster phosphocreatine resynthesis, greater oxidative capacity, better acid-base regulation, faster readjustment of initial cardiorespiratory parameters and higher removal of metabolic by-products in children could also explain their faster recovery following high-intensity exercise.From a clinical point of view, muscle fatigue profiles are different between healthy children and children with muscle and metabolic diseases. Studies of dystrophic muscles in children indicated contradictory findings of changes in contractile properties and the muscle fatigability. Some have found that the muscle of boys with Duchenne muscular dystrophy (DMD) fatigued less

  10. Impact of Waveguide Filling Material on Near-Field Microwave Inspection of Carbon-Loaded Composites

    NASA Astrophysics Data System (ADS)

    Qaddoumi, Nasser; Saleh, Wael; Sediq, Akram Bin

    2010-10-01

    The advent of carbon loaded composite materials gave a boost to many industries. This is because of their light weight, durability and strength. As new structures utilizing carbon loaded composites are built, the need for a reliable nondestructive testing technique increases. A carbon-loaded composite testing poses a challenge to most nondestructive testing and evaluation (NDT&E) techniques. Microwave NDT&I techniques main challenge is the lossy nature of carbon, especially at high microwave frequencies. Lower frequencies penetrate deeper in carbon-loaded composites, however, to operate at lower frequencies the size of the waveguide probe increases significantly which degrades the resolution rapidly. Open-ended rectangular waveguide sensors filled with a dielectric material will be used to inspect carbon-loaded composites. The filling of the waveguide reduces the frequency of operation and keeps the small size of the waveguide (i.e. increases the penetration depth and maintains the resolution). However, varying the waveguide filling material dielectric properties will have an impact on the measurement parameters optimization process and consequently on the detection sensitivity. In this paper, the use of the waveguide filling material as an optimization parameter will be investigated. Carbon-loaded composites with disbonds will be inspected and the variation of the dielectric properties of the loading material of rectangular waveguide probes for carbon loaded composites inspection will be assessed.

  11. Damage Tolerance of Pre-Stressed Composite Panels Under Impact Loads

    NASA Astrophysics Data System (ADS)

    Johnson, Alastair F.; Toso-Pentecôte, Nathalie; Schueler, Dominik

    2014-02-01

    An experimental test campaign studied the structural integrity of carbon fibre/epoxy panels preloaded in tension or compression then subjected to gas gun impact tests causing significant damage. The test programme used representative composite aircraft fuselage panels composed of aerospace carbon fibre toughened epoxy prepreg laminates. Preload levels in tension were representative of design limit loads for fuselage panels of this size, and maximum compression preloads were in the post-buckle region. Two main impact scenarios were considered: notch damage from a 12 mm steel cube projectile, at velocities in the range 93-136 m/s; blunt impact damage from 25 mm diameter glass balls, at velocities 64-86 m/s. The combined influence of preload and impact damage on panel residual strengths was measured and results analysed in the context of damage tolerance requirements for composite aircraft panels. The tests showed structural integrity well above design limit loads for composite panels preloaded in tension and compression with visible notch impact damage from hard body impact tests. However, blunt impact tests on buckled compression loaded panels caused large delamination damage regions which lowered plate bending stiffness and reduced significantly compression strengths in buckling.

  12. Efficient markets or efficient loads?: Impacts from electric utility restructuring

    SciTech Connect

    Warwick, W.M.

    1996-05-01

    Restructuring of the electric utility industry is underway. This is in response to many influences, including drives to deregulate the industry, new regulatory initiatives, changing power markets, and new technology. The changing utility industry will provide Federal power customers with new opportunities to reduce costs and increase service. However, the instability in the current environment is certain to reduce near-term opportunities to collaborate with local utilities on DSM and other efficiency projects as the economics of these projects are now uncertain. This paper discusses this instability and its impacts on demand side management and other efficiency projects. Historically, electricity services have been provided to consumers through integrated utilities that used their own generation and transmission to distribute power to captive customers as a regulated monopoly. There are municipal and other publicly owned utilities that own no generation or transmission and only distribute power. Similarly, there are publicly owned generation and transmission companies that wholesale power and have no retail customers. Nevertheless, most of the power used in the country is provided by integrated, regulated investor-owned utilities. Competition was introduced in the industry with the Public Utility Regulatory Policy Act of 1976 (PURPA). This legislation opened the door to the development of generation by third parties. The development of third-party generating facilities grew steadily until the mid- 1980s when it finally surpassed utility construction as the norm for new power supplies. The transformation of the power generation business is, in part, a spill over from deregulation of the airline and gas industries. The first resulted in more efficient turbines, which are used for both airplane engines and small generators, and the second resulted in lower natural gas prices, which made gas-fired generation the least cost generating option.

  13. Impact of enzyme loading on the efficacy and recovery of cellulolytic enzymes immobilized on enzymogel nanoparticles.

    PubMed

    Samaratunga, Ashani; Kudina, Olena; Nahar, Nurun; Zakharchenko, Andrey; Minko, Sergiy; Voronov, Andriy; Pryor, Scott W

    2015-03-01

    Cellulase and β-glucosidase were adsorbed on a polyacrylic acid polymer brush grafted on silica nanoparticles to produce enzymogels as a form of enzyme immobilization. Enzyme loading on the enzymogels was increased to a saturation level of approximately 110 μg (protein) mg(-1) (particle) for each enzyme. Enzymogels with varied enzyme loadings were then used to determine the impact on hydrolysis rate and enzyme recovery. Soluble sugar concentrations during the hydrolysis of filter paper and Solka-Floc with the enzymogels were 45 and 53%, respectively, of concentrations when using free cellulase. β-Glucosidase enzymogels showed lower performance; hydrolyzate glucose concentrations were just 38% of those using free enzymes. Increasing enzyme loading on the enzymogels did not reduce net efficacy for cellulase and improved efficacy for β-glucosidase. The use of free cellulases and cellulase enzymogels resulted in hydrolyzates with different proportions of cellobiose and glucose, suggesting differential attachment or efficacy of endoglucanases, exoglucanases, and β-glucosidases present in cellulase mixtures. When loading β-glucosidase individually, higher enzyme loadings on the enzymogels produced higher hydrolyzate glucose concentrations. Approximately 96% of cellulase and 66 % of β-glucosidase were recovered on the enzymogels, while enzyme loading level did not impact recovery for either enzyme.

  14. Modelling catchment management impact on in-stream phosphorus loads in northern Victoria.

    PubMed

    Vigiak, O; Rattray, D; McInnes, J; Newham, L T H; Roberts, A M

    2012-11-15

    Phosphorus pollution severely impairs the water quality of rivers in Australia and worldwide. Conceptual models have proved useful to assess management impact on phosphorus loads, particularly in data-sparse environments. This paper develops and evaluates the coupling of a point-scale model (HowLeaky2008) to a catchment scale model (CatchMODS) to enhance modelling of farm management impacts on in-stream phosphorus loads. The model was tested in two adjacent catchments in northern Victoria (Avon-Richardson and Avoca), Australia. After calibration of the in-stream attenuation parameter against measurements at gauging stations, the model simulated specific annual phosphorus loads across the catchments well (Nash-Sutcliffe model efficiency of 0.52 in the Avon-Richardson and 0.83 for the Avoca catchment). Phosphorus loads at both catchment outlets under current conditions were estimated at 7 t y(-1) and were dominated by field exports. Changes to farm management practices, i.e. the use of perennial pastures in grazing systems and zero-tillage in cropping systems were estimated to reduce phosphorus load by 31% in the Avon-Richardson catchment and 19% in the Avoca catchment, relative to current practices (annual pasture and minimum tillage). The model afforded a major improvement in conceptual modelling by explicit simulation of the impacts of soil and climatic conditions on field-scale exports and by placing them in the context of landscape processes.

  15. Virtual coaching for the high-intensity training of a powerlifter following coronary artery bypass grafting.

    PubMed

    Adams, Richard; Adams, Jenny; Qin, Huanying; Bilbrey, Tim; Schussler, Jeffrey M

    2015-01-01

    A 55-year-old powerlifter in Tennessee learned about the sport-specific, high-intensity cardiac rehabilitation training available in Dallas, Texas, and contacted the staff by phone. He was recovering from quadruple coronary artery bypass grafting (CABG) and had completed several weeks of traditional cardiac rehabilitation in his hometown, but the exercise program no longer met his needs. He wanted help in returning both to his normal training regimen and to powerlifting competition but was unable to attend the Dallas program in person. An exercise physiologist with the program devised a virtual coaching model in which the patient was sent a wrist blood pressure cuff for self-monitoring and was advised about exercises that would not harm his healing sternum, even as the weight loads were gradually increased. After 17 weeks of symptom-limited, high-intensity training that was complemented by phone and e-mail support, the patient was lifting heavier loads than he had before CABG. At a powerlifting competition 10 months after CABG, he placed first in his age group. This case report exemplifies the need for alternative approaches to the delivery of cardiac rehabilitation services.

  16. Virtual coaching for the high-intensity training of a powerlifter following coronary artery bypass grafting

    PubMed Central

    Adams, Richard; Qin, Huanying; Bilbrey, Tim; Schussler, Jeffrey M.

    2015-01-01

    A 55-year-old powerlifter in Tennessee learned about the sport-specific, high-intensity cardiac rehabilitation training available in Dallas, Texas, and contacted the staff by phone. He was recovering from quadruple coronary artery bypass grafting (CABG) and had completed several weeks of traditional cardiac rehabilitation in his hometown, but the exercise program no longer met his needs. He wanted help in returning both to his normal training regimen and to powerlifting competition but was unable to attend the Dallas program in person. An exercise physiologist with the program devised a virtual coaching model in which the patient was sent a wrist blood pressure cuff for self-monitoring and was advised about exercises that would not harm his healing sternum, even as the weight loads were gradually increased. After 17 weeks of symptom-limited, high-intensity training that was complemented by phone and e-mail support, the patient was lifting heavier loads than he had before CABG. At a powerlifting competition 10 months after CABG, he placed first in his age group. This case report exemplifies the need for alternative approaches to the delivery of cardiac rehabilitation services. PMID:25552808

  17. High-intensity terahertz pulses and their applications

    NASA Astrophysics Data System (ADS)

    Budiarto, Edward Wibowo

    1997-09-01

    A large aperture transmitter based on an electrically biased photoconductor has been constructed, which is capable of generating ultrashort high-intensity pulses operating in the far-infrared (terahertz) frequency regime. The terahertz pulse is a single-cycle freely propagating electrical pulse with a 600 femtosecond pulse duration and a pulse energy close to 200 nanojoules. A complete characterization of the transmitter and its output pulse has been conducted, resulting in new understandings of the pulse generation mechanism and propagation behavior. More specifically, it was revealed for the first time that near-field diffraction plays a significant role in the propagation behavior of the terahertz pulse from the large aperture transmitter. The pulse alters its temporal shape significantly as it travels away from the transmitter, especially when it is focused by a parabolic mirror. The high-intensity pulse is intended to be utilized as a probe of high-field transport properties of free carriers in semiconductors and superconductors. The transient dynamics of hot-electrons in silicon and gallium arsenide are of particular interest, as they relate to current issues in modern electronic devices. A simulation model has been developed which predicts a nonlinear absorption of the terahertz pulses by free-electrons in the semiconductors due to velocity saturation effects. The high-intensity terahertz pulse has also been used to probe the nonlinear electrodynamics of high-T c superconductors. The results confirm the ability of the pulse to break pairs of superconducting electrons and convert them to normal state electrons. This will allow further studies to be conducted to resolve the exact pair-breaking mechanism, which is ultimately linked to a better understanding of some of the failure mechanisms in today's superconducting microwave devices.

  18. ELECTRON COUD DYNAMICS IN HIGH-INTENSITY RINGS.

    SciTech Connect

    WANG, L.; WEI, J.

    2005-05-16

    Electron cloud due to beam-induced multipacting is one of the main concerns for the high intensity. Electrons generated and accumulated inside the beam pipe form an ''electron cloud'' that interacts with the circulating charged particle beam. With sizeable amount of electrons, this interaction can cause beam instability, beam loss and emittance growth. At the same time, the vacuum pressure will rise due to electron desorption. This talk intends to provide an overview of the mechanism and dynamics of the typical electron multipacting in various magnetic fields and mitigation measures with different beams.

  19. Beam instrumentation for future high intense hadron accelerators at Fermilab

    SciTech Connect

    Wendt, M.; Hu, M.; Tassotto, G.; Thurman-Keup, R.; Scarpine, V.; Shin, S.; Zagel, J.; /Fermilab

    2008-08-01

    High intensity hadron beams of up to 2 MW beam power are a key element of new proposed experimental facilities at Fermilab. Project X, which includes a SCRF 8 GeV H{sup -} linac, will be the centerpiece of future HEP activities in the neutrino sector. After a short overview of this, and other proposed projects, we present the current status of the beam instrumentation activities at Fermilab with a few examples. With upgrades and improvements they can meet the requirements of the new beam facilities, however design and development of new instruments is needed, as shown by the prototype and conceptual examples in the last section.

  20. HELIOS: A high intensity chopper spectrometer at LANSCE

    SciTech Connect

    Mason, T.E.; Broholm, C.; Fultz, B.

    1998-12-31

    A proposal to construct a high intensity chopper spectrometer at LANSCE as part of the SPSS upgrade project is discussed. HELIOS will be optimized for science requiring high sensitivity neutron spectroscopy. This includes studies of phonon density of states in small polycrystalline samples, magnetic excitations in quantum magnets and highly correlated electron systems, as well as parametric studies (as a function of pressure, temperature, or magnetic field) of S(Q,{omega}). By employing a compact design together with the use of supermirror guide in the incident flight path the neutron flux at HELIOS will be significantly higher than any other comparable instrument now operating.

  1. Probing new physics using high-intensity laser systems

    NASA Astrophysics Data System (ADS)

    Marklund, Mattias; Ilderton, Anton; Lundin, Joakim

    2011-06-01

    Current high-intensity laser sources offer a multitude of research, experiment and application possibilities, ranging from e.g. ionisation studies of atomic and molecular systems to particle acceleration for medical purposes. Planned upgrades of existing laser sources will further increase the deliverable intensities and make certain lowintensity (as compared to the Schwinger field) tests of quantum electrodynamics viable. Moreover, secondary sources of radiation, and planned future facilities, offer several-orders-of-magnitude increases in intensities. Thus, it is highly relevant to ask what kind of physics that may be probed using future light sources.

  2. High intensity focused ultrasound calibration - status and challenges

    NASA Astrophysics Data System (ADS)

    Rivens, I. H.; ter Haar, G. R.

    2004-01-01

    High intensity focused ultrasound (FUS) is increasingly being used as a cancer treatment. The technique uses focused high power sources located some distance from the target tumour to cause thermal damage, usually in organs such as the liver and kidney. For prostate cancer treatment, the energy is delivered using a trans-rectal probe. FUS usually uses frequencies between 0.5 and 4.0 MHz, with free-field spatial-peak intensity values quoted in the range 1-20 kW cm-2. This emerging therapy presents new challenges for calibration of the acoustic fields used and characterisation of exposures.

  3. Atmospheric and Wake Turbulence Impacts on Wind Turbine Fatigue Loading: Preprint

    SciTech Connect

    Lee, S.; Churchfield, M.; Moriarty, P.; Jonkman, J.; Michalakes, J.

    2011-12-01

    Large-eddy simulations of atmospheric boundary layers under various stability and surface roughness conditions are performed to investigate the turbulence impact on wind turbines. In particular, the aeroelastic responses of the turbines are studied to characterize the fatigue loading of the turbulence present in the boundary layer and in the wake of the turbines. Two utility-scale 5 MW turbines that are separated by seven rotor diameters are placed in a 3 km by 3 km by 1 km domain. They are subjected to atmospheric turbulent boundary layer flow and data is collected on the structural response of the turbine components. The surface roughness was found to increase the fatigue loads while the atmospheric instability had a small influence. Furthermore, the downstream turbines yielded higher fatigue loads indicating that the turbulent wakes generated from the upstream turbines have significant impact.

  4. Composite cure and shrinkage associated with high intensity curing light.

    PubMed

    Yap, Adrian U J; Wong, N Y; Siow, K S

    2003-01-01

    This study investigated the effectiveness of cure and post-gel shrinkage of three visible light-cured composite resins (In Ten-S [IT], Ivoclar Vivadent; Z100 [ZO], 3M-ESPE; Tetric Ceram [TC], Ivoclar Vivadent) when polymerized with a very high intensity (1296 +/- 2 mW/cm2) halogen light (Astralis 10, Ivoclar Vivadent) for 10 seconds. Irradiation with a conventional (494 +/- 3 mW/cm2) halogen light (Spectrum, Dentsply) for 40 seconds was used for comparison. The effectiveness of cure was assessed by computing the hardness gradient between the top and bottom surfaces of 2-mm composite specimens after curing. A strain-monitoring device was used to measure the linear polymerization shrinkage associated with the various composites and curing lights. A sample size of five was used for both experiments. Data was analyzed using ANOVA/Scheffe's post-hoc and Independent Samples t-tests at significance level 0.05. Results showed that the effect of the curing method on the effectiveness of cure and shrinkage was material-dependent. Polymerization of IT and TC with Spectrum for 40 seconds resulted in significantly more effective cure than polymerization with Astralis for 10 seconds. Polymerization of ZO with Spectrum for 40 seconds resulted in significantly more shrinkage than polymerization with Astralis for 10 seconds. In view of the substantial time saving, using high intensity lights may be a viable method to polymerize composites.

  5. Free-field propagation of high intensity noise

    NASA Technical Reports Server (NTRS)

    Welz, Joseph P.; Mcdaniel, Oliver H.

    1990-01-01

    Observed spectral data from supersonic jet aircraft are known to contain much more high frequency energy than can be explained by linear acoustic propagation theory. It is believed that the high frequency energy is an effect of nonlinear distortion due to the extremely high acoustic levels generated by the jet engines. The objective, to measure acoustic waveform distortion for spherically diverging high intensity noise, was reached by using an electropneumatic acoustic source capable of generating sound pressure levels in the range of 140 to 160 decibels (re 20 micro Pa). The noise spectrum was shaped to represent the spectra generated by jet engines. Two microphones were used to capture the acoustic pressure waveform at different points along the propagation path in order to provide a direct measure of the waveform distortion as well as spectral distortion. A secondary objective was to determine that the observed distortion is an acoustic effect. To do this an existing computer prediction code that deals with nonlinear acoustic propagation was used on data representative of the measured data. The results clearly demonstrate that high intensity jet noise does shift the energy in the spectrum to the higher frequencies along the propagation path. In addition, the data from the computer model are in good agreement with the measurements, thus demonstrating that the waveform distortion can be accounted for with nonlinear acoustic theory.

  6. CW high intensity non-scaling FFAG proton drivers

    SciTech Connect

    Johnstone, C.; Berz, M.; Makino, K.; Snopok, P.; /IIT, Chicago

    2011-04-01

    Accelerators are playing increasingly important roles in basic science, technology, and medicine including nuclear power, industrial irradiation, material science, and neutrino production. Proton and light-ion accelerators in particular have many research, energy and medical applications, providing one of the most effective treatments for many types of cancer. Ultra high-intensity and high-energy (GeV) proton drivers are a critical technology for accelerator-driven sub-critical reactors (ADS) and many HEP programs (Muon Collider). These high-intensity GeV-range proton drivers are particularly challenging, encountering duty cycle and space-charge limits in the synchrotron and machine size concerns in the weaker-focusing cyclotrons; a 10-20 MW proton driver is not presently considered technically achievable with conventional re-circulating accelerators. One, as-yet, unexplored re-circulating accelerator, the Fixed-field Alternating Gradient, or FFAG, is an attractive alternative to the cyclotron. Its strong focusing optics are expected to mitigate space charge effects, and a recent innovation in design has coupled stable tunes with isochronous orbits, making the FFAG capable of fixed-frequency, CW acceleration, as in the classical cyclotron. This paper reports on these new advances in FFAG accelerator technology and references advanced modeling tools for fixed-field accelerators developed for and unique to the code COSY INFINITY.

  7. The shaped critical surface in high intensity laser plasma interactions

    SciTech Connect

    Schumacher, D. W.; Kemp, G. E.; Link, A.; Freeman, R. R.; Van Woerkom, L. D.

    2011-01-15

    This paper describes an investigation of the properties of the relativistic critical surface in a high intensity laser-plasma interaction, specifically the spatial morphology of the surface and its effect upon the divergence of the reflected light. The particle-in-cell code LSP running in two dimensions (2d3v) was used to model the formation of the critical surface and to show that it resides at a varying depth into the material that is dependent on both the intensity radial dependence of the laser focus as well as the shape of the longitudinal vacuum-material interface. The result is a shaped 'mirror' surface that creates a reflected beam with phase and amplitude information informed by the extent of the preplasma present before the intense laser pulse arrived. A robust, highly effective means of experimentally determining the preplasma conditions for any high intensity laser-matter interaction is proposed using this effect. The important physics is elucidated with a simplified model that, within reasonable intensity bounds, recasts the effect of the complex laser-plasma interaction on the reflected beam into a standard Gaussian optics calculation.

  8. Nanoplasma Formation by High Intensity Hard X-rays

    PubMed Central

    Tachibana, T.; Jurek, Z.; Fukuzawa, H.; Motomura, K.; Nagaya, K.; Wada, S.; Johnsson, P.; Siano, M.; Mondal, S.; Ito, Y.; Kimura, M.; Sakai, T.; Matsunami, K.; Hayashita, H.; Kajikawa, J.; Liu, X.-J.; Robert, E.; Miron, C.; Feifel, R.; Marangos, J. P.; Tono, K.; Inubushi, Y.; Yabashi, M.; Son, S.-K.; Ziaja, B.; Yao, M.; Santra, R.; Ueda, K.

    2015-01-01

    Using electron spectroscopy, we have investigated nanoplasma formation from noble gas clusters exposed to high-intensity hard-x-ray pulses at ~5 keV. Our experiment was carried out at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan. Dedicated theoretical simulations were performed with the molecular dynamics tool XMDYN. We found that in this unprecedented wavelength regime nanoplasma formation is a highly indirect process. In the argon clusters investigated, nanoplasma is mainly formed through secondary electron cascading initiated by slow Auger electrons. Energy is distributed within the sample entirely through Auger processes and secondary electron cascading following photoabsorption, as in the hard x-ray regime there is no direct energy transfer from the field to the plasma. This plasma formation mechanism is specific to the hard-x-ray regime and may, thus, also be important for XFEL-based molecular imaging studies. In xenon clusters, photo- and Auger electrons contribute more significantly to the nanoplasma formation. Good agreement between experiment and simulations validates our modelling approach. This has wide-ranging implications for our ability to quantitatively predict the behavior of complex molecular systems irradiated by high-intensity hard x-rays. PMID:26077863

  9. Transcranial Clot Lysis Using High Intensity Focused Ultrasound

    NASA Astrophysics Data System (ADS)

    Hölscher, Thilo; Zadicario, Eyal; Fisher, David J.; Bradley, William G.

    2010-03-01

    Stroke is the third common cause of death worldwide. The majority of strokes are caused by sudden vessel occlusion, due to a blood clot. Vessel recanalization is the primary goal of all acute stroke treatment strategies. Initial data using ultrasound in combination with a therapeutic agent for clot lysis in stroke are promising. However, sound absorption and defocusing of the ultrasound beam occur during transskull insonation, limiting the efficiency of this approach to high extent. Using a transskull High Intensity Focused Ultrasound (HIFU) head system we were able to lyse blood clots within seconds and in absence of further lytic agents. We could show that any correction for the distortion might be negligible to focus the ultrasound beam after transskull insonation. The use of transskull HIFU for immediate clot lysis in the human brain without the need of further drugs and disregarding individual skull bone characteristics could become a successful strategy in early stroke treatment. Using magnetic resonance tomography for neuronavigation MRI Guided High Intensity Focused Ultrasound has the potential to open new avenues for therapeutic applications in the brain including Stroke, Intracranial Hemorrhages, Braintumors, Neurodegenerative Diseases, Thalamic Pain, BBB opening, and local drug delivery. First results in transcranial clot lysis will be presented in this paper.

  10. [Response of a finite element model of the pelvis to different side impact loads].

    PubMed

    Ruan, Shijie; Zheng, Huijing; Li, Haiyan; Zhao, Wei

    2013-08-01

    The pelvis is one of the most likely affected areas of the human body in case of side impact, especially while people suffer from motor vehicle crashes. With the investigation of pelvis injury on side impact, the injury biomechanical behavior of pelvis can be found, and the data can help design the vehicle security devices to keep the safety of the occupants. In this study, a finite element (FE) model of an isolated human pelvis was used to study the pelvic dynamic response under different side impact conditions. Fracture threshold was established by applying lateral loads of 1000, 2000, 3000, 4000 and 5000 N, respectively, to the articular surface of the right acetabulum. It was observed that the smaller the lateral loads were, the smaller the von Mises stress and the displacement in the direction of impact were. It was also found that the failure threshold load was near 3000 N, based on the fact that the peak stress would not exceed the average compressive strength of the cortical bone. It could well be concluded that with better design of car-door and hip-pad so that the side impact force was brought down to 3000 N or lower, the pelvis would not be injured.

  11. Design procedure for pollutant loadings and impacts for highway stormwater runoff (IBM version) (for microcomputers). Software

    SciTech Connect

    Not Available

    1990-01-01

    The interactive computer program was developed to make a user friendly procedure for the personal computer for calculations and guidance to make estimations of pollutant loadings and impacts from highway stormwater runoff which are presented in the Publication FHWA-RD-88-006, Pollutant Loadings and Impacts from Highway Stormwater Runoff, Volume I: Design Procedure. The computer program is for the evaluation of the water quality impact from highway stormwater runoff to a lake or a stream from a specific highway site considering the necessary rainfall data and geographic site situation. The evaluation considers whether or not the resulting water quality conditions can cause a problem as indicated by the violations of water quality criteria or objectives.

  12. Design procedure for pollutant loadings and impacts for highway stormwater runoff (Macintosh version) (for microcomputers). Software

    SciTech Connect

    Not Available

    1990-01-01

    The interactive computer program was developed to make a user friendly procedure for the personal computer for calculations and guidance to make estimations of pollutant loadings and impacts from highway stormwater runoff which are presented in the Publication FHWA-RD-88-006, Pollutant Loadings and Impacts from Highway Stormwater Runoff, Volume I: Design Procedure. The computer program is for the evaluation of the water quality impact from highway stormwater runoff to a lake or a stream from a specific highway site considering the necessary rainfall data and geographic site situation. The evaluation considers whether or not the resulting water quality conditions can cause a problem as indicated by the violations of water quality criteria or objectives.

  13. Statistics concerning the Apollo command module water landing, including the probability of occurrence of various impact conditions, sucessful impact, and body X-axis loads

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Howes, D. B.

    1971-01-01

    Statistical information for the Apollo command module water landings is presented. This information includes the probability of occurrence of various impact conditions, a successful impact, and body X-axis loads of various magnitudes.

  14. High-intensity focused ultrasound plus concomitant radiotherapy: a new weapon in oncology?

    PubMed Central

    2013-01-01

    The potential impact of high-intensity focused ultrasound (HIFU) to general medicine and oncology seems very high. However, while in the research area, the development of this technique is very rapid and unchallenged. The direct application of HIFU to human tumour therapy is hampered by various technical difficulties, which may confine its role to a marginal device in the surgery armamentarium. To deploy the full potential of focused ultrasound in oncology, it seems necessary to review the basic relationship between HIFU and external beam radiotherapy. This is the aim of the present work. PMID:24761227

  15. Response of structures to impact loads using elastic and plastic analysis

    NASA Astrophysics Data System (ADS)

    Mundkur, Gautam

    1992-05-01

    The response of beams and rectangular plates to impact loads is examined. When the deformations are in the elastic region, normal mode analysis is used to find the response. The Rayleigh-Ritz method is employed to obtain the natural frequency and mode shape coefficients. Different types of displacement shape functions are used in the analysis, functions such as beam characteristic functions and beam characteristic orthogonal polynomials. An approximate plate function is determined by reduction of the plate partial differential equation and solving the resulting ordinary differential equation as in the Kantarovich method, then using the Rayleigh-Ritz method. The same reduction procedure is also used along with successive iteration until convergence to obtain the natural frequencies and mode shape functions directly. Structural response to impact loads is also examined using rigid plastic analysis. A cantilever beam with impulsive load applied at the free end, and with finite blade radius and varying centrifugal forces, is considered. Experimental simulation of impact loading used a mass falling from a known height onto the structure under investigation. The elastic response of a plate with two adjacent edges clamped and the other two free was studied. An equivalent mathematical model was formulated by using flexible edge supports.

  16. High-Intensity Sweeteners in Alternative Tobacco Products

    PubMed Central

    Miao, Shida; Beach, Evan S.; Sommer, Toby J.; Zimmerman, Julie B.

    2016-01-01

    Introduction: Sweeteners in tobacco products may influence use initiation and reinforcement, with special appeal to adolescents. Recent analytical studies of smokeless tobacco products (snuff, snus, dissolvables) detected flavorants identical to those added to confectionary products such as hard candy and chewing gum. However, these studies did not determine the levels of sweeteners. The objective of the present study was to quantify added sweeteners in smokeless tobacco products, a dissolvable product, electronic cigarette liquids and to compare with sweetener levels in confectionary products. Methods: Sweetener content of US-sourced smokeless tobacco, electronic cigarette liquid, and confectionary product samples was analyzed by liquid chromatography-electrospray ionization–mass spectrometry (LC-ESI-MS). Results: All smokeless products contained synthetic high intensity sweeteners, with snus and dissolvables exceeding levels in confectionary products (as much as 25-fold). All snus samples contained sucralose and most also aspartame, but no saccharin. In contrast, all moist snuff samples contained saccharin. The dissolvable sample contained sucralose and sorbitol. Ethyl maltol was the most common sweet-associated component in electronic cigarette liquids. Discussion: Sweetener content was dependent on product category, with saccharin in moist snuff, an older category, sucralose added at high levels to more recently introduced products (snus, dissolvable) and ethyl maltol in electronic cigarette liquid. The very high sweetener concentrations may be necessary for the consumer to tolerate the otherwise aversive flavors of tobacco ingredients. Regulation of sweetener levels in smokeless tobacco products may be an effective measure to modify product attractiveness, initiation and use patterns. Implications: Dissolvables, snus and electronic cigarettes have been promoted as risk-mitigation products due to their relatively low content of nitrosamines and other tobacco

  17. The Impact of Boundary Conditions on Surface Curvature of Polypropylene Mesh in Response to Uniaxial Loading

    PubMed Central

    Barone, William R.; Amini, Rouzbeh; Maiti, Spandan; Moalli, Pamela A.; Abramowitch, Steven D.

    2015-01-01

    Exposure following pelvic organ prolapse repair has been observationally associated with wrinkling of the implanted mesh. The purpose of this study was to quantify the impact of variable boundary conditions on the out-of-plane deformations of mesh subjected to tensile loading. Using photogrammetry and surface curvature analyses, deformed geometries were accessed for two commercially available products. Relative to standard clamping methods, the amount of out-of-plane deformation significantly increased when point loads were introduced to simulate suture fixation in-vivo. These data support the hypothesis that regional increases in the concentration of mesh potentially enhance the host’s foreign body response, leading to exposure. PMID:25843260

  18. Delaminations in composite plates under transverse static or impact loads - A model

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; Springer, George S.

    1993-01-01

    A method is presented for calculating the locations, shapes, and sizes of delaminations which occur in a fiber reinforced composite plate subjected to transverse static or dynamic (impact) loads. The plate may be simply supported, clamped, or free along its edges. A model of the delamination formation was developed. This model was then coupled with a finite element analysis. The model and the finite element analysis were implemented by a computer code which can be used to estimate the load at which damage is initiated as well as the locations, shapes, and sizes of the delaminations.

  19. Calibration of quartz load cells: An in-situ procedure for instrumented falling weight impact machines

    NASA Astrophysics Data System (ADS)

    Money, M. W.; Sims, G. D.

    1988-03-01

    A procedure that may be used as a routine check in-situ on the complete system of quartz cell, amplifier, recording device, and data processing unit is suggested. It involves loading and unloading a quartz cell with a known mass, recording the output on a suitable storage device, and manipulating the data with a computer program to provide a permanent record. A quartz cell and amplifier system considered was calibrated to better than 0.1 percent accuracy. Results suggest that providing there is correct alignment of load cell and calibrating force then there is no difference between loading in tension or compression and either method can be used. This is not unexpected as the tension/compression boundary is arbitrary, depending on the degree of preload employed. For instrumented falling weight impact tests a tensile force is much easier to apply to the cell while it remains in the machine. Direct compression loading produces large negative errors. The procedure can be used in the manner required for British standard 1610 but does not meet the standard in full as load removal rather than load application is specified.

  20. Oblique Loading in Post Mortem Human Surrogates from Vehicle Lateral Impact Tests using Chestbands.

    PubMed

    Yoganandan, Narayan; Humm, John R; Pintar, Frank A; Arun, Mike W J; Rhule, Heather; Rudd, Rodney; Craig, Matthew

    2015-11-01

    While numerous studies have been conducted to determine side impact responses of Post Mortem Human Surrogates (PMHS) using sled and other equipment, experiments using the biological surrogate in modern full-scale vehicles are not available. The present study investigated the presence of oblique loading in moving deformable barrier and pole tests. Threepoint belt restrained PMHS were positioned in the left front and left rear seats in the former and left front seat in the latter condition and tested according to consumer testing protocols. Three chestbands were used in each specimen (upper, middle and lower thorax). Accelerometers were secured to the skull, shoulder, upper, middle and lower thoracic vertebrae, sternum, and sacrum. Chestband signals were processed to determine magnitudes and angulations of peak deflections. The magnitude and timing of various signal peaks are given. Vehicle accelerations, door velocities, and seat belt loads are also given. Analysis of deformation contours, peak deflections, and angulations indicated that the left rear seated specimen were exposed to anterior oblique loading while left front specimens in both tests sustained essentially pure lateral loading to the torso. These data can be used to validate human body computational models. The occurrence of oblique loading in full-scale testing, hitherto unrecognized, may serve to stimulate the exploration of its role in injuries to the thorax and lower extremities in modern vehicles. It may be important to continue research in this area because injury metrics have a lower threshold for angled loading.

  1. The impact of non-tidal atmospheric pressure loading on global reference frames

    NASA Astrophysics Data System (ADS)

    Bloßfeld, Mathis; Roggenbuck, Ole; Seitz, Manuela; Angermann, Detlef; Thaller, Daniela

    2015-04-01

    The most recent realization of the ITRS, the ITRF2014, will account for non-tidal atmospheric loading corrections applied at the normal equation or the parameter (solution) level. In its function as one of the three contributing ITRS Combination Centers, DGFI-TUM investigates the methodology to apply these corrections at the normal equation level. In this paper, the derived procedure is presented in detail and the following four global SLR-only TRF solutions are compared with each other: (1) conventional SLR-only TRF without non-tidal loading corrections, (2) SLR-only TRF corrected for the displacement due to non-tidal atmospheric pressure loading at the observation equation level, (3) SLR-only TRF corrected for the displacement due to non-tidal atmospheric pressure loading at the normal equation level, (4) SLR-only TRF corrected for the displacement and gravitational effect due to non-tidal atmospheric pressure loading at the observation level. The four solutions are compared w.r.t. the time series of epoch-wise estimated station coordinates, the station coordinate offsets at a reference epoch, the velocities, the commonly adjusted EOPs and the formal errors. The results allow to study the impact of the different methodologies to account for the non-tidal atmospheric pressure loading correction on global TRF solutions. Finally, the presented SLR case study is summarized and the obtained findings are interpreted in the framework of the current ITRF2014 computation.

  2. The mechanical and material properties of elderly human articular cartilage subject to impact and slow loading.

    PubMed

    Burgin, L V; Edelsten, L; Aspden, R M

    2014-02-01

    The mechanical properties of articular cartilage vary enormously with loading rate, and how these properties derive from the composition and structure of the tissue is still unclear. This study investigates the mechanical properties of human articular cartilage at rapid rates of loading, compares these with measurements at slow rates of loading and explores how they relate to the gross composition of the tissue. Full-depth femoral head cartilage biopsies were subjected to a slow, unconfined compression test followed by an impact at an energy of 78.5mJ and velocity 1.25ms(-1). The modulus was calculated from the slope of the loading curve and the coefficient of restitution from the areas under the loading and unloading curves. Tissue composition was measured as water, collagen and glycosaminoglycan contents. The maximum dynamic modulus ranged from 25 to 150MPa. These values compared with 1-3MPa measured during quasi-static loading. The coefficient of restitution was 0.502 (0.066) (mean (standard deviation)) and showed no site variation. Water loss was not detectable. Composition was not strongly associated with modulus; water and collagen contents together predicted about 25% of the variance in modulus.

  3. Oblique Loading in Post Mortem Human Surrogates from Vehicle Lateral Impact Tests using Chestbands.

    PubMed

    Yoganandan, Narayan; Humm, John R; Pintar, Frank A; Arun, Mike W J; Rhule, Heather; Rudd, Rodney; Craig, Matthew

    2015-11-01

    While numerous studies have been conducted to determine side impact responses of Post Mortem Human Surrogates (PMHS) using sled and other equipment, experiments using the biological surrogate in modern full-scale vehicles are not available. The present study investigated the presence of oblique loading in moving deformable barrier and pole tests. Threepoint belt restrained PMHS were positioned in the left front and left rear seats in the former and left front seat in the latter condition and tested according to consumer testing protocols. Three chestbands were used in each specimen (upper, middle and lower thorax). Accelerometers were secured to the skull, shoulder, upper, middle and lower thoracic vertebrae, sternum, and sacrum. Chestband signals were processed to determine magnitudes and angulations of peak deflections. The magnitude and timing of various signal peaks are given. Vehicle accelerations, door velocities, and seat belt loads are also given. Analysis of deformation contours, peak deflections, and angulations indicated that the left rear seated specimen were exposed to anterior oblique loading while left front specimens in both tests sustained essentially pure lateral loading to the torso. These data can be used to validate human body computational models. The occurrence of oblique loading in full-scale testing, hitherto unrecognized, may serve to stimulate the exploration of its role in injuries to the thorax and lower extremities in modern vehicles. It may be important to continue research in this area because injury metrics have a lower threshold for angled loading. PMID:26660738

  4. Optimal conditions for tissue perforation using high intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Mochizuki, Takashi; Kihara, Taizo; Ogawa, Kouji; Tanabe, Ryoko; Yosizawa, Shin; Umemura, Shin-ichiro; Kakimoto, Takashi; Yamashita, Hiromasa; Chiba, Toshio

    2012-10-01

    To perforate tissue lying deep part in body, a large size transducer was assembled by combining four spherical-shaped transducers, and the optimal conditions for tissue perforation have studied using ventricle muscle of chicken as a target. The ex vivo experiments showed that ventricle muscle was successfully perforated both when it was exposed to High Intensity Focused Ultrasound (HIFU) directly and when it was exposed to HIFU through atrial muscle layer. Moreover, it was shown that calculated acoustic power distributions are well similar to the perforation patterns, and that the acoustic energy distributes very complexly near the focus. Lastly, perforation on the living rabbit bladder wall was demonstrated as a preliminary in vivo experiment.

  5. High intensity neutrino source superconducting solenoid cyrostat design

    SciTech Connect

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  6. High-intensity cyclotron for the IsoDAR experiment

    NASA Astrophysics Data System (ADS)

    Campo, D.; IsoDAR Collaboration

    2015-03-01

    The IsoDAR experiment is the MIT proposal to investigate about several neutrino properties, in order to explain some anomalies experimentally observed. It requires 10mA of proton beam at the energy of 60MeV to produce a high-intensity electron antineutrino flux from the production and the decay of 8Li: it is an ambitious goal for the accelerator design, due also to the fact that the machine has to be placed near a neutrino detector, like KAMLAND or WATCHMAN, located in underground sites. A compact cyclotron able to accelerate H2+ molecule beam up to energy of 60MeV/amu is under study. The critical issues of this machine concern the beam injection due to the effects of space charge, the efficiency of the beam extraction and the technical solutions needed to the machine assembly. Here, the innovative solutions and the preliminary results achieved by the IsoDAR team are discussed.

  7. High Intensity Neutrino Source Superconducting Solenoid Cryostat Design

    NASA Astrophysics Data System (ADS)

    Page, T. M.; Nicol, T. H.; Feher, S.; Terechkine, I.; Tompkins, J.

    2008-03-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5 K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  8. [High-intensity interval training for young athletes].

    PubMed

    Engel, Florian Azad; Sperlich, Billy

    2014-06-01

    A computer-based literature research during July 2013 using the electronic databases PubMed, MEDLINE, SPORTDiscus and Web of Science was performed to assess the effect of the high intensity interval training (HIIT) on sport performance in healthy children and adolescents. Studies examining the effect of HIIT on aerobic and anaerobic performance pre and post to HIIT-Interventions in children and adolescents (9-18 years) were included. The results indicate increased aerobic and anaerobic performance following two or three HIIT sessions per week for a period of five to ten weeks, additional to normal training. Results regarding long term effects following HIIT have not been documented so far. In addition, due to the physiological characteris-tics during HIIT protocols improved fatigue resistance has been demonstrated in children as compared to adults, which may be interpreted as a prerequisite for the applicability of HIIT in children.

  9. Comparison of Two High Intensity Acoustic Test Facilities

    NASA Astrophysics Data System (ADS)

    Launay, A.; Tadao Sakita, M.; Kim, Youngkey K.

    2004-08-01

    In two different countries, at the same period of time, the institutes in charge of the development of space activities have decided to extend their satellite integration and test center, and to implement a reverberant acoustic chamber. In Brazil the INPE laboratory (LIT : Laboratorio de Integracao e Testes) and in South Korea the KARI laboratory (SITC : Satellite Integration and Test Center) started their projects in July 2000 for the RATF (Reverberant Acoustic Test Facility) and in May 2001 for the HIAC (High Intensity Acoustic Chamber) respectively, writing the technical specifications. The kick-off meetings took place in December 2000 and in February 2002 and the opening ceremonies in December 19, 2002 in Brazil and in August 22, 2003 in Korea. This paper compares the two projects in terms of design choices, manufacturing processes, equipment installed and technical final characteristics.

  10. Superheavy Elements Production in High Intensive Neutron Fluxes

    NASA Astrophysics Data System (ADS)

    Lutostansky, Yu. S.; Lyashuk, V. I.; Panov, I. V.

    2013-06-01

    The possibility of superheavy elements production in high intensive neutron fluxes is being studied. A model of the transuranium isotopes production under conditions of pulse nucleosynthesis in a neutron flux with densities of up to ~1025 neutron/cm2 is considered. The pulse process allows us to divide it in time into two stages: the process of multiple neutron captures (with t < 10-6 s) and the subsequent β-decay of neutron-rich nuclei. The modeling of the transuranium yields takes into account the adiabatic character of the process, the probability of delayed fission, and the emission of delayed neutrons. A target with a binary composition of 238U and 239Pu, 248Cm, and 251Cf isotopes is used to predict the yields of heavy and superheavy isotopes.

  11. TRIPS: The high intensity proton source for the TRASCO project

    NASA Astrophysics Data System (ADS)

    Celona, L.; Ciavola, G.; Gammino, S.; Gobin, R.; Ferdinand, R.

    2000-02-01

    The TRASCO project (trasmutazione scorie) is a R&D program whose goal is the design of an accelerator driving system for nuclear waste transmutation. The high current continuous wave proton linear accelerator will drive a subcritical system to transmutate nuclear wastes, while producing energy. The proton source TRIPS is a high intensity microwave source, which should be highly reliable and that should provide a minimum proton current of 50 mA with a r-r' root mean square normalized emittance lower than 0.2 π mm mrad. A program of cooperation has been entered into with CEA-Saclay, where the IPHI project is in progress and the proton source SILHI has been designed and built using goals close to those of TRIPS. The construction of TRIPS is underway and the first beam is scheduled for the first half of 2000. The main features of this source and the results of the optics calculations are presented.

  12. High-Intensity Focused Ultrasound Treatment for Advanced Pancreatic Cancer

    PubMed Central

    Zhou, Yufeng

    2014-01-01

    Pancreatic cancer is under high mortality but has few effective treatment modalities. High-intensity focused ultrasound (HIFU) is becoming an emerging approach of noninvasively ablating solid tumor in clinics. A variety of solid tumors have been tried on thousands of patients in the last fifteen years with great success. The principle, mechanism, and clinical outcome of HIFU were introduced first. All 3022 clinical cases of HIFU treatment for the advanced pancreatic cancer alone or in combination with chemotherapy or radiotherapy in 241 published papers were reviewed and summarized for its efficacy, pain relief, clinical benefit rate, survival, Karnofsky performance scale (KPS) score, changes in tumor size, occurrence of echogenicity, serum level, diagnostic assessment of outcome, and associated complications. Immune response induced by HIFU ablation may become an effective way of cancer treatment. Comments for a better outcome and current challenges of HIFU technology are also covered. PMID:25053938

  13. Absence of Respiratory Muscle Fatigue in High-Intensity Continuous or Interval Cycling Exercise.

    PubMed

    Kurti, Stephanie P; Smith, Joshua R; Emerson, Sam R; Castinado, Kenneth M; Harms, Craig A

    2015-11-01

    Respiratory muscle fatigue (RMF) occurs during prolonged exercise (∼15-20 minutes) at >85% V[Combining Dot Above]O2max. However, RMF has been reported to occur in ∼3-6 minutes in various modes of exercise at a high intensity. It is not known if continuous cycling exercise vs. repeated bouts of high-intensity interval training (HIT) at >85% V[Combining Dot Above]O2max will lead to RMF. We hypothesized that RMF would occur after a constant load test and would be present before end exercise in an HIT protocol. Eight moderately active healthy men (21.7 ± 1.7 years; 181.3 ± 5.2 cm; 81.3 ± 2.3 kg) completed a V[Combining Dot Above]O2max test on a cycle ergometer. Subjects then completed 2 bouts of HIT (7 × 1 minute, 2-minute recovery between intervals) and 3 bouts of continuous exercise (CE) tests at 90% of peak power (determined from an incremental exercise test to exhaustion). Maximal inspiratory pressure (PIMAX) and expiratory pressure (PEMAX) were measured pre- and post-exercise for both HIT and CE and after each interval during HIT. Decreases in postexercise PIMAX and PEMAX compared with baseline were used to determine RMF. There were no differences (p > 0.05) in PIMAX or PEMAX pre- to post-exercise for HIT (PIMAX pre: 134 ± 51, post: 135 ± 50 cmH2O; PEMAX pre: 143 ± 41, post: 148 ± 46 cmH2O) or CE (PIMAX pre: 135 ± 54, post: 133 ± 52 cmH2O; PEMAX pre: 146 ± 46, post: 148 ± 46 cmH2O) indicating RMF was not present following CE and HIT. These data suggest that repeated high-intensity cycling exercise at 90% peak power in a CE or HIT protocol does not lead to RMF.

  14. Effect of caffeine ingestion after creatine supplementation on intermittent high-intensity sprint performance.

    PubMed

    Lee, Chia-Lun; Lin, Jung-Charng; Cheng, Ching-Feng

    2011-08-01

    The aim of this study was to investigate the effects of acute caffeine ingestion on intermittent high-intensity sprint performance after 5 days of creatine loading. After completing a control trial (no ergogenic aids, CON), twelve physically active men were administered in a double-blind, randomized crossover protocol to receive CRE + PLA (0.3 g kg(-1) day(-1) of creatine for 5 days then followed by 6 mg kg(-1) of placebo) and CRE + CAF (0.3 g kg(-1) day(-1) of creatine for 5 days and followed by 6 mg kg(-1) of caffeine), after which they performed a repeated sprint test. Each test consisted of six 10-s intermittent high-intensity sprints on a cycling ergometer, with 60-s rest intervals between sprints. Mean power, peak power, rating of perceived exertion (RPE), and heart rates were measured during the test. Blood samples for lactate, glucose, and catecholamine concentrations were drawn at specified intervals. The mean and peak power observed in the CRE + CAF were significantly higher than those found in the CON during Sprints 1 and 3; and the CRE + CAF showed significantly higher mean and peak power than that in the CRE + PLA during Sprints 1 and 2. The mean and peak power during Sprint 3 in the CRE + PLA was significantly greater than that in the CON. Heart rates, plasma lactate, and glucose increased significantly with CRE + CAF during most sprints. No significant differences were observed in the RPE among the three trials. The present study determined that caffeine ingestion after creatine supplements augmented intermittent high-intensity sprint performance.

  15. Effects of high-intensity running training on soccer-specific fitness in professional male players.

    PubMed

    Wells, Carl; Edwards, Andrew; Fysh, Mary; Drust, Barry

    2014-07-01

    The purpose of this study was to investigate whether or not physiological and performance gains could be achieved with the addition of high-intensity running to an existing training programme in a group of well trained professional male soccer players. Sixteen professional male players (21.3 ± 2.1 years, stature 177.4 ± 4.2 cm, body mass 73.1 ± 8.1 kg) were randomised in training (TRA, n = 8) and control (CON, n = 8) groups. All players performed physiological assessments before and after a 6-week intervention. Outcome measures were: (i) V̇O2peak, (ii) V̇O2 kinetics during very heavy-intensity exercise, (iii) a maximal anaerobic running test, and (iv) Yo-Yo Intermittent Recovery Test level 2 (YIRT2). The only aerobic parameter to change after the intervention was the phase III time constant at exercise onset for CON, which lengthened (p = 0.012) to a value similar to that of the TRA group. However, TRA showed gains in anaerobic performance (p = 0.021), time to exhaustion (p = 0.019), and maximal running speed (p = 0.023). In the YIRT2, distance run increased for TRA over time (p = 0.015), and the TRA group were also capable of running further in the YIRT2 after the intervention compared with CON (p = 0.011). This study shows it is possible to improve the soccer-specific high-intensity running capacity of professional players when high-intensity intermittent training is added to the normal training load and that this effect is only detectable in anaerobic capabilities. The observed effects are meaningful to the training practices of elite athletes seeking a competitive edge in team sports when otherwise well matched. PMID:24971676

  16. Reproductive costs for everyone: How female loads impact human mobility strategies

    PubMed Central

    Wall-Scheffler, Cara M.; Myers, Marcella J.

