Science.gov

Sample records for high-intensity laser interactions

  1. High intensity laser interactions with atomic clusters

    SciTech Connect

    Ditmire, T

    2000-08-07

    The development of ultrashort pulse table top lasers with peak pulse powers in excess of 1 TW has permitted an access to studies of matter subject to unprecedented light intensities. Such interactions have accessed exotic regimes of multiphoton atomic and high energy-density plasma physics. Very recently, the nature of the interactions between these very high intensity laser pulses and atomic clusters of a few hundred to a few thousand atoms has come under study. Such studies have found some rather unexpected results, including the striking finding that these interactions appear to be more energetic than interactions with either single atoms or solid density plasmas. Recent experiments have shown that the explosion of such clusters upon intense irradiation can expel ions from the cluster with energies from a few keV to nearly 1 MeV. This phenomenon has recently been exploited to produce DD fusion neutrons in a gas of exploding deuterium clusters. Under this project, we have undertaken a general study of the intense femtosecond laser cluster interaction. Our goal is to understand the macroscopic and microscopic coupling between the laser and the clusters with the aim of optimizing high flux fusion neutron production from the exploding deuterium clusters or the x-ray yield in the hot plasmas that are produced in this interaction. In particular, we are studying the physics governing the cluster explosions. The interplay between a traditional Coulomb explosion description of the cluster disassembly and a plasma-like hydrodynamic explosion is not entirely understood, particularly for small to medium sized clusters (<1000 atoms) and clusters composed of low-Z atoms. We are focusing on experimental studies of the ion and electron energies resulting from such explosions through various experimental techniques. We are also examining how an intense laser pulse propagates through a dense medium containing these clusters.

  2. High-intensity laser-atom interactions

    NASA Astrophysics Data System (ADS)

    Joachain, Charles J.

    2014-11-01

    Following a historical introduction on the nature of light and its interaction with matter, a survey is given of the development of lasers capable of delivering short pulses of very intense radiation. The peak intensities of these laser pulses are so high that the corresponding laser fields can compete with, or even dominate, the Coulomb field in governing the dynamics of atomic systems. As a result, new phenomena, known as multiphoton processes, can occur. An outline is given of the basic properties found in the study of three important multiphoton processes. Firstly, the multiphoton ionization of atoms and the phenomenon of “above-threshold ionization”. Secondly, the emission by atoms of high-order harmonics of the frequency of the driving laser and their use to generate laser pulses having durations in the attosecond range. Thirdly, laser-assisted electron-atom collisions. A review is then given of the main non-perturbative methods which have been used to perform theoretical studies of multiphoton processes.

  3. High-power, high-intensity laser propagation and interactions

    SciTech Connect

    Sprangle, Phillip; Hafizi, Bahman

    2014-05-15

    This paper presents overviews of a number of processes and applications associated with high-power, high-intensity lasers, and their interactions. These processes and applications include: free electron lasers, backward Raman amplification, atmospheric propagation of laser pulses, laser driven acceleration, atmospheric lasing, and remote detection of radioactivity. The interrelated physical mechanisms in the various processes are discussed.

  4. Understanding laser-solid interactions at ultra-high intensities

    NASA Astrophysics Data System (ADS)

    Murphy, C. D.; Gray, R. J.; Carroll, D. C.; MacLellan, D. A.; Powell, H.; Scott, G. G.; Ridgers, C. P.; Brady, C. S.; Neely, D.; Green, J. S.; Booth, N.; McKenna, P.

    2012-10-01

    The interaction of matter with lasers is a subject which has progressed rapidly over the last two decades as higher intensity lasers have opened the door to nonlinear and then relativistic interactions such that applications in ion acceleration and x-ray backlighting sources have become a clear possibility. Until recently, lasers capable of reaching the highest intensities (˜10^21 Wcm-2) have been glass-based systems with a low shot rate making detailed studies prohibitively time consuming. The development of petawatt-class Ti:Sapphire lasers such as Astra Gemini at STFC - Rutherford Appleton Laboratory, has made the systematic studies required to understand such interaction physics feasible. One such experiment on the Astra Gemini laser will be presented. The photon and particle diagnostics used will be explained and their results presented.

  5. Interaction of high-intensity laser radiation with metals.

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.

    1971-01-01

    The interaction is characterized by the production of plasma, within which the primary absorption occurs. Absorption of laser radiation by a plasma may occur by several processes. The absorption process called 'inverse bremsstrahlung' is discussed. The interaction of a laser beam with the plasma produced from a thick metal target was studied. The results of the measurements of the ion kinetic energies are presented in a graph. In addition to measurements with thick targets, information was also obtained with a thin foil of gold.

  6. Gigagauss magnetic field generation from high intensity laser solid interactions

    SciTech Connect

    Cowan, T; Moran, M; Hammer, J; Hatchett, S; Hunt, A; Key, M H; Langdon, A B; Lasinski, B F; Pennington, D; Perry, M D; Sefcik, J A; Snavely, R; Trebes, J; Wilks, S C

    1998-10-15

    Intense laser (>1021 W/cm2 ) sources using pulse compression techniques in the sub-picosecond time frame have been used to create dynamic electric field strenghs in excess of 100 Megavolts/micron with associated magnetic field strengths in the Gigagauss regime. We have begun a series of experiments using the Petawatt Laser system at LLNL to determine the potential of these sources for a variety of applications. Hot electron spectra from laser-target interactions in Au have been measured with energies up to 100 MeV. Hot x-ray production has been measured using filtered thermoluminescent dosimeters and threshold nuclear activation ({gamma},n) from giant resonance interactions. High resolution radiographs through a {rho}r > 165 gm/cm² have been obtained. Dose levels in the x-ray band from 2-8 MeV have been measured at the level of several Rads at one meter from the target for a single pulse. The physics of these sources and the scaling relationships and laser technology required to provide high magnetic fields will be discussed. Results of preliminary magnetic field calculations will be presented along with potential applications of this technology and estimates of the fundamental scaling limits for future development.

  7. High intensity 30 femtosecond laser pulse interaction with thin foils

    SciTech Connect

    Giulietti, A.; Barbini, A.; Gizzi, L. A.; Chessa, P.; Giulietti, D.; Teychenne, D.

    1998-02-20

    An experimental investigation on the interaction of 30 femtosecond laser pulses with 0.1 and 1.0 {mu}m thick plastic foils has been performed at intensities from 5x10{sup 16} to 5x10{sup 18} W/cm{sup 2}. The interaction physics was found to be definitely different whether the nanosecond low intensity prepulses led to an early plasma formation or not. In the first case high reflectivity and very low transmittivity were observed, together with second and three-half harmonic generation. In absence of precursor plasma, with increasing intensity, reflectivity dropped to low values, while transmittivity increased up to an almost complete transparency. No harmonic generation was observed in this latter condition, while ultra-fast ionisation was inferred by the blue-shift of the transmitted pulse. Finally, intense hard X-ray emission was detected at the maximum laser intensity level. Current theories or numerical simulations cannot explain the observed transparency. A new model of magnetically induced optical transparency (MIOT) is briefly introduced.

  8. Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser-Plasma Interactions

    DTIC Science & Technology

    2016-08-19

    field Abstract Reduced surface area targets were studied using an ultra- high intensity femtosecond laser in order to determine the effect of electron...New J. Phys. 18 (2016) 063020 doi:10.1088/1367-2630/18/6/063020 PAPER Target surface area effects on hot electron dynamics from high intensity laser...the higher intensity interaction, asymmetric electron current around the hexagonal loop (b)was attributed to field induced current along parallel wire

  9. High Intensity Laser Interactions with Narrow Gap Semiconductors

    NASA Astrophysics Data System (ADS)

    Hasselback, Michael Peter

    1995-01-01

    Two-photon absorption in solids is a well known and thoroughly characterized nonlinear optical process. Higher order multi-photon absorption however, has received comparatively little study. In this dissertation, results of experiments with bulk, narrow gap semiconductors InSb and InAs are reported. By performing Z-scans and pump-probe measurements at different laser wavelengths and sample temperatures, various nonlinear optical processes are identified. Data obtained with InAs is consistent with photocarrier generation by three and four-photon absorption. It is believed this is the first direct evidence of four-photon absorption in a semiconductor. Leakage two-photon is observed with InSb at 15K. This novel effect arises from dynamic band un-blocking caused by laser heating of conduction electrons. All phenomena are excited with picosecond CO_2 laser pulses at irradiances below the material damage threshold. Physical models describing the observations are presented.

  10. Short-pulse high intensity laser thin foil interaction

    NASA Astrophysics Data System (ADS)

    Audebert, Patrick

    2003-10-01

    The technology of ultrashort pulse laser generation has progressed to the point that optical pulses larger than 10 J, 300 fs duration or shorter are routinely produced. Such pulses can be focused to intensities exceeding 10^18 W/cm^2. With high contrast pulses, these focused intensities can be used to heat solid matter to high temperatures with minimal hydrodynamic expansion, producing an extremely high energy-density state of matter for a short period of time. This high density, high temperature plasma can be studied by x-ray spectroscopy. We have performed experiments on thin foils of different elements under well controlled conditions at the 100 Terawatt laser at LULI to study the characteristics X-ray emission of laser heated solids. To suppress the ASE effect, the laser was frequency doubled. S-polarized light with a peak intensity of 10^19W/cm^2 was used to minimize resonance absorption. To decrease the effect of longitudinal temperature gradients very thin (800 μ) aluminum foil targets were used. We have also studied the effect of radial gradient by limiting the measured x-ray emission zone using 50μ or 100μ pinhole on target. The spectra, in the range 7-8Å, were recorded using a conical crystal spectrometer coupled to a 800 fs resolution streak camera. A Fourier Domain Interferometry (FDI) of the back of the foil was also performed providing a measurement of the hydrodynamic expansion as function of time for each shot. To simulate the experiment, we used the 1D hydrodynamic code FILM with a given set of plasma parameter (ρ, Te) as initial conditions. The X-ray emission was calculated by post processing hydrodynamic results with a collisional-radiative model which uses super-configuration average atomic data. The simulation reproduces the main features of the experimental time resolved spectrum.

  11. Spectroscopic Analysis of High Intensity Laser Beam Jets Interaction Experiments on the Leopard Laser at UNR

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Weller, M. E.; Kantsyrev, V. L.; Safronova, A. S.; Moschella, J. J.; Shrestha, I.; Shlyapsteva, V. V.; Stafford, A.; Keim, S. F.; University of Nevada Reno Team

    2013-10-01

    Results of Ar gas-puff experiments performed on the high power Leopard laser at UNR are presented. Flux density of laser radiation in focal spot was up to 2 × 1016 W/cm2 (pulse duration was 0.8 ns and laser wavelength was 1.057 μm). Specifically, spectroscopic analysis of K-shell Ar spectra are investigated and compared as functions of the orientation of the laser beam to linear gas jet. The laser beam axis was positioned either along the jet plane or orthogonal to it at a distance of 1 mm from the nozzle output. The diagnostics used included a time-integrated x-ray spectrometer along with a set of filtered Si diodes with various cutoff energies. In order to identify lines, a non-local thermodynamic equilibrium (non-LTE) kinetic model was utilized and was also used to determine plasma parameters such as electron temperature and density. The importance of the spectroscopic study of high intensity laser beam-jets interaction experiments is discussed. This work was supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno, and in part by the DOE/NNSA Cooperative agreements DE-NA0001984 and DE-FC52-06NA27616.

  12. James Clerk Maxwell Prize Address: High Intensity Laser Propagation and Interactions

    NASA Astrophysics Data System (ADS)

    Sprangle, Phillip

    2013-10-01

    High intensity laser radiation sources cover a wide range of parameters, e.g., peak powers from tera to peta watts, pulse lengths from pico to femto seconds, repetition rates ranging from kilo to mega hertz and average powers of many tens of watts. This talk will cover, among other things, some of the unique physical processes which result when high intensity laser radiation interacts with gases and plasmas. One of the interesting topics to be discussed is the propagation of these laser pulses in a turbulent atmosphere which results in a multitude of coupled linear and nonlinear processes including filamentation and scintillation. Phase conjugation techniques to reduce the effects of atmospheric turbulence (scintillation) will be described. This talk will also discuss a range of potential applications of these high intensity lasers, including: electron acceleration in spatially periodic and tapered plasma channels, detection of radioactive material using electromagnetic signatures, atmospheric lasing of N2 molecules, as well as incoherent and coherent x-ray generation mechanisms. Research supported by NRL, ONR and UMD.

  13. Femtosecond dynamics of energetic electrons in high intensity laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bisesto, F.; Botton, M.; Castellano, M.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Ferrario, M.; Galletti, M.; Henis, Z.; Petrarca, M.; Schleifer, E.; Zigler, A.

    2016-10-01

    Highly energetic electrons are generated at the early phases of the interaction of short-pulse high-intensity lasers with solid targets. These escaping particles are identified as the essential core of picosecond-scale phenomena such as laser-based acceleration, surface manipulation, generation of intense magnetic fields and electromagnetic pulses. Increasing the number of the escaping electrons facilitate the late time processes in all cases. Up to now only indirect evidences of these important forerunners have been recorded, thus no detailed study of the governing mechanisms was possible. Here we report, for the first time, direct time-dependent measurements of energetic electrons ejected from solid targets by the interaction with a short-pulse high-intensity laser. We measured electron bunches up to 7 nanocoulombs charge, picosecond duration and 12 megaelectronvolts energy. Our ’snapshots’ capture their evolution with an unprecedented temporal resolution, demonstrat- ing a significant boost in charge and energy of escaping electrons when increasing the geometrical target curvature. These results pave the way toward significant improvement in laser acceleration of ions using shaped targets allowing the future development of small scale laser-ion accelerators.

  14. Femtosecond dynamics of energetic electrons in high intensity laser-matter interactions

    PubMed Central

    Pompili, R.; Anania, M. P.; Bisesto, F.; Botton, M.; Castellano, M.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Ferrario, M.; Galletti, M.; Henis, Z.; Petrarca, M.; Schleifer, E.; Zigler, A.

    2016-01-01

    Highly energetic electrons are generated at the early phases of the interaction of short-pulse high-intensity lasers with solid targets. These escaping particles are identified as the essential core of picosecond-scale phenomena such as laser-based acceleration, surface manipulation, generation of intense magnetic fields and electromagnetic pulses. Increasing the number of the escaping electrons facilitate the late time processes in all cases. Up to now only indirect evidences of these important forerunners have been recorded, thus no detailed study of the governing mechanisms was possible. Here we report, for the first time, direct time-dependent measurements of energetic electrons ejected from solid targets by the interaction with a short-pulse high-intensity laser. We measured electron bunches up to 7 nanocoulombs charge, picosecond duration and 12 megaelectronvolts energy. Our ’snapshots’ capture their evolution with an unprecedented temporal resolution, demonstrat- ing a significant boost in charge and energy of escaping electrons when increasing the geometrical target curvature. These results pave the way toward significant improvement in laser acceleration of ions using shaped targets allowing the future development of small scale laser-ion accelerators. PMID:27713541

  15. Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC

    SciTech Connect

    Liang, Taiee

    2015-09-25

    A systematic study of photon and neutron radiation doses generated in high-intensity laser-solid interactions is underway at SLAC National Accelerator Laboratory. We found that these laser-solid experiments are being performed using a 25 TW (up to 1 J in 40 fs) femtosecond pulsed Ti:sapphire laser at the Linac Coherent Light Source’s (LCLS) Matter in Extreme Conditions (MEC) facility. Additionally, radiation measurements were performed with passive and active detectors deployed at various locations inside and outside the target chamber. Results from radiation dose measurements for laser-solid experiments at SLAC MEC in 2014 with peak intensity between 1018 to 7.1x1019 W/cm2 are presented.

  16. Ultrafast Charge Dynamics Initiated by High-Intensity, Ultrashort Laser-Matter Interaction

    SciTech Connect

    Borghesi, Marco; Romagnani, Lorenzo; Kar, Satyabrata; Cecchetti, Carlo A.; Toncian, Toma; Jung, Ralph; Osterholtz, Jens; Willi, Oswald; Antici, Patrizio; Audebert, Patrick; Brambrink, Erik; Fuchs, Julien; Ceccherini, Francesco; Macchi, Andrea; Galimberti, Marco; Gizzi, Leonida A.; Grismayer, Thomas; Mora, Patrick; Schiavi, Angelo

    2006-04-07

    The interaction of high-intensity laser pulses with matter releases instantaneously ultra-large currents of highly energetic electrons, leading to the generation of highly-transient, large-amplitude electric and magnetic fields. We report results of recent experiment in which such charge dynamics have been studied by using proton probing techniques able to provide maps of the electrostatic fields with high spatial and temporal resolution. The dynamics of ponderomotive channelling in underdense plasmas have been studied in this way, as also the processes of Debye sheath formation and MeV ion front expansion at the rear of laser-irradiated thin metallic foils. An application employing laser-driven impulsive fields for energy-selective ion beam focusing is also presented.

  17. Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma.

    PubMed

    Willingale, L; Mangles, S P D; Nilson, P M; Clarke, R J; Dangor, A E; Kaluza, M C; Karsch, S; Lancaster, K L; Mori, W B; Najmudin, Z; Schreiber, J; Thomas, A G R; Wei, M S; Krushelnick, K

    2006-06-23

    A beam of multi-MeV helium ions has been observed from the interaction of a short-pulse high-intensity laser pulse with underdense helium plasma. The ion beam was found to have a maximum energy for He2+ of (40(+3)(-8)) MeV and was directional along the laser propagation path, with the highest energy ions being collimated to a cone of less than 10 degrees. 2D particle-in-cell simulations show that the ions are accelerated by a sheath electric field that is produced at the back of the gas target. This electric field is generated by transfer of laser energy to a hot electron beam, which exits the target generating large space-charge fields normal to its boundary.

  18. Appearance of Density Cavitations in the Laser Wake in Simulations of High Intensity Laser-Plasma Interactions

    SciTech Connect

    Wang, T.-L.

    2009-01-22

    Nonlinear interactions of high intensity, ultrashort laser pulses with underdense plasmas produce many interesting features that may appear in computer simulations. One of these features commonly observed in Particle-In-Cell (PIC) simulations is the spontaneous appearance of long-lived density cavitations in the plasma wake region behind the laser pulse. To study these cavitations, several small 2D PIC simulations are run in which plasma density, density ramps, total simulation time, laser pulsewidth, laser intensity, and laser polarization parameters have been varied. Based on the simulation results, some possible aspects of an experiment designed to directly detect these structures are discussed.

  19. Resistively enhanced proton acceleration via high-intensity laser interactions with cold foil targets

    SciTech Connect

    Gibbon, Paul

    2005-08-01

    The acceleration of MeV protons by high-intensity laser interaction with foil targets is studied using a recently developed plasma simulation technique. Based on a hierarchical N-body tree algorithm, this method provides a natural means of treating three-dimensional, collisional transport effects hitherto neglected in conventional explicit particle-in-cell simulations. For targets with finite resistivity, hot electron transport is strongly inhibited, even at temperatures in the MeV range. This leads to suppression of ion acceleration from the rear of the target and an enhancement in energies and numbers of protons originating from the front.

  20. Comparing Particle-in-Cell QED Models for High-Intensity Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Luedtke, Scott V.; Labun, Lance A.; Hegelich, Björn Manuel

    2016-10-01

    High-intensity lasers, such as the Texas Petawatt, are pushing into new regimes of laser-matter interaction, requiring continuing improvement and inclusion of new physics effects in computer simulations. Experiments at the Texas Petawatt are reaching intensity regimes where new physics-quantum electrodynamics (QED) corrections to otherwise classical plasma dynamics-becomes important. We have two particle-in-cell (PIC) codes with different QED implementations. We review the theory of photon emission in QED-strong fields, and cover the differing PIC implementations. We show predictions from the two codes and compare with ongoing experiments. This work was supported by NNSA cooperative agreement DE-NA0002008, the Defense Advanced Research Projects Agency's PULSE program (12-63-PULSE-FP014) and the Air Force Office of Scientific Research (FA9550-14-1-0045). HPC resources provided by TACC.

  1. Characterization of the fast electrons distribution produced in a high intensity laser target interaction

    SciTech Connect

    Westover, B.; Chen, C. D.; Patel, P. K.; McLean, H.; Beg, F. N.

    2014-03-15

    Experiments on the Titan laser (∼150 J, 0.7 ps, 2 × 10{sup 20} W cm{sup −2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo code Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2 MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5 MeV and 4 MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.

  2. Simulation of Ultrafast High-Intensity Laser-Plasma Interaction and X-Ray Production

    NASA Astrophysics Data System (ADS)

    Ma, Guobin; Nantel, Marc; Gu, Shaoting; Umstadter, Donald

    1997-11-01

    We use a 1D Lagrangian hydrodynamic code to simulate the interaction of an ultrashort (100 fs) high intensity ( ~ 10^17 W/cm^2) laser pulse with a dense plasma. The laser energy deposition is calculated self-consistently by solving the time-independent Helmholtz wave equation coupled with plasma temperature and density. The ponderomotive force is included during the calculation. The ionization is calculated with an average atomic model and a detailed atomic code FLY, respectively. We compare the average ionization difference obtained with the two methods under the very same input parameters, such as laser intensity, pulse width, etc. Then, we use FLY to calculate the population density and synthesize the plasma spectra. Detailed energy levels up to n=25 of H-, He-, Li-like ions are considered. The continuum lowering, a very important effect in high-density plasma, is taken into account with three distinct models. We compare the difference due to the models. The space-integrated and time-resolved synthetic spectra using Stewart-Pyatt continuum lowering model are comparable to experiments.

  3. X-ray and γ ray emission from a high intensity laser-solid interactions.

    NASA Astrophysics Data System (ADS)

    Beg, F. N.; Bell, A. R.; Dangor, A. E.; Fews, A. P.; Lee, P.; Norreys, P.; Tatarakis, M.

    1996-11-01

    We report measurement of x-rays and γ rays in the range 7 keV to 10 MeV produced in a high intensity (10^18--10^19 Wcm-2, 1 μm, 1 ps) laser-solid interactions. Targets of various Z materials were used including cryogenic deuterium. Eight filtered pin diodes and four scintillator/photomultipliers were used to get the spectral information of the emitted radiation. Measurements showed that the spectrum extended beyond 10 MeV. Our observations show that the x-rays and γ rays from higher Z-material are an order of magnitude higher than with the lower Z-material. Our data fits a two temperature spectrum (20 keV and 300 keV) for plastic targets consistent with the observations of K_α that show electron in the target with energies up to 200 keV and measurements of blow-off ions at the chamber wall. The energy converted to x-rays and γ rays will be presented. ^1 Blackett Laboratory, Imperial College, London SW6 2BZ, UK. ^2 Dept. of Physics, Univ. of Bristol, Royal Fort, Tyndall Ave., Bristol BS8 1TL, UK. ^3 Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 OOX, UK.

  4. Front versus rear side light-ion acceleration from high-intensity laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Willingale, L.; Petrov, G. M.; Maksimchuk, A.; Davis, J.; Freeman, R. R.; Matsuoka, T.; Murphy, C. D.; Ovchinnikov, V. M.; Van Woerkom, L.; Krushelnick, K.

    2011-01-01

    The source of ions accelerated from high-intensity laser interactions with thin foil targets is investigated by coating a deuterated plastic layer either on the front, rear or both surfaces of thin foil targets. The originating surface of the deuterons is therefore known and this method is used to assess the relative source contributions and maximum energies using a Thomson parabola spectrometer to obtain high-resolution light-ion spectra. Under these experimental conditions, laser intensity of (0.5-2.5) × 1019 W cm-2, pulse duration of 400 fs and target thickness of 6-13 µm, deuterons originating from the front surface can gain comparable maximum energies as those from the rear surface and spectra from either side can deviate from Maxwellian. Two-dimensional particle-in-cell simulations model the acceleration and show that any presence of a proton rich contamination layer over the surface is detrimental to the deuteron acceleration from the rear surface, whereas it is likely to be less influential on the front side acceleration mechanism.

  5. Radiation from high-intensity ultrashort-laser-pulse and gas-jet magnetized plasma interaction.

    PubMed

    Dorranian, Davoud; Starodubtsev, Mikhail; Kawakami, Hiromichi; Ito, Hiroaki; Yugami, Noboru; Nishida, Yasushi

    2003-08-01

    Using a gas-jet flow, via the interaction between an ultrashort high-intensity laser pulse and plasma in the presence of a perpendicular external dc magnetic field, the short pulse radiation from a magnetized plasma wakefield has been observed. Different nozzles are used in order to generate different densities and gas profiles. The neutral density of the gas-jet flow measured with a Mach-Zehnder interferometer is found to be proportional to back pressure of the gas jet in the range of 1 to 8 atm. Strength of the applied dc magnetic field varies from 0 to 8 kG at the interaction region. The frequency of the emitted radiation with the pulse width of 200 ps (detection limit) is in the millimeter wave range. Polarization and spatial distributions of the experimental data are measured to be in good agreement with the theory based on the V(p)xB radiation scheme, where V(p) is the phase velocity of the electron plasma wave and B is the steady magnetic field intensity. Characteristics of the radiation are extensively studied as a function of plasma density and magnetic field strength. These experiments should contribute to the development of a new kind of millimeter wavelength radiation source that is tunable in frequency, pulse duration, and intensity.

  6. Revisiting argon cluster formation in a planar gas jet for high-intensity laser matter interaction

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Hagmeijer, R.; van der Weide, E. T. A.; Bastiaens, H. M. J.; Boller, K.-J.

    2016-04-01

    We determine the size of argon clusters generated with a planar nozzle, based on the optical measurements in conjunction with theoretical modelling. Using a quasi-one dimensional model for the moments of the cluster size distribution, we determine the influence of critical physical assumptions. These refer to the surface tension depending on the presence of thermal equilibrium, the mass density of clusters, and different methods to model the growth rate of the cluster radius. We show that, despite strong variation in the predicted cluster size, , the liquid mass ratio, g, can be determined with high trustworthiness, because g is predicted as being almost independent of the specific model assumptions. Exploiting this observation, we use the calculated value for g to retrieve the cluster size from optical measurements, i.e., calibrated Rayleigh scattering and interferometry. Based on the measurements of the cluster size vs. the nozzle stagnation pressure, we provide a new power law for the prediction of the cluster size in experiments with higher values of the Hagena parameter (Γ*>104 ) . This range is of relevance for experiments on high-intensity laser matter interactions.

  7. Compact acceleration of energetic neutral atoms using high intensity laser-solid interaction.

    PubMed

    Dalui, Malay; Trivikram, T Madhu; Colgan, James; Pasley, John; Krishnamurthy, M

    2017-06-20

    Recent advances in high-intensity laser-produced plasmas have demonstrated their potential as compact charge particle accelerators. Unlike conventional accelerators, transient quasi-static charge separation acceleration fields in laser produced plasmas are highly localized and orders of magnitude larger. Manipulating these ion accelerators, to convert the fast ions to neutral atoms with little change in momentum, transform these to a bright source of MeV atoms. The emittance of the neutral atom beam would be similar to that expected for an ion beam. Since intense laser-produced plasmas have been demonstrated to produce high-brightness-low-emittance beams, it is possible to envisage generation of high-flux, low-emittance, high energy neutral atom beams in length scales of less than a millimeter. Here, we show a scheme where more than 80% of the fast ions are reduced to energetic neutral atoms and demonstrate the feasibility of a high energy neutral atom accelerator that could significantly impact applications in neutral atom lithography and diagnostics.

  8. Anti-Stokes scattering and Stokes scattering of stimulated Brillouin scattering cascade in high-intensity laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Feng, Q. S.; Liu, Z. J.; Zheng, C. Y.; Xiao, C. Z.; Wang, Q.; Zhang, H. C.; Cao, L. H.; He, X. T.

    2017-07-01

    Anti-Stokes scattering and Stokes scattering in stimulated Brillouin scattering (SBS) cascades have been researched using the Vlasov-Maxwell simulation. In high-intensity laser-plasma interactions, stimulated anti-Stokes Brillouin scattering (SABS) will occur after second stage SBS rescattering. The mechanism of SABS has been put forward to explain this phenomenon. In the early phase of SBS evolution, only first stage SBS appears and total SBS reflectivity comes from first stage SBS. However, when high-stage SBS and SABS occur, SBS reflectivity will display burst behavior and the total reflectivity comes from the SBS cascade and SABS superimposition. The SABS will compete with the SBS rescattering to determine the total SBS reflectivity. Thus, SBS rescattering including SABS is an important saturation mechanism of SBS and should be taken into account in high-intensity laser-plasma interaction.

  9. An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets

    SciTech Connect

    Price, C. J. Giltrap, S.; Stuart, N. H.; Parker, S.; Patankar, S.; Lowe, H. F.; Smith, R. A.; Donnelly, T. D.; Drew, D.; Gumbrell, E. T.

    2015-03-15

    We report on the design, construction, and characterisation of a new class of in-vacuo optical levitation trap optimised for use in high-intensity, high-energy laser interaction experiments. The system uses a focused, vertically propagating continuous wave laser beam to capture and manipulate micro-targets by photon momentum transfer at much longer working distances than commonly used by optical tweezer systems. A high speed (10 kHz) optical imaging and signal acquisition system was implemented for tracking the levitated droplets position and dynamic behaviour under atmospheric and vacuum conditions, with ±5 μm spatial resolution. Optical trapping of 10 ± 4 μm oil droplets in vacuum was demonstrated, over timescales of >1 h at extended distances of ∼40 mm from the final focusing optic. The stability of the levitated droplet was such that it would stay in alignment with a ∼7 μm irradiating beam focal spot for up to 5 min without the need for re-adjustment. The performance of the trap was assessed in a series of high-intensity (10{sup 17} W cm{sup −2}) laser experiments that measured the X-ray source size and inferred free-electron temperature of a single isolated droplet target, along with a measurement of the emitted radio-frequency pulse. These initial tests demonstrated the use of optically levitated microdroplets as a robust target platform for further high-intensity laser interaction and point source studies.

  10. An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets.

    PubMed

    Price, C J; Donnelly, T D; Giltrap, S; Stuart, N H; Parker, S; Patankar, S; Lowe, H F; Drew, D; Gumbrell, E T; Smith, R A

    2015-03-01

    We report on the design, construction, and characterisation of a new class of in-vacuo optical levitation trap optimised for use in high-intensity, high-energy laser interaction experiments. The system uses a focused, vertically propagating continuous wave laser beam to capture and manipulate micro-targets by photon momentum transfer at much longer working distances than commonly used by optical tweezer systems. A high speed (10 kHz) optical imaging and signal acquisition system was implemented for tracking the levitated droplets position and dynamic behaviour under atmospheric and vacuum conditions, with ±5 μm spatial resolution. Optical trapping of 10 ± 4 μm oil droplets in vacuum was demonstrated, over timescales of >1 h at extended distances of ∼40 mm from the final focusing optic. The stability of the levitated droplet was such that it would stay in alignment with a ∼7 μm irradiating beam focal spot for up to 5 min without the need for re-adjustment. The performance of the trap was assessed in a series of high-intensity (10(17) W cm(-2)) laser experiments that measured the X-ray source size and inferred free-electron temperature of a single isolated droplet target, along with a measurement of the emitted radio-frequency pulse. These initial tests demonstrated the use of optically levitated microdroplets as a robust target platform for further high-intensity laser interaction and point source studies.

  11. Proton beam generation by ultra-high intensity laser-solid interaction

    NASA Astrophysics Data System (ADS)

    Manclossi, M.; Guemnie-Tafo, A.; Batani, D.; Malka, V.; Fritzler, S.; Lefebvre, E.; D'Humieres, E.

    2005-10-01

    We report on some recent experimental results on proton production from ultra-intense laser pulse interaction with thin aluminium and plastic foil targets. These results were obtained at Laboratoire d'Optique Appliquee with the 100TW 'salle jaune' laser system, delivering 35 fs laser pulses at 0.8 mu m, reaching a maximum intensity on target of a few 10(19) W/cm(2). In such extreme interaction conditions, an intense and collimated relativistic electron current is injected from the plasma created on the laser focal spot into the cold interior of the target. Its transport through dense matter, ruled by both collisions and self-induced (electro-magnetic) field effects, is the driving mechanism for proton acceleration from the rear side of thin foils: when reaching and leaving the foil rear-side, the fast electrons create a large charge separation and a huge electrostatic field with a maximum value of few TV/m, capable of accelerating protons. A parametric study as a function of the laser driver and target parameters indicates an optimal value for target thickness, which strongly depends on the laser prepulse duration. In our experiments, we did irradiate targets of various materials (CH, Al, Au) changing the prepulse duration by using fast Pockels cells in the laser chain. CR-39 nuclear track detectors with Al filters of different thickness and a Thomson parabola were used to detect proton generation. The best results were obtained for 2 mu m Al targets, leading to the generation of proton energies with energies up to 12 MeV.

  12. Target material dependence of positron generation from high intensity laser-matter interactions

    DOE PAGES

    Williams, G. J.; Barnak, D.; Fiksel, G.; ...

    2016-12-06

    Here, the effective scaling of positron-electron pair production by direct, ultraintense laser-matter interaction is investigated for a range of target materials and thicknesses. An axial magnetic field, acting as a focusing lens, was employed to measure positron signals for targets with atomic numbers as low as copper (Z – 29). The pair production yield was found to be consistent with the Bethe-Heitler mechanism, where the number of positrons emitted into a 1 steradian cone angle from the target rear was found to be proportional to Z2. The unexpectedly low scaling results from Coulomb collisions that act to stop or scattermore » positrons into high angles. Monte Carlo simulations support the experimental results, providing a comprehensive power-law scaling relationship for all elemental materials and densities.« less

  13. Target material dependence of positron generation from high intensity laser-matter interactions

    SciTech Connect

    Williams, G. J.; Barnak, D.; Fiksel, G.; Hazi, A.; Kerr, S.; Krauland, C.; Link, A.; Manuel, M. J. -E.; Nagel, S. R.; Park, J.; Peebles, J.; Pollock, B. B.; Beg, F. N.; Betti, R.; Chen, Hui

    2016-12-06

    Here, the effective scaling of positron-electron pair production by direct, ultraintense laser-matter interaction is investigated for a range of target materials and thicknesses. An axial magnetic field, acting as a focusing lens, was employed to measure positron signals for targets with atomic numbers as low as copper (Z – 29). The pair production yield was found to be consistent with the Bethe-Heitler mechanism, where the number of positrons emitted into a 1 steradian cone angle from the target rear was found to be proportional to Z2. The unexpectedly low scaling results from Coulomb collisions that act to stop or scatter positrons into high angles. Monte Carlo simulations support the experimental results, providing a comprehensive power-law scaling relationship for all elemental materials and densities.

  14. Target material dependence of positron generation from high intensity laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Williams, G. J.; Barnak, D.; Fiksel, G.; Hazi, A.; Kerr, S.; Krauland, C.; Link, A.; Manuel, M. J.-E.; Nagel, S. R.; Park, J.; Peebles, J.; Pollock, B. B.; Beg, F. N.; Betti, R.; Chen, Hui

    2016-12-01

    The effective scaling of positron-electron pair production by direct, ultraintense laser-matter interaction is investigated for a range of target materials and thicknesses. An axial magnetic field, acting as a focusing lens, was employed to measure positron signals for targets with atomic numbers as low as copper (Z = 29). The pair production yield was found to be consistent with the Bethe-Heitler mechanism, where the number of positrons emitted into a 1 steradian cone angle from the target rear was found to be proportional to Z2. The unexpectedly low scaling results from Coulomb collisions that act to stop or scatter positrons into high angles. Monte Carlo simulations support the experimental results, providing a comprehensive power-law scaling relationship for all elemental materials and densities.

  15. Circular polarization effects in ion acceleration from high intensity, short pulse laser interactions

    NASA Astrophysics Data System (ADS)

    Dollar, F.; Zulick, C.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; Matsuoka, T.; McGuffey, C.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Maksimchuk, A.; Krushelnick, K.; Petrov, G.; Davis, J.

    2011-10-01

    Experiments were performed to investigate ion acceleration effects from circular polarization from thin targets, using a high contrast, ultra-short laser pulse from the HERCULES laser facility at the Univ. of Michigan. Experiments were performed with 50 TW, 35 fs pulses at an intensity of >1021Wcm-2 on Si3N4 and Mylar targets of 30 nm to 1 μm thickness with contrast <10-13 . Protons with maximum energy 18 MeV and Carbon ions with energies of up to 10 MeV per nucleon were measured. Particle-in-cell simulations demonstrating the acceleration mechanism will be presented as well. Supported by NSF Physics Frontier Center FOCUS (Grant PHY-0114336), Defense Threat Reduction Agency, and Naval Research Laboratory. We acknowledge the OSIRIS consortium for the use of OSIRIS.

  16. Development of time resolved x-ray spectroscopy in high intensity laser-plasma interactions

    SciTech Connect

    Notley, M. M.; Weber, R. L.; Fell, B.; Jeffries, J.; Freeman, R. R.; Mackinnon, A. J.; Dickson, R.; Hey, D.; Khattak, F.; Saiz, E. Garcia; Gregori, G.

    2006-10-15

    This article discusses the design of a novel time resolved von Hamos Bragg spectrometer to provide spectra in the region around the titanium K-{alpha} and He-{alpha} lines. The instrument consists of a highly oriented pyrolitic graphite mosaic crystal coupled to a picosecond x-ray streak camera. Measurements of the time dependent behavior from Ti foils illuminated with intense laser pulses can be used to improve the understanding of recombination dynamics, electron transport, and phase transitions in strongly coupled dense plasma. This is important for the modeling of the compression phase in inertial confinement fusion research and the study of astrophysical environments.

  17. Observation of relativistic cross-phase modulation in high-intensity laser-plasma interactions.

    PubMed

    Chen, S; Rever, M; Zhang, P; Theobald, W; Umstadter, D

    2006-10-01

    A nonlinear optical phenomenon, relativistic cross-phase modulation, is reported. A relativistically intense light beam (I = 1.3 x 10(18) W cm(-2), lambda = 1.05 microm) is experimentally observed to cause phase modulation of a lower intensity, copropagating light beam in a plasma. The latter beam is generated when the former undergoes the stimulated Raman forward scattering instability. The bandwidth of the Raman satellite is found to be broadened from 3.8-100 nm when the pump laser power is increased from 0.45-2.4 TW. A signature of relativistic cross-phase modulation, namely, asymmetric spectral broadening of the Raman signal, is observed at a pump power of 2.4 TW. The experimental cross-phase modulated spectra compared well with theoretical calculations. Applications to generation of high-power single-cycle pulses are also discussed.

  18. Effect of Laser Wavelength and Ablator Material on Hot Electron Generation in High Power Laser Plasma Interaction at Shock Ignition High Intensity Conditions

    NASA Astrophysics Data System (ADS)

    Wei, M. S.; Alexander, N. B.; Krauland, C. M.; Zhang, S.; Beg, F. N.; Theobald, W.; Betti, R.

    2015-11-01

    Hot electrons with energies <100 keV have been found to augment ablation pressure leading to Gbar shocks in strong spherical shock experiments on OMEGA*. To study this potential benefit at shock ignition-relevant high intensities (~1016 W/cm2) , we have conducted an experiment using the high-energy OMEGA EP laser system to examine the effect of laser wavelength, intensity and ablator material on hot electron generation and energy coupling. Targets are multilayered planar foils consisting of Cu and Al layers with an ablator made of either plastic (CH) or lithium. The target is first irradiated by multi-kJ UV beams at low intensity to produce a long scalelength, hot plasma, as is the case in the shock ignition regime. Correspondingly, this is followed by the injection of the high intensity UV or IR main interaction pulse. The resultant energy, spectrum and angular distributions of the hot electrons are measured via their induced Cu fluorescence emission and the bremsstrahlung radiation. Details of the experiment and results will be presented. Work supported by the DOE/NNSA under Contract DE-NA0002730 (NLUF).

  19. High intensity laser interactions with underdense plasma: a source of energetic electrons, ions, neutrons and gamma-rays

    NASA Astrophysics Data System (ADS)

    Najmudin, Zulfikar

    2002-11-01

    With the rapid advances in laser technology, laser beams are now available that can be routinely focused to intensities approaching 10^20 Wcm-2. At these intensities all matter becomes ionised on a time scale close to the period of the laser. The subsequent interaction is therefore characterised by the interaction of an intense laser beam with a highly dissociated medium (plasma). The interaction is particularly interesting since at these intensities, the normalised momentum of the electrons in the laser field is given by a_0=0.89× I(10^18 Wcm-2× λ^2(μ m)). Hence the quiver velocity of the plasma electrons in the electric field of the laser beam becomes relativistic. The interaction of the laser beam with a plasma at such elevated intensities is highly non-linear, and can lead to a whole host of interesting phenomena. These include relativistic self-focusing, harmonic generation, and Raman type parametric instabilities. These processes are of interest, not only from a scientific perspective, but also a technological one, with the prospect that such an interaction can provide useful sources of energetic particles. In this context, plasma wave generation by laser beam self-modulation, proton acceleration by Coulomb explosions and thermonuclear fusion neutron generation by extreme heating of intense laser beams will be discussed. Recent highlights of this research include the detection of protons of energies in excess of 1 MeV, the heating of an underdense deuterium plasma to temperatures in excess of 1 keV, resulting in the detection in excess of 10^6 fusion neutrons; and the detection of electrons accelerated to greater than 200 MeV due to the generation of relativistically steepened plasma waves. The latter measurement is particularly noteworthy since it is obtained with a 1 J, 10 Hz laser system, (Salle Jaune, LOA).

  20. Characterization of preformed plasmas with an interferometer for ultra-short high-intensity laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Sagisaka, A.; Daido, H.; Ogura, K.; Orimo, S.; Hayashi, Y.; Nishiuchi, M.; Mori, M.; Matsukado, K.; Fukumi, A.; Li, Z.; Nakamura, S.; Takagaki, K.; Hazama, H.; Suzuki, M.; Utsumi, T.; Bulanov, S. V.; Esirkepov, T.

    The evolution of an Al preformed plasma produced by a prepulse was observed before and after the arrival of the main pulse by an interferometer using a femtosecond probe pulse. A central density depression due to the ponderomotive force of the main laser pulse in the preformed plasma with a 100 μm scale length was clearly visible after the main pulse irradiation at an intensity of 5×1016 W/cm2. The temporal profiles of the prepulse, characterized by a cross-correlation in conjunction with a precise density profile measurement by an interferometer, contribute to the better understanding of femtosecond laser-matter interactions.

  1. Short-pulse, high-intensity lasers at Los Alamos

    SciTech Connect

    Taylor, A.J.; Roberts, J.P.; Rodriguez, G.; Fulton, R.D.; Kyrala, G.A.; Schappert, G.T.

    1994-03-01

    Advances in ultrafast lasers and optical amplifiers have spurred the development of terawatt-class laser systems capable of delivering focal spot intensities approaching 10{sup 20} W/cm{sup 2}. At these extremely high intensities, the optical field strength is more than twenty times larger than the Bohr electric field, permitting investigations of the optical properties of matter in a previously unexplored regime. The authors describe two laser systems for high intensity laser interaction experiments: The first is a terawatt system based on amplification of femtosecond pulses in XeCl which yields 250 mJ in 275 fs and routinely produces intensifies on target in excess of 10{sup 18} W/cm{sup 2}. The second system is based on chirped pulse amplification of 100-fs pulses in Ti:sapphire.

  2. Double ionization effect in electron accelerations by high-intensity laser pulse interaction with a neutral gas

    NASA Astrophysics Data System (ADS)

    Nandan Gupta, Devki

    2013-11-01

    We study the effect of laser-induced double-ionization of a helium gas (with inhomogeneous density profile) on vacuum electron acceleration. For enough laser intensity, helium gas can be found doubly ionized and it strengthens the divergence of the pulse. The double ionization of helium gas can defocus the laser pulse significantly, and electrons are accelerated by the front of the laser pulse in vacuum and then decelerated by the defocused trail part of the laser pulse. It is observed that the electrons experience a very low laser-intensity at the trailing part of the laser pulse. Hence, there is not much electron deceleration at the trailing part of the pulse. We found that the inhomogeneity of the neutral gas reduced the rate of tunnel ionization causing less defocusing of the laser pulse and thus the electron energy gain is reduced.

  3. Superhot-X-ray and -electron transport in high-intensity CO2-laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Enright, G. D.; Burnett, N. H.

    1985-12-01

    A comprehensive investigation of the high-energy (70-400-keV) X-ray emission from CO2 laser-produced plasmas at intensities up to 3 x 10 to the 14th W/sq cm has revealed the presence of a 'superhot' component. The intensity of this component scales very strongly with incident laser intensity. It is expected that for intensities greater than about 5 x 10 to the 15th W/sq cm energy balance in CO2-laser-produced plasmas would be dominated by the energetic electrons responsible for this high-energy X-ray emission.

  4. Effects of electron recirculation on a hard x-ray source observed during the interaction of a high intensity laser pulse with thin Au targets

    NASA Astrophysics Data System (ADS)

    Compant La Fontaine, A.; Courtois, C.; Lefebvre, E.; Bourgade, J. L.; Landoas, O.; Thorp, K.; Stoeckl, C.

    2013-12-01

    The interaction of a high intensity laser pulse on the preplasma of a high-Z solid target produced by the pulse's pedestal generates high-energy electrons. These electrons subsequently penetrate inside the solid target and produce bremsstrahlung photons, generating an x-ray source which can be used for photonuclear studies or to radiograph high area density objects. The source characteristics are compared for targets with thin (20 μm) and thick (100 μm) Au foils on the Omega EP laser at Laboratory for Laser Energetics. Simulations using the particle-in-cell code CALDER show that for a 20 μm thickness Au target, electrons perform multiple round-trips in the target under the effect of the laser ponderomotive potential and the target electrostatic potential. These relativistic electrons have random transverse displacements, with respect to the target normal, attributed to electrostatic fluctuation fields. As a result, the x-ray spot size is increased by a factor 2 for thin target compared to thick targets, in agreement with experimental results. In addition, the computed doses agree with the measured ones provided that electron recirculation in the thin target is taken into account. A dose increase by a factor 1.7 is then computed by allowing for recirculation. In the 100 μm target case, on the other hand, this effect is found to be negligible.

  5. Effects of electron recirculation on a hard x-ray source observed during the interaction of a high intensity laser pulse with thin Au targets

    SciTech Connect

    Compant La Fontaine, A.; Courtois, C.; Lefebvre, E.; Bourgade, J. L.; Landoas, O.; Thorp, K.; Stoeckl, C.

    2013-12-15

    The interaction of a high intensity laser pulse on the preplasma of a high-Z solid target produced by the pulse's pedestal generates high-energy electrons. These electrons subsequently penetrate inside the solid target and produce bremsstrahlung photons, generating an x-ray source which can be used for photonuclear studies or to radiograph high area density objects. The source characteristics are compared for targets with thin (20 μm) and thick (100 μm) Au foils on the Omega EP laser at Laboratory for Laser Energetics. Simulations using the particle-in-cell code CALDER show that for a 20 μm thickness Au target, electrons perform multiple round-trips in the target under the effect of the laser ponderomotive potential and the target electrostatic potential. These relativistic electrons have random transverse displacements, with respect to the target normal, attributed to electrostatic fluctuation fields. As a result, the x-ray spot size is increased by a factor 2 for thin target compared to thick targets, in agreement with experimental results. In addition, the computed doses agree with the measured ones provided that electron recirculation in the thin target is taken into account. A dose increase by a factor 1.7 is then computed by allowing for recirculation. In the 100 μm target case, on the other hand, this effect is found to be negligible.

  6. Acceleration of high charge-state target ions in high-intensity laser interactions with sub-micron targets

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Raymond, A.; Batson, T.; Hua, R.; Petrov, G. M.; Kim, J.; Krauland, C. M.; Maksimchuk, A.; Thomas, A. G. R.; Yanovsky, V.; Krushelnick, K.; Beg, F. N.

    2016-11-01

    We have studied laser acceleration of ions from Si3N4 and Al foils ranging in thickness from 1800 to 8 nm with particular interest in acceleration of ions from the bulk of the target. The study includes results of experiments conducted with the HERCULES laser with pulse duration 40 fs and intensity 3 × 1020 W cm-2 and corresponding two-dimensional particle-in-cell simulations. When the target thickness was reduced the distribution of ion species heavier than protons transitioned from being dominated by carbon contaminant ions of low ionization states to being dominated by high ionization states of bulk ions (such as Si12+) and carbon. Targets in the range 50-150 nm yielded dramatically greater particle number and higher ion maximum energy for these high ionization states compared to thicker targets typifying the Target Normal Sheath Acceleration (TNSA) regime. The high charge states persisted for the thinnest targets, but the accelerated particle numbers decreased for targets 35 nm and thinner. This transition to an enhanced ion TNSA regime, which more efficiently generates ion beams from the bulk target material, is also seen in the simulations.

  7. High-intensity laser-induced electron acceleration in vacuum.

    PubMed

    Wang, J X; Ho, Y K; Feng, L; Kong, Q; Wang, P X; Yuan, Z S; Scheid, W

    1999-12-01

    In this paper, an approximate pulsed-laser-beam solution of Maxwell's equation in vacuum is derived. Then with the numerical simulation method, electron acceleration induced by high-intensity [Q(0)=eE(0)/(m(e)omega c)=3] lasers is discussed in connection with the recent experiment of Malka et al. It is found that the maximum energy gain and the relationship between the final energy and the scattering angle can be well reproduced, but the polarization effect of electron-laser interactions is not very prominent. These results show that the ponderomotive potential model is still applicable, which means that the stimulated Compton scattering is the main fundamental mechanism responsible for the electron acceleration at this laser intensity.

  8. Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions

    SciTech Connect

    Mori, Warren, B.

    2012-12-01

    We present results from the grant entitled, Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions. The research significantly advanced the understanding of basic high-energy density science (HEDS) on ultra intense laser and particle beam plasma interactions. This advancement in understanding was then used to to aid in the quest to make 1 GeV to 500 GeV plasma based accelerator stages. The work blended basic research with three-dimensions fully nonlinear and fully kinetic simulations including full-scale modeling of ongoing or planned experiments. The primary tool was three-dimensional particle-in-cell simulations. The simulations provided a test bed for theoretical ideas and models as well as a method to guide experiments. The research also included careful benchmarking of codes against experiment. High-fidelity full-scale modeling provided a means to extrapolate parameters into regimes that were not accessible to current or near term experiments, thereby allowing concepts to be tested with confidence before tens to hundreds of millions of dollars were spent building facilities. The research allowed the development of a hierarchy of PIC codes and diagnostics that is one of the most advanced in the world.

  9. Axion-like-particle search with high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Döbrich, Babette; Gies, Holger

    2010-10-01

    We study ALP -photon-conversion within strong inhomogeneous electromagnetic fields as provided by contemporary high-intensity laser systems. We observe that probe photons traversing the focal spot of a superposition of Gaussian beams of a single high-intensity laser at fundamental and frequency-doubled mode can experience a frequency shift due to their intermittent propagation as axion-like-particles. This process is strongly peaked for resonant masses on the order of the involved laser frequencies. Purely laser-based experiments in optical setups are sensitive to ALPs in the eV mass range and can thus complement ALP searches at dipole magnets.

  10. Proton shock acceleration using a high contrast high intensity laser

    NASA Astrophysics Data System (ADS)

    Gauthier, Maxence; Roedel, Christian; Kim, Jongjin; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Propp, Adrienne; Goyon, Clement; Pak, Art; Kerr, Shaun; Ramakrishna, Bhuvanesh; Ruby, John; William, Jackson; Glenzer, Siegfried

    2015-11-01

    Laser-driven proton acceleration is a field of intense research due to the interesting characteristics of this novel particle source including high brightness, high maximum energy, high laminarity, and short duration. Although the ion beam characteristics are promising for many future applications, such as in the medical field or hybrid accelerators, the ion beam generated using TNSA, the acceleration mechanism commonly achieved, still need to be significantly improved. Several new alternative mechanisms have been proposed such as collisionless shock acceleration (CSA) in order to produce a mono-energetic ion beam favorable for those applications. We report the first results of an experiment performed with the TITAN laser system (JLF, LLNL) dedicated to the study of CSA using a high intensity (5x1019W/cm2) high contrast ps laser pulse focused on 55 μm thick CH and CD targets. We show that the proton spectrum generated during the interaction exhibits high-energy mono-energetic features along the laser axis, characteristic of a shock mechanism.

  11. High-intensity subpicosecond vacuum ultraviolet laser system

    NASA Astrophysics Data System (ADS)

    Kubodera, Shoichi; Kaku, Masanori; Taniguchi, Yuta; Katto, Masahito; Yokotani, Atsushi; Miyanaga, Noriaki; Mima, Kunioki

    2008-02-01

    We have been developing an ultrashort-pulse high-intensity vacuum ultraviolet (VUV) laser. Ultrashort VUV pulses at 126 nm have been produced in rare-gases by nonlinear wavelength conversion of an infrared Ti:sapphire laser at 882 nm. This pulse will be amplified inside an Ar II* amplifier excited by optical-field-induced ionization electrons. The amplification characteristics of the Ar II* amplifier has been improved by plasma channeling induced by a high-intensity plasma-initiating laser.

  12. Plasma-based polarization modulator for high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu; Pukhov, Alexander

    2016-12-01

    Manipulation of laser pulses at high intensities is an important yet challenging issue. New types of plasma-based optical devices are promising alternatives to achieve this goal. Here we propose to modulate the polarization state of intense lasers based on oblique reflection from solid-plasma surfaces. A new analytical description is presented considering the plasma as an uniaxial medium that causes birefringence effect. Particle-in-cell simulation results numerically demonstrate that such a scheme can provide a tunable polarization control of the laser pulses even in the relativistic regime. The results are thus relevant for the design of compact, easy to use, and versatile polarization modulators for high-intensity laser pulses.

  13. Response of graphene to femtosecond high-intensity laser irradiation

    SciTech Connect

    Roberts, Adam; Cormode, Daniel; Reynolds, Collin; Newhouse-Illige, Ty; LeRoy, Brian J.; Sandhu, Arvinder S.

    2011-08-01

    We study the response of graphene to high-intensity, 50-femtosecond laser pulse excitation. We establish that graphene has a high ({approx}3 x 10{sup 12} Wcm{sup -2}) single-shot damage threshold. Above this threshold, a single laser pulse cleanly ablates graphene, leaving microscopically defined edges. Below this threshold, we observe laser-induced defect formation leading to degradation of the lattice over multiple exposures. We identify the lattice modification processes through in-situ Raman microscopy. The effective lifetime of chemical vapor deposition grown graphene under femtosecond near-infrared irradiation and its dependence on laser intensity is determined. These results also define the limits of non-linear applications of graphene in femtosecond high-intensity regime.

  14. The effect of external magnetic field on the bremsstrahlung nonlinear absorption mechanism in the interaction of high intensity short laser pulse with collisional underdense plasma

    SciTech Connect

    Sedaghat, M.; Ettehadi-Abari, M.; Shokri, B. Ghorbanalilu, M.

    2015-03-15

    Laser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range Iλ{sup 2}≃10{sup 14}−10{sup 16}Wcm{sup −2}μm{sup 2}. The collisional effect is found to be significant when the incident laser intensity is less than 10{sup 16}Wcm{sup −2}μm{sup 2}. In the current work, the propagation of a high frequency electromagnetic wave, for underdense collisional plasma in the presence of an external magnetic field is investigated. It is shown that, by considering the effect of the ponderomotive force in collisional magnetized plasmas, the increase of laser pulse intensity leads to steepening of the electron density profile and the electron bunches of plasma makes narrower. Moreover, it is found that the wavelength of electric and magnetic fields oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison with the unmagnetized collisional plasma. Furthermore, the spatial damping rate of laser energy and the nonlinear bremsstrahlung absorption coefficient are obtained in the collisional regime of magnetized plasma. The other remarkable result is that by increasing the external magnetic field in this case, the absorption coefficient increases strongly.

  15. The effect of external magnetic field on the density distributions and electromagnetic fields in the interaction of high-intensity short laser pulse with collisionless underdense plasma

    NASA Astrophysics Data System (ADS)

    Mahmoodi-Darian, Masoomeh; Ettehadi-Abari, Mehdi; Sedaghat, Mahsa

    2016-03-01

    Laser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range I{λ^2} ˜eq 10^{14}{-}10^{16}{{W}}{{{cm}}^{-2}} \\upmu{{{m}}2} . The collisionless effect is found to be significant when the incident laser intensity is less than 10^{16}{{W}}{{{cm}}^{-2}}\\upmu{{{m}}2} . In the current work, the propagation of a high-frequency electromagnetic wave, for underdense collisionless plasma in the presence of an external magnetic field is investigated. When a constant magnetic field parallel to the laser pulse propagation direction is applied, the electrons rotate along the magnetic field lines and generate the electromagnetic part in the wake with a nonzero group velocity. Here, by considering the ponderomotive force in attendance of the external magnetic field and assuming the isothermal collisionless plasma, the nonlinear permittivity of the plasma medium is obtained and the equation of electromagnetic wave propagation in plasma is solved. Here, by considering the effect of the ponderomotive force in isothermal collisionless magnetized plasma, it is shown that by increasing the laser pulse intensity, the electrons density profile leads to steepening and the electron bunches of plasma become narrower. Moreover, it is found that the wavelength of electric and magnetic field oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison to the unmagnetized collisionless plasma.

  16. Dose estimation and shielding calculation for X-ray hazard at high intensity laser facilities

    NASA Astrophysics Data System (ADS)

    Qiu, Rui; Zhang, Hui; Yang, Bo; James, C. Liu; Sayed, H. Rokni; Michael, B. Woods; Li, Jun-Li

    2014-12-01

    An ionizing radiation hazard produced from the interaction between high intensity lasers and solid targets has been observed. Laser-plasma interactions create “hot” electrons, which generate bremsstrahlung X-rays when they interact with ions in the target. However, up to now only limited studies have been conducted on this laser-induced radiological protection issue. In this paper, the physical process and characteristics of the interaction between high intensity lasers and solid targets are analyzed. The parameters of the radiation sources are discussed, including the energy conversion efficiency from laser to hot electrons, hot electron energy spectrum and electron temperature, and the bremsstrahlung X-ray energy spectrum produced by hot electrons. Based on this information, the X-ray dose generated with high-Z targets for laser intensities between 1014 and 1020 W/cm2 is estimated. The shielding effects of common shielding items such as the glass view port, aluminum chamber wall and concrete wall are also studied using the FLUKA Monte Carlo code. This study provides a reference for the dose estimation and the shielding design of high intensity laser facilities.

  17. High intensity laser beam propagation through a relativistic warm magnetoplasma

    NASA Astrophysics Data System (ADS)

    Rezaei, S.; Jafari Milani, M. R.; Jafari, M. J.

    2017-04-01

    In this work, nonlinear aspects of a circularly polarized high intensity Gaussian laser beam propagating in a relativistic warm magnetized plasma are studied, taking into account the relativistic ponderomotive force. The differential equation governing the dimensionless beam width parameter is achieved and numerically solved by introducing the dielectric permittivity of such plasma and using the paraxial ray approximation. The effects of entrance laser intensity and its polarization state, external magnetic field, and electron temperature on the laser spot size evolution are studied. It is found that for both right and left-handed polarization states increasing initial laser intensity deteriorates the self-focusing mechanism while rising electron temperature improves it. It is also observed that enhancing magnetic field leads to faster and stronger self-focusing in the case of right-handed polarization and an attenuation in the self-focusing process in the case of left-handed one. In addition, the spatial distribution of normalized modified electron density as well as laser intensity profiles as a function of plasma length and beam radius is plotted and discussed for three self-focusing, self-trapping, and defocusing regimes.

  18. Computational Simulations of High Intensity X-Ray Matter Interaction

    SciTech Connect

    London, R A; Rionta, R; Tatchyn, R; Roessler, S

    2001-08-02

    Free electron lasers have the promise of producing extremely high-intensity short pulses of coherent, monochromatic radiation in the 1-10 keV energy range. For example, the Linac Coherent Light Source at Stanford is being designed to produce an output intensity of 2 x 10{sup 14} W/cm{sup 2} in a 230 fs pulse. These sources will open the door to many novel research studies. However, the intense x-ray pulses may damage the optical components necessary for studying and controlling the output. At the full output intensity, the dose to optical components at normal incidence ranges from 1-10 eV/atom for low-Z materials (Z < 14) at photon energies of 1 keV. It is important to have an understanding of the effects of such high doses in order to specify the composition, placement, and orientation of optical components, such as mirrors and monochromators. Doses of 10 eV/atom are certainly unacceptable since they will lead to ablation of the surface of the optical components. However, it is not precisely known what the damage thresholds are for the materials being considered for optical components for x-ray free electron lasers. In this paper, we present analytic estimates and computational simulations of the effects of high-intensity x-ray pulses on materials. We outline guidelines for the maximum dose to various materials and discuss implications for the design of optical components.

  19. Frequency conversion of high-intensity, femtosecond laser pulses

    SciTech Connect

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  20. Postionisation of a spatially nonuniform plasma plume under high-intensity femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Krestovskikh, D. A.; Ivanov, K. A.; Tsymbalov, I. N.; Shulyapov, S. A.; Bukin, V. V.; Volkov, R. V.; Rupasov, A. A.; Savel’ev, A. B.

    2017-02-01

    The plasma plume formed by a high-power nanosecond laser pulse on the surface of solid targets as well as the plume parameters after its irradiation by a high-intensity femtosecond laser pulse are investigated by optical diagnostic techniques. Two-dimensional patterns of the electron plasma density are reconstructed from experimentally recorded interferograms at different stages of plasma evolution. It is shown that the interaction of the high-intensity femtosecond radiation with the plasma cloud is accompanied by the field ionisation of atoms and ions as well as by a significant increase in the electron density throughout the interaction volume. Presented at ECLIM2016 (Moscow, 18–23 September 2016).

  1. Hot electron generation and energy coupling in planar experiments with shock ignition high intensity lasers

    NASA Astrophysics Data System (ADS)

    Wei, M. S.; Krauland, C.; Alexander, N.; Zhang, S.; Peebles, J.; Beg, F. N.; Theobald, W.; Borwick, E.; Ren, C.; Yan, R.; Haberberger, D.; Betti, R.; Campbell, E. M.

    2016-10-01

    Hot electrons produced in nonlinear laser plasma interactions are critical issues for shock ignition (SI) laser fusion. We conducted planar target experiments to characterize hot electron and energy coupling using the high energy OMEGA EP laser system at SI high intensities. Targets were multilayered foils consisting of an ablator (either plastic or lithium) and a Cu layer to facilitate hot electron detection via fluorescence and bremsstrahlung measurements. The target was first irradiated by multi-kJ, low-intensity UV beams to produce a SI-relevant mm-scale hot ( 1 keV) preformed plasma. The main interaction pulse, either a kJ 1-ns UV pulse with intensity 1.6x1016 Wcm-2 or a kJ 0.1-ns IR pulse with intensity up to 2x1017 Wcm-2was injected at varied timing delays. The high intensity IR beam was found to strongly interact with underdense plasmas breaking into many filaments near the quarter critical density region followed by propagation of those filaments to critical density, producing hot electrons with Thot 70 keV in a well-contained beam. While the high intensity UV beam showed poor energy coupling. Details of the experiments and the complementary PIC modeling results will be presented. Work supported by U.S. DOE under contracts DE-NA0002730 (NLUF) and DE-SC0014666 (HEDLP).

  2. High Energy X-Ray Source Generation by Short Pulse High Intensity Lasers

    SciTech Connect

    Park, H-S; Koch, J A; Landen, O L; Phillips, T W; Goldsack, T; Clark, E; Eagleton, R; Edwards, R

    2003-09-02

    We are studying the feasibility of utilizing K{alpha} x-ray sources in the range of 20 to 100 keV as a backlighters for imaging various stages of implosions and high areal density planar samples driven by the NIF laser facility. The hard x-ray K{alpha} sources are created by relativistic electron plasma interactions in the target material after a radiation by short pulse high intensity lasers. In order to understand K{alpha} source characteristics such as production efficiency and brightness as a function of laser parameters, we have performed experiments using the 10 J, 100 fs JanUSP laser. We utilized single-photon counting spectroscopy and x-ray imaging diagnostics to characterize the K{alpha} source. We find that the K{alpha} conversion efficiency from the laser energy at 22 keV is {approx} 3 x 10{sup -4}.

  3. Third harmonic generation with ultra-high intensity laser pulses

    SciTech Connect

    Rax, J.M.; Fisch, N.J.

    1992-04-01

    When an intense, plane-polarized, laser pulse interacts with a plasma, the relativistic nonlinearities induce a third harmonic polarization. A phase-locked growth of a third harmonic wave can take place, but the differences between the nonlinear dispersion of the pump and driven waves leads to a rapid unlocking, resulting in a saturation. What becomes third harmonic amplitude oscillations are identified here, and the nonlinear phase velocity and the renormalized electron mass due to plasmon screening are calculated. A simple phase-matching scheme, based on a resonant density modulation, is then proposed and analyzed.

  4. Third harmonic generation with ultra-high intensity laser pulses

    SciTech Connect

    Rax, J.M.; Fisch, N.J.

    1992-04-01

    When an intense, plane-polarized, laser pulse interacts with a plasma, the relativistic nonlinearities induce a third harmonic polarization. A phase-locked growth of a third harmonic wave can take place, but the differences between the nonlinear dispersion of the pump and driven waves leads to a rapid unlocking, resulting in a saturation. What becomes third harmonic amplitude oscillations are identified here, and the nonlinear phase velocity and the renormalized electron mass due to plasmon screening are calculated. A simple phase-matching scheme, based on a resonant density modulation, is then proposed and analyzed.

  5. High intensity laser-plasma sources of ions—physics and future applications

    NASA Astrophysics Data System (ADS)

    Krushelnick, K.; Clark, E. L.; Beg, F. N.; Dangor, A. E.; Najmudin, Z.; Norreys, P. A.; Wei, M.; Zepf, M.

    2005-12-01

    The interaction of high intensity laser pulses with plasmas is an efficient source of megaelectronvolt ions. Recent observations of the production of directional energetic ion 'beams' from the front and rear surfaces of thin foil targets upon irradiation by intense laser pulses have prompted a renewed interest into research in this area. In addition, other recent observations have shown that high energy ions can be observed from intense laser interaction with low density plasma as a result of ponderomotive shock acceleration. The source characteristics and acceleration mechanisms for these ions have been extensively investigated, and there have also been a number of proposed applications for these ion beams, such as for injectors into subsequent conventional acceleration stages, for medicine, for probing of dense plasmas and for inertial confinement fusion experiments.

  6. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma

    NASA Astrophysics Data System (ADS)

    Salehi, M.; Mirzanejad, S.

    2017-05-01

    Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of {{ω }}1, {{ω }}2 and {{ω }}3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.

  7. High-intensity laser heating in liquids: Multiphoton absorption

    SciTech Connect

    Longtin, J.P.; Tien, C.L.

    1995-12-31

    At high laser intensities, otherwise transparent liquids can absorb strongly by the mechanism of multiphoton absorption, resulting in absorption and heating several orders of magnitude greater than classical, low-intensity mechanisms. The use of multiphoton absorption provides a new mechanism for strong, controlled energy deposition in liquids without bulk plasma formation, shock waves, liquid ejection, etc., which is of interest for many laser-liquid applications, including laser desorption of liquid films, laser particle removal, and laser water removal from microdevices. This work develops a microscopically based model of the heating during multiphoton absorption in liquids. The dependence on pulse duration, intensity, wavelength, repetition rate, and liquid properties is discussed. Pure water exposed to 266 nm laser radiation is investigated, and a novel heating mechanism for water is proposed that uses multiple-wavelength laser pulses.

  8. High Intensity Laser Therapy (HILT) versus TENS and NSAIDs in low back pain: clinical study

    NASA Astrophysics Data System (ADS)

    Zati, Allesandro; Fortuna, Damiano; Valent, A.; Filippi, M. V.; Bilotta, Teresa W.

    2004-09-01

    Low back pain, caused by lumbar disc herniation, is prevalently treated with a conservative approach. In this study we valued the efficacy of High Intensity Laser Therapy (HILT), compared with accepted therapies such as TENS and NSAIDs. Laser therapy obtained similar results in the short term, but better clinical effect over time than TENS and NSAIDs. In conclusion high intensity laser therapy appears to be a interesting new treatment, worthy of further research.

  9. High-order harmonics from bow wave caustics driven by a high-intensity laser

    SciTech Connect

    Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Zh.; and others

    2012-07-11

    We propose a new mechanism of high-order harmonic generation during an interaction of a high-intensity laser pulse with underdense plasma. A tightly focused laser pulse creates a cavity in plasma pushing electrons aside and exciting the wake wave and the bow wave. At the joint of the cavity wall and the bow wave boundary, an annular spike of electron density is formed. This spike surrounds the cavity and moves together with the laser pulse. Collective motion of electrons in the spike driven by the laser field generates high-order harmonics. A strong localization of the electron spike, its robustness to oscillations imposed by the laser field and, consequently, its ability to produce high-order harmonics is explained by catastrophe theory. The proposed mechanism explains the experimental observations of high-order harmonics with the 9 TW J-KAREN laser (JAEA, Japan) and the 120 TW Astra Gemini laser (CLF RAL, UK) [A. S. Pirozhkov, et al., arXiv:1004.4514 (2010); A. S. Pirozhkov et al, AIP Proceedings, this volume]. The theory is corroborated by high-resolution two-and three-dimensional particle-in-cell simulations.

  10. Energy gain and spectral tailoring of ion beams using ultra-high intensity laser beams

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra; Swantusch, Marco; Cerchez, Mirela; Spickermann, Sven; Auorand, Bastian; Wowra, Thomas; Boeker, Juergen; Willi, Oswald

    2015-11-01

    The field of laser driven ion acceleration over the past decade has produced a huge amount of research. Nowadays, several multi-beam facilities with high rep rate system, e.g. ELI, are being developed across the world for different kinds of experiments. The study of interaction dynamics of multiple beams possessing ultra-high intensity and ultra-short pulse duration is of vital importance. Here, we present the first experimental results on ion acceleration using two ultra-high intensity beams. Thanks to the unique capability of Arcturus laser at HHU Düsseldorf, two almost identical, independent beams in laser parameters such as intensity (>1020 W/cm2), pulse duration (30 fs) and contrast (>1010), could be accessed. Both beams are focused onto a 5 μm thin Ti target. While ensuring spatial overlap of the two beams, at relative temporal delay of ~ 50 ps (optimum delay), the proton and carbon ion energies were enhanced by factor of 1.5. Moreover, strong modulation in C4+ions near the high energy cut-off is observed later than the optimum delay for the proton enhancement. This offers controlled tailoring of the spectral content of heavy ions.

  11. Diffraction Gratings for High-Intensity Laser Applications

    SciTech Connect

    Britten, J

    2008-01-23

    The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy have further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.

  12. Thomson scattering in high-intensity chirped laser pulses

    SciTech Connect

    Holkundkar, Amol R.; Harvey, Chris Marklund, Mattias

    2015-10-15

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion of its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.

  13. Generation of Ultra-high Intensity Laser Pulses

    SciTech Connect

    N.J. Fisch; V.M. Malkin

    2003-06-10

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 10{sup 25} W/cm{sup 2} can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers.

  14. Could quantum gravity phenomenology be tested with high intensity lasers?

    SciTech Connect

    Magueijo, Joao

    2006-06-15

    In phenomenological quantum gravity theories, Planckian behavior is triggered by the energy of elementary particles approaching the Planck energy, E{sub P}, but it is also possible that anomalous behavior strikes systems of particles with total energy near E{sub P}. This is usually perceived to be pathological and has been labeled 'the soccer ball problem'. We point out that there is no obvious contradiction with experiment if coherent collections of particles with bulk energy of order E{sub P} do indeed display Planckian behavior, a possibility that would open a new experimental window. Unfortunately, field theory realizations of 'doubly' (or deformed) special relativity never exhibit a soccer ball problem; we present several formulations where this is undeniably true. Upon closer scrutiny we discover that the only chance for Planckian behavior to be triggered by large coherent energies involves the details of second quantization. We find a formulation where the quanta have their energy-momentum (mass-shell) relations deformed as a function of the bulk energy of the coherent packet to which they belong, rather than the frequency. Given ongoing developments in laser technology, such a possibility would be of great experimental interest.

  15. Vacuum ultraviolet argon excimer laser at 126 nm excited by a high intensity laser

    NASA Astrophysics Data System (ADS)

    Kaku, Masanori; Harano, Shinya; Katto, Masahito; Kubodera, Shoichi

    2010-09-01

    We have observed the optical amplification of the Ar2* excimer at 126 nm pumped by optical-field-induced ionization (OFI) caused by an infrared high-intensity laser. We have evaluated similar small signal gain coefficients of approximately 1.0 cm-1 in two different experiments, where OFI Ar plasmas as gain media were produced in free space filled with Ar and inside an Ar-filled hollow fiber. This indicates that the function of a hollow fiber was to guide the infrared excitation laser and VUV Ar2* emissions, and not to regulate the OFI plasma. Despite the gain coefficient value at 126 nm, the laser oscillation has not been observed. This was limited by the optical quality of available state-of-the-art vacuum ultraviolet optics.

  16. An electron of helium atom under a high-intensity laser field

    NASA Astrophysics Data System (ADS)

    Falaye, Babatunde James; Sun, Guo-Hua; Adepoju, Adenike Grace; Liman, Muhammed S.; Oyewumi, K. J.; Dong, Shi-Hai

    2017-02-01

    We scrutinize the behavior of eigenvalues of an electron in a helium (He) atom as it interacts with electric field directed along the z-axis and is exposed to linearly polarized intense laser field radiation. To achieve this, we freeze one electron of the He atom at its ionic ground state and the motion of the second electron in the ion core is treated via a more general case of screened Coulomb potential model. Using the Kramers-Henneberger (KH) unitary transformation, which is the semiclassical counterpart of the Block-Nordsieck transformation in the quantized field formalism, the squared vector potential that appears in the equation of motion is eliminated and the resultant equation is expressed in the KH frame. Within this frame, the resulting potential and the corresponding wave function are expanded in Fourier series and using Ehlotzky’s approximation, we obtain a laser-dressed potential to simulate intense laser field. By fitting the more general case of screened Coulomb potential model into the laser-dressed potential, and then expanding it in Taylor series up to O≤ft({{r}4},α 09\\right) , we obtain the solution (eigenvalues and wave function) of an electron in a He atom under the influence of external electric field and high-intensity laser field, within the framework of perturbation theory formalism. We found that the variation in frequency of laser radiation has no effect on the eigenvalues of a He electron for a particular electric field intensity directed along z-axis. Also, for a very strong external electric field and an infinitesimal screening parameter, the system is strongly bound. This work has potential application in the areas of atomic and molecular processes in external fields including interactions with strong fields and short pulses.

  17. The Edward Teller medal lecture: High intensity lasers and the road to ignition

    SciTech Connect

    Key, M. H.

    1997-04-15

    There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement.

  18. The Edward Teller Medal Lecture: High Intensity Lasers and the Road to Ignition

    NASA Astrophysics Data System (ADS)

    Key, M. H.

    There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement.

  19. Edward Teller medal lecture: high intensity lasers and the road to ignition

    SciTech Connect

    Key, M.H.

    1997-06-02

    There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement.

  20. The Edward teller medal lecture: High intensity lasers and the road to ignition

    NASA Astrophysics Data System (ADS)

    Key, M. H.

    1997-04-01

    There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement.

  1. The Edward teller medal lecture: High intensity lasers and the road to ignition

    SciTech Connect

    Key, M.H.

    1997-04-01

    There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement. {copyright} {ital 1997 American Institute of Physics.}

  2. The Edward Teller Medal Lecture: High Intensity Lasers and the Road to Ignition (lirpp Vol. 13)

    NASA Astrophysics Data System (ADS)

    Key, M. H.

    2016-10-01

    There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement.