    2013-01-01

    While mobility strategies are considered important in understanding selection pressures on individuals, testing hypotheses of such strategies requires high resolution datasets, particularly at intersections between morphology, ecology and energetics. Here we present data on interactions between morphology and energetics in regards to the cost of walking for reproductive women and place these data into a specific ecological context of time and heat load. Frontal loads (up to 16% of body mass), as during pregnancy and child-carrying, significantly slow the optimal and preferred walking speed of women, significantly increase cost at the optimal speed, and make it significantly more costly for women to walk with other people. We further show for the first time significant changes in the curvature in the Cost of Transport curve for human walking, as driven by frontal loads. The impact of these frontal loads on females, and the populations to which they belong, would have been magnified by time constraints due to seasonal changes in day length at high latitudes and thermoregulatory limitations at low latitudes. However, wider pelves increase both stride length and speed flexibility, providing a morphological offset for load-related costs. Longer lower limbs also increase stride length. Observed differences between preferred and energetically optimal speeds with frontal loading suggest that speed choices of women carrying reproductive loads might be particularly sensitive to changes in heat load. Our findings show that female reproductive costs, particularly those related to locomotion, would have meaningfully shaped the mobility strategies of the hominin lineage, as well as modern foraging populations. PMID:23465336

  17. High intensity exercise decreases global brain glucose uptake in humans

    PubMed Central

    Kemppainen, Jukka; Aalto, Sargo; Fujimoto, Toshihiko; Kalliokoski, Kari K; Långsjö, Jaakko; Oikonen, Vesa; Rinne, Juha; Nuutila, Pirjo; Knuuti, Juhani

    2005-01-01

    Physiological activation increases glucose uptake locally in the brain. However, it is not known how high intensity exercise affects regional and global brain glucose uptake. The effect of exercise intensity and exercise capacity on brain glucose uptake was directly measured using positron emission tomography (PET) and [18F]fluoro-deoxy-glucose ([18F]FDG). Fourteen healthy, right-handed men were studied after 35 min of bicycle exercise at exercise intensities corresponding to 30, 55 and 75% of V˙O2max on three separate days. [18F]FDG was injected 10 min after the start of the exercise. Thereafter exercise was continued for another 25 min. PET scanning of the brain was conducted after completion of the exercise. Regional glucose metabolic rate (rGMR) decreased in all measured cortical regions as exercise intensity increased. The mean decrease between the highest and lowest exercise intensity was 32% globally in the brain (38.6 ± 4.6 versus 26.1 ± 5.0 μmol (100 g)−1 min−1, P < 0.001). Lactate availability during exercise tended to correlate negatively with the observed brain glucose uptake. In addition, the decrease in glucose uptake in the dorsal part of the anterior cingulate cortex (37% versus 20%, P < 0.05 between 30% and 75% of V˙O2max) was significantly more pronounced in subjects with higher exercise capacity. These results demonstrate that brain glucose uptake decreases with increase in exercise intensity. Therefore substrates other than glucose, most likely lactate, are utilized by the brain in order to compensate the increased energy needed to maintain neuronal activity during high intensity exercise. Moreover, it seems that exercise training could be related to adaptive metabolic changes locally in the frontal cortical regions. PMID:16037089

  18. Recent developments for high-intensity proton linacs

    SciTech Connect

    Wangler, T.P.; Garnett, R.W.; Gray, E.R.; Nath, S.

    1996-04-01

    High-intensity proton linacs are being proposed for new projects around the world, especially for tritium production, and for pulsed spallation neutron sources. Typical requirements for these linacs include peak beam current of about 100 mA, and final energies of 1 GeV and higher, APT, a tritium production linac, requires cw operation to obtain sufficient average tritium production linac, requires cw operation to obtain sufficient average beam power, and H{sup +} ion sources appear capable of providing the required current and emittances. The pulsed spallation neutron source requires a linac as an injector to one or more accumulator rings, and favors the use of an H{sup minus} beam to allow charge-exchange injection into the rings. For both applications high availability is demanded; the fraction of scheduled beam time for actual production must be 75% or more. Such a high availability requires low beam-loss to avoid radioactivation of the accelerator, and to allow hands-on maintenance that will keep the mean repair and maintenance times short. To keep the accelerator activation sufficiently low, the beam loss should not exceed about 0.1 to 1.0 nA/m, except perhaps for a few localized places, where special design adaptations could be made. The requirement of such small beam losses at such a high intensity presents a new beam physics challenge. This challenge will require greater understanding of the beam distribution, including the low- density beam halo, which is believed to be responsible for most of the beam losses. Furthermore, it will be necessary to choose the apertures so the beam losses will be acceptably low, and because large aperture size is generally accompanied by an economic penalty resulting from reduced power efficiency, an optimized choice of the aperture will be desirable.

  19. Nitrate supplementation and high-intensity performance in competitive cyclists.

    PubMed

    Hoon, Matthew W; Hopkins, William G; Jones, Andrew M; Martin, David T; Halson, Shona L; West, Nicholas P; Johnson, Nathan A; Burke, Louise M

    2014-09-01

    Consumption of inorganic nitrate (NO3(-)) is known to enhance endurance exercise performance in recreationally trained subjects. Here we report the effect on a high-intensity performance task in national-level cyclists. The performance test consisted of 2 cycle ergometer time trials of 4 min duration with 75 min between trials. In a randomized crossover design, 26 cyclists performed the test under the following 4 conditions (each separated by a 6-day washout): consumption of 70 mL of nitrate-rich beetroot juice at 150 min or 75 min before the first time trial, addition of a 35 mL "top-up dose" following the first time trial in the 150 min condition, and consumption of a placebo. A linear mixed model with adjustments for learning effects and athlete fitness (peak incremental power) was used to estimate effects on mean power, with probabilistic inferences based on a smallest important effect of 1.0%. Peak plasma nitrite (NO2(-)) concentration was greatest when nitrate was taken 75 min before the first time trial. Relative to placebo, the mean effect of all 3 nitrate treatments was unclear in the first time trial (1.3%, 90% confidence limits: ±1.7%), but possibly harmful in the second time trial (-0.3%, ±1.6%). Differences between nitrate treatments were unclear, as was the estimate of any consistent individual response to the treatments. Allowing for sampling uncertainty, the effect of nitrate on performance was less than previous studies. Under the conditions of our experiment, nitrate supplementation may be ineffective in facilitating high-intensity exercise in competitive athletes.

  20. Acoustic emission monitoring of low velocity impact damage in graphite/epoxy laminates during tensile loading

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.

    1992-01-01

    An acoustic emission (AE) system was set up in a linear location data acquisition mode to monitor the tensile loading of eight-ply quasi-isotropic graphite/epoxy specimens containing low velocity impact damage. The impact damage was induced using an instrumented drop weight tower. During impact, specimens were supported by either an aluminum plate or a membrane configuration. Cross-sectional examinations revealed that the aluminum plate configuration resulted in primarily matrix cracking and back surface fiber failure. The membrane support resulted in only matrix cracking and delamination damage. Penetrant enhanced radiography and immersion ultrasonics were used in order to assess the amount of impact damage in each tensile specimen. During tensile loading, AE reliably detected and located the damage sites which included fiber failure. All specimens with areas of fiber breakage ultimately failed at the impact site. AE did not reliably locate damage which consisted of only delaminations and matrix cracking. Specimens with this type of damage did not ultimately fail at the impact site. In summary, AE demonstrated the ability to increase the reliability of structural proof tests; however, the successful use of this technique requires extensive baseline testing.

  1. Methodology for mapping football head impact exposure to helmet pads for repeated loading testing.

    PubMed

    MacAlister, Anna; Young, Tyler; Daniel, Ray W; Rowson, Steven; Duma, Stefan M

    2014-01-01

    Football helmets have a lifespan of 10 years; however, no work has investigated how helmet padding properties change over time with use. The purpose of this study is to develop a methodology to control repeated pad loading and quantify changes in energy management. Head impact exposure data for 7-8 year old football players were used to find an average impact magnitude. NOCSAE-style drop tests were performed using an instrumented headform fitted with the same style helmet (Helmet A) used to collect population data to determine the compression depth and rate of the helmet padding during an average impact. Drops from the same height were then conducted for two other helmet types (Helmet B and Helmet C). For the average impact of ~15 g, the compression depth and rate of the pads from Helmet A were found to be 9.8 mm and 0.72 m/s respectively. The compression depths and rates for Helmets B and C were found to be 6.1 mm and 0.71 m/s and 10.7 mm and 0.69 m/s respectively. These parameters were utilized by a material testing system program to impact helmet padding. Repeated helmet pad loading can be tested using a material testing system for populations with known head impact exposure. The energy absorbing characteristics of the padding can be used to develop new safety regulations regarding the lifetime of helmets, affording better protection to athletes.

  2. Damage Simulation in Non-Crimp Fabric Composite Plates Subjected to Impact Loads

    NASA Technical Reports Server (NTRS)

    Satyanarayana, Arunkumar; Bogert, Philip B.; Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid

    2014-01-01

    Progressive failure analysis (PFA) of non-crimp fabric (NCF) composite laminates subjected to low velocity impact loads was performed using the COmplete STress Reduction (COSTR) damage model implemented through VUMAT and UMAT41 user subroutines in the frame works of the commercial finite element programs ABAQUS/Explicit and LS-DYNA, respectively. To validate the model, low velocity experiments were conducted and detailed correlations between the predictions and measurements for both intra-laminar and inter-laminar failures were made. The developed material and damage model predicts the peak impact load and duration very close with the experimental results. Also, the simulation results of delamination damage between the ply interfaces, in-plane matrix damages and fiber damages were all in good agreement with the measurements from the non-destructive evaluation data.

  3. Mechanical response of a fibre reinforced earthen material under static and impact loadings

    NASA Astrophysics Data System (ADS)

    Aymerich, Francesco; Fenu, Luigi; Francesconi, Luca; Meloni, Paola

    2015-09-01

    This study examines the improvements provided by the insertion of hemp fibres with different weight fractions and lengths in an earthen material. The structural response of the materials was investigated by means of static and impact bending tests carried out on notched samples. The main focus of the analyses was in the characterization of the structural properties of the materials in terms of fracture resistance, post-cracking performance and energy absorption capability. The results of the study show that hemp fibres improve significantly the mechanical and fracture properties of the earthen material under both static and dynamic bending. It was also found that the structural properties of unreinforced and reinforced earthen materials are highly sensitive to the stress-rate, with higher strength and fracture resistance under impact loading than under static loading.

  4. Impact of Filtration Velocities and Particulate Matter Characteristics on Diesel Particulate Filter Wall Loading Performance

    SciTech Connect

    Lance, Michael J; Walker, Larry R; Yapaulo, Renato A; Orita, Tetsuo; Wirojsakunchai, Ekathai; Foster, David; Akard, Michael

    2009-01-01

    The impact of different types of diesel particulate matter (PM) and different sampling conditions on the wall deposition and early soot cake build up within diesel particulate filters has been investigated. The measurements were made possible by a newly developed Diesel Exhaust Filtration Analysis (DEFA) system in which in-situ diesel exhaust filtration can be reproduced with in small cordierite wafer disks, which are essentially thin sections of a Diesel Particulate Filter (DPF) wall. The different types of PM were generated from selected engine operating conditions of a single-cylinder heavy-duty diesel engine. Two filtration velocities 4 and 8 cm/s were used to investigate PM deep-bed filtration processes. The loaded wafers were then analyzed in a thermal mass analyzer that measures the Soluble Organic Fraction (SOF) as well as soot and sulfate fractions of the PM. In addition, the soot residing in the wall of the wafer was examined under an optical microscope illuminated with Ultraviolet light and an Environmental Scanning Electron Microscope (E-SEM) to determine the bulk soot penetration depth for each loading condition. It was found that higher filtration velocity results in higher wall loading with approximately the same penetration depth into the wall. PM characteristics impacted both wall loading and soot cake layer characteristics. Results from imaging analysis indicate that soot the penetration depth into the wall was affected more by PM size (which changes with engine operating conditions) rather than filtration velocity.

  5. Impact of pore characteristics of silica materials on loading capacity and release behavior of ibuprofen.

    PubMed

    Numpilai, Thanapha; Muenmee, Suthaporn; Witoon, Thongthai

    2016-02-01

    Impact of pore characteristics of porous silica supports on loading capacity and release behavior of ibuprofen was investigated. The porous silica materials and ibuprofen-loaded porous silica materials were thoroughly characterized by N2-sorption, thermal gravimetric and derivative weight analyses (TG-DTW), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) to determine the physical properties of materials, amount of ibuprofen adsorbed and position of ibuprofen. The detailed characterization reveals that the ibuprofen molecules adsorbed inside the mesopores. Increasing the mesopore size from 5nm to 10nm increased the ibuprofen loading from 0.74 to 0.85mmol/g, respectively. Incorporation of macropore into the structure of porous silica materials enhanced the ibuprofen loading capacity of 11.8-20.3%. The ibuprofen-loaded bimodal meso-macroporous silica materials exhibited the highest dissolution of 92wt.% within an hour. The ibuprofen particles deposited on the external surface of the porous silica materials showed a lower dissolution rate than the ibuprofen adsorbed inside the mesopores due to the formation of ibuprofen crystalline.

  6. Impact of pore characteristics of silica materials on loading capacity and release behavior of ibuprofen.

    PubMed

    Numpilai, Thanapha; Muenmee, Suthaporn; Witoon, Thongthai

    2016-02-01

    Impact of pore characteristics of porous silica supports on loading capacity and release behavior of ibuprofen was investigated. The porous silica materials and ibuprofen-loaded porous silica materials were thoroughly characterized by N2-sorption, thermal gravimetric and derivative weight analyses (TG-DTW), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) to determine the physical properties of materials, amount of ibuprofen adsorbed and position of ibuprofen. The detailed characterization reveals that the ibuprofen molecules adsorbed inside the mesopores. Increasing the mesopore size from 5nm to 10nm increased the ibuprofen loading from 0.74 to 0.85mmol/g, respectively. Incorporation of macropore into the structure of porous silica materials enhanced the ibuprofen loading capacity of 11.8-20.3%. The ibuprofen-loaded bimodal meso-macroporous silica materials exhibited the highest dissolution of 92wt.% within an hour. The ibuprofen particles deposited on the external surface of the porous silica materials showed a lower dissolution rate than the ibuprofen adsorbed inside the mesopores due to the formation of ibuprofen crystalline. PMID:26652347

  7. A Generalized Hydrodynamic-Impact Theory for the Loads and Motions of Deeply Immersed Prismatic Bodies

    NASA Technical Reports Server (NTRS)

    Markey, Melvin F.

    1959-01-01

    A theory is derived for determining the loads and motions of a deeply immersed prismatic body. The method makes use of a two-dimensional water-mass variation and an aspect-ratio correction for three-dimensional flow. The equations of motion are generalized by using a mean value of the aspect-ratio correction and by assuming a variation of the two-dimensional water mass for the deeply immersed body. These equations lead to impact coefficients that depend on an approach parameter which, in turn, depends upon the initial trim and flight-path angles. Comparison of experiment with theory is shown at maximum load and maximum penetration for the flat-bottom (0 deg dead-rise angle) model with bean-loading coefficients from 36.5 to 133.7 over a wide range of initial conditions. A dead-rise angle correction is applied and maximum-load data are compared with theory for the case of a model with 300 dead-rise angle and beam-loading coefficients from 208 to 530.

  8. Evaluating the Impact of Dwell Time on Solder Interconnect Durability Under Bending Loads

    NASA Astrophysics Data System (ADS)

    Menon, Sandeep; Osterman, Michael; Pecht, Michael

    2015-11-01

    With the increasing portability and miniaturization of modern-day electronics, the mechanical robustness of these systems has become more of a concern. Existing standards for conducting mechanical durability tests of electronic assemblies include bend, shock/drop, vibration, and torsion. Although these standards provide insights into both cyclic fatigue and overstress damage incurred in solder interconnects (widely regarded as the primary mode of failure in electronic assemblies), they fail to address the impact of time- dependent (creep) behavior due to sustained mechanical loads on solder interconnect durability. It has been seen in previous studies that solder durability under thermal cycling loads is inversely proportional to the dwell time or hold time at either temperature extreme of the imposed temperature cycle. Fatigue life models, which include dwell time, have been developed for solder interconnects subject to temperature cycling. However, the fatigue life models that have been developed in the literature for solder interconnects under mechanical loads fail to address the influence of the duration of loading. In this study, solder interconnect test vehicles were subjected to cyclic mechanical bending with various dwell times in order to understand the impact of the duration of mechanical loads on solder interconnect durability. The solder interconnects examined in this study were formed with 2512 resistor packages using various solder compositions [tin-lead (Sn-Pb) and 96.5Sn-3Ag-0.5Cu (SAC305)]. To evaluate the impact of dwell time, the boards were tested with 0 s, 60 s, and 300 s of dwell time at both extremes of the loading profile. It was observed that an increase in the dwell time of the loading profile resulted in a decrease in the characteristic life of the solder interconnects. The decrease in fatigue life was attributed to increased creep damage as identified using finite-element simulations. An energy partitioning approach was then used to

  9. High intensity focused ultrasound responsive metallo-supramolecular block copolymer micelles.

    PubMed

    Liang, Bo; Tong, Rui; Wang, Zhenhua; Guo, Shengwei; Xia, Hesheng

    2014-08-12

    The metal-supramolecular diblock copolymer containing mechano-labile bis(terpyridine)-Cu(II) complex linkage in the junction point was synthesized. These metal-ligand containing amphiphilic copolymers are able to self-assemble in aqueous solution to form spherical micelles with poly(propylene glycol) block forming the hydrophobic core. It is found that high intensity focused ultrasound can open the copolymer micelles and trigger the release of the payload in the micelle. The micellar properties and release kinetics of encapsulated guest molecule in response to ultrasound stimuli were investigated. The weak Cu(II)-terpyridine dynamic bond in the copolymer chain can be cleaved under ultrasound and thus leads to the disruption of the copolymer micelle and the release of loaded cargo. This study will open up a new way for the molecular design of ultrasound modulated drug delivery systems. PMID:25072274

  10. A modified high-intensity Cs sputter negative-ion source with multi-target mechanism

    NASA Astrophysics Data System (ADS)

    Houzhi, Si; Weizhong, Zhang; Jinhau, Zhu; Guangtian, Du; Tiaorong, Zhang; Xiang, Gao

    1993-04-01

    The source is based on Middleton's high-intensity mode, but modified to a multi-target version. It is equipped with a spherical molybdenum ionizer, a 20-position target wheel and a vacuum lock for loading and unloading sample batches. A metal-ceramic bonded section protected by a specially designed labyrinth shielding system results in reliable insulation of the cathode and convenient control of cesium vapor. The latter is particularly important when an oversupply of cesium occurs. The source was developed for accelerator mass spectrometry (AMS) applications. Recently, three versions based on the prototype of the source have been successfully tested to meet different requirements: (a) single target version, (b) multi-target version with manual sample change, and (c) multi-target version with remote control sample change. Some details of the technical and operational characteristics are presented.

  11. Free-field propagation of high intensity noise. [supersonic jets

    NASA Technical Reports Server (NTRS)

    Mcdaniel, O. H.; Roth, S. D.; Welz, J. P.

    1981-01-01

    Research on high intensity (finite amplitude) acoustic waves shows that nonlinear distortion effects generally result in a shift of energy to higher frequencies. The higher intensities associated with supersonic jets would therefore indicate that high frequency enhancement of the spectrum should occur, resulting in the differences observed between subsonic and supersonic jets. A 10,000 acoustic watt source installed in an anechoic chamber generates sound levels such that acoustic shocks are readily observable. Dual frequency excitation of the source produces a strong parametric effect with a difference frequency comparable in level to the primary frequency. The test set up and recording equipment being used to determine the finite amplitude noise representative of an actual supersonic jet are described as well as the development of a computer program based on Burger's equation. The spectra of 1/2 octave band, 1 kHz sine wave, and dual frequency input and output are presented in graphs along with waveforms at Z = .025, 0.1, and 1.0.

  12. Operation of the Proto-MPEX High Intensity Plasma Source

    NASA Astrophysics Data System (ADS)

    Caughman, J. B. O.; Goulding, R. H.; Biewer, T. M.; Bigelow, T. S.; Campbell, I. H.; Diem, S. J.; Martin, E. H.; Pesavento, P. V.; Rapp, J.; Ray, H. B.; Shaw, G. C.; Showers, M. A.; Luo, G.-N.

    2015-11-01

    The Prototype Materials Plasma Experiment (Proto-MPEX) is a linear high-intensity rf plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is produced by coupling 13.56 MHz rf power at levels up to 100 kW. Microwaves at 28 GHz (~ 150 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW). Ion cyclotron heating (~ 30 kW) will be via a magnetic beach approach. Plasma diagnostics include Thomson Scattering and a retarding field energy analyzer near the target, while a microwave interferometer and double-Langmuir probes are used to determine plasma parameters elsewhere in the system. Filterscopes are being used to measure D-alpha emission and He line ratios at multiple locations, and IR cameras image the target plates to determine heat deposition. High plasma densities in the helicon region have been produced in He (>3x1019/m3) and D (>1.5x1019/m3) , and operation with on-axis magnetic field strength >1 T has been demonstrated. Details of the experimental results and future plans for studying plasma surface/RF antenna interactions will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  13. HIGH INTENSITY EFFECTS IN THE SNS ACCUMULATOR RING

    SciTech Connect

    Holmes, Jeffrey A; Cousineau, Sarah M; Danilov, Viatcheslav; Plum, Michael A; Shishlo, Andrei P

    2008-01-01

    Currently operating at 0.5 MW beam power on target, the Spallation Neutron Source (SNS) is already the world's most powerful pulsed neutron source. However, we are only one third of the way to full power. As we ramp toward full power, the control of the beam and beam loss in the ring will be critical. In addition to practical considerations, such as choice of operating point, painting scheme, RF bunching, and beam scattering, it may be necessary to understand and mitigate collective effects due to space charge, impedances, and electron clouds. At each stage of the power ramp-up, we use all available resources to understand and to minimize beam losses. From the standpoint of beam dynamics, the losses observed so far under normal operating conditions have not involved collective phenomena. We are now entering the intensity regime in which this may change. In dedicated high intensity beam studies, we have already observed resistive wall, extraction kicker impedance-driven, and electron cloud activities. The analysis and simulation of this data are important ongoing activities at SNS. This paper discusses the status of this work, as well as other considerations necessary to the successful full power operation of SNS.

  14. Proton shock acceleration using a high contrast high intensity laser

    NASA Astrophysics Data System (ADS)

    Gauthier, Maxence; Roedel, Christian; Kim, Jongjin; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Propp, Adrienne; Goyon, Clement; Pak, Art; Kerr, Shaun; Ramakrishna, Bhuvanesh; Ruby, John; William, Jackson; Glenzer, Siegfried

    2015-11-01

    Laser-driven proton acceleration is a field of intense research due to the interesting characteristics of this novel particle source including high brightness, high maximum energy, high laminarity, and short duration. Although the ion beam characteristics are promising for many future applications, such as in the medical field or hybrid accelerators, the ion beam generated using TNSA, the acceleration mechanism commonly achieved, still need to be significantly improved. Several new alternative mechanisms have been proposed such as collisionless shock acceleration (CSA) in order to produce a mono-energetic ion beam favorable for those applications. We report the first results of an experiment performed with the TITAN laser system (JLF, LLNL) dedicated to the study of CSA using a high intensity (5x1019W/cm2) high contrast ps laser pulse focused on 55 μm thick CH and CD targets. We show that the proton spectrum generated during the interaction exhibits high-energy mono-energetic features along the laser axis, characteristic of a shock mechanism.

  15. Treatment of glaucoma with high intensity focused ultrasound.

    PubMed

    Aptel, Florent; Lafon, Cyril

    2015-05-01

    Glaucoma is a common disease mainly due to an increase in pressure inside the eye, leading to a progressive destruction of the optic nerve, potentially to blindness. Intraocular pressure (IOP) is the result of a balance between production of liquid that fills the eye--aqueous humour--and its resorption. All treatments for glaucoma aim to reduce IOP and can therefore have two mechanisms of action: reducing aqueous humour production by the partial destruction or medical inhibition of the ciliary body--the anatomical structure responsible for production of aqueous humour--or facilitating the evacuation of aqueous humour from the eye. Several physical methods can be used to destroy the ciliary body, e.g. laser, cryotherapy, microwave. All these methods have two major drawbacks: they are non-selective for the organ to be treated and they have an unpredictable dose–effect relationship. High intensity focused ultrasound (HIFU) can be used to coagulate the ciliary body and avoid these drawbacks. A commercially available device was marketed in the 1980s, but later abandoned, essentially for technical reasons. A smaller circular device using miniaturised transducers was recently developed and proposed for clinical practice. Experimental studies have shown selective coagulation necrosis of the treated ciliary body. The first three clinical trials in humans have shown that this device was well tolerated and allowed a significant, predictable and sustained reduction of IOP. The aim of this contribution is to present a summary of the work concerning the use of HIFU to treat glaucoma.

  16. High intensity ion beam injection into the 88-inch cyclotron

    SciTech Connect

    Wutte, Daniela; Clark, Dave J.; Laune, Bernard; Leitner,Matthaeus A.; Lyneis, Claude M.

    2000-05-31

    Low cross section experiments to produce super-heavyelements have increased the demand for high intensity heavy ion beams atenergies of about 5 MeV/nucleon at the 88-Inch Cyclotron at the LawrenceBerkeley National Laboratory. Therefore, efforts are underway to increasethe overall ion beam transmission through the axial injection line andthe cyclotron. The ion beam emittance has been measured for various ionmasses and charge states. Beam transport simulations including spacecharge effects were performed for both of the injection line and the ionsource extraction. The relatively low nominal injection voltage of 10 kVwas found to be the main factor for ion beam losses, because of beam blowup due to space charge forces at higher intensities. Consequently,experiments and simulations have been performed at higherinjectionenergies, and it was demonstrated that the ion beams could still becentered in the cyclotron at these energies. Therefore, the new injectorion source VENUS and its ion beam transport system (currently underconstruction at the 88-Inch Cyclotron) are designed for extractionvoltages up to 30 kV.

  17. A methodology for assessing high intensity RF effects in aircraft

    SciTech Connect

    Zacharias, R.A.; Avalle, C.A.; Kunz, K.S.; Molau, N.E.; Pennock, S.T.; Poggio, A.J.; Sharpe, R.M.

    1993-07-01

    Optical components have an inherent immunity to the electromagnetic interference (EMI) associated with High Intensity Radiated Fields (HIRF). The optical technology embodied in Fly-by-Light (FBL) might therefore minimize the effects of HIRF on digitally controlled systems while providing lifetime immunity to signal EMI. This is one of the primary motivations for developing FBL systems for aircraft. FBL has the potential to greatly simplify EMI certification by enabling technically acceptable laboratory tests of subsystems, as opposed to expensive full airplane tests. In this paper the authors describe a methodology for assessing EMI effects on FBL aircraft that reduces or potentially eliminates the need for full airplane tests. This methodology is based on comparing the applied EMI stress--the level of interference signal that arrives at a unit under test--versus the EMI strength of the unit--the interference level it can withstand without upset. This approach allows one to use computer models and/or low power coupling measurement and similarity (to other previously tested aircraft) to determine the stress applied to installed subsystems, and to use benchtop cable injection tests and/or mode stirred chamber radiated tests to determine the strength of the subsystem.

  18. Complete recovery time after exhaustion in high-intensity work.

    PubMed

    Wu, Hsin-Chieh; Hsu, Wen-Hsin; Chen, Toly

    2005-05-15

    This study was aimed to investigate complete recovery time (CRT) after exhaustion in high-intensity work. Twenty-four subjects were divided into two groups based on the cardiorespiratory capability index, which was measured in a maximum capacity test. Each subject then performed two cycling tests (at 60% and 70% maximum working capacity). The subject continued cycling until exhaustion in each test and then sat recovering until he/she no longer felt fatigue or until the oxygen uptake (VO2) and heart rate (HR) returned to their baselines, whichever was longer. The results indicated that HR required the longest time to recover and, consequently, HR data were adopted to set the CRT. The CRT was significantly correlated with the cardiorespiratory capability index and the relative workload indices: RVO2 and RHR. The RVO2 was the average elevation in VO2 during work from the resting level as a percentage of maximum VO2 reserve. The RHR's definition was similar to that of RVO2. Based on the obtained CRT-prediction model, the CRT for a high-cardiorespiratory-capability person was 20.8, 22.1, 23.4, and 24.7 min at 50%, 60%, 70%, and 80% RHR levels, respectively. These suggested CRT values should be increased by 10 min for a low-cardiorespiratory-capability person. PMID:16087501

  19. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    SciTech Connect

    Yelon, W.B.; Schupp, G.

    1993-02-01

    The QUEGS facility at MURR has produced a number of new results and demonstrated the range of potential applications of high resolution, high intensity Moessbauer scattering. This work has been carried out by both MU and Purdue researchers and includes published results on Na, W, pentadecane, polydimethylsiloxane and other systems, manuscripts submitted on alkali halides (Phys. Rev. B) and accurate Moessbauer lineshape measurements (Phys. Rev. C), and manuscripts in preparation on glycerol, NiAl and Moessbauer spectra obtained by modulating a scattering crystal. Recently, new collaborations have been initiated which will substantially enhance our efforts. These are with W. Steiner (Vienna), G. Coddens (Saclay), and R. D. Taylor (Los Alamos). Steiner is experienced with Fe-57 Moessbauer scattering, while Coddens specializes in quasielastic neutron scattering; both of these areas naturally complement our work. R. D. Taylor has pioneered Moessbauer spectroscopy from the time of its discovery and has already made important contributions to our study of lattice dynamics and superconductivity for lead alloyed with small quantities of tin. At the same time, a significant instrument upgrade is underway, funded in part by the DOE-URIP program.

  20. Echinococcus granulosus: protoscolicidal effect of high intensity focused ultrasound.

    PubMed

    Zou, Xiaoyi; Wang, Junan; Zhao, Hailong; Zhang, Jing; Wu, Weihua; Ye, Bin

    2009-04-01

    High intensity focused ultrasound (HIFU) is a new non-invasive technique which can cause cell death and tissue necrosis by focusing high-energy ultrasonic waves on a single location. The aim of our work is to investigate the damaging effect of HIFU on Echinococcus granulosus protoscolices, as well as its inhibitory effect on growth of hydatid cysts derived from protoscolices. The damaging effect of HIFU on protoscolices was investigated by following parasite mortality after irradiation, while the inhibitory effect was investigated by infection experiments in vivo. The results demonstrated that HIFU was able to damage protoscolices and the protoscolicidal effect was dose-dependent and showed late-onset. The growth of protoscolices that survived the exposure to HIFU was obviously suppressed in vitro, and the mean weight of hydatid cysts resulting from such protoscolices in the experimental group was less than that in controls. Evidences including the protoscolicidal effect, fragmentized protoscolices and low post exposure temperatures, suggest that cavitation may contribute to the protoscolicidal effect of HIFU. In addition, the structure of the germinal membrane in cysts developing from the irradiated protoscolices was not as normal or intact as that from non-irradiated ones, and morphological changes related to degeneration were observed, suggesting that HIFU could prevent protoscolices from developing normal germinal membrane and consequently stop the proliferation of secondary hydatid cysts. HIFU demonstrated damaging effect on protoscolices, inhibited the growth of protoscolices in vitro and in vivo, and could be a possible therapeutic option for cystic echinococcosis.

  1. High-intensity positron microprobe at Jefferson Lab

    DOE PAGES

    Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.

    2014-06-19

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of themore » beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.« less

  2. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect

    Grote, D P; Friedman, A; Vay, J L; Haber, I

    2004-12-09

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{_}summary.html.

  3. Blood coagulation using High Intensity Focused Ultrasound (HIFU)

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuc V.; Oh, Junghwan; Kang, Hyun Wook

    2014-03-01

    High Intensity Focused Ultrasound (HIFU) technology provides a feasible method of achieving thermal coagulation during surgical procedures. One of the potential clinical benefits of HIFU can induce immediate hemostasis without suturing. The objective of this study was to investigate the efficiency of a HIFU system for blood coagulation on severe vascular injury. ngHIFU treatment was implemented immediately after bleeding in artery. The ultrasound probe was made of piezoelectric material, generating a central frequency of 2.0 MHz as well as an ellipsoidal focal spot of 2 mm in lateral dimension and 10 mm in axial dimension. Acoustic coagulation was employed on a perfused chicken artery model in vitro. A surgical incision (1 to 2 mm long) was made with a scapel on the arterial wall, and heparinized autologous blood was made to leak out from the incision with a syringe pump. A total of 5 femoral artery incisions was treated with the HIFU beam. The intensity of 4500 W/cm2 at the focus was applied for all treatments. Complete hemostasis was achieved in all treatments, along with the treatment times of 25 to 50 seconds. The estimated intraoperative blood loss was from 2 to 5 mL. The proposed HIFU system may provide an effective method for immediate blood coagulation for arteries and veins in clinical applications.

  4. High intensity focused ultrasound in clinical tumor ablation

    PubMed Central

    Zhou, Yu-Feng

    2011-01-01

    Recent advances in high intensity focused ultrasound (HIFU), which was developed in the 1940s as a viable thermal tissue ablation approach, have increased its popularity. In clinics, HIFU has been applied to treat a variety of solid malignant tumors in a well-defined volume, including the pancreas, liver, prostate, breast, uterine fibroids, and soft-tissue sarcomas. In comparison to conventional tumor/cancer treatment modalities, such as open surgery, radio- and chemo-therapy, HIFU has the advantages of non-invasion, non-ionization, and fewer complications after treatment. Over 100 000 cases have been treated throughout the world with great success. The fundamental principles of HIFU ablation are coagulative thermal necrosis due to the absorption of ultrasound energy during transmission in tissue and the induced cavitation damage. This paper reviews the clinical outcomes of HIFU ablation for applicable cancers, and then summarizes the recommendations for a satisfactory HIFU treatment according to clinical experience. In addition, the current challenges in HIFU for engineers and physicians are also included. More recent horizons have broadened the application of HIFU in tumor treatment, such as HIFU-mediated drug delivery, vessel occlusion, and soft tissue erosion (“histotripsy”). In summary, HIFU is likely to play a significant role in the future oncology practice. PMID:21603311

  5. High-intensity positron microprobe at Jefferson Lab

    SciTech Connect

    Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.

    2014-06-19

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  6. High Intensity Focused Ultrasound Tumor Therapy System and Its Application

    NASA Astrophysics Data System (ADS)

    Sun, Fucheng; He, Ye; Li, Rui

    2007-05-01

    At the end of last century, a High Intensity Focused Ultrasound (HIFU) tumor therapy system was successfully developed and manufactured in China, which has been already applied to clinical therapy. This article aims to discuss the HIFU therapy system and its application. Detailed research includes the following: power amplifiers for high-power ultrasound, ultrasound transducers with large apertures, accurate 3-D mechanical drives, a software control system (both high-voltage control and low-voltage control), and the B-mode ultrasonic diagnostic equipment used for treatment monitoring. Research on the dosage of ultrasound required for tumour therapy in multiple human cases has made it possible to relate a dosage formula, presented in this paper, to other significant parameters such as the volume of thermal tumor solidification, the acoustic intensity (I), and the ultrasound emission time (tn). Moreover, the HIFU therapy system can be applied to the clinical treatment of both benign and malignant tumors in the pelvic and abdominal cavity, such as uterine fibroids, liver cancer and pancreatic carcinoma.

  7. Formation of a high intensity low energy positron string

    NASA Astrophysics Data System (ADS)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  8. The PhIX High Intensity Plasma Source

    NASA Astrophysics Data System (ADS)

    Goulding, R. H.; Caughman, J. B. O.; Peng, Y.-K. M.; Rapp, J.; Rasmussen, D. A.; Biewer, T. M.; Canik, J. M.; Chen, G.; Diem, S. J.; Meitner, S. J.; Owen, L. W.

    2012-10-01

    The Physics Integration eXperiment (PhIX) is a linear high-intensity rf plasma source presently being constructed at ORNL that combines a high density helicon plasma generator with an electron heating section. It will be used to explore the physics related to heating an overdense, streaming plasma in a linear geometry by whistler waves and Electron Bernstein Waves (EBW), including optimization of heating efficiency and maximization of particle flux. Interactions between the plasma production and heating regions, and the source and a downstream target, will also be investigated. Experiments using the device will provide data for the design of an rf powered high particle flux (˜10^24/m^2- s), high heat flux(˜10 MW /m^2) steady-state linear plasma-materials test station (PMTS). In preparatory experiments, the helicon device has operated at power levels up to 90 kW, producing high plasma densities in He (6 x10^19 m-3) and D (> 4 x10^19 m-3), and has also operated at high magnetic field strength up to 0.5 T. Separate ECH experiments have demonstrated both whistler and EBW coupling at 6 GHz to an overdense plasma. A review of these experiments will be presented, as well as an overview of PhIX and its status.

  9. Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra

    SciTech Connect

    Mihatsch, Michael S. Schmidt, Steffen J.; Adams, Nikolaus A.

    2015-10-15

    Cavitation erosion is the consequence of repeated collapse-induced high pressure-loads on a material surface. The present paper assesses the prediction of impact load spectra of cavitating flows, i.e., the rate and intensity distribution of collapse events based on a detailed analysis of flow dynamics. Data are obtained from a numerical simulation which employs a density-based finite volume method, taking into account the compressibility of both phases, and resolves collapse-induced pressure waves. To determine the spectrum of collapse events in the fluid domain, we detect and quantify the collapse of isolated vapor structures. As reference configuration we consider the expansion of a liquid into a radially divergent gap which exhibits unsteady sheet and cloud cavitation. Analysis of simulation data shows that global cavitation dynamics and dominant flow events are well resolved, even though the spatial resolution is too coarse to resolve individual vapor bubbles. The inviscid flow model recovers increasingly fine-scale vapor structures and collapses with increasing resolution. We demonstrate that frequency and intensity of these collapse events scale with grid resolution. Scaling laws based on two reference lengths are introduced for this purpose. We show that upon applying these laws impact load spectra recorded on experimental and numerical pressure sensors agree with each other. Furthermore, correlation between experimental pitting rates and collapse-event rates is found. Locations of high maximum wall pressures and high densities of collapse events near walls obtained numerically agree well with areas of erosion damage in the experiment. The investigation shows that impact load spectra of cavitating flows can be inferred from flow data that captures the main vapor structures and wave dynamics without the need for resolving all flow scales.

  10. Fate of alkylphenolic compounds during activated sludge treatment: impact of loading and organic composition.

    PubMed

    McAdam, Ewan J; Bagnall, John P; Soares, Ana; Koh, Yoong K K; Chiu, Tze Y; Scrimshaw, Mark D; Lester, John N; Cartmell, Elise

    2011-01-01

    The impact of loading and organic composition on the fate of alkylphenolic compounds in the activated sludge plant (ASP) has been studied. Three ASP designs comprising carbonaceous, carbonaceous/nitrification, and carbonaceous/nitrification/denitrification treatment were examined to demonstrate the impact of increasing levels of process complexity and to incorporate a spectrum of loading conditions. Based on mass balance, overall biodegradation efficiencies for nonylphenol ethoxylates (NPEOs), short chain carboxylates (NP(1-3)EC) and nonylphenol (NP) were 37%, 59%, and 27% for the carbonaceous, carbonaceous/nitrification, and carbonaceous/nitrification/denitrification ASP, respectively. The presence of a rich community of ammonia oxidizing bacteria does not necessarily facilitate effective alkylphenolic compound degradation. However, a clear correlation between alkylphenolic compound loading and long chain ethoxylate compound biodegradation was determined at the three ASPs, indicating that at higher initial alkylphenolic compound concentrations (or load), greater ethoxylate biotransformation can occur. In addition, the impact of settled sewage organic composition on alkylphenolic compound removal was evaluated. A correlation between the ratio of chemical oxygen demand (COD) to alkylphenolic compound concentration and biomass activity was determined, demonstrating the inhibiting effect of bulk organic matter on alkylphenol polyethoxylate transformation activity. At all three ASPs the biodegradation pathway proposed involves the preferential biodegradation of the amphiphilic ethoxylated compounds, after which the preferential attack of the lipophilic akylphenol moiety occurs. The extent of ethoxylate biodegradation is driven by the initial alkylphenolic compound concentration and the proportion of COD constituted by the alkylphenol polyethoxylates (APEOs) and their metabolites relative to the bulk organic concentration of the sewage composed of proteins, acids, fats

  11. Summary of sessions B and F: High intensity linacs and frontend & proton drivers

    SciTech Connect

    Ferdinand, R.; Chou, W.; Galambos, J.; /Oak Ridge

    2005-01-01

    This paper summarizes the sessions B&F of the 33rd ICFA Advanced Beam Dynamics Workshop on High Intensity & High Brightness Hadron Beams held in Bensheim, Germany. It covers high intensity linacs, front ends and proton driver topics.

  12. Investigation of impact loading rate effects on the ligamentous cervical spinal load-partitioning using finite element model of functional spinal unit C2-C3.

    PubMed

    Mustafy, Tanvir; El-Rich, Marwan; Mesfar, Wissal; Moglo, Kodjo

    2014-09-22

    The cervical spine functions as a complex mechanism that responds to sudden loading in a unique manner, due to intricate structural features and kinematics. The spinal load-sharing under pure compression and sagittal flexion/extension at two different impact rates were compared using a bio-fidelic finite element (FE) model of the ligamentous cervical functional spinal unit (FSU) C2-C3. This model was developed using a comprehensive and realistic geometry of spinal components and material laws that include strain rate dependency, bone fracture, and ligament failure. The range of motion, contact pressure in facet joints, failure forces in ligaments were compared to experimental findings. The model demonstrated that resistance of spinal components to impact load is dependent on loading rate and direction. For the loads applied, stress increased with loading rate in all spinal components, and was concentrated in the outer intervertebral disc (IVD), regions of ligaments to bone attachment, and in the cancellous bone of the facet joints. The highest stress in ligaments was found in capsular ligament (CL) in all cases. Intradiscal pressure (IDP) in the nucleus was affected by loading rate change. It increased under compression/flexion but decreased under extension. Contact pressure in the facet joints showed less variation under compression, but increased significantly under flexion/extension particularly under extension. Cancellous bone of the facet joints region was the only component fractured and fracture occurred under extension at both rates. The cervical ligaments were the primary load-bearing component followed by the IVD, endplates and cancellous bone; however, the latter was the most vulnerable to extension as it fractured at low energy impact.

  13. Pathways of nutrient loading and impacts on plant diversity in a New York peatland

    USGS Publications Warehouse

    Drexler, J.Z.; Bedford, B.L.

    2002-01-01

    Nutrient loading is a subtle, yet serious threat to the preservation of high diversity wetlands such as peatlands. Pathways of nutrient loading and impacts on plant diversity in a small peatland in New York State, USA were determined by collecting and analyzing a suite of hydrogeological, hydro-chemical, soil, and vegetation data. Piezometer clusters within an intensive network constituted hydro-chemical sampling points and focal points for randomly selected vegetation quadrats and soil-coring locations. Hydrogeological data and nutrient analyses showed that P and K loading occurred chiefly by means of overland flow from an adjacent farm field, whereas N loading occurred predominantly through ground-water flow from the farm field. Redundancy analysis and polynomial regression showed that nutrients, particularly total P in peat, total K in peat, extractable NH4-N, and NO3-N flux in ground water, were strongly negatively correlated with plant diversity measures at the site. No other environmental variables except vegetation measures associated with eutrophication demonstrated such a strong relationship with plant diversity. Nitrate loading over 4 mg m -2 day-1 was associated with low plant diversity, and Ca fluxes between 80 and 130 mg m-2 day-1 were associated with high plant diversity. Areas in the site with particularly low vascular plant and bryophyte species richness and Shannon-Wiener diversity (H') occurred adjacent to the farm field and near a hillside spring. High H' and species richness of vascular plants and bryophytes occurred in areas that were further removed from agriculture, contained no highly dominant vegetation, and were situated directly along the ground-water flow paths of springs. These areas were characterized by relatively constant water levels and consistent, yet moderate fluxes of base cations and nutrients. Overall, this study demonstrates that knowledge of site hydrogeology is crucial for determining potential pathways of nutrient loading

  14. Impact of Groundwater Flow and Energy Load on Multiple Borehole Heat Exchangers.

    PubMed

    Dehkordi, S Emad; Schincariol, Robert A; Olofsson, Bo

    2015-01-01

    The effect of array configuration, that is, number, layout, and spacing, on the performance of multiple borehole heat exchangers (BHEs) is generally known under the assumption of fully conductive transport. The effect of groundwater flow on BHE performance is also well established, but most commonly for single BHEs. In multiple-BHE systems the effect of groundwater advection can be more complicated due to the induced thermal interference between the boreholes. To ascertain the influence of groundwater flow and borehole arrangement, this study investigates single- and multi-BHE systems of various configurations. Moreover, the influence of energy load balance is also examined. The results from corresponding cases with and without groundwater flow as well as balanced and unbalanced energy loads are cross-compared. The groundwater flux value, 10(-7) m/s, is chosen based on the findings of previous studies on groundwater flow interaction with BHEs and thermal response tests. It is observed that multi-BHE systems with balanced loads are less sensitive to array configuration attributes and groundwater flow, in the long-term. Conversely, multi-BHE systems with unbalanced loads are influenced by borehole array configuration as well as groundwater flow; these effects become more pronounced with time, unlike when the load is balanced. Groundwater flow has more influence on stabilizing loop temperatures, compared to array characteristics. Although borehole thermal energy storage (BTES) systems have a balanced energy load function, preliminary investigation on their efficiency shows a negative impact by groundwater which is due to their dependency on high temperature gradients between the boreholes and surroundings.

  15. Impact of Groundwater Flow and Energy Load on Multiple Borehole Heat Exchangers.

    PubMed

    Dehkordi, S Emad; Schincariol, Robert A; Olofsson, Bo

    2015-01-01

    The effect of array configuration, that is, number, layout, and spacing, on the performance of multiple borehole heat exchangers (BHEs) is generally known under the assumption of fully conductive transport. The effect of groundwater flow on BHE performance is also well established, but most commonly for single BHEs. In multiple-BHE systems the effect of groundwater advection can be more complicated due to the induced thermal interference between the boreholes. To ascertain the influence of groundwater flow and borehole arrangement, this study investigates single- and multi-BHE systems of various configurations. Moreover, the influence of energy load balance is also examined. The results from corresponding cases with and without groundwater flow as well as balanced and unbalanced energy loads are cross-compared. The groundwater flux value, 10(-7) m/s, is chosen based on the findings of previous studies on groundwater flow interaction with BHEs and thermal response tests. It is observed that multi-BHE systems with balanced loads are less sensitive to array configuration attributes and groundwater flow, in the long-term. Conversely, multi-BHE systems with unbalanced loads are influenced by borehole array configuration as well as groundwater flow; these effects become more pronounced with time, unlike when the load is balanced. Groundwater flow has more influence on stabilizing loop temperatures, compared to array characteristics. Although borehole thermal energy storage (BTES) systems have a balanced energy load function, preliminary investigation on their efficiency shows a negative impact by groundwater which is due to their dependency on high temperature gradients between the boreholes and surroundings. PMID:25227154

  16. Behavior of plywood and fiberglass steel composite tube structures subjected to impact loading

    NASA Astrophysics Data System (ADS)

    Armaghani, Seyamend Bilind

    Paratransit buses are custom built as the major vehicle manufacturer produces the custom built passenger cage installed on the chassis for the Paratransit bus. In order for these Paratransit bus members to be sufficient, they have to be evaluated for crashworthiness and energy absorption. This has prompted Florida Department of Transportation (FDOT) to fund research for the safety evaluation of Paratransit busses consisting of crash and safety analysis. There has been a large body of research done on steel subjected to static loads, but more research is needed for steel applied under dynamic loading and high speeds in order to improve crashworthiness in events such as rollovers and side impacts. Bare steel Hollow Structural Section (HSS) tubing are used a lot as structural members of Paratransit buses because of their lightness and progressive buckling under loading. The research will be conducted on quantifying the tubing's behavior under bending by conducting static three point bending and impact loading tests. In addition to the bare tubing, plywood and fiberglass composites are investigated because they are both strong and lightweight and their behavior under dynamic loading hasn't been quantified. As a result, the main purpose of this research is to quantify the differences between the dynamic and static behavior of plywood steel composite and fiberglass steel composite tubing and compare these findings with those of bare steel tubing. The differences will be quantified using detailed and thorough experiments that will examine the composites behavior under both static and dynamic loading. These tests will determine if there are any advantages of using the composite materials and thus allow for recommendations to be made to the FDOT with the goal of improving the safety of Paratransit busses. Tensile tests were conducted to determine the material properties of the tested specimens. Before the static and dynamic experiments are run to investigate the differences

  17. Evaluation of interlaminar shear strength of a unidirectional carbon/epoxy laminated composite under impact loading

    NASA Astrophysics Data System (ADS)

    Yokoyama, T.; Nakai, K.

    2006-08-01

    The interlaminar shear strength (ILSS) of a unidirectional carbon/epoxy (T700/2521) laminated composite under impact loading is determined using the conventional split Hopkinson pressure bar. Double-notch shear (DNS) specimens with lateral constraint from a supporting jig are used in the static and impact interlaminar compressive shear tests. Short-beam shear specimens are also used under static 3-point bending. Numerical stress analyses are performed to determine the shear stress and normal stress distributions on the expected failure plane in the DNS specimen using the MSC/NASTRAN package. The effect of deformation rate on the ILSS and failure mode is investigated. It is observed that the ILSS is independent of the deformation rate up to nearly 1.5m/s (dotγ ≈ 780/s). The validity of the test results is confirmed by microscopic examinations of both static and impact failure surfaces for the DNS specimens.

  18. Protective Effectiveness of Porous Shields Under the Influence of High-Speed Impact Loading

    NASA Astrophysics Data System (ADS)

    Kramshonkov, E. N.; Krainov, A. V.; Shorohov, P. V.

    2016-02-01

    The results of numerical simulations of a compact steel impactor with the aluminum porous shields under high-speed shock loading are presented. The porosity of barrier varies in wide range provided that its mass stays the same, but the impactor has always equal (identical) mass. Here presented the final assessment of the barrier perforation speed depending on its porosity and initial shock speed. The range of initial impact speed varies from 1 to 10 km/s. Physical phenomena such as: destruction, melting, vaporization of a interacting objects are taken into account. The analysis of a shield porosity estimation disclosed that the protection effectiveness of porous shield reveals at the initial impact speed grater then 1.5 km/s, and it increases when initial impact speed growth.

  19. The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading

    SciTech Connect

    Koohbor, Behrad; Mallon, Silas; Kidane, Addis; Lu, Wei -Yang

    2015-04-07

    The present work aims to investigate the bulk deformation and failure response of closed-cell Polymeric Methylene Diphenyl Diisocyanate (PMDI) foams subjected to dynamic impact loading. First, foam specimens of different initial densities are examined and characterized in quasi-static loading conditions, where the deformation behavior of the samples is quantified in terms of the compressive elastic modulus and effective plastic Poisson's ratio. Then, the deformation response of the foam specimens subjected to direct impact loading is examined by taking into account the effects of material compressibility and inertia stresses developed during deformation, using high speed imaging in conjunction with 3D digital image correlation. The stress-strain response and the energy absorption as a function of strain rate and initial density are presented and the bulk failure mechanisms are discussed. As a result, it is observed that the initial density of the foam and the applied strain rates have a substantial influence on the strength, bulk failure mechanism and the energy dissipation characteristics of the foam specimens.

  20. The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading

    DOE PAGES

    Koohbor, Behrad; Mallon, Silas; Kidane, Addis; Lu, Wei -Yang

    2015-04-07

    The present work aims to investigate the bulk deformation and failure response of closed-cell Polymeric Methylene Diphenyl Diisocyanate (PMDI) foams subjected to dynamic impact loading. First, foam specimens of different initial densities are examined and characterized in quasi-static loading conditions, where the deformation behavior of the samples is quantified in terms of the compressive elastic modulus and effective plastic Poisson's ratio. Then, the deformation response of the foam specimens subjected to direct impact loading is examined by taking into account the effects of material compressibility and inertia stresses developed during deformation, using high speed imaging in conjunction with 3D digitalmore » image correlation. The stress-strain response and the energy absorption as a function of strain rate and initial density are presented and the bulk failure mechanisms are discussed. As a result, it is observed that the initial density of the foam and the applied strain rates have a substantial influence on the strength, bulk failure mechanism and the energy dissipation characteristics of the foam specimens.« less

  1. Effects of selected softball bat loading strategies on impact reaction impulse.

    PubMed

    Noble, L; Eck, J

    1986-02-01

    Interior loading strategies to modify the location and size of the effective hitting area of aluminum softball bats were identified. The effects of these strategies on theoretically derived and empirically determined relevant mechanical parameters were compared. Loading strategies consisted of adding 315 g to the interior of three similar (790 g) aluminum softball bats: at the center of mass of the original bat (bat C); at the ends of the bat and distributed so that the center of mass was unchanged, (bat A); and at the ends of the bat and distributed so that the moment of inertia about the swing axis (I1) was the same as that of bat C (bat B). The following parameters were derived theoretically by considering the bat as a physical pendulum and empirically by observing the impact reaction impulse on the axis of suspension: moment of inertia about the suspension axis (I0); moment of inertia about the swing axis; distance from the suspension axis to the center of percussion; and the slope of the impact reaction impulse (P1) relative to the impact impulse (P) as a function of impact location. These values for each bat were compared. Both empirical and theoretically derived data indicated that: the center of percussion of bat B was farther away from the axis than bats A and C; the moment of inertia about the swing axis of bat A was much greater than that of bats B and C; and the slope of the impact reaction regression line as a function of impact location for bat B was significantly less than that of the other bats. Thus, the effective hitting area of bat B was moved toward the barrel end of the bat and enlarged without a substantial increase in the moment of inertia about the swing axis. PMID:3959864

  2. Effects of selected softball bat loading strategies on impact reaction impulse.

    PubMed

    Noble, L; Eck, J

    1986-02-01

    Interior loading strategies to modify the location and size of the effective hitting area of aluminum softball bats were identified. The effects of these strategies on theoretically derived and empirically determined relevant mechanical parameters were compared. Loading strategies consisted of adding 315 g to the interior of three similar (790 g) aluminum softball bats: at the center of mass of the original bat (bat C); at the ends of the bat and distributed so that the center of mass was unchanged, (bat A); and at the ends of the bat and distributed so that the moment of inertia about the swing axis (I1) was the same as that of bat C (bat B). The following parameters were derived theoretically by considering the bat as a physical pendulum and empirically by observing the impact reaction impulse on the axis of suspension: moment of inertia about the suspension axis (I0); moment of inertia about the swing axis; distance from the suspension axis to the center of percussion; and the slope of the impact reaction impulse (P1) relative to the impact impulse (P) as a function of impact location. These values for each bat were compared. Both empirical and theoretically derived data indicated that: the center of percussion of bat B was farther away from the axis than bats A and C; the moment of inertia about the swing axis of bat A was much greater than that of bats B and C; and the slope of the impact reaction regression line as a function of impact location for bat B was significantly less than that of the other bats. Thus, the effective hitting area of bat B was moved toward the barrel end of the bat and enlarged without a substantial increase in the moment of inertia about the swing axis.

  3. Plasmas and Short-Pulse, High-Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Clark, Thomas

    1999-11-01

    Many of the applications of short-pulse, high-intensity laser systems, including coherent UV and X-ray generation, compact particle accelerators, and non-perturbative nonlinear optics as well as the study of laser-matter interaction physics, require large intensity-interaction length products. In recent years, plasma structures resulting from the hydrodynamic evolution of laser-produced plasma filaments have proven to be attractive media for guiding pulses with peak powers approaching the terawatt level over lengths many times the vacuum Rayleigh range. The hydrodynamics of plasma waveguides have been characterized using time- and space-resolved interferometry measurements of electron density profiles. The laser-driven ionization and heating phase of the plasma filament creation is followed by hot electron driven plasma expansion. Density profiles suitable for optical guiding develop within the first few hundred picoseconds after plasma creation, during which rapid cooling occurs. At longer times the plasma expansion closely follows that of a cylindrical blast wave, with further cooling due to expansion work. The observed guided intensity profiles of end-coupled and tunnel-coupled pulses compare favorably with calculations of the quasi-bound waveguide modes based on the measured electron density profiles. Time- and space-resolved electron density measurements of a laser-driven concentric implosion were also performed. The implosion is the result of the interaction of a second laser pulse with an existing plasma waveguide. The two-pulse absorption and ionization significantly exceed that due to a single pulse of the same total energy. The author would like to acknowledge the significant contributions of Prof. Howard M. Milchberg to the work being presented.

  4. Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

    NASA Technical Reports Server (NTRS)

    Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee

    2012-01-01

    NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.

  5. High-Intensity Interval Exercise and Postprandial Triacylglycerol.

    PubMed

    Burns, Stephen F; Miyashita, Masashi; Stensel, David J

    2015-07-01

    This review examined if high-intensity interval exercise (HIIE) reduces postprandial triacylglycerol (TAG) levels. Fifteen studies were identified, in which the effect of interval exercise conducted at an intensity of >65% of maximal oxygen uptake was evaluated on postprandial TAG levels. Analysis was divided between studies that included supramaximal exercise and those that included submaximal interval exercise. Ten studies examined the effect of a single session of low-volume HIIE including supramaximal sprints on postprandial TAG. Seven of these studies noted reductions in the postprandial total TAG area under the curve the morning after exercise of between ~10 and 21% compared with rest, but three investigations found no significant difference in TAG levels. Variations in the HIIE protocol used, inter-individual variation or insufficient time post-exercise for an increase in lipoprotein lipase activity are proposed reasons for the divergent results among studies. Five studies examined the effect of high-volume submaximal interval exercise on postprandial TAG. Four of these studies were characterised by high exercise energy expenditure and effectively attenuated total postprandial TAG levels by ~15-30%, but one study with a lower energy expenditure found no effect on TAG. The evidence suggests that supramaximal HIIE can induce large reductions in postprandial TAG levels but findings are inconsistent. Submaximal interval exercise offers no TAG metabolic or time advantage over continuous aerobic exercise but could be appealing in nature to some individuals. Future research should examine if submaximal interval exercise can reduce TAG levels in line with more realistic and achievable exercise durations of 30 min per day.

  6. Tools and techniques for estimating high intensity RF effects

    SciTech Connect

    Zacharias, R.; Pennock, S.; Poggio, A.; Ray, S.

    1991-07-01

    With the ever-increasing dependence of modern aircraft on sophisticated avionics and electronic controls, the need to assure aircraft survivatality when exposed to high Intensity RF (HIRF) signals has become of great Interest. Advisory regulation is currently being proposed which would require testing and/or analysis to assure RF hardness of installed flight critical and flight essential equipment. While full-aircraft, full-threat testing may be the most thorough manner to assure survivability, it is not generally practical in loins of cost. Various combinations of limited full-aircraft testing, box-level testing, modeling, and analysis are also being considered as methods to achieve compliance. Modeling, analysis, and low power measurements may hold the key to making full-system survivability estimates at reasonable cost. In this paper we will describe some of the tools and techniques we use for estimating and measuring coupling and component disturbance. A finite difference time domain modeling code, TSAR, used to predict coupling will be described. This code has the capability to quickly generate a mesh model to represent the test object. Some recent applications as well as the advantages and limitations of using such a code will be described. We will also describe some of the facilities and techniques we have developed for making low power coupling measurements and for making direct injection test measurements of device disturbance. Some scaling laws for coupling and device effects will be presented. A method to extrapolate these low-power test results to high-power full-system effects will be presented.

  7. NASA's New High Intensity Solar Environment Test Capability

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H.

    2012-01-01

    Across the world, new spaceflight missions are being designed and executed that will place spacecraft and instruments into challenging environments throughout the solar system. To aid in the successful completion of these new missions, NASA has developed a new flexible space environment test platform. The High Intensity Solar Environment Test (HISET) capability located at NASA fs Marshall Space Flight Center provides scientists and engineers with the means to test spacecraft materials and systems in a wide range of solar wind and solar photon environments. Featuring a solar simulator capable of delivering approximately 1 MW/m2 of broad spectrum radiation at maximum power, HISET provides a means to test systems or components that could explore the solar corona. The solar simulator consists of three high-power Xenon arc lamps that can be operated independently over a range of power to meet test requirements; i.e., the lamp power can be greatly reduced to simulate the solar intensity at several AU. Integral to the HISET capability are charged particle sources that can provide a solar wind (electron and proton) environment. Used individually or in combination, the charged particle sources can provide fluxes ranging from a few nA/cm2 to 100s of nA/cm2 over an energy range of 50 eV to 100 keV for electrons and 100 eV to 30 keV for protons. Anchored by a high vacuum facility equipped with a liquid nitrogen cold shroud for radiative cooling scenarios, HISET is able to accommodate samples as large as 1 meter in diameter. In this poster, details of the HISET capability will be presented, including the wide ]ranging configurability of the system.

  8. Development of a High Intensity Focused Ultrasound (HIFU) Hydrophone System

    SciTech Connect

    Schafer, Mark E.; Gessert, James

    2009-04-14

    The growing clinical use of High Intensity Focused Ultrasound (HIFU) has driven a need for reliable, reproducible measurements of HIFU acoustic fields. We have previously presented data on a reflective scatterer approach, incorporating several novel features for improved bandwidth, reliability, and reproducibility [Proc. 2005 IEEE Ultrasonics Symposium, 1739-1742]. We now report on several design improvements which have increase the signal to noise ratio of the system, and potentially reduced the cost of implementation. For the scattering element, we now use an artificial sapphire material to provide a more uniform radiating surface. The receiver is a segmented, truncated spherical structure with a 10 cm radius; the scattering element is positioned at the center of the sphere. The receiver is made from 25 micron thick, biaxially stretched PVDF, with a Pt-Au electrode on the front surface. In the new design, a specialized backing material provides the stiffness required to maintain structural stability, while at the same time providing both electrical shielding and ultrasonic absorption. Compared with the previous version, the new receiver design has improved the noise performance by 8-12 dB; the new scattering sphere has reduced the scattering loss by another 14 dB, producing an effective sensitivity of -298 dB re 1 microVolt/Pa. The design trade-off still involves receiver sensitivity with effective spot size, and signal distortion from the scatter structure. However, the reduced cost and improved repeatability of the new scatter approach makes the overall design more robust for routine waveform measurements of HIFU systems.

  9. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    NASA Astrophysics Data System (ADS)

    Yelon, W. B.; Schupp, G.

    1991-05-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is not fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using Bragg scattering filters to suppress unwanted radiation. These have led to a Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to make a novel independent determination of interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na metal and the charge density wave satellite reflection Debye-Waller factor in TaS2, which indicate phason rather than phonon behavior. Using a specially constructed sample cell which enables us to vary temperatures from -10 C to 110 C, we have begun quasielastic diffusion studies in viscous liquids and current results are summarized. Included are the temperature and Q dependence of the scattering in pentadecane and diffusion in glycerol.

  10. Glass Strengthening via High-Intensity Plasma-Arc Heating

    SciTech Connect

    Wereszczak, Andrew A; Harper, David C; Duty, Chad E; Patel, P

    2010-01-01

    The use of a high-intensity plasma-arc lamp was used to irradiate the surface of soda-lime silicate glass tiles to determine if an increase in strength could be achieved. The lamp had a power density of 3500 W/cm2, a processing area of 1 cm x 10 cm, irradiated near-infrared heating at a wavelength between 0.2 1.4 m, and was controlled to unidirectionally sweep across 50-mm-square tiles at a constant speed of 8 mm/s. Ring-on-ring (RoR) equibiaxial flexure and 4 pt uni-directional flexure testings of entire tiles were used to measure and compare failure stress distributions of treated and untreated glass. Even with non-optimized processing conditions, RoR failure stress increased by approximately 25% and the 4 pt bend failure stress increased by approximately 65%. Strengthening was due to a fire-polishing-like mechanism. The arc-lamp heat-treatment caused the location of the strength-limiting flaws in the 4-pt-bend tiles to change; namely, failure initiation occurred on the gage section surface for the treated glass whereas it occurred at a gage section edge for the untreated. Arc-lamp heat-treatment is attractive not only because it provides strengthening, but because it can (non-contact) process large amounts of glass quickly and inexpensively, and is a process that either a glass manufacturer or end-user can readily employ.

  11. High intensity ultrasound transducer used in gene transfection

    NASA Astrophysics Data System (ADS)

    Morrison, Kyle P.; Keilman, George W.; Noble, Misty L.; Brayman, Andrew A.; Miao, Carol H.

    2012-11-01

    This paper describes a novel therapeutic high intensity non-focused ultrasound (HIU) transducer designed with uniform pressure distribution to aid in accelerated gene transfer in large animal liver tissues in vivo. The underlying HIU transducer was used to initiate homogeneous cavitation throughout the tissue while delivering up to 2.7 MPa at 1.1 MHz across its radiating surface. The HIU transducer was built into a 6 cm diameter x 1.3 cm tall housing ergonomically designed to avoid collateral damage to the surrounding anatomy during dynamic motion. The ultrasound (US) radiation was applied in a 'paintbrush-like' manner to the surface of the liver. The layers and geometry of the transducer were carefully selected to maximize the active diameter (5.74 cm), maximize the electrical to acoustic conversion efficiency (85%) to achieve 2.7 MPa of peak negative pressure, maximize the frequency operating band at the fundamental resonance to within a power transfer delta of 1 dB, and reduce the pressure delta to within 2 dB across the radiating surface. For maximum peak voltage into the transducer, a high performance piezoceramic was chosen and a DC bias circuit was built integral to the system. An apodized two element annular pattern was made from a single piezoceramic element, resulting in significant pressure uniformity enhancement. In addition to using apodization for pressure uniformity, a proprietary multi-layered structure was used to improve efficiency while sustaining an operating band from 900 kHz to 1.3 MHz. The resultant operating band allowed for dithering techniques using frequency modulation. The underlying HIU transducer for use in large animals enhances gene expression up to 6300-fold.

  12. High Intensity Focused Ultrasound induced Gene Activation in Solid Tumors

    NASA Astrophysics Data System (ADS)

    Liu, Yunbo; Kon, Takashi; Li, Chuanyuan; Zhong, Pei

    2006-05-01

    In this work, the feasibility of using high intensity focused ultrasound (HIFU) to activate trans-gene expression in a mouse tumor model was investigated. 4T1 cancer cells were implanted subcutaneously in the hind limbs of Balb/C mice and adenovirus luciferase gene vectors under the control of heat shock protein 70B promoter (Adeno-hsp70B-Luc) were injected intratumoraly for gene transfection. One day following the virus injection, the transfected tumors were heated to a peak temperature of 55, 65, 75, and 85°C, respectively, in 10s at multiple sites around the center of the tumor using a HIFU transducer operated at either 1.1-MHz (fundamental) or 3.3-MHz (3rd harmonic) frequency. Inducible luciferase gene expression was found to vary from 15-fold to 120-fold of the control group following 1.1-MHz HIFU exposure. The maximum gene activation was produced at a peak temperature of 65˜75°C one day following HIFU exposure and decayed gradually to baseline level within 7 days. The inducible gene activation produced by 3.3-MHz HIFU exposure (75°C-10s) was found to be comparable to that produced by hyperthermia (42°C-30min). Altogether, these results demonstrate the feasibility of using HIFU as a simple and versatile physical means to regulate trans-gene expression in vivo. This unique feature may be explored in the future for a synergistic combination of HIFU-induced thermal ablation with heat-induced gene therapy for improved cancer therapy.

  13. Production of high intensity Beta beams at the ISOLDE facility

    SciTech Connect

    Hodak, Rastislav; Stora, Thierry; Mendonca, Tania M.

    2011-12-16

    We discuss a design study devoted to a construction of the Beta beams facility at CERN, a next generation European facility aiming for a production of pure and collimated ultra-relativistic beam of electron (anti)neutrinos with help of accelerated {beta}-decaying radioactive ions circulating in a storage decay ring. This high intense source of (anti)neutrinos directed towards a remote underground neutrino detector will allow to measure neutrino oscillations with high accuracy offering a unique chance for establishing a value of the {beta}{sub 13} mixing angle and CP violating phase. Recently, a significant progress have been achieved on the conceptual design of high power targets required for a production and an extraction of two baseline isotopes, {sup 6}He and {sup 18}Ne, at the unexampled rate of several 10{sup 13} ions/s. There is a possibility to produce these isotopes using the so-called Isotope Separation On Line (ISOL) method at the ISOLDE facility (CERN). The {sup 6}He production is realized by taking advantage of the {sup 9}Be(n,{alpha}){sup 6}He reaction and with help of spallation neutrons and porous BeO target material. The production of {sup 18}Ne through the {sup 19}F(p,2n){sup 18}Ne reaction at required intensities is even more challenging. Currently, a molten salt (NaF) loop target is proposed for a production of high rate of {sup 18}Ne required for the Beta beams project. The progress on the design study associated with new data and plans for future is briefly presented.

  14. Pedalling rate affects endurance performance during high-intensity cycling.

    PubMed

    Nielsen, Jens Steen; Hansen, Ernst Albin; Sjøgaard, Gisela

    2004-06-01

    The purpose of this study into high-intensity cycling was to: (1) test the hypothesis that endurance time is longest at a freely chosen pedalling rate (FCPR), compared to pedalling rates 25% lower (FCPR-25) and higher (FCPR+25) than FCPR, and (2) investigate how physiological variables, such as muscle fibre type composition and power reserve, relate to endurance time. Twenty males underwent testing to determine their maximal oxygen uptake (VO(2max)), power output corresponding to 90% of VO(2max) at 80 rpm (W90), FCPR at W90, percentage of slow twitch muscle fibres (% MHC I), maximal leg power, and endurance time at W90 with FCPR-25, FCPR, and FCPR+25. Power reserve was calculated as the difference between applied power output at a given pedalling rate and peak crank power at this same pedalling rate. W90 was 325 (47) W. FCPR at W90 was 78 (11) rpm, resulting in FCPR-25 being 59 (8) rpm and FCPR+25 being 98 (13) rpm. Endurance time at W90(FCPR+25) [441 (188) s] was significantly shorter than at W90(FCPR) [589 (232) s] and W90(FCPR-25) [547 (170) s]. Metabolic responses such as VO(2) and blood lactate concentration were generally higher at W90(FCPR+25) than at W90(FCPR-25) and W90(FCPR). Endurance time was negatively related to VO(2max), W90 and % MHC I, while positively related to power reserve. In conclusion, at group level, endurance time was longer at FCPR and at a pedalling rate 25% lower compared to a pedalling rate 25% higher than FCPR. Further, inter-individual physiological variables were of significance for endurance time, % MHC I showing a negative and power reserve a positive relationship.

  15. Test and Modelling of Impact on Pre-Loaded Composite Panels

    NASA Astrophysics Data System (ADS)

    Pickett, A. K.; Fouinneteau, M. R. C.; Middendorf, P.

    2009-08-01

    Currently test and simulation of low and high speed impact of Aerospace composite structures is undertaken in an unloaded state. In reality this may not be the case and significant internal stresses could be present during an impact event such as bird strike during landing, or takeoff. In order to investigate the effects of internal loading on damage and failure of composite materials a series of experimental and simulation studies have been undertaken on three composite types having different fibres, resins and lay-ups. For each composite type panels have been manufactured and transversely impacted under the condition of ‘unloading’ or ‘pre-loading’. For preloading a rig has been constructed that can impose a constant in plane strain of up to 0.25% prior to impact. Results have clearly shown that preloading does lower the composite impact tolerance and change the observed failure modes. Simulation of experiments have also been conducted and have provided an encouraging agreement with test results in terms of both impact force time histories and prediction of the observed failure mechanisms.

  16. Effect of High Impact or Non-impact Loading Activity on Bone Bending Stiffness and Mineral Density

    NASA Technical Reports Server (NTRS)

    Liang, Michael T. C.; Arnnud, Sara B.; Steele, Charles R.; Moreno, Alexjandro

    2003-01-01

    Material properties of conical bone, including mineral density (BMD) and its geometry is closely related to its load-carrying capacity. These two primary components determine the strength of conical bone. High impact loading involving acceleration and deceleration movements used in gymnastics induce higher BMD of the affected bone compared to the non-impact acceleration and deceleration movements used in swimming. Study of these two groups of athletes on bone bending stiffness has not been reported. The purpose of this study was to compare differences in bone bending stiffness and BMD between competitive female synchronized swimmers and female gymnasts. Thirteen world class female synchronized swimmers (SYN) and 8 female gymnasts (GYM), mean age 21 +/- 2.9 yr. were recruited for this study. We used a mechanical response tissue analyzer (Gaitscan, NJ) to calculate EI, where E is Young's modulus of elasticity and I is the cross-sectional moment of inertia. EI was obtained from tissue response to a vibration probe placed directly on the skin of the mid-region of tibia and ulna. BMD of the heel and wrist were measured with a probe densitometer (PIXI, Lunor, WI). The SYN were taller than (p < 0.05) the GYM but weighed the same as the GYM. EI obtained from tibia and ulna of the SYN (291 +/- 159 and 41 +/- 19.4, respectively) were not significantly different from thc GYM (285 +/- 140 and 44 +/- 18.3, respectively). BMD of the heel and wrist in GYM were higher than in SYN (p < 0.001). High impact weight-bearing activities promote similar bone strength but greater BMD response than non-impact activities performed in a buoyant environment.

  17. The Impact of Learner Characteristics on Information Utilization Strategies, Cognitive Load Experienced, and Performance in Hypermedia Learning

    ERIC Educational Resources Information Center

    Scheiter, Katharina; Gerjets, Peter; Vollmann, Brigitte; Catrambone, Richard

    2009-01-01

    Against the background of an adaptation of Cognitive Load Theory to learner-controlled settings we investigated the impact of learner characteristics on information utilization strategies, cognitive load, and learning outcomes in a hypermedia environment. Based on the data of 79 students, five clusters of students were identified according to…

  18. Modeling the impacts of alternative fertilization methods on nitrogen loading in rice production in Shanghai.

    PubMed

    Zhao, Zheng; Sha, Zhimin; Liu, Yibo; Wu, Shuhang; Zhang, Hanlin; Li, Changsheng; Zhao, Qi; Cao, Linkui

    2016-10-01

    Nitrogen (N) loss from paddy fields is an important source of agricultural non-point source pollution that leads to eutrophication of water bodies and degradation of water quality. The impacts of alternative N fertilizer management practices on N loading (N loss through runoff and leaching) from paddy fields in Shanghai were assessed using a process-based biogeochemical model, DNDC. The results indicated that the current fertilization rate in paddy fields of Shanghai (300kgN/ha) exceeds the actual rice demand and has led to substantial N loading of 1142±276kg. The combined application of urea at 150kgN/ha and organic manure at 100kgN/ha was identified as the best fertilization method for rice cultivation in Shanghai; this application maintained optimal rice yields and significantly reduced N loading to 714±151kg in comparison with the current fertilization rate. A sensitivity test was conducted with various input parameters, and the results indicated that fertilization, precipitation and soil properties were the most sensitive factors that regulate N loss from paddy fields. The variability of soil properties, especially SOC led to high uncertainties in the simulated results. Therefore, the local climate conditions and soil properties should be taken into account in the identification of the best management practice (BMP) for rice cultivation, given the high spatially heterogeneous N loading values across all towns used in the simulation. The DNDC model is an effective approach for simulating and predicting N loading in paddy fields under alternative agricultural management practices. PMID:27317135

  19. Impact of Paint Color on Rest Period Climate Control Loads in Long-Haul Trucks: Preprint

    SciTech Connect

    Lustbader, J.; Kreutzer, C.; Jeffers, M.; Adelman, S.; Yeakel, S.; Brontz, P.; Olson, K.; Ohlinger, J.

    2014-02-01

    Cab climate conditioning is one of the primary reasons for operating the main engine in a long-haul truck during driver rest periods. In the United States, sleeper cab trucks use approximately 667 million gallons of fuel annually for rest period idling. The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) CoolCab Project works closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining occupant comfort. Heat transfer to the vehicle interior from opaque exterior surfaces is one of the major heat pathways that contribute to air conditioning loads during long-haul truck daytime rest period idling. To quantify the impact of paint color and the opportunity for advanced paints, NREL collaborated with Volvo Group North America, PPG Industries, and Dometic Environmental Corporation. Initial screening simulations using CoolCalc, NREL's rapid HVAC load estimation tool, showed promising air-conditioning load reductions due to paint color selection. Tests conducted at NREL's Vehicle Testing and Integration Facility using long-haul truck cab sections, 'test bucks,' showed a 31.1% of maximum possible reduction in rise over ambient temperature and a 20.8% reduction in daily electric air conditioning energy use by switching from black to white paint. Additionally, changing from blue to an advanced color-matched solar reflective blue paint resulted in a 7.3% reduction in daily electric air conditioning energy use for weather conditions tested in Colorado. National-level modeling results using weather data from major U.S. cities indicated that the increase in heating loads due to lighter paint colors is much smaller than the reduction in cooling loads.

  20. Modeling the impacts of alternative fertilization methods on nitrogen loading in rice production in Shanghai.

    PubMed

    Zhao, Zheng; Sha, Zhimin; Liu, Yibo; Wu, Shuhang; Zhang, Hanlin; Li, Changsheng; Zhao, Qi; Cao, Linkui

    2016-10-01

    Nitrogen (N) loss from paddy fields is an important source of agricultural non-point source pollution that leads to eutrophication of water bodies and degradation of water quality. The impacts of alternative N fertilizer management practices on N loading (N loss through runoff and leaching) from paddy fields in Shanghai were assessed using a process-based biogeochemical model, DNDC. The results indicated that the current fertilization rate in paddy fields of Shanghai (300kgN/ha) exceeds the actual rice demand and has led to substantial N loading of 1142±276kg. The combined application of urea at 150kgN/ha and organic manure at 100kgN/ha was identified as the best fertilization method for rice cultivation in Shanghai; this application maintained optimal rice yields and significantly reduced N loading to 714±151kg in comparison with the current fertilization rate. A sensitivity test was conducted with various input parameters, and the results indicated that fertilization, precipitation and soil properties were the most sensitive factors that regulate N loss from paddy fields. The variability of soil properties, especially SOC led to high uncertainties in the simulated results. Therefore, the local climate conditions and soil properties should be taken into account in the identification of the best management practice (BMP) for rice cultivation, given the high spatially heterogeneous N loading values across all towns used in the simulation. The DNDC model is an effective approach for simulating and predicting N loading in paddy fields under alternative agricultural management practices.

  1. Pleiotropic impact of endosymbiont load and co-occurrence in the maize weevil Sitophilus zeamais.

    PubMed

    Carvalho, Gislaine A; Vieira, Juliana L; Haro, Marcelo M; Corrêa, Alberto S; Ribon, Andrea Oliveira B; de Oliveira, Luiz Orlando; Guedes, Raul Narciso C

    2014-01-01

    Individual traits vary among and within populations, and the co-occurrence of different endosymbiont species within a host may take place under varying endosymbiont loads in each individual host. This makes the recognition of the potential impact of such endosymbiont associations in insect species difficult, particularly in insect pest species. The maize weevil, Sitophilus zeamais Motsch. (Coleoptera: Curculionidae), a key pest species of stored cereal grains, exhibits associations with two endosymbiotic bacteria: the obligatory endosymbiont SZPE ("Sitophilus zeamais Primary Endosymbiont") and the facultative endosymbiont Wolbachia. The impact of the lack of SZPE in maize weevil physiology is the impairment of nutrient acquisition and energy metabolism, while Wolbachia is an important factor in reproductive incompatibility. However, the role of endosymbiont load and co-occurrence in insect behavior, grain consumption, body mass and subsequent reproductive factors has not yet been explored. Here we report on the impacts of co-occurrence and varying endosymbiont loads achieved via thermal treatment and antibiotic provision via ingested water in the maize weevil. SZPE exhibited strong effects on respiration rate, grain consumption and weevil body mass, with observed effects on weevil behavior, particularly flight activity, and potential consequences for the management of this pest species. Wolbachia directly favored weevil fertility and exhibited only mild indirect effects, usually enhancing the SZPE effect. SZPE suppression delayed weevil emergence, which reduced the insect population growth rate, and the thermal inactivation of both symbionts prevented insect reproduction. Such findings are likely important for strain divergences reported in the maize weevil and their control, aspects still deserving future attention. PMID:25347417

  2. High-intensity re-warm-ups enhance soccer performance.

    PubMed

    Zois, J; Bishop, D; Fairweather, I; Ball, K; Aughey, R J

    2013-09-01

    The effects of high-intensity, short-duration, re-warm-ups on team-sport-related performance were investigated. In a randomised, cross-over study, participants performed 2×26-min periods of an intermittent activity protocol (IAP) on a non-motorized treadmill, interspersed by 15-min of passive recovery (CON); 3-min small-sided game (SSG); or a 5RM leg-press. Measures included counter-movement jump, repeated-sprint, the Loughborough soccer passing test (LSPT), blood lactate concentration, heart-rate, and perceptual measures. Data were analyzed using effect size (90% confidence intervals), and percentage change; determining magnitudes of effects. A 5RM re-warm-up improved flight-time to contraction-time ratio when compared to SSG (9.8%, ES; 0.5±0.3) and CON (ES: 9.4%, 0.7±0.5) re-warm-ups, remaining higher following the second IAP (8.8%, ES; 0.5±0.3 and 10.2%, ES; 0.6±0.6, respectively). Relative-maximum rate-of-force development was greater in the 5RM condition following the second IAP compared to SSG (29.3%, ES; 0.7±0.5) and CON (16.2%, ES; 0.6±0.6). Repeated-sprint ability during the second IAP improved in the 5RM re-warm-up; peak velocity, mean velocity, and acceleration were 4, 3, and 18% greater, respectively. Within groups, the SSG re-warm-up improved LSPT performance post-intervention; 6.4% (ES: 0.6±0.8) and following the second IAP 6.2% (ES: 0.6±0.6), compared to pre-intervention. A 5RM leg-press re-warm-up improved physical performance, while a SSG re-warm-up enhanced skill execution following standardized intermittent exercise.

  3. Frequency conversion of high-intensity, femtosecond laser pulses

    SciTech Connect

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  4. Shear fracture of jointed steel plates of bolted joints under impact load

    NASA Astrophysics Data System (ADS)

    Daimaruya, M.; Fujiki, H.; Ambarita, H.; Kobayashi, H.; Shin, H.-S.

    2013-07-01

    The present study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of bolted joints used in a car body, which contributes to crash simulations by CAE. We focus our attention on the shear fracture of the jointed steel plates of lap-bolted joints in the suspension of a car under impact load. Members of lap-bolted joints are modelled as a pair of steel plates connected by a bolt. One of the plates is a specimen subjected to plastic deformation and fracture and the other is a jig subjected to elastic deformation only. Three kinds of steel plate specimens are examined, i.e., a common steel plate with a tensile strength of 270 MPa and high tensile strength steel plates of 440 and 590 MPa used for cars. The impact shear test was performed using the split Hopkinson bar technique for tension impact, together with the static test using a universal testing machine INSTRON 5586. The behaviour of the shear stress and deformation up to rupture taking place in the joint was discussed. The obtained results suggest that a stress-based fracture criterion may be developed for the impact fracture of jointed steel plates of a lap-bolted joint.

  5. Final Report for "Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators"

    SciTech Connect

    Seth A Veitzer

    2009-09-25

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  6. Detailed studies of Minor Actinide transmutation-incineration in high-intensity neutron fluxes

    SciTech Connect

    Bringer, O.; Blandin, C.; Oriol, L.

    2006-07-01

    The Mini-INCA project is dedicated to the measurement of incineration-transmutation chains and potentials of minor actinides in high-intensity thermal neutron fluxes. In this context, new types of detectors and methods of analysis have been developed. The {sup 241}Am and {sup 232}Th transmutation-incineration chains have been studied and several capture and fission cross sections measured very precisely, showing some discrepancies with existing data or evaluated data. An impact study was made on different based-like GEN-IV reactors. It underlines the necessity to proceed to precise measurements for a large number of minor-actinides that contribute to these future incineration scenarios. (authors)

  7. Identification of bearing supports' force coefficients from rotor responses due to imbalances and impact loads

    NASA Astrophysics Data System (ADS)

    de Santiago Duran, Oscar Cesar

    Experimental identification of fluid film bearing parameters is vital to validate predictions from often restrictive computational fluid film bearing models and is also promising for condition monitoring and troubleshooting. This dissertation presents the analytical bases of two procedures for bearing supports parameter identification with potential for in-situ implementation. Bearing support coefficients are derived from measurements of rotor responses to impact loads and due to calibrated imbalances in characteristic planes. Subsequent implementation of the procedures to measurements performed in a rigid massive rotor traversing two critical speeds provides force coefficients for a novel bearing support comprising a tilting pad bearing (TPJB ) in series with an integral squeeze film damper (SFD). At a constant rotor speed, the first method requires impacts loads exerted along two lateral planes for identification of frequency-dependent force coefficients. Simulation numerical examples show the method is reliable with a reduced sensitivity to noise as the number of impacts increases (frequency averaging). In the experiments, an ad-hoc fixture delivers impacts to the rotor middle disk at speeds of 2,000 and 4,000 rpm. The experimentally identified force coefficients are in close agreement with predicted coefficients for the series support TPJB-SFD. In particular, damping coefficients are best identified around the system first natural frequency. Bearing stiffness are correctly identified in the low frequency range, but show a marked reduction at higher frequencies apparently due to inertial effects not accounted for in the model. Measurements of rotor response to calibrated imbalances allow identification of speed-dependent force coefficients. The procedure requires a minimum of two different imbalance distributions for identification of force coefficients from the two bearing supports. The rotor responses show minimal cross-coupling effects, as also predicted by

  8. Estimates of minor ocean tide loading displacement and its impact on continuous GPS coordinate time series.

    PubMed

    Li, Zhao; Jiang, Weiping; Ding, Wenwu; Deng, Liansheng; Peng, Lifeng

    2014-01-01

    The site displacement due to ocean tidal loading is regarded as one of the largest uncertainties in precise geodetic positioning measurements, among which the effect of minor ocean tides (MOT), except for the 11 main tidal constituents, are sometimes neglected in routine precise global positioning system (GPS) data processing. We find that MOT can cause large vertical loading displacements with peak-to-peak variations reaching more than 8 mm at coastal/island stations. The impact of MOT on the 24-hour GPS solution is slightly larger than the magnitude of MOT loading itself, with peak-to-peak displacement variation at about 10 mm for the horizontal and 30 mm for the vertical components. We also find that the vertical velocity of all the selected stations in the Southwest Pacific was reduced by more than 10% after considering the MOT effect, while stations with weighted root mean square reduced data account for 62%, 59%, and 36% for the up, east, and north components respectively, in particular for most coastal/island stations. Furthermore, MOT correction could significantly reduce the annual signal of the global stacked east component, the near fortnightly and the long-term periodic signals in the up component. The power of some anomalous harmonics of 1.04 cycle per year is also decreased to some extent. These results further proved the benefits of MOT correction in precise GPS data processing. PMID:24658620

  9. SRM attrition rate study of the aft motor case segments due to water impact cavity collapse loading

    NASA Technical Reports Server (NTRS)

    Crockett, C. D.

    1976-01-01

    The attrition assessment of the aft segments of Solid Rocket Motor due to water impact requires the establishment of a correlation between loading occurrences and structural capability. Each discrete load case, as identified by the water impact velocities and angle, varies longitudinally and radially in magnitude and distribution of the external pressure. The distributions are further required to be shifted forward or aft one-fourth the vehicle diameter to assure minimization of the effect of test instrumentation location for the load determinations. The asymmetrical load distributions result in large geometric nonlinearities in structural response. The critical structural response is progressive buckling of the case. Discrete stiffeners have been added to these aft segments to aid in gaining maximum structural capability for minimum weight addition for resisting these loads. This report presents the development of the attrition assessment of the aft segments and includes the rationale for eliminating all assessable conservatisms from this assessment.

  10. Comparing simulated wildfire effects to jam distribution and habitat quality in an intermediate-sized stream 10 years after a high intensity fire

    NASA Astrophysics Data System (ADS)

    Davidson, S. L.; Eaton, B. C.

    2013-12-01

    Large wood governs channel morphology and determines the quality and distribution of aquatic habitat in many forested river networks. This is particularly true in streams that contain both key pieces large enough to form morphologically effective jams, as well as smaller mobile wood. In these streams, jams create spawning habitat by retaining sediment, increase rearing and over-wintering habitat by forming pools, and force avulsions which create side channels. To explore the effects of wildfire-induced increases in wood loading on channel morphology and aquatic habitat we have applied the stochastic reach-scale channel simulator (RSCS) to a case study of Fishtrap Creek, an intermediate-sized stream in the interior of British Columbia which experienced a high intensity fire in 2003. As predicted by model simulations, high quality spawning, rearing, and over-wintering habitats, as well as multi-thread channels, are found exclusively in association with wood, while plane-bed morphologies dominate where wood is absent. However, valley confinement and glacial legacy exert an important control on the magnitude of the impacts of the fire-derived wood; where the stream is confined, wood is suspended and morphologically ineffective, while un-confined segments contain high effective wood loads, multi-thread channels, and abundant aquatic habitat. These findings suggest that the morphologic effects of wood are highly dependent on valley geometry, which is in turn dictated by glacial legacy throughout much of North America, and that the impacts of valley confinement on the effectiveness of introduced wood must be considered in future model iterations. Plane bed morphology typical of reaches without large wood present Complex forced pool-riffle morphology typical of reaches with high wood loading

  11. Impacts of the climate change on runoff and diffuse phosphorus load to Lake Balaton (Hungary).

    PubMed

    Kovács, A; Clement, A

    2009-01-01

    The paper outlines a multi-component assessment of the impacts of the climate change on runoff and total phosphorus loads to the large shallow Lake Balaton in Hungary. Present hydrological cycle of the lake catchment has been examined using the rainfall-runoff model WetSpa. Particular phosphorus concentration in runoff was estimated on the basis of the simulated streamflow using an empirical power equation. Dissolved phosphorus concentrations were determined as a function of landuse and soil type of the corresponding sub-catchment. The model was calibrated and validated against daily observations manually at monitoring sites of sixteen inflowing streams around the lake. Runoff stemming from shoreline urban developments was calculated by the urban runoff simulation model SWMM. Phosphorus concentrations in urban runoff were calculated by an empirical relationship derived from field measurements. The model was henceforward run for climate change scenario analysis. Present weather data were modified by the climate change scenarios imported from the results of the CLIME project. The results indicate that the impact of the climate change on runoff and phosphorus load appears in the change of the distribution within a time period rather than in the total volume. However, due to the high uncertainties in climate models, the presented calculations are possible assumptions rather than established statements. PMID:19213995

  12. Delamination growth analysis in quasi-isotropic laminates under loads simulating low-velocity impact

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Elber, W.

    1984-01-01

    A geometrically nonlinear finite-element analysis was developed to calculate the strain energy released by delamination plates during impact loading. Only the first mode of deformation, which is equivalent to static deflection, was treated. Both the impact loading and delamination in the plate were assumed to be axisymmetric. The strain energy release rate in peeling, G sub I, and shear sliding, G sub II, modes were calculated using the fracture mechanics crack closure technique. Energy release rates for various delamination sizes and locations and for various plate configurations and materials were compared. The analysis indicated that shear sliding (G sub II) was the primary mode of delamination growth. The analysis also indicated that the midplane (maximum transverse shear stress plane) delamination was more critical and would grow before any other delamination of the same size near the midplane region. The delamination growth rate was higher (neutrally stable) for a low toughness (brittle) matrix and slower (stable) for high toughness matrix. The energy release rate in the peeling mode, G sub I, for a near-surface delamination can be as high as 0.5G sub II and can contribute significantly to the delamination growth.

  13. Cognitive Load Differentially Impacts Response Control in Girls and Boys with ADHD.

    PubMed

    Seymour, Karen E; Mostofsky, Stewart H; Rosch, Keri S

    2016-01-01

    Children with attention-deficit hyperactivity disorder (ADHD) consistently show impaired response control, including deficits in response inhibition and increased intrasubject variability (ISV) compared to typically-developing (TD) children. However, significantly less research has examined factors that may influence response control in individuals with ADHD, such as task or participant characteristics. The current study extends the literature by examining the impact of increasing cognitive demands on response control in a large sample of 81children with ADHD (40 girls) and 100 TD children (47 girls), ages 8-12 years. Participants completed a simple Go/No-Go (GNG) task with minimal cognitive demands, and a complex GNG task with increased cognitive load. Results showed that increasing cognitive load differentially impacted response control (commission error rate and tau, an ex-Gaussian measure of ISV) for girls, but not boys, with ADHD compared to same-sex TD children. Specifically, a sexually dimorphic pattern emerged such that boys with ADHD demonstrated higher commission error rate and tau on both the simple and complex GNG tasks as compared to TD boys, whereas girls with ADHD did not differ from TD girls on the simple GNG task, but showed higher commission error rate and tau on the complex GNG task. These findings suggest that task complexity influences response control in children with ADHD in a sexually dimorphic manner. The findings have substantive implications for the pathophysiology of ADHD in boys versus girls with ADHD.

  14. Analysis of thermomechanical response of polycrystalline HMX under impact loading through mesoscale simulations

    NASA Astrophysics Data System (ADS)

    Hardin, D. B.; Rimoli, J. J.; Zhou, M.

    2014-09-01

    We investigate the response of polycrystalline HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) under impact loading through a 3-dimensional mesoscale model that explicitly accounts for anisotropic elasticity, crystalline plasticity, and heat conduction. This model is used to quantify the variability in temperature and stress fields due to random distributions of the orientations of crystalline grains in HMX under the loading scenarios considered. The simulations carried out concern the response of fully dense HMX polycrystalline ensembles under impact loading at imposed boundary velocities from 50 to 400 m/s. The polycrystalline ensemble studied consists of a geometrically arranged distribution of bi-modally sized and shaped grains. To quantify the effect of crystalline slip, two models with different numbers of available slip systems are used, reflecting differing characterizations of the slip systems of the HMX molecular crystal in the literature. The effects of microstructure and anisotropy on the distribution of heating and stress evolution are investigated. The results obtained indicate that crystalline response anisotropy at the microstructure level plays an important role in influencing both the overall response and the localization of stress and temperature. The overall longitudinal stress is up to 16% higher and the average temperature rise is only half in the material with fewer potential slip systems compared to those in the material with more available slip systems. Local stresses can be as high as twice the average stresses. The results show that crystalline anisotropy induces significant heterogeneities in both mechanical and thermal fields that previously have been neglected in the analyses of the behavior of HMX-based energetic materials.

  15. High Intensity Exercise in Multiple Sclerosis: Effects on Muscle Contractile Characteristics and Exercise Capacity, a Randomised Controlled Trial

    PubMed Central

    Vandenabeele, Frank; Grevendonk, Lotte; Verboven, Kenneth; Hansen, Dominique

    2015-01-01

    Introduction Low-to-moderate intensity exercise improves muscle contractile properties and endurance capacity in multiple sclerosis (MS). The impact of high intensity exercise remains unknown. Methods Thirty-four MS patients were randomized into a sedentary control group (SED, n = 11) and 2 exercise groups that performed 12 weeks of a high intensity interval (HITR, n = 12) or high intensity continuous cardiovascular training (HCTR, n = 11), both in combination with resistance training. M.vastus lateralis fiber cross sectional area (CSA) and proportion, knee-flexor/extensor strength, body composition, maximal endurance capacity and self-reported physical activity levels were assessed before and after 12 weeks. Results Compared to SED, 12 weeks of high intensity exercise increased mean fiber CSA (HITR: +21±7%, HCTR: +23±5%). Furthermore, fiber type I CSA increased in HCTR (+29±6%), whereas type II (+23±7%) and IIa (+23±6%,) CSA increased in HITR. Muscle strength improved in HITR and HCTR (between +13±7% and +45±20%) and body fat percentage tended to decrease (HITR: -3.9±2.0% and HCTR: -2.5±1.2%). Furthermore, endurance capacity (Wmax +21±4%, time to exhaustion +24±5%, VO2max +17±5%) and lean tissue mass (+1.4±0.5%) only increased in HITR. Finally self-reported physical activity levels increased 73±19% and 86±27% in HCTR and HITR, respectively. Conclusion High intensity cardiovascular exercise combined with resistance training was safe, well tolerated and improved muscle contractile characteristics and endurance capacity in MS. Trial Registration ClinicalTrials.gov NCT01845896 PMID:26418222

  16. Max Tech and Beyond: High-Intensity Discharge Lamps

    SciTech Connect

    Scholand, Michael

    2012-04-01

    High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light sources (although the MV exhibits poor color rendering) and HPS produces a yellow-orange color light. A fourth lamp, low-pressure sodium (LPS), is not a HID lamp by definition, but it is used in similar applications and thus is often grouped with HID lamps. With the notable exception of MV which is comparatively inefficient and in decline in the US from both a sales and installed stock point of view; HPS, LPS and MH all have efficacies over 100 lumens per watt. The figure below presents the efficacy trends over time for commercially available HID lamps and LPS, starting with MV and LPS in 1930's followed by the development of HPS and MH in the 1960's. In HID lamps, light is generated by creating an electric arc between two electrodes in an arc tube. The particles in the arc are partially ionized, making them electrically conductive, and a light-emitting 'plasma' is created. This arc occurs within the arc tube, which for most HID lamps is enclosed within an evacuated outer bulb that thermally isolates and protects the hot arc tube from the surroundings. Unlike a fluorescent lamp that produces visible light through down-converting UV light with phosphors, the arc itself is the light source in an HID lamp, emitting visible radiation that is characteristic of the elements present in the plasma. Thus, the mixture of elements included in the arc tube is one critical factor determining the quality of the light emitted from the lamp, including its correlated color temperature (CCT) and color rendering index (CRI). Similar to fluorescent lamps, HID lamps require a ballast to start and maintain stable operating conditions, and

  17. Reverberation Chamber Uniformity Validation and Radiated Susceptibility Test Procedures for the NASA High Intensity Radiated Fields Laboratory

    NASA Technical Reports Server (NTRS)

    Koppen, Sandra V.; Nguyen, Truong X.; Mielnik, John J.

    2010-01-01

    The NASA Langley Research Center's High Intensity Radiated Fields Laboratory has developed a capability based on the RTCA/DO-160F Section 20 guidelines for radiated electromagnetic susceptibility testing in reverberation chambers. Phase 1 of the test procedure utilizes mode-tuned stirrer techniques and E-field probe measurements to validate chamber uniformity, determines chamber loading effects, and defines a radiated susceptibility test process. The test procedure is segmented into numbered operations that are largely software controlled. This document is intended as a laboratory test reference and includes diagrams of test setups, equipment lists, as well as test results and analysis. Phase 2 of development is discussed.