  3. Nonlinear biological effects of high-intensity visible laser radiation on DNA

    NASA Astrophysics Data System (ADS)

    Cao, En-Hua; Wang, Ju-jun; Xin, Shu-min

    1993-07-01

    Exposure of thymine and DNA to high-intensity 532 nm pulsed radiation from a Nd:YAG laser resulted in the cyclobutylpyrimidine dimers, which were measured by the method of high performance liquid chromatography. The in vitro transcription by RNA polymerase was markedly inhibited and could not be stimulated by spermine when the native double-strand DNA was replaced by irradiated DNA. It was shown that DNA damage was caused by 532 nm laser radiation and that the high-intensity visible radiation can initiate photochemistry in UV-absorbing biological molecules by two photon absorption. It is suggested that the use of very high-intensity laser radiation in medicine introduces the possibility that biomacromolecules may be damaged in cells as a result of two photon absorption.

  4. Spontaneous transitions in atomic system in the presence of high-intensity laser field

    NASA Astrophysics Data System (ADS)

    Bogatskaya, Anna; Volkova, Ekaterina; Popov, Alexander

    2016-10-01

    A new approach to the study of the spontaneous emission of the quantum system driven by a high-intensity laser field is developed. This approach is based on the accurate consideration of quantum system interaction with vacuum quantized field modes in the first order of perturbation theory, while the intense laser field is considered classically beyond the perturbation theory which allows to observe any-order stimulated processes governed by classical field. The proposed approach is applied to the study of a number of quantum systems in intense laser field. The obtained data are compared with those obtained in the frames of semiclassical approximation typically used for analyzing of the strong-field dynamic. It is found that the applicability of the semiclassical approach is strictly limited. It is valid for calculation of transitions to the initially populated state only if the population of this state is close to unity during the pulse and in the after-pulse regime. If its population is depleted, the semiclassical approach fails.

  5. Phase contrast imaging of high-intensity laser hole boring of solid-density wires at LCLS-MEC

    NASA Astrophysics Data System (ADS)

    Schumaker, W.; Brown, S.; Curry, C.; Gauthier, M.; Gamboa, E.; Goede, S.; Fletcher, L.; Kim, J.; MacDonald, M.; Mishra, R.; Roedel, C.; Glenzer, S.; Fiuza, F.; Granados, E.; Nagler, B.; Zhou, Z.; MacKinnon, A.; Obst, L.; Ziel, K.; Pak, A.; Williams, G.; Fajardo, M.

    2016-10-01

    High-intensity, relativistic (a0 > 1) laser plasma interactions on solid surfaces produce a rich mix of dynamics on the laser timescale (Weibel instabilities, surface effects, sheath formation, etc.) and hydrodynamic timescale (hole-boring, shocks, etc.). Probing these interactions optically is difficult due to critical density layer obscuring the surface of the target, whereas probing with hard X-rays from K-alpha sources does not sufficiently resolve these interactions temporally as they are typically many ps in duration. Presented here are the first experimental measurements of laser hole-boring on a carbon wire surfaces performed at the LCLS-MEC facility. With laser intensities of up to 1019 W / cm2 , we observe the dissociation of micron-sized wires over 100 ps timescale with peak hole boring velocities up to 0.001 c using phase-contrast imaging. This work was funded by DOE FES under FWP #100182.

  6. Laser-enhanced high-intensity focused ultrasound heating in an in vivo small animal model

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Yang, Xinmai

    2016-11-01

    The enhanced heating effect during the combination of high-intensity focused ultrasound (HIFU) and low-optical-fluence laser illumination was investigated by using an in vivo murine animal model. The thighs of murine animals were synergistically irradiated by HIFU and pulsed nano-second laser light. The temperature increases in the target region were measured by a thermocouple under different HIFU pressures, which were 6.2, 7.9, and 9.8 MPa, in combination with 20 mJ/cm2 laser exposures at 532 nm wavelength. In comparison with conventional laser therapies, the laser fluence used here is at least one order of magnitude lower. The results showed that laser illumination could enhance temperature during HIFU applications. Additionally, cavitation activity was enhanced when laser and HIFU irradiation were concurrently used. Further, a theoretical simulation showed that the inertial cavitation threshold was indeed decreased when laser and HIFU irradiation were utilized concurrently.

  7. Mechanism and Control of High-Intensity-Laser-Driven Proton Acceleration

    NASA Astrophysics Data System (ADS)

    Lin, T.; Flippo, K.; Rever, M.; Maksimchuk, A.; Umstadter, D.

    2004-12-01

    We discuss the optimization and control of laser-driven proton beams. Specifically, we report on the dependence of high-intensity laser accelerated proton beams on the material properties of various thin-film targets. Evidence of star-like filaments and beam hollowing (predicted from the electrothermal instability theory) is observed on Radiochromic Film (RCF) and CR-39 nuclear track detectors. The proton beam spatial profile is found to depend on initial target conductivity and target thickness. For resistive target materials, these structured profiles are explained by the inhibition of current, due to the lack of a return current. The conductors, however, can support large propagating currents due to the substantial cold return current which is composed of free charge carriers in the conduction band to neutralize the plasma from the interaction. The empirical plot shows relationship between the maximum proton energy and the target thickness also supports the return current and target normal sheath acceleration (TNSA) theory. We have also observed filamentary structures in the proton beam like those expected from the Weibel instability in the electron beam. Along with the ion acceleration, a clear electron beam is detected by the RCF along the tangent to the target, which is also the surface direction of target plate.

  8. The effects of high intensity laser therapy on pain and function in patients with knee osteoarthritis.

    PubMed

    Kim, Gook-Joo; Choi, Jioun; Lee, Sangyong; Jeon, Chunbae; Lee, Kwansub

    2016-11-01

    [Purpose] The purpose of this study was to examine the effects of high intensity laser therapy (HILT) on pain and function in patients with knee osteoarthritis. [Subjects and Methods] In this study, an experiment was conducted on 20 subjects who were divided into the control group (n=10), which would receive conservative physical therapy (CPT), and the experimental group (n=10), which would receive effects of high intensity laser therapy after conservative physical therapy. All patients received their respective therapies three times each week over a four-week period. In terms of the intensity of the high intensity laser therapy, it was applied to each patient in the tibia and femoral epicondyle for five minutes while the patient's knee joint was bent at around 30° and the separation distance between the handpiece and the skin was maintained at around 1 cm. The visual analogue scale was used to measure pain, and the Korean Western Ontario and McMaster Universities Osteoarthritis Index was used for functional evaluations. [Results] The comparison of differences in the measurements taken before and after the experiment within each group showed a statistically significant decline in both the VAS and the K-WOMAC. The comparison of the two groups showed that the high intensity laser therapy group had statistically significant lower scores in both the visual analogue scale and the Korean Western Ontario and McMaster Universities Osteoarthritis Index than the conservative physical therapy group. [Conclusion] High intensity laser therapy is considered an effective non-surgical intervention for reducing pain in patients with knee osteoarthritis and helping them to perform daily activities.

  9. The effects of high intensity laser therapy on pain and function in patients with knee osteoarthritis

    PubMed Central

    Kim, Gook-Joo; Choi, Jioun; Lee, Sangyong; Jeon, Chunbae; Lee, Kwansub

    2016-01-01

    [Purpose] The purpose of this study was to examine the effects of high intensity laser therapy (HILT) on pain and function in patients with knee osteoarthritis. [Subjects and Methods] In this study, an experiment was conducted on 20 subjects who were divided into the control group (n=10), which would receive conservative physical therapy (CPT), and the experimental group (n=10), which would receive effects of high intensity laser therapy after conservative physical therapy. All patients received their respective therapies three times each week over a four-week period. In terms of the intensity of the high intensity laser therapy, it was applied to each patient in the tibia and femoral epicondyle for five minutes while the patient’s knee joint was bent at around 30° and the separation distance between the handpiece and the skin was maintained at around 1 cm. The visual analogue scale was used to measure pain, and the Korean Western Ontario and McMaster Universities Osteoarthritis Index was used for functional evaluations. [Results] The comparison of differences in the measurements taken before and after the experiment within each group showed a statistically significant decline in both the VAS and the K-WOMAC. The comparison of the two groups showed that the high intensity laser therapy group had statistically significant lower scores in both the visual analogue scale and the Korean Western Ontario and McMaster Universities Osteoarthritis Index than the conservative physical therapy group. [Conclusion] High intensity laser therapy is considered an effective non-surgical intervention for reducing pain in patients with knee osteoarthritis and helping them to perform daily activities. PMID:27942148

  10. 20-100 keV K(alpha) X-Ray Source Generation by Short Pulse High Intensity Lasers

    SciTech Connect

    Park, H-S; Koch, J A; Landen, O L; Phillips, T W; Goldsack, T

    2003-08-22

    We are studying the feasibility of utilizing K{alpha} x-ray sources in the range of 20 to 100 keV as a backlighters for imaging various stages of implosions and high areal density planar samples driven by the NIF laser facility. The hard x-ray K{alpha} sources are created by relativistic electron plasma interactions in the target material after a radiation by short pulse high intensity lasers. In order to understand K{alpha} source characteristics such as production efficiency and brightness as a function of laser parameters, we have performed experiments using the 10 J, 100 fs JanUSP laser. We utilized single-photon counting spectroscopy and x-ray imaging diagnostics to characterize the K{alpha} source. We find that the K{alpha} conversion efficiency from the laser energy is {approx} 3 x 10{sup -4}.

  11. Prospects of odd and even harmonic generation by an atom in a high-intensity laser field

    NASA Astrophysics Data System (ADS)

    Bogatskaya, A. V.; Volkova, E. A.; Popov, A. M.

    2017-05-01

    A new approach for studying the spontaneous emission of an atomic system in the presence of a high-intensity laser field is used to study the process of harmonic generation. The analysis is based on consideration of quantum system interaction, with the quantized field modes being in the vacuum state, while the intense laser field is considered to be classically beyond perturbation theory. The numerical analysis of the emission from the single one-electron 1D atom irradiated by the femtosecond laser pulse of a Ti:Sa laser is discussed. It is demonstrated that not only odd, but also even harmonics can be emitted if the laser field is strong enough. The origin of the appearance of even harmonics is studied. The obtained results are compared with those found in the framework of the semiclassical approach that is widely used to study harmonic generation. It is found that the semiclassical approach is inapplicable in the strong-field limit.

  12. Condensation of ablation plumes in the irradiation of metals by high-intensity nanosecond laser pulses at atmospheric pressure

    SciTech Connect

    Kozadaev, K V

    2016-01-31

    The Anisimov–Luk'yanchuk model is adapted for describing the condensation of vapour-plasma plumes produced in the irradiation of metal targets by high-intensity (10{sup 8} – 10{sup 10} W cm{sup -2}) nanosecond (10 – 100 ns) pulses at atmospheric pressure. The resultant data suggest that the initial stages of the development of metal ablation plumes correspond with a high degree of accuracy to the Zel'dovich–Raizer theory of dynamic condensation; however, at the stage of the ablation plume decay, the liquid-droplet phase is formed primarily by coalescence of 'nuclei'. (interaction of laser radiation with matter. laser plasma)

  13. Studies of Ion Acceleration from Thin Solid-Density Targets on High-Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Willis, Christopher R.

    experiment utilized new liquid crystal film targets developed at OSU, which may be formed at variable thicknesses from tens of nanometers to several microns. On this experiment, an optimum ion energy and flux was reached for targets of 600-900 nm, providing a peak proton energy of 24 MeV, and total ion flux of > 109 protons over 3.4 MeV from 5.5 J of laser energy at an intensity of 1 x 1020 W cm -2. The primary ion diagnostics for these two experiments are described in detail, including the analysis techniques needed to extract absolutely calibrated spatial and spectral distributions of the accelerated ions. Additionally, a new technique for target alignment is presented, providing repeatable target alignment on the micron scale. This allows for a repeatable laser intensity on target, allowing improved shot to shot consistency on high intensity experiments. In addition to these two experiments, work on the upgrade and characterization of the 400 TW Scarlet laser is discussed, including several calculations critical to the design and upgrade of the laser system, as well as prepulse characterization needed for experiments on thin targets.

  14. Fast ion acceleration in a foil plasma heated by a multi-picosecond high intensity laser

    NASA Astrophysics Data System (ADS)

    Iwata, Natsumi; Mima, Kunioki; Sentoku, Yasuhiko; Yogo, Akifumi; Nagatomo, Hideo; Nishimura, Hiroaki; Azechi, Hiroshi

    2017-07-01

    We study the one-dimensional expansion of a thin foil plasma irradiated by a high intensity laser with multi-picosecond (ps) pulse durations by using particle-in-cell simulation. Electrons are found to recirculate around the expanding plasma for many times, which results in stochastic heating leading to increase of the electron temperature in the multi-ps time scale beyond the ponderomotive scaling. The conventional isothermal model cannot describe such an expansion of plasmas in the long time scale. We here developed a non-isothermal plasma expansion theory that takes the time dependence of electron temperature into account for describing the multi-ps interactions in one-dimensional geometry. By assuming that the time scale of electron temperature evolution is slow compared with the plasma expansion time scale, we derived a non-self-similar solution. The time evolution of ion maximum energy obtained by the non-isothermal theory explains the details of that observed in the simulation.

  15. High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions

    NASA Technical Reports Server (NTRS)

    Nayfeh, Taysir; Fast, Brian; Raible, Daniel; Dinca, Dragos; Tollis, Nick; Jalics, Andrew

    2011-01-01

    High Intensity Laser Power Beaming (HILPB) has been developed as a technique to achieve Wireless Power Transmission (WPT) for both space and terrestrial applications. In this paper, the system architecture and hardware results for a terrestrial application of HILPB are presented. These results demonstrate continuous conversion of high intensity optical energy at near-IR wavelengths directly to electrical energy at output power levels as high as 6.24 W from the single cell 0.8 cm2 aperture receiver. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers. This type of system would enable long range optical refueling of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion.

  16. Time-Dependent Simulation of Carbon Illuminated by a High Intensity X-Ray Laser

    NASA Astrophysics Data System (ADS)

    de la Varga, Alberto G.; Velarde, Pedro; de Gaufridy, François; Cotelo, Manuel; Portillo, David; Zeitoun, Philippe

    We simulate a biological cell composed of solid density carbon illuminated by a high intensity X-ray laser with a time-dependent model. This first version is a simple model that neglects inverse bremsstrahlung absorption by free electrons, electron conduction or hydrodynamic effects. Atomic data needed for the simulations can be generated with the flexible atomic code (FAC) or the screened hydrogenic model (SHM).

  17. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    SciTech Connect

    Gauthier, M.; Kim, J. B.; Curry, C. B.; Aurand, B.; Gamboa, E. J.; Göde, S.; Goyon, C.; Hazi, A.; Kerr, S.; Pak, A.; Propp, A.; Ramakrishna, B.; Ruby, J.; Willi, O.; Williams, G. J.; Rödel, C.; Glenzer, S. H.

    2016-08-24

    Here, we report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  18. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    SciTech Connect

    Gauthier, M. Kim, J. B.; Curry, C. B.; Gamboa, E. J.; Göde, S.; Propp, A.; Glenzer, S. H.; Aurand, B.; Willi, O.; Goyon, C.; Hazi, A.; Pak, A.; Ruby, J.; Williams, G. J.; Kerr, S.; Ramakrishna, B.; Rödel, C.

    2016-11-15

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  19. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    DOE PAGES

    Gauthier, M.; Kim, J. B.; Curry, C. B.; ...

    2016-08-24

    Here, we report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetitionmore » rate capability, this target is promising for future applications.« less

  20. Channeling of multikilojoule high-intensity laser beams in an inhomogeneous plasma

    SciTech Connect

    Ivancic, S.; Haberberger, D.; Habara, H.; Iwawaki, T.; Anderson, K. S.; Craxton, R. S.; Froula, D. H.; Meyerhofer, D. D.; Stoeckl, C.; Tanaka, K. A.; Theobald, W.

    2015-05-01

    Channeling experiments were performed that demonstrate the transport of high-intensity (>10¹⁸ W/cm²), multikilojoule laser light through a millimeter-sized, inhomogeneous (~300-μm density scale length) laser produced plasma up to overcritical density, which is an important step forward for the fast-ignition concept. The background plasma density and the density depression inside the channel were characterized with a novel optical probe system. The channel progression velocity was measured, which agrees well with theoretical predictions based on large scale particle-in-cell simulations, confirming scaling laws for the required channeling laser energy and laser pulse duration, which are important parameters for future integrated fast-ignition channeling experiments.

  1. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    SciTech Connect

    Gauthier, M.; Kim, J. B.; Curry, C. B.; Aurand, B.; Gamboa, E. J.; Göde, S.; Goyon, C.; Hazi, A.; Kerr, S.; Pak, A.; Propp, A.; Ramakrishna, B.; Ruby, J.; Willi, O.; Williams, G. J.; Rödel, C.; Glenzer, S. H.

    2016-08-24

    Here, we report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  2. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target.

    PubMed

    Gauthier, M; Kim, J B; Curry, C B; Aurand, B; Gamboa, E J; Göde, S; Goyon, C; Hazi, A; Kerr, S; Pak, A; Propp, A; Ramakrishna, B; Ruby, J; Willi, O; Williams, G J; Rödel, C; Glenzer, S H

    2016-11-01

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  3. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    NASA Astrophysics Data System (ADS)

    Gauthier, M.; Kim, J. B.; Curry, C. B.; Aurand, B.; Gamboa, E. J.; Göde, S.; Goyon, C.; Hazi, A.; Kerr, S.; Pak, A.; Propp, A.; Ramakrishna, B.; Ruby, J.; Willi, O.; Williams, G. J.; Rödel, C.; Glenzer, S. H.

    2016-11-01

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  4. Channeling of multikilojoule high-intensity laser beams in an inhomogeneous plasma.

    PubMed

    Ivancic, S; Haberberger, D; Habara, H; Iwawaki, T; Anderson, K S; Craxton, R S; Froula, D H; Meyerhofer, D D; Stoeckl, C; Tanaka, K A; Theobald, W

    2015-05-01

    Channeling experiments were performed that demonstrate the transport of high-intensity (>10(18)W/cm(2)), multikilojoule laser light through a millimeter-sized, inhomogeneous (∼300-μm density scale length) laser-produced plasma up to overcritical density, which is an important step forward for the fast-ignition concept. The background plasma density and the density depression inside the channel were characterized with a novel optical probe system. The channel progression velocity was measured, which agrees well with theoretical predictions based on large scale particle-in-cell simulations, confirming scaling laws for the required channeling laser energy and laser pulse duration, which are important parameters for future integrated fast-ignition channeling experiments.

  5. Spectroscopic study of gold nanoparticle formation through high intensity laser irradiation of solution

    SciTech Connect

    Nakamura, Takahiro Sato, Shunichi; Herbani, Yuliati; Ursescu, Daniel; Banici, Romeo; Dabu, Razvan Victor

    2013-08-15

    A spectroscopic study of the gold nanoparticle (NP) formation by high-intensity femtosecond laser irradiation of a gold ion solution was reported. The effect of varying energy density of the laser on the formation of gold NPs was also investigated. The surface plasmon resonance (SPR) peak of the gold nanocolloid in real-time UV-visible absorption spectra during laser irradiation showed a distinctive progress; the SPR absorption peak intensity increased after a certain irradiation time, reached a maximum and then gradually decreased. During this absorption variation, at the same time, the peak wavelength changed from 530 to 507 nm. According to an empirical equation derived from a large volume of experimental data, the estimated mean size of the gold NPs varied from 43.4 to 3.2 nm during the laser irradiation. The mean size of gold NPs formed at specific irradiation times by transmission electron microscopy showed the similar trend as that obtained in the spectroscopic analysis. From these observations, the formation mechanism of gold NPs during laser irradiation was considered to have two steps. The first is a reduction of gold ions by reactive species produced through a non-linear reaction during high intensity laser irradiation of the solution; the second is the laser fragmentation of produced gold particles into smaller pieces. The gold nanocolloid produced after the fragmentation by excess irradiation showed high stability for at least a week without the addition of any dispersant because of the negative charge on the surface of the nanoparticles probably due to the surface oxidation of gold nanoparticles. A higher laser intensity resulted in a higher efficiency of gold NPs fabrication, which was attributed to a larger effective volume of the reaction.

  6. Effectiveness of High Intensity Laser Therapy for Reduction of Pain in Knee Osteoarthritis

    PubMed Central

    2016-01-01

    Introduction. Osteoarthritis is the most common type of arthritis. It is the main cause of chronic musculoskeletal pain and disability among the elderly population. Aim. This is a pilot, randomized clinical study about the effect of high intensity laser therapy in patients with osteoarthritis of the knee (OA of the knee). Material and Method. 72 patients (aged between 39 and 83 years) with (clinically and radiographically proved) OA of the knee were included in the study. They were randomized in two groups: therapeutic (test) one (n = 37, 65,11 ± 1,40 (mean ± SD) years old; patients were treated with HILT) and control group (n = 35, 64,71 ± 1,98; patients receive sham laser). Both groups had seven sessions of treatment. VAS and dolorimetry were used for assessment of pain before and after the therapy. Pedobarometric analysis (static and dynamic) was used to assess comparatively the contact surface area and maximum pressure under the heel. Results. Pain levels measured by VAS and dolorimetry decreased significantly in the therapeutic group after seven days of treatment (p< 0,001). Conclusion. The results after seven days of treatment show more intensive and cumulative effect after the application of high intensity laser therapy in comparison to sham laser. This is the reason why HILT can be a method of choice in the treatment of gonarthrosis. PMID:28096711

  7. Ionization and acceleration of heavy ions in high-Z solid target irradiated by high intensity laser

    NASA Astrophysics Data System (ADS)

    Kawahito, D.; Kishimoto, Y.

    2016-05-01

    In the interaction between high intensity laser and solid film, an ionization dynamics inside the solid is dominated by fast time scale convective propagation of the internal sheath field and the slow one by impact ionization due to heated high energy electrons coupled with nonlocal heat transport. Furthermore, ionization and acceleration due to the localized external sheath field which co- propagates with Al ions constituting the high energy front in the vacuum region. Through this process, the maximum charge state and then q/A increase in the rear side, so that ions near the front are further accelerated to high energy.

  8. High-intensity laser therapy during chronic degenerative tenosynovitis experimentally induced in broiler chickens

    NASA Astrophysics Data System (ADS)

    Fortuna, Damiano; Rossi, Giacomo; Bilotta, Teresa W.; Zati, Allesandro; Gazzotti, Valeria; Venturini, Antonio; Pinna, Stefania; Serra, Christian; Masotti, Leonardo

    2002-10-01

    The aims of this study was the safety and the efficacy of High Intensity Laser Therapy (HILT) on chronic degenerative tenosynovitis. We have effectuated the histological evaluation and seroassay (C reactive protein) on 18 chickens affect by chronic degenerative tenosynovitis experimentally induced. We have been employed a Nd:YAG laser pulsed wave; all irradiated subjects received the same total energy (270 Joule) with a fluence of 7,7 J/cm2 and intensity of 10,7 W/cm2. The histological findings revealed a distinct reduction of the mineralization of the choral matrix, the anti-inflammatory effect of the laser, the hyperplasia of the synoviocytes and ectasia of the lymphatic vessels.

  9. Epithermal Neutron Source for Neutron Resonance Spectroscopy (NRS) using High Intensity, Short Pulse Lasers

    SciTech Connect

    Higginson, D P; McNaney, J M; Swift, D C; Bartal, T; Hey, D S; Pape, S L; Mackinnon, A; Mariscal, D; Nakamura, H; Nakanii, N; Beg, F N

    2010-04-22

    A neutron source for neutron resonance spectroscopy (NRS) has been developed using high intensity, short pulse lasers. This measurement technique will allow for robust measurements of interior ion temperature of laser-shocked materials and provide insight into equation of state (EOS) measurements. The neutron generation technique uses protons accelerated by lasers off of Cu foils to create neutrons in LiF, through (p,n) reactions with {sup 7}Li and {sup 19}F. The distribution of the incident proton beam has been diagnosed using radiochromic film (RCF). This distribution is used as the input for a (p,n) neturon prediction code which is compared to experimentally measured neutron yields. From this calculation, a total fluence of 1.8 x 10{sup 9} neutrons is infered, which is shown to be a reasonable amount for NRS temperature measurement.

  10. Study of point defects created by high-intensity ultrashort pulse laser in YLF crystals

    NASA Astrophysics Data System (ADS)

    Courrol, Lilia C.; dos Santos, Everson B.; Samad, Ricardo E.; Ranieri, Izilda M.; Gomes, Laercio; de Freitas, Anderson Z.; Vieira, Nilson D., Jr.

    2005-03-01

    In this work we report the creation of color centers in LiF and YLF crystals by high intensity, ultrashort laser pulses. We used pure and Tm3+ and Oxygen doped samples, all irradiated with a Ti:Sapphire CPA laser system and also with electron beam, at room temperature. In both kinds of irradiations the production of photochromic damages and color centers that have absorption bands in UV and visible range was observed. A comparison between the two kinds of irradiation was done and the involved processes are described in this paper. F2+ stable centers were produced by the ultrashort laser pulses irradiation in contrast to the well-known, short lived centers produced by electron beams, and a mechanism was proposed to explain the observed stability.

  11. Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Sundqvist, Chantal

    2016-07-01

    Vacuum birefringence is one of the most striking predictions of strong field quantum electrodynamics: Probe photons traversing a strong field region can indirectly sense the applied "pump" electromagnetic field via quantum fluctuations of virtual charged particles which couple to both pump and probe fields. This coupling is sensitive to the field alignment and can effectively result in two different indices of refraction for the probe photon polarization modes giving rise to a birefringence phenomenon. In this article, we perform a dedicated theoretical analysis of the proposed discovery experiment of vacuum birefringence at an x-ray free electron laser/optical high-intensity laser facility. Describing both pump and probe laser pulses realistically in terms of their macroscopic electromagnetic fields, we go beyond previous analyses by accounting for various effects not considered before in this context. Our study facilitates stringent quantitative predictions and optimizations of the signal in an actual experiment.

  12. Time Integrated Soft X-ray Imaging in High Intensity Laser Experiments (thesis)

    SciTech Connect

    Stafford, David

    2009-01-01

    2009 marks a significant achievement and the dawn of a new era in high intensity laser research with the final commissioning of all 192 beams at the National Ignition Facility (NIF). NIF is a department of energy (DOE) funded project more than 10 years in the making located at the Lawrence Livermore National Laboratory (LLNL). The following research was done as one of many preliminary experiments done to prepare for these historic events. The primary focus of the experimental campaign this paper addresses is to test and develop a thermal x-radiation source using a short pulse laser. This data is hoped to provide information about the thermal transport mechanisms important in the development of prediction models in High Energy Density (HED) science. One of several diagnostics fielded was a soft x-ray imager (SXRI) which is detailed in this paper. The SXRI will be used to measure the relative size of the heated region and also the relative level of specific x-ray emissions among several shot and target configurations. The laser system used was the Titan laser located in the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). Titan uses the JLF Janus Nd:glass laser west frontend system with a Optical Parametric Chirped Pulse Amplification (OPCPA) in place of the nanosecond oscillator. The system is capable of producing laser intensities of over a petawatt with several tens of joules delivered in the beam.

  13. Venous Lake of the Lips Treated Using Photocoagulation with High-Intensity Diode Laser

    PubMed Central

    Galletta, Vivian C.; de Paula Eduardo, Carlos; Migliari, Dante A.

    2010-01-01

    Abstract Objective: To evaluate the effectiveness of photocoagulation with high-intensity diode laser in the treatment of venous lake (VL) lesions. Background Data: VL is a common vascular lesion characterized by elevated, usually dome-shaped papules, ranging in color from dark blue to dark purple, seen more frequently in elderly patients. They often occur as single lesions on the ears, face, lips, or neck. Once formed, lesions persist throughout life. Although these lesions are usually asymptomatic, they can bleed if injured. Methods: Seventeen patients (7 men and 10 women) with VL on the lip were treated using a noncontact diode laser (wavelength 808 nm, power output 2–3 W in continuous wave). Results: After only one irradiation exposure, all lesions were successfully treated. Healing was completed in approximately 2 to 3 weeks, and none of the patients experienced complications. Postoperative discomfort and scarring were not present or were minimal. Conclusion: Photocoagulation with high-intensity diode laser is an effective, bloodless procedure for the treatment of VL. PMID:19811083

  14. Dynamics of thin metal foils irradiated by moderate-contrast high-intensity laser beams

    NASA Astrophysics Data System (ADS)

    Povarnitsyn, M. E.; Andreev, N. E.; Levashov, P. R.; Khishchenko, K. V.; Rosmej, O. N.

    2012-02-01

    Laser contrast is a crucial parameter in experiments with high-intensity high-energy pulses. For relativistic intensities of the main pulse ≳1019W/cm2, even high-contrast beams can produce plasma on the target surface due to a long nanosecond prepulse action which results in an undesirable early smearing of the target. In particular, dynamics of thin foils under the prepulse action is especially important for the laser ion acceleration technique and x-rays generation. To avoid the influence of the long laser prepulse, a thin foil can be arranged in front of the target. The analysis of the multi-stage foil dynamics is performed using a wide-range two-temperature hydrodynamic model, which correctly describes the foil expansion starting from the normal solid density at room temperature. Simulations show that varying the foil thickness, one can diminish the prepulse transmission through the foil material in many orders of magnitude and at the same time provide the total transparency of the foil plasma by the moment of the main high-intensity ultra-short pulse arrival. Modeling of shielded and unshielded target dynamics demonstrates the effectiveness of this technique. However, the prepulse energy re-emission by the shielding foil plasma can be sizable producing an undesirable early heating of the target placed behind the foil.

  15. High intensity physics with a table-top 20 TW laser system

    SciTech Connect

    Ditmire, T; Perry, M D

    1999-02-24

    The purpose of this project was to develop a high peak power laser system (100 TW) and begin initial high intensity experiments that exploit its short pulse width (30 fs) and high repetition rate (1 - 10 Hz). Such a laser system presents unique capabilities such as permitting ultrafast time-resolved plasma physics experiments by probing the plasma with the 30 fs laser pulse. The high repetition rate also allows detailed, systematic studies of phenomena, not possible with large, single shot laser systems. During the previous year we have made good progress on the development of the laser. We have demonstrated the production of pulses up to the 5 TW level at 10 Hz and have installed an additional amplifier to take the system to 20 TW. We have pulse compressed the pulses to 30 fs and have developed a number of diagnostics to characterize the laser prepulse. During this year we have also activated a target chamber to begin plasma physics experiments in gas jet targets.

  16. Optical Frequency Optimization of a High Intensity Laser Power Beaming System Utilizing VMJ Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Raible, Daniel E.; Dinca, Dragos; Nayfeh, Taysir H.

    2012-01-01

    An effective form of wireless power transmission (WPT) has been developed to enable extended mission durations, increased coverage and added capabilities for both space and terrestrial applications that may benefit from optically delivered electrical energy. The high intensity laser power beaming (HILPB) system enables long range optical 'refueling" of electric platforms such as micro unmanned aerial vehicles (MUAV), airships, robotic exploration missions and spacecraft platforms. To further advance the HILPB technology, the focus of this investigation is to determine the optimal laser wavelength to be used with the HILPB receiver, which utilizes vertical multi-junction (VMJ) photovoltaic cells. Frequency optimization of the laser system is necessary in order to maximize the conversion efficiency at continuous high intensities, and thus increase the delivered power density of the HILPB system. Initial spectral characterizations of the device performed at the NASA Glenn Research Center (GRC) indicate the approximate range of peak optical-to-electrical conversion efficiencies, but these data sets represent transient conditions under lower levels of illumination. Extending these results to high levels of steady state illumination, with attention given to the compatibility of available commercial off-the-shelf semiconductor laser sources and atmospheric transmission constraints is the primary focus of this paper. Experimental hardware results utilizing high power continuous wave (CW) semiconductor lasers at four different operational frequencies near the indicated band gap of the photovoltaic VMJ cells are presented and discussed. In addition, the highest receiver power density achieved to date is demonstrated using a single photovoltaic VMJ cell, which provided an exceptionally high electrical output of 13.6 W/sq cm at an optical-to-electrical conversion efficiency of 24 percent. These results are very promising and scalable, as a potential 1.0 sq m HILPB receiver of

  17. Proposed method for internal electron therapy based on high-intensity laser acceleration

    NASA Astrophysics Data System (ADS)

    Tepper, Michal; Barkai, Uri; Gannot, Israel

    2015-05-01

    Radiotherapy is one of the main methods to treat cancer. However, due to the propagation pattern of high-energy photons in tissue and their inability to discriminate between healthy and malignant tissues, healthy tissues may also be damaged, causing undesired side effects. A possible method for internal electron therapy, based on laser acceleration of electrons inside the patient's body, is suggested. In this method, an optical waveguide, optimized for high intensities, is used to transmit the laser radiation and accelerate electrons toward the tumor. The radiation profile can be manipulated in order to create a patient-specific radiation treatment profile by changing the laser characteristics. The propagation pattern of electrons in tissues minimizes the side effects caused to healthy tissues. A simulation was developed to demonstrate the use of this method, calculating the trajectories of the accelerated electron as a function of laser properties. The simulation was validated by comparison to theory, showing a good fit for laser intensities of up to 2×1020 (W/cm2), and was then used to calculate suggested treatment profiles for two tumor test cases (with and without penetration to the tumor). The results show that treatment profiles can be designed to cover tumor area with minimal damage to adjacent tissues.

  18. High-intensity fibre laser design for micro-machining applications

    NASA Astrophysics Data System (ADS)

    Ortiz-Neria, D. I.; Martinez-Piñón, F.; Hernandez-Escamilla, H.; Alvarez-Chavez, J. A.

    2010-11-01

    This work is focused on the design of a 250W high-intensity continuous-wave fibre optic laser with a 15μm spot size beam and a beam parameter product (BPP) of 1.8 for its use on Laser-assisted Cold Spray process (LCS) in the micro-machining areas. The metal-powder deposition process LCS, is a novel method based on Cold Spray technique (CS) assisted by laser technology. The LCS accelerates metal powders by the use of a high-pressure gas in order to achieve flash welding of particles over substrate. In LCS, the critical velocity of impact is lower with respect with CS while the powder particle is heated before the deposition by a laser beam. Furthermore, LCS does not heat the powder to achieve high temperatures as it happens in plasma processes. This property puts aside cooling problems which normally happen in sintered processes with high oxygen/nitrogen concentration levels. LCS will be used not only in deposition of thin layers. After careful design, proof of concept, experimental data, and prototype development, it should be feasible to perform micro-machining precise work with the use of the highintensity fibre laser presented in this work, and selective deposition of particles, in a similar way to the well-known Direct Metal Laser Sintering process (DMLS). The fibre laser consists on a large-mode area, Yb3+-doped, semi-diffraction limited, 25-m fibre laser cavity, operating in continuous wave regime. The fibre shows an arguably high slope-efficiency with no signs of roll-over. The measured M2 value is 1.8 and doping concentration of 15000ppm. It was made with a slight modification of the traditional MCVD technique. A full optical characterization will be presented.

  19. Comparison of High-Intensity Laser Therapy and Ultrasound Treatment in the Patients with Lumbar Discopathy

    PubMed Central

    Boyraz, Ismail; Yildiz, Ahmet; Koc, Bunyamin

    2015-01-01

    The aim of the present study was to evaluate the efficiency of high intensity laser and ultrasound therapy in patients who were diagnosed with lumbar disc herniation and who were capable of performing physical exercises. 65 patients diagnosed with lumbar disc were included in the study. The patients were randomly divided into three groups: Group 1 received 10 sessions of high intensity laser to the lumbar region, Group 2 received 10 sessions of ultrasound, and Group 3 received medical therapy for 10 days and isometric lumbar exercises. The efficacy of the treatment modalities was compared with the assessment of the patients before the therapy at the end of the therapy, and in third month after the therapy. Comparing the changes between groups, statically significant difference was observed in MH (mental health) parameter before treatment between Groups 1 and 2 and in MH parameter and VAS score in third month of the therapy between Groups 2 and 3. However, the evaluation of the patients after ten days of treatment did not show significant differences between the groups compared to baseline values. We found that HILT, ultrasound, and exercise were efficient therapies for lumbar discopathy but HILT and ultrasound had longer effect on some parameters. PMID:25883952

  20. High-intensity laser for Ta and Ag implantation into different substrates for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Mackova, A.; Malinsky, P.; Matousek, J.; Torrisi, L.; Ullschmied, J.

    2015-07-01

    High-intensity lasers generating non-equilibrium plasma, can be employed to accelerate ions in the keV-MeV region, useful for many applications. In the present work, we performed study of ion implantation into different substrates by using a high-intensity laser at the PALS laboratory in Prague. Multi-energy ions generated by plasma from Ta and Ag targets were implanted into polyethylene and metallic substrates (Al, Ti) at energies of tens of keV per charge state. The ion emission was monitored online using time-of-flight detectors and electromagnetic deflection systems. Rutherford Backscattering Spectrometry (RBS) was used to characterise the elemental composition in the implanted substrates by ion plasma emission and to provide the implanted ion depth profiling. These last measurements enable offline plasma characterisation and provide information on the useful potentiality of multi-ion species and multi-energy ion implantation into different substrates. XPS analysis gives information on the chemical bonds and their modifications in the first superficial implanted layers. The depth distributions of implanted Ta and Ag ions were compared with the theoretical ones achieved by using the SRIM-2012 simulation code.

  1. Characterization of High-Intensity Laser Propagation in the Relativistic Transparent Regime through Measurements of Energetic Proton Beams

    SciTech Connect

    Willingale, L.; Nagel, S. R.; Thomas, A. G. R.; Bellei, C.; Dangor, A. E.; Kaluza, M. C.; Kamperidis, C.; Kneip, S.; Krushelnick, K.; Mangles, S. P. D.; Nilson, P. M.; Najmudin, Z.; Clarke, R. J.; Heathcote, R.; Lopes, N.; Nazarov, W.

    2009-03-27

    Experiments were performed to investigate the propagation of a high intensity (I{approx}10{sup 21} W cm{sup -2}) laser in foam targets with densities ranging from 0.9n{sub c} to 30n{sub c}. Proton acceleration was used to diagnose the interaction. An improvement in proton beam energy and efficiency is observed for the lowest density foam (n{sub e}=0.9n{sub c}), compared to higher density foams. Simulations show that the laser beam penetrates deeper into the target due to its relativistic propagation and results in greater collimation of the ensuing hot electrons. This results in the rear surface accelerating electric field being larger, increasing the efficiency of the acceleration. Enhanced collimation of the ions is seen to be due to the self-generated azimuthal magnetic and electric fields at the rear of the target.