  18. Effects of anabolic steroids and high-intensity aerobic exercise on skeletal muscle of transgenic mice.

    PubMed

    Fontana, Karina; Campos, Gerson E R; Staron, Robert S; da Cruz-Höfling, Maria Alice

    2013-01-01

    In an attempt to shorten recovery time and improve performance, strength and endurance athletes occasionally turn to the illicit use of anabolic-androgenic steroids (AAS). This study evaluated the effects of AAS treatment on the muscle mass and phenotypic characteristics of transgenic mice subjected to a high-intensity, aerobic training program (5d/wk for 6 weeks). The transgenic mice (CETP(+/-)LDLr(-/+)) were engineered to exhibit a lipid profile closer to humans. Animals were divided into groups of sedentary (Sed) and/or training (Ex) mice (each treated orally with AAS or gum arabic/vehicle: Sed-C, Sed-M, ex-C, ex-M). The effects of AAS (mesterolone: M) on specific phenotypic adaptations (muscle wet weight, cross-sectional area, and fiber type composition) in three hindlimb muscles (soleus:SOL, tibialis anterior:TA and gastrocnemius:GAS) were assessed. In order to detect subtle changes in fiber type profile, the entire range of fiber types (I, IC, IIAC, IIA, IIAD, IID, IIDB, IIB) was delineated using mATPase histochemistry. Body weight gain occurred throughout the study for all groups. However, the body weight gain was significantly minimized with exercise. This effect was blunted with mesterolone treatment. Both AAS treatment (Sed-M) and high-intensity, aerobic training (ex-C) increased the wet weights of all three muscles and induced differential hypertrophy of pure and hybrid fibers. Combination of AAS and training (ex-M) resulted in enhanced hypertrophy. In the SOL, mesterolone treatment (Sed-M and ex-M) caused dramatic increases in the percentages of fiber types IC, IIAC, IIAD, IID, with concomitant decrease in IIA, but had minimal impact on fiber type percentages in the predominantly fast muscles. Overall, the AAS-induced differential adaptive changes amounted to significant fiber type transformations in the fast-to-slow direction in SOL. AAS treatment had a significant effect on muscle weights and fiber type composition in SOL, TA and GAS which was even

  19. Nakagami imaging for detecting thermal lesions induced by high-intensity focused ultrasound in tissue.

    PubMed

    Rangraz, Parisa; Behnam, Hamid; Tavakkoli, Jahan

    2014-01-01

    High-intensity focused ultrasound induces focalized tissue coagulation by increasing the tissue temperature in a tight focal region. Several methods have been proposed to monitor high-intensity focused ultrasound-induced thermal lesions. Currently, ultrasound imaging techniques that are clinically used for monitoring high-intensity focused ultrasound treatment are standard pulse-echo B-mode ultrasound imaging, ultrasound temperature estimation, and elastography-based methods. On the contrary, the efficacy of two-dimensional Nakagami parametric imaging based on the distribution of the ultrasound backscattered signals to quantify properties of soft tissue has recently been evaluated. In this study, ultrasound radio frequency echo signals from ex vivo tissue samples were acquired before and after high-intensity focused ultrasound exposures and then their Nakagami parameter and scaling parameter of Nakagami distribution were estimated. These parameters were used to detect high-intensity focused ultrasound-induced thermal lesions. Also, the effects of changing the acoustic power of the high-intensity focused ultrasound transducer on the Nakagami parameters were studied. The results obtained suggest that the Nakagami distribution's scaling and Nakagami parameters can effectively be used to detect high-intensity focused ultrasound-induced thermal lesions in tissue ex vivo. These parameters can also be used to understand the degree of change in tissue caused by high-intensity focused ultrasound exposures, which could be interpreted as a measure of degree of variability in scatterer concentration in various parts of the high-intensity focused ultrasound lesion. PMID:24264647

  20. Observation and Simulation of Motion and Deformation for Impact-Loaded Metal Cylinders

    NASA Astrophysics Data System (ADS)

    Hickman, R. J.; Wise, J. L.; Smith, J. A.; Mersch, J. P.; Robino, C. V.; Arguello, J. G.

    2015-06-01

    Complementary gas-gun experiments and computational simulations have examined the time-resolved motion and post-mortem deformation of cylindrical metal samples subjected to impact loading. The effect of propagation distance on a compressive waveform generated in a sample by planar impact at one end was determined using a velocity interferometer to track the longitudinal motion of the opposing rear (i.e., free) surface. Samples (24 or 25.4-mm diameter) were fabricated from aluminum (types 6061 and 7075), copper, stainless steel (type 316), and cobalt alloy L-605 (AMS 5759). For each material, waveforms obtained for a short (2 mm) and a long (25.4 mm) cylinder corresponded, respectively, to one-dimensional (i.e., uniaxial) and two-dimensional strain at the measurement point. The wave-profile data have been analyzed to (i) establish key dynamic material modeling parameters, (ii) assess the functionality of the Sierra Solid Mechanics-Presto (SierraSM/Presto) code, and (iii) identify the need for additional testing, material modeling, and/or code development. The results of subsequent simulations have been compared to benchmark recovery experiments that showed the residual plastic deformation incurred by cylinders following end, side, and corner impacts. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  1. Impacts of Providing Inertial Response on Dynamic Loads of Wind Turbine Drivetrains: Preprint

    SciTech Connect

    Girsang, I. P.; Dhupia, J.; Singh, M.; Gevorgian, V.; Muljadi, E.; Jonkman, J.

    2014-09-01

    There has been growing demand from the power industry for wind power plants to support power system operations. One such requirement is for wind turbines to provide ancillary services in the form of inertial response. When the grid frequency drops, it is essential for wind turbine generators (WTGs) to inject kinetic energy stored in their inertia into the grid to help arrest the frequency decline. However, the impacts of inertial response on the structural loads of the wind turbine have not been given much attention. To bridge this gap, this paper utilizes a holistic model for both fixed-speed and variable-speed WTGs by integrating the aeroelastic wind turbine model in FAST, developed by the National Renewable Energy Laboratory, with the electromechanical drivetrain model in SimDriveline and SimPowerSystems.

  2. Vibration measurement through high speed vision system in a civil structure under impact loading

    NASA Astrophysics Data System (ADS)

    Ferrer, Belén; García, Juan I.; Roig, Ana B.; Mas, David

    2014-05-01

    The method presented in this work is a simple, cheap and non-contact method. It is based on image processing using a circular target. It has subpixel accuracy and it only needs a low cost high-speed camera and a tripod. In the work presented in this paper, a Casio Exilim camera was used to measure the vibration of a pedestrian bridge. An impact load was applied on the bridge through one person jumping in the middle of the bridge. Tracking of the circle border give the center trajectory and therefore the displacement and frequency of the movement. Some accelerometers were used as a contrast device for the frequency. The displacement obtained by our procedure was previously checked in laboratory using a micrometric bench. The results show that this method is suitable for measuring successfully the vibration of civil structures.

  3. Interactive effects of mass proportions and coupling properties on external loading in simulated forefoot impact landings.

    PubMed

    Gittoes, Marianne J R; Kerwin, David G

    2009-08-01

    This study aimed to gain insight into the individual and interactive effects of segmental mass proportions and coupling properties on external loading in simulated forefoot landings. An evaluated four-segment wobbling mass model replicated forefoot drop landings (height: 0.46 m) performed by two subjects. A comparison of the peak impact forces (GFzmax) produced during the evaluated landing and further simulated landings performed using modified (+/-5% perturbation) mass proportions and coupling properties was made. Independent segmental mass proportion changes, particularly in the upper body, produced a prominent change in GFzmax of up to 0.32 bodyweight (BW) whereas independent mass coupling stiffness and damping alterations had less effect on GFzmax (change in GFzmax of up to 0.18 BW). When combining rigid mass proportion reductions with damping modifications, an additional GFzmax attenuation of up to 0.13 BW was produced. An individual may be predisposed to high loading and traumatic and overuse injury during forefoot landings owing to their inherent inertia profile. Subject-specific neuromuscular modifications to mass coupling properties may not be beneficial in overriding the increased forces associated with larger rigid mass proportions. PMID:19827473

  4. The effect of knee braces on lateral impact loading of the knee.

    PubMed

    Baker, B E; VanHanswyk, E; Bogosian, S P; Werner, F W; Murphy, D

    1989-01-01

    Disruption of the medial supporting structures of the knee occurs commonly in contact sports such as American football and lacrosse. A limited number of clinical and laboratory studies currently document the effectiveness of bracing. The purpose of this project was to determine if commercially available bracing could be shown to produce objective evidence of medial stabilization of the knee. Our model involves the use of a cadaver lower extremity with a fixed foot and suspended femur with a free knee and a lateral impact load applied simulating a clipping injury. Force transducers were placed on the ACL and medial collateral ligament (MCL) and an electrogoniometer was attached to the extremity. The prophylactic braces studied had a limited capacity to protect the MCL from direct lateral stress with the knee in full extension. In flexion or with a change in direction of the load, the protective effect is greatly reduced. The functional braces had a capacity to limit abduction and rotational stresses on the MCL in flexion and extension. PMID:2757126

  5. The impact of phosphate loading activities on near marine environment: the Syrian coast.

    PubMed

    Al-Masri, M S; Mamish, S; Budeir, Y

    2002-01-01

    The impact of loading cargoes of phosphate ore into ships on the near marine environment at the Syrian coast has been evaluated. Results have shown a significant enhancement of 210Po, 210Pb and other natural radionuclides in sediment and surface water inside the port area. The highest 210Po and 210Pb concentrations observed in sediment were found to be 170 and 64 Bq kg(-1) respectively, while 210Pb and 210Po concentrations in surface water ranged from 5 to 20 mBq l(-1) and 0.93 to 3.23 mBq l(-1). In addition, comparable values of 210Po and 210Pb for all marine organisms (algae, crab and fish) suggest that their use as indicators for phosphate pollution is not recommended. However, the effect of loading cargoes on the port marine environment of Tartous was found to be mainly related to wind direction where radioactive air particulate are either being dispersed to land or sea.

  6. Radiation control in the intensive care unit for high intensity iridium-192 brain implants

    SciTech Connect

    Sewchand, W.; Drzymala, R.E.; Amin, P.P.; Salcman, M.; Salazar, O.M.

    1987-04-01

    A bedside lead cubicle was designed to minimize the radiation exposure of intensive care unit staff during routine interstitial brain irradiation by removable, high intensity iridium-192. The cubicle shields the patient without restricting intensive care routines. The design specifications were confirmed by exposure measurements around the shield with an implanted anthropomorphic phantom simulating the patient situation. The cubicle reduces the exposure rate around an implant patient by as much as 90%, with the exposure level not exceeding 0.1 mR/hour/mg of radium-equivalent /sup 192/Ir. Evaluation of data accumulated for the past 3 years has shown that the exposure levels of individual attending nurses are 0.12 to 0.36 mR/mg of radium-equivalent /sup 192/Ir per 12-hour shift. The corresponding range for entire nursing teams varies between 0.18 and 0.26. A radiation control index (exposure per mg of radium-equivalent /sup 192/Ir per nurse-hour) is thus defined for individual nurses and nursing teams; this index is a significant guide to the planning of nurse rotations for brain implant patients with various /sup 192/Ir loads. The bedside shield reduces exposure from /sup 192/Ir implants by a factor of about 20, as expected, and the exposure from the lower energy radioisotope iodine-125 is barely detectable.

  7. Radiation control in the intensive care unit for high intensity iridium-192 brain implants.

    PubMed

    Sewchand, W; Drzymala, R E; Amin, P P; Salcman, M; Salazar, O M

    1987-04-01

    A bedside lead cubicle was designed to minimize the radiation exposure of intensive care unit staff during routine interstitial brain irradiation by removable, high intensity iridium-192. The cubicle shields the patient without restricting intensive care routines. The design specifications were confirmed by exposure measurements around the shield with an implanted anthropomorphic phantom simulating the patient situation. The cubicle reduces the exposure rate around an implant patient by as much as 90%, with the exposure level not exceeding 0.1 mR/hour/mg of radium-equivalent 192Ir. Evaluation of data accumulated for the past 3 years has shown that the exposure levels of individual attending nurses are 0.12 to 0.36 mR/mg of radium-equivalent 192Ir per 12-hour shift. The corresponding range for entire nursing teams varies between 0.18 and 0.26. A radiation control index (exposure per mg of radium-equivalent 192Ir per nurse-hour) is thus defined for individual nurses and nursing teams; this index is a significant guide to the planning of nurse rotations for brain implant patients with various 192Ir loads. The bedside shield reduces exposure from 192Ir implants by a factor of about 20, as expected, and the exposure from the lower energy radioisotope iodine-125 is barely detectable.

  8. Aspects of operation of the Fermilab Booster RF System at very high intensity

    SciTech Connect

    Griffin, J.E.

    1996-04-01

    The purpose of this note is to examine the likelihood and problems associated with operation of the Fermilab Booster rf systems as it presently exists, or with only minor modifications, at beam intensity approaching 5x10{sup 13} protons per pulse. Beam loading of the rf system at such an intensity will be one order of magnitude larger than at the present operation level. It is assumed that the injection energy will be raised to 1 GeV with no major increase in the injected energy spread (longitudinal emittance). The beam will be bunched by adiabatic capture as is presently done although it may be necessary to remove one or two bunches prior to acceleration to allow clean extraction at 8 GeV. At very high intensity the charge in each bunch will interact with the vacuum chamber impedance (and with itself) in such a way as to reduce in some cases the bucket area generated by the rf voltage. Because this decrement must be made up by changes in the rf ring voltage if the required bucket area is to be maintained, these effects must be taken into consideration in any analysis of the capability of the rf system to accelerate very large intensity.

  9. Personalized Metabolomics for Predicting Glucose Tolerance Changes in Sedentary Women After High-Intensity Interval Training

    PubMed Central

    Kuehnbaum, Naomi L.; Gillen, Jenna B.; Gibala, Martin J.; Britz-McKibbin, Philip

    2014-01-01

    High-intensity interval training (HIIT) offers a practical approach for enhancing cardiorespiratory fitness, however its role in improving glucose regulation among sedentary yet normoglycemic women remains unclear. Herein, multi-segment injection capillary electrophoresis-mass spectrometry is used as a high-throughput platform in metabolomics to assess dynamic responses of overweight/obese women (BMI > 25, n = 11) to standardized oral glucose tolerance tests (OGTTs) performed before and after a 6-week HIIT intervention. Various statistical methods were used to classify plasma metabolic signatures associated with post-prandial glucose and/or training status when using a repeated measures/cross-over study design. Branched-chain/aromatic amino acids and other intermediates of urea cycle and carnitine metabolism decreased over time in plasma after oral glucose loading. Adaptive exercise-induced changes to plasma thiol redox and orthinine status were measured for trained subjects while at rest in a fasting state. A multi-linear regression model was developed to predict changes in glucose tolerance based on a panel of plasma metabolites measured for naïve subjects in their untrained state. Since treatment outcomes to physical activity are variable between-subjects, prognostic markers offer a novel approach to screen for potential negative responders while designing lifestyle modifications that maximize the salutary benefits of exercise for diabetes prevention on an individual level. PMID:25164777

  10. Personalized metabolomics for predicting glucose tolerance changes in sedentary women after high-intensity interval training.

    PubMed

    Kuehnbaum, Naomi L; Gillen, Jenna B; Gibala, Martin J; Britz-McKibbin, Philip

    2014-01-01

    High-intensity interval training (HIIT) offers a practical approach for enhancing cardiorespiratory fitness, however its role in improving glucose regulation among sedentary yet normoglycemic women remains unclear. Herein, multi-segment injection capillary electrophoresis-mass spectrometry is used as a high-throughput platform in metabolomics to assess dynamic responses of overweight/obese women (BMI > 25, n = 11) to standardized oral glucose tolerance tests (OGTTs) performed before and after a 6-week HIIT intervention. Various statistical methods were used to classify plasma metabolic signatures associated with post-prandial glucose and/or training status when using a repeated measures/cross-over study design. Branched-chain/aromatic amino acids and other intermediates of urea cycle and carnitine metabolism decreased over time in plasma after oral glucose loading. Adaptive exercise-induced changes to plasma thiol redox and orthinine status were measured for trained subjects while at rest in a fasting state. A multi-linear regression model was developed to predict changes in glucose tolerance based on a panel of plasma metabolites measured for naïve subjects in their untrained state. Since treatment outcomes to physical activity are variable between-subjects, prognostic markers offer a novel approach to screen for potential negative responders while designing lifestyle modifications that maximize the salutary benefits of exercise for diabetes prevention on an individual level.

  11. 3-Dimensional modeling of large diameter wire array high intensity K-shell radiation sources.

    SciTech Connect

    Giuliani, J. L.; Waisman, Eduardo Mario; Chittenden, Jeremy Paul; Jennings, Christopher A.; Ampleford, David J.; Yu, Edmund P.; Thornhill, Joseph W.; Cuneo, Michael Edward; Coverdale, Christine Anne; Jones, Brent Manley; Hansen, Stephanie B.

    2010-06-01

    Large diameter nested wire array z-pinches imploded on the Z-generator at Sandia National Laboratories have been used extensively to generate high intensity K-shell radiation. Large initial radii are required to obtain the high implosion velocities needed to efficiently radiate in the K-shell. This necessitates low wire numbers and large inter-wire gaps which introduce large azimuthal non-uniformities. Furthermore, the development of magneto-Rayleigh-Taylor instabilities during the implosion are known to generate large axial non-uniformity These effects motivate the complete, full circumference 3-dimensional modeling of these systems. Such high velocity implosions also generate large voltages, which increase current losses in the power feed and limit the current delivery to these loads. Accurate representation of the generator coupling is therefore required to reliably represent the energy delivered to, and the power radiated from these sources. We present 3D-resistive MHD calculations of the implosion and stagnation of a variety of large diameter stainless steel wire arrays (hv {approx} 6.7 keV), imploded on the Z-generator both before and after its refurbishment. Use of a tabulated K-shell emission model allows us to compare total and K-shell radiated powers to available experimental measurements. Further comparison to electrical voltage and current measurements allows us to accurately assess the power delivered to these loads. These data allow us to begin to constrain and validate our 3D MHD calculations, providing insight into ways in which these sources may be further optimized.

  12. Impact induced failure of cartilage-on-bone following creep loading: a microstructural and fracture mechanics study.

    PubMed

    Thambyah, Ashvin; Zhang, Geran; Kim, Woong; Broom, Neil D

    2012-10-01

    Cartilage-on-bone samples obtained from healthy bovine patellae, with or without prior static compression (i.e. creep) at 2MPa for 3h, were delivered a single impact via an instrumented pendulum indenter at a velocity of 1.13m/s and an energy of 2.2J. Mechanical data was obtained and microstructural assessment of the region of failure was carried out using differential interference contrast (DIC) optical imaging. In addition, a fibrillar-level structural analysis using scanning electron microscopy (SEM) was conducted on a control batch of non-impacted samples that were subjected to either creep or non-creep loading protocols. Arising from the impact event the deepest levels of crack penetration into the articular cartilage occurred in those samples subjected to prior creep loading. Further the crack depth was inversely proportional to the rebound velocity of the indenter. By contrast, those impacted samples not subjected to prior creep loading had only short obliquely patterned microcracks confined to the upper one-third of the full cartilage depth. Ultrastructurally the creep-loaded cartilage matrix exhibited a substantial radial collapse or compaction of the fibrillar network in its primary radial zone. The increase in crack length in the prior creep-loaded cartilage is consistent with a reduction in its dissipative properties as indicated by a reduction in rebound velocity. An interpretation is offered in terms of classical fracture mechanics theory.

  13. High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence.

    PubMed

    Lucas, Samuel J E; Cotter, James D; Brassard, Patrice; Bailey, Damian M

    2015-06-01

    Exercise is a uniquely effective and pluripotent medicine against several noncommunicable diseases of westernised lifestyles, including protection against neurodegenerative disorders. High-intensity interval exercise training (HIT) is emerging as an effective alternative to current health-related exercise guidelines. Compared with traditional moderate-intensity continuous exercise training, HIT confers equivalent if not indeed superior metabolic, cardiac, and systemic vascular adaptation. Consequently, HIT is being promoted as a more time-efficient and practical approach to optimize health thereby reducing the burden of disease associated with physical inactivity. However, no studies to date have examined the impact of HIT on the cerebrovasculature and corresponding implications for cognitive function. This review critiques the implications of HIT for cerebrovascular function, with a focus on the mechanisms and translational impact for patient health and well-being. It also introduces similarly novel interventions currently under investigation as alternative means of accelerating exercise-induced cerebrovascular adaptation. We highlight a need for studies of the mechanisms and thereby also the optimal dose-response strategies to guide exercise prescription, and for studies to explore alternative approaches to optimize exercise outcomes in brain-related health and disease prevention. From a clinical perspective, interventions that selectively target the aging brain have the potential to prevent stroke and associated neurovascular diseases.

  14. Time evolution of atmospheric particle number concentration during high-intensity pyrotechnic events

    NASA Astrophysics Data System (ADS)

    Crespo, Javier; Yubero, Eduardo; Nicolás, Jose F.; Caballero, Sandra; Galindo, Nuria

    2014-10-01

    The Mascletàs are high-intensity pyrotechnic events, typical of eastern Spanish festivals, in which thousands of firecrackers are burnt at ground level in an intense, short-time (<8 min) deafening spectacle that generates short-lived, thick aerosol clouds. In this study, the impact of such events on air quality has been evaluated by means of particle number concentration measurements performed close to the venue during the June festival in Alicante (southeastern Spain). Peak concentrations and dilution times observed throughout the Mascletàs have been compared to those measured when conventional aerial fireworks were launched 2 km away from the monitoring site. The impact of the Mascletàs on the total number concentration of particles larger than 0.3 μm was higher (maximum ˜2·104 cm-3) than that of fireworks (maximum ˜2·103 cm-3). The effect of fireworks depended on whether the dominant meteorological conditions favoured the transport of the plume to the measurement location. However, the time required for particle concentrations to return to background levels is longer and more variable for firework displays (minutes to hours) than for the Mascletàs (<25 min).

  15. 14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false High-intensity Radiated Fields (HIRF) Protection. 25.1317 Section 25.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1317 High-intensity Radiated Fields...

  16. 14 CFR 27.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false High-intensity Radiated Fields (HIRF) Protection. 27.1317 Section 27.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment General § 27.1317 High-intensity Radiated Fields...

  17. 14 CFR 27.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false High-intensity Radiated Fields (HIRF) Protection. 27.1317 Section 27.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment General § 27.1317 High-intensity Radiated Fields...

  18. 14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false High-intensity Radiated Fields (HIRF) Protection. 25.1317 Section 25.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1317 High-intensity Radiated Fields...

  19. 14 CFR 29.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false High-intensity Radiated Fields (HIRF) Protection. 29.1317 Section 29.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment General § 29.1317 High-intensity Radiated Fields...

  20. 14 CFR 29.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false High-intensity Radiated Fields (HIRF) Protection. 29.1317 Section 29.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment General § 29.1317 High-intensity Radiated Fields...

  1. Effect of Short-Term, High-Intensity Exercise on Anaerobic Threshold in Women.

    ERIC Educational Resources Information Center

    Evans, Blanche W.

    This study investigated the effects of a six-week, high-intensity cycling program on anaerobic threshold (AT) in ten women. Subjects trained four days a week using high-intensity interval-type cycle exercises. Workouts included six 4-minute intervals cycling at 85 percent maximal oxygen uptake (VO sub 2 max), separated by 3-minute intervals of…

  2. 14 CFR 23.1308 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-intensity Radiated Fields (HIRF) Protection. 23.1308 Section 23.1308 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Equipment General § 23.1308 High-intensity Radiated Fields (HIRF) Protection. (a) Except as provided...

  3. 14 CFR 23.1308 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-intensity Radiated Fields (HIRF... Equipment General § 23.1308 High-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in... reduce the capability of the airplane or the ability of the flightcrew to respond to an adverse...

  4. 21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false High-intensity mercury vapor discharge lamps. 1040...-intensity mercury vapor discharge lamps. (a) Applicability. The provisions of this section apply to any high-intensity mercury vapor discharge lamp that is designed, intended, or promoted for illumination purposes...

  5. Caffeine withdrawal and high-intensity endurance cycling performance.

    PubMed

    Irwin, Christopher; Desbrow, Ben; Ellis, Aleisha; O'Keeffe, Brooke; Grant, Gary; Leveritt, Michael

    2011-03-01

    In this study, we investigated the impact of a controlled 4-day caffeine withdrawal period on the effect of an acute caffeine dose on endurance exercise performance. Twelve well-trained and familiarized male cyclists, who were caffeine consumers (from coffee and a range of other sources), were recruited for the study. A double-blind placebo-controlled cross-over design was employed, involving four experimental trials. Participants abstained from dietary caffeine sources for 4 days before the trials and ingested capsules (one in the morning and one in the afternoon) containing either placebo or caffeine (1.5 mg · kg(-1) body weight · day(-1)). On day 5, capsules containing placebo or caffeine (3 mg · kg(-1) body weight) were ingested 90 min before completing a time trial, equivalent to one hour of cycling at 75% peak sustainable power output. Hence the study was designed to incorporate placebo-placebo, placebo-caffeine, caffeine-placebo, and caffeine-caffeine conditions. Performance time was significantly improved after acute caffeine ingestion by 1:49 ± 1:41 min (3.0%, P = 0.021) following a withdrawal period (placebo-placebo vs. placebo-caffeine), and by 2:07 ± 1:28 min (3.6%, P = 0.002) following the non-withdrawal period (caffeine-placebo vs. caffeine-caffeine). No significant difference was detected between the two acute caffeine trials (placebo-caffeine vs. caffeine-caffeine). Average heart rate throughout exercise was significantly higher following acute caffeine administration compared with placebo. No differences were observed in ratings of perceived exertion between trials. A 3 mg · kg(-1) dose of caffeine significantly improves exercise performance irrespective of whether a 4-day withdrawal period is imposed on habitual caffeine users. PMID:21279864

  6. Probabilistic analysis of local ice pressures. [Calculation of ice load and impact effects on offshore platforms

    SciTech Connect

    Jordaan, I.J.; Brown, P.W. ); Maes, M.A.; Hermans, I.P. . Dept. of Mathematics and Statistics)

    1993-02-01

    Extensive work in recent years has been carried out on the calculation of global ice loads on a probabilistic basis. An analysis method is presented for local ice pressures, which yields values of pressure for specific values of exceedance probability. In developing this method, particular attention has been paid to problems of exposure (length, position and number of impacts), as well as the area of exposure (area within area versus nominal contact area). The solution has been formulated for a series of discrete impacts, e.g., rams by a vessel, or a series of periods of continuous interactions. Data for the MV CANMAR Kigoriak and USCGC Polar Sea were ranked and curves were fitted through the tail of probability plots for three panel sizes. This allowed determination of exceedance probabilities of the design coefficients for pressure as a junction of area. The method developed was then applied to an example for a ship based on the data and expected number of rams per year. Formulas useful in the design of structures in ice are presented.

  7. The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts

    PubMed Central

    Saini, Natalie; Chan, Kin; Grimm, Sara A.; Dai, Shuangshuang; Fargo, David C.; Kaufmann, William K.; Taylor, Jack A.; Lee, Eunjung; Cortes-Ciriano, Isidro; Park, Peter J.; Schurman, Shepherd H.; Malc, Ewa P.; Mieczkowski, Piotr A.

    2016-01-01

    Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600–13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration ClinicalTrials.gov NCT01087307 PMID:27788131

  8. Effects of filament geometry on the arc efficiency of a high-intensity He{sup +} ion source

    SciTech Connect

    Kobuchi, T.; Kisaki, M.; Okamoto, A.; Kitajima, S.; Sasao, M.; Shinto, K.; Tsumori, K.; Kaneko, O.; Sakakita, H.; Kiyama, S.; Hirano, Y.; Wada, M.

    2008-10-15

    A strongly focusing high-intensity He{sup +} ion source equipped with three concave electrodes has been designed and constructed as the beam source for a high-energy He{sup 0} neutral beam probe system to diagnose fusion-produced alpha particles in thermonuclear fusion plasmas. The reduction of heat load onto the concave extraction electrodes is particularly important for a long pulse operation, as the heat load deforms the electrodes and thus the beam focal length. The effects on the arc efficiency (beam current/arc power) of the ion source due to the discharge filament structure (straight-type and L-shape-type filaments), size (filament diameters of 2 and 1.5 mm), number, and the locations have been studied. Choice of the appropriate filament structure improved the arc efficiency by 17%.

  9. Numerical simulations of the occupant head response in an infantry vehicle under blunt impact and blast loading conditions.

    PubMed

    Sevagan, Gopinath; Zhu, Feng; Jiang, Binhui; Yang, King H

    2013-07-01

    This article presents the results of a finite element simulation on the occupant head response in an infantry vehicle under two separated loading conditions: (1) blunt impact and (2) blast loading conditions. A Hybrid-III dummy body integrated with a previously validated human head model was used as the surrogate. The biomechanical response of the head was studied in terms of head acceleration due to the impact by a projectile on the vehicle and intracranial pressure caused by blast wave. A series of parametric studies were conducted on the numerical model to analyze the effect of some key parameters, such as seat configuration, impact velocity, and boundary conditions. The simulation results indicate that a properly designed seat and internal surface of the infantry vehicle can play a vital role in reducing the risk of head injury in the current scenarios. Comparison of the kinematic responses under the blunt impact and blast loading conditions reveals that under the current loading conditions, the acceleration pulse in the blast scenario has much higher peak values and frequency than blunt impact case, which may reflect different head response characteristics. PMID:23636759

  10. Modular and scalable load-wall sled buck for pure-lateral and oblique side impact tests.

    PubMed

    Yoganandan, Narayan; Humm, John R; Pintar, Frank A

    2012-05-11

    A considerable majority of side impact sled tests using different types of human surrogates has used a load-wall design not specific to subject anthropometry. The use of one load-wall configuration cannot accurately isolate and evaluate regional responses for the same load-wall geometry. As the anatomy and biomechanical responses of the human torso depends on the region, and anthropomorphic test devices continue to advance and accommodate regional differences, it is important to obtain specific data from sled tests. To achieve this goal, the present study designed a scalable modular load-wall consisting of the shoulder, thorax, abdomen, and superior and inferior pelvis, and lower limb plates. The first five plates were connected to a vertical fixture and the limb plate was connected to another fixture. The width, height, and thickness, and the gap between plates were modular. Independent adjustments in the coronal and sagittal planes allowed region-specific positioning depending on surrogate anthropometry, example pelvis width and seated height. Two tri-axial load cells were fixed on the contralateral face of each plate of the load-wall to record impact force-time histories. The load-wall and vertical fixture design can be used to conduct side impact tests with varying vectors, pure-lateral to anterior and posterior oblique, by appropriately orienting the load-wall with respect to the surrogate. The feasibility of the design to extract region-specific biomechanical data was demonstrated by conducting pure-lateral and anterior oblique sled tests using two different surrogates at a velocity of 6.7m/s. Uses of this design are discussed for different applications.

  11. Aeshnid dragonfly larvae as bioindicators of methylmercury contamination in aquatic systems impacted by elevated sulfate loading.

    PubMed

    Jeremiason, J D; Reiser, T K; Weitz, R A; Berndt, M E; Aiken, G R

    2016-04-01

    Methylmercury (MeHg) levels in dragonfly larvae and water were measured over two years in aquatic systems impacted to varying degrees by sulfate releases related to iron mining activity. This study examined the impact of elevated sulfate loads on MeHg concentrations and tested the use of MeHg in dragonfly larvae as an indicator of MeHg levels in a range of aquatic systems including 16 river/stream sites and two lakes. MeHg concentrations in aeshnid dragonfly larvae were positively correlated (R(2) = 0.46, p < 0.01) to peak MeHg concentrations in the dissolved phase for the combined years of 2012 and 2013. This relation was strong in 2012 (R(2) = 0.85, p < 0.01), but showed no correlation in 2013 (R(2) = 0.02, p > 0.05). MeHg in dragonfly larvae were not elevated at the highest sulfate sites, but rather the reverse was generally observed. Record rainfall events in 2012 and above average rainfall in 2013 likely delivered the majority of Hg and MeHg to these systems via interflow and activated groundwater flow through reduced sediments. As a result, the impacts of elevated sulfate releases due to mining activities were not apparent in these systems where little of the sulfate is reduced. Lower bioaccumulation factors for MeHg in aeshnid dragonfly larvae were observed with increasing dissolved organic carbon (DOC) concentrations. This finding is consistent with previous studies showing that MeHg in high DOC systems is less bioavailable; an equilibrium model shows that more MeHg being associated with DOC rather than algae at the base of the food chain readily explains the lower bioaccumulation factors. PMID:26738880

  12. The Seasonal Hydrological Loading Impacts on Post-Earth Measurements for the 2015 Nepal Earthquake

    NASA Astrophysics Data System (ADS)

    Zou, Rong; Wang, Qi; Freymueller, Jeffrey T.; Poutanen, Markku

    2016-04-01

    In southern Tibet and Himalaya, ongoing vertical and horizontal motions due to the collision between India and Eurasia are monitored by large numbers of global positioning system (GPS) continuous and campaign sites installed in the past decade. Displacements measured by GPS usually include tectonic deformation as well as non-tectonic, time-dependent signals. To estimate the regional long-term tectonic deformation using GPS more precisely, seasonal elastic deformation signals associated with surface loading must be removed from the observations. Seasonal oscillations in GPS site time series also can bias estimates of postseismic deformation, especially in the critical first months after an earthquake. We investigate tectonic and hydrologic deformation at GPS sites in southern Tibet and Himalaya, focusing on removing seasonal signals in GPS time series for a robust determination of tectonic deformation. The 2015 Mw 7.8 Gorkha earthquake occurred in late April. In the first half -year since this thrusting earthquake, postseimic displacements for sites in southern Tibet and Himalaya have mainly to the south, in the same direction as the coseismic displacement. Because this is in the same direction as the largest horizontal seasonal oscillation, and because the impact of an annual period oscillation on the estimated rate is greatest when the data span is half a cycle, the seasonal displacements can have a significant impact on the early postseismic displacements. This study represents a considerable complement to the previous works that were based exclusively on analyzing the Nepal continuous GPS network because new sites in southern Tibet, China are considered, and numerous time series of campaign sites are analyzed. In particular, we analyze how removing seasonal hydrologic signals from GPS site time series impacts estimates of the postseismic transient following the 2015 Mw 7.8 Gorkha earthquake.

  13. Aeshnid dragonfly larvae as bioindicators of methylmercury contamination in aquatic systems impacted by elevated sulfate loading.

    PubMed

    Jeremiason, J D; Reiser, T K; Weitz, R A; Berndt, M E; Aiken, G R

    2016-04-01

    Methylmercury (MeHg) levels in dragonfly larvae and water were measured over two years in aquatic systems impacted to varying degrees by sulfate releases related to iron mining activity. This study examined the impact of elevated sulfate loads on MeHg concentrations and tested the use of MeHg in dragonfly larvae as an indicator of MeHg levels in a range of aquatic systems including 16 river/stream sites and two lakes. MeHg concentrations in aeshnid dragonfly larvae were positively correlated (R(2) = 0.46, p < 0.01) to peak MeHg concentrations in the dissolved phase for the combined years of 2012 and 2013. This relation was strong in 2012 (R(2) = 0.85, p < 0.01), but showed no correlation in 2013 (R(2) = 0.02, p > 0.05). MeHg in dragonfly larvae were not elevated at the highest sulfate sites, but rather the reverse was generally observed. Record rainfall events in 2012 and above average rainfall in 2013 likely delivered the majority of Hg and MeHg to these systems via interflow and activated groundwater flow through reduced sediments. As a result, the impacts of elevated sulfate releases due to mining activities were not apparent in these systems where little of the sulfate is reduced. Lower bioaccumulation factors for MeHg in aeshnid dragonfly larvae were observed with increasing dissolved organic carbon (DOC) concentrations. This finding is consistent with previous studies showing that MeHg in high DOC systems is less bioavailable; an equilibrium model shows that more MeHg being associated with DOC rather than algae at the base of the food chain readily explains the lower bioaccumulation factors.

  14. The impact of emotion on the perception of graded magnitudes of respiratory resistive loads.

    PubMed

    Tsai, Hsiu-Wen; Chan, Pei-Ying; von Leupoldt, Andreas; Davenport, Paul W

    2013-04-01

    Emotional state can modulate the perception of respiratory loads but the range of respiratory load magnitudes affected by emotional state is unknown. We hypothesized that viewing pleasant, neutral and unpleasant affective pictures would modulate the perception of respiratory loads of different load magnitudes. Twenty-four healthy adults participated in the study. Five inspiratory resistive loads of increasing magnitude (5, 10, 15, 20, 45 cm H(2)O/L/s) were repeatedly presented for one inspiration while participants viewed pleasant, neutral and unpleasant affective picture series. Participants rated how difficult it was to breathe against the load immediately after each presentation. Only at the lowest load, magnitude estimation ratings were greater when subjects viewed the unpleasant series compared to the neutral and pleasant series. These results suggest that negative emotional state increases the sense of respiratory effort for single presentations of a low magnitude resistive load but high magnitude loads are not further modulated by emotional state.

  15. The different effects of high intensity interval training and moderate intensity interval training for weightlessness countermeasures

    NASA Astrophysics Data System (ADS)

    Wang, Lin-Jie; Cheng, Tan; Zhi-Li, Li; Hui-juan, Wang; Wen-juan, Chen; Jianfeng, Zhang; Desheng, Wang; Dongbin, Niu; Qi, Zhao; Chengjia, Yang; Yanqing, Wang

    High intensity interval training (HIIT) has been demonstrated to improve performance in a relatively short training period. But the difference between high intensity interval training and moderate intensity interval training (MIIT) in simulated weightlessness still has not been well studied. This study sought to characterize the difference between 6 weeks high intensity interval training and moderate intensity interval training under reduced weight (RW) gait training device and zero-gravity locomotion system (ZLS). Twenty-three subjects (14M/4F, 32.5±4.5 years) volunteered to participate. They were divided into three groups, that were MITT (alternating 2 min at 40% VO _{2} peak and 2 min at 60% VO _{2} peak for 30min, five days per week) RW group (n=8), HITT (alternating 2 min at 40% VO _{2} peak and 2 min at 90% VO _{2} peak for 30min, three days per week) RW group (n=8) and HITT ZLS group (n=7). The Z-axis load used in RW group was 80% body weight (BW) and in ZLS was 100% BW. Cardiopulmonary function was measured before, after 4-week training and after 6-week training. Isokinetic knee extension-flexion test at 60(°) deg/s and 180(°) deg/s were performed before and after the 6-week training, and isometric knee extension-flexion test at 180(°) deg/s was also examined at the same time. It was found that the VO _{2} peaks, metabolic equivalent (MET), Speedmax and respiratory exchange ratio (RER) were significantly increased after 4 and 6-week training in all three groups and no significant group difference were detected. The peak torque at 60(°) deg/s for right knee flexion were significantly increased after 6 week-training in all three groups, and only in HITT RW group the total power at 60(°) deg/s for right knee flexion enhanced. The total power and average power at 60(°) deg/s for right knee extension decreased significantly after 6-week training in all three groups. The peak torque at 60(°) deg/s for right knee extension in MIIT RW group was

  16. The Influence of Sorbent Properties and Reaction Conditions on Attrition of Limestone by Impact Loading in Fluidized Beds

    NASA Astrophysics Data System (ADS)

    Scala, Fabrizio; Salatino, Piero

    The extent of attrition associated with impact loading was studied for five different limestones pre-processed in fluidized bed under different reaction conditions. The experimental procedure was based on the measurement of the amount and the particle size distribution of the debris generated upon impact of sorbent samples against a target at velocities between 10 and 45 m/s. The effect of calcination, sulfation and calcination/re-carbonation on impact damage was assessed. Fragmentation by impact loading of the limestones was significant and increased with the impact velocity. Lime samples displayed the largest propensity to undergo impact damage, followed by sulfated, re-carbonated and raw limestones. Fragmentation of the sulfated samples followed a partem typical of the failure of brittle materials. On the other hand, the behavior of lime samples better conformed to a disintegration failure mode, with extensive generation of very fine fragments. Raw limestone and re-carbonated lime samples followed either of the two patterns depending on the sorbent nature. The extent of particle fragmentation increased after multiple impacts, but the incremental amount of fragments generated upon one impact decreased with the number of successive impacts.

  17. IMPACT OF SIPHONING ACTIVITY AND NATURALLY SUSPENDED PARTICLE LOAD ON MUSSEL KILL by PSEUDOMONAS FLUORESCENS

    SciTech Connect

    Daniel Molloy

    2003-08-04

    Under this USDOE-NETL contract, the bacterium Pseudomonas fluorescens is being developed as a biocontrol agent for zebra mussels. The specific purpose of the contract is to identify biotic and abiotic factors that affect mussel kill. Ingestion of these bacteria by zebra mussels is required to achieve kill, and tests evaluating factors that relate to mussel feeding are contained in this report. Specifically the impact of the following two factors were investigated: (1) Mussel siphoning behavior--In nature, zebra mussels typically have their two shells spread apart and their inhalant siphon tube extended from between their shells for taking food particles into their mantle cavities (Fig. 1). Our tests indicated that there is a direct correlation between mussel siphoning activity and mussel mortality achieved by a bacterial treatment. Therefore, to encourage mussel feeding on bacteria, future pipe treatments within power plants should be carried out using procedures which minimize disturbance to mussel siphoning. 2. Naturally suspended particle loads--Since bacterial cells are lethal only if ingested by mussels, waters containing very high levels of naturally suspended particles might reduce the mortality that can be achieved by a bacterial treatment. If true, this inhibition might occur as a result of particle exclusion, i.e., there could be reduced ingestion of bacterial cells since they represent a reduced percentage of all particles ingested. Our tests indicated that a range of particle concentrations that might naturally exist in a turbid river did not inhibit mussel kill by the bacterial cells, but that an artificially high load of natural particles was capable of causing a reduction in kill. To be conservative, therefore, future pipe treatments should be timed to occur when intake waters have relatively low quantities of naturally suspended particulate matter.

  18. Effects of partial interlaminar bonding on impact resistance and loaded-hole behavior of graphite/epoxy quasi-isotropic laminates

    NASA Technical Reports Server (NTRS)

    Illg, W.

    1986-01-01

    A partial-bonding interlaminar toughening concept was evaluated for resistance to impact and for behavior of a loaded hole. Perforated Mylar sheets were interleaved between all 24 plies of a graphite/epoxy quasi-isotropic lay-up. Specimens were impacted by aluminum spheres while under tensile or compressive loads. Impact-failure thresholds and residual strengths were obtained. Loaded-hole specimens were tested in three configurations that were critical in bearing, shear, or tension. Partial bonding reduced the tensile and compressive strengths of undamaged specimens by about one-third. For impact, partial bonding did not change the threshold for impact failure under tensile preload. However, under compressive preload, partial bonding caused serious degradation of impact resistance. Partial bonding reduced the maximum load-carrying capacity of all three types of loaded-hole specimens. Overall, partial bonding degraded both impact resistance and bearing strength of holes.

  19. Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin.

    PubMed

    El-Khoury, A; Seidou, O; Lapen, D R; Que, Z; Mohammadian, M; Sunohara, M; Bahram, D

    2015-03-15

    Both climate and land use changes can influence water quality and quantity in different ways. Thus, for predicting future water quality and quantity trends, simulations should ideally account for both projected climate and land use changes. In this paper, land use projections and climate change scenarios were integrated with a hydrological model to estimate the relative impact of climate and land use projections on a suite of water quality and quantity endpoints for a Canadian watershed. Climatic time series representing SRES change scenario A2 were generated by downscaling the outputs of the Canadian Regional Climate Model (version 4.1.1) using a combination of quantile-quantile transformation and nearest neighbor search. The SWAT (Soil and Water Assessment Tool) model was used to simulate streamflow, nitrogen and phosphorus loading under different climate and land use scenarios. Results showed that a) climate change will drive up maximum monthly streamflow, nitrate loads, and organic phosphorus loads, while decreasing organic nitrogen and nitrite loads; and b) land use changes were found to drive the same water quality/quantity variables in the same direction as climate change, except for organic nitrogen loads, for which the effects of the two stressors had a reverse impact on loading.

  20. Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin.

    PubMed

    El-Khoury, A; Seidou, O; Lapen, D R; Que, Z; Mohammadian, M; Sunohara, M; Bahram, D

    2015-03-15

    Both climate and land use changes can influence water quality and quantity in different ways. Thus, for predicting future water quality and quantity trends, simulations should ideally account for both projected climate and land use changes. In this paper, land use projections and climate change scenarios were integrated with a hydrological model to estimate the relative impact of climate and land use projections on a suite of water quality and quantity endpoints for a Canadian watershed. Climatic time series representing SRES change scenario A2 were generated by downscaling the outputs of the Canadian Regional Climate Model (version 4.1.1) using a combination of quantile-quantile transformation and nearest neighbor search. The SWAT (Soil and Water Assessment Tool) model was used to simulate streamflow, nitrogen and phosphorus loading under different climate and land use scenarios. Results showed that a) climate change will drive up maximum monthly streamflow, nitrate loads, and organic phosphorus loads, while decreasing organic nitrogen and nitrite loads; and b) land use changes were found to drive the same water quality/quantity variables in the same direction as climate change, except for organic nitrogen loads, for which the effects of the two stressors had a reverse impact on loading. PMID:25536300

  1. Nitrogen critical loads and management alternatives for N-impacted ecosystems in California.

    PubMed

    Fenn, M E; Allen, E B; Weiss, S B; Jovan, S; Geiser, L H; Tonnesen, G S; Johnson, R F; Rao, L E; Gimeno, B S; Yuan, F; Meixner, T; Bytnerowicz, A

    2010-12-01

    Empirical critical loads for N deposition effects and maps showing areas projected to be in exceedance of the critical load (CL) are given for seven major vegetation types in California. Thirty-five percent of the land area for these vegetation types (99,639 km(2)) is estimated to be in excess of the N CL. Low CL values (3-8 kg N ha(-1) yr(-1)) were determined for mixed conifer forests, chaparral and oak woodlands due to highly N-sensitive biota (lichens) and N-poor or low biomass vegetation in the case of coastal sage scrub (CSS), annual grassland, and desert scrub vegetation. At these N deposition critical loads the latter three ecosystem types are at risk of major vegetation type change because N enrichment favors invasion by exotic annual grasses. Fifty-four and forty-four percent of the area for CSS and grasslands are in exceedance of the CL for invasive grasses, while 53 and 41% of the chaparral and oak woodland areas are in exceedance of the CL for impacts on epiphytic lichen communities. Approximately 30% of the desert (based on invasive grasses and increased fire risk) and mixed conifer forest (based on lichen community changes) areas are in exceedance of the CL. These ecosystems are generally located further from emissions sources than many grasslands or CSS areas. By comparison, only 3-15% of the forested and chaparral land areas are estimated to be in exceedance of the NO(3)(-) leaching CL. The CL for incipient N saturation in mixed conifer forest catchments was 17 kg N ha(-1) yr(-1). In 10% of the CL exceedance areas for all seven vegetation types combined, the CL is exceeded by at least 10 kg N ha(-1) yr(-1), and in 27% of the exceedance areas the CL is exceeded by at least 5 kg N ha(-1) yr(-1). Management strategies for mitigating the effects of excess N are based on reducing N emissions and reducing site N capital through approaches such as biomass removal and prescribed fire or control of invasive grasses by mowing, selective herbicides, weeding or

  2. Nitrogen critical loads and management alternatives for N-impacted ecosystems in California.

    PubMed

    Fenn, M E; Allen, E B; Weiss, S B; Jovan, S; Geiser, L H; Tonnesen, G S; Johnson, R F; Rao, L E; Gimeno, B S; Yuan, F; Meixner, T; Bytnerowicz, A

    2010-12-01

    Empirical critical loads for N deposition effects and maps showing areas projected to be in exceedance of the critical load (CL) are given for seven major vegetation types in California. Thirty-five percent of the land area for these vegetation types (99,639 km(2)) is estimated to be in excess of the N CL. Low CL values (3-8 kg N ha(-1) yr(-1)) were determined for mixed conifer forests, chaparral and oak woodlands due to highly N-sensitive biota (lichens) and N-poor or low biomass vegetation in the case of coastal sage scrub (CSS), annual grassland, and desert scrub vegetation. At these N deposition critical loads the latter three ecosystem types are at risk of major vegetation type change because N enrichment favors invasion by exotic annual grasses. Fifty-four and forty-four percent of the area for CSS and grasslands are in exceedance of the CL for invasive grasses, while 53 and 41% of the chaparral and oak woodland areas are in exceedance of the CL for impacts on epiphytic lichen communities. Approximately 30% of the desert (based on invasive grasses and increased fire risk) and mixed conifer forest (based on lichen community changes) areas are in exceedance of the CL. These ecosystems are generally located further from emissions sources than many grasslands or CSS areas. By comparison, only 3-15% of the forested and chaparral land areas are estimated to be in exceedance of the NO(3)(-) leaching CL. The CL for incipient N saturation in mixed conifer forest catchments was 17 kg N ha(-1) yr(-1). In 10% of the CL exceedance areas for all seven vegetation types combined, the CL is exceeded by at least 10 kg N ha(-1) yr(-1), and in 27% of the exceedance areas the CL is exceeded by at least 5 kg N ha(-1) yr(-1). Management strategies for mitigating the effects of excess N are based on reducing N emissions and reducing site N capital through approaches such as biomass removal and prescribed fire or control of invasive grasses by mowing, selective herbicides, weeding or

  3. Preseason Training: The Effects of a 17-Day High-Intensity Shock Microcycle in Elite Tennis Players.

    PubMed

    Fernandez-Fernandez, Jaime; Sanz-Rivas, David; Sarabia, Jose Manuel; Moya, Manuel

    2015-12-01

    Preseasons in tennis are normally reduced to 5 to 7 weeks duration, and coaches should use an integrated approach to conditioning and skill-based work. The aim of the present study was to investigate the effects of adding a high-intensity training (HIT) shock microcycle to the normal training content in several physical performance indicators in the preseason training of high-level male tennis players. Over 17 days, 12 male tennis players performed 13 HIT sessions in addition to their usual training. Physical performance tests (30:15 intermittent fitness test [VIFT], 20 m sprint, countermovement jump [CMJ], repeated sprint ability [RSA]) were conducted before (pre-test) and 5 days after the intervention (post-test). After the shock microcycle, results showed a significant increase in the VIFT (p < 0.001; Large ES) and a significant decrease in the mean RSA time (RSAm) (p = 0.002; Small ES), while there were no significant changes in the other parameters analysed (e.g., 20 m, CMJ, best RSA time [RSAb]; percentage of decrement in the RSA [%Dec]). Moreover, the training load (TL) during tennis sessions was significantly higher (p < 0.01; Large ES) than the TL during the integrated sessions, except during the first training session. A 17-day shock microcycle (i.e., 13 HIT sessions) in addition to the regular tennis training significantly improved parameters that can impact physical performance in tennis. Moreover, additional sessions, including running exercises based on the 30:15ITF and on-court specific exercises, were characterised by significantly lower TL than tennis-training sessions. Key pointsHIT shock microcycle increases performance in professional tennis players in a short period of time.The inclusion of additional sessions, with running exercises based on the 30:15ITF and on-court specific exercises, was characterised by a significantly lower TL than tennis-training sessions alone.Coaches should be aware of TL (e.g., RPE) and fatigue-related parameters (e

  4. Preseason Training: The Effects of a 17-Day High-Intensity Shock Microcycle in Elite Tennis Players

    PubMed Central

    Fernandez-Fernandez, Jaime; Sanz-Rivas, David; Sarabia, Jose Manuel; Moya, Manuel

    2015-01-01

    Preseasons in tennis are normally reduced to 5 to 7 weeks duration, and coaches should use an integrated approach to conditioning and skill-based work. The aim of the present study was to investigate the effects of adding a high-intensity training (HIT) shock microcycle to the normal training content in several physical performance indicators in the preseason training of high-level male tennis players. Over 17 days, 12 male tennis players performed 13 HIT sessions in addition to their usual training. Physical performance tests (30:15 intermittent fitness test [VIFT], 20 m sprint, countermovement jump [CMJ], repeated sprint ability [RSA]) were conducted before (pre-test) and 5 days after the intervention (post-test). After the shock microcycle, results showed a significant increase in the VIFT (p < 0.001; Large ES) and a significant decrease in the mean RSA time (RSAm) (p = 0.002; Small ES), while there were no significant changes in the other parameters analysed (e.g., 20 m, CMJ, best RSA time [RSAb]; percentage of decrement in the RSA [%Dec]). Moreover, the training load (TL) during tennis sessions was significantly higher (p < 0.01; Large ES) than the TL during the integrated sessions, except during the first training session. A 17-day shock microcycle (i.e., 13 HIT sessions) in addition to the regular tennis training significantly improved parameters that can impact physical performance in tennis. Moreover, additional sessions, including running exercises based on the 30:15ITF and on-court specific exercises, were characterised by significantly lower TL than tennis-training sessions. Key points HIT shock microcycle increases performance in professional tennis players in a short period of time. The inclusion of additional sessions, with running exercises based on the 30:15ITF and on-court specific exercises, was characterised by a significantly lower TL than tennis-training sessions alone. Coaches should be aware of TL (e.g., RPE) and fatigue-related parameters

  5. Impacts of Varying Penetration of Distributed Resources with & without Volt/Var Control: Case Study of Varying Load Types

    SciTech Connect

    Rizy, D Tom; Li, Huijuan; Li, Fangxing; Xu, Yan; Adhikari, Sarina; Irminger, Philip

    2011-01-01

    This paper provides a follow-up to an earlier one on impacts of distributed energy resources (DR) on distribution feeders. As DR penetration level on the feeder increases, there can be impacts to distribution system/feeder capacity, line losses, and voltage regulation. These can vary as the penetration level reaches the capacity of the distribution feeder/system or loading. The question is how high of a DR level can be accommodated without any major changes to system operation, system design and protection. Our objective for this work was to address the question of how the DR impacts vary in regards to both DR voltage regulation capability and load mix. A dynamic analysis was used to focus on the impacts of DR with and without volt/var control with different load composition on the distribution feeder. The study considered an example 10MVA distribution feeder in which two inverter-based DRs were used to provide voltage regulation. The results due to DR without voltage regulation capability are compared with DR capable of providing local (at its bus) voltage regulation. The analysis was repeated for four different feeder load compositions consisting of (1) constant power, (2) constant impedance, (3) constant current and (4) ZIP (equal combination of previous three).

  6. Constitutive modeling of rate-dependent stress-strain behavior of human liver in blunt impact loading.

    PubMed

    Sparks, Jessica L; Dupaix, Rebecca B

    2008-11-01

    An understanding of the mechanical deformation behavior of the liver under high strain rate loading conditions could aid in the development of vehicle safety measures to reduce the occurrence of blunt liver injury. The purpose of this study was to develop a constitutive model of the stress-strain behavior of the human liver in blunt impact loading. Experimental stress and strain data was obtained from impact tests of 12 unembalmed human livers using a drop tower technique. A constitutive model previously developed for finite strain behavior of amorphous polymers was adapted to model the observed liver behavior. The elements of the model include a nonlinear spring in parallel with a linear spring and nonlinear dashpot. The model captures three features of liver stress-strain behavior in impact loading: (1) relatively stiff initial modulus, (2) rate-dependent yield or rollover to viscous "flow" behavior, and (3) strain hardening at large strains. Six material properties were used to define the constitutive model. This study represents a novel application of polymer mechanics concepts to understand the rate-dependent large strain behavior of human liver tissue under high strain rate loading. Applications of this research include finite element simulations of injury-producing liver or abdominal impact events. PMID:18751900

  7. Composite components under impact load and effects of defects on the loading capacity. [Alpha Jet tail assembly

    NASA Technical Reports Server (NTRS)

    Aoki, R.; Wurzel, D.

    1979-01-01

    Investigations were carried out on a horizontal tail assembly made of carbon fiber reinforced plastic for the Alpha Jet. The possibility of obtaining a leading edge nose design lighter but not more expensive than a metal version was studied. An important consideration was sufficient resistance of the leading edge against impact of stones and hailstones combined with high degree of stiffness. The improvement of energy reception characteristics of the materials through suitable laminate design was considered. Since certain defects occur in structural components, the effects of such defects on the characteristics of the parts were also studied.

  8. Calculation of reinforced-concrete frame strength under a simultaneous static cross section load and a column lateral impact

    NASA Astrophysics Data System (ADS)

    Belov, Nikolay; Yugov, Nikolay; Kopanitsa, Dmitry; Kopanitsa, Georgy; Yugov, Alexey; Kaparulin, Sergey; Plyaskin, Andrey; Kalichkina, Anna; Ustinov, Artyom

    2016-01-01

    When designing buildings with reinforced concrete that are planned to resist dynamic loads it is necessary to calculate this structural behavior under operational static and emergency impact and blast loads. Calculations of the structures under shock-wave loads can be performed by solving dynamic equations that do not consider static loads. Due to this fact the calculation of reinforced concrete frame under a simultaneous static and dynamic load in full 3d settings becomes a very non trivial and resource consuming problem. This problem can be split into two tasks. The first one is a shock-wave problem that can be solved using software package RANET-3, which allows solving the problem using finite elements method adapted for dynamic task. This method calculates strain-stress state of the material and its dynamic destruction, which is considered as growth and consolidation of micro defects under loading. On the second step the results of the first step are taken as input parameters for quasi static calculation of simultaneous static and dynamic load using finite elements method in AMP Civil Engineering-11.

  9. Ionization and acceleration of heavy ions in high-Z solid target irradiated by high intensity laser

    NASA Astrophysics Data System (ADS)

    Kawahito, D.; Kishimoto, Y.

    2016-05-01

    In the interaction between high intensity laser and solid film, an ionization dynamics inside the solid is dominated by fast time scale convective propagation of the internal sheath field and the slow one by impact ionization due to heated high energy electrons coupled with nonlocal heat transport. Furthermore, ionization and acceleration due to the localized external sheath field which co- propagates with Al ions constituting the high energy front in the vacuum region. Through this process, the maximum charge state and then q/A increase in the rear side, so that ions near the front are further accelerated to high energy.

  10. IMPACT OF REDUCING THE 100 C LIQUIDUS TEMPERATURE OFFSET ON WASTE LOADING TARGETS

    SciTech Connect

    Peeler, D.; Edwards, T.

    2010-11-11

    The objective of this report is to assess the potential impact of reducing conservatism in the implementation of the current liquidus temperature (TL) model in the Product Composition Control System (PCCS) on the ability to target higher waste loadings (WLs) for future sludge batches. No changes to the TL model or the associated uncertainties (model or measurement) are proposed, rather only changes in the magnitude of the offset used between the nominal melt pool temperature (1150 C) and the Property Acceptance Region (PAR) value (1050 C). This strategy is consistent with that outlined and initially assessed by Brown et al. (2001). In that report, the authors stated even a fairly conservative change in this safety factor could have a significant impact on waste loading. The results of this study clearly indicate that the implementation of an 1100 C TL PAR criterion (which translates into a reduction in the TL offset from 100 C to 50 C) can have significantly positive impacts on the ability to gain access to WLs exceeding 45%. This is especially true for those frit and sludge systems that are TL limited using the current 1050 C TL criterion, and are not limited by a second constraint (such as viscosity, nepheline, or durability) until much higher WLs. Examples of various glass forming systems are provided that are currently limited to maximum WLs in the mid-40s, but could be processed in the lower 50s through implementation of this new strategy. One example is in the Sludge Batch 10 (SB10) system, where for a specific glass forming system the projected operating window of 38-41% WL (using the current constraints) became 38-52% WL with the use of an 1100 C TL PAR value. This change both provided access to significantly higher WLs, and transitioned a once infeasible flowsheet to a system that could potentially be processed in the Defense Waste Processing Facility (DWPF). This potential change in the TL constraint also provides access to frit compositions (or glass

  11. The high intensity solar cell: Key to low cost photovoltaic power

    NASA Technical Reports Server (NTRS)

    Sater, B. L.; Goradia, C.

    1975-01-01

    The design considerations and performance characteristics of the 'high intensity' (HI) solar cell are presented. A high intensity solar system was analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency. It is shown that residential sized systems can be produced at less than $1000/kW peak electric power. Due to their superior high intensity performance characteristics compared to the conventional and VMJ cells, HI cells and light concentrators may be the key to low cost photovoltaic power.

  12. Protein denaturation of whey protein isolates (WPIs) induced by high intensity ultrasound during heat gelation.

    PubMed

    Frydenberg, Rikke P; Hammershøj, Marianne; Andersen, Ulf; Greve, Marie T; Wiking, Lars

    2016-02-01

    In this study, the impact of high intensity ultrasound (HIU) on proteins in whey protein isolates was examined. Effects on thermal behavior, secondary structure and nature of intra- and intermolecular bonds during heat-induced gelling were investigated. Ultrasonication (24 kHz, 300 W/cm(2), 2078 J/mL) significantly reduced denaturation enthalpies, whereas no change in secondary structure was detected by circular dichroism. The thiol-blocking agent N-ethylmaleimide was applied in order to inhibit formation of disulfide bonds during gel formation. Results showed that increased contents of α-lactalbumin (α-La) were associated with increased sensitivity to ultrasonication. The α-La:β-lactoglobulin (β-Lg) ratio greatly affected the nature of the interactions formed during gelation, where higher amounts of α-La lead to a gel more dependent on disulfide bonds. These results contribute to clarifying the mechanisms mediating the effects of HIU on whey proteins on the molecular level, thus moving further toward implementing HIU in the processing chain in the food industry.

  13. Intial characterization fo a commerical electron gun for profiling high intensity proton beams in Project X

    SciTech Connect

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Thangaraj, J.C.T.; Zhang, D.; Blokland, W.; /Oak Ridge

    2011-03-01

    Measuring the profile of a high-intensity proton beam is problematic in that traditional invasive techniques such as flying wires don't survive the encounter with the beam. One alternative is the use of an electron beam as a probe of the charge distribution in the proton beam as was done at the Spallation Neutron Source at ORNL. Here we present an initial characterization of the beam from a commercial electron gun from Kimball Physics, intended for use in the Fermilab Main Injector for Project X. Despite the fact that the horizontal spot size is abnormally large in the high current measurement, the spot size at the downstream cross X2 is reasonable in the context of measuring the deflection. A thin foil OTR would help with the beam heating and should be tried. The next phase of this experiment is to simulate the proton beam with a pair of current carrying wires and to design and construct a fast deflector. Some of the remaining issues to be considered include determining the minimum beam current needed to observe the deflected beam for a given sweep time and the impact of longitudinal variations in the charge density of the bunch.

  14. Characterizing Hot Electron Generation and Transport via Bremsstrahlung Emission on the High Intensity OMEGA EP Laser

    NASA Astrophysics Data System (ADS)

    Peebles, J.; McGuffey, C.; Krauland, C.; Sorokovikova, A.; Qiao, B.; Krasheninnikov, S.; Beg, F. N.; Wei, M. S.; Stephens, R. B.; Chen, C. D.; Westover, B.; McLean, H. S.

    2014-10-01

    The investigation of high intensity laser generated fast electron beams is important for a number of High Energy Density Science applications, which include proton sources and fast ignition among others. A series of experimental campaigns performed using the kilojoule, 10-ps OMEGA EP laser closely examined the impact of a preformed plasma on laser plasma interaction and electron generation. Here we present the analysis of the measured bremsstrahlung x-ray radiation and the inferred results on fast electron characteristics. Simulations, performed with the Monte-Carlo code package ITS 3.0, generate the x-ray response of the target to an injected electron beam with a given temperature, energy and divergence angle. The simulated x-rays are then compared to those collected by the bremsstrahlung spectrometers, which allows us to characterize fast electrons created in the experiment. Preliminary results show a decrease in hot electron temperature with an increase in pre-pulse, which is further corroborated by magnetic electron and Cu-K α spectrometers. This work performed under the auspices of the US DOE under contracts DE-FOA-0000583 (FES, NNSA), DE-NA0002026 (NLUF) and DE-FC02-04ER54789 (FSC).

  15. High intensity magnetic separation for the clean-up of a site polluted by lead metallurgy.

    PubMed

    Sierra, C; Martínez, J; Menéndez-Aguado, J M; Afif, E; Gallego, J R

    2013-03-15

    The industrial history in the district of Linares (Spain) has had a severe impact on soil quality. Here we examined soil contaminated by lead and other heavy metals in "La Cruz" site, a brownfield affected by metallurgical residues. Initially, the presence of contaminants mainly associated with the presence of lead slag fragments mixed with the soil was evaluated. The subsequent analysis showed a quasi-uniform distribution of the pollution irrespective of the grain-size fractions. This study was accompanied by a characterization of the lead slag behavior under the presence of a magnetic field. Two main magnetic components were detected: first a ferromagnetic and/or ferrimagnetic contribution, second a paramagnetic and/or antiferromagnetic one. It was also established that the slag was composed mainly of lead spherules and iron oxides embedded in a silicate matrix. Under these conditions, the capacity of magnetic separation to remove pollutants was examined. Therefore, two high intensity magnetic separators (dry and wet devices, respectively) were used. Dry separation proved to be successful at decontaminating soil in the first stages of a soil washing plant. In contrast, wet separation was found effective as a post-process for the finer fractions.

  16. Atomistic Simulations of High-intensity XFEL Pulses on Diffractive Imaging of Nano-sized Systems

    NASA Astrophysics Data System (ADS)

    Ho, Phay; Knight, Christopher; Young, Linda; Tegze, Miklos; Faigel, Gyula

    We have developed a large-scale atomistic computational method based on a combined Monte Carlo and Molecular Dynamics (MC/MD) method to simulate XFEL-induced radiation damage dynamics of complex materials. The MD algorithm is used to propagate the trajectories of electrons, ions and atoms forward in time and the quantum nature of interactions with an XFEL pulse is accounted for by a MC method to calculate probabilities of electronic transitions. Our code has good scalability with MPI/OpenMP parallelization, and it has been run on Mira, a petascale system at the Argonne Leardership Computing Facility, with particle number >50 million. Using this code, we have examined the impact of high-intensity 8-keV XFEL pulses on the x-ray diffraction patterns of argon clusters. The obtained patterns show strong pulse parameter dependence, providing evidence of significant lattice rearrangement and diffuse scattering. Real-space electronic reconstruction was performed using phase retrieval methods. We found that the structure of the argon cluster can be recovered with atomic resolution even in the presence of considerable radiation damage. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under Contract No. DE-AC02-06CH11357.

  17. The effects of high-intensity, low-frequency active sonar on rainbow trout.

    PubMed

    Popper, Arthur N; Halvorsen, Michele B; Kane, Andrew; Miller, Diane L; Smith, Michael E; Song, Jiakun; Stein, Peter; Wysocki, Lidia E

    2007-07-01

    This study investigated the effects on rainbow trout (Oncorhynchus mykiss) of exposure to high-intensity, low-frequency sonar using an element of the standard Surveillance Towed Array Sensor System Low Frequency Active (LFA) sonar source array. Effects of the LFA sonar on hearing were tested using auditory brainstem responses. Effects were also examined on inner ear morphology using scanning electron microscopy and on nonauditory tissues using general pathology and histopathology. Animals were exposed to a maximum received rms sound pressure level of 193 dB re 1 microPa(2) for 324 or 648 s, an exposure that is far in excess of any exposure a fish would normally encounter in the wild. The most significant effect was a 20-dB auditory threshold shift at 400 Hz. However, the results varied with different groups of trout, suggesting developmental and/or genetic impacts on how sound exposure affects hearing. There was no fish mortality during or after exposure. Sensory tissue of the inner ears did not show morphological damage even several days post-sound exposure. Similarly, gross- and histopathology observations demonstrated no effects on nonauditory tissues.

  18. Impact of deep convection and dehydration on bromine loading in the upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Aschmann, J.; Sinnhuber, B.-M.; Chipperfield, M. P.; Hossaini, R.

    2011-03-01

    Stratospheric bromine loading due to very short-lived substances is investigated with a three-dimensional chemical transport model over a period of 21 years using meteorological input data from the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis from 1989 to the end of 2009. Within this framework we analyze the impact of dehydration and deep convection on the amount of stratospheric bromine using an idealized and a detailed full chemistry approach. We model the two most important brominated short-lived substances, bromoform (CHBr3) and dibromomethane (CH2Br2), assuming a uniform convective detrainment mixing ratio of 1 part per trillion by volume (pptv) for both species. The contribution of very short-lived substances to stratospheric bromine varies drastically with the applied dehydration mechanism and the associated scavenging of soluble species ranging from 3.4 pptv in the idealized setup up to 5 pptv using the full chemistry scheme. In the latter case virtually the entire amount of bromine originating from very short-lived source gases is able to reach the stratosphere thus rendering the impact of dehydration and scavenging on inorganic bromine in the tropopause insignificant. Furthermore, our long-term calculations show that the mixing ratios of very short-lived substances are strongly correlated to convective activity, i.e. intensified convection leads to higher amounts of very short-lived substances in the upper troposphere/lower stratosphere especially under extreme conditions like El Niño seasons. However, this does not apply to the inorganic brominated product gases whose concentrations are anti-correlated to convective activity mainly due to convective dilution and possible scavenging, depending on the applied approach.

  19. Impact of deep convection and dehydration on bromine loading in the upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Aschmann, J.; Sinnhuber, B.-M.; Chipperfield, M. P.; Hossaini, R.

    2011-01-01

    Stratospheric bromine loading due to very short-lived substances is investigated with a three-dimensional chemical transport model over a period of 21 years using meteorological input data from the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis from 1989 to the end of 2009. Within this framework we analyze the impact of dehydration and deep convection on the amount of stratospheric bromine using an idealized and a detailed full chemistry approach. We model the two most important brominated short-lived substances, bromoform (CHBr3) and dibromomethane (CH2Br2), assuming a uniform detrainment mixing ratio of 1 part per trillion by volume (pptv) for both species. The contribution of very short-lived substances to stratospheric bromine varies drastically with the applied dehydration mechanism and the associated scavenging of soluble species ranging from 3.4 pptv in the idealized setup up to 5 pptv using the full chemistry scheme. In the latter case virtually the entire amount of bromine originating from very short-lived source gases is able to reach the stratosphere thus rendering the impact of dehydration and scavenging on inorganic bromine in the tropopause insignificant. Furthermore, our long-term calculations show that the mixing ratios of very short-lived substances are strongly correlated to convective activity, i.e. intensified convection leads to higher amounts of very short-lived substances in the upper troposphere/lower stratosphere especially under extreme conditions like El Niño seasons. However, this does not apply to the inorganic brominated product gases whose concentrations are anti-correlated to convective activity mainly due to convective dilution and possible scavenging, depending on the applied approach.

  20. Finite Element Modeling of Laminated Composite Plates with Locally Delaminated Interface Subjected to Impact Loading

    PubMed Central

    Abo Sabah, Saddam Hussein; Kueh, Ahmad Beng Hong

    2014-01-01

    This paper investigates the effects of localized interface progressive delamination on the behavior of two-layer laminated composite plates when subjected to low velocity impact loading for various fiber orientations. By means of finite element approach, the laminae stiffnesses are constructed independently from their interface, where a well-defined virtually zero-thickness interface element is discreetly adopted for delamination simulation. The present model has the advantage of simulating a localized interfacial condition at arbitrary locations, for various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. In comparison, the model shows good agreement with existing results from the literature when modeled in a perfectly bonded state. It is found that as the local delamination area increases, so does the magnitude of the maximum displacement history. Also, as top and bottom fiber orientations deviation increases, both central deflection and energy absorption increase although the relative maximum displacement correspondingly decreases when in contrast to the laminates perfectly bonded state. PMID:24696668

  1. Wound Ballistics Modeling for Blast Loading Blunt Force Impact and Projectile Penetration

    SciTech Connect

    Taylor, Paul A.; Cooper, Candice Frances; Burnett, Damon J.

    2015-09-01

    Light body armor development for the warfighter is based on trial-and-error testing of prototype designs against ballistic projectiles. Torso armor testing against blast is virtually nonexistent but necessary to ensure adequate protection against injury to the heart and lungs. In this report, we discuss the development of a high-fidelity human torso model, it's merging with the existing Sandia Human Head-Neck Model, and development of the modeling & simulation (M&S) capabilities necessary to simulate wound injury scenarios. Using the new Sandia Human Torso Model, we demonstrate the advantage of virtual simulation in the investigation of wound injury as it relates to the warfighter experience. We present the results of virtual simulations of blast loading and ballistic projectile impact to the tors o with and without notional protective armor. In this manner, we demonstrate the ad vantages of applying a modeling and simulation approach to the investigation of wound injury and relative merit assessments of protective body armor without the need for trial-and-error testing.

  2. How to regulate the acute physiological response to "aerobic" high-intensity interval exercise.

    PubMed

    Tschakert, Gerhard; Kroepfl, Julia; Mueller, Alexander; Moser, Othmar; Groeschl, Werner; Hofmann, Peter

    2015-03-01

    The acute physiological processes during "aerobic" high-intensity interval exercise (HIIE) and their regulation are inadequately studied. The main goal of this study was to investigate the acute metabolic and cardiorespiratory response to long and short HIIE compared to continuous exercise (CE) as well as its regulation and predictability. Six healthy well-trained sport students (5 males, 1 female; age: 25.7 ± 3.1 years; height: 1.80 ± 0.04 m; weight: 76.7 ± 6.4 kg; VO2max: 4.33 ± 0.7 l·min(-1)) performed a maximal incremental exercise test (IET) and subsequently three different exercise sessions matched for mean load (Pmean) and exercise duration (28 min): 1) long HIIE with submaximal peak workloads (Ppeak = power output at 95 % of maximum heart rate), peak workload durations (tpeak) of 4 min, and recovery durations (trec) of 3 min, 2) short HIIE with Ppeak according to the maximum power output (Pmax) from IET, tpeak of 20 s, and individually calculated trec (26.7 ± 13.4 s), and 3) CE with a target workload (Ptarget) equating to Pmean of HIIE. In short HIIE, mean lactate (Lamean) (5.22 ± 1.41 mmol·l(-1)), peak La (7.14 ± 2.48 mmol·l(-1)), and peak heart rate (HRpeak) (181.00 ± 6.66 b·min(-1)) were significantly lower compared to long HIIE (Lamean: 9.83 ± 2.78 mmol·l(-1); Lapeak: 12.37 ± 4.17 mmol·l(-1), HRpeak: 187.67 ± 5.72 b·min(-1)). No significant differences in any parameters were found between short HIIE and CE despite considerably higher peak workloads in short HIIE. The acute metabolic and peak cardiorespiratory demand during "aerobic" short HIIE was significantly lower compared to long HIIE and regulable via Pmean. Consequently, short HIIE allows a consciously aimed triggering of specific and desired or required acute physiological responses. Key pointsHigh-intensity interval exercise (HIIE) with short peak workload durations (tpeak) induce a lower acute metabolic and peak cardiorespiratory response compared to intervals with long tpeak

  3. High-Intensity Running and Plantar-Flexor Fatigability and Plantar-Pressure Distribution in Adolescent Runners

    PubMed Central

    Fourchet, François; Kelly, Luke; Horobeanu, Cosmin; Loepelt, Heiko; Taiar, Redha; Millet, Grégoire

    2015-01-01

    Context: Fatigue-induced alterations in foot mechanics may lead to structural overload and injury. Objectives: To investigate how a high-intensity running exercise to exhaustion modifies ankle plantar-flexor and dorsiflexor strength and fatigability, as well as plantar-pressure distribution in adolescent runners. Design: Controlled laboratory study. Setting: Academy research laboratory. Patients or Other Participants: Eleven male adolescent distance runners (age = 16.9 ± 2.0 years, height = 170.6 ± 10.9 cm, mass = 54.6 ± 8.6 kg) were tested. Intervention(s): All participants performed an exhausting run on a treadmill. An isokinetic plantar-flexor and dorsiflexor maximal-strength test and a fatigue test were performed before and after the exhausting run. Plantar-pressure distribution was assessed at the beginning and end of the exhausting run. Main Outcome Measure(s): We recorded plantar-flexor and dorsiflexor peak torques and calculated the fatigue index. Plantar-pressure measurements were recorded 1 minute after the start of the run and before exhaustion. Plantar variables (ie, mean area, contact time, mean pressure, relative load) were determined for 9 selected regions. Results: Isokinetic peak torques were similar before and after the run in both muscle groups, whereas the fatigue index increased in plantar flexion (28.1%; P = .01) but not in dorsiflexion. For the whole foot, mean pressure decreased from 1 minute to the end (−3.4%; P = .003); however, mean area (9.5%; P = .005) and relative load (7.2%; P = .009) increased under the medial midfoot, and contact time increased under the central forefoot (8.3%; P = .01) and the lesser toes (8.9%; P = .008). Conclusions: Fatigue resistance in the plantar flexors declined after a high-intensity running bout performed by adolescent male distance runners. This phenomenon was associated with increased loading under the medial arch in the fatigued state but without any excessive pronation. PMID:25531143

  4. Finite element analysis of thermoviscoplastic deformations of an impact-loaded prenotched plate

    NASA Astrophysics Data System (ADS)

    Jaber, Naim A.

    Four different thermoviscoplastic relations, namely, the Litonski-Batra, the Johnson-Cook, the Bodner-Partom and the power law are used to model the thermoviscoplastic response of a material. Each one of these relations accounts for strain hardening, strain-rate hardening and thermal softening of the material. The material parameters in these relations are found by solving an initial-boundary-value problem corresponding to simple shearing deformations so that the computed effective stress vs. the effective plastic strain curves match closely with the experimental data of Marchand and Duffy who tested thin-walled HY-100 steel tubes in torsion. These four viscoplastic relations are used to analyze dynamic thermomechanical deformations of a prenotched plate impacted on the notched side by a cylindrical projectile made of the same material as the plate. The impact loading on the contact surface is simulated by prescribing the time history of the normal component of velocity and null tangential tractions. A plane strain state of deformation is assumed to prevail in the plate and its deformations are studied for different values of the impact speed. The in-house developed finite element code employs constant strain triangular elements, one point integration rule, and a lumped mass matrix. The Lagrangian description of motion is used to describe deformations of the plate. The coupled nonlinear partial differential equations are first reduced to coupled nonlinear ordinary differential equations (ODES) by using the Galerkin approximation. The ODEs are integrated by using the stiff solver, LSODE, which adaptively adjusts the time step size and computes the solution within the prescribed accuracy. Results computed with the four constitutive relations are found to be qualitatively similar to each other and the general tends agree with the experimental observations in the sense that at low speed of impact, a brittle failure ensues at a point on the upper surface of the notch

  5. High-Intensity Inspiratory Protocol Increases Heart Rate Variability in Myocardial Revascularization Patients

    PubMed Central

    Caruso, Flavia Cristina Rossi; Simões, Rodrigo Polaquini; Reis, Michel Silva; Guizilini, Solange; Alves, Vera Lucia dos Santos; Papa, Valeria; Arena, Ross; Borghi-Silva, Audrey

    2016-01-01

    Objective: To evaluate heart rate variability during an inspiratory muscle endurance protocol at three different load levels [30%, 60% and 80% of maximal inspiratory pressure], in patients who had previously undergone coronary artery bypass grafting. Methods: Nineteen late postoperative myocardial revascularization patients participating in a cardiovascular rehabilitation program were studied. Maximal inspiratory pressure maneuvers were performed. An inspiratory muscle endurance protocol at 30%, 60% and 80% of maximal inspiratory pressure was applied for four minutes each, in random order. Heart rate and RR intervals were recorded and heart rate variability was analyzed by time (RMSSD-the mean of the standard deviations for all R-R intervals, and RMSM-root-mean square differences of successive R-R intervals) and frequency domains indices (high and low frequency) in normalized units. ANOVA for repeated measurements was used to compare heart rate variability indices and Student t-test was used to compare the maximal inspiratory pressure and maximal expiratory pressure values. Results: Heart rate increased during performance of maximal respiratory pressures maneuvers, and the maximal inspiratory pressure and maximal expiratory pressure mean values were significantly lower than predicted values (P<0.05). RMSSD increased significantly at 80% in relation to rest and 30% of maximal inspiratory pressure and RMSM decreased at 30% and 60% of maximal inspiratory pressure in relation to rest (P<0.05). Additionally, there was significant and progressive decrease in low frequency and increase in high frequency at 30%, 60% and 80% of maximal inspiratory pressure in relation to the resting condition. Conclusion: These results suggest that respiratory muscle training at high intensities can promote greater parasympathetic activity and it may confer important benefits during a rehabilitation program in post-coronary artery bypass grafting. PMID:27074273

  6. Customer Impact Evaluation for the 2009 Southern California Edison Participating Load Pilot

    SciTech Connect

    Gifford, William; Bodmann, Shawn; Young, Paul; Eto, Joseph H.; Laundergan, Jeremy

    2010-05-28

    The 2009 Participating Load Pilot Customer Impact Evaluation provides evidence that short duration demand response events which cycle off air conditioners for less than thirty minutes in a hot, dry environment do not lead to a significant degradation in the comfort level of residents participating in the program. This was investigated using: (1) Analysis of interval temperature data collected from inside residences of select program participants; and (2) Direct and indirect customer feedback from surveys designed and implemented by Southern California Edison at the conclusion of the program season. There were 100 indoor temperature monitors that were acquired by LBNL for this study that transmitted temperature readings at least once per hour with corresponding timestamps during the program season, June-October, 2009. Recorded temperatures were transferred from the onsite telemetry devices to a mesh network, stored, and then delivered to KEMA for analysis. Following an extensive data quality review, temperature increases during each of the thirty demand response test events were calculated for each device. The results are as follows: (1) Even for tests taking place during outside temperatures in excess of 100 degrees Fahrenheit, over 85 percent of the devices measured less than a 0.5 degree Fahrenheit temperature increase indoors during the duration of the event. (2) For the increases that were observed, none was more than 5 degrees and it was extremely rare for increases to be more than 2 degrees. At the end of the testing season SCE and KEMA designed and conducted a survey of the a facilities and public works managers and approximately 100 customers feedback survey to assess the extent the PLP events were noticed or disrupted the comfort level of participants. While only a small sampling of 3 managers and 16 customer surveys were completed, their responses indicate: (1) No customer reported even a moderate level of discomfort from the cycling-off of their air

  7. High-intensity activity profiles of elite soccer players at different performance levels.

    PubMed

    Bradley, Paul S; Di Mascio, Michele; Peart, Dan; Olsen, Peter; Sheldon, Bill

    2010-09-01

    The aims of the study were to (a) determine the high-intensity activity patterns of soccer players at different performance levels and playing positions, (b) investigate temporary and end game fatigue in elite domestic and international soccer matches, and (c) quantify acceleration and maximal running speed profiles of elite soccer players. Elite domestic (n = 100) and international (n = 10) soccer players were analyzed using a multicamera computerized tracking system. No differences were found for high-intensity running distance (2,520 +/- 678 vs. 2,745 +/- 332 m), mean recovery time (67 +/- 15 vs. 71 +/- 26 seconds), or maximal running speed (7.76 +/- 0.31 vs. 7.66 +/- 0.34 mxs-1). The distance covered in high-intensity running irrespective of playing level was 18% lower (p < 0.05) in the last than in the first 15-minute period of the game (391 +/- 117 vs. 478 +/- 141 m). The decline in high-intensity running immediately after the most intense 5-minute period was similar between international (222 +/- 33 vs. 109 +/- 37 m or 51% decline) and elite domestic (243 +/- 81 vs. 114 +/- 51 m or 53% decline) players. Wide midfielders, central midfielders, fullbacks, and attackers covered a greater (p < 0.01) distance in high-intensity running than central defenders (3,243 +/- 625, 2,949 +/- 435, 2,806 +/- 408, 2,618 +/- 745 vs. 2,034 +/- 284 m). Results demonstrate that high-intensity running is reduced during various periods of elite soccer matches, and high-intensity activity profiles and fatigue patterns are similar between international and elite domestic players but vary markedly between playing positions. These data provide valuable information to the fitness coach regarding the high-intensity active profile of elite soccer players that could be used to develop soccer-specific training drills.

  8. High Intensity Laser Therapy (HILT) versus TENS and NSAIDs in low back pain: clinical study

    NASA Astrophysics Data System (ADS)

    Zati, Allesandro; Fortuna, Damiano; Valent, A.; Filippi, M. V.; Bilotta, Teresa W.

    2004-09-01

    Low back pain, caused by lumbar disc herniation, is prevalently treated with a conservative approach. In this study we valued the efficacy of High Intensity Laser Therapy (HILT), compared with accepted therapies such as TENS and NSAIDs. Laser therapy obtained similar results in the short term, but better clinical effect over time than TENS and NSAIDs. In conclusion high intensity laser therapy appears to be a interesting new treatment, worthy of further research.

  9. Online Reading: A Preliminary Study of the Impact of Integrated and Split-Attention Formats on L2 Students' Cognitive Load

    ERIC Educational Resources Information Center

    Al-Shehri, Saleh; Gitsaki, Christina

    2010-01-01

    Cognitive load theory has been utilized by second language acquisition (SLA) researchers to account for differences in learner performance with regards to different learning tasks. Certain instructional designs were shown to have an impact on cognitive load and working memory, and this impact was found to be accentuated in a multimedia environment…

  10. Effect of a high intensity quadriceps fatigue protocol on knee joint mechanics and muscle activation during gait in young adults.

    PubMed

    Murdock, Gillian Hatfield; Hubley-Kozey, Cheryl L

    2012-02-01

    The purpose of this study was to determine the effect of impaired quadriceps function on knee joint biomechanics and neuromuscular function during gait. Surface electromyograms, three-dimensional motion and ground reaction forces were collected during gait before and after 20 healthy adults completed a high intensity quadriceps fatigue protocol. Pattern recognition techniques were utilized to examine changes in amplitude and temporal characteristics of all gait variables. The fatigue protocol resulted in decreased knee extensor torque generation and quadriceps median power frequencies for 18 of 20 participants (p < 0.05). The gait data from these 18 participants was analyzed. The knee external rotation angle increased (p < 0.05), the net external flexion and external rotation moments decreased (p < 0.05), and the net external adduction moment increased (p < 0.05). Post-fatigue changes in periarticular muscle activation patterns were consistent with the biomechanical changes, but were not significantly altered. Even for this low demand task of walking the knee motion and loading characteristics were altered following a high intensity fatigue protocol in a manner that may place the knee joint at greater risk for joint pathology and injury.

  11. The impact of working memory load on task execution and online plan adjustment during multitasking in a virtual environment.

    PubMed

    Law, Anna S; Trawley, Steven L; Brown, Louise A; Stephens, Amanda N; Logie, Robert H

    2013-06-01

    Three experiments investigated the impact of working memory load on online plan adjustment during a test of multitasking in young, nonexpert, adult participants. Multitasking was assessed using the Edinburgh Virtual Errands Test (EVET). Participants were asked to memorize either good or poor plans for performing multiple errands and were assessed both on task completion and on the extent to which they modified their plans during EVET performance. EVET was performed twice, with and without a secondary task loading a component of working memory. In Experiment 1, articulatory suppression was used to load the phonological loop. In Experiment 2, oral random generation was used to load executive functions. In Experiment 3, spatial working memory was loaded with an auditory spatial localization task. EVET performance for both good- and poor-planning groups was disrupted by random generation and sound localization, but not by articulatory suppression. Additionally, people given a poor plan were able to overcome this initial disadvantage by modifying their plans online. It was concluded that, in addition to executive functions, multiple errands performance draws heavily on spatial, but not verbal, working memory resources but can be successfully completed on the basis of modifying plans online, despite a secondary task load.

  12. The Impact of Perceptual Load on the Non-Conscious Processing of Fearful Faces

    PubMed Central

    Wang, Lili; Feng, Chunliang; Mai, Xiaoqin; Jia, Lina; Zhu, Xiangru; Luo, Wenbo; Luo, Yue-jia

    2016-01-01

    Emotional stimuli can be processed without consciousness. In the current study, we used event-related potentials (ERPs) to assess whether perceptual load influences non-conscious processing of fearful facial expressions. Perceptual load was manipulated using a letter search task with the target letter presented at the fixation point, while facial expressions were presented peripherally and masked to prevent conscious awareness. The letter string comprised six letters (X or N) that were identical (low load) or different (high load). Participants were instructed to discriminate the letters at fixation or the facial expression (fearful or neutral) in the periphery. Participants were faster and more accurate at detecting letters in the low load condition than in the high load condition. Fearful faces elicited a sustained positivity from 250 ms to 700 ms post-stimulus over fronto-central areas during the face discrimination and low-load letter discrimination conditions, but this effect was completely eliminated during high-load letter discrimination. Our findings imply that non-conscious processing of fearful faces depends on perceptual load, and attentional resources are necessary for non-conscious processing. PMID:27149273

  13. Lumbar load attenuation for rotorcraft occupants using a design methodology for the seat impact energy-absorbing system

    NASA Astrophysics Data System (ADS)

    Moradi, Rasoul; Beheshti, Hamid K.; Lankarani, Hamid M.

    2012-12-01

    Aircraft occupant crash-safety considerations require a minimum cushion thickness to limit the relative vertical motion of the seat-pelvis during high vertical impact loadings in crash landings or accidents. In military aircraft and helicopter seat design, due to the potential for high vertical accelerations in crash scenarios, the seat system must be provided with an energy absorber to attenuate the acceleration level sustained by the occupants. Because of the limited stroke available for the seat structure, the design of the energy absorber becomes a trade-off problem between minimizing the stroke and maximizing the energy absorption. The available stroke must be used to prevent bottoming out of the seat as well as to absorb maximum impact energy to protect the occupant. In this study, the energy-absorbing system in a rotorcraft seat design is investigated using a mathematical model of the occupant/seat system. Impact theories between interconnected bodies in multibody mechanical systems are utilized to study the impact between the seat pan and the occupant. Experimental responses of the seat system and the occupant are utilized to validate the results from this study for civil and military helicopters according to FAR 23 and 25 and MIL-S-58095 requirements. A model for the load limiter is proposed to minimize the lumbar load for the occupant by minimizing the relative velocity between the seat pan and the occupant's pelvis. The modified energy absorber/load limiter is then implemented for the seat structure so that it absorbs the energy of impact in an effective manner and below the tolerable limit for the occupant in a minimum stroke. Results show that for a designed stroke, the level of occupant lumbar spine injury would be significantly attenuated using this modified energy-absorber system.

  14. Rough-water Impact-load Investigation of a Chine-immersed V-bottom Model Having a Dead-rise Angle of 10 Degrees

    NASA Technical Reports Server (NTRS)

    Markey, Melvin F; Carpini, Thomas D

    1957-01-01

    A hydrodynamic rough-water impact-loads investigation of a fixed-trim V-bottom float with a beam-loading coefficient of 5.78 and dead-rise angle of 10 degrees was made at the Langley impact basin. The size of the waves varied from approximately 10 to 60 feet in length and 1 to 2 feet in height. Time histories were obtained showing the position of the model relative to the wave throughout the impact and typical examples are presented. The load coefficient was found to vary primarily with the slope of the impacting wave.

  15. Solar Heating And Cooling Of Buildings (SHACOB): Requirements definition and impact analysis-2. Volume 3: Customer load management systems

    NASA Astrophysics Data System (ADS)

    Cretcher, C. K.; Rountredd, R. C.

    1980-11-01

    Customer Load Management Systems, using off-peak storage and control at the residences, are analyzed to determine their potential for capacity and energy savings by the electric utility. Areas broadly representative of utilities in the regions around Washington, DC and Albuquerque, NM were of interest. Near optimum tank volumes were determined for both service areas, and charging duration/off-time were identified as having the greatest influence on tank performance. The impacts on utility operations and corresponding utility/customer economics were determined in terms of delta demands used to estimate the utilities' generating capacity differences between the conventional load management, (CLM) direct solar with load management (DSLM), and electric resistive systems. Energy differences are also determined. These capacity and energy deltas are translated into changes in utility costs due to penetration of the CLM or DSLM systems into electric resistive markets in the snapshot years of 1990 and 2000.

  16. The Impact of Clickers Instruction on Cognitive Loads and Listening and Speaking Skills in College English Class

    PubMed Central

    Yu, Zhonggen; Chen, Wentao; Kong, Yong; Sun, Xiao Ling; Zheng, Jing

    2014-01-01

    Clickers might own a bright future in China if properly introduced although they have not been widely acknowledged as an effective tool to facilitate English learning and teaching in Chinese contexts. By randomly selecting participants from undergraduates in a university in China over four academic years, this study aims to identify the impact of clickers on college English listening and speaking skills, and differences in cognitive loads between clickers and traditional multimedia assisted instruction modes. It was concluded that in China's college English class, compared with multimedia assisted instruction, (1) clickers could improve college English listening skills; (2) clickers could improve college English speaking skills; and (3) clickers could reduce undergraduates' cognitive loads in College English Class. Reasons for the results and defects in this study were also explored and discussed, based on learning, teaching and cognitive load theories. Some Suggestions for future research were also raised. PMID:25192424

  17. Impacts of Intra-Annual Climate Variability and Change on Phosphorus Loads in the Great Lakes Basin

    NASA Astrophysics Data System (ADS)

    Mayer, A. S.; Griffis, V. W.; Labeau, M. B.

    2014-12-01

    Riverine phosphorous loads vary as a function of source strength, discharge, and landscape characteristics. In this work, we consider how seasonal variability in river discharges control phosphorous loads and how climate change will impact discharges and corresponding phosphorus loads. We focus on 14 watersheds in the U.S. Great Lakes Basin, given the potential for riverine phosphorus exports to contribute to ecosystem impacts in the Great Lakes. The 14 watersheds vary in terms of land use and hydrologic regimes. Seasonal load-discharge relationships were estimated using a linearized form of a power law functions for each watershed, based on historical data from 1961-1999. Best-fit seasonal periods ranged from monthly to three months. Estimates of the leading coefficient ranged over more than 11 orders of magnitude, over the seasons and study watersheds. Estimates of the power ranged slightly less than unity to greater than two, reflecting wide differences in the linearity of the load-discharge relationship. For the future climate periods (2046-2065 and 2081-2100), a suite of 9 bias corrected projections were made using the CMIP3 database, generating precipitation and temperature inputs to the Large Basin Runoff Model (LBRM). The LBRM is a calibrated, lumped parameter model that predicts discharges for large watersheds in the Great Lakes. In this case, LBRM discharge predictions were used as inputs to the phosphorus load discharge relationships. In general, median flows are predicted to change little, but low flows (characterized by Q5) are predicted to decrease on average by 12% and 19%, and high flows (characterized by Q95) are predicted to increase on average by 9% and 12% over the near- and far-future periods, respectively. For most watersheds, median phosphorous loads change linearly with respect to changes in median discharges. However, for a few watersheds, median phosphorous loads are predicted to increase proportionally greater than increases in discharge

  18. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.

    PubMed

    Bucs, Sz S; Valladares Linares, R; van Loosdrecht, M C M; Kruithof, J C; Vrouwenvelder, J S

    2014-12-15

    The influence of organic nutrient load on biomass accumulation (biofouling) and pressure drop development in membrane filtration systems was investigated. Nutrient load is the product of nutrient concentration and linear flow velocity. Biofouling - excessive growth of microbial biomass in membrane systems - hampers membrane performance. The influence of biodegradable organic nutrient load on biofouling was investigated at varying (i) crossflow velocity, (ii) nutrient concentration, (iii) shear, and (iv) feed spacer thickness. Experimental studies were performed with membrane fouling simulators (MFSs) containing a reverse osmosis (RO) membrane and a 31 mil thick feed spacer, commonly applied in practice in RO and nanofiltration (NF) spiral-wound membrane modules. Numerical modeling studies were done with identical feed spacer geometry differing in thickness (28, 31 and 34 mil). Additionally, experiments were done applying a forward osmosis (FO) membrane with varying spacer thickness (28, 31 and 34 mil), addressing the permeate flux decline and biofilm development. Assessed were the development of feed channel pressure drop (MFS studies), permeate flux (FO studies) and accumulated biomass amount measured by adenosine triphosphate (ATP) and total organic carbon (TOC). Our studies showed that the organic nutrient load determined the accumulated amount of biomass. The same amount of accumulated biomass was found at constant nutrient load irrespective of linear flow velocity, shear, and/or feed spacer thickness. The impact of the same amount of accumulated biomass on feed channel pressure drop and permeate flux was influenced by membrane process design and operational conditions. Reducing the nutrient load by pretreatment slowed-down the biofilm formation. The impact of accumulated biomass on membrane performance was reduced by applying a lower crossflow velocity and/or a thicker and/or a modified geometry feed spacer. The results indicate that cleanings can be delayed

  19. Charcoal Reflectance Reveals Early Holocene Boreal Deciduous Forests Burned at High Intensities

    PubMed Central

    Hudspith, Victoria A.; Belcher, Claire M.; Kelly, Ryan; Hu, Feng Sheng

    2015-01-01

    Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ∼10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks. PMID:25853712

  20. Timing of high-intensity pulses for myocardial cavitation-enabled therapy

    PubMed Central

    2014-01-01

    Background High-intensity ultrasound pulses intermittently triggered from an ECG signal can interact with circulating contrast agent microbubbles to produce myocardial cavitation microlesions of potential therapeutic value. In this study, the timing of therapy pulses relative to the ECG R wave was investigated to identify the optimal time point for tissue reduction therapy with regard to both the physiological cardiac response and microlesion production. Methods Rats were anesthetized, prepared for ultrasound, placed in a heated water bath, and treated with 1.5 MHz focused ultrasound pulses targeted to the left ventricular myocardium with an 8 MHz imaging transducer. Initially, the rats were treated for 1 min at each of six different time points in the ECG while monitoring blood pressure responses to assess cardiac functional effects. Next, groups of rats were treated at three different time points: end diastole, end systole, and mid-diastole to assess the impact of timing on microlesion creation. These rats were pretreated with Evans blue injections and were allowed to recover for 1 day until hearts were harvested for scoring of injured cardiomyocytes. Results The initial results showed a wide range of cardiac premature complexes in the ECG, which corresponded with blood pressure pulses for ultrasound pulses triggered during diastole. However, the microlesion experiment did not reveal any statistically significant variations in cardiomyocyte injury. Conclusion The end of systole (R + RR/3) was identified as an optimal trigger time point which produced identifiable ECG complexes and substantial cardiomyocyte injury but minimal cardiac functional disruption during treatment. PMID:25279221

  1. Recovery facilitation with Montmorency cherries following high-intensity, metabolically challenging exercise.

    PubMed

    Bell, Phillip G; Walshe, Ian H; Davison, Gareth W; Stevenson, Emma J; Howatson, Glyn

    2015-04-01

    The impact of Montmorency tart cherry (Prunus cerasus L.) concentrate (MC) on physiological indices and functional performance was examined following a bout of high-intensity stochastic cycling. Trained cyclists (n = 16) were equally divided into 2 groups (MC or isoenergetic placebo (PLA)) and consumed 30 mL of supplement, twice per day for 8 consecutive days. On the fifth day of supplementation, participants completed a 109-min cycling trial designed to replicate road race demands. Functional performance (maximum voluntary isometric contraction (MVIC), cycling efficiency, 6-s peak cycling power) and delayed onset muscle soreness were assessed at baseline, 24, 48, and 72 h post-trial. Blood samples collected at baseline, immediately pre- and post-trial, and at 1, 3, 5, 24, 48, and 72 h post-trial were analysed for indices of inflammation (interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor alpha, high-sensitivity C-reactive protein (hsCRP)), oxidative stress (lipid hydroperoxides), and muscle damage (creatine kinase). MVIC (P < 0.05) did not decline in the MC group (vs. PLA) across the 72-h post-trial period and economy (P < 0.05) was improved in the MC group at 24 h. IL-6 (P < 0.001) and hsCRP (P < 0.05) responses to the trial were attenuated with MC (vs. PLA). No other blood markers were significantly different between MC and PLA groups. The results of the study suggest that Montmorency cherry concentrate can be an efficacious functional food for accelerating recovery and reducing exercise-induced inflammation following strenuous cycling exercise. PMID:25794236

  2. Recovery facilitation with Montmorency cherries following high-intensity, metabolically challenging exercise.

    PubMed

    Bell, Phillip G; Walshe, Ian H; Davison, Gareth W; Stevenson, Emma J; Howatson, Glyn

    2015-04-01

    The impact of Montmorency tart cherry (Prunus cerasus L.) concentrate (MC) on physiological indices and functional performance was examined following a bout of high-intensity stochastic cycling. Trained cyclists (n = 16) were equally divided into 2 groups (MC or isoenergetic placebo (PLA)) and consumed 30 mL of supplement, twice per day for 8 consecutive days. On the fifth day of supplementation, participants completed a 109-min cycling trial designed to replicate road race demands. Functional performance (maximum voluntary isometric contraction (MVIC), cycling efficiency, 6-s peak cycling power) and delayed onset muscle soreness were assessed at baseline, 24, 48, and 72 h post-trial. Blood samples collected at baseline, immediately pre- and post-trial, and at 1, 3, 5, 24, 48, and 72 h post-trial were analysed for indices of inflammation (interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor alpha, high-sensitivity C-reactive protein (hsCRP)), oxidative stress (lipid hydroperoxides), and muscle damage (creatine kinase). MVIC (P < 0.05) did not decline in the MC group (vs. PLA) across the 72-h post-trial period and economy (P < 0.05) was improved in the MC group at 24 h. IL-6 (P < 0.001) and hsCRP (P < 0.05) responses to the trial were attenuated with MC (vs. PLA). No other blood markers were significantly different between MC and PLA groups. The results of the study suggest that Montmorency cherry concentrate can be an efficacious functional food for accelerating recovery and reducing exercise-induced inflammation following strenuous cycling exercise.