  2. Impact of Pre-Plasma on Fast Electron Generation and Transport from Short Pulse High Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Peebles, J.; McGuffey, C.; Krauland, C.; Jarrott, L. C.; Sorokovikova, A.; Qiao, B.; Krasheninnikov, S.; Beg, F. N.; Wei, M. S.; Park, J.; Link, A.; Chen, H.; McLean, H. S.; Wagner, C.; Minello, V.; McCary, E.; Meadows, A.; Spinks, M.; Gaul, E.; Dyer, G.; Hegelich, B. M.; Martinez, M.; Donovan, M.; Ditmire, T.

    2014-10-01

    We present the results and analysis from recent short pulse laser matter experiments using the Texas Petawatt Laser to study the impact of pre-plasma on fast electron generation and transport. The experimental setup consisted of 3 separate beam elements: a main, high intensity, short pulse beam for the interaction, a secondary pulse of equal intensity interacting with a separate thin foil target to generate protons for side-on proton imaging and a third, low intensity, wider beam to generate a varied scale length pre-plasma. The main target consisted of a multilayer planar Al foil with a buried Cu fluor layer. The electron beam was characterized with multiple diagnostics, including several bremsstrahlung spectrometers, magnetic electron spectrometers and Cu-K α imaging. The protons from the secondary target were used to image the fields on the front of the target in the region of laser plasma interaction. Features seen in the interaction region by these protons will be presented along with characteristics of the generated electron beam. This work performed under the auspices of the US DOE under Contracts DE-FOA-0000583 (FES, NNSA).

  3. The study towards high intensity high charge state laser ion sources

    NASA Astrophysics Data System (ADS)

    Zhao, H. Y.; Jin, Q. Y.; Sha, S.; Zhang, J. J.; Li, Z. M.; Liu, W.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W.

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  4. Ablation properties of inorganic filler modified benzoxazine composite coating irradiated by high-intensity continuous laser

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Ma, Zhuang; Li, Hezhang; Gao, Lihong; Wang, Fuchi

    2017-05-01

    Benzoxazine resin with good heat resistance, low combustion heat release and high char yield is a promising thermosetting resin. Meanwhile, research shows that the inorganic filler can effectively improve the thermodynamic property of the resin. It makes that the inorganic filler modified benzoxazine may have a potential application in laser ablation. The benzoxazine coating with and without inorganic filler ammonium polyphosphate, melamine and pentaerythritol (P-BOZ and BOZ) were prepared by brush and thermal curing method. The ablation properties of these coatings irradiated by high-intensity laser were investigated. The scanning electron microscope, Raman spectroscopy and thermal gravimetric analysis were used to characterize the micrographs, carbon layer structure and thermodynamic property of the sample. Results show that the composite coating has excellent thermal protective properties. The back temperature of 20 wt% P-BOZ coating under different parameter laser power (1000W/cm2, 5s; 1000W/cm2, 10s) are 40% lower than these of the BOZ coating and the 20 wt% P-BOZ has higher mass ablation rate. In the surface layer of the irradiated area, dense carbon layer is produced which reduces the absorb of the laser energy of the interior. In the interior of the sample, a large number of closed bell shaped holes are generated which are beneficial to obstruct the heat conduction.

  5. Monoenergetic proton emission from nuclear reaction induced by high intensity laser-generated plasmaa)

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Cavallaro, S.; Cutroneo, M.; Giuffrida, L.; Krasa, J.; Margarone, D.; Velyhan, A.; Kravarik, J.; Ullschmied, J.; Wolowski, J.; Szydlowski, A.; Rosinski, M.

    2012-02-01

    A 1016 W/cm2 Asterix laser pulse intensity, 1315 nm at the fundamental frequency, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD2 targets placed inside a high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deutons and carbon ions emission with energy of up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deutons may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD2 targets can be employed to be irradiated by the plasma-accelerated deutons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  6. Deuterium-deuterium nuclear reaction induced by high intensity laser pulses

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Cavallaro, S.; Cutroneo, M.; Giuffrida, L.; Krasa, J.; Margarone, D.; Velyhan, A.; Kravarik, J.; Ullschmied, J.; Wolowski, J.; Szydlowski, A.; Rosinski, M.

    2013-05-01

    A 1016 W/cm2 Asterix laser pulse intensity, 1315 nm wavelength, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD2 targets placed into the high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deuterons and carbon ions emission with energy up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deuterium ions may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD2 targets can be availed to be irradiated by the plasma-accelerated deuterons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  7. Reversible permeabilization using high-intensity femtosecond laser pulses: applications to biopreservation.

    PubMed

    Kohli, Vikram; Acker, Jason P; Elezzabi, Abdulhakem Y

    2005-12-30

    Non-invasive manipulation of live cells is important for cell-based therapeutics. Herein we report on the uniqueness of using high-intensity femtosecond laser pulses for reversibly permeabilizing mammalian cells for biopreservation applications. When mammalian cells were suspended in a impermeable hyperosmotic cryoprotectant sucrose solution, femtosecond laser pulses were used to transiently permeabilize cells for cytoplasmic solute uptake. The kinetics of cells exposed to 0.2, 0.3, 0.4, and 0.5 M sucrose, following permeabilization, were measured using video microscopy, and post-permeabilization survival was determined by a dual fluorescence membrane integrity assay. Using appropriate laser parameters, we observed the highest cell survival for 0.2 M sucrose solution (>90%), with a progressive decline in cell survival towards higher concentrations. Using diffusion equations describing the transport of solutes, the intracellular osmolarity at the inner surface of the membrane (x = 10 nm) and to a diffusive length of x = 10 microm was estimated, and a high loading efficiency (>98% for x = 10 nm and >70% for x = 10 microm) was calculated for cells suspended in 0.2 M sucrose. This is the first report of using femtosecond laser pulses for permeabilizing cells in the presence of cryoprotectants for biopreservation applications. Copyright 2005 Wiley Periodicals, Inc

  8. The study towards high intensity high charge state laser ion sources.

    PubMed

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  9. Monoenergetic proton emission from nuclear reaction induced by high intensity laser-generated plasma.

    PubMed

    Torrisi, L; Cavallaro, S; Cutroneo, M; Giuffrida, L; Krasa, J; Margarone, D; Velyhan, A; Kravarik, J; Ullschmied, J; Wolowski, J; Szydlowski, A; Rosinski, M

    2012-02-01

    A 10(16) W∕cm(2) Asterix laser pulse intensity, 1315 nm at the fundamental frequency, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD(2) targets placed inside a high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deutons and carbon ions emission with energy of up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deutons may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD(2) targets can be employed to be irradiated by the plasma-accelerated deutons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  10. Intrastromal corneal reshaping using a high-intensity femtosecond laser: A novel method of vision correction

    NASA Astrophysics Data System (ADS)

    Han, Taehee

    A new technology to perform a minimally invasive cornea reshaping procedure has been developed. This can eliminate the incidence of the flap-related complications of the conventional eye refractive procedures by multiphoton processes using a very high-intensity (I ≥ 1013 W/cm 2), but low energy (Ep ˜ 100-200 microJ) femtosecond laser pulses. Due to much lower energy than that of the nanosecond laser pulses for the thermal photoablation, the multiphoton processes cause almost no collateral damage by heat and shock wave generation. In this method, a series of femtosecond laser pulses is used to create very narrow (< 30 microm) and sufficiently long (≥ 2.5 mm) micro-channels in the cornea. The micro-channels are oriented almost perpendicular to the eye's optical axis. Once the micro-channel reaches a desired length, another series of femtosecond pulses with higher intensity is efficiently delivered through the micro-channel to the endpoint where a certain amount of the stromal tissue is disintegrated by the multiphoton processes. The disintegrated fragments are ejected out of the cornea via the same micro-channel, allowing the corneal surface to collapse, and changing its refractive power. This new corneal reshaping method obviates any process of damaging the corneal surface layer, while retaining the advantages of the conventional refractive procedures such as Laser in situ keratomileusis (LASIK) and Photorefractive keratectomy (PRK). In order to demonstrate the flapless cornea reshaping procedure, we have conducted ex-vivo experiments on fresh porcine eyes. The reshaped corneas were evaluated by using optical coherence tomography (OCT). The test results have shown that this flapless intrastromal procedure can reshape the cornea as intended with almost no surface damage. We have also performed a series of experiments to demonstrate the multiphoton processes in the corneal tissue by very high-intensity femtosecond laser pulses. Through the optical emission

  11. Target surface area effects on hot electron dynamics from high intensity laser–plasma interactions

    DOE PAGES

    Zulick, C.; Raymond, A.; McKelvey, A.; ...

    2016-06-15

    Reduced surface area targets were studied using an ultra-high intensity femtosecond laser in order to determine the effect of electron sheath field confinement on electron dynamics. X-ray emission due to energetic electrons was imaged using a Kα imaging crystal. Electrons were observed to travel along the surface of wire targets, and were slowed mainly by the induced fields. Targets with reduced surface areas were correlated with increased hot electron densities and proton energies. Furthermore, Hybrid Vlasov–Fokker–Planck simulations demonstrated increased electric sheath field strength in reduced surface area targets.

  12. Temporal narrowing of neutrons produced by high-intensity short-pulse lasers

    SciTech Connect

    Higginson, D. P.; Vassura, L.; Gugiu, M. M.; Antici, P.; Borghesi, M.; Brauckmann, S.; Diouf, C.; Green, A.; Palumbo, L.; Petrascu, H.; Sofia, S.; Stardubtsev, M.; Willi, O.; Kar, S.; Negoita, F.; Fuchs, J.

    2015-07-28

    The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ~3 ns duration neutron pulse with 104 n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. Finally, this neutron pulse compares favorably to the duration of conventional accelerator sources and should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.

  13. Temporal Narrowing of Neutrons Produced by High-Intensity Short-Pulse Lasers

    NASA Astrophysics Data System (ADS)

    Higginson, D. P.; Vassura, L.; Gugiu, M. M.; Antici, P.; Borghesi, M.; Brauckmann, S.; Diouf, C.; Green, A.; Palumbo, L.; Petrascu, H.; Sofia, S.; Stardubtsev, M.; Willi, O.; Kar, S.; Negoita, F.; Fuchs, J.

    2015-07-01

    The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ˜3 ns duration neutron pulse with 104 n /MeV /sr /shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. This neutron pulse compares favorably to the duration of conventional accelerator sources and should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.

  14. Temporal narrowing of neutrons produced by high-intensity short-pulse lasers

    DOE PAGES

    Higginson, D. P.; Vassura, L.; Gugiu, M. M.; ...

    2015-07-28

    The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ~3 ns duration neutron pulse with 104 n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. Finally, this neutron pulse compares favorably to the duration of conventional accelerator sources and shouldmore » scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.« less

  15. Temporal Narrowing of Neutrons Produced by High-Intensity Short-Pulse Lasers.

    PubMed

    Higginson, D P; Vassura, L; Gugiu, M M; Antici, P; Borghesi, M; Brauckmann, S; Diouf, C; Green, A; Palumbo, L; Petrascu, H; Sofia, S; Stardubtsev, M; Willi, O; Kar, S; Negoita, F; Fuchs, J

    2015-07-31

    The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ∼3  ns duration neutron pulse with 10(4)  n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. This neutron pulse compares favorably to the duration of conventional accelerator sources and should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.

  16. Amplification properties of vacuum ultraviolet Ar2* produced by infrared high-intensity laser

    NASA Astrophysics Data System (ADS)

    Kaku, Masanori; Harano, Shinya; Matsumoto, Ryota; Katto, Masahito; Kubodera, Shoichi

    2011-07-01

    We report optical amplification of Ar2* at 126nm, pumped by optical-field-induced ionization (OFI) created by an infrared high-intensity laser. A gain--length product of 0.84 was obtained by using multipass amplification with a vacuum ultraviolet (VUV) cavity. The gain--length product was increased up to 4.3 through the use of single-pass amplification with a VUV reflector and a hollow 5.0cm-long fiber. Similar small signal gain coefficients of 0.84 and 0.86cm-1 were obtained in two different experiments, in which OFI Ar plasma gain media were produced in free space filled with Ar and inside an Ar-filled hollow fiber.

  17. Axial segregation in high intensity discharge lamps measured by laser absorption spectroscopy

    SciTech Connect

    Flikweert, A.J.; Nimalasuriya, T.; Groothuis, C.H.J.M.; Kroesen, G.M.W.; Stoffels, W.W.

    2005-10-01

    High intensity discharge lamps have a high efficiency. These lamps contain rare-earth additives (in our case dysprosium iodide) which radiate very efficiently. A problem is color separation in the lamp because of axial segregation of the rare-earth additives, caused by diffusion and convection. Here two-dimensional atomic dysprosium density profiles are measured by means of laser absorption spectroscopy; the order of magnitude of the density is 10{sup 22} m{sup -3}. The radially resolved atomic density measurements show a hollow density profile. In the outer parts of the lamp molecules dominate, while the center is depleted of dysprosium atoms due to ionization. From the axial profiles the segregation parameter is determined. It is shown that the lamp operates on the right-hand side of the Fischer curve [J. Appl. Phys. 47, 2954 (1976)], i.e., a larger convection leads to less segregation.

  18. New intrastromal corneal reshaping procedure using high-intensity femtosecond laser pulses.

    PubMed

    Han, Taehee; Li, Deng; Hersh, Peter S; Suckewer, Szymon

    2015-06-01

    A minimally invasive keratorefractive procedure using high-intensity, low-energy femtosecond laser pulses to perform intrastromal ablation is described. Because of the low pulse energy and the ultrashort duration, tissue in the corneal stroma can be ablated with almost no heat or shockwave generation. This technique obviates the need for the laser in situ keratomileusis (LASIK) flap but retains the advantages of the LASIK procedure. In the technique, a series of femtosecond laser pulses create temporary microchannels in the stroma, oriented perpendicular to the eye's optical axis. After the microchannels are created, a second series of femtosecond pulses directly ablate the desired amount of stromal tissue in a controlled fashion. The ablated material is ejected from the microchannels so the surface layer above the ablated regions collapses, with a consequent change in the refractive power of the cornea. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  19. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation

    SciTech Connect

    Albertazzi, B.; Chen, S. N.; Fuchs, J.; Antici, P.; Böker, J.; Swantusch, M.; Willi, O.; Borghesi, M.; Breil, J.; Feugeas, J. L.; Nicolaï, Ph.; Tikhonchuk, V. T.; D'Humières, E.; Dervieux, V.; Nakatsutsumi, M.; Romagnagni, L.; Lancia, L.; Shepherd, R.; Sentoku, Y.; Starodubtsev, M.; and others

    2015-12-15

    The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 10{sup 19 }W cm{sup −2}) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10–20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8–10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.

  20. Simulation of the Generation of Low Frequency Radiation From Argon Clusters lluminated by High-Intensity Short Pulse Lasers

    NASA Astrophysics Data System (ADS)

    Cordova, Clay

    2005-10-01

    The interaction of high-powered lasers with small plasma clusters is of interest due to its range of applications including the generation of fast ions and electrons for advanced accelerators, self-focusing phenomenon in optics, and production of x-ray and extreme ultraviolet (EUV) radiation. We simulate the interaction of high-intensity lasers with solid density clusters using the fully electromagnetic PIC code TurboWAVE^2. We analyze a range of cluster sizes, laser intensities, and pulse durations to investigate the dependence of low frequency radiation production on these parameters. In this poster, we illustrate the results of this study. In particular, we present calculations of the energy absorbed and released from the cluster, as well as an analysis of the far-field radiation distribution, intensity, and power spectrum. Finally, we present conclusions that may guide future simulations and experiments. 1. ccor@lanl.gov 2. D. Gordon et al. IEEE TRANSACTIONS ON PLASMA SCIENCE, 28 (4), 8/2000, 1135

  1. Development of a laser ion source for production of high-intensity heavy-ion beams

    NASA Astrophysics Data System (ADS)

    Kashiwagi, H.; Yamada, K.; Kurashima, S.

    2017-09-01

    A laser ion source has been developed as a high-intensity source for the ion implanter and the single pulsed beam of the azimuthally varying field cyclotron at TIARA. Highly charged beams of C5+ and C6+ ions and low-charged beams of heavy ions such as C, Al, Ti, Cu, Au, and Pt are required for the single-pulse acceleration in the cyclotron and for the ion implanter, respectively. In the vacuum chamber of the ion source, a target holder on a three-dimensional linear-motion stage provides a fresh surface for each laser shot. A large-sized target with a maximum size of 300 mm × 135 mm is mounted on the holder for long-term operation. The ion current (ion charge flux) in the laser-produced plasma is measured by a Faraday cup and time-of-flight spectra of each charge state are measured using a 90° cylindrical electrostatic analyzer just behind the Faraday cup. Carbon-plasma-generation experiments indicate that the source produces intense high- and low-charged pulsed ion beams. At a laser energy of 483 mJ (2.3 × 1013 W/cm2), average C6+ current of 13 mA and average C5+ current of 23 mA were obtained over the required time duration for single-pulse acceleration in the cyclotron (49 ns for C6+ and 80 ns for C5+). Furthermore, at 45 mJ (2.1 × 1012 W/cm2), an average C2+ current of 1.6 mA over 0.88 μs is obtained.

  2. Comparison of Square and Radial Geometries for High Intensity Laser Power Beaming Receivers

    NASA Technical Reports Server (NTRS)

    Raible, Daniel E.; Fast, Brian R.; Dinca, Dragos; Nayfeh, Taysir H.; Jalics, Andrew K.

    2012-01-01

    In an effort to further advance a realizable form of wireless power transmission (WPT), high intensity laser power beaming (HILPB) has been developed for both space and terrestrial applications. Unique optical-to-electrical receivers are employed with near infrared (IR-A) continuous-wave (CW) semiconductor lasers to experimentally investigate the HILPB system. In this paper, parasitic feedback, uneven illumination and the implications of receiver array geometries are considered and experimental hardware results for HILPB are presented. The TEM00 Gaussian energy profile of the laser beam presents a challenge to the effectiveness of the receiver to perform efficient photoelectric conversion, due to the resulting non-uniform illumination of the photovoltaic cell arrays. In this investigation, the geometry of the receiver is considered as a technique to tailor the receiver design to accommodate the Gaussian beam profile, and in doing so it is demonstrated that such a methodology is successful in generating bulk receiver output power levels reaching 25 W from 7.2 sq cm of photovoltaic cells. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers to achieve a 1.0 sq m receiver capable of generating over 30 kW of electrical power. This type of system would enable long range optical "refueling" of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion. In addition, a smaller HILPB receiver aperture size could be utilized to establish a robust optical communications link within environments containing high levels of background radiance, to achieve high signal to noise ratios.

  3. f Number Increase of a High-Intensity Green Laser Beam in a Plasma

    NASA Astrophysics Data System (ADS)

    Cobble, J. A.; Johnson, R. P.; Mason, R. J.

    1997-11-01

    Earlier(J. A. Cobble, R. P. Johnson, R. J. Mason, Phys. Plasmas 6, 3006 (1997).), we studied the increase in f number of a high-intensity, 1054-nm laser beam passing through a low density, preformed plasma, i. e., an exploding foil. We have extended this work to 527-nm light. Again we find an increase in the f number of the probe beam. Near field imaging of the transmitted green beam shows a factor of four reduction in beam divergence at 8 percent of the critical density. The change is less for lower densities, and the beam compression corresponds to the critical power dropping below the laser power (0.6 TW) as the density increases. The density is estimated from the spectra of stimulated Raman back scatter and from modeling of the target plasma with LASNEX. A CCD camera and a spectrometer with a 200-nm bandwidth were used to record the backscattered spectra. *Work performed under the auspices of the U. S. Department of Energy.

  4. Simulations of High-Intensity Short-Pulse Lasers Incident on Reduced Mass Targets

    NASA Astrophysics Data System (ADS)

    King, Frank W.

    This thesis presents the results of a series of fully kinetic particle-in-cell (PIC) simulations of reduced mass targets with pre-plasma subjected to high-intensity short-pulse lasers. The simulations are performed in one, two, and three dimensions. The results of these simulations show that the creation of an electrostatic collisionless ion shock in the preplasma controls the creation of an above solid density ion perturbation in the target bulk, and this determines the reduced mass target heating and deformation. The ion perturbation is initiated by a population of high-energy electrons that rapidly spread throughout the target and reflux. The perturbation spreads longitudinally and transversely through the target and results in compression followed by the destruction of the target. This deformation requires a kinetic treatment due to the generation of non-equilibrium particle distributions and the role of ballistic electrons and ions. Kinetic and fluid simulations are compared and both exhibit the basic features of the above solid density ion perturbation, but the magnitude of the effect and the speed of propagation vary significantly between the two methods. Kinetic simulations do not naturally include equation-of-state physics and other aspects of the problem. Both approaches are complementary. The requirements on spatial resolution, particle count, and other numerical parameters are addressed in this work. From these simulations, the behavior of the reduced mass targets is found to vary significantly depending on the laser focal spot size or the intensity of the laser pulse. This occurs even if the energy and power of the laser pulses are held constant. The number of dimensions used in the particle-in-cell simulations has been observed to have a significant effect on late-time heating of the target, but not during or shortly after laser excitation. This is due to the representation of the equilibration process as the initial population of laser heated

  5. Rewriting the rules governing high intensity interactions of light with matter.

    PubMed

    Borisov, Alex B; McCorkindale, John C; Poopalasingam, Sankar; Longworth, James W; Simon, Peter; Szatmári, Sándor; Rhodes, Charles K

    2016-04-01

    The trajectory of discovery associated with the study of high-intensity nonlinear radiative interactions with matter and corresponding nonlinear modes of electromagnetic propagation through material that have been conducted over the last 50 years can be presented as a landscape in the intensity/quantum energy [I-ħω] plane. Based on an extensive series of experimental and theoretical findings, a universal zone of anomalous enhanced electromagnetic coupling, designated as the fundamental nonlinear domain, can be defined. Since the lower boundaries of this region for all atomic matter correspond to ħω ~ 10(3) eV and I  ≈  10(16) W cm(-2), it heralds a future dominated by x-ray and γ-ray studies of all phases of matter including nuclear states. The augmented strength of the interaction with materials can be generally expressed as an increase in the basic electromagnetic coupling constant in which the fine structure constant α  →  Z(2)α, where Z denotes the number of electrons participating in an ordered response to the driving field. Since radiative conditions strongly favoring the development of this enhanced electromagnetic coupling are readily produced in self-trapped plasma channels, the processes associated with the generation of nonlinear interactions with materials stand in natural alliance with the nonlinear mechanisms that induce confined propagation. An experimental example involving the Xe (4d(10)5s(2)5p(6)) supershell for which Z  ≅  18 that falls in the specified anomalous nonlinear domain is described. This yields an effective coupling constant of Z(2)α  ≅  2.4  >  1, a magnitude comparable to the strong interaction and a value rendering as useless conventional perturbative analyses founded on an expansion in powers of α. This enhancement can be quantitatively understood as a direct consequence of the dominant role played by coherently driven multiply-excited states in the dynamics of the coupling

  6. Rewriting the rules governing high intensity interactions of light with matter

    NASA Astrophysics Data System (ADS)

    Borisov, Alex B.; McCorkindale, John C.; Poopalasingam, Sankar; Longworth, James W.; Simon, Peter; Szatmári, Sándor; Rhodes, Charles K.

    2016-04-01

    The trajectory of discovery associated with the study of high-intensity nonlinear radiative interactions with matter and corresponding nonlinear modes of electromagnetic propagation through material that have been conducted over the last 50 years can be presented as a landscape in the intensity/quantum energy [I-ħω] plane. Based on an extensive series of experimental and theoretical findings, a universal zone of anomalous enhanced electromagnetic coupling, designated as the fundamental nonlinear domain, can be defined. Since the lower boundaries of this region for all atomic matter correspond to ħω ~ 103 eV and I  ≈  1016 W cm-2, it heralds a future dominated by x-ray and γ-ray studies of all phases of matter including nuclear states. The augmented strength of the interaction with materials can be generally expressed as an increase in the basic electromagnetic coupling constant in which the fine structure constant α  →  Z 2 α, where Z denotes the number of electrons participating in an ordered response to the driving field. Since radiative conditions strongly favoring the development of this enhanced electromagnetic coupling are readily produced in self-trapped plasma channels, the processes associated with the generation of nonlinear interactions with materials stand in natural alliance with the nonlinear mechanisms that induce confined propagation. An experimental example involving the Xe (4d105s25p6) supershell for which Z  ≅  18 that falls in the specified anomalous nonlinear domain is described. This yields an effective coupling constant of Z 2 α  ≅  2.4  >  1, a magnitude comparable to the strong interaction and a value rendering as useless conventional perturbative analyses founded on an expansion in powers of α. This enhancement can be quantitatively understood as a direct consequence of the dominant role played by coherently driven multiply-excited states in the dynamics of the coupling. It is also

  7. High Intensity Mirror-Free Nanosecond Ytterbium Fiber Laser System in Master Oscillator Power Amplification

    NASA Astrophysics Data System (ADS)

    Chun-Lin, Louis Chang

    Rare-earth-doped fiber lasers and amplifiers are relatively easy to efficiently produce a stable and high quality laser beam in a compact, robust, and alignment-free configuration. Recently, high power fiber laser systems have facilitated wide spread applications in academics, industries, and militaries in replacement of bulk solid-state laser systems. The master oscillator power amplifier (MOPA) composed of a highly-controlled seed, high-gain preamplifiers, and high-efficiency power amplifiers are typically utilized to scale up the pulse energy, peak power, or average power. Furthermore, a direct-current-modulated nanosecond diode laser in single transverse mode can simply provide a compact and highly-controlled seed to result in the flexible output parameters, such as repetition rate, pulse duration, and even temporal pulse shape. However, when scaling up the peak power for high intensity applications, such a versatile diode-seeded nanosecond MOPA laser system using rare-earth-doped fibers is unable to completely save its own advantages compared to bulk laser systems. Without a strong seeding among the amplifiers, the guided amplified spontaneous amplification is easy to become dominant during the amplification, leading to the harmful self-lasing or pulsing effects, and the difficulty of the quantitative numerical comparison. In this dissertation, we study a high-efficiency and intense nanosecond ytterbium fiber MOPA system with good beam quality and stability for high intensity applications. The all-PM-fiber structure is achieved with the output extinction ratio of >12 dB by optimizing the interconnection of high power optical fibers. The diode-seeded MOPA configuration without parasitic stimulated amplification (PAS) is implemented using the double-pass scheme to extract energy efficiently for scaling peak power. The broadband PAS was studied experimentally, which matches well with our numerical simulation. The 1064-nm nanosecond seed was a direct

  8. Evaluation of Surface Roughness and Bacterial Adhesion on Tooth Enamel Irradiated With High Intensity Lasers.

    PubMed

    Nogueira, Ruchele D; Silva, Camilla B; Lepri, Cesar P; Palma-Dibb, Regina Guenka; Geraldo-Martins, Vinicius R

    2017-01-01

    The aim was to evaluate the surface roughness and bacterial adhesion on enamel irradiated with high intensity lasers, associated or not to a fluoride varnish. Eighty fragments of bovine enamel were equally divided in 8 groups (n=10). Group 1 was not treated and Group 2 received only a 5% fluoride varnish application. The other groups were irradiated with an Er:Cr:YSGG (8.92 J/cm2), an Nd:YAG (84.9 J/cm2) and a diode laser (199.04 J/cm2), associated or not to a 5% fluoride varnish. The surface roughness was measured before and after treatments. Afterward, all samples were incubated in a suspension of S. mutans at 37 °C for 24 h. The colony-forming units (CFU) were counted by a stereoscope and the results were expressed in CFU/mm2. One-way ANOVA and the Tukey´s test compared the roughness data and the Student´s test compared the results obtained in the bacterial adhesion test (a=5%). The results showed that the irradiated samples without varnish presented the same roughness and the same bacterial adhesion that the non-irradiated samples. However, samples irradiated in the presence of fluoride varnish showed higher surface roughness and higher bacterial adhesion than the non-irradiated samples and those irradiated without varnish. Presence of pigments in the varnish increased the lasers' action on the enamel surface, which produced ablation in this hard tissue and significantly increased its surface roughness. For this reason, the enamel's susceptibility to bacterial adhesion was higher when the irradiation of the samples was made in presence of fluoride varnish.

  9. Propagation and absorption of high-intensity femtosecond laser radiation in diamond

    SciTech Connect

    Kononenko, V V; Konov, V I; Gololobov, V M; Zavedeev, E V

    2014-12-31

    Femtosecond interferometry has been used to experimentally study the photoexcitation of the electron subsystem of diamond exposed to femtosecond laser pulses of intensity 10{sup 11} to 10{sup 14} W cm{sup -2}. The carrier concentration has been determined as a function of incident intensity for three harmonics of a Ti : sapphire laser (800, 400 and 266 nm). The results demonstrate that, in a wide range of laser fluences (up to those resulting in surface and bulk graphitisation), a well-defined multiphoton absorption prevails. We have estimated nonlinear absorption coefficients for pulsed radiation at λ = 800 nm (four-photon transition) and at 400 and 266 nm (indirect and direct two-photon transitions, respectively). It has also been shown that, at any considerable path length of a femtosecond pulse in diamond (tens of microns or longer), the laser beam experiences a severe nonlinear transformation, determining the amount of energy absorbed by the lattice, which is important for the development of technology for diamond photostructuring by ultrashort pulses. The competition between wave packet self-focusing and the plasma defocusing effect is examined as a major mechanism governing the propagation of intense laser pulses in diamond. (interaction of laser radiation with matter. laser plasma)

  10. High Intensity Beam and X-Ray Converter Target Interactions and Mitigation

    SciTech Connect

    Chem, Y-J; McCarrick, J F; Guethlein, G; Chambers, F; Falabella, S; Lauer, E; Richardson, R; Weir, J

    2002-07-31

    Ions extracted from a solid surface or plasma by impact of an high intensity and high current electron beam can partially neutralize the beam space charge and change the focusing system. We have investigated ion emission computationally and experimentally. By matching PIC simulation results with available experimental data, our finding suggests that if a mix of ion species is available at the emitting surface, protons dominate the backstreaming ion effects, and that, unless there is surface flashover, ion emission is source limited. We have also investigated mitigation, such as e-beam cleaning, laser cleaning and ion trapping with a foil barrier. The temporal behavior of beam spot size with a foil barrier and a focusing scheme to improve foil barrier performance are discussed.

  11. High Intensity Beam and X-Ray Converter Target Interactions and Mitigation

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jiuan; McCarrick, James F.; Guethlein, Gary; Caporaso, George J.; Chambers, Frank; Falabella, Steven; Lauer, Eugene; Richardson, Roger; Sampayan, Steve; Weir, John

    2002-12-01

    Ions extracted from a solid surface or plasma by impact of an high intensity and high current electron beam can partially neutralize the beam space charge and change the focusing system. We have investigated ion emission computationally and experimentally. By matching PIC simulation results with available experimental data, our finding suggests that if a mix of ion species is available at the emitting surface, protons dominate the backstreaming ion effects, and that, unless there is surface flashover, ion emission is source limited. We have also investigated mitigation, such as e-beam cleaning, laser cleaning and ion trapping with a foil barrier. The temporal behavior of beam spot size with a foil barrier and a focusing scheme to improve foil barrier performance are discussed.

  12. Guiding of high intensity ultrashort laser pulses in plasma channels produced with the dual laser pulse ignitor-heater technique

    SciTech Connect

    Volfbeyn, P.; Leemans, W.P.

    1998-07-01

    The authors present results of experimental investigations of laser guiding in plasma channels. A new technique for plasma channel creation, the Ignitor-Heater scheme is proposed and experimentally tested in hydrogen and nitrogen. It makes use of two laser pulses. The Ignitor, an ultrashort (< 100 fs) laser pulse, is brought to a line focus using a cylindrical lens to ionize the gas. The Heater pulse (160 ps long) is used subsequently to heat the existing spark via inverse Bremsstrahlung. The hydrodynamic shock expansion creates a partially evacuated plasma channel with a density minimum on axis. Such a channel has properties of an optical waveguide. This technique allows creation of plasma channels in low atomic number gases, such as hydrogen, which is of importance for guiding of highly intense laser pulses. The channel density was diagnosed with time resolved longitudinal interferometry. From these measurements the plasma temperature was inferred. The guiding properties of the channels were tested by injecting a > 5 {times} 10{sup 17} W/cm{sup 2}, 75 fs laser pulse.

  13. Generation of high-order harmonics in a high-intensity laser radiation field

    SciTech Connect

    Platonenko, Viktor T; Strelkov, V V

    1998-07-31

    An analysis is made of the generation of high-order harmonics by atoms and ions in high-intensity laser beams. A brief description is given of the main experimental relationships governing such generation, of methods for numerical solution of the Schrodinger equation for an atom in a strong field, and of some approximate models which make it possible to understand the mechanism of the effect (in particular, the 'semiclassical' model). A detailed discussion is made of an analytic quantum-mechanical theory of high-order harmonic generation in a one-electron system with the Coulomb, delta-like, and other potentials. Expressions are provided for the complex amplitudes of harmonics generated by monochromatic and bichromatic excitation. The results of simulation of high-order harmonic generation in an extended medium are given. This simulation takes into account the phases of the harmonics and their dependences on the amplitude of the fundamental-frequency field. The phase-matching problem and ways of solving it, the problem of the spectrum and duration of a pulse of a single harmonic and of the feasibility of controlling them, the problem of the total harmonic field, and other topics are considered. (review)

  14. High Energy K(alpha) Radiography Using High-intensity, Short-pulse Lasers

    SciTech Connect

    Park, H; Izumi, N; Key, M H; King, J A; Koch, J A; Landen, O L; Patel, P K; Price, D F; Remington, B A; Robey, H F; Snavely, R A; Tabak, M; Town, R J; Wickersham, J E; Stoeckl, C; Storm, M; Theobald, W; Chambers, D M; Eagelton, R; Goldsack, T; Clarke, R J; Heathcote, R; Giraldez, E; Nikroo, A; Steinman, D A; Stephens, R B; Zhang, B B

    2005-11-16

    We have performed experiments using Callisto, the Vulcan 100 TW and the Vulcan Petawatt high intensity lasers to understand the characteristics of high energy, K{alpha} x-ray sources and to implement workable radiography solutions at 20-100 keV. Our measurements show that the K{alpha} size from a simple foil target is larger than 60 {micro}m, far larger than the experiment resolution requirement. The total K{alpha} yield is independent of target thicknesses verifying that refluxing plays a major role in photon generation. Smaller radiating volumes emit brighter K{alpha} radiation. 1-D radiography experiments using small-edge-on foils resolved 10 {micro}m features with high contrast. We tested a variety of small volume 2-D point sources such as cones, wires, and embedded wires, measuring photon yields and comparing our measurements with predictions from hybrid-PIC LSP simulations. In addition to high-energy, high-resolution backlighters, future experiments will also need imaging detectors and diagnostic tools that are workable in the 20-100 keV energy range. An initial look at some of these detector issues is also presented.

  15. Higher-Order Nonlocal Effects of a Relativistic Ponderomotive Force in High-Intensity Laser Fields

    NASA Astrophysics Data System (ADS)

    Iwata, Natsumi; Kishimoto, Yasuaki

    2014-01-01

    We have developed a new formula for a relativistic ponderomotive force of transversely localized laser fields based on the noncanonical Lie perturbation method by finding proper coordinates and gauges in the variational principle. The formula involves new terms represented by second and third spatial derivatives of the field amplitude, so that the ponderomotive force depends not only on the local field gradient, but also on the curvature and its variation. The formula is then applicable to a regime in which the conventional formula is hardly applied such that nonlocal and/or global extent of the field profile becomes important. The result can provide a theoretical basis for describing nonlinear laser-plasma interaction including such nonlocal effects, which is examined via particle-in-cell simulation of laser propagation in a plasma with a super Gaussian transverse field profile.

  16. High-Power, High-Intensity Laser Propagation and Interactions

    DTIC Science & Technology

    2014-03-10

    for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data...paccel NqzE  / . The accelerating gradient accelE is proportional to IN p~ , where   /ÊcI  is the intensity, and can be ~ 10 3 times ...Lpgp g ph zzzz z z     , (9) where  z g zdzt  )’(v/’ is the time measured in the frame of the pulse with group velocity )(v zg and L

  17. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.

    1997-03-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO2 laser may be used for prototype LSS demonstration. In a feasible demonstration experiment, 10-GW, 100-ps CO2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 Å) x-rays of 10-ps pulse duration, with a flux of ˜1019photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 1022 photons/sec level, after the ongoing ATF CO2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact "table-top" LSS of monochromatic gamma radiation may become feasible.

  18. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    SciTech Connect

    Pogorelsky, I.V.

    1996-11-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO{sub 2} laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps CO{sub 2} laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 {angstrom}) x-rays of 10-ps pulse duration, with a flux of {approximately} 10{sup 19} photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10{sup 22} photons/sec level, after the ongoing ATF CO{sub 2} laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ``table-top`` LSS of monochromatic gamma radiation may become feasible.

  19. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    SciTech Connect

    Pogorelsky, I.V.

    1997-01-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high- brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high- brightness electron beam and the high-power C0{sub 2} laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10 GW, 100 ps C0{sub 2} laser beam will be brought to a head-on collision with a 10 ps, 0.5 nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 A) x-rays of 10-ps pulse duration, with a flux of {approximately}10{sup 19} photons/sec, will be produced via linear Compton backscattering. The x-ray spectra is tunable proportionally to the e- beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10{sup 22} photon/sec level, after the ongoing ATF C0{sub 2} laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ``table- top`` LSS of monochromatic gamma radiation may become feasible.