  3. Personalised Prescription of Scalable High Intensity Interval Training to Inactive Female Adults of Different Ages

    PubMed Central

    Mair, Jacqueline L.

    2016-01-01

    Stepping is a convenient form of scalable high-intensity interval training (HIIT) that may lead to health benefits. However, the accurate personalised prescription of stepping is hampered by a lack of evidence on optimal stepping cadences and step heights for various populations. This study examined the acute physiological responses to stepping exercise at various heights and cadences in young (n = 14) and middle-aged (n = 14) females in order to develop an equation that facilitates prescription of stepping at targeted intensities. Participants completed a step test protocol consisting of randomised three-minute bouts at different step cadences (80, 90, 100, 110 steps·min-1) and step heights (17, 25, 30, 34 cm). Aerobic demand and heart rate values were measured throughout. Resting metabolic rate was measured in order to develop female specific metabolic equivalents (METs) for stepping. Results revealed significant differences between age groups for METs and heart rate reserve, and within-group differences for METs, heart rate, and metabolic cost, at different step heights and cadences. At a given step height and cadence, middle-aged females were required to work at an intensity on average 1.9 ± 0.26 METs greater than the younger females. A prescriptive equation was developed to assess energy cost in METs using multilevel regression analysis with factors of step height, step cadence and age. Considering recent evidence supporting accumulated bouts of HIIT exercise for health benefits, this equation, which allows HIIT to be personally prescribed to inactive and sedentary women, has potential impact as a public health exercise prescription tool. PMID:26848956

  4. Charcoal reflectance reveals early holocene boreal deciduous forests burned at high intensities.

    PubMed

    Hudspith, Victoria A; Belcher, Claire M; Kelly, Ryan; Hu, Feng Sheng

    2015-01-01

    Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ~10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks. PMID:25853712

  5. Old benefit as much as young patients with stroke from high-intensity neurorehabilitation: cohort analysis

    PubMed Central

    Knecht, Stefan; Roßmüller, Jens; Unrath, Michael; Stephan, Klaus-Martin; Berger, Klaus

    2016-01-01

    Background and objective In current clinical practice, old patients with stroke are less frequently admitted to neurorehabilitation units following acute care than younger patients based on an assumption that old age negatively impacts the benefit obtained from high-intensity neurorehabilitation. Our objective was to test this assumption empirically in a large sample of patients with stroke. Methods Functional recovery during 4 weeks of inpatient neurorehabilitation was assessed with the Barthel Index (BI) in 422 middle-aged (<65 years), 1399 old (65–80 years) and 473 very old (>80 years) patients with stroke. Overall functional recovery, recovery patterns and the relationship between therapy intensity and recovery were statistically compared between the three age groups. Results Overall functional recovery was statistically equivalent in middle-aged, old and very old patients (average improvement in BI total score: middle-aged: 15 points; old: 15 points; very old: 14 points). A novel item-wise logistic regression analysis (see Pedersen, Severinsen & Nielsen, 2014, Neurorehabil Neural Repair) revealed that this was true for 9 of the 10 everyday functions assessed by the BI. Furthermore, functional recovery was predicted by the amount of therapy (R=0.14; p=0.0001), and age did not moderate this relationship between therapy intensity and recovery (p=0.70). Conclusions Old and even very old patients with stroke benefit from specialised inpatient neurorehabilitation and high amounts of therapy in the same degree as younger patients. Contrary to current clinical practice, old age should not be a criterion against admission to a neurorehabilitation unit following acute stroke treatment. PMID:26069298

  6. Charcoal reflectance reveals early holocene boreal deciduous forests burned at high intensities.

    PubMed

    Hudspith, Victoria A; Belcher, Claire M; Kelly, Ryan; Hu, Feng Sheng

    2015-01-01

    Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ~10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks.

  7. Personalised Prescription of Scalable High Intensity Interval Training to Inactive Female Adults of Different Ages.

    PubMed

    Mair, Jacqueline L; Nevill, Alan M; De Vito, Giuseppe; Boreham, Colin A

    2016-01-01

    Stepping is a convenient form of scalable high-intensity interval training (HIIT) that may lead to health benefits. However, the accurate personalised prescription of stepping is hampered by a lack of evidence on optimal stepping cadences and step heights for various populations. This study examined the acute physiological responses to stepping exercise at various heights and cadences in young (n = 14) and middle-aged (n = 14) females in order to develop an equation that facilitates prescription of stepping at targeted intensities. Participants completed a step test protocol consisting of randomised three-minute bouts at different step cadences (80, 90, 100, 110 steps·min-1) and step heights (17, 25, 30, 34 cm). Aerobic demand and heart rate values were measured throughout. Resting metabolic rate was measured in order to develop female specific metabolic equivalents (METs) for stepping. Results revealed significant differences between age groups for METs and heart rate reserve, and within-group differences for METs, heart rate, and metabolic cost, at different step heights and cadences. At a given step height and cadence, middle-aged females were required to work at an intensity on average 1.9 ± 0.26 METs greater than the younger females. A prescriptive equation was developed to assess energy cost in METs using multilevel regression analysis with factors of step height, step cadence and age. Considering recent evidence supporting accumulated bouts of HIIT exercise for health benefits, this equation, which allows HIIT to be personally prescribed to inactive and sedentary women, has potential impact as a public health exercise prescription tool. PMID:26848956

  8. Effect of high-intensity ultrasonic treatment on microstructure, hardness and wear behaviour of the hypereutectic Mg-5Si alloy

    NASA Astrophysics Data System (ADS)

    Moussa, M. E.; Waly, M. A.; El-Sheikh, A. M.

    2016-07-01

    The effect of high-intensity ultrasonic treatment (HIUST) on microstructure, hardness and wear behavior in Mg-5wt.%Si hypereutectic alloy has been investigated. The results showed clearly that without HIUST, most of primary Mg2Si appeared as coarse dendritic morphology with average size of about 200 µm. With HIUST, the average size of primary Mg2Si decreased significantly to about 33 µm and their morphologies changed to polyhedral shape. The modification mechanism is mainly attributed conjugation of two mechanisms: cavitation-enhanced heterogeneous nucleation and cavitation-induced dendrite fragmentation. The alloy treated with HIUST has higher hardness and wear resistance than that untreated with HIUST. The wear mechanism of investigated alloys at low applied load (10 N) and low sliding speed (0.3 m/s) is a mild abrasive oxidative wear with little adhesion. However, the wear mechanism due to the applied high loads (30, 50 N) at low sliding speed (0.3 m/s) and/or to the applied high sliding speeds (0.6, 0.9 m/s) under low load (10 N), could be described as delamination mechanism. The microstructures of the specimens were analyzed by optical microscope (OM) (model OPTIKA M-790, Italy). Energy dispersion spectrum (EDS) affiliated to field emission scanning electron microscopy (FESEM) (model Quanta FEG, The Netherlands) were performed to reveal the concentration of alloying elements in selected areas of the microstructure.

  9. Impact of Working Memory Load on Cognitive Control in Trait Anxiety: An ERP Study

    PubMed Central

    Qi, Senqing; Zeng, Qinghong; Luo, Yangmei; Duan, Haijun; Ding, Cody; Hu, Weiping; Li, Hong

    2014-01-01

    Whether trait anxiety is associated with a general impairment of cognitive control is a matter of debate. This study investigated whether and how experimentally manipulated working memory (WM) load modulates the relation between trait anxiety and cognitive control. This question was investigated using a dual-task design in combination with event-related potentials. Participants were required to remember either one (low WM load) or six letters (high WM load) while performing a flanker task. Our results showed that a high WM load disrupted participants' ability to overcome distractor interference and this effect was exacerbated for the high trait-anxious (HTA) group. This exacerbation was reflected by larger interference effects (i.e., incongruent minus congruent) on reaction times (RTs) and N2 amplitudes for the HTA group than for the low trait-anxious group under high WM load. The two groups, however, did not differ in their ability to inhibit task-irrelevant distractors under low WM load, as indicated by both RTs and N2 amplitudes. These findings underscore the significance of WM-related cognitive demand in contributing to the presence (or absence) of a general cognitive control deficit in trait anxiety. Furthermore, our findings show that when limited WM resources are depleted by high WM load, HTA individuals exhibit less efficient recruitments of cognitive control required for the inhibition of distractors, therefore resulting in a greater degree of response conflict. PMID:25369121

  10. Numerical Simulation of Output Response of PVDF Sensor Attached on a Cantilever Beam Subjected to Impact Loading.

    PubMed

    Dung, Cao Vu; Sasaki, Eiichi

    2016-04-27

    Polyvinylidene Flouride (PVDF) is a film-type polymer that has been used as sensors and actuators in various applications due to its mechanical toughness, flexibility, and low density. A PVDF sensor typically covers an area of the host structure over which mechanical stress/strain is averaged and converted to electrical energy. This study investigates the fundamental "stress-averaging" mechanism for dynamic strain sensing in the in-plane mode. A numerical simulation was conducted to simulate the "stress-averaging" mechanism of a PVDF sensor attached on a cantilever beam subjected to an impact loading, taking into account the contribution of piezoelectricity, the cantilever beam's modal properties, and electronic signal conditioning. Impact tests and FEM analysis were also carried out to verify the numerical simulation results. The results of impact tests indicate the excellent capability of the attached PVDF sensor in capturing the fundamental natural frequencies of the cantilever beam. There is a good agreement between the PVDF sensor's output voltage predicted by the numerical simulation and that obtained in the impact tests. Parametric studies were conducted to investigate the effects of sensor size and sensor position and it is shown that a larger sensor tends to generate higher output voltage than a smaller one at the same location. However, the effect of sensor location seems to be more significant for larger sensors due to the cancelling problem. Overall, PVDF sensors exhibit excellent sensing capability for in-plane dynamic strain induced by impact loading.

  11. Numerical Simulation of Output Response of PVDF Sensor Attached on a Cantilever Beam Subjected to Impact Loading.

    PubMed

    Dung, Cao Vu; Sasaki, Eiichi

    2016-01-01

    Polyvinylidene Flouride (PVDF) is a film-type polymer that has been used as sensors and actuators in various applications due to its mechanical toughness, flexibility, and low density. A PVDF sensor typically covers an area of the host structure over which mechanical stress/strain is averaged and converted to electrical energy. This study investigates the fundamental "stress-averaging" mechanism for dynamic strain sensing in the in-plane mode. A numerical simulation was conducted to simulate the "stress-averaging" mechanism of a PVDF sensor attached on a cantilever beam subjected to an impact loading, taking into account the contribution of piezoelectricity, the cantilever beam's modal properties, and electronic signal conditioning. Impact tests and FEM analysis were also carried out to verify the numerical simulation results. The results of impact tests indicate the excellent capability of the attached PVDF sensor in capturing the fundamental natural frequencies of the cantilever beam. There is a good agreement between the PVDF sensor's output voltage predicted by the numerical simulation and that obtained in the impact tests. Parametric studies were conducted to investigate the effects of sensor size and sensor position and it is shown that a larger sensor tends to generate higher output voltage than a smaller one at the same location. However, the effect of sensor location seems to be more significant for larger sensors due to the cancelling problem. Overall, PVDF sensors exhibit excellent sensing capability for in-plane dynamic strain induced by impact loading. PMID:27128919

  12. Numerical Simulation of Output Response of PVDF Sensor Attached on a Cantilever Beam Subjected to Impact Loading

    PubMed Central

    Dung, Cao Vu; Sasaki, Eiichi

    2016-01-01

    Polyvinylidene Flouride (PVDF) is a film-type polymer that has been used as sensors and actuators in various applications due to its mechanical toughness, flexibility, and low density. A PVDF sensor typically covers an area of the host structure over which mechanical stress/strain is averaged and converted to electrical energy. This study investigates the fundamental “stress-averaging” mechanism for dynamic strain sensing in the in-plane mode. A numerical simulation was conducted to simulate the “stress-averaging” mechanism of a PVDF sensor attached on a cantilever beam subjected to an impact loading, taking into account the contribution of piezoelectricity, the cantilever beam’s modal properties, and electronic signal conditioning. Impact tests and FEM analysis were also carried out to verify the numerical simulation results. The results of impact tests indicate the excellent capability of the attached PVDF sensor in capturing the fundamental natural frequencies of the cantilever beam. There is a good agreement between the PVDF sensor’s output voltage predicted by the numerical simulation and that obtained in the impact tests. Parametric studies were conducted to investigate the effects of sensor size and sensor position and it is shown that a larger sensor tends to generate higher output voltage than a smaller one at the same location. However, the effect of sensor location seems to be more significant for larger sensors due to the cancelling problem. Overall, PVDF sensors exhibit excellent sensing capability for in-plane dynamic strain induced by impact loading. PMID:27128919

  13. Impact on the deuterium retention of simultaneous exposure of tungsten to a steady state plasma and transient heat cycling loads

    NASA Astrophysics Data System (ADS)

    Huber, A.; Sergienko, G.; Wirtz, M.; Steudel, I.; Arakcheev, A.; Brezinsek, S.; Burdakov, A.; Dittmar, T.; Esser, H. G.; Kreter, A.; Linke, J.; Linsmeier, Ch; Mertens, Ph; Möller, S.; Philipps, V.; Pintsuk, G.; Reinhart, M.; Schweer, B.; Shoshin, A.; Terra, A.; Unterberg, B.

    2016-02-01

    The impact on the deuterium retention of simultaneous exposure of tungsten to a steady-state plasma and transient cyclic heat loads has been studied in the linear PSI-2 facility with the main objective of qualifying tungsten (W) as plasma-facing material. The transient heat loads were applied by a high-energy laser, a Nd:YAG laser (λ = 1064 nm) with an energy per pulse of up to 32 J and a duration of 1 ms. A pronounced increase in the D retention by a factor of 13 has been observed during the simultaneous transient heat loads and plasma exposure. These data indicate that the hydrogen clustering is enhanced by the thermal shock exposures, as seen on the increased blister size due to mobilization and thermal production of defects during transients. In addition, the significant increase of the D retention during the simultaneous loads could be explained by an increased diffusion of D atoms into the W material due to strong temperature gradients during the laser pulse exposure and to an increased mobility of D atoms along the shock-induced cracks. Only 24% of the retained deuterium is located inside the near-surface layer (d<4 μm). Enhanced blister formation has been observed under combined loading conditions at power densities close to the threshold for damaging. Blisters are not mainly responsible for the pronounced increase of the D retention.

  14. Lateral erosion in an experimental bedrock channel: The influence of bed roughness on erosion by bed load impacts

    NASA Astrophysics Data System (ADS)

    Fuller, Theodore K.; Gran, Karen B.; Sklar, Leonard S.; Paola, Chris

    2016-05-01

    Physical experiments were conducted to evaluate the efficacy of bed load particle impacts as a mechanism of lateral bedrock erosion. In addition, we explored how changes in channel bed roughness, as would occur during development of an alluvial cover, influence rates of lateral erosion. Experimental channels were constructed to have erodible walls and a nonerodible bed using different mixtures of sand and cement. Bed roughness was varied along the length of the channel by embedding sediment particles of different size in the channel bed mixture. Lateral wall erosion from clear-water flow was negligible. Lateral erosion during periods in which bed load was supplied to the channel removed as much as 3% of the initial wetted cross-sectional area. The vertical distribution of erosion was limited to the base of the channel wall, producing channels with undercut banks. The addition of roughness elements to an otherwise smooth bed caused rates of lateral erosion to increase by as much as a factor of 7 during periods of bed load supply. However, a minimum roughness element diameter of approximately half the median bed load particle diameter was required before a substantial increase in erosion was observed. Beyond this minimum threshold size, further increases in the relative size of roughness elements did not substantially change the rate of wall erosion despite changes in total boundary shear stress. The deflection of saltating bed load particles into the channel wall by fixed roughness elements is hypothesized to be the driver of the observed increase in lateral erosion rates.

  15. Exploiting sedimentation datasets to model the impact of sediment loading on sea level at the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    Pico, T.; Mitrovica, J. X.; Ferrier, K.

    2015-12-01

    In order to accurately depict glacial isostatic adjustment (GIA) of the solid Earth and consequent sea level, it is necessary to incorporate the loading and unloading of the crust occurring over glacial cycles in the form of sediment erosion and deposition. The inclusion of sediment loading in GIA models becomes even more imperative when studying sea level at densely populated centers along coastlines, many of which are located at large river deltas. Sediment deposition at deltas influences sea level by introducing a load, which in turn alters crustal elevation and perturbs the gravitational field. These sediment loads vary in space and time over glacial cycles, as deltas prograde during sea-level highstands and shelves are exposed during lowstands. The Yellow River serves as an archetypical case study of fluvial response to glacial cycles. Draining the highly erodible, glacially derived Loess Plateau, the Yellow River's sediment flux is the 2nd highest in the world. This site provides an ideal location for modeling sediment loads in order to investigate how glacial cycles control sedimentation history and regional sea level. This study employs datasets constraining deposition and erosion that are physically recorded in dated sediment cores, seismic sections, and river flux measurements. These sedimentary datasets elucidate how loading varies spatially and with time in the basin, but also, importantly, data of fossil-bearing cores act to constrain sea level history during this period. Thus, we utilize physical sedimentary data as both an input to our model and a check on the predicted local sea level. Our gravitationally self-consistent global model is then capable of exploring and constraining how evolving sediment loads and migrating depositional centers impact local predicted crustal deformation, and therefore sea-level, over glacial timescales.

  16. Dynamics of Fragmentation: Developing a non-Equilibrium Mechanism for Impact-loading tests on Rock Materials

    NASA Astrophysics Data System (ADS)

    Ghaffari, H.; Griffith, W. A.; Barber, T. J.

    2015-12-01

    Formation of fragments as the result of dynamic processes associated with impulsive loads has been the subject of numerous studies ranging from shaped-charge jet break up and rock blasting to bolide impacts, and, more recently, earthquake rupture. The dynamic strength of solids is varies as a strong function of loading rate, and, in completely failed solids, the characteristic size of fragments is related to the loading dynamics. In this study, we present some novel results using fragmentation of an "order" parameter in an isotropic body, while we use a non-equilibrium thermodynamic formulation to infer characteristics of the fragments. The order parameter is related to general rigidity of the system and is investigated in 3D space including amplitude and phase modes. To this end, we use the idea of the formation of topological defects in the course of rapid pressure changes and show that a power-law scaling describes transient strength versus inverse of the stress-ramp time. Furthermore, we illustrate that the coefficient of this power-law is deeply connected to relaxation (healing) time of the body. In addition, we show that dynamic polarization patterns of the dynamic cracks are analogous to the transition from ferrimagnets to paramagnets, providing insight to the dynamics of microscopic-scale catastrophic failure. This connection helps us to use the Kibble-Zurek mechanism (KZM) to infer the size of fragments from loading rate when considering a linear loading ramp. The idea behind the KZM is to compare the relaxation time (or healing time of the system in equilibrium) with the timescale of change of the control parameter (ɛ). In addition, we discuss a case where inherent defects are present prior to the impulse load and discuss the effect of impurities on the scaling coefficients. To support our approach, we use the results of fast-loading experiments on Westerly Granite supported by recording multiple acoustic emissions.

  17. Perihelion Power Constraint and Wheel-Off-Loading Impact on BepiColombo's Relativity Experiment

    NASA Astrophysics Data System (ADS)

    Schuster, Anja Katharina; Jehn, Rüdiger

    2016-04-01

    In this paper the consequences of the Perihelion Power Constraint (PPC) are presented along with the impact of the Momentum Wheel-Off-loading (WOL) events on the estimation precision of the post-Newtonian parameters (PNP). This analysis will provide an estimate of the outcome of the relativity experiment in the framework of the joint mission between ESA and JAXA, named BepiColombo. The Mercury Planetary Orbiter (MPO), one of the two scientific elements of the composite spacecraft, aims to verify Einstein's theory of General Relativity plus alternative theories of gravitation to an unprecedented degree of accuracy [1]. The PPC describes the switch-off of the Ka-transponder when Mercury is ±35° around perihelion [2]. This causes a decrease in the quality of radiometric measurements. The implemented PPC distinguishes between different geometries such as inferior and superior constellations. Moreover, it differentiates between the case in which Mercury is close to superior solar conjunction (SSC) while being around perihelion and the one of only being in SSC. Our treatment has the essential effect that the standard deviation of range and doppler measurements is increased in the perihelion region by up to 1.83 ṡ 10‑5 km/s (doppler noise). There is no clear trend to be seen in the resulting PNP uncertainties. For instance, the value of the estimation bias of the PNP γ of 8.232 ṡ 10‑6 is almost by factor two larger than in the case when the PPC is not activated (4.243 ṡ 10‑6). But applying the PPC to the back-up trajectory this trend is not confirmed, since the reverse is true for the γ uncertainty σ(γPPC) < σ(γref). However, the order of magnitude is comparable to the results obtained by Schettino [3], that is 1.04 ṡ 10‑6. The influence of the WOL frequency of about 12 hours compared to about 24 hours is investigated. Wheel off-loadings are implemented in the software by increasing the diagonal values of the covariance matrix that correspond to

  18. Perihelion Power Constraint and Wheel-Off-Loading Impact on BepiColombo's Relativity Experiment

    NASA Astrophysics Data System (ADS)

    Schuster, Anja Katharina; Jehn, Rüdiger

    2016-04-01

    In this paper the consequences of the Perihelion Power Constraint (PPC) are presented along with the impact of the Momentum Wheel-Off-loading (WOL) events on the estimation precision of the post-Newtonian parameters (PNP). This analysis will provide an estimate of the outcome of the relativity experiment in the framework of the joint mission between ESA and JAXA, named BepiColombo. The Mercury Planetary Orbiter (MPO), one of the two scientific elements of the composite spacecraft, aims to verify Einstein's theory of General Relativity plus alternative theories of gravitation to an unprecedented degree of accuracy [1]. The PPC describes the switch-off of the Ka-transponder when Mercury is ±35° around perihelion [2]. This causes a decrease in the quality of radiometric measurements. The implemented PPC distinguishes between different geometries such as inferior and superior constellations. Moreover, it differentiates between the case in which Mercury is close to superior solar conjunction (SSC) while being around perihelion and the one of only being in SSC. Our treatment has the essential effect that the standard deviation of range and doppler measurements is increased in the perihelion region by up to 1.83 ṡ 10-5 km/s (doppler noise). There is no clear trend to be seen in the resulting PNP uncertainties. For instance, the value of the estimation bias of the PNP γ of 8.232 ṡ 10-6 is almost by factor two larger than in the case when the PPC is not activated (4.243 ṡ 10-6). But applying the PPC to the back-up trajectory this trend is not confirmed, since the reverse is true for the γ uncertainty σ(γPPC) < σ(γref). However, the order of magnitude is comparable to the results obtained by Schettino [3], that is 1.04 ṡ 10-6. The influence of the WOL frequency of about 12 hours compared to about 24 hours is investigated. Wheel off-loadings are implemented in the software by increasing the diagonal values of the covariance matrix that correspond to the

  19. Impact of Load Balancing on Unstructured Adaptive Grid Computations for Distributed-Memory Multiprocessors

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Simon, Horst D.; Sohn, Andrew

    1996-01-01

    The computational requirements for an adaptive solution of unsteady problems change as the simulation progresses. This causes workload imbalance among processors on a parallel machine which, in turn, requires significant data movement at runtime. We present a new dynamic load-balancing framework, called JOVE, that balances the workload across all processors with a global view. Whenever the computational mesh is adapted, JOVE is activated to eliminate the load imbalance. JOVE has been implemented on an IBM SP2 distributed-memory machine in MPI for portability. Experimental results for two model meshes demonstrate that mesh adaption with load balancing gives more than a sixfold improvement over one without load balancing. We also show that JOVE gives a 24-fold speedup on 64 processors compared to sequential execution.

  20. The impact of surface loading and dosing scheme on the skin uptake of fragrances.

    PubMed

    Berthaud, Fabienne; Smith, Benjamin; Boncheva, Mila

    2013-12-01

    This study compared the skin uptake of γ-undecalactone, decanol, and dodecyl acetate in an in vitro, un-occluded penetration assay in which they were applied to porcine skin at different finite loadings and application schemes. The pattern of fractional uptake differed between the chemicals and did not show the often assumed inverse correlation with surface loading. Furthermore, the mass uptake of identical cumulative amounts of the chemicals was not always additive. These results show that the uptake of fragrances in absence of occlusion and at finite loadings is chemical-specific and depends on the surface loading, the application scheme, and most probably, on the effects of the chemicals on the skin barrier efficiency. The observed lack of additivity might explain some of the differences in the responses observed in patch and repeated open application tests, and the boosting of the allergic state in sensitized individuals by sub-clinical exposures.

  1. Yaw-Misalignment and its Impact on Wind Turbine Loads and Wind Farm Power Output

    NASA Astrophysics Data System (ADS)

    van Dijk, Mike T.; van Wingerden, Jan-Willem; Ashuri, Turaj; Li, Yaoyu; Rotea, Mario A.

    2016-09-01

    To make wind energy cost competitive with traditional resources, wind turbines are commonly placed in groups. Aerodynamic interaction between the turbines causes sub-optimal energy production. A control strategy to mitigate these losses is by redirecting the wake by yaw misalignment. This paper aims to assess the influence of load variations of the rotor due to partial wake overlap and presents a combined optimization of the power and loads using wake redirection. For this purpose, we design a computational framework which computes the wind farm power production and the wind turbine rotor loads based on the yaw settings. The simulation results show that partial wake overlap can significantly increase asymmetric loading of the rotor disk and that yaw misalignment is beneficial in situations where the wake can be sufficiently directed away from the downstream turbine.

  2. Changes of direction during high-intensity intermittent runs: neuromuscular and metabolic responses

    PubMed Central

    2014-01-01

    Background The ability to sustain brief high-intensity intermittent efforts (HIE) is meant to be a major attribute for performance in team sports. Adding changes of direction to HIE is believed to increase the specificity of training drills with respect to game demands. The aim of this study was to investigate the influence of 90°-changes of direction (COD) during HIE on metabolic and neuromuscular responses. Methods Eleven male, team sport players (30.5 ± 3.6 y) performed randomly HIE without (straight-line, 2×[10× 22 m]) or with (2×[10× ~16.5 m]) two 90°-COD. To account for the time lost while changing direction, the distance for COD runs during HIE was individually adjusted using the ratio between straight-line and COD sprints. Players also performed 2 countermovement (CMJ) and 2 drop (DJ) jumps, during and post HIE. Pulmonary oxygen uptake (VO2), quadriceps and hamstring oxygenation, blood lactate concentration (Δ[La]b), electromyography amplitude (RMS) of eight lower limb muscles and rating of perceived exertion (RPE) were measured for each condition. Results During HIE, CODs had no substantial effects on changes in VO2, oxygenation, CMJ and DJ performance and RPE (all differences in the changes rated as unclear). Conversely, compared with straight-line runs, COD-runs were associated with a possibly higher Δ[La]b (+9.7 ± 10.4%, with chances for greater/similar/lower values of 57/42/0%) and either a lower (i.e., −11.9 ± 14.6%, 2/13/85 for semitendinosus and −8.5 ± 9.3%, 1/21/78 for lateral gastrocnemius) or equivalent decrease in electromyography amplitude. Conclusion Adding two 90°-CODs on adjusted distance during two sets of HIE is likely to elicit equivalent decreases in CMJ and DJ height, and similar cardiorespiratory and perceptual responses, despite a lower average running speed. A fatigue-induced modification in lower limb control observed with CODs may have elicited a selective reduction of electromyography activity in hamstring

  3. Low-glycemic-load diets: impact on obesity and chronic diseases.

    PubMed

    Bell, Stacey J; Sears, Barry

    2003-01-01

    Historically, carbohydrates have been thought to play only a minor role in promoting weight gain and in predicting the risk of development of chronic disease. Most of the focus had been on reducing total dietary fat. During the last 20 years, fat intake decreased, while the number of individuals who were overweight or developed a chronic conditions have dramatically increased. Simultaneously, the calories coming from carbohydrate have also increased. Carbohydrates can be classified by their post-prandial glycemic effect, called the glycemic index or glycemic load. Carbohydrates with high glycemic indexes and high glycemic loads produce substantial increases in blood glucose and insulin levels after ingestion. Within a few hours after their consumption, blood sugar levels begin to decline rapidly due to an exaggerated increase in insulin secretion. A profound state of hunger is created. The continued intake of high-glycemic load meals is associated with an increased risk of chronic diseases such as obesity, cardiovascular disease, and diabetes. In this review, the terms glycemic index and glycemic load are defined, coupled with an overview of short- and long-term changes that occur from eating diets of different glycemic indexes and glycemic loads. Finally, practical strategies for how to design low-glycemic-load diets consisting primarily of low-glycemic carbohydrates are provided.

  4. Overview of the High Intensity Neutrino Source Linac R&D program at Fermilab

    SciTech Connect

    Webber, R.C.; Appollinari, G.; Carneiro, J.P.; Gonin, I.; Hanna, B.; Hays, S.; Khabiboulline, T.; Lanfranco, G.; Madrak, R.L.; Moretti, A.; Nicol, T.; /Fermilab /Argonne

    2008-09-01

    The Fermilab High Intensity Neutrino Source (HINS) Linac R&D program is building a first-of-a-kind 60 MeV superconducting H- linac. The HINS Linac incorporates superconducting solenoids for transverse focusing, high power RF vector modulators for independent control of multiple cavities powered from a single klystron, and superconducting spoke-type accelerating cavities starting at 10 MeV. This will be the first application and demonstration of any of these technologies in a low-energy, high-intensity proton/H- linear accelerator. The HINS effort is relevant to a high intensity, superconducting H- linac that might serve the next generation of neutrino physics and muon storage ring/collider experiments. An overview of the HINS program, machine design, status, and outlook is presented.

  5. The high intensity solar cell - Key to low cost photovoltaic power

    NASA Technical Reports Server (NTRS)

    Sater, B. L.; Goradia, C.

    1975-01-01

    This paper discusses the problems associated with conventional solar cells at high intensities and presents the design considerations and performance characteristics of the 'high intensity' (HI) solar cell which appears to eliminate the major problems. Test data obtained at greater than 250 AM1 suns gave a peak output power density of 2 W per sq cm at an efficiency exceeding 6% with an unoptimized cell operating at over 100 C. It appears that operation at 1000 AM1 suns at efficiencies greater than 10% is possible. At 1000 AM1 suns and 10% efficiency, the HI cell manufacturing cost is estimated to be $0.25/watt, with multi-megawatt annual production capability already existing within the industrial sector. A high intensity solar system was also analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency.

  6. Multiphoton fluorescence microscopy: behavior of biological specimens under high-intensity illumination

    NASA Astrophysics Data System (ADS)

    Cheng, Ping C.; Lin, Bai-Ling; Kao, Fu-Jen; Sun, Chi-Kuang

    2000-07-01

    Recent development in multi-photon fluorescence microscopy, second and third harmonic generation microscopy (SHG and THG) and CARS open new dimensions in biological studies. Not only the technologies allow probing the biological specimen both functionally and structurally with increasing spatial and temporal resolution, but also raise the interest in how biological specimens respond to high intensity illumination commonly used in these types of microscopy. We have used maize leaf protoplast as a model system to evaluate the photo-induced response of living sample under high intensity illumination. It was found that cells can be seriously damaged by high intensity NIR irradiation even the linear absorption coefficient in low in these wavelengths. Micro-spectroscopy of single chloroplast also allows us to gain insight on the possible photo-damage mechanism. In addition to fluorescence emission, second harmonic generation was observed in the maize protoplasts.

  7. Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults.

    PubMed

    Hwang, Jungyun; Brothers, R Matthew; Castelli, Darla M; Glowacki, Elizabeth M; Chen, Yen T; Salinas, Mandy M; Kim, Jihoon; Jung, Yeonhak; Calvert, Hannah G

    2016-09-01

    Acute exercise can positively impact cognition. The present study examined the effect of acute high-intensity aerobic exercise on prefrontal-dependent cognitive performance and brain-derived neurotrophic factor (BDNF). Fifty-eight young adults were randomly assigned to one of two experimental groups: (a) an acute bout of high-intensity exercise (n=29) or (b) a non-exercise control (n=29). Participants in the exercise group improved performance on inhibitory control in Stroop interference and on cognitive flexibility in Trail Making Test (TMT) Part-B compared with participants in the control group and increased BDNF immediately after exercise. There was a significant relationship between BDNF and TMT Part-B on the pre-post change following exercise. These findings provide support for the association between improved prefrontal-dependent cognitive performance and increased BDNF in response to acute exercise. We conclude that the changes in BDNF concentration may be partially responsible for prefrontal-dependent cognitive functioning following an acute bout of exercise. PMID:27450438

  8. Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults.

    PubMed

    Hwang, Jungyun; Brothers, R Matthew; Castelli, Darla M; Glowacki, Elizabeth M; Chen, Yen T; Salinas, Mandy M; Kim, Jihoon; Jung, Yeonhak; Calvert, Hannah G

    2016-09-01

    Acute exercise can positively impact cognition. The present study examined the effect of acute high-intensity aerobic exercise on prefrontal-dependent cognitive performance and brain-derived neurotrophic factor (BDNF). Fifty-eight young adults were randomly assigned to one of two experimental groups: (a) an acute bout of high-intensity exercise (n=29) or (b) a non-exercise control (n=29). Participants in the exercise group improved performance on inhibitory control in Stroop interference and on cognitive flexibility in Trail Making Test (TMT) Part-B compared with participants in the control group and increased BDNF immediately after exercise. There was a significant relationship between BDNF and TMT Part-B on the pre-post change following exercise. These findings provide support for the association between improved prefrontal-dependent cognitive performance and increased BDNF in response to acute exercise. We conclude that the changes in BDNF concentration may be partially responsible for prefrontal-dependent cognitive functioning following an acute bout of exercise.

  9. Experimental transient and permanent deformation studies of steel-sphere-impacted or impulsively-loaded aluminum beams with clamped ends

    NASA Technical Reports Server (NTRS)

    Witmer, E. A.

    1975-01-01

    The sheet explosive loading technique (SELT) was employed to obtain elastic-plastic, large-deflection transient and/or permanent strain data on simple well-defined structural specimens and materials: initially-flat 6061-T651 aluminum beams with both ends ideally clamped via integral construction. The SELT loading technique was chosen since it is both convenient and provides forcing function information of small uncertainty. These data will be useful for evaluating pertinent structural response prediction methods. A second objective was to obtain high-quality transient-strain data for a well-defined structural/material model subjected to impact by a rigid body of known mass, impact velocity, and geometry; large-deflection, elastic-plastic transient response conditions are of primary interest. The beam with both ends clamped and a steel sphere as the impacting body were chosen. The steel sphere was launched vertically by explosive propulsion to achieve various desired impact velocities. The sphere/beam impact tests resulted in producing a wide range of structural responses and permanent deformations, including rupture of the beam from excessive structural response in two cases. The transient and permanent strain data as well as the permanent deflection data obtained are of high quality and should be useful for checking and evaluating methods for predicting the responses of simple 2-d structures to fragment (sphere) impact. Transient strain data very close to the point of impact were not obtained over as long a time as desirable because the gage(s) in that region became detached during the transient response.

  10. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    NASA Technical Reports Server (NTRS)

    Langhans, Robert W.

    1994-01-01

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. Specific technical qualities of fluorescent and HID lamps have been critically reviewed. I will direct my remarks to fluorescent and high intensity discharge (HID) lamps in growth chambers, growth rooms, and greenhouses. I will discuss the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses.

  11. Assessing the Long Term Impact of Phosphorus Fertilization on Phosphorus Loadings Using AnnAGNPS

    PubMed Central

    Yuan, Yongping; Bingner, Ronald L.; Locke, Martin A.; Stafford, Jim; Theurer, Fred D.

    2011-01-01

    High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the effects of different phosphorus fertilization rates on phosphorus losses, the USDA Annualized AGricultural Non-Point Source (AnnAGNPS) pollutant loading model was applied to the Ohio Upper Auglaize watershed, located in the southern portion of the Maumee River Basin. In this study, the AnnAGNPS model was calibrated using USGS monitored data; and then the effects of different phosphorus fertilization rates on phosphorus loadings were assessed. It was found that P loadings increase as fertilization rate increases, and long term higher P application would lead to much higher P loadings to the watershed outlet. The P loadings to the watershed outlet have a dramatic change after some time with higher P application rate. This dramatic change of P loading to the watershed outlet indicates that a “critical point” may exist in the soil at which soil P loss to water changes dramatically. Simulations with different initial soil P contents showed that the higher the initial soil P content is, the less time it takes to reach the “critical point” where P loadings to the watershed outlet increases dramatically. More research needs to be done to understand the processes involved in the transfer of P between the various stable, active and labile states in the soil to ensure that the model simulations are accurate. This finding may be useful in setting up future P application and management guidelines. PMID:21776225

  12. Nitrogen loadings and environmental impacts in rice agriculture catchments in subtropical central China

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    The severe deterioration of water quality in rice agriculture catchments challenges ecologists and hydrologists in exploring how rice agriculture affects nutrient loadings and water quality. This research observed the nitrogen (N) concentrations in stream water and groundwater in one forest and five rice agriculture catchments in subtropical central China to quantify the relationships between rice agriculture intensification, water quality of water bodies, and catchment N loadings. Our results indicate that intensive rice agriculture deteriorated stream water quality. A non-linear fitting analysis using a Boltzmann sigmoid function suggests that the concentrations and mass fluxes of ammonium-N (NH4+-N), nitrate-N (NO3--N), and total N (TN) in stream water increase with the areal proportion of rice agriculture in the catchments; however, these increases can only be detected when the areal proportions of rice agriculture in the catchments are greater than 13-30%, highlighting the importance of reasonable land use planning for managing stream water quality as well as N loadings from catchments. The factorial correspondence analysis (FCA) also suggests that rice agriculture has a potential to impose groundwater NH4+-N pollution, particularly in the soil exhausting season of July - October. And, the great N fertilizer application rates for rice cropping can increase the groundwater NO3-N and TN concentrations due to large quantities of N leaching into groundwater system beneath the paddy fields. The high N concentrations in groundwater result in strong N loadings via the base flow process. The NO3--N loadings via the base flow reaches 0.12-0.27 kg N ha-1 month-1 in the rice agriculture catchments, contributing 27.3%-36.5% of the total NO3--N loadings by the stream discharge. Therefore, the best management practices for N reduction and the smart land use planning should be applied in the rice agriculture catchments to improve water quality and mitigate N loadings.

  13. Impact of combined transient plasma/heat loads on tungsten performance below and above recrystallization temperature

    NASA Astrophysics Data System (ADS)

    Loewenhoff, Th.; Bardin, S.; Greuner, H.; Linke, J.; Maier, H.; Morgan, T. W.; Pintsuk, G.; Pitts, R. A.; Riccardi, B.; De Temmerman, G.

    2015-11-01

    The influence of recrystallization on thermal shock resistance has been identified as an issue that may influence the long term performance of ITER tungsten (W) divertor components. To investigate this issue a unique series of experiments has been performed on ITER divertor W monoblock mock-ups in three EU high heat flux facilities: GLADIS (neutral beam), JUDITH 2 (electron beam) and Magnum-PSI (plasma beam). To simulate ITER mitigated edge localised modes, heat fluxes between 0.11 and 0.6 GW m-2 were applied for Δt  <  1 ms. Two different base temperatures, Tbase  =  1200 °C and 1500 °C, were chosen on which ~18 000/100 000 transient events were superimposed representing several full ITER burning plasma discharges in terms of number of transients and particle fluence. An increase in roughening for both e-beam and plasma loaded surfaces was observed when loading during or after recrystallization and when loading at higher temperature. However, regarding the formation of cracks and microstructural modifications the response was different for e-beam and plasma loaded surfaces. The samples loaded in Magnum-PSI did not crack nor show any sign of recrystallization, even at Tbase  =  1500 °C. This could be a dynamic hydrogen flux effect, because pre-loading of samples with hydrogen neutrals (GLADIS) or without hydrogen (e-beam JUDITH 2) did not yield this result. These results show clearly that the loading method used when investigating and qualifying the thermal shock performance of materials for ITER and future fusion reactors can play an important role. This should be properly accounted for and in fact should be the subject of further R&D.

  14. Carbohydrate Mouth Rinsing Enhances High Intensity Time Trial Performance Following Prolonged Cycling

    PubMed Central

    Luden, Nicholas D.; Saunders, Michael J.; D’Lugos, Andrew C.; Pataky, Mark W.; Baur, Daniel A.; Vining, Caitlin B.; Schroer, Adam B.

    2016-01-01

    There is good evidence that mouth rinsing with carbohydrate (CHO) solutions can enhance endurance performance (≥30 min). The impact of a CHO mouth rinse on sprint performance has been less consistent, suggesting that CHO may confer benefits in conditions of ‘metabolic strain’. To test this hypothesis, the current study examined the impact of late-exercise mouth rinsing on sprint performance. Secondly, we investigated the effects of a protein mouth rinse (PRO) on performance. Eight trained male cyclists participated in three trials consisting of 120 min of constant-load cycling (55% Wmax) followed by a 30 km computer-simulated time trial, during which only water was provided. Following 15 min of muscle function assessment, 10 min of constant-load cycling (3 min at 35% Wmax, 7 min at 55% Wmax) was performed. This was immediately followed by a 2 km time trial. Subjects rinsed with 25 mL of CHO, PRO, or placebo (PLA) at min 5:00 and 14:30 of the 15 min muscle function phase, and min 8:00 of the 10-min constant-load cycling. Magnitude-based inferential statistics were used to analyze the effects of the mouth rinse on 2-km time trial performance and the following physiological parameters: Maximum Voluntary Contract (MVC), Rating of Perceived Exertion (RPE), Heart Rate (HR), and blood glucose levels. The primary finding was that CHO ‘likely’ enhanced performance vs. PLA (3.8%), whereas differences between PRO and PLA were unclear (0.4%). These data demonstrate that late-race performance is enhanced by a CHO rinse, but not PRO, under challenging metabolic conditions. More data should be acquired before this strategy is recommended for the later stages of cycling competition under more practical conditions, such as when carbohydrates are supplemented throughout the preceding minutes/hours of exercise. PMID:27657117

  15. Gaussian vs non-Gaussian turbulence: impact on wind turbine loads

    NASA Astrophysics Data System (ADS)

    Berg, J.; Mann, J.; Natarajan, A.; Patton, E. G.

    2014-12-01

    In wind energy applications the turbulent velocity field of the Atmospheric Boundary Layer (ABL) is often characterised by Gaussian probability density functions. When estimating the dynamical loads on wind turbines this has been the rule more than anything else. From numerous studies in the laboratory, in Direct Numerical Simulations, and from in-situ measurements of the ABL we know, however, that turbulence is not purely Gaussian: the smallest and fastest scales often exhibit extreme behaviour characterised by strong non-Gaussian statistics. In this contribution we want to investigate whether these non-Gaussian effects are important when determining wind turbine loads, and hence of utmost importance to the design criteria and lifetime of a wind turbine. We devise a method based on Principal Orthogonal Decomposition where non-Gaussian velocity fields generated by high-resolution pseudo-spectral Large-Eddy Simulation (LES) of the ABL are transformed so that they maintain the exact same second-order statistics including variations of the statistics with height, but are otherwise Gaussian. In that way we can investigate in isolation the question whether it is important for wind turbine loads to include non-Gaussian properties of atmospheric turbulence. As an illustration the Figure show both a non-Gaussian velocity field (left) from our LES, and its transformed Gaussian Counterpart (right). Whereas the horizontal velocity components (top) look close to identical, the vertical components (bottom) are not: the non-Gaussian case is much more fluid-like (like in a sketch by Michelangelo). The question is then: Does the wind turbine see this? Using the load simulation software HAWC2 with both the non-Gaussian and newly constructed Gaussian fields, respectively, we show that the Fatigue loads and most of the Extreme loads are unaltered when using non-Gaussian velocity fields. The turbine thus acts like a low-pass filter which average out the non-Gaussian behaviour on time

  16. Impact of climate change on three-dimensional dynamic critical load functions.

    PubMed

    Wu, Wei; Driscoll, Charles T

    2010-01-15

    Changes in climate and atmospheric deposition of base cations can alter the ionic composition of soil and surface waters, and therefore affect the structure and function of sensitive ecosystems. However, these drivers are not generally explicitly considered in the calculation of critical loads or dynamic critical loads to evaluate the recovery of ecosystems from elevated acidic deposition. Here we explore the importance of accounting for these changes in calculating dynamic critical loads for ecosystems. We developed three-dimensional dynamic critical load surfaces as a function of nitrate, sulfur, and base cation deposition under current and future climate change scenarios for the Hubbard Brook Experimental Forest, New Hampshire. This case study indicates that dynamic critical loads for nitrate and sulfur will be lower under conditions of potential climate change or decreases in base cation deposition. This analysis suggests that greater emission controls may be needed to protect sensitive forest ecosystems from acidic deposition under a future climate change or conditions of lower atmospheric deposition of base cations, particularly for watersheds experiencing elevated leaching losses of nitrate. This study should facilitate more informed policy decisions on emission control strategies and assessments of ecosystem recovery.

  17. Distributed photovoltaic system impact upon utility load/supply management practices

    NASA Astrophysics Data System (ADS)

    Vachtsevanos, G. J.; Meliopoulos, A. P.; Paraskevopoulos, B. K.

    A methodology is described for simulation of the economic and technical factors of photovoltaic (PV) installations interfacing with utility load/management operations. A probabalistic technique is used to model the expected demand, reliability of the generating units, costs and profits from each unit, expected unserviced energy, and the loss of load probability. The available power from PV arrays is treated stochastically with statistical weighting on the basis of site meteorological data. The goal is to include the PV power while minimizing operational costs, taking into account the level of penetration of the total PV output. Two sample simulations for a utility with a diverse generating mix demonstrate that overall costs would decrease in both cases with PVs on-line through the emphasis on cheaper-fueled generators and peak-load shaving when possible.

  18. Treatment of HIV-associated facial lipoatrophy: impact on infection progression assessed by viral load and CD4 count*

    PubMed Central

    Soares, Flávia Machado Gonçalves; Costa, Izelda Maria Carvalho

    2013-01-01

    BACKGROUND HIV/AIDS-Associated Lipodystrophy Syndrome includes changes in body fat distribution, with or without metabolic changes. The loss of fat from the face, called facial lipoatrophy, is one of the most stigmatizing signs of the syndrome. OBJECTIVES To evaluate the effect of FL treatment using polymethylmethacrylate (PMMA) implants on disease progression, assessed by viral load and CD4 cell count. METHODS This was a prospective study of 44 patients treated from July 2009 to December 2010. Male and female patients, aged over 18 years, with clinically detectable FL and who had never been treated were included in the study. PMMA implantation was done to fill atrophic areas. Laboratory tests were conducted to measure viral load and CD4 count before and after treatment. RESULTS Of the 44 patients, 72.72% were male and 27.27% female, mean age of 44.38 years. Before treatment, 82% of patients had undetectable viral load, which increased to 88.6% after treatment, but without statistical significance (p = 0.67). CD4 count before treatment ranged from 209 to 1293, averaging 493.97. After treatment, the average increased to 548.61. The increase in CD4 count after treatment was statistically significant with p = 0.02. CONCLUSION The treatment of FL with PMMA implants showed a statistically significant increase in CD4 count after treatment, revealing the impact of FL treatment on disease progression. Viral load before and after treatment did not vary significantly. PMID:24068128

  19. Modeling the impact of restoration efforts on phosphorus loading and transport through Everglades National Park, FL, USA.

    PubMed

    Long, Stephanie A; Tachiev, Georgio I; Fennema, Robert; Cook, Amy M; Sukop, Michael C; Miralles-Wilhelm, Fernando

    2015-07-01

    Ecosystems of Florida Everglades are highly sensitive to phosphorus loading. Future restoration efforts, which focus on restoring Everglades water flows, may pose a threat to the health of these ecosystems. To determine the fate and transport of total phosphorus and evaluate proposed Everglades restoration, a water quality model has been developed using the hydrodynamic results from the M3ENP (Mike Marsh Model of Everglades National Park)--a physically-based hydrological numerical model which uses MIKE SHE/MIKE 11 software. Using advection-dispersion with reactive transport for the model, parameters were optimized and phosphorus loading in the overland water column was modeled with good accuracy (60%). The calibrated M3ENP-AD model was then modified to include future bridge construction and canal water level changes, which have shown to increase flows into ENP. These bridge additions increased total dissolved phosphorus (TP) load downstream in Shark Slough and decreased TP load in downstream Taylor Slough. However, there was a general decrease in TP concentration and TP mass per area over the entire model domain. The M3ENP-AD model has determined the mechanisms for TP transport and quantified the impacts of ENP restoration efforts on the spatial-temporal distribution of phosphorus transport. This tool can be used to guide future Everglades restoration decisions.

  20. Simulated impacts of climate change on phosphorus loading to Lake Michigan

    USGS Publications Warehouse

    Robertson, Dale; Saad, David A.; Christiansen, Daniel E.; Lorenz, David J

    2016-01-01

    Phosphorus (P) loading to the Great Lakes has caused various types of eutrophication problems. Future climatic changes may modify this loading because climatic models project changes in future meteorological conditions, especially for the key hydrologic driver — precipitation. Therefore, the goal of this study is to project how P loading may change from the range of projected climatic changes. To project the future response in P loading, the HydroSPARROW approach was developed that links results from two spatially explicit models, the SPAtially Referenced Regression on Watershed attributes (SPARROW) transport and fate watershed model and the water-quantity Precipitation Runoff Modeling System (PRMS). PRMS was used to project changes in streamflow throughout the Lake Michigan Basin using downscaled meteorological data from eight General Circulation Models (GCMs) subjected to three greenhouse gas emission scenarios. Downscaled GCMs project a + 2.1 to + 4.0 °C change in average-annual air temperature (+ 2.6 °C average) and a − 5.1% to + 16.7% change in total annual precipitation (+ 5.1% average) for this geographic area by the middle of this century (2045–2065) and larger changes by the end of the century. The climatic changes by mid-century are projected to result in a − 21.2% to + 8.9% change in total annual streamflow (− 1.8% average) and a − 29.6% to + 17.2% change in total annual P loading (− 3.1% average). Although the average projected changes in streamflow and P loading are relatively small for the entire basin, considerable variability exists spatially and among GCMs because of their variability in projected future precipitation.

  1. Inhibition of enteric pathogens using integrated high intensity 405 nm LED on the surface of almonds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The disinfecting properties of 405 nm light were investigated against Escherichia coli O157:H7, Salmonella, and their non-pathogenic surrogates inoculated onto the surface of almonds. High intensity monochromatic light was generated from an array of narrow-band 405 nm light emitting diodes (LED). Al...

  2. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    SciTech Connect

    Ka-Ngo Leung; Jasmina L. Vujic; Edward C. Morse; Per F. Peterson

    2005-11-29

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL).

  3. Hydration and muscular performance: does fluid balance affect strength, power and high-intensity endurance?

    PubMed

    Judelson, Daniel A; Maresh, Carl M; Anderson, Jeffrey M; Armstrong, Lawrence E; Casa, Douglas J; Kraemer, William J; Volek, Jeff S

    2007-01-01

    Significant scientific evidence documents the deleterious effects of hypohydration (reduced total body water) on endurance exercise performance; however, the influence of hypohydration on muscular strength, power and high-intensity endurance (maximal activities lasting >30 seconds but <2 minutes) is poorly understood due to the inconsistent results produced by previous investigations. Several subtle methodological choices that exacerbate or attenuate the apparent effects of hypohydration explain much of this variability. After accounting for these factors, hypohydration appears to consistently attenuate strength (by approximately 2%), power (by approximately 3%) and high-intensity endurance (by approximately 10%), suggesting alterations in total body water affect some aspect of force generation. Unfortunately, the relationships between performance decrement and crucial variables such as mode, degree and rate of water loss remain unclear due to a lack of suitably uninfluenced data. The physiological demands of strength, power and high-intensity endurance couple with a lack of scientific support to argue against previous hypotheses that suggest alterations in cardiovascular, metabolic and/or buffering function represent the performance-reducing mechanism of hypohydration. On the other hand, hypohydration might directly affect some component of the neuromuscular system, but this possibility awaits thorough evaluation. A critical review of the available literature suggests hypohydration limits strength, power and high-intensity endurance and, therefore, is an important factor to consider when attempting to maximise muscular performance in athletic, military and industrial settings.

  4. High Intensity Pressure Noise Transmission in Human Ear: A Three Dimensional Simulation Study

    NASA Astrophysics Data System (ADS)

    Hawa, Takumi; Gan, Rong; Leckness, Kegan

    2015-03-01

    High intensity pressure noise generated by explosions and jet engines causes auditory damage and hearing loss of the military service personals, which are the most common disabilities in the veterans. Authors have investigated the high intensity pressure noise transmission from the ear canal to middle ear cavity. A fluid-structure interaction with a viscoelastic model for the tympanic membrane (TM) as well as the ossicular chain has been considered in the study. For the high intensity pressure simulation the geometry of the ear was based on a 3D finite element (FE) model of the human ear reported by Gan et al. (Ann Biomed Eng 2004). The model consists of the ear canal, TM, ossicular chain, and the middle ear cavity. The numerical approach includes two steps: 1) FE based finite-volume method simulation to compute pressure distributions in the ear canal and the middle ear cavity using CFX; and 2) FE modeling of TM and middle ear ossicles in response to high intensity sound using multi-physics analysis in ANSYS. The simulations provide the displacement of the TM/ossicular chain and the pressure fields in the ear canal and the middle ear cavity. These results are compared with human temporal bone experimental data obtained in our group. This work was supported by DOD W81XWH-14-1-0228.

  5. 14 CFR 23.1308 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false High-intensity Radiated Fields (HIRF) Protection. 23.1308 Section 23.1308 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment General §...

  6. 14 CFR 23.1308 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false High-intensity Radiated Fields (HIRF) Protection. 23.1308 Section 23.1308 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment General §...

  7. 76 FR 44613 - Designation of Eight Counties as High Intensity Drug Trafficking Areas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... CONTROL POLICY Designation of Eight Counties as High Intensity Drug Trafficking Areas AGENCY: Office of National Drug Control Policy. ACTION: Notice. SUMMARY: The Director of the Office of National Drug Control... Drug Control Policy, Executive Office of the President, Washington, DC 20502; (202) 395-6789. Daniel...

  8. The Edward Teller Medal Lecture: High Intensity Lasers and the Road to Ignition (lirpp Vol. 13)

    NASA Astrophysics Data System (ADS)

    Key, M. H.

    2016-10-01

    There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement.

  9. The Edward teller medal lecture: High intensity lasers and the road to ignition

    NASA Astrophysics Data System (ADS)

    Key, M. H.

    1997-04-01

    There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement.

  10. The Edward teller medal lecture: High intensity lasers and the road to ignition

    SciTech Connect

    Key, M.H.

    1997-04-01

    There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement. {copyright} {ital 1997 American Institute of Physics.}

  11. The Edward Teller medal lecture: High intensity lasers and the road to ignition

    SciTech Connect

    Key, M. H.

    1997-04-15

    There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement.

  12. Long term high intensity exercise and damage of small joints in rheumatoid arthritis

    PubMed Central

    de Jong, Z; Munneke, M; Zwinderman, A; Kroon, H; Ronday, K; Lems, W; Dijkmans, B; Breedveld, F; Vliet, V; Hazes, J; Huizinga, T

    2004-01-01

    Objective: To investigate the effect of long term high intensity weightbearing exercises on radiological damage of the joints of the hands and feet in patients with rheumatoid arthritis (RA). Methods: Data of the 281 completers of a 2 year randomised controlled trial comparing the effects of usual care physical therapy (UC) with high intensity weightbearing exercises were analysed for the rate of radiological joint damage (Larsen score) of the hands and feet. Potential determinants of outcome were defined: disease activity, use of drugs, change in physical capacity and in bone mineral density, and attendance rate at exercise sessions. Results: After 2 years, the 136 participants in high intensity weightbearing exercises developed significantly less radiological damage than the 145 participants in UC. The mean (SD) increase in damage was 3.5 (7.9) in the exercise group and 5.7 (10.2) in the UC group, p = 0.045. Separate analysis of the damage to the hands and feet suggests that this difference in rate of increase of damage is more pronounced in the joints of the feet than in the hands. The rate of damage was independently associated with less disease activity, less frequent use of glucocorticoids, and with an improvement in aerobic fitness. Conclusion: The progression of radiological joint damage of the hands and feet in patients with RA is not increased by long term high intensity weightbearing exercises. These exercises may have a protective effect on the joints of the feet. PMID:15479889

  13. 14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-intensity Radiated Fields (HIRF) Protection. 25.1317 Section 25.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section,...

  14. 14 CFR 29.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High-intensity Radiated Fields (HIRF) Protection. 29.1317 Section 29.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...-intensity Radiated Fields (HIRF) Protection. (a) Except as provided in paragraph (d) of this section,...

  15. Effectiveness and Safety of High-Intensity Interval Training in Patients With Type 2 Diabetes

    PubMed Central

    Francois, Monique E.

    2015-01-01

    IN BRIEF Recent research has shown that high-intensity interval training (HIIT) can promote improvements in glucose control and cardiovascular health in individuals with type 2 diabetes. This article summarizes the evidence and highlights the ways in which HIIT might be safely implemented as an adjunct to more traditional exercise approaches. PMID:25717277

  16. 14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false High-intensity Radiated Fields (HIRF) Protection. 25.1317 Section 25.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... adversely affected during and after the time the airplane is exposed to HIRF environment I, as described...

  17. 14 CFR 29.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false High-intensity Radiated Fields (HIRF) Protection. 29.1317 Section 29.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... adversely affected during and after the time the rotorcraft is exposed to HIRF environment I, as...

  18. 14 CFR 23.1308 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false High-intensity Radiated Fields (HIRF) Protection. 23.1308 Section 23.1308 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... HIRF environment I, as described in appendix J to this part; (2) The system automatically...

  19. 14 CFR 27.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false High-intensity Radiated Fields (HIRF) Protection. 27.1317 Section 27.1317 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... adversely affected during and after the time the rotorcraft is exposed to HIRF environment I, as...

  20. High intensity running results in an impaired neuromuscular response in ACL reconstructed individuals.

    PubMed

    Patras, Kostas; Ziogas, Giorgos; Ristanis, Stavros; Tsepis, Elias; Stergiou, Nicholas; Georgoulis, Anastasios D

    2009-08-01

    Anterior cruciate ligament (ACL) reconstruction reestablishes electromyographic activity during moderate activities such as walking but is unclear if this is also the case in sports activities such as high intensity running that results in accumulation of metabolic fatigue. Nine bone-patella tendon-bone ACL reconstructed athletes were evaluated 19.2 (5.7) months post-operatively using a telemetric electromyographic system. The neuromuscular response of vastus lateralis and biceps femoris muscles was tested bilaterally on separate occasions during 10 min running at moderate intensity (20% below the lactate threshold) and 10 min running at high intensity (40% above the lactate threshold). During moderate intensity running, electromyographic activity did not change for either leg. During high intensity running, electromyographic activity did not change for the vastus lateralis of the ACL reconstructed leg [267.8 (142.8)-263.8 (128.9) microV, P > 0.05] while it increased significantly [294.2 (120.6)-317.1 (140.5) microV, P = 0.03] for the vastus lateralis of the intact leg. High intensity exercise that is associated with accumulation of metabolic fatigue, results in an impaired neuromuscular response for the vastus lateralis muscle of the ACL reconstructed leg.

  1. Operation of calorimeters based on vacuum and gas photodetectors in high intensity magnetic fields

    NASA Astrophysics Data System (ADS)

    Ventura, Luigi

    1984-09-01

    Recent attempts to operate counters for calorimetric use inside high intensity magnetic fields have resulted in interesting developments both in the construction of the counters and in the design of the vacuum photosensitive devices. In particular, a new one-stage photomultiplier has been developed. The present status of the development of gas photodiodes will finally be illustrated.

  2. 75 FR 52780 - Designation of Nine Counties as High Intensity Drug Trafficking Areas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... PRESIDENT Office of National Drug Control Policy Designation of Nine Counties as High Intensity Drug Trafficking Areas ACTION: Notice. SUMMARY: The Director of the Office of National Drug Control Policy designated nine additional counties as High Drug Trafficking Areas pursuant to 21 U.S.C. 1706. The...

  3. 75 FR 21368 - Designation of Five Counties as High Intensity Drug Trafficking Areas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... PRESIDENT Office of National Drug Control Policy Designation of Five Counties as High Intensity Drug Trafficking Areas ACTION: Notice. SUMMARY: The Director of the Office of National Drug Control Policy..., Office of National Drug Control Policy, Executive Office of the President, Washington, DC 20503;...

  4. 14 CFR 25.1317 - High-intensity Radiated Fields (HIRF) Protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-intensity Radiated Fields (HIRF... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1317 High... that performs a function whose failure would significantly reduce the capability of the airplane or...

  5. Octupole Resonance in the AGS at High Intensity: A SIMBAD study

    SciTech Connect

    Luccio, A.U.; D'Imperio, N.L.

    2005-06-08

    We studied the Octupole (Montague) resonance in the AGS, in its high intensity mode, by tracking with the PIC code SIMBAD. We calculated, turn-by-turn, the betatron tune footprint from the eigenvalues of the one-turn matrix. We show that one should exercise particular caution when the betatron tunes are close together, since the matrix gives ambiguous results at the resonance.

  6. Edward Teller medal lecture: high intensity lasers and the road to ignition

    SciTech Connect

    Key, M.H.

    1997-06-02

    There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement.

  7. Impact of suspended sediment and nutrient loading from land uses against water quality in the Hii River basin, Japan

    NASA Astrophysics Data System (ADS)

    Somura, H.; Takeda, I.; Arnold, J. G.; Mori, Y.; Jeong, J.; Kannan, N.; Hoffman, D.

    2012-07-01

    SummaryLake Shinji lies in eastern Shimane Prefecture, and is typical of brackish lakes in Japan. Water quality of the lake does not meet the expected environmental standards for total nitrogen (TN) and total phosphorus (TP), even though the national and prefectural governments have tried to improve water quality by developing maintenance scenarios for sewage, plant effluent, agricultural activity, and forestry. Consequently, detailed data of nutrient loading to the lake from river inflows is crucial to support strategies for improving the lake water environment. The Hii River contributes approximately 80% of the discharge flowing into the lake. In this study, we examine the Hii River catchment with a focus on land uses such as paddy fields, upland fields, residential areas, and forestry. Average annual discharges of suspended sediment (SS), TN, and TP loads were determined at Otsu, near the outlet of the basin into Lake Shinji. We also determined average yield per unit area of SS, TN, and TP loads from each land use. Yields per unit area from upland areas were the greatest, whereas yields from forests were the lowest. Forests were the largest contributor of SS, TN, and TP in the basin, because of its dominant land area. Upland fields had the second largest impact on these loads in the basin, because fertilizer applied to the fields is a major source of nitrogen (N) and phosphorus (P). Large differences in yields per unit area between fine and rainy day conditions were also observed, especially for SS and TP loads. Furthermore, we determined that a major pathway of N to the river was through groundwater, regardless of land use, whereas P was transported to the river with sediments, especially in paddy and upland fields. Based on these analyses, it will be difficult to reduce the SS load discharge in the basin in the future, because forestry is the major source. In contrast, N and P load reductions are straightforward, because the primary source is agricultural, and

  8. The impact of cognitive control, incentives, and working memory load on the P3 responses of externalizing prisoners

    PubMed Central

    Baskin-Sommers, Arielle R.; Krusemark, Elizabeth A.; Curtin, John J.; Lee, Christopher; Vujnovich, Aleice; Newman, Joseph P.

    2014-01-01

    The P3 amplitude reduction is one of the most common correlates of externalizing. However, few studies have used experimental manipulations designed to challenge different cognitive functions in order to clarify the processes that impact this reduction. To examine factors moderating P3 amplitude in trait externalizing, we administered an n-back task that manipulated cognitive control demands, working memory load, and incentives to a sample of male offenders. Offenders with high trait externalizing scores did not display a global reduction in P3 amplitude. Rather, the negative association between trait externalizing and P3 amplitude was specific to trials involving inhibition of a dominant response during infrequent stimuli, in the context of low working memory load, and incentives for performance. In addition, we discuss the potential implications of these findings for externalizing-related psychopathologies. The results complement and expand previous work on the process-level dysfunction contributing to externalizing-related deficits in P3. PMID:24355244

  9. Influence of Impact-Oscillatory Loading upon the Mechanical Properties of the VT-22 Titanium Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Chausov, M. G.; Pylypenko, A. P.; Berezin, V. B.; Markashova, L. I.; Kushnariova, O. S.; Hutsaylyuk, V. B.

    2016-08-01

    This study shows the effect of the specific impact-oscillatory loading (Dynamical nonequilibrium process) on the VT-22 titanium α+β-type alloy mechanical properties and microstructure. Experiments were conducted using modified universal testing machine. Physical research revealed that significant microstructural refinement of the alloy is observed after such type of loading, as the result of which the fine grains are formed with subgrain refinement which takes place within the basis of alloy. It was found that overall plastic deformation of this alloy can be increased by a factor 2.75 compared with its initial state without significant loss of strength. Also we show that such process can be used as a preliminary microstructure refinement method for such alloy.

  10. Non-invasive determination of tissue thermal parameters from high intensity focused ultrasound treatment monitored by volumetric MRI thermometry.

    PubMed

    Dragonu, Iulius; de Oliveira, Philippe Lourenço; Laurent, Christophe; Mougenot, Charles; Grenier, Nicolas; Moonen, Chrit T W; Quesson, Bruno

    2009-10-01

    A method is proposed for estimating the perfusion rate, thermal diffusivity, and the absorption coefficient that influence the local temperature during high intensity focused ultrasound (HIFU) thermotherapy procedures. For this purpose, HIFU heating experiments (N = 100) were performed ex vivo on perfused porcine kidney (N = 5) under different flow conditions. The resulting spatio-temporal temperature variations were measured non-invasively by rapid volumetric MR-temperature imaging. The bio-heat transfer (BHT) model was adapted to describe the spatio-temporal evolution of tissue temperature in the cortex. Absorption and perfusion coefficients were determined by fitting the integrated thermal load (spatial integration of the thermal maps) curves in time with an analytical solution of the BHT equation proposed for single point HIFU heating. Thermal diffusivity was determined independently by analyzing the spatial spread of the temperature in time during the cooling period. Absorption coefficient and thermal diffusivity were found to be independent of flow, with mean and average values of 11.0 +/- 1.85 mm(3) x K x J(-1) and 0.172 +/- 0.003 mm(2) x s(-1), respectively. A linear dependence of the calculated perfusion rate with flow was observed with a slope of 9.20 +/- 0.75 mm(-3). The perfusion was found to act as a scaling term with respect to temperature but with no effect on the spatial spread of temperature which only depends on the thermal diffusivity. All results were in excellent agreement with the BHT model, indicating that this model is suitable to predict the evolution of temperature in perfused organs. This quantitative approach allows for determination of tissue thermal parameters with excellent precision (within 10%) and may thus help in quantifying the influence of perfusion during MR guided high intensity focused ultrasound (MRgHIFU).

  11. The effects of high intensity short rest resistance exercise on muscle damage markers in men and women.

    PubMed

    Heavens, Kristen R; Szivak, Tunde K; Hooper, David R; Dunn-Lewis, Courtenay; Comstock, Brett A; Flanagan, Shawn D; Looney, David P; Kupchak, Brian R; Maresh, Carl M; Volek, Jeff S; Kraemer, William J

    2014-04-01

    Within and between sexes, universal load prescription (as assigned in extreme conditioning programs) creates extreme ranges in individual training intensities. Exercise intensity has been proposed to be the main factor determining the degree of muscle damage. Thus, the purpose of this study was to examine markers of muscle damage in resistance-trained men (n = 9) and women (n = 9) from a high intensity (HI) short rest (SR) (HI/SR) resistance exercise protocol. The HI/SR consisted of a descending pyramid scheme starting at 10 repetitions, decreasing 1 repetition per set for the back squat, bench press, and deadlift, as fast as possible. Blood was drawn pre-exercise (pre), immediately postexercise (IP), 15 minutes postexercise (+15), 60 minutes postexercise (+60), and 24 hours postexercise (+24). Women demonstrated significant increases in interleukin 6 (IL-6; IP), creatine kinase (CK; +24), myoglobin (IP, +15, +60), and a greater relative increase when compared with men (+15, +60). Men demonstrated significant increases in myoglobin (IP, +15, +60, +24), IL-6 (IP, +15), CK (IP, +60, +24), and testosterone (IP, +15). There were significant sex interactions observed in CK (IP, +60, +24) and testosterone (IP, +15, +60, +24). Women completed the protocol faster (women: 34:04 ± 9:40 minutes, men: 39:22 ± 14:43 minutes), and at a slightly higher intensity (women: 70.1 ± 3.5%, men 68.8 ± 3.1%); however, men performed significantly more work (men: 14384.6 ± 1854.5 kg, women: 8774.7 ± 1612.7 kg). Overall, women demonstrated a faster inflammatory response with increased acute damage, whereas men demonstrated a greater prolonged damage response. Therefore, strength and conditioning professionals need to be aware of the level of stress imposed on individuals when creating such volitional high intensity metabolic type workouts and allow for adequate progression and recovery from such workouts. PMID:24662155

  12. The effects of high intensity short rest resistance exercise on muscle damage markers in men and women.

    PubMed

    Heavens, Kristen R; Szivak, Tunde K; Hooper, David R; Dunn-Lewis, Courtenay; Comstock, Brett A; Flanagan, Shawn D; Looney, David P; Kupchak, Brian R; Maresh, Carl M; Volek, Jeff S; Kraemer, William J

    2014-04-01

    Within and between sexes, universal load prescription (as assigned in extreme conditioning programs) creates extreme ranges in individual training intensities. Exercise intensity has been proposed to be the main factor determining the degree of muscle damage. Thus, the purpose of this study was to examine markers of muscle damage in resistance-trained men (n = 9) and women (n = 9) from a high intensity (HI) short rest (SR) (HI/SR) resistance exercise protocol. The HI/SR consisted of a descending pyramid scheme starting at 10 repetitions, decreasing 1 repetition per set for the back squat, bench press, and deadlift, as fast as possible. Blood was drawn pre-exercise (pre), immediately postexercise (IP), 15 minutes postexercise (+15), 60 minutes postexercise (+60), and 24 hours postexercise (+24). Women demonstrated significant increases in interleukin 6 (IL-6; IP), creatine kinase (CK; +24), myoglobin (IP, +15, +60), and a greater relative increase when compared with men (+15, +60). Men demonstrated significant increases in myoglobin (IP, +15, +60, +24), IL-6 (IP, +15), CK (IP, +60, +24), and testosterone (IP, +15). There were significant sex interactions observed in CK (IP, +60, +24) and testosterone (IP, +15, +60, +24). Women completed the protocol faster (women: 34:04 ± 9:40 minutes, men: 39:22 ± 14:43 minutes), and at a slightly higher intensity (women: 70.1 ± 3.5%, men 68.8 ± 3.1%); however, men performed significantly more work (men: 14384.6 ± 1854.5 kg, women: 8774.7 ± 1612.7 kg). Overall, women demonstrated a faster inflammatory response with increased acute damage, whereas men demonstrated a greater prolonged damage response. Therefore, strength and conditioning professionals need to be aware of the level of stress imposed on individuals when creating such volitional high intensity metabolic type workouts and allow for adequate progression and recovery from such workouts.

  13. The Impact of Wireless Technology on Loading Trucks at an Auto Parts Distribution Center

    ERIC Educational Resources Information Center

    Goomas, David T.

    2012-01-01

    An intervention was introduced for truck loaders that used wireless vehicle mount computers that included auditory, visual feedback, and immediate data delivery. The implementation reliably reduced pallets from being loaded out of sequence for all outbound trucks in multistop routes. The role of the organizational behavior management (OBM)…

  14. Manipulation of Cognitive Load Variables and Impact on Auscultation Test Performance

    ERIC Educational Resources Information Center

    Chen, Ruth; Grierson, Lawrence; Norman, Geoffrey

    2015-01-01

    Health profession educators have identified auscultation skill as a learning need for health professional students. This article explores the application of cognitive load theory (CLT) to designing cardiac and respiratory auscultation skill instruction for senior-level undergraduate nursing students. Three experiments assessed student auscultation…

  15. Impact of excessive occlusal load on successfully-osseointegrated dental implants: a literature review.

    PubMed

    Chang, Michael; Chronopoulos, Vasileios; Mattheos, Nikos

    2013-08-01

    The aim of the present study was to review the available evidence on the response of the peri-implant bone when subjected to excessive occlusal forces. The search strategy included papers published in English in the Medline database and the Wiley Online Library from January 1991 to December 2011. Experimental or review papers reporting the conditions of the peri-implant bone of dental implants submitted to excessive occlusal loading in the presence of a controlled oral hygiene regime were eligible for inclusion. The knowledge regarding the response of the peri-implant bone when the dental implant is excessively loaded is limited, and the level of evidence is poor. With animal experimental studies showing conflicting results, it is unclear whether occlusal overload might cause marginal bone loss or total loss of osseointegration to already osseointegrated dental implants when the applied load exceeds the biologically-acceptable limit. This biological limit is also unknown. Furthermore, higher remodeling activity of the peri-implant bone is found around implants subjected to high loading forces.

  16. Is high-intensity exercise better than moderate-intensity exercise for weight loss?

    PubMed

    De Feo, P

    2013-11-01

    This viewpoint debates the state-of-the-art research focusing on the optimal intensity of the exercise programs for inducing a sustained weight or fat-mass loss in overweight/obese people. In our demanding society, the most attractive messages in the popular press are those promising the best results in a short time. This might explain the emphasis given by media to those scientific articles that report the efficacy on weight loss of exercise programs by their shorter duration and higher intensity. However, in the literature on overweight or obese people, there is little conclusive evidence for more favorable effects with high-intensity training than with continuous moderate-intensity exercise on body weight or fat mass loss. Since both exercise protocols have been demonstrated as useful to reduce body weight, the decision on the intensity of exercise prescription should be individualized and based on outcomes different from fat or weight loss. In this regard, there are pro and contra arguments for the prescription of high-intensity aerobic exercise in obese people. Among the pro arguments, is the demonstration that, in several studies, high-intensity training appears to induce superior improvements in aerobic fitness. Among the contra arguments to prescribe high-intensity exercise is the demonstration that prescribing a higher-intensity exercise decreases adherence and results in the completion of less exercise. Thus, a successful exercise program should be proposed at a moderate intensity and a low perceived effort because obese subjects who have low self-efficacy, poor mood status, and are not familiar with high-intensity workouts could easily drop out.

  17. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise.

    PubMed

    Saucedo Marquez, Cinthia Maria; Vanaudenaerde, Bart; Troosters, Thierry; Wenderoth, Nicole

    2015-12-15

    Exercise can have a positive effect on the brain by activating brain-derived neurotrophic factor (BDNF)-related processes. In healthy humans there appears to be a linear relationship between exercise intensity and the positive short-term effect of acute exercise on BDNF levels (i.e., the highest BDNF levels are reported after high-intensity exercise protocols). Here we performed two experiments to test the effectiveness of two high-intensity exercise protocols, both known to improve cardiovascular health, to determine whether they have a similar efficacy in affecting BDNF levels. Participants performed a continuous exercise (CON) protocol at 70% of maximal work rate and a high-intensity interval-training (HIT) protocol at 90% of maximal work rate for periods of 1 min alternating with 1 min of rest (both protocols lasted 20 min). We observed similar BDNF kinetics in both protocols, with maximal BDNF concentrations being reached toward the end of training (experiment 1). We then showed that both exercise protocols significantly increase BDNF levels compared with a rest condition (CON P = 0.04; HIT P < 0.001), with HIT reaching higher BDNF levels than CON (P = 0.035) (experiment 2). These results suggest that shorter bouts of high intensity exercise are slightly more effective than continuous high-intensity exercise for elevating serum BDNF. Additionally, 73% of the participants preferred the HIT protocol (P = 0.02). Therefore, we suggest that the HIT protocol might represent an effective and preferred intervention for elevating BDNF levels and potentially promoting brain health.

  18. Reliability of a Novel High Intensity One Leg Dynamic Exercise Protocol to Measure Muscle Endurance

    PubMed Central

    Lepers, Romuald; Marcora, Samuele M.

    2016-01-01

    We recently developed a high intensity one leg dynamic exercise (OLDE) protocol to measure muscle endurance and investigate the central and peripheral mechanisms of muscle fatigue. The aims of the present study were to establish the reliability of this novel protocol and describe the isokinetic muscle fatigue induced by high intensity OLDE and its recovery. Eight subjects performed the OLDE protocol (time to exhaustion test of the right leg at 85% of peak power output) three times over a week period. Isokinetic maximal voluntary contraction torque at 60 (MVC60), 100 (MVC100) and 140 (MVC140) deg/s was measured pre-exercise, shortly after exhaustion (13 ± 4 s), 20 s (P20) and 40 s (P40) post-exercise. Electromyographic (EMG) signal was analyzed via the root mean square (RMS) for all three superficial knee extensors. Mean time to exhaustion was 5.96 ± 1.40 min, coefficient of variation was 8.42 ± 6.24%, typical error of measurement was 0.30 min and intraclass correlation was 0.795. MVC torque decreased shortly after exhaustion for all angular velocities (all P < 0.001). MVC60 and MVC100 recovered between P20 (P < 0.05) and exhaustion and then plateaued. MVC140 recovered only at P40 (P < 0.05). High intensity OLDE did not alter maximal EMG RMS of the three superficial knee extensors during MVC. The results of this study demonstrate that this novel high intensity OLDE protocol could be reliably used to measure muscle endurance, and that muscle fatigue induced by high intensity OLDE should be examined within ~ 30 s following exhaustion. PMID:27706196

  19. Evaluation of the influence of velocity on dynamic passenger loads during a frontal minibus impact against an obstacle

    NASA Astrophysics Data System (ADS)

    Prochowski, L.; Dębowski, A.; Żuchowski, A.; Zielonka, K.

    2016-09-01

    The safety of people travelling by minibus is a very complex issue, in which the decisive role is played by load-bearing vehicle structure, passenger seats, and personal protection means. In order to maximize the number of people transported, the seats are spaced very closely to each other and this may pose a hazard to the passengers. Based on an analysis of experimental test results, a computer model representing a system composed of a minibus floor segment, seats, and dummies was built. For the analysis, seats integrated with seat belts were adopted. A seat of this type was based on a high-rigidity frame necessary to bear, inter alia, the strong force exerted (during a collision) by passenger's torso on the shoulder seat belt and transmitted to the upper seat belt anchorage point on the seat backrest. Within this work, the frontal minibus impact against an obstacle with velocities ranging from 20 km/h to 70 km/h was considered. The analysis covered the motion of, and dynamic loads on, a test dummy representing a 50th percentile adult male (Hybrid III dummy). Within the analysis, realizations of dynamic loads caused by inertial forces and reactions exerted by a three-point seat belt were taken into account. Special attention was paid to the extreme values of the loads that acted on dummy's head, neck, and torso when the head hit the backrest of the preceding seat in the culminating phase of the vehicle impact against an obstacle. The values of biomechanical indicators HIC, ThAC, Nij , and FAC and of the joint injury risk indicator were calculated.

  20. Clinical impact of FLT3 mutation load in acute promyelocytic leukemia with t(15;17)/PML-RARA

    PubMed Central

    Schnittger, Susanne; Bacher, Ulrike; Haferlach, Claudia; Kern, Wolfgang; Alpermann, Tamara; Haferlach, Torsten

    2011-01-01

    Background Combined treatment with all-trans-retinoic acid and chemotherapy is extremely efficient in patients with acute promyelocytic leukemia with t(15;17)/PML-RARA, but up to 15% of patients relapse. Design and Methods To further clarify the prognostic impact of parameters such as FLT3 mutations, we comprehensively characterized the relation between genetic features and outcome in 147 patients (aged 19.7–86.3 years) with acute promyelocytic leukemia. Results Internal tandem duplications of the FLT3 gene (FLT3-ITD) were detected in 47/147 (32.0%) and tyrosine kinase domain mutations (FLT3-TKD) in 19/147 (12.9%) patients. FLT3-ITD or FLT3-TKD mutation status did not have a significant prognostic impact, whereas FLT3-ITD mutation load, as defined by a mutation/wild-type ratio of less than 0.5 was associated with trends to a better 2-year overall survival rate (86.7% versus 72.7%; P=0.075) and 2-year event-free survival rate (84.5% versus 62.1%, P=0.023) compared to the survival rates of patients with a ratio of 0.5 or more. Besides the t(15;17), an additional chromosomal abnormality was detected in 57 of 147 cases and did not show a significant impact on survival. White blood cell counts of 10×109/L or less versus more than 10×109/L were associated with a better 2-year overall survival rate (88.3% versus 69.4%, respectively; P=0.015), as was male sex (P=0.040). In multivariate analysis, only higher age had a significant adverse impact. Conclusions Prospective trials should further investigate the clinical impact of the FLT3-ITD/wild-type mutation load aiming to evaluate whether this parameter might be included in risk stratification in patients with acute promyelocytic leukemia. PMID:21859732

  1. Assessing the Impact of Agricultural Pressures on N and P Loads and Potential Eutrophication Risk at Regional Scales

    NASA Astrophysics Data System (ADS)

    Dupas, R.; Gascuel-odoux, C.; Delmas, M.; Moatar, F.

    2014-12-01

    Excessive nutrient loading of freshwater bodies results in increased eutrophication risk worldwide. The processes controlling N/P transfer in agricultural landscapes are well documented through scientific studies conducted in intensively monitored catchments. However, managers need tools to assess water quality and evaluate the contribution of agriculture to eutrophication at regional scales, including unmonitored or poorly monitored areas. To this end, we present an assessment framework which includes: i) a mass-balance model to estimate diffuse N/P transfer and retention and ii) indicators based on N:P:Si molar ratios to assess potential eutrophication risk from external loads. The model, called Nutting (Dupas et al., 2013), integrates variables for both detailed description of agricultural pressures (N surplus, soil P content) and characterisation of physical attributes of catchments (including spatial attributes). It was calibrated on 160 catchments, and applied to 2210 unmonitored headwater bodies in France (Dupas et al., under review). N and P retention represented 53% and 95% of soil N and P surplus, respectively, and was mainly controlled by runoff and an index characterising infiltration/runoff properties. According to our estimates, diffuse agricultural sources represented a mean of 97% of N loads and N exceeded Si in 93% of the catchments, whilst they represented 46% of P loads and P exceeded Si in 26-65% of the catchments. Estimated eutrophication risk was highly sensitive to assumptions about P bioavailability, hence the range of headwaters potentially at risk spanned 26-63% of the catchments, depending on assumptions. To reduce this uncertainty, we recommend introducing P bioavailability tests in water monitoring programs, especially in sensitive areas. Dupas R et al. Assessing N emissions in surface water at the national level: comparison of country-wide vs. regionalized models. Sci Total Environ 2013; 443: 152-62. Dupas R et al. Assessing the impact

  2. Field and laboratory calibration of impact plates for measuring coarse bed load transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During 2008-2009, an array of impact plates instrumented with either accelerometers or geophones was installed over a channel spanning weir in the Elwha River in Washington, USA. The impact system is the first permanent installation of its kind in North America. The system was deployed to measure th...

  3. Analyses of quasi-isotropic composite plates under quasi-static point loads simulating low-velocity impact phenomena

    NASA Technical Reports Server (NTRS)

    Kelkar, A. D.

    1984-01-01

    In thin composite laminates, the first level of visible damage occurs in the back face and is called back face spalling. A plate-membrane coupling model, and a finite element model to analyze the large deformation behavior of eight-ply quasi-isotropic circular composite plates under impact type point loads are developed. The back face spalling phenomenon in thin composite plates is explained by using the plate-membrane coupling model and the finite element model in conjunction with the fracture mechanics principles. The experimental results verifying these models are presented. Several conclusions concerning the deformation behavior are reached and discussed in detail.

  4. Dynamic finite element analysis of the crack-inclusion interaction in aligned CNF composites under impact loading conditions

    NASA Astrophysics Data System (ADS)

    Ting, Huat Tung

    The interaction between a crack and an inclusion of microfiber in an aligned carbon nanofiber (CNF) toughened composite under impact loading conditions was studied by using dynamic finite element analysis (FEA). The nanocomposite material used in this study was T300/Epon 862 enhanced with aligned carbon nanofibers (CNFs). The dynamic stress intensity factors (DSIFs) were evaluated to describe the dynamic fracture behavior of the fracture model. In this study, a numerical homogenization model using FEA was first employed to determine the effective material properties of the equivalent matrix material of Epon 862 and aligned CNFs. The effects of T300 microfiber inclusion eccentricity and CNF alignment angle on the DSIFs were examined in this study. The displacement extrapolation method for monoclinic materials was utilized to calculate the DSIFs. The numerical results demonstrated a mechanism known as "crack-tip shielding" and demonstrated that the CNF alignment angle has an impact on the DSIFs.

  5. Methods for data reduction and loads analysis of Space Shuttle Solid Rocket Booster model water impact tests

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The methodology used to predict full scale space shuttle solid rocket booster (SRB) water impact loads from scale model test data is described. Tests conducted included 12.5 inch and 120 inch diameter models of the SRB. Geometry and mass characteristics of the models were varied in each test series to reflect the current SRB baseline configuration. Nose first and tail first water entry modes were investigated with full-scale initial impact vertical velocities of 40 to 120 ft/sec, horizontal velocities of 0 to 60 ft/sec., and off-vertical angles of 0 to plus or minus 30 degrees. The test program included a series of tests with scaled atmospheric pressure.

  6. Impact of alprazolam in allostatic load and neurocognition of patients with anxiety disorders and chronic stress (GEMA): observational study protocol

    PubMed Central

    Soria, Carlos A; Remedi, Carolina; Núñez, Daniel A; D'Alessio, Luciana; Roldán, Emilio J A

    2015-01-01

    Introduction The allostatic load model explains the additive effects of multiple biological processes that accelerate pathophysiology related to stress, particularly in the central nervous system. Stress-related mental conditions such as anxiety disorders and neuroticism (a well-known stress vulnerability factor), have been linked to disturbances of hypothalamo–pituitary–adrenal with cognitive implications. Nevertheless, there are controversial results in the literature and there is a need to determine the impact of the psychopharmacological treatment on allostatic load parameters and in cognitive functions. Gador study of Estres Modulation by Alprazolam, aims to determine the impact of medication on neurobiochemical variables related to chronic stress, metabolic syndrome, neurocognition and quality of life in patients with anxiety, allostatic load and neuroticism. Methods/analysis In this observational prospective phase IV study, highly sympthomatic patients with anxiety disorders (six or more points in the Hamilton-A scale), neuroticism (more than 18 points in the Neo five personality factor inventory (NEO-FFI) scale), an allostatic load (three positive clinical or biochemical items at Crimmins and Seeman criteria) will be included. Clinical variables of anxiety, neuroticism, allostatic load, neurobiochemical studies, neurocognition and quality of life will be determined prior and periodically (1, 2, 4, 8, and 12 weeks) after treatment (on demand of alprazolam from 0.75 mg/day to 3.0 mg/day). A sample of n=55/182 patients will be considered enough to detect variables higher than 25% (pretreatment vs post-treatment or significant correlations) with a 1-ß power of 0–80. t Test and/or non-parametric test, and Pearson's test for correlation analysis will be determined. Ethics and dissemination This study protocol was approved by an Independent Ethics Committee of FEFyM (Foundation for Pharmacological Studies and Drugs, Buenos Aires) and by regulatory

  7. Effects of High-Intensity Blood Flow Restriction Exercise on Muscle Fatigue

    PubMed Central

    Neto, Gabriel R.; Santos, Heleodório H.; Sousa, Juliana B. C.; Júnior, Adenilson T. A.; Araújo, Joamira P.; Aniceto, Rodrigo R.; Sousa, Maria S. C.

    2014-01-01

    Strength training combined with blood flow restriction (BFR) have been used to improve the levels of muscle adaptation. The aim of this paper was to investigate the acute effect of high intensity squats with and without blood flow restriction on muscular fatigue levels. Twelve athletes (aged 25.95 ± 0.84 years) were randomized into two groups: without Blood Flow Restriction (NFR, n = 6) and With Blood Flow Restriction (WFR, n = 6) that performed a series of free weight squats with 80% 1-RM until concentric failure. The strength of the quadriceps extensors was assessed in a maximum voluntary isometric contraction integrated to signals from the surface electromyogram. The average frequency showed significant reductions in the WFR group for the vastus lateralis and vastus medialis muscles, and intergroup only for the vastus medialis. In conclusion, a set of squats at high intensity with BFR could compromise muscle strength immediately after exercise, however, differences were not significant between groups. PMID:25114743

  8. Surface area generation and droplet size control in solvent extraction systems utilizing high intensity electric fields

    DOEpatents

    Scott, Timothy C.; Wham, Robert M.

    1988-01-01

    A method and system for solvent extraction where droplets are shattered by a high intensity electric field. These shattered droplets form a plurality of smaller droplets which have a greater combined surface area than the original droplet. Dispersion, coalescence and phase separation are accomplished in one vessel through the use of the single pulsing high intensity electric field. Electric field conditions are chosen so that simultaneous dispersion and coalescence are taking place in the emulsion formed in the electric field. The electric field creates a large amount of interfacial surface area for solvent extraction when the droplet is disintegrated and is capable of controlling droplet size and thus droplet stability. These operations take place in the presence of a counter current flow of the continuous phase.

  9. High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions

    NASA Technical Reports Server (NTRS)

    Nayfeh, Taysir; Fast, Brian; Raible, Daniel; Dinca, Dragos; Tollis, Nick; Jalics, Andrew

    2011-01-01

    High Intensity Laser Power Beaming (HILPB) has been developed as a technique to achieve Wireless Power Transmission (WPT) for both space and terrestrial applications. In this paper, the system architecture and hardware results for a terrestrial application of HILPB are presented. These results demonstrate continuous conversion of high intensity optical energy at near-IR wavelengths directly to electrical energy at output power levels as high as 6.24 W from the single cell 0.8 cm2 aperture receiver. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers. This type of system would enable long range optical refueling of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion.

  10. High intensity electrical stimulation effect on thigh musculature during immobilization for knee sprain. A case report.

    PubMed

    Nitz, A J; Dobner, J J

    1987-02-01

    We conducted high intensity electrical stimulation of the quadriceps femoris and hamstring muscle groups daily during a three-week period of lower extremity cast immobilization for an athlete who sustained Grade II medial collateral and anterior cruciate ligament sprains. Thigh muscle hypertrophy of the injured (stimulated) leg was suggested by an increase in girth measurement on the day of cast removal. Three weeks after cast removal, single-leg, vertical-leap height was 92% of that accomplished by the dominant, uninjured leg, and the patient was able to return to athletic competition. This case report documents the usefulness of high intensity electrical stimulation for maintaining limb motor function during cast immobilization. Limb stabilization during stimulation and simultaneous excitation of agonist-antagonist muscle pairs also are discussed.

  11. High-intensity interval training for intermittent claudication in a vascular rehabilitation program.

    PubMed

    Adams, Jenny; Ogola, Gerald; Stafford, Pamala; Koutras, Phoebus; Hartman, Julie

    2006-06-01

    This article reports an observational study investigating the safety and effectiveness of a high-intensity interval exercise program for patients with peripheral arterial disease. Patients were asked to walk on a treadmill to maximal claudication pain six times in each exercise session, with 3-minute rests in between. Once a patient could walk continuously for 6 minutes without reaching maximal pain, speed and/or grade was increased. To account for the changes in speed and grade, patients' walking ability was measured as a rehabilitation score, calculated as the product of the two. A total of 47 patients were included in the study. Results showed overall improvement in the rehabilitation score with participation in the program, and specifically showed that participation in more exercise sessions led to greater improvement. Moreover, no adverse events occurred in the study patients, suggesting patients with peripheral arterial disease can safely tolerate high-intensity exercise programs.

  12. Physics of high-intensity nanosecond electron source: Charge limit phenomenon in GaAs photocathodes

    SciTech Connect

    Herrera-Gomez, A. |; Vergara, G.; Spicer, W.E.

    1996-05-01

    GaAs negative electron affinity cathodes are used as high-intensity, short-time electron source at the Stanford Linear Accelerator Center. When the cathodes are illuminated with high-intensity laser pulses draw peak currents that are extremely high, typically of tens of Amperes. Because of the high currents, some nonlinear effects are present. Very noticeable is the so-called charge limit (CL) effect, which consists of a limit on the total charge in each pulse; that is, the total bunch charge stops increasing as the light pulse intensity increases. The CL effect is directly related to a photovoltage built up in the surface as a consequence of the photoelectrons coming from the bulk. We discuss possible ways to minimize the formation of the surface photovoltage. {copyright} {ital 1996 American Institute of Physics.}

  13. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    SciTech Connect

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  14. Alterations to Functional Analysis Methodology to Clarify the Functions of Low Rate, High Intensity Problem Behavior

    PubMed Central

    Davis, Barbara J; Kahng, SungWoo; Schmidt, Jonathan; Bowman, Lynn G; Boelter, Eric W

    2012-01-01

    Current research provides few suggestions for modifications to functional analysis procedures to accommodate low rate, high intensity problem behavior. This study examined the results of the extended duration functional analysis procedures of Kahng, Abt, and Schonbachler (2001) with six children admitted to an inpatient hospital for the treatment of severe problem behavior. Results of initial functional analyses (Iwata, Dorsey, Slifer, Bauman, & Richman, 1982/1994) were inconclusive for all children because of low levels of responding. The altered functional analyses, which changed multiple variables including the duration of the functional analysis (i.e., 6 or 7 hrs), yielded clear behavioral functions for all six participants. These results add additional support for the utility of an altered analysis of low rate, high intensity problem behavior when standard functional analyses do not yield differentiated results. PMID:23326628

  15. Assessing the impact of landuse change, climate change and reservoirs on suspended sediment load in Da river (China-Vietnam)

    NASA Astrophysics Data System (ADS)

    Van Thinh, Le; Soncini, Andrea; Bocchiola, Daniele; Ranzi, Roberto; Rulli, Maria Cristina

    2016-04-01

    data. In the period 1988-2005, when Hoa Binh reservoir was at fully normal water level, the sediment load reduced dramatically (90%). During 1986-2005, the sediment yield of Lai Chau gauging station and Ta Bu station was also reduced by forest, agricultural, development areas; grassland, shrubland, and mixed shrubland were being decreased. The impact of climate change on sediment load was then analyzed by feeding the model with properly downscaled climate scenarios from two GCMs (EC-EARTH, and CCSM4), and three SRES emission scenarios (RCP2.6, RPC4.5, and RPC8.5). The simulation results under climate change scenarios and year 2000 land use show mostly sediment load increase in Lai Chau, Ta Bu, Hoa Binh, Ban Cung, except for the scenario RCP2.6, showing a reduction at Ta Bu. The combination of climate change, land use change and impact of reservoirs in the catchment leads, for all the scenarios considered, to decreases in sediment load, with a maximum (96.67%) for EC-Earth RCP2.6 model in 2080-2099.

  16. Impact of mechanical street cleaning and rainfall events on the quantity and heavy metals load of street sediments.

    PubMed

    Calabrò, P S

    2010-10-01

    The paper presents and analyses the results of a street sediments monitoring campaign carried out during dry weather in order to quantify the impact of mechanical street cleaning and rainfall events on the quantity and heavy metals load of street sediments. The study has been carried out in an experimental catchment in a medium traffic street of a residential/commercial area in the city of Reggio Calabria (Italy). Thanks to acquired data, it was possible to assess the amount and the degree of pollution of street sediments, the efficiency of mechanical street cleaning in terms of sediments and pollutants removal, the wash-off of street sediments during rainfall events and the related potential impact on receiving water bodies. The results obtained confirm that street sweeping is generally scarcely effective as a practice for urban storm run-off quality control and that run-off is, on the contrary, quite effective in street sediments removal especially for smaller particles. Moreover, chemical analyses indicate that, although the concentration of heavy metals is higher in sediments particles having a diameter lower than 0.075 mm, the greatest part of the pollutants load is associated to larger particles.

  17. [Cavitation and boiling of bubbles at the focal region during high intensity focused ultrasound exposure].

    PubMed

    Zhong, Mingsong; Ai, Huijian; Li, Faqi

    2012-10-01

    High intensity focused ultrasound (HIFU) is a very complex transient process and can cause tissue coagulation necrosis. The cavitation and boiling behaviour of bubbles in the focal region play very important roles throughout an injury process. This paper reviews the research done by domestic and foreign scholars on behaviours of bubbles in HIFU irradiation process and summarizes in the focal region bubble cavitation and boiling generation, related detective means and relationships with hyperecho, temperature rise of the focus and injury shape.

  18. Laser-enhanced cavitation during high intensity focused ultrasound: An in vivo study

    PubMed Central

    Cui, Huizhong; Zhang, Ti; Yang, Xinmai

    2013-01-01

    Laser-enhanced cavitation during high intensity focused ultrasound (HIFU) was studied in vivo using a small animal model. Laser light was employed to illuminate the sample concurrently with HIFU radiation. The resulting cavitation was detected with a passive cavitation detector. The in vivo measurements were made under different combinations of HIFU treatment depths, laser wavelengths, and HIFU durations. The results demonstrated that concurrent light illumination during HIFU has the potential to enhance cavitation effect by reducing cavitation threshold in vivo. PMID:23653486

  19. Problems in initiating detonation of disruptive explosives by a high-intensity electron beam

    NASA Astrophysics Data System (ADS)

    Morozov, V. A.; Savenkov, G. G.; Bragin, V. A.; Kats, V. M.; Lukin, A. A.