  20. Propagation instabilities of high-intensity laser-produced electron beams.

    PubMed

    Tatarakis, M; Beg, F N; Clark, E L; Dangor, A E; Edwards, R D; Evans, R G; Goldsack, T J; Ledingham, K W D; Norreys, P A; Sinclair, M A; Wei, M-S; Zepf, M; Krushelnick, K

    2003-05-02

    Measurements of energetic electron beams generated from ultrahigh intensity laser interactions (I>10(19) W/cm(2)) with dense plasmas are discussed. These interactions have been shown to produce very directional beams, although with a broad energy spectrum. In the regime where the beam density approaches the density of the background plasma, we show that these beams are unstable to filamentation and "hosing" instabilities. Particle-in-cell simulations also indicate the development of such instabilities. This is a regime of particular interest for inertial confinement fusion applications of these beams (i.e., "fast ignition").

  1. Limitations of high-intensity soft X-ray laser fields for the characterisation of water chemistry: Coulomb explosion of the octamer water cluster.

    PubMed

    Debnarova, Andrea; Techert, Simone; Schmatz, Stefan

    2012-07-21

    In this work, the Coulomb explosion of the octamer water cluster has been studied employing a theoretical approach. Instead of the usual methodology that makes use of classical molecular dynamics, time-dependent density functional theory has been applied to tackle the problem. This method explicitly accounts for the laser field and thus does not impose any constraint on the interaction between the laser pulse and the cluster. We focus on the effects of energetic changes in the system under high-intensity soft X-ray laser pulses. The motions of the ions and their velocities during this process show significant differences for the three applied laser intensities (10(14), 10(15) and 10(16) W cm(-2)). Very strong soft X-ray free electron laser (FEL) pulses must be short to allow for investigations of ultra-fast wet chemistry, according to the principle of collect and destroy.

  2. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.

    2013-10-01

    Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  3. Self-trapping of intensities changing under SHG and SWG for high intensive femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Kharitonov, Dmitry M.; Fedotov, Mikhail V.

    2017-05-01

    SHG and SFG (SWG) and THG are used widely in many practical applications such as a substance diagnostics, and imaging of various physical, chemical and biological processes as well as for laser radiation frequency conversion. One of very interesting phenomena under the frequency conversion takes place if a basic wave incident intensity is enough high: a synchronic mode of the laser pulse intensities changing along a propagation coordinate appears under certain conditions. First of all, we investigate this phenomenon using the frame-work of long pulse duration approximation and plane wave approximation without applying the basic wave energy non-depletion approximation. Applying an original approach we derive the solution of Schr¨odinger equations describing the THG via a SHG process and summary frequency wave generation (SFG) process for femtosecond pulses. Among many modes of the frequency conversion process under consideration we found out analytically the mode corresponding to synchronous intensities changing for the interacting waves. We derive conditions of such mode realization in dependence of the problem parameters. After that we verify our analytical consideration using a computer simulation of the problem on the base of the corresponding Schr¨odinger equations. Computer simulation shown also a new phenomenon at three-wave interaction: interacting wave intensities changing with two (or more) oscillation periods.

  4. Order statistics of high-intensity speckles in stimulated Brillouin scattering and plasma-induced laser beam smoothing

    NASA Astrophysics Data System (ADS)

    Hüller, S.; Porzio, A.; Robiche, J.

    2013-02-01

    We have studied plasma-induced smoothing due to stimulated Brillouin scattering (SBS) under the aspect of the extremal statistics of smoothed laser beams. As pointed out in the work by Rose and DuBois (1994 Phys. Rev. Lett. 72 2883), scattered light can be subject to uncontrolled (or even ‘explosive’) behaviour, associated with a critical gain value for SBS. In this work we show how this critical behaviour can be predicted on the basis of the order statistics of laser speckle fields, and we analyse the transition to uncontrolled behaviour of the laser beam due to the dominance of high intensity speckles.

  5. Plume splitting and rebounding in a high-intensity CO{sub 2} laser induced air plasma

    SciTech Connect

    Chen Anmin; Jiang Yuanfei; Liu Hang; Jin Mingxing; Ding Dajun

    2012-07-15

    The dynamics of plasma plume formed by high-intensity CO{sub 2} laser induced breakdown of air at atmospheric pressure is investigated. The laser wavelength is 10.6 {mu}m. Measurements were made using 3 ns gated fast photography as well as space and time resolved optical emission spectroscopy. The behavior of the plasma plume was studied with a laser energy of 3 J and 10 J. The results show that the evolution of the plasma plume is very complicated. The splitting and rebounding of the plasma plume is observed to occur early in the plumes history.

  6. Model simulation of a localized high intensity heat source interacting with cooled metal plates

    NASA Astrophysics Data System (ADS)

    Cranfill, F. M.

    The basic, generic problem of a localized high intensity heat source directed against one surface of a plate of finite thickness was investigated using the finite element program ANSYS. After reviewing similar work in nuclear fuel and laser machining, ANSYS was verified against a known solution. ANSYS was used to create a model that yields minimum heat transfer coefficients needed to prevent the initiation of melting in thin aluminum, titanium, and stainless steel (AISI 304) plates. These heat transfer coefficients were converted into minimum local Nusselt numbers and graphed against local Nusselt number correlations for constant temperature flat plates in forced and free convection regimes. A detailed listing of both laminar and turbulent correlations is presented along with references. The suitability of liquid sodium, air, and water (under high pressure) as coolants for a source intensity of 2.0 x 10 to the 7th power w/sq m was examined. For free convection, only liquid sodium cooling a titanium plate is feasible, For forced convection, liquid sodium is feasible in laminar flow fo r all three plates with velocities ranging from 0.28 m/s to 1.09 m/s. Water is feasible for aluminum and titanium in turbulent flow at velocities of approximately 4 m/s.

  7. Feasibility of laser-integrated high intensity focused ultrasound (HIFU) treatment for bladder tumors: in vitro study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Phuc; Park, Suhyun; Oh, Junghwan; Kang, Hyun Wook

    2016-02-01

    Previous studies have shown that photothemal therapy combined with high intensity focused ultrasound (HIFU) can provide a promising method to achieve rapid thermal coagulation during surgical procedures. The current study investigated the feasibility of the laser-integrated high intensity focused ultrasound (HIFU) application to treat bladder tumors by enhancing thermal effects and therapeutic depth in vitro. To generate thermal coagulation, a single element HIFU transducer with a central frequency of 2.0 MHz was used to transmit acoustic energy to 15 fresh porcine bladders injected with an artificial tumor (100 µl gelatin and hemoglobin solution) in vitro. Simultaneously, an 80-W 532-nm laser system was also implemented to induce thermal necrosis in the targeted tissue. The intensity of 570 W/cm2 at the focus of HIFU and laser energy of 0.9 W were applied to all the samples for 40 s. The temperature rise increased up to about 1.6 or 3 folds (i.e., ΔT=32±3.8 K for laser-integrated HIFU, ΔT=20±6.5 K for HIFU only, and ΔT=11±5.6 K for laser only). The estimated lesion depth also increased by 1.3 and 2 folds during the dual-thermal treatment, in comparison with the treatment by either HIFU or laser. The results indicated that the laser-integrated HIFU treatment can be an efficient hyperthermic method for tumor coagulation.

  8. Observation of a Long-Wavelength Hosing Modulation of a High-Intensity Laser Pulse in Underdense Plasma

    NASA Astrophysics Data System (ADS)

    Kaluza, M. C.; Mangles, S. P. D.; Thomas, A. G. R.; Najmudin, Z.; Dangor, A. E.; Murphy, C. D.; Collier, J. L.; Divall, E. J.; Foster, P. S.; Hooker, C. J.; Langley, A. J.; Smith, J.; Krushelnick, K.

    2010-08-01

    We report the first experimental observation of a long-wavelength hosing modulation of a high-intensity laser pulse. Side-view images of the scattered optical radiation at the fundamental wavelength of the laser reveal a transverse oscillation of the laser pulse during its propagation through underdense plasma. The wavelength of the oscillation λhosing depends on the background plasma density ne and scales as λhosing˜ne-3/2. Comparisons with an analytical model and two-dimensional particle-in-cell simulations reveal that this laser hosing can be induced by a spatiotemporal asymmetry of the intensity distribution in the laser focus which can be caused by a misalignment of the parabolic focusing mirror or of the diffraction gratings in the pulse compressor.

  9. Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high intensity laser waves

    SciTech Connect

    Rax, J.M.

    1992-04-01

    The dynamics of electrons in two-dimensional, linearly or circularly polarized, ultra-high intensity (above 10{sup 18}W/cm{sup 2}) laser waves, is investigated. The Compton harmonic resonances are identified as the source of various stochastic instabilities. Both Arnold diffusion and resonance overlap are considered. The quasilinear kinetic equation, describing the evolution of the electron distribution function, is derived, and the associated collisionless damping coefficient is calculated. The implications of these new processes are considered and discussed.

  10. High contrast high intensity petawatt J-KAREN-P laser facility at QST

    NASA Astrophysics Data System (ADS)

    Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Sakaki, Hironao; Dover, Nicholas P.; Kondo, Kotaro; Pirozhkov, Alexander S.; Sagisaka, Akito; Fukuda, Yuji; Nishitani, Keita; Miyahara, Takumi; Ogura, Koichi; Alkhimova, Mariya A.; Pikuz, Tatiana A.; Faenov, Anatoly Y.; Watanabe, Yukinobu; Koga, James; Bulanov, Sergei V.; Kando, Masaki; Kondo, Kiminori

    2017-05-01

    We report on the J-KAREN-P laser facility at QST, which can provide PW peak power at 0.1 Hz on target. The system can deliver short pulses with an energy of 30 J and pulse duration of 30 fs after compression with a contrast level of better than 1012. Such performance in high field science will give rise to the birth of new applications and breakthroughs, which include relativistic particle acceleration, bright x-ray source generation, and nuclear activation. The current achieved laser intensity on target is up to > 9x1021 Wcm-2 with an energy of 9 J on target. The interaction with a 3 to 5- μm stainless steel tape target provides us electrons with a typical temperature of more than 10 MeV and energetic proton beams with typical maximum energies of > 40 MeV with good reproducibility. The protons are accelerated in the Target Normal Sheath Acceleration regime, which is suitable for many applications including as an injector into a beamline for medical use, which is one of our objectives.

  11. Dominant deuteron acceleration with a high-intensity laser for isotope production and neutron generation

    SciTech Connect

    Maksimchuk, A.; Raymond, A.; Yu, F.; Dollar, F.; Willingale, L.; Zulick, C.; Krushelnick, K.; Petrov, G. M.; Davis, J.

    2013-05-13

    Experiments on the interaction of an ultra-short pulse laser with heavy-water, ice-covered copper targets, at an intensity of 2 Multiplication-Sign 10{sup 19} W/cm{sup 2}, were performed demonstrating the generation of a 'pure' deuteron beam with a divergence of 20 Degree-Sign , maximum energy of 8 MeV, and a total of 3 Multiplication-Sign 10{sup 11} deuterons with energy above 1 MeV-equivalent to a conversion efficiency of 1.5%{+-} 0.2%. Subsequent experiments on irradiation of a {sup 10}B sample with deuterons and neutron generation from d-d reactions in a pitcher-catcher geometry, resulted in the production of {approx}10{sup 6} atoms of the positron emitter {sup 11}C and a neutron flux of (4{+-}1) Multiplication-Sign 10{sup 5} neutrons/sterad, respectively.

  12. High-energy proton generation from thin-foil targets with a high-intensity ultra-short pulse laser

    SciTech Connect

    Sagisaka, Akito; Daido, Hiroyuki; Yogo, Akifumi; Ogura, Koichi; Orimo, Satoshi; Ma, Jinglong; Mori, Michiaki; Nishiuchi, Mamiko; Pirozhkov, Alexander S.; Bulanov, Sergei V.; Esirkepov, Timur Zh.; Oishi, Yuji; Nayuki, Takuya; Fujii, Takashi; Nemoto, Koshichi

    2008-06-24

    We observe the proton signals with thin-foil polyimide and copper targets with a high-intensity Ti:sapphire laser pulse. High-energy protons with the maximum energy of 2.3 MeV for 7.5 {mu}m thick polyimide target and 1.2 MeV for 3 {mu}m thick copper target are generated at the laser intensity of {approx}1x10{sup 19} W/cm{sup 2} under preformed plasma condition.

  13. The CO2 gasdynamic laser as a high-intensity radiation facility

    NASA Technical Reports Server (NTRS)

    Lundell, J. H.; Dickey, R. R.; Otten, L. J.

    1975-01-01

    The basic theory of CO2 gasdynamic lasers is discussed and related to the design of the Ames laser, which is described in detail. Results of the experimental calibration of the laser are reported and compared with theoretical predictions, and the agreement is excellent. Finally, several applications of the laser as a radiation source for materials testing, both with and without air flow, are described.

  14. Photon-electron-ion momentum transfer in high intensityIR laser pulse ionization

    NASA Astrophysics Data System (ADS)

    Bandrauk, Andre D.; Chelkowski, Szczefan; Corkum, Paul

    2016-05-01

    Photon momentum sharing between electrons and parent ions in high intensityIR multiphoton ionization requires going beyond the traditional perturbative dipole approximation. Using numerical solutions of the 2-D TDSE(Time dependent Schroedinger equation) for one electron atom models, we show that the radiation pressure on photoelectrons is sensitive to the ionization mechanism, either direct or by recollision. A complex electron-ion response is obtained due to the interplay between the Lorentz force and Coulomb attraction of the ion.The influence of the photon momentum sharing is shown to be discernible in IR high intensity atomic and/or molecular holographic patterns thus suggesting a new research subject in IR strong field physics.

  15. A high-intensity highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam.

    PubMed

    Zeitoun, Ph; Faivre, G; Sebban, S; Mocek, T; Hallou, A; Fajardo, M; Aubert, D; Balcou, Ph; Burgy, F; Douillet, D; Kazamias, S; De Lachèze-Murel, G; Lefrou, T; Le Pape, S; Mercère, P; Merdji, H; Morlens, A S; Rousseau, J P; Valentin, C

    2004-09-23

    Synchrotrons have for decades provided invaluable sources of soft X-rays, the application of which has led to significant progress in many areas of science and technology. But future applications of soft X-rays--in structural biology, for example--anticipate the need for pulses with much shorter duration (femtoseconds) and much higher energy (millijoules) than those delivered by synchrotrons. Soft X-ray free-electron lasers should fulfil these requirements but will be limited in number; the pressure on beamtime is therefore likely to be considerable. Laser-driven soft X-ray sources offer a comparatively inexpensive and widely available alternative, but have encountered practical bottlenecks in the quest for high intensities. Here we establish and characterize a soft X-ray laser chain that shows how these bottlenecks can in principle be overcome. By combining the high optical quality available from high-harmonic laser sources (as a seed beam) with a highly energetic soft X-ray laser plasma amplifier, we produce a tabletop soft X-ray femtosecond laser operating at 10 Hz and exhibiting full saturation, high energy, high coherence and full polarization. This technique should be readily applicable on all existing laser-driven soft X-ray facilities.

  16. Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes

    SciTech Connect

    Marti-Lopez, L.; Ocana, R.; Porro, J. A.; Morales, M.; Ocana, J. L.

    2009-07-01

    We report an experimental study of the temporal and spatial dynamics of shock waves, cavitation bubbles, and sound waves generated in water during laser shock processing by single Nd:YAG laser pulses of nanosecond duration. A fast ICCD camera (2 ns gate time) was employed to record false schlieren photographs, schlieren photographs, and Mach-Zehnder interferograms of the zone surrounding the laser spot site on the target, an aluminum alloy sample. We recorded hemispherical shock fronts, cylindrical shock fronts, plane shock fronts, cavitation bubbles, and phase disturbance tracks.

  17. [Survival and success rate of dental implants treated with high intensity laser].

    PubMed

    Joób-Fancsaly, Arpád; Divinyi, Tamás; Karacs, Albert; Koncz, Szilvia; Pető, Gábor; Sulyok, Lili

    2015-09-01

    Clinical and radiological evaluations were conducted in patients with high energy Nd : glass laser-treated dental implants. These patients underwent dental implantation surgery between 1997 and 2006. Strict success criteria were used for the examination and analysis of implants. Based on clinical and radiological evaluation, success and survival rates of laser surface treated dental implants were similar to those of sandblasted, acid-etched surface implants frequently reported in the literature. Specific surface morphology and high degree of purity of laser surface treated dental implants ensure excellent osseointegration and a good clinical performance also on the long-term.

  18. Picosecond soft-x-ray pulses from a high-intensity laser-plasma source.

    PubMed

    Pelletier, J F; Chaker, M; Kieffer, J C

    1996-07-15

    We report time-resolved spectroscopic analysis of laser-produced plasma x-ray sources. Plasmas produced by a 400-fs 1-TW tabletop laser are characterized with a transmission grating spectrometer coupled to a soft-x-ray streak camera. Soft-x-ray radiation in the 1-6-nm range with durations of 2-7 ps is observed for copper and tantalum plasmas. The effect of incident laser energy on the x-ray pulse duration is also investigated.

  19. Rubidium Recycling in a High Intensity Short Duration Pulsed Alkali Laser

    DTIC Science & Technology

    2010-03-01

    rubidium laser27 and a 48 W CW cesium laser .28 As time goes on the maximum output power of DPAL devices is 16 expected to rise with this research...greatly over the next couple of years. In 2007 Zhdanov and Knize demonstrated a 10 W CW cesium DPAL.11 This was followed in 2008 by a 17 W CW ...Encyclopedia of Optical Engineering, 901, 2003. 11. Boris Zhadanov and R. J. Knize. Diode-pumped 10 W continuous wave cesium laser . Optics Letters, 32:2167

  20. Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes.

    PubMed

    Martí-López, L; Ocaña, R; Porro, J A; Morales, M; Ocaña, J L

    2009-07-01

    We report an experimental study of the temporal and spatial dynamics of shock waves, cavitation bubbles, and sound waves generated in water during laser shock processing by single Nd:YAG laser pulses of nanosecond duration. A fast ICCD camera (2 ns gate time) was employed to record false schlieren photographs, schlieren photographs, and Mach-Zehnder interferograms of the zone surrounding the laser spot site on the target, an aluminum alloy sample. We recorded hemispherical shock fronts, cylindrical shock fronts, plane shock fronts, cavitation bubbles, and phase disturbance tracks.

  1. Development of experimental platform for high energy density sciences using high-intensity optical lasers at the SACLA x-ray free electron laser facility

    NASA Astrophysics Data System (ADS)

    Yabuuchi, Toshinori; Yabashi, Makina; Inubushi, Yuichi; Kon, Akira; Togashi, Tadashi; Tomizawa, Hiromitsu

    2016-10-01

    Combinations of high intensity optical laser and x-ray free electron laser (XFEL) open new frontiers in high energy density (HED) sciences. An experimental platform equipped with high-power Ti:Sapphire laser systems is under commissioning for HED sciences at the XFEL facility, SACLA. The Ti:Sapphire laser system is designed to deliver two laser beams with a maximum power of 500 TW in each to the sample chamber. A hard x-ray beamline of SACLA is also transported to the chamber with a beam focusing capability down to a few microns using sets of compound refractive lenses. The second optical laser pulse or the energetic particles and photons generated by the laser pulse can provide additional flexibilities for HED-related pump-probe experiments, which have been generally performed using single optical laser and XFEL. The development status and future perspectives of the experimental platform will be presented.

  2. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media

    SciTech Connect

    Todt, Michael A.; Albert, Daniel R.; Davis, H. Floyd

    2016-06-15

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9–14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  3. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media

    NASA Astrophysics Data System (ADS)

    Todt, Michael A.; Albert, Daniel R.; Davis, H. Floyd

    2016-06-01

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9-14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  4. Research activities on high-intensity laser and high field physics at APRI-GIST

    NASA Astrophysics Data System (ADS)

    Jeong, Tae Moon

    2015-05-01

    The performance of a 0.1-Hz-repetition-rate, 30-fs, 1.5-PW Ti:sapphire laser which is using for research on high field physics in APRI-GIST is presented. The charged particles (electrons and protons) are accelerated and an efficient x-ray generation is demonstrated using the PW laser. Protons are accelerated up to 80 MeV when an ultra-thin polymer target is irradiated by a circularly-polarized PW laser pulse. Electrons are accelerated to multi-GeV level with a help of injector and accelerator scheme. In the relativistic harmonic generation experiment, the harmonic order is dramatically extended, by optimizing the intensity of pre-pulse level, up to 164th that corresponds to 4.9 nm in wavelength and the experimental results can be explained by the oscillatory flying mirror model. The upgrade of the PW laser to the multi-PW level is under way.

  5. Characteristics of a High Intensity, Pulsed, Potassium Vapor Laser in a Heat Pipe

    DTIC Science & Technology

    2011-03-01

    metals form the first column of the periodic table. From the top, this column includes lithium, sodium , potassium, rubidium, and cesium . They...pumped rubidium vapor laser by Krupke [2]. Since then, cesium (Cs), rubidium (Rb), and potassium (K) vapor lasers have been demonstrated and are the...would degrade the population inversion necessary for lasing to occur. Fortunately, the cesium and rubidium DPALs have much greater spin-orbit

  6. Extreme Nonlinear Optics of High Intensity Laser Pulse Filamentation in Gases

    DTIC Science & Technology

    2016-05-12

    regenerate record high THz fields up to 21 MV/cm. Patent applications made under support of this grant: 1. Waveguides, And Systems And Methods For...Forming And Using Such Waveguides, US provisional patent application (air waveguides) 2. Laser-Driven High Repetition Rate Source of Ultrashort...Relativistic Electron Bunches, US provisional patent application (1 kHz, millijoule laser accelerator). Publications 2013-2016 1. Effect of two-beam

  7. Electron-positron pair production from vacuum in the field of high-intensity laser radiation

    NASA Astrophysics Data System (ADS)

    Popov, V. S.; Mur, V. D.; Narozhnyi, N. B.; Popruzhenko, S. V.

    2016-03-01

    The works dealing with the theory of e + e - pair production from vacuum under the action of highintensity laser radiation are reviewed. The following problems are discussed: pair production in a constant electric field E and time-variable homogeneous field E( t); the dependence of the number of produced pairs {N_{{e^ + }{e^ - }}} on the shape of a laser pulse (dynamic Schwinger effect); and a realistic three-dimensional model of a focused laser pulse, which is based on exact solution of Maxwell's equations and contains parameters such as focal spot radius R, diffraction length L, focusing parameter Δ, pulse duration τ, and pulse shape. This model is used to calculate {N_{{e^ + }{e^ - }}} for both a single laser pulse ( n = 1) and several ( n ≥ 2) coherent pulses with a fixed total energy that simultaneously "collide" in a laser focus. It is shown that, at n ≫ 1, the number of pairs increases by several orders of magnitude as compared to the case of a single pulse. The screening of a laser field by the vapors that are generated in vacuum, its "depletion," and the limiting fields to be achieved in laser experiments are considered. The relation between pair production, the problem of a quantum frequency-variable oscillator, and the theory of groups SU(1, 1) and SU(2) is discussed. The relativistic version of the imaginary time method is used in calculations. In terms of this version, a relativistic theory of tunneling is developed and the Keldysh theory is generalized to the case of ionization of relativistic bound systems, namely, atoms and ions. The ionization rate of a hydrogen-like ion with a charge 1 ≤ Z ≤ 92 is calculated as a function of laser radiation intensity ( F and ellipticity ρ.

  8. High Intensity Femtosecond XUV Pulse Interactions with Atomic Clusters: Final Report

    SciTech Connect

    Ditmire, Todd

    2016-10-12

    We propose to expand our recent studies on the interactions of intense extreme ultraviolet (XUV) femtosecond pulses with atomic and molecular clusters. The work described follows directly from work performed under BES support for the past grant period. During this period we upgraded the THOR laser at UT Austin by replacing the regenerative amplifier with optical parametric amplification (OPA) using BBO crystals. This increased the contrast of the laser, the total laser energy to ~1.2 J , and decreased the pulse width to below 30 fs. We built a new all reflective XUV harmonic beam line into expanded lab space. This enabled an increase influence by a factor of 25 and an increase in the intensity by a factor of 50. The goal of the program proposed in this renewal is to extend this class of experiments to available higher XUV intensity and a greater range of wavelengths. In particular we plan to perform experiments to confirm our hypothesis about the origin of the high charge states in these exploding clusters, an effect which we ascribe to plasma continuum lowering (ionization potential depression) in a cluster nano-­plasma. To do this we will perform experiments in which XUV pulses of carefully chosen wavelength irradiate clusters composed of only low-Z atoms and clusters with a mixture of this low-­Z atom with higher Z atoms. The latter clusters will exhibit higher electron densities and will serve to lower the ionization potential further than in the clusters composed only of low Z atoms. This should have a significant effect on the charge states produced in the exploding cluster. We will also explore the transition of explosions in these XUV irradiated clusters from hydrodynamic expansion to Coulomb explosion. The work proposed here will explore clusters of a wider range of constituents, including clusters from solids. Experiments on clusters from solids will be enabled by development we performed during the past grant period in which we constructed and

  9. Simulations On Pair Creation In Collision Of γ-Beams Produced With High Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Jansen, Oliver; Ribeyre, Xavier; D'Humieres, Emmanuel; Lobet, Mathieu; Jequier, Sophie; Tikhonchuk, Vladimir

    2016-10-01

    Direct production of electron-positron pairs in two photon collisions, the Breit-Wheeler process, is one of the most basic processes in the universe. However, this process has never been directly observed in the laboratory due to the lack of high intensity γ sources. For a feasibility study and for the optimisation of experimental set-ups we developed a high-performance tree-code. Different possible set-ups with MeV photon sources were discussed and compared using collision detection for huge number of particles in a quantum-electrodynamic regime. The authors acknowledge the financial support from the French National Research Agency (ANR) in the framework of ''The Investments for the Future'' programme IdEx Bordeaux - LAPHIA (ANR-10IDEX-03-02)-Project TULIMA.

  10. High-intensity coherent vacuum ultraviolet source using unfocussed commercial dye lasers.

    PubMed

    Albert, Daniel R; Proctor, David L; Davis, H Floyd

    2013-06-01

    Using two or three commercial pulsed nanosecond dye lasers pumped by a single 30 Hz Nd:YAG laser, generation of 0.10 mJ pulses at 125 nm (6 × 10(13) photons∕pulse) has been demonstrated by resonance enhanced four-wave mixing of collimated (unfocussed) laser beams in mercury (Hg) vapor. Phase matching at various vacuum ultraviolet (VUV) wavelengths is achieved by tuning one laser in the vicinity of the 6 (1)S0 → 6 (3)P1 resonance near 253.1 nm. A number of different mixing schemes are characterized. Our observations using broadband lasers (~0.15 cm(-1) bandwidths) are compared to previous calculations pertaining to four-wave mixing of low intensity narrowband laser beams. Prospects for further increases in pulse energies are discussed. We find that VUV tuning curves and intensities are in good agreement with theoretical predictions. The utility of the VUV light source is demonstrated by "soft universal" single-photon VUV ionization in crossed molecular beam studies and for generation of light at 130.2 nm for oxygen atom Rydberg time-of-flight experiments.

  11. Ellipsoidal plasma mirror focusing of high power laser pulses to ultra-high intensities

    NASA Astrophysics Data System (ADS)

    Wilson, R.; King, M.; Gray, R. J.; Carroll, D. C.; Dance, R. J.; Armstrong, C.; Hawkes, S. J.; Clarke, R. J.; Robertson, D. J.; Neely, D.; McKenna, P.

    2016-03-01

    The design and development of an ellipsoidal F/1 focusing plasma mirror capable of increasing the peak intensity achievable on petawatt level laser systems to >1022 W cm-2 is presented. A factor of 2.5 reduction in the focal spot size is achieved when compared to F/3 focusing with a conventional (solid state) optic. We find a factor of 3.6 enhancement in peak intensity, taking into account changes in plasma mirror reflectivity and focal spot quality. The sensitivity of the focusing plasma optic to misalignment is also investigated. It is demonstrated that an increase in the peak laser intensity from 3 ×1020 W cm-2 to 1021 W cm-2 results in a factor of 2 increase in the maximum energy of sheath-accelerated protons from a thin foil positioned at the focus of the intense laser light.

  12. High-intensity Nd:YAG laser accelerates bone regeneration in calvarial defect models.

    PubMed

    Kim, Kwansik; Kim, In Sook; Cho, Tae Hyung; Seo, Young-Kwon; Hwang, Soon Jung

    2015-08-01

    High-power pulsed lasers have been recently regarded to be anabolic to bone, but in vivo evidence is still lacking. This study aimed to investigate the capacity of bone repair using a high-power, Q-switched, pulsed, neodymium-doped yttrium aluminium garnet (Nd:YAG) laser, using bilateral calvarial defect models having non-critical sized, 5 mm (rat) or 8 mm (rabbit) diameter. One of the bilateral defects, which were all filled with collagen sponge or left empty, was irradiated with a Nd:YAG laser once every 2 days for 2 weeks at a constant total fluence rate (344 J/cm(2) ), output power (0.75 W), pulse repetition rate (15 pps) and wavelength (1064 nm) and examined for the laser effect. The same experimental scheme was designed using a rabbit calvarial defect model implanted with sponge, which was explored for the dose effect of output power at 0.75 and 3 W with the same quantities of the other parameters. New bone formation was evaluated by micro-computed tomography-based analysis and histological observation at 4 weeks after surgery. Laser irradiation significantly increased new bone formation by approximately 45%, not only in the sponge-filled defects of rats but also when the defects were left empty, compared to the non-irradiated group. Consistently, both doses of output power (0.75 and 3 W) enhanced new bone formation, but there was no significant difference between the two doses. This study is one of the first to demonstrate the beneficial effect of Nd:YAG lasers on the regeneration of bone defects which were left empty or filled with collagen sponge, suggesting its great potential in postoperative treatment targeting local bone healing.

  13. Pulsed x-ray imaging of high-density objects using a ten picosecond high-intensity laser driver

    NASA Astrophysics Data System (ADS)

    Rusby, D. R.; Brenner, C. M.; Armstrong, C.; Wilson, L. A.; Clarke, R.; Alejo, A.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Mirfayzi, S. R.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-10-01

    Point-like sources of X-rays that are pulsed (sub nanosecond), high energy (up to several MeV) and bright are very promising for industrial and security applications where imaging through large and dense objects is required. Highly penetrating X-rays can be produced by electrons that have been accelerated by a high intensity laser pulse incident onto a thin solid target. We have used a pulse length of 10ps to accelerate electrons to create a bright x-ray source. The bremsstrahlung temperature was measured for a laser intensity from 8.5-12×1018 W/cm2. These x-rays have sequentially been used to image high density materials using image plate and a pixelated scintillator system.

  14. Control over the space-time structure of electron beams by high-intensity femtosecond laser radiation

    SciTech Connect

    Aseev, S. A.; Minogin, V. G. Mironov, B. N.; Chekalin, S. V.

    2010-11-15

    The space-velocity distribution of electrons propagating in vacuum can be deformed by the ponderomotive potential produced by high-intensity femtosecond laser pulses, which makes it possible to subsequently separate such electrons from the initial beam. It is shown that optical modification of electron beams with kinetic energies on the order of 100 eV by femtosecond laser radiation with an intensity from 10{sup 14} to 10{sup 18} W/cm{sup 2} makes it possible to form electron beams with a duration on the order of 50-100 fs. Examples of optical control over the shape of electron beams, based on deflection, reflection, focusing, and splitting of electron beams, are considered.

  15. Comparison of high-intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting.

    PubMed

    Seiffert, Gary; Hopkins, Carl; Sutcliffe, Chris

    2017-01-01

    Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high-intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting-fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high-intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117-123, 2017. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  16. Reflectivity of plasmas created by high-intensity, ultra-short laser pulses

    SciTech Connect

    Gold, David Michael

    1994-06-01

    Experiments were performed to characterize the creation and evolution of high-temperature (T e~100eV), high-density (ne>1022cm-3) plasmas created with intense (~1012-1016W/cm2), ultra-short (130fs) laser pulses. The principle diagnostic was plasma reflectivity at optical wavelengths (614nm). An array of target materials (Al, Au, Si, SiO2) with widely differing electronic properties tested plasma behavior over a large set of initial states. Time-integrated plasma reflectivity was measured as a function of laser intensity. Space- and time-resolved reflectivity, transmission and scatter were measured with a spatial resolution of ~3μm and a temporal resolution of 130fs. An amplified, mode-locked dye laser system was designed to produce ~3.5mJ, ~130fs laser pulses to create and nonintrusively probe the plasmas. Laser prepulse was carefully controlled to suppress preionization and give unambiguous, high-density plasma results. In metals (Al and Au), it is shown analytically that linear and nonlinear inverse Bremsstrahlung absorption, resonance absorption, and vacuum heating explain time-integrated reflectivity at intensities near 1016W/cm2. In the insulator, SiO2, a non-equilibrium plasma reflectivity model using tunneling ionization, Helmholtz equations, and Drude conductivity agrees with time-integrated reflectivity measurements. Moreover, a comparison of ionization and Saha equilibration rates shows that plasma formed by intense, ultra-short pulses can exist with a transient, non-equilibrium distribution of ionization states. All targets are shown to approach a common reflectivity at intensities ~1016W/cm2, indicating a material-independent state insensitive to atomic or solid-state details.

  17. An investigation of laser oscillators and amplifiers using high-intensity diode-pumping

    NASA Astrophysics Data System (ADS)

    Moore, Nicholas

    1998-12-01

    The work presented in this thesis is split into two related areas. The first area of research was the construction of high gain, high power, all-solid-state laser amplifiers for use in master oscillator, power amplifier (MOPA) systems. The second area was the operation of solid-state lasers on low gain transitions. The two areas are related by the fact that the primary aim in each was to maximise the available gain on a given laser transition. Two diode-pumped travelling wave amplifiers are described, both using Nd:YLF as the active medium, and both employed to amplify the output from a modelocked 1047nm Nd:YLF laser. The first amplifier was pumped by a 4W diode, and produced a small signal gain of 34. To suppress gain saturation in the amplifier, the input signal to the amplifier was formed into pulse trains of duration 10μs. The average gain achieved during these pulses was 20, giving rise to an average output power of 5W during the pulse. The amplifier output was subsequently frequency-doubled by a single pass through an LBO crystal. An average conversion efficiency of 57% was obtained, giving an average green power of 2.9W. The green output was subsequently used to pump both an OPO based on LBO, and a Ti:Sapphire laser. The second amplifier had a pump power of 28W. This produced a small-signal gain of 40 at 1047nm, and yielded 6W of amplified modelocked output on a cw basis rather than pulsed as in the first amplifier. The output from this amplifier was used to pump an OPO based on PPLN, and this was able to oscillate at a maximum wavelength of 6.2μm. The work on low gain lasers was addressed at the 1123nm transition in Nd:YAG. This has a cross-section ~15 times lower than at 1064nm. The pump source was a 7W diode-bar, and using this 1.7W of TEM00 output at 1123nm was obtained in a beam with an M2 of 1.1. This output was subsequently used as the pump for a Tm:ZBLAN fibre laser, which produced a maximum of 230mW of 480nm blue light. A second application

  18. Scientific Researches on High Intensity Laser Plasma in Asia-Pacific Region

    NASA Astrophysics Data System (ADS)

    Takabe, Hideaki

    The important topics of the presentations in the titled session are briefly summarized with author's comments for the further maturity and more challenge as plasma science. The topics of the session has been classified to three; fundamental plasma science, particle and photon sources, and quantum polarization of vacuum and non-linear QED plasma. In order not to make the paper only for a memorandum of the titled session, very important and related topics were also picked up from the other sessions. It is concluded that we have to go forward to more challenging plasma physics, not staying at almost the same place where many people are sitting for a long time compared to the time scale of the rapid progress of intense and ultra-intense laser technology and related laser plasma diagnostics.

  19. Optical guiding of high intensity laser pulses in plasma channel: Interferometrical investigations

    SciTech Connect

    Vogel, N.

    1997-03-01

    The excitation of the electric and self-generated magnetic field by pondermotive force during propagation of 100 ps laser pulse in air are investigated experimentally. Measurements of electron density distribution with high temporal (100 ps) and spatial resolution ({lt}1{mu}m) by interferometry and absorption photography are presented. It is shown that under certain conditions a hollow current channel can be generated. The azimuthal magnetic field in the micro-channel was determined by Faraday rotation of a probing laser beam to 7.6 MG. The charged partical densities in channel exceed 6{center_dot}10{sup 20}cm{sup {minus}3}. Ion acceleration in a pinched annular current channel up to 6 MeV analogous to a micro-{open_quotes}plasma focus{close_quotes} conditions may be realized just at length of 100 {mu}m. {copyright} {ital 1997 American Institute of Physics.}

  20. Generation of heavy ion beams using high-intensity short pulse lasers

    NASA Astrophysics Data System (ADS)

    Petrov, George; McGuffey, Chris; Thomas, Alec; Krushelnick, Karl; Beg, Farhat

    2016-10-01

    A theoretical study of ion acceleration from high-Z material irradiated by intense sub-picosecond lasers is presented. The underlying physics of beam formation and acceleration is similar for light and heavy ions, however, nuances of the acceleration process make the heavy ions more challenging. At least four technical hurdles have been identified: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration and poor energy coupling due to high reflectivity of the plasma. Using two dimensional particle-in-cell (PIC) simulations, we observed transitions from Radiation Pressure Acceleration (RPA) to the Breakout Afterburner regime (BoA) and to Target Normal Sheath Acceleration (TNSA) akin to light ions. The numerical simulations predict gold ions beams with high directionality (<10 degrees half-angle), high fluxes (>1011 ions/sr) and energy (>10 MeV/nucleon) from laser systems delivering >20 J of energy on target.

  1. Quantitative measurement of hard x-ray spectra for high intensity laser produced plasma

    SciTech Connect

    Zhang, Z.; Nishimura, H.; Namimoto, T.; Fujioka, S.; Arikawa, Y.; Hosoda, H.; Azechi, H.; Nishikino, M.; Kawachi, T.; Sagisaka, A.; Orimo, S.; Ogura, K.; Pirozhkov, A.; Yogo, A.; Kiriyama, H.; Kondo, K.; Okano, Y.; Ohshima, S.