    2012-05-01

    Experiments on initiating detonation in disruptive explosives by a nanosecond high-intensity electron beam are considered. It is shown using elementary computational estimates that the critical conditions for initiating detonation in a disruptive explosive are not satisfied for the beam parameters described here. The results of experiments on the action of a pulsed electron beam on paraffin and wax model samples are considered. It is shown that the main factor acting on the samples is the cathode plasma torch.

  20. High-intensity cycle interval training improves cycling and running performance in triathletes.

    PubMed

    Etxebarria, Naroa; Anson, Judith M; Pyne, David B; Ferguson, Richard A

    2014-01-01

    Effective cycle training for triathlon is a challenge for coaches. We compared the effects of two variants of cycle high-intensity interval training (HIT) on triathlon-specific cycling and running. Fourteen moderately-trained male triathletes ([Formula: see text]O2peak 58.7 ± 8.1 mL kg(-1) min(-1); mean ± SD) completed on separate occasions a maximal incremental test ([Formula: see text]O2peak and maximal aerobic power), 16 × 20 s cycle sprints and a 1-h triathlon-specific cycle followed immediately by a 5 km run time trial. Participants were then pair-matched and assigned randomly to either a long high-intensity interval training (LONG) (6-8 × 5 min efforts) or short high-intensity interval training (SHORT) (9-11 × 10, 20 and 40 s efforts) HIT cycle training intervention. Six training sessions were completed over 3 weeks before participants repeated the baseline testing. Both groups had an ∼7% increase in [Formula: see text]O2peak (SHORT 7.3%, ±4.6%; mean, ±90% confidence limits; LONG 7.5%, ±1.7%). There was a moderate improvement in mean power for both the SHORT (10.3%, ±4.4%) and LONG (10.7%, ±6.8%) groups during the last eight 20-s sprints. There was a small to moderate decrease in heart rate, blood lactate and perceived exertion in both groups during the 1-h triathlon-specific cycling but only the LONG group had a substantial decrease in the subsequent 5-km run time (64, ±59 s). Moderately-trained triathletes should use both short and long high-intensity intervals to improve cycling physiology and performance. Longer 5-min intervals on the bike are more likely to benefit 5 km running performance.

  1. Circulating adiponectin concentration and body composition are altered in response to high-intensity interval training.

    PubMed

    Shing, Cecilia M; Webb, Jessica J; Driller, Matthew W; Williams, Andrew D; Fell, James W

    2013-08-01

    Adiponectin influences metabolic adaptations that would prove beneficial to endurance athletes, and yet to date there is little known about the response of adiponectin concentrations to exercise, and, in particular, the response of this hormone to training in an athlete population. This study aimed to determine the response of plasma adiponectin concentrations to acute exercise after 2 different training programs and to determine the influence of the training on body composition. Seven state-level representative rowers (age: 19 ± 1.2 years [mean ± SD], height: 1.77 ± 0.10 m, body mass: 74.0 ± 10.7 kg, VO2peak 62.1 ± 7.0 ml·kg·min) participated in the double-blind, randomized crossover investigation. Rowers performed an incremental graded exercise test before and after completing 4 weeks of high-intensity interval ergometer training and 4 weeks of traditional ergometer rowing training. Rowers' body composition was assessed at baseline and after each training program. Significant increases in plasma adiponectin concentration occurred in response to maximal exercise after completion of the high-intensity interval training (p = 0.016) but not after traditional ergometer rowing training (p = 0.69). The high-intensity interval training also resulted in significant increases in mean 4-minute power output (p = 0.002) and VO2peak (p = 0.05), and a decrease in body fat percentage (p = 0.022). Mean 4-minute power output, VO2peak, and body fat percentage were not significantly different after 4 weeks of traditional ergometer rowing training (p > 0.05). Four weeks of high-intensity interval training is associated with an increase in adiponectin concentration in response to maximal exercise and a reduction in body fat percentage. The potential for changes in adiponectin concentration to reflect positive training adaptations and athlete performance level should be further explored.

  2. Left ventricular mechanics and arterial-ventricular coupling following high-intensity interval exercise.

    PubMed

    Cote, Anita T; Bredin, Shannon S D; Phillips, Aaron A; Koehle, Michael S; Glier, Melissa B; Devlin, Angela M; Warburton, Darren E R

    2013-12-01

    High-intensity exercise induces marked physiological stress affecting the secretion of catecholamines. Sustained elevations in catecholamines are thought to desensitize cardiac beta receptors and may be a possible mechanism in impaired cardiac function following strenuous exercise. In addition, attenuated arterial-ventricular coupling may identify vascular mechanisms in connection with postexercise attenuations in ventricular function. Thirty-nine normally active (NA) and endurance-trained (ET) men and women completed an echocardiographic evaluation of left ventricular function before and after an acute bout of high-intensity interval exercise (15 bouts of 1:2 min work:recovery cycling: 100% peak power output and 50 W, respectively). Following exercise, time to peak twist and peak untwisting velocity were delayed (P < 0.01) but did not differ by sex or training status. Interactions for sex and condition (rest vs. exercise) were found for longitudinal diastolic strain rate (men, 1.46 ± 0.19 to 1.28 ± 0.23 s(-1) vs. women, 1.62 ± 0.25 to 1.63 ± 0.26 s(-1); P = 0.01) and arterial elastance (men 2.20 ± 0.65 to 3.24 ± 1.02 mmHg · ml(-1) · m(-2) vs. women 2.51 ± 0.61 to 2.93 ± 0.68 mmHg · ml(-1) · m(-2); P = 0.04). No cardiac variables were found associated with catecholamine levels. The change in twist mechanics was associated with baseline aortic pulse-wave velocity (r(2) = 0.27, P = 0.001). We conclude that males display greater reductions in contractility in response to high-intensity interval exercise, independent of catecholamine concentrations. Furthermore, a novel association of arterial stiffness and twist mechanics following high-intensity acute exercise illustrates the influence of vascular integrity on cardiac mechanics.

  3. A Highly intense DC muon source, MuSIC and muon CLFV search

    NASA Astrophysics Data System (ADS)

    Hino, Y.; Kuno, Y.; Sato, A.; Sakamoto, H.; Matsumoto, Y.; Tran, N. H.; Hashim, I. H.; Fukuda, M.; Hayashida, Y.; Ogitsu, T.; Yamamoto, A.; Yoshida, M.

    2014-08-01

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 108 muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion.

  4. High-Intensity Intermittent Swimming Improves Cardiovascular Health Status for Women with Mild Hypertension

    PubMed Central

    Mohr, Magni; Nordsborg, Nikolai Baastrup; Lindenskov, Annika; Steinholm, Hildigunn; Nielsen, Hans Petur; Mortensen, Jann; Weihe, Pal; Krustrup, Peter

    2014-01-01

    To test the hypothesis that high-intensity swim training improves cardiovascular health status in sedentary premenopausal women with mild hypertension, sixty-two women were randomized into high-intensity (n = 21; HIT), moderate-intensity (n = 21; MOD), and control groups (n = 20; CON). HIT performed 6–10 × 30 s all-out swimming interspersed by 2 min recovery and MOD swam continuously for 1 h at moderate intensity for a 15-week period completing in total 44 ± 1 and 43 ± 1 sessions, respectively. In CON, all measured variables were similar before and after the intervention period. Systolic BP decreased (P < 0.05) by 6 ± 1 and 4 ± 1 mmHg in HIT and MOD; respectively. Resting heart rate declined (P < 0.05) by 5 ± 1 bpm both in HIT and MOD, fat mass decreased (P < 0.05) by 1.1 ± 0.2 and 2.2 ± 0.3 kg, respectively, while the blood lipid profile was unaltered. In HIT and MOD, performance improved (P < 0.05) for a maximal 10 min swim (13 ± 3% and 22 ± 3%), interval swimming (23 ± 3% and 8 ± 3%), and Yo-Yo IE1 running performance (58 ± 5% and 45 ± 4%). In conclusion, high-intensity intermittent swimming is an effective training strategy to improve cardiovascular health and physical performance in sedentary women with mild hypertension. Adaptations are similar with high- and moderate-intensity training, despite markedly less total time spent and distance covered in the high-intensity group. PMID:24812628

  5. Proceedings of the third ICFA mini-workshop on high intensity, high brightness hadron accelerators

    SciTech Connect

    Roser, T.

    1997-11-01

    The third mini-workshop on high intensity, high brightness hadron accelerators was held at Brookhaven National Laboratory on May 7-9, 1997 and had about 30 participants. The workshop focussed on rf and longitudinal dynamics issues relevant to intense and/or bright hadron synchrotrons. A plenary session was followed by four sessions on particular topics. This document contains copies of the viewgraphs used as well as summaries written by the session chairs.

  6. Report from the NSLS workshop: Sources and applications of high intensity uv-vuv light

    SciTech Connect

    Johnson, E.D.; Hastings, J.B.

    1990-01-01

    A workshop was held to evaluate sources and applications of high intensity, ultra violet (UV) radiation for biological, chemical, and materials sciences. The proposed sources are a UV free electron laser (FEL) driven by a high brightness linac and undulators in long, straight sections of a specially designed low energy (400 MeV) storage ring. These two distinct types of sources will provide a broad range of scientific opportunities that were discussed in detail during the workshop.

  7. Report from the NSLS workshop: Sources and applications of high intensity uv-vuv light

    SciTech Connect

    Johnson, E.D.; Hastings, J.B.

    1990-12-31

    A workshop was held to evaluate sources and applications of high intensity, ultra violet (UV) radiation for biological, chemical, and materials sciences. The proposed sources are a UV free electron laser (FEL) driven by a high brightness linac and undulators in long, straight sections of a specially designed low energy (400 MeV) storage ring. These two distinct types of sources will provide a broad range of scientific opportunities that were discussed in detail during the workshop.

  8. Numerical simulations of stripping effects in high-intensity hydrogen ion linacs

    SciTech Connect

    Carneiro, J.-P.; Mustapha, B.; Ostroumov, P.N.; /Argonne

    2008-12-01

    Numerical simulations of H{sup -} stripping losses from blackbody radiation, electromagnetic fields, and residual gas have been implemented into the beam dynamics code TRACK. Estimates of the stripping losses along two high-intensity H{sup -} linacs are presented: the Spallation Neutron Source linac currently being operated at Oak Ridge National Laboratory and an 8 GeV superconducting linac currently being designed at Fermi National Accelerator Laboratory.

  9. High-intensity cyclotrons for radioisotope production and accelerator driven systems

    NASA Astrophysics Data System (ADS)

    Jongen, Y.; Vandeplassche, D.; Kleeven, W.; Beeckman, W.; Zaremba, S.; Lannoye, G.; Stichelbaut, F.

    2002-04-01

    IBA recently proposed a new method to extract high-intensity positive ion beams from a cyclotron based on the concept of auto-extraction. We review the design of a 14 MeV, multi-milliampere cyclotron using this new technology. IBA is also involved in the design of the accelerator system foreseen to drive the MYRRHA facility, a multipurpose neutron source developed jointly by SCK-CEN and IBA.

  10. Transrectal high-intensity focused ultrasound for the treatment of prostate cancer: Past, present, and future

    PubMed Central

    Mearini, Luigi; Porena, Massimo

    2010-01-01

    Upon a review of recently published articles on high-intensity focused ultrasound (HIFU) in the treatment of prostate cancer, we evaluated the current status of HIFU as a primary treatment option for localized prostate cancer and its use as salvage therapy when radiation failed. We also briefly discuss current issues in indications, definition of response, and finally the future of HIFU development. PMID:20535278

  11. High-intensity and high-brightness source of moderated positrons using a brilliant γ beam

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, C.; Schreckenbach, K.; Habs, D.; Thirolf, P. G.

    2012-01-01

    Presently, large efforts are conducted toward the development of highly brilliant γ beams via Compton back scattering of photons from a high-brilliance electron beam, either on the basis of a normal-conducting electron linac or a (super-conducting) Energy Recovery Linac (ERL). Particularly, ERLs provide an extremely brilliant electron beam, thus enabling the generation of highest-quality γ beams. A 2.5 MeV γ beam with an envisaged intensity of 1015 photons s-1, as ultimately envisaged for an ERL-based γ-beam facility, narrow band width (10-3), and extremely low emittance (10-4 mm2 mrad2) offers the possibility to produce a high-intensity bright polarized positron beam. Pair production in a face-on irradiated W converter foil (200 μm thick, 10 mm long) would lead to the emission of 2×1013 (fast) positrons per second, which is four orders of magnitude higher compared to strong radioactive 22Na sources conventionally used in the laboratory. Using a stack of converter foils and subsequent positron moderation, a high-intensity low-energy beam of moderated positrons can be produced. Two different source setups are presented: a high-brightness positron beam with a diameter as low as 0.2 mm, and a high-intensity beam of 3×1011 moderated positrons per second. Hence, profiting from an improved moderation efficiency, the envisaged positron intensity would exceed that of present high-intensity positron sources by a factor of 100.

  12. Conjunctivitis and skin erythema. Outbreak caused by a damaged high-intensity lamp.

    PubMed

    Halperin, W; Altman, R; Black, K; Marshall, F J; Goldfield, M

    1978-10-27

    Eighty-one members of girls' basketball teams were exposed to ultraviolet light while sitting in the bleachers of a school gymnasium. A mercury high-intensity discharge lamp lighting the bleacher area had a hole in its outer envelope that allowed the emission of ultraviolet light. Sixty-nine (85%) of the 81 girls were affected; 49 (71%) had symptoms of conjunctivitis and 63 (91%) had symptoms of erythema.

  13. Specificity of high-intensity intermittent action remains important to MMA athletes' physical conditioning: response to Paillard (2011).

    PubMed

    Del Vecchio, Fabrício Boscolo; Franchini, Emerson

    2013-02-01

    This response to Paillard (2011) focuses on the intermittent nature of mixed martial arts (MMA). It also emphasizes that the main goal of MMA athletes is to win by knockout or submission and that these actions normally are high-intensity actions or preceded by high-intensity actions. Additionally, there is evidence that high-intensity intermittent exercise protocols are able to improve aerobic fitness. It is important only to adjust physical training to the athletes' techniques and tactics. PMID:23829149

  14. Impact of flow unsteadiness on maneuvers and loads of agile aircraft

    NASA Technical Reports Server (NTRS)

    Jarrah, M. Ameen; Ashley, Holt

    1989-01-01

    A program of airload measurements on a family of low-aspect-ratio delta wings with sharp leading edges, subjected to large amplitude pitch transients with angles of attack up to 90 deg, is reviewed. Even for small values of the pitch-rate parameter, representative of maneuvers anticipated for agile aircraft, the force and moment overshoots can exceed by 50 percent their steady-state values. This is explained in terms of the hysteretic behavior of the breakdown locations of leading-edge vortices. An approximate theoretical model is proposed which includes the breakdown hysteresis as part of a three-term representation of the unsteady chordwise load distribution.

  15. Waters Loads on the XJL-1 Hull as Obtained in Langley Impact Basin, TED No. NACA 2413.3

    NASA Technical Reports Server (NTRS)

    Steiner, Margaret F.; Miller, Robert W.

    1946-01-01

    An investigation was conducted in the Langley impact basin of the water loads on a half scale model of the XJL-1 hull whose forebody has a vee bottom with exaggerated chine flare. The impact loads, moments, and pressures were determined for a range of landing conditions. A normal full-scale landing speed of 86 miles per hour was represented with effective flight paths ranging from 0.6deg to 11.6deg. Landings were made with both fixed trim and free-to-trim mounting of the float over a trim range of -15deg to 12deg into smooth water and into waves having equivalent full-scale length. of 120 feet and heights ranging from 1 to 4 feet. All data and results presented in this report are given in terms of equivalent full-scale values. Summary tables and illustrative plots are used in presenting the material. The following maximum values of load and pressure are those which are apropos for effective flight paths less than 6.5deg which was the maximum value obtained in tests with the XJL-1 hull model representing full-scale landings with vertical velocity of 4.5 feet per second into 4-foot waves. The maximum local pressure on the flat portion of the bottom is 130 pounds per square inch which was measured on a 2-inch-diameter circular area near the step. The maximum local pressure obtained in the curved area near the chines is 200 pounds per square inch. This pressure was also measured near the step.

  16. Cognitive Load and Self-Determination Theories Applied to E-Learning: Impact on Students' Participation and Academic Performance

    PubMed Central

    de Araujo Guerra Grangeia, Tiago; de Jorge, Bruno; Franci, Daniel; Martins Santos, Thiago; Vellutini Setubal, Maria Silvia; Schweller, Marcelo; de Carvalho-Filho, Marco Antonio

    2016-01-01

    Background Emergency clerkships expose students to a stressful environment that require multiple tasks, which may have a direct impact on cognitive load and motivation for learning. To address this challenge, Cognitive Load Theory and Self Determination Theory provided the conceptual frameworks to the development of a Moodle-based online Emergency Medicine course, inspired by real clinical cases. Methods Three consecutive classes (2013–2015) of sixth-year medical students (n = 304) participated in the course, during a curricular and essentially practical emergency rotation. “Virtual Rounds” provided weekly virtual patients in narrative format and meaningful schemata to chief complaints, in order to simulate real rounds at Emergency Unit. Additional activities such as Extreme Decisions, Emergency Quiz and Electrocardiographic challenge offered different views of emergency care. Authors assessed student´s participation and its correlation with their academic performance. A survey evaluated students´ opinions. Students graduating in 2015 answered an online questionnaire to investigate cognitive load and motivation. Results Each student produced 1965 pageviews and spent 72 hours logged on. Although Clinical Emergency rotation has two months long, students accessed the online course during an average of 5.3 months. Virtual Rounds was the most accessed activity, and there was positive correlations between the number of hours logged on the platform and final grades on Emergency Medicine. Over 90% of students felt an improvement in their clinical reasoning and considered themselves better prepared for rendering Emergency care. Considering a Likert scale from 1 (minimum load) to 7 (maximum load), the scores for total cognitive load were 4.79±2.2 for Virtual Rounds and 5.56±1.96 for real medical rounds(p<0,01). Conclusions A real-world inspired online course, based on cognitive and motivational conceptual frameworks, seems to be a strong tool to engage students in

  17. Influence of repeated bouts of eccentric exercise on high-intensity aerobic performance

    PubMed Central

    Higino, Wonder Passoni; Aparecido de Souza, Renato; Cavalcanti, Fabio de Sousa; Cardoso, Anderlei dos Santos; Vasconcelos, Murilo Victor; Fernandes da Silva, Fabiano; Leme, José Alexandre C.A.

    2016-01-01

    [Purpose] It is believed that eccentric high-intensity exercise can decrease performance in subsequent exercise. However, with repetition, the deleterious effects can be minimized. Thus, this study evaluated the influence of repeated bouts of eccentric exercise on subsequent high-intensity aerobic performance. [Subjects and Methods] Seven healthy and sedentary male volunteers were recruited. a) Visit 1: determination of maximum oxygen uptake (VO2max) and speed associated with maximum oxygen uptake (vVO2max) in incremental treadmill testing; b) Visit 2: run to exhaustion at vVO2max (Tlim control); c) Visit 3: 10 sets of 10 depth jumps, followed by a run to exhaustion at vVO2max (Tlim 1); d) Visit 4: after 6 weeks without any physical training, the volunteers carried out the same procedures as on the third visit (Tlim 2). Data were analyzed using one-way analysis of variance (ANOVA) with the post-hoc Tukey test. [Results] Significant differences were found between Tlim control and Tlim 1 (283.4 ± 47.7 s vs. 125.2 ± 64.1 s, respectively), these were not different from Tlim 2. [Conclusion] Eccentric exercise showed deleterious effects on subsequent high-intensity aerobic performance. These effects were minimized after the exercise protocol was repeated 6 weeks after the first event.

  18. Nutritional strategies to support adaptation to high-intensity interval training in team sports.

    PubMed

    Gibala, Martin J

    2013-01-01

    Team sports are characterized by intermittent high-intensity activity patterns. Typically, play consists of short periods of very intense or all-out efforts interspersed with longer periods of low-intensity activity. Fatigue is a complex, multi-factorial process, but intense intermittent exercise performance can potentially be limited by reduced availability of substrates stored in skeletal muscle and/or metabolic by-products associated with fuel breakdown. High-intensity interval training (HIT) has been shown to induce adaptations in skeletal muscle that enhance the capacity for both oxidative and non-oxidative metabolism. Nutrient availability is a potent modulator of many acute physiological responses to exercise, including various molecular signaling pathways that are believed to regulate cellular adaptation to training. Several nutritional strategies have also been reported to acutely alter metabolism and enhance intermittent high-intensity exercise performance. However, relatively little is known regarding the effect of chronic interventions, and whether supplementation over a period of weeks or months augments HIT-induced physiological remodeling and promotes greater performance adaptations. Theoretically, a nutritional intervention could augment HIT adaptation by improving energy metabolism during exercise, which could facilitate greater total work and an enhanced chronic training stimulus, or promoting some aspect of the adaptive response during recovery, which could lead to enhanced physiological adaptations over time.

  19. Influence of repeated bouts of eccentric exercise on high-intensity aerobic performance.

    PubMed

    Higino, Wonder Passoni; Aparecido de Souza, Renato; Cavalcanti, Fabio de Sousa; Cardoso, Anderlei Dos Santos; Vasconcelos, Murilo Victor; Fernandes da Silva, Fabiano; Leme, José Alexandre C A

    2016-08-01

    [Purpose] It is believed that eccentric high-intensity exercise can decrease performance in subsequent exercise. However, with repetition, the deleterious effects can be minimized. Thus, this study evaluated the influence of repeated bouts of eccentric exercise on subsequent high-intensity aerobic performance. [Subjects and Methods] Seven healthy and sedentary male volunteers were recruited. a) Visit 1: determination of maximum oxygen uptake (VO2max) and speed associated with maximum oxygen uptake (vVO2max) in incremental treadmill testing; b) Visit 2: run to exhaustion at vVO2max (Tlim control); c) Visit 3: 10 sets of 10 depth jumps, followed by a run to exhaustion at vVO2max (Tlim 1); d) Visit 4: after 6 weeks without any physical training, the volunteers carried out the same procedures as on the third visit (Tlim 2). Data were analyzed using one-way analysis of variance (ANOVA) with the post-hoc Tukey test. [Results] Significant differences were found between Tlim control and Tlim 1 (283.4 ± 47.7 s vs. 125.2 ± 64.1 s, respectively), these were not different from Tlim 2. [Conclusion] Eccentric exercise showed deleterious effects on subsequent high-intensity aerobic performance. These effects were minimized after the exercise protocol was repeated 6 weeks after the first event.

  20. James Clerk Maxwell Prize Address: High Intensity Laser Propagation and Interactions

    NASA Astrophysics Data System (ADS)

    Sprangle, Phillip

    2013-10-01

    High intensity laser radiation sources cover a wide range of parameters, e.g., peak powers from tera to peta watts, pulse lengths from pico to femto seconds, repetition rates ranging from kilo to mega hertz and average powers of many tens of watts. This talk will cover, among other things, some of the unique physical processes which result when high intensity laser radiation interacts with gases and plasmas. One of the interesting topics to be discussed is the propagation of these laser pulses in a turbulent atmosphere which results in a multitude of coupled linear and nonlinear processes including filamentation and scintillation. Phase conjugation techniques to reduce the effects of atmospheric turbulence (scintillation) will be described. This talk will also discuss a range of potential applications of these high intensity lasers, including: electron acceleration in spatially periodic and tapered plasma channels, detection of radioactive material using electromagnetic signatures, atmospheric lasing of N2 molecules, as well as incoherent and coherent x-ray generation mechanisms. Research supported by NRL, ONR and UMD.

  1. Postprandial lipoprotein profile in two modes of high-intensity intermittent exercise

    PubMed Central

    Panissa, Valéria Leme Gonçalves; Julio, Ursula Ferreira; Diniz, Tiego Aparecido; de Moura Mello Antunes, Barbara; Lira, Fabio Santos; Takito, Monica Yuri; Franchini, Emerson

    2016-01-01

    The aim of present study was to compare blood lipid postprandial profile response in two modes of high-intensity intermittent exercise. Twelve individuals (6 men and 6 women) were submitted to a maximal incremental test (to determine maximal aerobic power [MAP] and V. O2peak [peak oxygen uptake]), high-intensity intermittent all-out exercise (60×8-sec bouts interspersed by 12-sec passive recovery) and fixed high-intensity intermittent exercise (100% maximal aerobic speed, consisted of 1-min repetitions at MAP [70 rpm] separated by 1-min of passive recovery). Blood samples were collected pre, immediately, 45 and 90-min postexercise. Serum was analyzed for total cholesterol and its ratio, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), very low-density lipoprotein (VLDL) cholesterol, and triacylglycerol (TAG). For TAG there was a main effect of moment with higher values immediately postexercise compared to 45-min postexercise. For VLDL there was a main effect to moment with higher values immediately post exercise than pre and 45-min postexercise; higher values 90-min postexercise than 45-min postexercise. There was no effect for HDL-c, LDL-c, and cholesterol. For area under the curve there was no difference for any variable. Our results indicated that both kinds of acute exercise session lead to no improvement in the acute response of serum lipid profile of healthy young. PMID:27807528

  2. Proton Linac Front End for High Intensity Neutrino Source at Fermilab

    NASA Astrophysics Data System (ADS)

    Tam, Wai-Ming; Apollinari, Giorgio; Madrak, Robyn; Moretti, Alfred; Ristori, Leonardo; Romanov, Gennady; Steimel, James; Webber, Robert; Wildman, David

    2008-04-01

    Fermilab has recently proposed the construction of an 8 GeV superconducting linac for the exploration of the high intensity frontier. The High Intensity Neutrino Source (HINS) R&D program was established to explore the feasibility of certain technical solutions proposed for the front end of a high intensity linac. The low energy (˜60 MeV) section operates at 325 MHz and comprises an RFQ, two re-buncher cavities, 16 room temperature (RT) and 29 superconducting cross-bar H-type resonators, and superconducting solenoid focusing elements. One of the distinguishing features of this linac is the use of one klystron to feed multiple radio frequency (RF) elements. As an example, the RFQ, the re-bunchers and the 16 RT cavities are powered by a single 2.5 MW pulsed klystron. To achieve individual control over the phase and the voltage amplitude, each of the RF elements is equipped with a high power vector modulator. The RF control system will be discussed. The first RT cavity is completed with a power coupler, two mechanical tuners, vacuum and cooling systems, and has been RF conditioned. Preliminary tests on resonance frequency stability control and tests results of the cavity resonance frequency response to cooling water temperature and tuner position will also be discussed.

  3. Protection of Lotus Seedpod Proanthocyanidins on Organs and Tissues under High-intensity Excercise

    PubMed Central

    Mengyan, Zhang

    2015-01-01

    Lotus seedpod proanthocyanidins (LSPC) as a kind of polyphenols is widely used in medicines, cosmetics, health products. High-intensity exercise can cause damage to the body's organs and tissues. Different doses of LSPC is given to mice to check the function of protect effect to the body's organs and tissues under high-intensity exercise. The hemoglobin (HB) content, red blood cell (RBC) number and white blood cell (WBC) number were tested for mice after exercise. The activity of superoxide dismutase (SOD) and the contents of glutathione (GSH) and malondialdehyde (MDA) in muscle and viscera were evaluated. The result showed that LSPC can effectively reduce inflammation reaction in the body of mice with high intensity exercise, alleviate oxidative stress-induced injury of tissues and organs, and execute protective function on skeletal muscle and cardiac muscle. And the LSPC could enhance myocardial anti-oxygen and enzymatic activity which suggests the protective effects of resveratrol against exercise-induced myocardial damage in mice. PMID:26998176

  4. Effect of β-alanine supplementation on high-intensity exercise performance.

    PubMed

    Harris, Roger C; Stellingwerff, Trent

    2013-01-01

    Carnosine is a dipeptide of β-alanine and L-histidine found in high concentrations in skeletal muscle. Combined with β-alanine, the pKa of the histidine imidazole ring is raised to ∼6.8, placing it within the muscle intracellular pH high-intensity exercise transit range. Combination with β-alanine renders the dipeptide inert to intracellular enzymic hydrolysis and blocks the histidinyl residue from participation in proteogenesis, thus making it an ideal, stable intracellular buffer. For vegetarians, synthesis is limited by β-alanine availability; for meat-eaters, hepatic synthesis is supplemented with β-alanine from the hydrolysis of dietary carnosine. Direct oral β-alanine supplementation will compensate for low meat and fish intake, significantly raising the muscle carnosine concentration. This is best achieved with a sustained-release formulation of β-alanine to avoid paresthesia symptoms and decreasing urinary spillover. In humans, increased levels of carnosine through β-alanine supplementation have been shown to increase exercise capacity and performance of several types, particularly where the high-intensity exercise range is 1-4 min. β-Alanine supplementation is used by athletes competing in high-intensity track and field cycling, rowing, swimming events and other competitions.

  5. Effect of β-alanine supplementation on high-intensity exercise performance.

    PubMed

    Harris, Roger C; Stellingwerff, Trent

    2013-01-01

    Carnosine is a dipeptide of β-alanine and L-histidine found in high concentrations in skeletal muscle. Combined with β-alanine, the pKa of the histidine imidazole ring is raised to ∼6.8, placing it within the muscle intracellular pH high-intensity exercise transit range. Combination with β-alanine renders the dipeptide inert to intracellular enzymic hydrolysis and blocks the histidinyl residue from participation in proteogenesis, thus making it an ideal, stable intracellular buffer. For vegetarians, synthesis is limited by β-alanine availability; for meat-eaters, hepatic synthesis is supplemented with β-alanine from the hydrolysis of dietary carnosine. Direct oral β-alanine supplementation will compensate for low meat and fish intake, significantly raising the muscle carnosine concentration. This is best achieved with a sustained-release formulation of β-alanine to avoid paresthesia symptoms and decreasing urinary spillover. In humans, increased levels of carnosine through β-alanine supplementation have been shown to increase exercise capacity and performance of several types, particularly where the high-intensity exercise range is 1-4 min. β-Alanine supplementation is used by athletes competing in high-intensity track and field cycling, rowing, swimming events and other competitions. PMID:23899755

  6. Influence of repeated bouts of eccentric exercise on high-intensity aerobic performance.

    PubMed

    Higino, Wonder Passoni; Aparecido de Souza, Renato; Cavalcanti, Fabio de Sousa; Cardoso, Anderlei Dos Santos; Vasconcelos, Murilo Victor; Fernandes da Silva, Fabiano; Leme, José Alexandre C A

    2016-08-01

    [Purpose] It is believed that eccentric high-intensity exercise can decrease performance in subsequent exercise. However, with repetition, the deleterious effects can be minimized. Thus, this study evaluated the influence of repeated bouts of eccentric exercise on subsequent high-intensity aerobic performance. [Subjects and Methods] Seven healthy and sedentary male volunteers were recruited. a) Visit 1: determination of maximum oxygen uptake (VO2max) and speed associated with maximum oxygen uptake (vVO2max) in incremental treadmill testing; b) Visit 2: run to exhaustion at vVO2max (Tlim control); c) Visit 3: 10 sets of 10 depth jumps, followed by a run to exhaustion at vVO2max (Tlim 1); d) Visit 4: after 6 weeks without any physical training, the volunteers carried out the same procedures as on the third visit (Tlim 2). Data were analyzed using one-way analysis of variance (ANOVA) with the post-hoc Tukey test. [Results] Significant differences were found between Tlim control and Tlim 1 (283.4 ± 47.7 s vs. 125.2 ± 64.1 s, respectively), these were not different from Tlim 2. [Conclusion] Eccentric exercise showed deleterious effects on subsequent high-intensity aerobic performance. These effects were minimized after the exercise protocol was repeated 6 weeks after the first event. PMID:27630434

  7. Repeated High Intensity Bouts with Long Recovery: Are Bicarbonate or Carbohydrate Supplements an Option?

    PubMed Central

    Stöggl, Thomas; Torres-Peralta, Rafael; Cetin, Ebru

    2014-01-01

    The effects of varying recovery modes and the influence of preexercise sodium bicarbonate and carbohydrate ingestion on repeated high intensity performance, acid-base response, and recovery were analyzed in 12 well-trained males. They completed three repeated high intensity running bouts to exhaustion with intervening recovery periods of 25 min under the following conditions: sodium bicarbonate, active recovery (BIC); carbohydrate ingestion, active recovery (CHO); placebo ingestion, active recovery (ACTIVE); placebo ingestion, passive recovery (PASSIVE). Blood lactate (BLa), blood gases, heart rate, and time to exhaustion were collected. The three high intensity bouts had a duration of 138 ± 9, 124 ± 6, and 121 ± 6 s demonstrating a decrease from bout 1 to bout 3. Supplementation strategy had no effect on performance in the first bout, even with differences in pH and bicarbonate (HCO3−). Repeated sprint performance was not affected by supplementation strategy when compared to ACTIVE, while PASSIVE resulted in a more pronounced decrease in performance compared with all other interventions. BIC led to greater BLa, pH, and HCO3− values compared with all other interventions, while for PASSIVE the opposite was found. BLa recovery was lowest in PASSIVE; recovery in pH, and HCO3− was lower in PASSIVE and higher in BIC. PMID:25431775

  8. Influence of repeated bouts of eccentric exercise on high-intensity aerobic performance

    PubMed Central

    Higino, Wonder Passoni; Aparecido de Souza, Renato; Cavalcanti, Fabio de Sousa; Cardoso, Anderlei dos Santos; Vasconcelos, Murilo Victor; Fernandes da Silva, Fabiano; Leme, José Alexandre C.A.

    2016-01-01

    [Purpose] It is believed that eccentric high-intensity exercise can decrease performance in subsequent exercise. However, with repetition, the deleterious effects can be minimized. Thus, this study evaluated the influence of repeated bouts of eccentric exercise on subsequent high-intensity aerobic performance. [Subjects and Methods] Seven healthy and sedentary male volunteers were recruited. a) Visit 1: determination of maximum oxygen uptake (VO2max) and speed associated with maximum oxygen uptake (vVO2max) in incremental treadmill testing; b) Visit 2: run to exhaustion at vVO2max (Tlim control); c) Visit 3: 10 sets of 10 depth jumps, followed by a run to exhaustion at vVO2max (Tlim 1); d) Visit 4: after 6 weeks without any physical training, the volunteers carried out the same procedures as on the third visit (Tlim 2). Data were analyzed using one-way analysis of variance (ANOVA) with the post-hoc Tukey test. [Results] Significant differences were found between Tlim control and Tlim 1 (283.4 ± 47.7 s vs. 125.2 ± 64.1 s, respectively), these were not different from Tlim 2. [Conclusion] Eccentric exercise showed deleterious effects on subsequent high-intensity aerobic performance. These effects were minimized after the exercise protocol was repeated 6 weeks after the first event. PMID:27630434

  9. Protection of Lotus Seedpod Proanthocyanidins on Organs and Tissues under High-intensity Excercise.

    PubMed

    Mengyan, Zhang

    2015-01-01

    Lotus seedpod proanthocyanidins (LSPC) as a kind of polyphenols is widely used in medicines, cosmetics, health products. High-intensity exercise can cause damage to the body's organs and tissues. Different doses of LSPC is given to mice to check the function of protect effect to the body's organs and tissues under high-intensity exercise. The hemoglobin (HB) content, red blood cell (RBC) number and white blood cell (WBC) number were tested for mice after exercise. The activity of superoxide dismutase (SOD) and the contents of glutathione (GSH) and malondialdehyde (MDA) in muscle and viscera were evaluated. The result showed that LSPC can effectively reduce inflammation reaction in the body of mice with high intensity exercise, alleviate oxidative stress-induced injury of tissues and organs, and execute protective function on skeletal muscle and cardiac muscle. And the LSPC could enhance myocardial anti-oxygen and enzymatic activity which suggests the protective effects of resveratrol against exercise-induced myocardial damage in mice. PMID:26998176

  10. Joint Cooling does not Hinder Athletic Performance during High-intensity Intermittent Exercise.

    PubMed

    Kim, H; Lee, D; Choi, H-M; Park, J

    2016-07-01

    We examined the effects of ankle and knee joint cooling on 20-m sprint times and maximal vertical jump heights during high-intensity intermittent exercise. 21 healthy collegiate male basketball (n=14) and handball players (n=7) underwent 3 experimental sessions. Each session consisted of four 15-min quarters of high-intensity intermittent exercises including various intensities of 20-m shuttle running and jumping. A 20-min bilateral joint cooling (ankle, knee, or control-no cooling: in a counterbalanced order) was applied before quarters 1 and 3. After joint cooling, no warm-up activity other than the exercise protocol was given. The 20-m sprint times and maximal vertical jump heights in each experimental session were recorded at baseline (prior to quarter-1) and during each quarter. To test joint cooling effects over time, we performed 3×5 mixed model ANOVAs. Neither ankle nor knee joint cooling changed 20-m sprint times (F8,280=1.45; p=0.18) or maximal vertical jump heights (F8,280=0.76; p=0.64). However, a trend was observed in which joint cooling immediately decreased (quarters 1 and 3) but active warm-up for approximately 20 min improved 20-min sprint times (quarters 2 and 4). Our study suggests that athletic performance such as sprinting and jumping are not altered by joint cooling applied prior to or during high-intensity intermittent exercise. PMID:27119166

  11. High-intensity sound in air saturated fibrous bulk porous materials

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L., II

    1982-01-01

    The interaction high-intensity sound with bulk porous materials in porous materials including Kevlar 29 is reported. The nonlinear behavior of the materials was described by dc flow resistivity tests. Then acoustic propagation and reflection were measured and small signal broadband measurements of phase speed and attenuation were carried out. High-intensity tests were made with 1, 2, and 3 kHz tone bursts to measure harmonic generation and extra attenuation of the fundamental. Small signal standing wave tests measured impedence between 0.1 and 3.5 kHz. High level tests with single cycle tone bursts at 1 to 4 kHz show that impedance increases with intensity. A theoretical analysis is presented for high-porosity, rigid-frame, isothermal materials. One dimensional equations of motion are derived and solved by perturbation. The experiments show that there is excess attenuation of the fundamental component and in some cases a close approach to saturation. A separate theoretical model, developed to explain the excess attenuation, yields predictions that are in good agreement with the measurements. Impedance and attenuation at high intensities are modeled.

  12. Repeated high intensity bouts with long recovery: are bicarbonate or carbohydrate supplements an option?

    PubMed

    Stöggl, Thomas; Torres-Peralta, Rafael; Cetin, Ebru; Nagasaki, Masaru

    2014-01-01

    The effects of varying recovery modes and the influence of preexercise sodium bicarbonate and carbohydrate ingestion on repeated high intensity performance, acid-base response, and recovery were analyzed in 12 well-trained males. They completed three repeated high intensity running bouts to exhaustion with intervening recovery periods of 25 min under the following conditions: sodium bicarbonate, active recovery (BIC); carbohydrate ingestion, active recovery (CHO); placebo ingestion, active recovery (ACTIVE); placebo ingestion, passive recovery (PASSIVE). Blood lactate (BLa), blood gases, heart rate, and time to exhaustion were collected. The three high intensity bouts had a duration of 138 ± 9, 124 ± 6, and 121 ± 6 s demonstrating a decrease from bout 1 to bout 3. Supplementation strategy had no effect on performance in the first bout, even with differences in pH and bicarbonate (HCO3(-)). Repeated sprint performance was not affected by supplementation strategy when compared to ACTIVE, while PASSIVE resulted in a more pronounced decrease in performance compared with all other interventions. BIC led to greater BLa, pH, and HCO3(-) values compared with all other interventions, while for PASSIVE the opposite was found. BLa recovery was lowest in PASSIVE; recovery in pH, and HCO3(-) was lower in PASSIVE and higher in BIC.

  13. High-intensity statin therapy and regression of coronary atherosclerosis in patients with diabetes mellitus.

    PubMed

    Athyros, Vasilios G; Katsiki, Niki; Karagiannis, Asterios; Mikhailidis, Dimitri P

    2015-01-01

    Recommended low-density lipoprotein cholesterol (LDL-C) levels for patients with documented cardiovascular disease (CVD) are <100mg/dL (2.6mmol/l) with further reduction to <70mg/dL (1.8mmol/l) for higher-risk patients. High-intensity statin treatment may halt the progression as well as stabilize and induce regression of coronary atheromatous plaques while lowering CVD event rates. Diabetes mellitus (DM) is a major negative determinant of coronary artery plaque regression during statin therapy. However, regression of coronary atherosclerosis in DM patients is feasible to the same degree as in those without DM when very low LDL-C values (<70mg/dL; 1.8mmol/l) are achieved with high intensity statin treatment. The recent 2013 American College of Cardiology/American Heart Association (ACC/AHA) Guidelines on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults suggest to abandon specific LDL-C treatment targets. This strategy may deprive high risk patients, such as those with DM, from very high intensity statin treatment or drug combinations aiming to achieve very low LDL-C levels in order to reduce clinical events.

  14. Joint Cooling does not Hinder Athletic Performance during High-intensity Intermittent Exercise.

    PubMed

    Kim, H; Lee, D; Choi, H-M; Park, J

    2016-07-01

    We examined the effects of ankle and knee joint cooling on 20-m sprint times and maximal vertical jump heights during high-intensity intermittent exercise. 21 healthy collegiate male basketball (n=14) and handball players (n=7) underwent 3 experimental sessions. Each session consisted of four 15-min quarters of high-intensity intermittent exercises including various intensities of 20-m shuttle running and jumping. A 20-min bilateral joint cooling (ankle, knee, or control-no cooling: in a counterbalanced order) was applied before quarters 1 and 3. After joint cooling, no warm-up activity other than the exercise protocol was given. The 20-m sprint times and maximal vertical jump heights in each experimental session were recorded at baseline (prior to quarter-1) and during each quarter. To test joint cooling effects over time, we performed 3×5 mixed model ANOVAs. Neither ankle nor knee joint cooling changed 20-m sprint times (F8,280=1.45; p=0.18) or maximal vertical jump heights (F8,280=0.76; p=0.64). However, a trend was observed in which joint cooling immediately decreased (quarters 1 and 3) but active warm-up for approximately 20 min improved 20-min sprint times (quarters 2 and 4). Our study suggests that athletic performance such as sprinting and jumping are not altered by joint cooling applied prior to or during high-intensity intermittent exercise.

  15. High-resolution phase contrast imaging of brittle failure during impact loading

    NASA Astrophysics Data System (ADS)

    Ramos, Kyle; Jensen, Brian; Shengnian, Luo; Hooks, Daniel; Yeager, John; Kwiatkowski, Kris; Shimada, Tsutomu; Fezzaa, Kamel

    2012-02-01

    Heterogeneous processes involved in brittle failure necessitate in situ, spatially resolved observation. An impact capability has recently been developed in which synchrotron phase contrast imaging (PCI), at the 32-ID beamline of the Advanced Photon Source, can be used to resolve crack interfaces during dynamic deformation. The imaging is both fast and high-resolution as images with approximately 3 micrometer resolution are obtained from single x-ray pulses (<100 ps duration). Experiments have been performed to investigate questions regarding velocimetry interpretation, the effect of stress states, and whether cracking can occur under uniaxial compression. Uniaxial compression and tension in planar impact configurations and cylindrical impact penetration has been used to vary stress states and observe failure. PCI and velocimetry results from these experiments will be presented for a range of brittle materials spanning glasses and ceramics.

  16. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  17. Characterization of the behavior under impact loading of a maraging steel strengthened by nano-precipitates

    NASA Astrophysics Data System (ADS)

    Lach, E.; Redjaïmia, A.; Leitner, H.; Clemens, H.

    2006-08-01

    Nanometer-sized precipitates are responsible for the high strength of steel alloys well known as maraging steels. The term maraging relates to aging reactions in very low-carbon martensitic steels. Due to precipitation hardening 0.2% yield stress values of up to 2.4 GPa can be achieved. The class of stainless maraging steels exhibits an excellent combination of very high strength and hardness, ductility and toughness, combined with good corrosion resistance. In many applications like crash worthiness or ballistic protection the materials are loaded at high strain-rates. The most important characteristic of material behavior under dynamic load is the dynamic yield stress. In this work compression tests had been conducted at strain-rates in the order of 5 x 10 - 3 s - 1 up to 3 x 103 s - 1 to study the materials behaviour. Additionally high dynamic compression tests had been performed in the temperature range from -40circC up to 300circC.

  18. Impact of Adenoviral Stool Load on Adenoviremia in Pediatric Hematopoietic Stem Cell Transplant Recipients

    PubMed Central

    Srinivasan, Ashok; Klepper, Corie; Sunkara, Anusha; Kang, Guolian; Carr, Jeanne; Gu, Zhengming; Leung, Wing; Hayden, Randall T.

    2015-01-01

    Background Adenoviremia adversely affects prognosis in the post-hematopoietic stem cell transplant (HSCT) setting. Methods We sought to determine retrospectively the cutoff load of adenovirus in the stool as a predictor of adenoviremia, in children who underwent an allogeneic HSCT. The prevalence of sapovirus, norovirus and astrovirus in the stool was also studied. Results The study cohort consisted of 117 patients, of which 71 (60%) had diarrhea. Adenovirus was detected in the stool in 39 out of 71 (55%) patients. Age ≤ 10 years (P = 0.05; odds ratio, 2.57; 95% confidence interval: 0.98–6.75), and male sex (P = 0.04; odds ratio 2.67; 95% confidence interval: 1.02–6.99) increased risk for detection of adenovirus in stool on univariate analysis. Co-infections with enteric pathogens were infrequent. Viral load > 106 copies / gram stool predicted adenoviremia with a sensitivity and specificity of 82%. Sapovirus, norovirus, and astrovirus were detected in 3, 4 and one patient, respectively. Conclusions Quantitative detection of adenovirus in stool may have implications for pre-emptive therapy. Testing for other enteric viruses may have implications for infection control. PMID:25742243

  19. Rapid response of soil fungal communities to low and high intensity fire

    NASA Astrophysics Data System (ADS)

    Smith, Jane E.; Cowan, Ariel D.; Reazin, Chris; Jumpponen, Ari

    2016-04-01

    Contemporary fires have created high-severity burn areas exceeding historical distributions in forests in the western United States. Until recently, the response of soil ecosystems to high intensity burns has been largely unknown. In complementary studies, we investigated the environmental effect of extreme soil heating, such that occurs with the complete combustion of large down wood during wildfires, on soil fungi and nutrients. We used TRFLP and next generation sequencing (Illumina MiSeq) to investigate the fungal communities. During the burning of large down wood, temperatures lethal to fungi were detected at 0-cm, 5-cm, and 10-cm depths in soils compared to 0-cm depth in soils receiving low intensity broadcast burns. We compared the soil fungal diversity in ten high intensity burned plots paired with adjacent low intensity burned plots before and one week after at 0-10 cm soil depth. Nonmetric Multidimensional Scaling (NMS) ordinations and analyses of taxon frequencies reveal a substantial community turnover and corresponding near complete replacement of the dominant basidiomycetes by ascomycetes in high intensity burns. These coarse-level taxonomic responses were primarily attributable to a few fire-responsive (phoenicoid) fungi, particularly Pyronema sp. and Morchella sp., whose frequencies increased more than 100-fold following high intensity burns. Pinus ponderosa seedlings planted one week post-burn were harvested after four months for EMF root tip analysis. We found: a) greater differences in soil properties and nutrients in high intensity burned soils compared to low intensity burned and unburned soils; b) no differences in EMF richness and diversity; and c) weak differences in community composition based on relative abundance between unburned and either burn treatments. These results confirm the combustion of large downed wood can alter the soil environment directly beneath it. However, an EMF community similar to low burned soils recolonized high

  20. Evaluating Intervention Fidelity: An Example from a High-Intensity Interval Training Study

    PubMed Central

    Taylor, Kathryn L.; Weston, Matthew; Batterham, Alan M.

    2015-01-01

    Aim Intervention fidelity refers to the degree to which an experimental manipulation has been implemented as intended, but simple, robust methods for quantifying fidelity have not been well documented. Therefore, we aim to illustrate a rigorous quantitative evaluation of intervention fidelity, using data collected during a high-intensity interval training intervention. Design Single-group measurement study. Methods Seventeen adolescents (mean age ± standard deviation [SD] 14.0 ± 0.3 years) attended a 10-week high-intensity interval training intervention, comprising two exercise sessions per week. Sessions consisted of 4-7 45-s maximal effort repetitions, interspersed with 90-s rest. We collected heart rate data at 5-s intervals and recorded the peak heart rate for each repetition. The high-intensity exercise criterion was ≥90% of individual maximal heart rate. For each participant, we calculated the proportion of total exercise repetitions exceeding this threshold. A linear mixed model was applied to properly separate the variability in peak heart rate between- and within-subjects. Results are presented both as intention to treat (including missed sessions) and per protocol (only participants with 100% attendance; n=8). Results For intention to treat, the median (interquartile range) proportion of repetitions meeting the high-intensity criterion was 58% (42% to 68%). The mean peak heart rate was 85% of maximal, with a between-subject SD of 7.8 (95% confidence interval 5.4 to 11.3) percentage points and a within-subject SD of 15.1 (14.6 to 15.6) percentage points. For the per protocol analysis, the median proportion of high-intensity repetitions was 68% (47% to 86%). The mean peak heart rate was 91% of maximal, with between- and within-subject SDs of 3.1 (-1.3 to 4.6) and 3.4 (3.2 to 3.6) percentage points, respectively. Conclusions Synthesising information on exercise session attendance and compliance (exercise intensity) quantifies the intervention dose and