    2012-05-15

    X-ray line spectra ranging from 17 to 77 keV were quantitatively measured with a Laue spectrometer, composed of a cylindrically curved crystal and a detector. Either a visible CCD detector coupled with a CsI phosphor screen or an imaging plate can be chosen, depending on the signal intensities and exposure times. The absolute sensitivity of the spectrometer system was calibrated using pre-characterized laser-produced x-ray sources and radioisotopes. The integrated reflectivity for the crystal is in good agreement with predictions by an open code for x-ray diffraction. The energy transfer efficiency from incident laser beams to hot electrons, as the energy transfer agency for specific x-ray line emissions, is derived as a consequence of this work.

  2. Continuous dual-wavelength, high-intensive Nd:YAG laser in operative urology

    NASA Astrophysics Data System (ADS)

    Reznikov, Leonid L.; Pupkova, Ludmila S.; Miroshnicov, B. I.; Snezhko, D. A.; Nikitichev, A. A.; Pokrovskiy, Vasiliy P.; Gomberg, Vladimir G.

    1994-05-01

    A ruby laser with a 0.694 mkm wavelength was used as a source of a new model of laser lithotriptor. The optical irradiation parameters selected included 1 mks duration pulse, frequency from 1 to 5 Hz, energy at an output of up to 120 mJ, transmitted via light guide quartz fiber of 400 kmk. The tip of the light guide was directed to the calculus through a catheterized cystoscope. Light guide position control was done by the presence of a specific acoustic signal accompanying plasma formation. Plasma is not formed by laser action on the ureter wall. In doubtful cases we used roentgenological examination. After lithotripsy and direct processing by irradiation, histological investigations of the ureter wall showed only slight submucosal hemorrhage or revealed no changes. Implantation of the calculus and fiber particles into the ureter wall was not observed. Twenty-nine patients were subjected to lithotripsy of calculus (oxalates, urates, phosphates) in the low and mid-ureter. Usually from 1000 to 3000 impulses were used to destroy the calculus. Calculus fragments passed without assistance (13 patients) or were removed by extractors (7 patients). The recovery of passing of urine and removal of renal colic were observed during lithotripsy if obturation had occurred (8 patients). Ureteral perforation, blood loss, and acute pyelonephritis did not occur.

  3. High-intensity double-pulse X-ray free-electron laser

    SciTech Connect

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F. J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; Vetter, S.; Maxwell, T. J.; Ding, Y.; Coffee, R.; Wakatsuki, S.; Huang, Z.

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.

  4. High-intensity double-pulse X-ray free-electron laser

    PubMed Central

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F.-J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; Vetter, S.; Maxwell, T.J.; Ding, Y.; Coffee, R.; Wakatsuki, S.; Huang, Z.

    2015-01-01

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion. PMID:25744344

  5. High-intensity double-pulse X-ray free-electron laser

    DOE PAGES

    Marinelli, A.; Ratner, D.; Lutman, A. A.; ...

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore » in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less

  6. Transport of high intensity laser-generated hot electrons in cone coupled wire targets

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2008-04-01

    In this talk, we present results from a series of experiments where cone-wire targets were employed both to assess hot electron coupling efficiency, and to reveal the source temperature of the hot electrons. Experiments were performed on the petawatt laser at the Rutherford Appleton Laboratory. A 500J, 1ps laser (I ˜ 4 x 10^20 W/cm-2) was focused by an f/3 off-axis parabolic mirror into hollow aluminum cones joined at their tip to Cu wires of diameters from 10 to 40 μm. The three main diagnostics fielded were a copper Kalpha Bragg crystal imager, a single hit CCD camera spectrometer and a Highly Oriented Pyrolytic Graphite (HOPG) spectrometer. The resulting data were cross-calibrated to obtain the absolute Kalpha yield. Comparison of the axially diminishing absolute Cu Kα intensity with modeling shows that the penetration of the hot electrons is consistent with one dimensional ohmic potential limited transport (1/e length ˜ 100 μm). The laser coupling efficiency to electron energy within the wire is shown to be proportional to the cross sectional area of the wire, reaching 15% for 40 μm wires. We find that the hot electron temperature within the wire was <=750 keV, significantly lower than that predicted by the ponderomotive scaling. A comparison of the experimental results with 2D hybrid PIC simulations using e-PLAS code will be presented and relevance to Fast Ignition will be discussed at the meeting. *In collaboration with J.A. King, M.H. Key, K.U. Akli, R.R. Freeman, J. Green, S. P. Hatchett, D. Hey, P. Jaanimagi, J. Koch, K. L. Lancaster, T. Ma, A.J. MacKinnon, A. MacPhee, R. Mason, P.A. Norreys, P.K Patel, T. Phillips, R. Stephens, W. Theobald, R.P.J. Town, M. Wei, L. Van Woerkom, B. Zhang.

  7. Multiphoton ionization of atoms and ions by high-intensity X-ray lasers

    SciTech Connect

    Popruzhenko, S. B. Mur, V. D.; Popov, V. S.; Bauer, D.

    2009-06-15

    Coulomb corrections to the action function and rate of multiphoton ionization of atoms and ions in a strong linearly polarized electromagnetic field are calculated for high values of the Keldysh adiabaticity parameter. The Coulomb corrections significantly increase the ionization rate for atoms (by several orders of magnitude). An interpolation formula proposed for ionization rate is valid for arbitrary values of the adiabaticity parameter. The high accuracy of the formula is confirmed by comparison with the results of numerical calculations. The general case of elliptic polarization of laser radiation is also considered.

  8. Helium and hydrogen plasma waveguides for high-intensity laser channeling

    NASA Astrophysics Data System (ADS)

    Zgadzaj, Rafal Bogumil

    The results of cross polarized pump-probe experiments in preformed He plasma waveguides are reported. Pump and probe have same wavelength and duration of 800nm and 80fs respectively. Peak pump intensity is Iguided = 0.2x1018 W/cm2 ˜1000 Iprobe. Single shot probe spectra and mode profiles at the channel exit are discriminated from the pump with a polarization analyzer and captured at various relative time delays Deltat. Frequency-domain interference (FDI) between the probe and a weak depolarized component of the pump is observed for |Deltat| ≳ 100fs. Although the depolarized component is nearly undetectable through measurement of pump leakage alone, FDI sensitively reveals its substantially non-Gaussian structure. The possible depolarization mechanisms are analyzed. When probe is positioned at the leading edge of the pump, Deltat ≲ 0, its spectrum suffers a blue shift not measurable in the transmitted pump itself. The evidence suggests the channel interior is fully ionized and the partially formed channel ends are the origin of both depolarization and blue shift. A robust, pulsed, differentially-pumped plasma channel generation cell for high intensity guiding experiments has been developed. The design includes an axicon lens, windows for transverse interferometry, and permits injection of one or two different gases (main gas plus high Z seed gas) with several millisecond injection times and simultaneous 0.1ms pressure sensing resolution. Very well formed plasma waveguides have been formed in helium as well as hydrogen, at repeatable and well controlled pressures up to 1000Torr, with very uniform interior density, rapid density drop at boundaries, and very low exterior density. The possible danger associated with the use of large amounts of hydrogen was considered and a complex safety system was designed, constructed and used. Extensive analysis of channel profile reconstruction through transverse interferometry was performed. This includes an intuitive

  9. Second-harmonic generation of femtosecond high-intensity Ti:sapphire laser pulses

    NASA Astrophysics Data System (ADS)

    Mori, Kurumi; Tamaki, Yusuke; Obara, Minoru; Midorikawa, Katsumi

    1998-03-01

    The second-harmonic generation (SHG) of ultrashort Ti:sapphire laser pulses in potassium dihydrogen phosphate crystal in type-I phase-matching geometry has been investigated theoretically, including the effects of cubic nonlinearity. It is found that the phase mismatch due to the broad bandwidth associated with the short pulse width limits the maximum conversion efficiency to less than 60%, and the temporal shape of the converted pulse has an intensity modulation at an incident intensity of 100 GW/cm2 for a 100 fs pulse. In order to increase the energy conversion efficiency and improve the temporal pulse shape, a new SHG geometry using two antiparallel tilted crystals is discussed.

  10. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.; Séguin, F. H.; Petrasso, R. D.; Stoeckl, C.; Meyerhofer, D. D.; Nilson, P.; Sangster, T. C.; Le Pape, S.; Mackinnon, A.; Patel, P.

    2012-01-01

    The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005), 10.1364/OPN.16.7.000030], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006), 10.1103/PhysRevLett.97.045001]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D3He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006), 10.1063/1.2228252]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed.

  11. Raman spectra from Symmetric Hydrogen Bonds in Water by High-intensity Laser-induced Breakdown

    PubMed Central

    Men, Zhiwei; Fang, Wenhui; Li, Dongfei; Li, Zhanlong; Sun, Chenglin

    2014-01-01

    Raman spectra of ice VII and X were investigated using strong plasma shockwave generated by laser-induced breakdown (LIB) in liquid water. Simultaneously, the occurrence of the hydrogen emission lines of 656 nm (Hα), 486 nm (Hβ), 434 nm (Hγ) and 410 nm (Hδ) was observed. At 5 × 1012 W/cm2 optical power density, the O-H symmetric stretching, translational and librational modes of ice VII and a single peak at 785 cm−1 appeared in the spectra. The band was assigned to the Raman-active O-O mode of the monomolecular phase, which was the symmetric hydrogen bond of cuprite ice X. The spectra indicated that ice VII and X structure were formed, as the trajectory of the strong plasma shockwave passes through the stable Pressure-Temperature range of ice VII and X. The shockwave temperature and pressure were calculated by the Grüneisen model. PMID:24709652

  12. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    SciTech Connect

    Habibi, M.; Ghamari, F.

    2014-05-15

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.

  13. Laser-induced fluorescence thermometry of heating in water from short bursts of high intensity focused ultrasound.

    PubMed

    Al-Qraini, Moath M; Canney, Michael S; Oweis, Ghanem F

    2013-04-01

    Free field experimental measurements of the temperature rise of water in the focal region of a 2 MHz high intensity focused ultrasound (HIFU) transducer were performed. The transducer was operated in pulse-mode with millisecond bursts, at acoustic intensities of 5 to 18.5 kW/cm(2) at the focus, resulting in non-linear wave propagation and shock wave formation. Pulsed, planar, laser-induced fluorescence (LIF) was used as a fast rise-time, non-intrusive, temperature measurement method of the water present in the focal region. LIF thermometry is based on calibrating the temperature-dependent fluorescence intensity signal emitted by a passive dye dissolved in water when excited by a pulse of laser light. The laser beam was formed into a thin light sheet to illuminate a planar area in the HIFU focal region. The laser light sheet was oriented transverse to the acoustic axis. Cross-sectional, instantaneous temperature field measurements within the HIFU focal volume showed that the water temperature increased steadily with increasing HIFU drive voltage. Heating rates of 4000-7000°C/s were measured within the first millisecond of the HIFU burst. Increasing the length of the burst initially resulted in an increase in the water temperature within the HIFU focal spot (up to ∼3 ms), after which it steadied or slightly dropped. Acoustic streaming was measured and shown to be consistent with the reduction in heating with increased burst length due to convective cooling. LIF thermometry may thus be a viable non-invasive method for the characterization of HIFU transducers at high power intensities.

  14. Self-focusing of a high-intensity laser pulse by a magnetized plasma lens in sub-relativistic regime

    NASA Astrophysics Data System (ADS)

    Abari, Mehdi Etehadi; Sedaghat, Mahsa; Hosseinnejad, Mohammad Taghi

    2017-06-01

    Interaction of high power circularly polarized short laser pulses with a cold underdense magnetized thin plasma lens is analyzed in the sub-relativistic regime. The magnetic field is applied along the direction of the laser field propagation. The evolution equation of the beam spot size is derived and solved by making use of the variational principle approach method. The theoretical investigations reveal that not only the magnetized plasma lens more sufficiently decreases the laser spot size, but also the left-handed circularly polarized beam is more effectively focused by a magnetized plasma lens compared to the right-handed circularly polarized beam.

  15. Self-focusing of a high-intensity laser pulse by a magnetized plasma lens in sub-relativistic regime

    NASA Astrophysics Data System (ADS)

    Abari, Mehdi Etehadi; Sedaghat, Mahsa; Hosseinnejad, Mohammad Taghi

    2017-01-01

    Interaction of high power circularly polarized short laser pulses with a cold underdense magnetized thin plasma lens is analyzed in the sub-relativistic regime. The magnetic field is applied along the direction of the laser field propagation. The evolution equation of the beam spot size is derived and solved by making use of the variational principle approach method. The theoretical investigations reveal that not only the magnetized plasma lens more sufficiently decreases the laser spot size, but also the left-handed circularly polarized beam is more effectively focused by a magnetized plasma lens compared to the right-handed circularly polarized beam.

  16. Self-focusing of a high-intensity laser in a collisional plasma under weak relativistic-ponderomotive nonlinearity

    SciTech Connect

    Gupta, D. N.; Islam, M. R.; Jaroszynski, D. A.; Jang, D. G.; Suk, H.

    2013-12-15

    Self-focusing a laser beam in collisional plasma is investigated under the weak relativistic-ponderomotive nonlinearity. In this case, the plasma equilibrium density is modified and it causes generation of the nonlinearity due to the Ohmic heating of electrons, collisions, and the weak relativistic-ponderomotive force during the interaction of the laser beam with the plasma. Our theoretical and simulation results show that a significant nonlinearity in laser self-focusing can occur under the weak relativistic-ponderomotive regime for some appropriate simulation parameters.

  17. Non-Maxwellian electron distributions in time-dependent simulations of low-Z materials illuminated by a high-intensity X-ray laser

    NASA Astrophysics Data System (ADS)

    de la Varga, Alberto G.; Velarde, Pedro; de Gaufridy, François; Portillo, David; Cotelo, Manuel; Barbas, Alfonso; González, Agustín; Zeitoun, Philippe

    2013-09-01

    The interaction of high intensity X-ray lasers with matter is modeled. A collisional-radiative time-dependent module is implemented to study radiation transport in matter from ultrashort and ultraintense X-ray bursts. Inverse bremsstrahlung absorption by free electrons, electron conduction or hydrodynamic effects are not considered. The collisional-radiative system is coupled with the electron distribution evolution treated with a Fokker-Planck approach with additional inelastic terms. The model includes spontaneous emission, resonant photoabsorption, collisional excitation and de-excitation, radiative recombination, photoionization, collisional ionization, three-body recombination, autoionization and dielectronic capture. It is found that for high densities, but still below solid, collisions play an important role and thermalization times are not short enough to ensure a thermal electron distribution. At these densities Maxwellian and non-Maxwellian electron distribution models yield substantial differences in collisional rates, modifying the atomic population dynamics.

  18. X-ray polarization spectroscopy to study energy transport in ultra-high intensity laser produced plasmas

    SciTech Connect

    Nishimura, H.; Inubushi, Y.; Okano, Y.; Fujioka, S.; Kai, T.; Nakamura, T.; Johzaki, T.; Nagatomo, H.; Mima, K.; Kawamura, T.; Batani, D.; Morace, A.; Redaelli, R.; Fourment, C.; Santos, J.; Koenig, M.

    2009-07-25

    X-ray polarization spectroscopy was studied to derive directly the velocity distribution function (VDF) of hot electrons propagating in plasma created with a high intensity laser pulse. Polarization measurement was made at around 10{sup 18} W/cm{sup 2} using a laser pulse (approx10 J in approx1 ps) from Alise facility at CEA/CESTA. Chlorinated triple-layer targets were irradiated, and Cl Healpha line was observed with an x-ray polarization spectrometer. Polarization degrees were measured as a function of the target overcoat thickness, corresponding to the depth along pre-formed plasma. It is found that the polarization is weakly negative for thin coating, but becomes positive, and finally zero for thick coating. This result is consistent with predictions made with a time-dependent atomic kinetics code developed to gain an insight into the generation of polarized Cl Healpha radiation. The de-polarization on the surface is attributed to excessive bulk electron temperature and that in the deep region to elastic-scattering processes by the isotropic bulk electrons in dense region.

  19. LASER-tissue interactions.

    PubMed

    Carroll, Lisa; Humphreys, Tatyana R

    2006-01-01

    As new laser devices continue to emerge, it becomes increasingly important for the clinical dermatologist to understand the basic principles behind their operation. A fundamental understanding of how lasers interact with tissue will enable the physician to choose the most appropriate laser for a given clinical situation. Although the physical laws guiding laser design are vastly complex, the fundamental principles of laser-tissue interaction can be summarized as they are applicable to the clinician.

  20. HILL: The High-Intensity Laser Laboratory Core Team's Reply to Questions from the NNSA Experimental Facilities Panel

    SciTech Connect

    Albright, B J

    2012-08-02

    Question 1 - The type of physics regimes that HILL can access for weapons studies is quite interesting. The question that arises for the proposal team is what priority does this type of experimental data have versus data that can be obtained with NIF, and Z. How does HILL rank in priority compared to MARIE 1.0 in terms of the experimental data it will provide? We reiterate that isochoric heating experiments to be conducted with HILL are complementary to the high energy density physics experiments at NIF and Z and uniquely access states of matter that neither other facility can access. It is our belief that HILL will enable several important questions, e.g., as related to mix morphology, radiation transfer from corrugated surfaces, and equations of state, to be run to ground through carefully diagnosed, 'unit-physics' experiments. Such experiments will substantially improve confidence in our computer models and provide a rigorous science basis for certification. Question 2 - A secondary question relates to the interests of LLNL and SNL in the physics that HILL can address. This should be spelled out clearly. I would like to see the other labs be part of the discussion regarding how important this capability would be if built. Both sister Labs have a keen interest in the physics enabled by high-intensity, high-energy lasers, as evinced by the Z Petawatt and NIF ARC upgrades to their signature facilities. LANL scientists have teamed with scientists from both Laboratories in high-intensity laser 'first experiments' envisioned for HILL and we fully intend to continue these profitable discussions going forward. In the preparation of the HILL proposal, feedback was solicited from the broader HEDP and weapons science communities. The consensus view was that HILL filled a critical gap and that there was a need for a facility like HILL to address outstanding questions in weapons science. It was recognized that co-location of HILL with a facility such as MaRIE 1.0, Z, NIF, or

  1. MR thermometry analysis program for laser- or high-intensity focused ultrasound (HIFU)-induced heating at a clinical MR scanner

    NASA Astrophysics Data System (ADS)

    Kim, Eun Ju; Jeong, Kiyoung; Oh, Seung Jae; Kim, Daehong; Park, Eun Hae; Lee, Young Han; Suh, Jin-Suck

    2014-12-01

    Magnetic resonance (MR) thermometry is a noninvasive method for monitoring local temperature change during thermal therapy. In this study, a MR temperature analysis program was established for a laser with gold nanorods (GNRs) and high-intensity focused ultrasound (HIFU)-induced heating MR thermometry. The MR temperature map was reconstructed using the water proton resonance frequency (PRF) method. The temperature-sensitive phase difference was acquired by using complex number subtraction instead of direct phase subtraction in order to avoid another phase unwrapping process. A temperature map-analyzing program was developed and implemented in IDL (Interactive Data Language) for effective temperature monitoring. This one program was applied to two different heating devices at a clinical MR scanner. All images were acquired with the fast spoiled gradient echo (fSPGR) pulse sequence on a 3.0 T GE Discovery MR750 scanner with an 8-channel knee array coil or with a home-built small surface coil. The analyzed temperature values were confirmed by using values simultaneously measured with an optical temperature probe (R2 = 0.996). The temperature change in small samples induced by a laser or by HIFU was analyzed by using a raw data, that consisted of complex numbers. This study shows that our MR thermometry analysis program can be used for thermal therapy study with a laser or HIFU at a clinical MR scanner. It can also be applied to temperature monitoring for any other thermal therapy based on the PRF method.

  2. The Effectiveness of Cervical Spondylosis Therapy with Saunders Traction Device and High-Intensity Laser Therapy: A Randomized Controlled Trial

    PubMed Central

    Haładaj, Robert; Pingot, Mariusz; Topol, Mirosław

    2017-01-01

    Background Among all spinal therapies, treatment of the cervical segment is the most difficult. The cervical segment is particularly sensitive to injuries and pain, and it also requires special care due to its great mobility and most delicate construction. The aim of this research was to evaluate analgesic efficacy and improvement of active mobility of the cervical spine after traction therapy with the Saunders device and high-intensity laser therapy (HILT) immediately after therapy, and in short-, medium-, and long-term follow-up in patients with cervical spondylosis. Material/Methods The study included 174 patients (114 women and 60 men) aged 24–67 years. The patients were divided into two randomized groups. In group I (88 subjects) traction therapy with the Saunders device was applied, and in group II (86 subjects) HILT was applied. The measurement of the range of cervical spine movement, a subjective visual scale for pain (Visual Analog Scale [VAS]), and the Neck Disability Index-Polish Version (NDI) questionnaire were used. Results The results obtained by the Saunders and HILT methods were similar immediately after the therapy and after 4 weeks (the medium-term follow-up). However, in long-term follow-up, there was a significant increase in the maintenance of positive therapeutic effects with the HILT method. Conclusions Both therapeutic methods improved the efficiency and demonstrated analgesic efficacy in patients with cervical spondylosis immediately and in the medium term after the therapy. HILT was more effective than the Saunders method in long-term follow-up. PMID:28104903

  3. Effectiveness of high-intensity laser therapy and splinting in lateral epicondylitis; a prospective, randomized, controlled study.

    PubMed

    Dundar, Umit; Turkmen, Utku; Toktas, Hasan; Ulasli, Alper Murat; Solak, Ozlem

    2015-04-01

    Lateral epicondylitis (LE) is a common disorder that causes pain on the outside of the elbow, as well as pain and weakness during gripping. In this prospective, randomized, controlled, assessor-blinded trial, we planned to investigate the effects of high-intensity laser therapy (HILT) in patients with LE and to compare these results with those of a brace and placebo HILT. Patients were randomly assigned to three treatment groups. The first group was treated with HILT. The second group (sham therapy group) received placebo HILT, while the third group (brace group) used the lateral counterforce brace for LE. The patients were assessed for grip strength, pain, disability, and quality of life. Outcome measurements and ultrasonographic examination of the patients were performed before treatment (week 0) and after treatment (after 4 and 12 weeks). HILT and brace groups showed significant improvements for most evaluation parameters (pain scores, grip strength, disability scores, and several subparts of the short-form 36 health survey (physical function, role limitations due to physical functioning, bodily pain, general health, and vitality)) after treatment (after 4 and 12 weeks). However, the improvements in evaluation parameters of the patients with LE in HILT and brace groups were not reflected to ultrasonographic findings. Furthermore, comparison of the percentage changes of the parameters after treatment relative to pretreatment values did not show a significant difference between HILT and brace groups. We conclude that HILT and splinting are effective physical therapy modalities for patients with LE in reducing pain and improving disability, quality of life, and grip strength.

  4. Study of photo-proton reactions driven by bremsstrahlung radiation of high-intensity laser generated electrons

    NASA Astrophysics Data System (ADS)

    Spohr, K. M.; Shaw, M.; Galster, W.; Ledingham, K. W. D.; Robson, L.; Yang, J. M.; McKenna, P.; McCanny, T.; Melone, J. J.; Amthor, K.-U.; Ewald, F.; Liesfeld, B.; Schwoerer, H.; Sauerbrey, R.

    2008-04-01

    Photo-nuclear reactions were investigated using a high power table-top laser. The laser system at the University of Jena (I ~ 3-5×1019 W cm-2) produced hard bremsstrahlung photons (kT~2.9 MeV) via a laser-gas interaction which served to induce (γ, p) and (γ, n) reactions in Mg, Ti, Zn and Mo isotopes. Several (γ, p) decay channels were identified using nuclear activation analysis to determine their integral reaction yields. As the laser-generated bremsstrahlung spectra stretches over the energy regime dominated by the giant dipole resonance (GDR), these yield measurements were used in conjunction with theoretical estimates of the resonance energies Eres and their widths Γres to derive the integral reaction cross-section σint(γ,p) for 25Mn, 48, 49Ti, 68Zn and 97, 98Mo isotopes for the first time. This study enabled the determination of the previously unknown \\frac{{\\sigma}^int(\\gamma,n)}{{\\sigma}^int(\\gamma,p)} cross-section ratios for these isotopes. The experiments were supported by extensive model calculations (Empire) and the results were compared to the Thomas-Reiche-Kuhn (TRK) dipole sum rule as well as to the experimental data in neighboring isotopes and good agreement was observed. The Coulomb barrier and the neutron excess strongly influence the \\frac{{\\sigma}^int(\\gamma,n)}{{\\sigma}^int(\\gamma,p)} ratios for increasing target proton and neutron numbers.

  5. Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions

    SciTech Connect

    Ridgers, C.P.; Kirk, J.G.; Duclous, R.; Blackburn, T.G.; Brady, C.S.; Bennett, K.; Arber, T.D.; Bell, A.R.

    2014-03-01

    In high-intensity (>10{sup 21} Wcm{sup −2}) laser–matter interactions gamma-ray photon emission by the electrons can strongly affect the electron's dynamics and copious numbers of electron–positron pairs can be produced by the emitted photons. We show how these processes can be included in simulations by coupling a Monte Carlo algorithm describing the emission to a particle-in-cell code. The Monte Carlo algorithm includes quantum corrections to the photon emission, which we show must be included if the pair production rate is to be correctly determined. The accuracy, convergence and energy conservation properties of the Monte Carlo algorithm are analysed in simple test problems.

  6. Nonlinear threshold effect in the Z-scan method of characterizing limiters for high-intensity laser light

    NASA Astrophysics Data System (ADS)

    Tereshchenko, S. A.; Savelyev, M. S.; Podgaetsky, V. M.; Gerasimenko, A. Yu.; Selishchev, S. V.

    2016-09-01

    A threshold model is described which permits one to determine the properties of limiters for high-powered laser light. It takes into account the threshold characteristics of the nonlinear optical interaction between the laser beam and the limiter working material. The traditional non-threshold model is a particular case of the threshold model when the limiting threshold is zero. The nonlinear characteristics of carbon nanotubes in liquid and solid media are obtained from experimental Z-scan data. Specifically, the nonlinear threshold effect was observed for aqueous dispersions of nanotubes, but not for nanotubes in solid polymethylmethacrylate. The threshold model fits the experimental Z-scan data better than the non-threshold model. Output characteristics were obtained that integrally describe the nonlinear properties of the optical limiters.

  7. Possibility of applying a hydrodynamic model to describe the laser erosion of metals irradiated by high-intensity nanosecond pulses

    SciTech Connect

    Kozadaev, K V

    2014-04-28

    We report the results of experimental investigations of the production and development of plasma-vapour plumes upon irradiation of metal targets by nanosecond (10–100 ns) pulses with a high (10{sup 8}–10{sup 10} W cm{sup -2}) power density under atmospheric conditions. The transition from a quasi-stationary thermal mechanism of metal erosion to an explosion hydrodynamic one takes place when the radiation power density increases from 10{sup 8} to 10{sup 9} W cm{sup -2}. The resultant experimental information is extremely important for the laser deposition of metal nanostructures under atmospheric conditions, which is possible only for power densities of 10{sup 8}–10{sup 9} W cm{sup -2}. (interaction of laser radiation with matter)

  8. Nonlinear threshold effect in the Z-scan method of characterizing limiters for high-intensity laser light

    SciTech Connect

    Tereshchenko, S. A. Savelyev, M. S.; Podgaetsky, V. M.; Gerasimenko, A. Yu.; Selishchev, S. V.

    2016-09-07

    A threshold model is described which permits one to determine the properties of limiters for high-powered laser light. It takes into account the threshold characteristics of the nonlinear optical interaction between the laser beam and the limiter working material. The traditional non-threshold model is a particular case of the threshold model when the limiting threshold is zero. The nonlinear characteristics of carbon nanotubes in liquid and solid media are obtained from experimental Z-scan data. Specifically, the nonlinear threshold effect was observed for aqueous dispersions of nanotubes, but not for nanotubes in solid polymethylmethacrylate. The threshold model fits the experimental Z-scan data better than the non-threshold model. Output characteristics were obtained that integrally describe the nonlinear properties of the optical limiters.

  9. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  10. Dynamics of high-energy proton beam acceleration and focusing from hemisphere-cone targets by high-intensity lasers.

    PubMed

    Qiao, B; Foord, M E; Wei, M S; Stephens, R B; Key, M H; McLean, H; Patel, P K; Beg, F N

    2013-01-01

    Acceleration and focusing of high-energy proton beams from fast-ignition (FI) -related hemisphere-cone assembled targets have been numerically studied by hybrid particle-in-cell simulations and compared with those from planar-foil and open-hemisphere targets. The whole physical process including the laser-plasma interaction has been self-consistently modeled for 15 ps, at which time the protons reach asymptotic motion. It is found that the achievable focus of proton beams is limited by the thermal pressure gradients in the co-moving hot electrons, which induce a transverse defocusing electric field that bends proton trajectories near the axis. For the advanced hemisphere-cone target, the flow of hot electrons along the cone wall induces a local transverse focusing sheath field, resulting in a clear enhancement in proton focusing; however, it leads to a significant loss of longitudinal sheath potential, reducing the total conversion efficiency from laser to protons.

  11. Probing vacuum birefringence under a high-intensity laser field with gamma-ray polarimetry at the GeV scale

    NASA Astrophysics Data System (ADS)

    Nakamiya, Yoshihide; Homma, Kensuke

    2017-09-01

    Probing vacuum structures deformed by high intense fields is of great interest in general. In the context of quantum electrodynamics (QED), the vacuum exposed by a linearly polarized high-intensity laser field is expected to show birefringence. We consider the combination of a 10 PW laser system to pump the vacuum and 1 GeV photons to probe the birefringent effect. The vacuum birefringence can be measured via the polarization flip of the probe γ -rays which can also be interpreted as phase retardation of probe photons. We provide theoretically how to extract phase retardation of GeV probe photons via pairwise topology of the Bethe-Heitler process in a polarimeter and then evaluate the measurability of the vacuum birefringence via phase retardation given a concrete polarimeter design with a realistic set of laser parameters and achievable pulse statistics.

  12. X-ray line spectral signatures of plasmas driven by high- intensity ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Hakel, Peter

    2001-11-01

    In this dissertation we report on our atomic-kinetics and X-ray line spectra modeling work in the context of plasmas generated by high-intensity, ultrashort-duration pulsed lasers. We focus on characterizing the properties of X-ray line emissions (i.e., intensity, broadening, and polarization) as signatures of plasma conditions, discuss the relevant atomic processes, and introduce atomic kinetics as a means for their quantitative assessment. This also requires the knowledge of detailed line shapes including the effects of Doppler and natural broadening, Stark broadening, line shifts and radiation transport. A suite of time-dependent, collisional-radiative atomic kinetics and spectral codes, CRAK/SPECTRUM, were developed. We applied these codes to the analysis of K- shell aluminum X-ray line spectra recorded in experiments using layered targets performed at the Max-Planck- Institut für Quantenoptik. Modeling calculations indicate that red line shifts observed in these experiments cannot be explained by shifts in the centers of gravity of composite spectral features due to enhanced satellite contributions, but are consistent with line shift effects in resonance and satellite lines. We discuss the mechanism of polarized X-ray line emission in plasmas, its connection to plasma anisotropy, and introduce an atomic kinetics model and code (POLAR) based on the population kinetics of magnetic sublevels. POLAR represents a multi-level, multi-process approach to the problem of polarized spectra in plasmas, and hence it is well suited for plasma applications where cascade effects and alignment transfer can become important. Polarization degrees of X-ray spectral lines computed with POLAR were successfully benchmarked against calculations done with other formalisms, and experimental results obtained at the EBIT facility of Lawrence Livermore National Laboratory. We investigate the polarization of He-like Si X-ray satellite lines as spectral signatures of anisotropy in the

  13. Treatment of Urethral/Bladder Neck Stricture After High-Intensity Focused Ultrasound for Prostate Cancer With Holmium: Yttrium-Aluminium-Garnet Laser

    PubMed Central

    Cho, Won Jin; Kim, Tae Heon; Lee, Hyo Serk; Chung, Jin Woo; Lee, Ha Na

    2013-01-01

    Purpose To evaluate the efficacy and safety of the Holmium: yttrium-aluminium-garnet (YAG) laser for the treatment of urethral/bladder neck strictures after high-intensity focused ultrasound for prostate cancer. Methods Between February 2007 and July 2010, Holmium: YAG laser urethrotomies were performed in eleven patients for bladder neck strictures or prostatic urethral strictures. The laser was used with a 550-µm fiber at 2 J and frequency 30 to 50 Hz. The medical records were retrospectively reviewed for medical history, perioperative and postoperative data, uroflowmetry, International Prostate Symptoms Score/quality of life, and stricture recurrence. Results At a median follow-up of 12.0 months (range, 4 to 35 months), the mean postoperative maximal flow rate and residual volume were improved significantly (P<0.05). The mean postoperative total, voiding and quality of life of international prostate symptom score were improved significantly (P<0.05). Of the 11 patients, 7 patients required one treatment, 4 patients two treatment, and 1 patients three treatment. 2 patients who had a documented urinary incontinence prior to the laser treatment subsequently required artificial urinary sphincter implantation and reported satisfaction without developing any recurrent strictures or artificial urinary sphincter erosion. All patients exhibited well-healed strictures and could void without difficulty. Conclusions Holmium: YAG laser therapy represents a safe, effective and minimally invasive treatment for urethral/bladder neck strictures occurring secondary to high-intensity focused ultrasound for prostate cancer. PMID:23610708

  14. 3-D simulation of high-intensity ultra-short laser pulse propagation through atmospheric optical systems

    NASA Astrophysics Data System (ADS)

    Dodd, Evan S.; Schmitt, Mark J.

    2001-10-01

    The manipulation of ultra-short pulses (USPs) in the laboratory is affected by three main factors; (a) the layout of optical elements in the optical train, (b) the non-linear interaction of the pulse with the transmissive optical elements (including the intervening atmosphere) and (c) ionization effects near beam focal regions. These effects have been included in our simulation code in order to examine 3-D aspects of USP propagation through "real" optical systems. Our models for optical elements include the ability to examine the effects of element misalignments and asymmetric finite apertures. In the atmosphere, we have included the effect of the USP electric field intensity on the local index of refraction. A model to include the effects of ionization in the atmosphere has also been added. The collective behavior from these sources results in complex interactions within the laser pulse as it propagates. This is important since it reduces the distance the pulse may travel and the spatial and temporal energy distribution of the pulse after propagation. Simulation examples are presented.

  15. Pre-exercise low-level laser therapy improves performance and levels of oxidative stress markers in mdx mice subjected to muscle fatigue by high-intensity exercise.

    PubMed

    Silva, Andreia Aparecida de Oliveira; Leal-Junior, Ernesto Cesar Pinto; D'Avila, Katia de Angelis Lobo; Serra, Andrey Jorge; Albertini, Regiane; França, Cristiane Miranda; Nishida, Joen Akemi; de Carvalho, Paulo de Tarso Camillo

    2015-08-01

    This study was designed to determine if the levels of oxidative stress markers are influenced by low-level laser therapy (LLLT) in mdx mice subjected to high-intensity exercise training on an electric treadmill. We used 21 C57BL/10ScSn-Dmdmdx/J mice and 7 C57BL/10ScSn mice, all aged 4 weeks. The mice were divided into four groups: a positive control group of normal, wild-type mice (WT); a negative control group of untreated mdx mice; a group of mdx mice that underwent forced high-intensity exercise on a treadmill (mdx fatigue); and another group of mdx mice with the same characteristics that were treated with LLLT at a single point on the gastrocnemius muscle of the hind paw and underwent forced high-intensity exercise on a treadmill. The mdx mice treated with LLLT showed significantly lower levels of creatine kinase (CK) and oxidative stress than mdx mice that underwent forced high-intensity exercise on a treadmill. The activities of the antioxidant enzyme superoxide dismutase (SOD) were higher in control mdx mice than in WT mice. LLLT also significantly reduced the level of this marker. LLLT had a beneficial effect also on the skeletal muscle performance of mdx mice. However, the single application of LLLT and the dose parameters used in this study were not able to change the morphology of a dystrophic muscle.

  16. Adaptation and penetration of resin-based root canal sealers in root canals irradiated with high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Moura-Netto, Cacio; Mello-Moura, Anna Carolina Volpi; Palo, Renato Miotto; Prokopowitsch, Igor; Pameijer, Cornelis H.; Marques, Marcia Martins

    2015-03-01

    This research analyzed the quality of resin-based sealer adaptation after intracanal laser irradiation. Extracted teeth (n=168) were root canal treated and divided into four groups, according to dentin surface treatment: no laser; Nd:YAG laser (1.5 W, 100 mJ, 15 Hz) diode laser (2.5 W in CW), and Er:YAG laser (1 W, 100 mJ, 10 Hz). The teeth were divided into four subgroups according to the sealer used: AH Plus, EndoREZ, Epiphany, and EpiphanySE. For testing the sealing after root canal obturation, the penetration of silver nitrate solution was measured, whereas to evaluate the adaptation and penetration of the sealer into the dentin, environmental scanning electron microscopy (ESEM) was used. The ESEM images were analyzed using a four-grade criteria score by three evaluators. The inter-examiner agreement was confirmed by Kappa test and the scores statistically compared by the Kruskal-Wallis' test (p<0.05). Both adaptation and sealer penetration in root canals were not affected by the laser irradiation. Nd:YAG and diode laser decreased the tracer penetration for AH Plus, whereas EndoREZ and EpiphanySE performances were affected by Nd:YAG irradiation (p<0.05). It can be concluded that intracanal laser irradiation can be used as an adjunct in endodontic treatment; however, the use of hydrophilic resin sealers should be avoided when root canals were irradiated with Nd:YAG laser.

  17. Resonance laser-plasma excitation of coherent terahertz phonons in the bulk of fluorine-bearing crystals under high-intensity femtosecond laser irradiation

    SciTech Connect

    Potemkin, F V; Mareev, E I; Khodakovskii, N G; Mikheev, P M

    2013-08-31

    The dynamics of coherent phonons in fluorine-containing crystals was investigated by pump-probe technique in the plasma production regime. Several phonon modes, whose frequencies are overtones of the 0.38-THz fundamental frequency, were simultaneously observed in a lithium fluoride crystal. Phonons with frequencies of 1 and 0.1 THz were discovered in a calcium fluoride crystal and coherent phonons with frequencies of 1 THz and 67 GHz were observed in a barium fluoride crystal. Furthermore, in the latter case the amplitudes of phonon mode oscillations were found to significantly increase 15 ps after laser irradiation. (interaction of laser radiation with matter)

  18. Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar{sup +} laser beam

    SciTech Connect

    Niry, M. D.; Khalesifard, H. R.; Mostafavi-Amjad, J.; Ahangary, A.; Azizian-Kalandaragh, Y.

    2012-02-01

    Formation and motion of the silver nanoparticles inside an ion-exchanged soda-lime glass in the presence of a focused high intensity continuous wave Ar{sup +} laser beam (intensity: 9.2 x 10{sup 4} W/cm{sup 2}) have been studied in here. One-dimensional diffusion equation has been used to model the diffusion of the silver ions into the glass matrix, and a two-dimensional reverse diffusion model has been introduced to explain the motion of the silver clusters and their migration toward the glass surface in the presence of the laser beam. The results of the mentioned models were in agreement with our measurements on thickness of the ion-exchange layer by means of optical microscopy and recorded morphology of the glass surface around the laser beam axis by using a Mirau interferometer. SEM micrographs were used to extract the size distribution of the migrated silver particles over the glass surface.

  19. Comparative evaluation of the effects of high-intensity and low-intensity laser radiation on microcirculation among patients with knee arthritis

    NASA Astrophysics Data System (ADS)

    Kulchitskaya, D. B.; Konchugova, T. V.; E Fedorova, N.

    2017-04-01

    Sixty patients with knee arthritis aged from 40 to 75 years old were examined. The patients were randomly divided into two groups: 1st group (30 patients) received high intensity laser radiation; 2nd group (20 patients) received low intensity laser radiation. As a result of the conducted research it was found that high intensity laser radiation is more efficient and leads to more vivid positive changes in the microcirculation of patients with knee arthritis. The changes in microcirculation were based on the normalization of the myogenic and neurogenic tonus of the arterioles, strengthening oscillation of the endothelial range. As a result of local mechanisms activation of tissue blood flow there occurs adequate modulation of the microcirculatory bloodstream, which is aimed at the elimination of congestive phenomena in the capillary and venular level of the microcirculation bloodstream. We should note that in the long-term more significant were the positive changes in the state of the venular level of the microcirculation bloodstream. in constructing both.

  20. Laser Physics and Laser-Tissue Interaction

    PubMed Central

    Welch, A. J.; Torres, Jorge H.; Cheong, Wai-Fung

    1989-01-01

    Within the last few years, lasers have gained increasing use in the management of cardiovascular disease, and laser angioplasty has become a widely performed procedure. For this reason, a basic knowledge of lasers and their applications is essential to vascular surgeons, cardiologists, and interventional radiologists. To elucidate some fundamental concepts regarding laser physics, we describe how laser light is generated and review the properties that make lasers useful in medicine. We also discuss beam profile and spotsize, as well as dosimetric specifications for laser angioplasty. After considering laser-tissue interaction and light propagation in tissue, we explain how the aforementioned concepts apply to direct laser angioplasty and laser-balloon angioplasty. An understanding of these issues should prove useful not only in performing laser angioplasty but in comparing the reported results of various laser applications. (Texas Heart Institute Journal 1989;16:141-9) PMID:15227198

  1. Review of laser-solid interaction and its possibilities for space propulsion

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.

    1972-01-01

    Literature on laser-solid interaction is surveyed and the important regimes of this process are delineated. This information is used to discuss the possibility of a laser induced ablation thruster. It is concluded that such a thruster may be feasible if a sufficiently high intensity, high frequency laser beam is available and that further study of interaction is needed.

  2. Enhanced high harmonic generation driven by high-intensity laser in argon gas-filled hollow core waveguide.

    PubMed

    Cassou, Kevin; Daboussi, Sameh; Hort, Ondrej; Guilbaud, Olivier; Descamps, Dominique; Petit, Stéphane; Mével, Eric; Constant, Eric; Kazamias, Sophie

    2014-07-01

    We show that a significant enhancement of the photon flux produced by high harmonic generation can be obtained through guided configuration at high laser intensity largely above the saturation intensity. We identify two regimes. At low pressure, we observe an intense second plateau in the high harmonic spectrum in argon. At relatively high pressure, complex interplay between strongly time-dependent ionization processes and propagation effects leads to important spectral broadening without loss of spectral brightness. We show that the relevant parameter for this physical process is the product of laser peak power by gas pressure. We compare source performances with high harmonic generation using a gas jet in loose focusing geometry and conclude that the source developed is a good candidate for injection devices such as seeded soft x-ray lasers or free electron lasers in the soft x-ray range.

  3. Long-term effect of pulsed high-intensity laser therapy in the treatment of post-mastectomy pain syndrome: a double blind, placebo-control, randomized study.

    PubMed

    Ebid, Anwar Abdelgayed; El-Sodany, Ahmed Mohamed

    2015-08-01

    We assess the long-term effect of pulsed high-intensity laser therapy (HILT) in the treatment of the post-mastectomy pain syndrome (PMPS). A total of 61 women participated in this study (30 in the laser group and 31 in the placebo laser group), with a mean age of 53.56 ± 1.11 years. Patients who were randomly assigned to the laser group received HILT three times per week for 4 weeks, plus a routine physical therapy program (RPTP). The placebo laser group received placebo HILT plus RPTP. The outcomes measured were pain level by visual analog scale (VAS), shoulder range of motion (ROM), and quality of life (QOL). Statistical analysis was performed by ANOVA with repeated measures to compare the differences between baseline and post-treatment measurements and after 12 weeks of follow-up for both groups. The level of statistical significance was set at P < 0.05. Shoulder ROM significantly increased in the laser group after 4 weeks of treatment and after 12 weeks of follow-up compared with the placebo group. VAS results showed a significant decrease post-treatment in the laser group relative to the placebo group, and QOL results showed a significant improvement in the laser group compared with the placebo group and still improved after 12 weeks of follow-up. HILT combined with an RPTP appears to be more effective in patients with PMPS than a placebo laser procedure with RPTP.

  4. Management of an Extensive Vascular Lesion on the Lip by Photocoagulation with High-Intensity Diode Laser

    PubMed Central

    Azevedo, Luciane H.; Migliari, Dante

    2017-01-01

    Objective: Extensive vascular malformations (VM) pose difficulties for an effective management. Introduction: This article describes a very satisfactory result, both functional and aesthetic, following a management by the technique of photocoagulation using diode laser in an extensive VM lesion involving the lower lip and left buccal mucosa in a 25 year old male. Case report: The patient reported that the lesion had been present since birth. The whole treatment, carried out under local anesthesia, spread over 6 months since as many as 4 sessions of laser, with a 1.5-month interval in each, were required. The resting period between sessions played an important part in treatment by allowing a time for the recovery of the patient and the shrinking of the lesion. Conclusion: The patient had no complications during the laser sessions, and his postoperative period was uneventful. No recurrence has been seen after a 2.5-year follow-up. PMID:28603563

  5. Polarization Dependence of Bulk Ion Acceleration from Ultrathin Foils Irradiated by High-Intensity Ultrashort Laser Pulses

    NASA Astrophysics Data System (ADS)

    Scullion, C.; Doria, D.; Romagnani, L.; Sgattoni, A.; Naughton, K.; Symes, D. R.; McKenna, P.; Macchi, A.; Zepf, M.; Kar, S.; Borghesi, M.

    2017-08-01

    The acceleration of ions from ultrathin (10-100 nm) carbon foils has been investigated using intense (˜6 ×1 020 W cm-2 ) ultrashort (45 fs) laser pulses, highlighting a strong dependence of the ion beam parameters on the laser polarization, with circularly polarized (CP) pulses producing the highest energies for both protons and carbons (25 -30 MeV /nucleon ); in particular, carbon ion energies obtained employing CP pulses were significantly higher (˜2.5 times) than for irradiations employing linearly polarized pulses. Particle-in-cell simulations indicate that radiation pressure acceleration becomes the dominant mechanism for the thinnest targets and CP pulses.

  6. Wavefront-correction for nearly diffraction-limited focusing of dual-color laser beams to high intensities.

    PubMed

    Zhao, Baozhen; Zhang, Jun; Chen, Shouyuan; Liu, Cheng; Golovin, Grigory; Banerjee, Sudeep; Brown, Kevin; Mills, Jared; Petersen, Chad; Umstadter, Donald

    2014-11-03

    We demonstrate wavefront correction of terawatt-peak-power laser beams at two distinct and well-separated wavelengths. Simultaneous near diffraction-limited focusability is achieved for both the fundamental (800 nm) and second harmonic (400 nm) of Ti:sapphire-amplified laser light. By comparing the relative effectiveness of various correction loops, the optimal ones are found. Simultaneous correction of both beams of different color relies on the linear proportionality between their wavefront aberrations. This method can enable two-color experiments at relativistic intensities.

  7. Spectral broadening and compression of high-intensity laser pulses in quasi-periodic systems with Kerr nonlinearity

    SciTech Connect

    Vlasov, Sergei N; Koposova, E V; Yashin, V E

    2012-11-30

    We report the results of theoretical studies and numerical simulations of optical high-power pulse compression systems based on the spectral broadening in a Kerr nonlinear medium with subsequent pulse compression in a dispersive delay line. It is shown that the effective spectral broadening requires suppressing a smallscale instability arising due to self-focusing, which is possible in quasi-periodic systems consisting of a nonlinear medium and optical relay telescopes transmitting images of the laser beam through the system. The numerical calculations have shown the possibility of broadening the spectrum, followed by 15-fold pulse compression until the instability is excited. (control of laser radiation parameters)

  8. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses

    NASA Astrophysics Data System (ADS)

    Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke

    2015-02-01

    Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 1018 W/cm2 is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200 MV/m and 7 ps, respectively.

  9. Polarization Dependence of Bulk Ion Acceleration from Ultrathin Foils Irradiated by High-Intensity Ultrashort Laser Pulses.

    PubMed

    Scullion, C; Doria, D; Romagnani, L; Sgattoni, A; Naughton, K; Symes, D R; McKenna, P; Macchi, A; Zepf, M; Kar, S; Borghesi, M

    2017-08-04

    The acceleration of ions from ultrathin (10-100 nm) carbon foils has been investigated using intense (∼6×10^{20} W  cm^{-2}) ultrashort (45 fs) laser pulses, highlighting a strong dependence of the ion beam parameters on the laser polarization, with circularly polarized (CP) pulses producing the highest energies for both protons and carbons (25-30  MeV/nucleon); in particular, carbon ion energies obtained employing CP pulses were significantly higher (∼2.5 times) than for irradiations employing linearly polarized pulses. Particle-in-cell simulations indicate that radiation pressure acceleration becomes the dominant mechanism for the thinnest targets and CP pulses.

  10. Phase contrast imaging using Betatron x-ray beams produced by a 100 TW high intensity laser system

    NASA Astrophysics Data System (ADS)

    Fourmaux, Sylvain; Corde, Sebastien; Ta Phuoc, Kim; Lassonde, Philippe; Martin, Francois; Malka, Victor; Rousse, Antoine; Kieffer, Jean

    2011-10-01

    Development of x-ray phase contrast imaging applications with a laboratory scale source have been limited by the long exposure time needed to obtain one image. We demonstrate, using the Betatron x-ray radiation produced when electrons are accelerated and wiggled in the laser-wakefield cavity, the potential of Betatron x-ray radiation for femtosecond phase contrast imaging. We characterize the x-ray source using a knife edge technique and nylon wires for calibration. We then show that high-quality phase contrast images of complex objects located in air, can be obtained with only a single laser shot. The Betatron x-ray source used in this demonstration experiment has a source diameter of 1.7 microns and produces a synchrotron spectrum with critical energy Ec = 12 . 3 + / - 2 . 5 keV and 109 photons per shot in the whole spectrum.

  11. A treatise on the interaction of molecular systems with short-pulsed highly-intense external fields

    NASA Astrophysics Data System (ADS)

    Paul, Amit K.; Adhikari, Satrajit; Baer, Michael

    2010-11-01

    In this review, we consider two gauges: one, the field-free gauge, is formed by the field-free electronic eigenstates and the other, the field-dressed gauge, is formed by the field-dressed electronic basis set. The field-free gauge is used, of course, in the case of time-independent systems but then it is also the more common one to be used in the case of molecular systems exposed to external fields. This gauge is conceptually simple and therefore numerically friendly - two features which make it versatile for numerical application. The field-dressed gauge is, eventually, more involved but yields deeper insight which might lead to a better understanding of the complicated interaction between a molecular system and external fields. In addition, these features can be exploited to develop efficient and reliable approximations that may save CPU (computer processing unit) time in numerical applications. These two gauges are the main topics of the present review. Once the general derivation of the two gauges is completed, two additional issues are discussed: (i) we extend these gauges to include external fields formed by non-classical photon-state distributions (also known as non-coherent Fock-state distributions). These photon state distributions, recently considered for the first time for molecular systems [A.K. Paul, S. Adhikari, M. Baer, R. Baer, Phys. Rev. A 81 (2010) 013412], are interesting on their own footing. Although here they mainly serve as a vehicle to test the above-mentioned novel approximations, we also devote part of the review to studying the importance of non-coherent Fock states for obtaining an unbiased correct understanding of the interaction of molecular systems with strong, short-pulsed laser fields. For this purpose, we study the photo-dissociation process of H2+ and show (a) that the approximations, recently introduced, diminish the CPU time by about one order of magnitude with minimal loss of accuracy and (b) indeed non-coherent Fock states

  12. Ta-ion implantation induced by a high-intensity laser for plasma diagnostics and target preparation

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Malinsky, P.; Mackova, A.; Matousek, J.; Torrisi, L.; Slepicka, P.; Ullschmied, J.

    2015-12-01

    The present work is focused on the implantation of Ta ions into silicon substrates covered by a silicon dioxide layer 50-300 nm thick. The implantation is achieved using sub-nanosecond pulsed laser ablation (1015 W/cm2) with the objective of accelerating non-equilibrium plasma ions. The accelerated Ta ions are implanted into the exposed silicon substrates at energies of approximately 20 keV per charge state. By changing a few variables in the laser pulse, it is possible to control the kinetic energy, the yield and the angular distribution of the emitted ions. Rutherford Back-Scattering analysis was performed using 2.0 MeV He+ as the probe ions to determine the elemental depth profiles and the chemical composition of the laser-implanted substrates. The depth distributions of the implanted Ta ions were compared to SRIM 2012 simulations. The evaluated results of energy distribution were compared with online techniques, such as Ion Collectors (IC) and an Ion Energy Analyser (IEA), for a detailed identification of the produced ion species and their energy-to-charge ratios (M/z). Moreover, XPS (X-ray Photon Spectroscopy) and AFM (Atomic Force Microscopy) analyses were carried out to obtain information on the surface morphology and the chemical composition of the modified implanted layers, as these features are important for further application of such structures.

  13. Fabrication and characterization of freestanding ultrathin diamond-like carbon targets for high-intensity laser applications

    NASA Astrophysics Data System (ADS)

    Ho, Timothy T.; Gupta, Manisha; Chowdhury, Fatema Rezwana; Chen, Zhijiang; Tsui, Ying Yin

    2013-12-01

    Here, we report the fabrication of diamond-like carbon (DLC) thin films using pulsed laser deposition (PLD). PLD is a well-established technique for deposition of high-quality DLC thin films. Carbon tape target was ablated using a KrF (248 nm, 25 ns, 20 Hz) excimer laser to deposit DLC films on soap-coated substrates. A laser fluence between 8.5 and 14 J/cm2 and a target to substrate distance of 10 cm was used. These films were then released from substrates to obtain freestanding DLC thin foils. Foil thicknesses from 20 to 200 nm were deposited using this technique to obtain freestanding targets of up to 1-inch square area. Typically, 100-nm-thick freestanding DLC films were characterized using different techniques such as AFM, XPS, and nano-indentation. AFM was used to obtain the film surface roughness of 9 nm rms of the released film. XPS was utilized to obtain 74 % sp2, 23 % sp3, and 3 % C-O bond components. Nano-indentation was used to characterize the film hardness of 10 GPa and Young's modulus of 110 GPa. Damage threshold properties of the DLC foils were studied (1,064 nm, 6 ns) and found to be 7 × 1010 W/cm2 peak intensity for our best ultrathin DLC foils.

  14. Possibility of applying a hydrodynamic model to describe the laser erosion of metals irradiated by high-intensity nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Kozadaev, K. V.

    2014-04-01

    We report the results of experimental investigations of the production and development of plasma-vapour plumes upon irradiation of metal targets by nanosecond (10-100 ns) pulses with a high (108-1010 W cm-2) power density under atmospheric conditions. The transition from a quasi-stationary thermal mechanism of metal erosion to an explosion hydrodynamic one takes place when the radiation power density increases from 108 to 109 W cm-2. The resultant experimental information is extremely important for the laser deposition of metal nanostructures under atmospheric conditions, which is possible only for power densities of 108-109 W cm-2.

  15. Radiation reaction in high-intensity fields

    NASA Astrophysics Data System (ADS)

    Seto, Keita

    2015-10-01

    Since the development of a radiating electron model by Dirac in 1938 [P. A. M. Dirac, Proc. R. Soc. Lond. A 167, 148 (1938)], many authors have tried to reformulate this model of the so-called "radiation reaction". Recently, this effect has become important in ultra-intense laser-electron (plasma) interactions. In our recent research, we found a way of stabilizing the radiation reaction by quantum electrodynamics (QED) vacuum fluctuation [K Seto et al., Prog. Theor. Exp. Phys. 2014, 043A01 (2014); K. Seto, Prog. Theor. Exp. Phys. 2015, 023A01 (2015)]. On the other hand, the modification of the radiated field by highly intense incoming laser fields should be taken into account when the laser intensity is higher than 10^{22} W/cm2, which could be achieved by next-generation ultra-short-pulse 10 PW lasers, like the ones under construction for the ELI-NP facility. In this paper, I propose a running charge-mass method for the description of the QED-based synchrotron radiation by high-intensity external fields with stabilization by the QED vacuum fluctuation as an extension from the model by Dirac.

  16. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses

    PubMed Central

    Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke

    2015-01-01

    Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 1018 W/cm2 is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200 MV/m and 7 ps, respectively. PMID:25652694

  17. Laser photochemistry of DNA: Two-photon absorption and optical breakdown using high-intensity, 532-nm radiation

    SciTech Connect

    Hefetz, Y.; Dunn, D.A.; Deutsch, T.F.; Buckley, L.; Kochevar, I.E. ); Hillenkamp, F. )

    1990-11-07

    Formation of cyclobutylpyrimidine dimers and strand breaks in double-stranded DNA was investigated by using 532-nm, 28-ps pulses from a frequency-doubled, mode-locked Nd:YAG laser at intensities below and above the threshold for optical breakdown. Two-photon absorption by DNA was detected in the absence of optical breakdown by measuring the yields of cyclobutylpyrimidine dimers formed in supercoiled pBR322 DNA. The yield of cyclobutylpyrimidine dimers per laser pulse was measured at seven peak intensities between 1.03 and 8.04 GW/cm{sup 2}. A plot of the ln (dimer yield/pulse) versus ln (photon flux) was linear with a slope of 1.88 {plus minus} 0.26. The two-photon cross section for absorption at 532 nm was calculated to be 0.5 ({plus minus}0.2) {times}{sup {minus}52} cm{sup 4} s photon{sup {minus}1} per nucleotide. Experiments performed by using intensities above the threshold for optical breakdown caused breaks in the DNA strands but no cyclobutylpyrimidine dimers. The free-radical quencher, mannitol, partially inhibited formation of the strand breaks, indicating that the mechanical processes initiated by the plasma also contribute to the creation of DNA strand breaks.

  18. Quasilinear Theory of Laser-Plasma Interactions.

    NASA Astrophysics Data System (ADS)

    Neil, Alastair John

    The interaction of a high intensity laser beam with a plasma is generally susceptible to the filamentation instability due to nonuniformities in the laser profile. In ponderomotive filamentation high intensity spots in the beam expell plasma by ponderomotive force, lowering the local density, causing even more light to be focused into the already high intensity region. The result--the beam is broken up into a filamentary structure. Several optical smoothing techniques have been proposed to eliminate this problem. In the Random Phase Plates (RPS) approach, the beam is split into a very fine scale, time-stationary interference pattern. The irregularities in this pattern are small enough that thermal diffusion is then responsible for smoothing the illumination. In the Induced Spatial Incoherence (ISI) approach the beam is broken up into a larger scale but non-time-stationary interference pattern. In this dissertation we propose that the photons in an ISI beam resonantly interact with the sound waves in the wake of the beam. Such a resonant interaction induces diffusion in the velocity space of the photons. The diffusion will tend to spread the distribution of photons, thus if the diffusion time is much shorter than the e-folding time of the filamentation instability, the instability will be suppressed. Using a wave-kinetic description of laser-plasma interactions we have applied quasilinear theory to model the resonant interaction of the photons in an ISI beam with the beam's wake field. We have derived an analytic expression for the transverse diffusion coefficient. The quasilinear hypothesis was tested numerically and shown to yield an underestimate of the diffusion rate. By comparing the quasilinear diffusion rate, gamma_ {D}, with the maximum growth rate for the ponderomotive filamentation of a uniform beam, gamma_{f_{max}} , we have derived a worst case criterion for stability against ponderomotive filamentation: { gamma_{f_{max}} over gamma_ D} ~ .5 { ~ f^5/~ D

  19. Computer simulation of heat and mass transfer in tissue during high-intensity long-range laser irradiation.

    PubMed

    Director, L B; Frid, S E; Mendeleev VYa; Scovorod'Ko, S N

    1998-09-11

    Three-dimensional transient finite difference numerical model of the biological tissue irradiated by powerful laser beam is developed. It is used to simulate the thermal behavior of tissue assuming that radiation wavelength is chosen to give rise for volumetric heat sources. A three-dimensional seven-flow model is used to calculate radiation propagation. Evaporation and burn-out of tissue resulting in a through hole along the axis of the beam are taken into account. Besides the water boiling and corresponding changes of thermal and optical tissue properties the model takes into account one of the heat steam transfer mechanisms. Estimates are carried out for the effects of diffusion transfer and vaporization of water from the tissue surface. Kinetics of protein denaturation process are calculated by Arrenius equation. The problem is solved numerically using discrete grid technique and adaptive time-step control algorithm.

  20. Intense Laser Plasma Interactions on the Road to Fast Ignition

    NASA Astrophysics Data System (ADS)

    van Woerkom, Linn

    2007-11-01

    Successful Fast Ignition (FI) offers the prospect of reduced laser driver energy and greater energy gain, which enhances the possibilities for realistic Inertial Confinement Fusion (ICF) energy power plants. The interaction of high intensity laser pulses with hot dense plasma lies at the core of the FI concept. At the most basic level FI relies on converting high energy, high intensity laser light into a beam of electrons which must propagate for 10's to ˜100 microns and deposit their energy in the compressed fuel. Thus, the process may be divided into two critical processes: 1) the generation of energetic electrons from the laser-matter interaction, and 2) the transport of energetic electrons through hot dense plasma. Experiments to date have only explored part of the FI relevant parameter space concerning laser energy, intensity, pulse duration, and transport of MeV particles. With the approach of first light on OMEGA EP and then NIF ARC, the field is poised to make crucial measurements that will determine the requirements for full scale FI. This talk will present recent results from high intensity laser-cone interactions that help pave the way to the next generation of experiments.

  1. High-intensity versus low-level laser therapy in the treatment of patients with knee osteoarthritis: a randomized controlled trial.

    PubMed

    Kheshie, Abdullah Raddah; Alayat, Mohamed Salaheldien Mohamed; Ali, Mohamed Mohamed Ebrahim

    2014-07-01

    The aim of this randomized controlled study was to compare the effects of low-level laser therapy (LLLT) and high-intensity laser therapy (HILT) on pain relief and functional improvement in patients with knee osteoarthritis (KOA). A total of 53 male patients participated in this study, with a mean (SD) age of 54.6 (8.49) years. Patients were randomly assigned into three groups and treated with HILT and exercise (HILT + EX), LLLT and exercise (LLLT + EX), and placebo laser plus exercise (PL + EX) in groups 1, 2, and 3, respectively. The outcomes measured were pain level measured by visual analog scale (VAS) and knee function measured by Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Statistical analyses were performed to compare the differences between baseline and posttreatment measurements. The level of statistical significance was set as P < 0.05. The result showed that HILT and LLLT combined with exercise were effective treatment modalities in decreasing the VAS and WOMAC scores after 6 weeks of treatment. HILT combined with exercises was more effective than LLLT combined with exercises, and both treatment modalities were better than exercises alone in the treatment of patients with KOA.

  2. Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators

    NASA Astrophysics Data System (ADS)

    Sato, S. A.; Yabana, K.; Shinohara, Y.; Otobe, T.; Lee, K.-M.; Bertsch, G. F.

    2015-11-01

    We calculate the energy deposition by very short laser pulses in SiO2 (α -quartz) with a view to establishing systematics for predicting damage and nanoparticle production. The theoretical framework is time-dependent density functional theory, implemented by the real-time method in a multiscale representation. For the most realistic simulations we employ a meta-GGA Kohn-Sham potential similar to that of Becke and Johnson. We find that the deposited energy in the medium can be accurately modeled as a function of the local electromagnetic pulse fluence. The energy-deposition function can in turn be quite well fitted to the strong-field Keldysh formula for a range of intensities from below the melting threshold to well beyond the ablation threshold. We find reasonable agreement between the damage threshold and the energy required to melt the substrate. Also, the depth of the ablated crater at higher energies is fairly well reproduced assuming that the material ablated with the energy exceeds that required to convert it to an atomic fluid. However, the calculated ablation threshold is higher than experiment, suggesting a nonthermal mechanism for the surface ablation.

  3. Stimulation of human gingival fibroblasts viability and growth by roots treated with high intensity lasers, photodynamic therapy and citric acid.

    PubMed

    Karam, Paula Stephania Brandão Hage; Ferreira, Rafael; Oliveira, Rodrigo Cardoso; Greghi, Sebastião Luiz Aguiar; de Rezende, Maria Lúcia Rubo; Sant'Ana, Adriana Campos Passanezi; Zangrando, Mariana Schutzer Ragghianti; Damante, Carla Andreotti

    2017-09-01

    The aim of this study was to compare the effect of root biomodification by lasers, citric acid and antimicrobial photodynamic therapy (aPDT) on viability and proliferation of human gingival fibroblasts (FGH). Groups were divided in control (CC - only cells), and root fragments treated by: scaling and root planing (positice control - SC), Er:YAG (ER-60mJ,10pps,10Hz,10s,2940nm), Nd:YAG (ND-0.5W,15Hz,10s,1640nm), antimicrobial photodynamic therapy (PDT-InGaAIP,30mW,45J/cm(2),30s,660nm,toluidine blue O), citric acid plus tetracycline (CA). Fibroblasts (6th passage, 2×10(3)) were cultivated in a 24-h conditioned medium by the treated root fragments. Cell viability was measured by MTT test at 24, 48, 72 and 96h. In a second experiment, FGH cells (10(4)) were cultivated on root fragments which received the same treatments. After 24, 48, 72h the number of cells was counted in SEM pictures. In addition, chemical elements were analyzed by energy dispersive spectroscopy (EDS). Data was analyzed by two-way ANOVA (first experiment), repeated measures ANOVA (second experiment) and ANOVA (EDS experiment) tests complemented by Tukey's test (p<0.05). ND, PDT and CA promoted higher cell viability (p<0.05). ND and ER groups presented higher number of cells on root surfaces (p<0.05). ER group presented higher calcium and CA group a higher carbon percentages (p<0.05). All treatments but scaling and root planing stimulated fibroblast viability while Er:YAG and Nd:YAG treated root surfaces presented higher number of cells. Copyright © 2017. Published by Elsevier Ltd.

  4. High-Intensity and High Energy Laser Interactions with Single Droplets

    DTIC Science & Technology

    1994-04-29

    approach the liquid-air interface very near the critical angle for total internal reflection and hence, experience a large Goos - Hanchen shift which causes...angle have a large Goos - HAnchen shift. The associated penetration depth is related to the decreased mode spacing. Goos - HAnchen shift is large when...parameter alone. We believe the inclusion of the Goos HAnchen shift and the associated penetration depth into the region outside the droplet surface helps

  5. Long-term effects of pulsed high-intensity laser therapy in the treatment of post-burn pruritus: a double-blind, placebo-controlled, randomized study.

    PubMed

    Ebid, Anwar Abdelgayed; Ibrahim, Abeer Ramadan; Omar, Mohammed Taher; El Baky, Amal Mohamed Abd

    2017-04-01

    We assessed the long-term effects of pulsed high-intensity laser therapy (HILT) in post-burn pruritus treatment. A total of 49 adult burn patients with mean age of 31.53 ± 10.14 years participated, with 24 patients randomly assigned to the active laser group (ALG) and 25 in the placebo laser group (PLG). The ALG received HILT three times per week for 6 weeks, while the PLG received placebo HILT. Both groups received 10-mg cetirizine tablets twice daily and 10 mg at bedtime. All patients were advised to massage their burn scars with coconut oil for 5 min four times daily. The outcomes measured were the itch severity scale (ISS), impairment of pruritus-related quality of life (QoL), pain level by the visual analog scale (VAS), hand grip strength by handheld dynamometer, and daily cetirizine intake. Repeated-measures ANOVA was used to compare the baseline and post-treatment measurements and after 12 weeks of follow-up. Statistical significance was set at P < 0.05. ISS decreased significantly in the ALG after 6 weeks of treatment and after 12 weeks of follow-up compared with the PLG. The QoL results showed a significant improvement in the ALG compared with the PLG, which continued after 12 weeks. VAS results significantly decrease, hand grip strength significantly improved, and cetirizine intake significantly decreased post-treatment in the ALG relative to the PLG. HILT combined with cetirizine seems more effective in patients with post-burn pruritus than a placebo laser procedure with cetirizine.

  6. Flash imaging of fine structures of cellular organelles by contact x-ray microscopy with a high intensity laser plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Ishino, Masahiko; Kishimoto, Maki; Tamotsu, Satoshi; Yasuda, Keiko; Kinjo, Yasuhito; Shinohara, Kunio

    2011-09-01

    X-ray flash imaging by contact microscopy with a highly intense laser-plasma x-ray source was achieved for the observation of wet biological cells. The exposure time to obtain a single x-ray image was about 600 ps as determined by the pulse duration of the driving laser pulse. The x-ray flash imaging makes it possible to capture an x-ray image of living biological cells without any artificial treatment such as staining, fixation, freezing, and so on. The biological cells were cultivated directly on the surface of the silicon nitride membranes, which are used for the x-ray microscope. Before exposing the cells to x-rays they were observed by a conventional fluorescent microscope as reference, since the fluorescent microscopes can visualize specific organelles stained with fluorescent dye. Comparing the x-ray images with the fluorescent images of the exact same cells, each cellular organelle observed in the x-ray images was identified one by one and actin filaments and mitochondria were clearly identified in the x-ray images.

  7. Detection of 1 - 100 keV x-rays from high intensity, 500 fs laser- produced plasmas using charge-coupled devices

    SciTech Connect

    Dunn, J.; Young, B.K.F.; Conder, A.D.; Stewart, R.E.

    1996-01-01

    We describe a compact, vacuum compatible, large format, charge- coupled device (CCD) camera for scientific imaging and detection of 1- 100 keV x rays in experiments at LLNL JANUS-1ps laser. A standard, front-illuminated, multi-pin phase device with 250 k electron full well capacity, low dark current (10 pA/cm{sup 2} at 20 C) and low read noise (5 electron rms) is cooled to -35 C to give the camera excellent 15-bit dynamic range and signal-to-noise response. Intensity and x-ray energy linear response were determined for optical and x-ray (<65 keV) photons and are in excellent agreement. Departure from linearity was less than 0.7%. Inherent linearity and energy dispersive characteristics of CCD cameras are well suited for hard x-ray photon counting. X-rays absorbed within the depletion and field-free regions can be distinguished by studying the pulse height spectrum. Results are presented for the detection of 1-100 keV Bremsstrahlung continuum, K-shell and L-shell fluorescence spectra emitted from high intensity (10{sup 18}W cm{sup -2}), 500 fs laser- produced plasmas.

  8. Interaction of Ultraintense Laser Vortices with Plasma Mirrors

    NASA Astrophysics Data System (ADS)

    Denoeud, A.; Chopineau, L.; Leblanc, A.; Quéré, F.

    2017-01-01

    Laser beams carrying orbital angular momentum (OAM) have found major applications in a variety of scientific fields, and their potential for ultrahigh-intensity laser-matter interactions has since recently been considered theoretically. We present an experiment where such beams interact with plasma mirrors up to laser intensities such that the motion of electrons in the laser field is relativistic. By measuring the spatial intensity and phase profiles of the high-order harmonics generated in the reflected beam, we obtain evidence for the helical wavefronts of the high-intensity laser at focus, and study the conservation of OAM in highly nonlinear optical processes at extreme laser intensities. The physical effects determining the field mode content of the twisted harmonic beams are elucidated.

  9. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Mechanism of high-energy electron production in a laser plasma

    NASA Astrophysics Data System (ADS)

    Belyaev, V. S.

    2004-01-01

    A mechanism of high-energy electron production in the interaction of high-intensity short laser pulses with a solid target is proposed and analysed. The theoretical dependences of fast-electron kinetic energy on the parameters of laser radiation and target material are given. The effect of ionisation of the target material is considered. The generation of ultrastrong magnetic fields in the laser plasma is shown to play the key part in the formation, transfer, and acceleration of electron beams. This results in the production of vortex electric fields accelerating electrons. The theoretical dependences yield well-proved limits for the electron energy and are in good agreement with the results of experiments performed on high-intensity laser setups, including the results obtained with participation of the author.

  10. Futurology of High Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Teller, Edward

    The following sections are included: * LECTURE IN CONNECTION WITH THE EDWARD TELLER MEDAL AWARD (LIRPP Vol. 10) * Photo of the First Recipients of the Edward Teller Medal in 1991 * Photos from the Edward Teller Medal Celebration in 1997 * Photo with Participants of the LIRPP No. 12 Conference, 1995 * Photo with Edward Teller Medalists at IFSA01, Kyoto, 2001 * Keynote Address: The Edward Teller Lecture (LIRPP Vol. 11) * Keynote Address: Dr. Edward Teller (LIRPP Vol. 12) * Teller Award Presentation and Keynote Address (LIRPP Vol. 13) * Laudations of Awardees 1991-1995 (LIRPP Vol. 13) * Laudations of Awardees 1999-2003

  11. Laser-capillary interaction for the EXIN project

    NASA Astrophysics Data System (ADS)

    Bisesto, F. G.; Anania, M. P.; Bacci, A. L.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Galletti, M.; Gallo, A.; Ghigo, A.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Pompili, R.; Rossi, A. R.; Serafini, L.; Vaccarezza, C.

    2016-09-01

    The EXIN project is under development within the SPARC_LAB facility of the National Laboratory of Frascati (LNF-INFN). This project aims to accelerate pre-existing electron bunches with high brightness by exploiting the wakefield plasma acceleration technique, while preserving the initial brightness. The wakefield is excited inside a dielectric capillary by high intensity laser pulses produced by the FLAME laser interacting with a gas. In this work, we present numerical simulations in order to optimize energy coupling between our laser with super-Gaussian transverse profile and a dielectric capillary. Moreover, an overview of the experimental layout will be given.

  12. High intensity hadron accelerators

    SciTech Connect

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics.

  13. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography

    NASA Astrophysics Data System (ADS)

    Courtois, C.; Edwards, R.; Compant La Fontaine, A.; Aedy, C.; Bazzoli, S.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Dain, L. Le; Mastrosimone, D.; Pichoff, N.; Pien, G.; Stoeckl, C.

    2013-08-01

    Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 1019 W/cm2) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can be resolved up to an external areal density of 85 g/cm2. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 μm (full width half maximum of the x-ray source Point Spread Function).

  14. Time-resolved dynamics of plasma self-channeling and bulk modification in silica glasses induced by a high-intensity femtosecond laser

    NASA Astrophysics Data System (ADS)

    Cho, Sung-Hak; Kumagai, Hiroshi; Midorikawa, Katsumi; Obara, Minoru

    2000-11-01

    The time-resolved dynamics of plasma self-channeling and refractive index bulk modification in the silica glasses are first observed using a high-intensity femtosecond (110 fs) Ti: sapphire laser ((Lambda) pequals790 nm) We propose the new pump-probe measurement to observe the lifetime of both plasma self-channeling and induced refractive index bulk modification. The energy variation of transmitted probe beam, which propagates transversely through the plasma self- channeling is measured. At the pre-breakdown domain, the lifetime of induced plasma self-channeling is 20 ps and structural transition time for reforming the refractive index change is 10 ps. At the breakdown domain, however, the lifetime of induced plasma formation is 30 ps and structural transition time for forming the optical damage is 40 ps. We find that the process of refractive index bulk modification is significantly different from those of optical damage. We also measure a wavelength shift (blueshift) of reflected probe beam from the surface of the plasma self-channeling induced by the pump beam. A maximum value of blue wavelength shift is 3 nm when the time delay of probe beam is 2 ps. The expanding velocity of the plasma ionization is calculated from the wavelength shirt (blueshift) using the Doppler formula. A maximum velocity of the plasma ionization is calculated to be approximately 6x105 m/s at the delay time of 2 ps.

  15. Energy transport and isochoric heating of a low-Z, reduced-mass target irradiated with a high intensity laser pulse

    SciTech Connect

    Nishimura, H.; Nakamura, H.; Tanabe, M.; Fujiwara, T.; Yamamoto, N.; Fujioka, S.; Mima, K.; Mishra, R.; Sentoku, Y.; Mancini, R.; Hakel, P.; Ohshima, S.; Batani, D.; Veltcheva, M.; Desai, T.; Jafer, R.; Kawamura, T.; Koike, F.

    2011-02-15

    Heat transport in reduced-mass targets irradiated with a high intensity laser pulse was studied. K{alpha} lines from partially ionized chlorine embedded in the middle of a triple-layered plastic target were measured to evaluate bulk electron temperature in the tracer region inside the target. Two groups of K{alpha} lines, one from Cl{sup +}-Cl{sup 6+} (hereby called ''cold K{alpha}''), and the other from Cl{sup 9+} and Cl{sup 10+} (''shifted K{alpha}'') are observed from different regions within the target. Two-dimensional collisional particle-in-cell simulations show two distinct heating mechanisms occurring concurrently: uniform heating by refluxing electrons and local heating by diffusive electrons in the central region. These two heating processes, which made the target temperature distribution nonuniform, are responsible for producing the two groups of K{alpha} lines in the experiment. The blue-shift of cold K{alpha} lines in the experiment is the signature of higher temperatures achieved by the refluxing heating in smaller-mass targets.

  16. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography

    SciTech Connect

    Courtois, C.; Compant La Fontaine, A.; Bazzoli, S.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Dain, L. Le; Pichoff, N.; Edwards, R.; Aedy, C.; Mastrosimone, D.; Pien, G.; Stoeckl, C.

    2013-08-15

    Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 10{sup 19} W/cm{sup 2}) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can be resolved up to an external areal density of 85 g/cm{sup 2}. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 μm (full width half maximum of the x-ray source Point Spread Function)

  17. Laser-electron Compton interaction in plasma channels

    SciTech Connect

    Pogorelsky, I.V.; Ben-Zvi, I.; Hirose, T.

    1998-10-01

    A concept of high intensity femtosecond laser synchrotron source (LSS) is based on Compton backscattering of focused electron and laser beams. The short Rayleigh length of the focused laser beam limits the length of interaction to a few picoseconds. However, the technology of the high repetition rate high-average power picosecond lasers required for high put through LSS applications is not developed yet. Another problem associated with the picosecond laser pulses is undesirable nonlinear effects occurring when the laser photons are concentrated in a short time interval. To avoid the nonlinear Compton scattering, the laser beam has to be split, and the required hard radiation flux is accumulated over a number of consecutive interactions that complicates the LSS design. In order to relieve the technological constraints and achieve a practically feasible high-power laser synchrotron source, the authors propose to confine the laser-electron interaction region in the extended plasma channel. This approach permits to use nanosecond laser pulses instead of the picosecond pulses. That helps to avoid the nonlinear Compton scattering regime and allows to utilize already existing technology of the high-repetition rate TEA CO{sub 2} lasers operating at the atmospheric pressure. They demonstrate the advantages of the channeled LSS approach by the example of the prospective polarized positron source for Japan Linear Collider.

  18. High Intensity Polarized Electron Gun

    SciTech Connect

    Redwine, Robert P.

    2012-07-31

    The goal of the project was to investigate the possibility of building a very high intensity polarized electron gun for the Electron-Ion Collider. This development is crucial for the eRHIC project. The gun implements a large area cathode, ring-shaped laser beam and active cathode cooling. A polarized electron gun chamber with a large area cathode and active cathode cooling has been built and tested. A preparation chamber for cathode activation has been built and initial tests have been performed. Major parts for a load-lock chamber, where cathodes are loaded into the vacuum system, have been manufactured.

  19. Fast Ignition relevant study of the flux of high intensity laser generated electrons via a hollow cone into a laser-imploded plasma

    SciTech Connect

    Key, M; Adam, J; Akli, K; Borgheshi, M; Chen, M; Evans, R; Freeman, R; Hatchett, S; Hill, J; Heron, A; King, J; Lancaster, K; Mackinnon, A; Norreys, P; Phillips, T; Romagnani, L; Snavely, R; Stephens, R; Stoeckl, C

    2005-10-11

    An integrated experiment relevant to fast ignition is described. A Cu doped CD spherical shell target is imploded around an inserted hollow Au cone by a six beam 600J, 1ns laser to a peak density of 4gcm{sup -3} and a diameter of 100 {micro}m. A 10 ps, 20TW laser pulse is focused into the cone at the time of peak compression. The flux of high-energy electrons through the imploded material is determined from the yield of Cu K{alpha} fluorescence by comparison with a Monte Carlo model and is estimated to carry 15% of the laser energy. Collisional and Ohmic heating are modeled. An electron spectrometer shows significantly greater reduction of the transmitted electron flux than is due to binary collisions and Ohmic potential. Enhanced scattering by instability-induced magnetic fields is suggested.

  20. Laser/tissue interaction.

    PubMed

    Dederich, D N

    1991-01-01

    When laser light impinges on tissue, it can reflect, scatter, be absorbed, or transmit to the surrounding tissue. Absorption controls to a great degree the extent to which reflection, scattering and transmission occur, and wavelength is the primary determinant of absorption. The CO2 laser is consistently absorbed by most materials and tissues and the Nd-YAG laser wavelength is preferentially absorbed in pigmented tissues. The factors which determine the initial tissue effect include the laser wavelength, laser power, laser waveform, tissue optical properties, and tissue thermal properties. There are almost an infinite number of combinations of these factors possible, many of which would result in unacceptable damage to the tissues. This underscores the need to thoroughly test any particular combination of these factors on the conceptual, in-vitro, and in-vivo level before a treatment is offered.

  1. High intensity neutrino beams

    SciTech Connect

    Ichikawa, A. K.

    2015-07-15

    High-intensity proton accelerator complex enabled long baseline neutrino oscillation experiments with a precisely controlled neutrino beam. The beam power so far achieved is a few hundred kW with enourmorous efforts of accelerator physicists and engineers. However, to fully understand the lepton mixing structure, MW-class accelerators are desired. We describe the current intensity-frontier high-energy proton accelerators, their plans to go beyond and technical challenges in the neutrino beamline facilities.

  2. Study of 1–8 keV K-α x-ray emission from high intensity femtosecond laser produced plasma

    SciTech Connect

    Arora, V. Naik, P. A.; Chakera, J. A.; Bagchi, S.; Tayyab, M.; Gupta, P. D.

    2014-04-15

    We report an experimental study on the optimization of a laser plasma based x-ray source of ultra-short duration K-α line radiation. The interaction of pulses from a CPA based Ti:sapphire laser (10 TW, 45 fs, 10 Hz) system with magnesium, titanium, iron and copper solid target generates bright 1-8 keV K-α x-ray radiation. The x-ray yield was optimized with the laser pulse duration (at fixed fluence) which is varied in the range of 45 fs to 1.4 ps. It showed a maximum at laser pulse duration of ∼740 fs, 420 fs, 350 and 250 fs for Mg (1.3 keV), Ti (4.5 keV), Fe (6.4 keV) and Cu (8.05 keV) respectively. The x-ray yield is observed to be independent of the sign of the chirp. The scaling of the K-α yield (I{sub x} ∝ I{sub L}{sup β}) for 45 fs and optimized pulse duration were measured for laser intensities in the region of 3 × 10{sup 14} – 8 × 10{sup 17}. The x-ray yield shows a much faster scaling exponent β = 1.5, 2.1, 2.4 and 2.6 for Mg, Ti, Fe and Cu respectively at optimized pulse duration compared to scaling exponent of 0.65, 1.3, 1.5, and 1.7 obtained for 45 fs duration laser pulses. The laser to x-ray energy conversion efficiencies obtained for different target materials are η{sub Mg} = 1.2 × 10{sup −5}, η{sub Ti} = 3.1 × 10{sup −5}, η{sub Fe} = 2.7 × 10{sup −5}, η{sub Cu} = 1.9 × 10{sup −5}. The results have been explained from the efficient generation of optimal energy hot electrons at longer laser pulse duration. The faster scaling observed at optimal pulse duration indicates that the x-ray source is generated at the target surface and saturation of x-ray emission would appear at larger laser fluence. An example of utilization of the source for measurement of shock-wave profiles in a silicon crystal by time resolved x-ray diffraction is also presented.

  3. Laser shaping of a relativistic circularly polarized pulse by laser foil interaction

    SciTech Connect

    Zou, D. B.; Zhuo, H. B.; Yu, T. P.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ouyang, J. M.; Ge, Z. Y.; Zhang, G. B.; Wang, P.

    2013-07-15

    Laser shaping of a relativistic circularly polarized laser pulse in ultra-intense laser thin-foil interaction is investigated by theoretical analysis and particle-in-cell simulations. It is found that the plasma foil as a nonlinear optical shutter has an obvious cut-out effect on the laser temporal and spatial profiles. Two-dimensional particle-in-cell simulations show that the high intensity part of a Gaussian laser pulse can be well extracted from the whole pulse. The transmitted pulse with longitudinal steep rise front and transverse super-Gaussian profile is thus obtained which would be beneficial for the radiation pressure acceleration regime. The Rayleigh-Taylor-like instability is observed in the simulations, which destroys the foil and results in the cut-out effect of the pulse in the rise front of a circularly polarized laser.

  4. Laser Plasma Material Interactions

    SciTech Connect

    Schaaf, Peter; Carpene, Ettore

    2004-12-01

    Surface treatment by means of pulsed laser beams in reactive atmospheres is an attractive technique to enhance the surface features, such as corrosion and wear resistance or the hardness. Many carbides and nitrides play an important role for technological applications, requiring the mentioned property improvements. Here we present a new promising fast, flexible and clean technique for a direct laser synthesis of carbide and nitride surface films by short pulsed laser irradiation in reactive atmospheres (e.g. methane, nitrogen). The corresponding material is treated by short intense laser pulses involving plasma formation just above the irradiated surface. Gas-Plasma-Surface reactions lead to a fast incorporation of the gas species into the material and subsequently the desired coating formation if the treatment parameters are chosen properly. A number of laser types have been used for that (Excimer Laser, Nd:YAG, Ti:sapphire, Free Electron Laser) and a number of different nitride and carbide films have been successfully produced. The mechanisms and some examples will be presented for Fe treated in nitrogen and Si irradiated in methane.

  5. The interaction of intense subpicosecond laser pulses with underdense plasmas

    SciTech Connect

    Coverdale, Christine Ann

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 1016 W/cm2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by Lplasma ≥ 2LRayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (no ≤ 0.05ncr). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  6. Optimum laser intensity for the production of energetic deuterium ions from laser-cluster interaction

    SciTech Connect

    Bang, W.; Dyer, G.; Quevedo, H. J.; Bernstein, A. C.; Gaul, E.; Rougk, J.; Aymond, F.; Donovan, M. E.; Ditmire, T.

    2013-09-15

    We measured, using Petawatt-level pulses, the average ion energy and neutron yield in high-intensity laser interactions with molecular clusters as a function of laser intensity. The interaction volume over which fusion occurred (1–10 mm{sup 3}) was larger than previous investigations, owing to the high laser power. Possible effects of prepulses were examined by implementing a pair of plasma mirrors. Our results show an optimum laser intensity for the production of energetic deuterium ions both with and without the use of the plasma mirrors. We measured deuterium plasmas with 14 keV average ion energies, which produced 7.2 × 10{sup 6} and 1.6 × 10{sup 7} neutrons in a single shot with and without plasma mirrors, respectively. The measured neutron yields qualitatively matched the expected yields calculated using a cylindrical plasma model.

  7. Laser tissue interactions: an update for otolaryngology

    NASA Astrophysics Data System (ADS)

    Reinisch, Lou

    2000-05-01

    We review the laser, characteristics of laser light, the delivery of laser light, pulse lengths and laser tissue interactions. We review these parameters and how they have changed over the history of the laser and how we expect them to change in the future. This survey of laser use is targeted to the otolaryngologist. Very little background in lasers is necessary to follow the discussion. This is intended to introduce and reintroduce laser technology.

  8. Laser-plasma interactions relevant to Inertial Confinement Fusion

    SciTech Connect

    Wharton, K. B.

    1998-11-01

    Research into laser-driven inertial confinement fusion is now entering a critical juncture with the construction of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Many of the remaining unanswered questions concerning NIF involve interactions between lasers and plasmas. With the eventual goal of fusion power in mind, laser-plasma interactions relevant to laser fusion schemes is an important topic in need of further research. This work experimentally addresses some potential shortcuts and pitfalls on the road to laser-driven fusion power. Current plans on NIF have 192 laser beams directed into a small cylindrical cavity which will contain the fusion fuel; to accomplish this the beams must cross in the entrance holes, and this intersection will be in the presence of outward-flowing plasma. To investigate the physics involved, interactions of crossing laser beams in flowing plasmas are investigated with experiments on the Nova laser facility at LLNL. It was found that in a flowing plasma, energy is transferred between two crossing laser beams, and this may have deleterious consequences for energy balance and ignition in NIF. Possible solutions to this problem are presented. A recently-proposed alternative to standard laser-driven fusion, the ''fast ignitor'' concept, is also experimentally addressed in this dissertation. Many of the laser-plasma interactions necessary for the success of the fast ignitor have not previously been explored at the relevant laser intensities. Specifically, the transfer of high-intensity laser energy to electrons at solid-target interfaces is addressed. 20-30% conversion efficiencies into forward-propagated electrons were measured, along with an average electron energy that varied with the type of target material. The directionality of the electrons was also measured, revealing an apparent beaming of the highest energy electrons. This work was extended to various intensities and pulse lengths and a

  9. Measurement of the Radiofrequency-microwave Pulse Produced in Experiments of Laser-plasma Interaction in the ABC Laser Facility

    NASA Astrophysics Data System (ADS)

    Consoli, Fabrizio; De Angelis, Riccardo; Andreoli, Pierluigi; Cristofari, Giuseppe; Di Giorgioa, Giorgio

    The emission of electromagnetic waves in the radiofrequency-microwave range has been observed in many experiments of laser- plasma interaction. These fields can have very high intensity and estimated frequency band up to several gigahertz. The radiation normally affects the behaviour of most of the detectors, often up to hundreds of nanoseconds from the laser pulse, and can represent a serious limitation for the time-of-flight detection of fast particles, and in general for the safe operation of the electronic equipment. In this work we describe the measurements of this electromagnetic pulse, under different conditions of laser-plasma interaction.

  10. Determining laser-induced dissociation pathways of multielectron diatomic molecules: Application to the dissociation of O{sub 2}{sup +} by high-intensity ultrashort pulses

    SciTech Connect

    Sayler, A. M.; Wang, P. Q.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2007-06-15

    A method for determining the laser-induced dissociation pathways of multielectron diatomic molecules is developed. Despite the abundance of possible dissociation pathways inherent to such molecules, this technique allows one to resolve the dissociation pathways that contribute to the measured intensity-dependent three-dimensional momentum distribution. To illustrate this method, the unique dissociation mechanisms and pathways producing a few predominant features in the laser-induced dissociation momentum distribution of O{sub 2}{sup +} are determined.

  11. High intensity solar cell radiometer

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W.; Spisz, E. W.

    1972-01-01

    Device can be employed under high intensity illumination conditions such as would occur in a close-solar-approach space mission or in monitoring high intensity lamps. Radiometer consists of silicon solar cells with thin semi-transparent coatings of aluminum deposited on the front surfaces to permit transmission of small percentage of light and reflect the remainder.

  12. Lasers and laser-tissue interaction.

    PubMed

    Peavy, George M

    2002-05-01

    Light produced by a laser differs from incandescent light in that it is monochromatic, coherent, and intense; and it is these properties that allow lasers to be used as such unique tools in biomedical research and patient care. The effect of a laser beam on tissue is dependent on the optical and mechanical properties of the tissue, and the wavelength, power parameters, and time domains of the laser exposure. Understanding these principles is not only important for the selection of an appropriate laser system for a specific application, but also is essential for that application to be successful.

  13. The Influence of Strong Laser Fields on the Interaction between Fast B+3 Clusters and Plasmas

    NASA Astrophysics Data System (ADS)

    E, Peng; Wang, Gui-Qiu; Yao, Li; Gao, Hong; Wang, Yao-Chuan; Zhong, Hai-Yang; Liu, Wei; Yang, Kun; Sun, Min; Xu, Dian-Guo

    2013-03-01

    The influence of a high-intensity laser field on the inelastic interactions between a swift B+3 cluster ion and a plasma target is studied by means of the linearized Vlasov-Poisson theory. Excitations of the plasma are described by the classical plasma dielectric function. In the presence of the laser field, the general expressions for the induced potential in the target and the interaction force among the ions within the cluster are derived. Based on the numerical solution of the equations of motion for the constituent ions, the Coulomb explosion patterns and the cluster's energy losses are discussed for a range of laser parameters.

  14. Laser-Plasma Interactions in Exploding Wires

    DTIC Science & Technology

    1975-07-01

    the optical properties of the laser interaction with this plasma; (3) the scaling of laser heating with laser pulse shape, pulse width (10 to 80 nano...EXPLODING WIRES INITIATION AND LASER HEATING OF EXPLODING WIRE PLASMAS REFERENCES DISTRIBUTION Page 3 5 12 24 41 42 1/2 r mmmmmm «beüsaBamtaän...INTRODUCTION Heating a preformed plasma with a laser has been of interest because ef basic physics and a wide variety of applications. Some previous

  15. Penetration of high-intensity Er:YAG laser light emitted by IR hollow optical fibers with sealing caps in water.

    PubMed

    Iwai, Katsumasa; Shi, Yi-Wei; Endo, Masashi; Ito, Kentaro; Matsuura, Yuji; Miyagi, Mitsunobu; Jelinkova, Helena

    2004-04-20

    The penetration depth in water was measured for Er:YAG laser light in a high density relevant to clinical applications. Various types of focusing elements were used to guide the light efficiently. We found that the transmission distance depended strongly on the beam shape in the water. When we used a plano-convex type of focusing cap, the penetration depth was larger than that when a dome- or ball-type cap were used.

  16. Toward Extrapolating Two-Dimensional High-intensity Laser-Plasma Ion Acceleration Particle-in-Cell Simulations to Three Dimensions

    NASA Astrophysics Data System (ADS)

    Stark, D. J.; Yin, L.; Albright, B. J.; Guo, F.

    2016-10-01

    A PIC study of laser-ion acceleration via relativistic induced transparency points to how 2D-S (laser polarization in the simulation plane) and -P (out-of-plane) simulations may capture different physics characterizing these systems, visible in their entirety in (often cost-prohibitive) 3D simulations. The electron momentum anisotropy induced in the target by the laser pulse is dramatically different in the two 2D cases, manifesting in differences in polarization shift, electric field strength, density threshold for onset of relativistic induced transparency, and target expansion timescales. In particular, a trajectory analysis of individual electrons and ions may allow one to delineate the role of the fields and modes responsible for ion acceleration. With this information, we consider how 2D simulations might be used to develop, in some respects, a fully 3D understanding of the system. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Los Alamos National Laboratory Directed Research and Development Program.

  17. PHYSICS UPDATE: Medical lasers and laser-tissue interactions

    NASA Astrophysics Data System (ADS)

    Cammarata, F.; Wautelet, M.

    1999-05-01

    Lasers are widely used in medicine today. The applications of medical lasers rely on interdisciplinary concepts. Indeed, the fundamental mechanisms involve physics, chemistry and biology. Nevertheless, the subject is sufficiently important and interesting to be introduced to students and teachers. Here we describe the commercially available medical lasers then discuss the general principles of laser-tissue interactions. Various current medical treatments can then be evaluated quantitatively.

  18. Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments

    DOE PAGES

    Liang, Taiee; Bauer, Johannes M.; Liu, James C.; ...

    2016-12-01

    A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 1017 and 1022 W cm–2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of this paper is tomore » provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less

  19. Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments

    SciTech Connect

    Liang, Taiee; Bauer, Johannes M.; Liu, James C.; Rokni, Sayed H.

    2016-12-01

    A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 1017 and 1022 W cm–2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of this paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.

  20. Production of Neutrons up to 18 MeV in High-Intensity, Short-Pulse Laser Matter Interactions

    DTIC Science & Technology

    2011-10-24

    calculating the amount of energy an incident deuteron deposits in the active layer of the IP using the collisional Monte- Carlo code SRIM.13 The technique...H. Key, A. J. Mackinnon, A. G. MacPhee, P. K. Patel, R. R. Freeman, L. D. Van Woerkom, and C. M. Castaneda , Rev. Sci. Instrum. 79, 053501 (2008

  1. Direct observation of resonance effects in laser cluster interactions

    SciTech Connect

    Zweiback, J. S.

    1999-06-01

    Time resolved dynamics of high intensity laser interactions with atomic clusters have been studied with both theoretical analysis and experiment. A short-pulse Ti:sapphire laser system, which could produce 50 mJ of energy in a 50 fs pulse, was built to perform these experiments. The laser used a novel single grating stretcher and was pumped, in part, by a custom Nd:YLF laser system, including 19 mm Nd:YLF amplifiers. It was found that there is an optimal pulse width to maximize absorption for a given cluster size. This optimal pulse width ranged from 400 fs for 85 A radius xenon clusters to 1.2 ps for 205 {angstrom} radius xenon clusters. Using a pump-probe configuration, the absorption of the probe radiation was observed to reach a maximum for a particular time delay between pump and probe, dependent on the cluster size. The delay for peak absorption was 800, 1400, and 2100 fs for 85 Å, 130 Å, and 170 Å radius xenon clusters respectively. Model calculations suggest that these effects are due to resonant heating of the spherical plasma in agreement with the hydrodynamic interpretation of cluster interactions. While this simple hydrodynamic code produces reasonable agreement with data, it does not include bulk plasma or non-linear propagation effects and is limited to the regime where resonant behavior dominates. We also measured the scattered laser light from the laser-cluster interaction. Similar to the absorption measurements, there is an optimal pulse width which maximizes the scattered signal. This pulse width is larger than the optimal pulse width for absorption. This disagrees with model calculations which show both pulse widths being similar. Further experiments measuring the scattered light in a pump-probe configuration should help to resolve this disagreement.

  2. [Lasers: principles, characteristics and tissue interactions].

    PubMed

    Meire, M; Delmé, K; Nammour, S; De Moor, R

    2009-01-01

    Since their appearance in 1960, lasers have been considered useful light sources for medical applications. Laser light is monochromatic, the bundle is parallel and can be directed and focussed, as a result of which very high energy densities can be achieved. Several applications in dentistry have been investigated over the past decades. This article describes the physics behind lasers, the characteristics of the laser beam and overviews the laser wavelengths currently used in dentistry. The different interactions between the laser beam and the target are explained.

  3. Anomalous free electron laser interaction

    NASA Astrophysics Data System (ADS)

    Einat, M.; Jerby, E.; Kesar, A.

    2002-05-01

    Free electron lasers (FELs) are considered, typically, as fast wave devices. The normal FEL interaction satisfies the tuning condition ω≅( kz+ kW) Vz , where ω and kz are the em-wave angular frequency and longitudinal wave number, respectively, Vz is the electron axial speed, and kW is the wiggler periodicity. This paper presents an anomalous FEL interaction, which may occur in slow-wave FELs (i.e. loaded by dielectric or periodic structures). The anomalous FEL effect presented here satisfies the tuning condition ω≅( kz- kW) Vz , and it resembles the anomalous effect in slow-wave cyclotron resonance masers. A necessary condition for the anomalous interaction is ω/ kz< Vz (i.e., the em-wave phase velocity should be slower than the electron beam). The paper presents a preliminary experimental result demonstrating the anomalous FEL effect in a stripline dielectric-loaded FEL experiment. A linear Pierce equation is applied to describe both the anomalous and normal FELs in the same framework. The paper is concluded with a conceptual discussion.

  4. PIC-DSMC analysis on interaction of a laser induced discharge and shock wave

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei

    2015-09-01

    Laser induced discharge and the shock wave have attracted great interest for use in the electrical engineering. When the high intensity laser (10 GW >) is focused in the atmosphere, the breakdown occurs and the discharge wave propagates toward to the laser irradiation. The shock wave is generated around the discharge wave, which is called as the laser supported detonation wave. After breakdown occurred, the initial electron of the avalanche ionization is produced by the photoionization due to the plasma radiation. It is well recognized that the radiation of the laser plasma affects the propagation mechanism of the laser induced discharge wave after the initiation of the breakdown. However, it is difficult to observe the interaction between the plasma radiation and the electron avalanche in the ionization-wave front in experimentally except in the high intensity laser. In the numerical calculation of the laser-induced discharge, the fluid dynamics based on the Navier-Stokes equation have been widely used. However, it is difficult to investigate the avalanche ionization at the wave front using the fluid dynamics simulation. To investigate the interaction of the ionization-wave front and the shock wave, it is appropriate to utilize the PIC-DSMC method. The present study showed the propagation of the ionization front of the discharge wave and the shock wave using the particle simulation. This work was supported by Kato Foundation for Promotion of Science and Japan Power Academy.

  5. Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    NASA Astrophysics Data System (ADS)

    Louchev, Oleg A.; Bakule, Pavel; Saito, Norihito; Wada, Satoshi; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko

    2011-09-01

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-α (Ly-α) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-α generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-α radiation generation can achieve a value of ˜5×10-4 which is restricted by the total combined absorption of the fundamental and generated radiation.

  6. Mechanism and computational model for Lyman-{alpha}-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    SciTech Connect

    Louchev, Oleg A.; Saito, Norihito; Wada, Satoshi; Bakule, Pavel; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko

    2011-09-15

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-{alpha} (Ly-{alpha}) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-{alpha} generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-{alpha} radiation generation can achieve a value of {approx}5x10{sup -4} which is restricted by the total combined absorption of the fundamental and generated radiation.

  7. Laser-Time Interaction XII: Photochemical, Photothermal, and Photomechanical

    NASA Astrophysics Data System (ADS)

    Duncan, Donald D.; Jacques, Steven L.; Johnson, Peter C.

    2001-01-01

    This proceedings contains papers on the following topics: photodynamic therapy, immunotherapy, pulsed laser effects, polarized light interactions, photochemical interactions, occular laser effects,thermal interactions, laser shaping of cartilage.

  8. Synergistic effect of high-intensity focused ultrasound and low-fluence Q-switched Nd:YAG laser in the treatment of the aging neck and décolletage.

    PubMed

    Nam, Jae-Hui; Choi, Young-Jun; Lim, Jae Yun; Min, Joon Hong; Kim, Won-Serk

    2017-01-01

    High-intensity focused ultrasound (HIFU) is regarded as an effective skin-lifting device; however, literature regarding treatment of the aging neck and décolletage with HIFU is scarce. Our study aimed to evaluate the efficacy of combination with HIFU and low-fluence Q-switched Nd:YAG (LQSNY) laser on the aging neck and décolletage. Nineteen women were assessed. HIFU at two visits and LQSNY laser at six visits were used to irradiate the neck and chest. At week 16, improvements were rated using the Dedo classification, Fabi/Bolton Chest Wrinkle Scale (FBCWS), and Global Aesthetic Improvement Scales (GAIS). Erythema and melanin indices (EMIs) and cervicomental angle were measured. Subject GAIS and satisfaction were evaluated at follow-up visits. At week 16, neck sagging and chest rhytides were improved on Dedo classification and FBCWS, respectively. Pigmentation and rhytides of the neck and chest were rated as improved in 30 % or more of the subjects by physician GAIS and in approximately 80 % of the subjects by subject GAIS. The above differences seemed to be attributable to the initial expectation level and mild severity pertaining to dress custom in Korea. Eighty-four percent of subjects were satisfied with treatment outcomes. EMIs were decreased on the chest. The combination of HIFU and LQSNY is an effective treatment option to mitigate rhytides and pigmentation of the neck and décolletage.

  9. Laser material interaction in confined medium

    NASA Astrophysics Data System (ADS)

    Devaux, David; Fabbro, Remy; Virmont, Jean; Ballard, Patrick; Fournier, Jean

    1990-04-01

    The technique of dielectric metallic target confinement is discussed. Improvements in experimental measurements by piezodielectric sensor are described. Laser material interaction by the hydrodynamic code FILM is described. The formed plasma is visualized using a streak camera.

  10. Microengineering Laser Plasma Interactions at Relativistic Intensities.

    PubMed

    Jiang, S; Ji, L L; Audesirk, H; George, K M; Snyder, J; Krygier, A; Poole, P; Willis, C; Daskalova, R; Chowdhury, E; Lewis, N S; Schumacher, D W; Pukhov, A; Freeman, R R; Akli, K U

    2016-02-26

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.

  11. Microengineering Laser Plasma Interactions at Relativistic Intensities

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Ji, L. L.; Audesirk, H.; George, K. M.; Snyder, J.; Krygier, A.; Poole, P.; Willis, C.; Daskalova, R.; Chowdhury, E.; Lewis, N. S.; Schumacher, D. W.; Pukhov, A.; Freeman, R. R.; Akli, K. U.

    2016-02-01

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.

  12. Extreme field limits in the interaction of laser light with ultrarelativistic electrons

    SciTech Connect

    Bulanov, S. V.; Esirkepov, T. Zh.; Hayashi, Y.; Kando, M.; Kiriyama, H.; Koga, J.; Kondo, K.; Kotaki, H.; Pirozhkov, A.; Bulanov, S. S.; Zhidkov, A.; Chen, P.; Neely, D.; Kato, Y.; Narozhny, N. B.; Korn, G.

    2012-07-11

    The critical electric field of quantum electrodynamics is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. This field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. A feasibility of the experiments on the collision of laser light and high intensity electromagnetic pulses, generated by relativistic flying mirrors, with relativistic electrons for the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is discussed.

  13. Laser-matter interaction in cluster medium in the radiation dominated regime

    NASA Astrophysics Data System (ADS)

    Iwata, N.; Kishimoto, Y.; Wu, F.; Fukuda, Y.

    2016-03-01

    We study the interaction between laser and cluster medium in high intensity regime 1022-24 W/cm2 using a particle based integral code (EPIC3D). By introducing four targets consisting of the same mass, i.e. same packing fraction, but having different internal structure, we investigate the effect of cluster on the acceleration dynamics comparing with that of thin film. In the radiation pressure dominated regime, the cluster medium exhibits a higher maximum energy than that achieved by the simple piston mechanism due to the additional accerelation by the Coulomb explosion. The optimum cluster radius for ion acceleration is found to exist depending on the laser power irradiated.

  14. New findings for in-gel digestion accelerated by high-intensity focused ultrasound for protein identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Carreira, R J; Cordeiro, F M; Moro, A J; Rivas, M G; Rial-Otero, R; Gaspar, E M; Moura, I; Capelo, J L

    2007-06-15

    New findings in sample treatment based on high-intensity focused ultrasound (HIFU) for protein digestion after polyacrylamide gel electrophoresis separation are presented. The following variables were studied: (i) sample volume; (ii) sonotrode diameter; (iii) previous protein denaturation; (iv) cooling; (v) enzyme concentration; and (vi) protein concentration. Results showed that positive protein identification could be done after protein separation by gel electrophoresis through peptide mass fingerprint (PMF) in a volume as low as 25 microL. The time needed was less than 2 min and no cooling was necessary. The importance of the sonotrode diameter was negligible. On the other hand, protein denaturation before sonication was a trade-off for the success of procedure here described. The protein coverage was raised from 5 to 30%, and the number of peptides matching the proteins was also increased in a percentage ranging 10-100% when the classical overnight treatment is compared with the proposed HIFU procedure. The minimum amount of protein that can be identified using the HIFU sample treatment by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was 0.06 microg. The lower concentration of trypsin successfully used to obtain an adequate protein digestion was 3.6 microg/mL.

  15. High Efficiency Electron-Laser Interactions in Tapered Helical Undulators

    NASA Astrophysics Data System (ADS)

    Duris, Joseph Patrick

    Efficient coupling of relativistic electron beams with high power radiation lies at the heart of advanced accelerator and light source research and development. The inverse free electron laser is a stable accelerator capable of harnessing very high intensity laser electric fields to efficiently transfer large powers from lasers to electron beams. In this dissertation, we first present the theoretical framework to describe the interaction, and then apply our improved understanding of the IFEL to the design and numerical study of meter-long, GeV IFELs for compact light sources. The central experimental work of the dissertation is the UCLA BNL helical inverse free electron laser experiment at the Accelerator Test Facility in Brookhaven National Laboratory which used a strongly tapered 54cm long, helical, permanent magnet undulator and a several hundred GW CO2 laser to accelerate electrons from 52 to 106MeV, setting new records for inverse free electron laser energy gain (54MeV) and average accelerating gradient (100MeV/m). The undulator design and fabrication as well as experimental diagnostics are presented. In order to improve the stability and quality of the accelerated electron beam, we redesigned the undulator for a slightly reduced output energy by modifying the magnet gap throughout the undulator, and we used this modified undulator to demonstrated capture of >25% of the injected beam without prebunching. In the study of heavily loaded GeV inverse free electron lasers, we show that a majority of the power may be transferred from a laser to the accelerated electron beam. Reversing the process to decelerate high power electron beams, a mechanism we refer to as tapering enhanced stimulated superradiant amplification, offers a clear path to high power light sources. We present studies of radiation production for a wide range of wavelengths (10mum, 13nm, and 0.3nm) using this method and discuss the design for a deceleration experiment using the same undulator used

  16. Interaction of intense ultrashort pulse lasers with clusters.

    NASA Astrophysics Data System (ADS)

    Petrov, George

    2007-11-01

    The last ten years have witnessed an explosion of activity involving the interaction of clusters with intense ultrashort pulse lasers. Atomic or molecular clusters are targets with unique properties, as they are halfway between solid and gases. The intense laser radiation creates hot dense plasma, which can provide a compact source of x-rays and energetic particles. The focus of this investigation is to understand the salient features of energy absorption and Coulomb explosion by clusters. The evolution of clusters is modeled with a relativistic time-dependent 3D Molecular Dynamics (MD) model [1]. The Coulomb interaction between particles is handled by a fast tree algorithm, which allows large number of particles to be used in simulations [2]. The time histories of all particles in a cluster are followed in time and space. The model accounts for ionization-ignition effects (enhancement of the laser field in the vicinity of ions) and a variety of elementary processes for free electrons and charged ions, such as optical field and collisional ionization, outer ionization and electron recapture. The MD model was applied to study small clusters (1-20 nm) irradiated by a high-intensity (10^16-10^20 W/cm^2) sub-picosecond laser pulse. We studied fundamental cluster features such as energy absorption, x-ray emission, particle distribution, average charge per atom, and cluster explosion as a function of initial cluster radius, laser peak intensity and wavelength. Simulations of novel applications, such as table-top nuclear fusion from exploding deuterium clusters [3] and high power synchrotron radiation for biological applications and imaging [4] have been performed. The application for nuclear fusion was motivated by the efficient absorption of laser energy (˜100%) and its high conversion efficiency into ion kinetic energy (˜50%), resulting in neutron yield of 10^6 neutrons/Joule laser energy. Contributors: J. Davis and A. L. Velikovich. [1] G. M. Petrov, et al Phys

  17. Short Wavelength Laser/Materials Interactions

    DTIC Science & Technology

    1989-12-20

    lasterials interaction phenomena and effects, and 4) materials evaluation. The program has led to major advances in science-based understanding of...3.0 RESULTS 5 3.1 MATERIALS SELECTION and CHARACTERIZATION 5 3.2 DEVELOPMENT of NEW INSTRUMENTATION 8 3.2.1 Laser Sources 8 3.2.2 Multiwavelength ...high temperature during laser irradiation. The program has led to major advances in science-based understanding of materials performance under extreme

  18. Laser Ion Acceleration from the Interaction of Ultra-Intense laser Pulse with thi foils

    SciTech Connect

    Allen, Matthew Mark

    2004-03-12

    The discovery that ultra-intense laser pulses (I > 1018 W/cm2) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 1018 W/cm2), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by Up = ([1 + Iλ2/1.3 x 1018]1/2 - 1) moc2, where Iλ2 is the irradiance in Wμm2/cm2 and moc2 is the electron rest mass.At laser irradiance of Iλ2 ~ 1018 Wμm2/cm2, the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target.

  19. Dissipative Structures At Laser-Solid Interactions

    NASA Astrophysics Data System (ADS)

    Nanai, Laszlo

    1989-05-01

    The questions which are discussed in this lecture refer to one of sections of laser-solid interactions, namely: to formation of different dissipative structures on the surface of metals and semiconductors when they are irradiated by intensive laser light in chemically active media (f.e.air). Some particular examples of the development at different spatial and time instabilities, periodic and stochastic structures, auto-wave processes are present-ed using testing materials vanadium metal and semiconducting V205 single crystals and light sources: cw and pulsed CO2 and YAG lasers.

  20. Laser Interaction with Metallic Surfaces.

    DTIC Science & Technology

    1982-12-01

    opaque targets the absorptance is one m~nus the reflectance , measurement of the time dependence of the metal surface reflectance will yield the laser...1O 4 TIME (ps) TIME (ns) (a) REFLECTANCE MEASUREMENTS (b) GENERAL REFLECTANCE WC) REFLECTANCE MEASUREMENT OF SONCH-8RUEVICH et al CURVE OF ZAVECZ et al...integrating sphere by Bonch-Bruevich and, therefore, a total reflectance measurement while Zavecz et al. measured only the specular reflectance. In

  1. Interaction of laser-induced stress waves with metals

    NASA Technical Reports Server (NTRS)

    Clauer, A. H.; Fairand, B. P.

    1979-01-01

    An investigation of the effect of high intensity laser induced stress waves on the hardness and tensile strength of 2024 and 7075 aluminum and on the fatigue properties of 7075 aluminum were investigated. Laser shocking increases the hardness of the underaged 2024-T351 but has little or no effect on the peak aged 2024-T351 and 7075-T651 or the overaged 7075-T73. The fretting fatigue life of fastener joints of 7075-T6 was increased by orders of magnitude by laser shocking the region around the fastener hole; the fatigue crack propagation rates were decreased by laser shocking.

  2. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    SciTech Connect

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for a variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of

  3. High intensity portable fluorescent light

    NASA Technical Reports Server (NTRS)

    Kendall, F. B.

    1972-01-01

    Eight high intensity portable fluorescent lights were produced. Three prototype lights were also produced, two of which were subsequently updated to the physical and operational configuration of the qualification and flight units. Positioning of lamp apertures and reflectors in these lights is such that the light is concentrated and intensified in a specific pattern rather than widely diffused. Indium amalgam control of mercury vapor pressure in the lamp gives high output at lamp ambient temperatures up to 105 C. A small amount of amalgam applied to each electrode stem helps to obtain fast warm-up. Shrinking a Teflon sleeve on the tube and potting metal caps on each end of the lamp minimizes dispersion of mercury vapor and glass particles in the event of accidental lamp breakage. Operation at 20 kHz allows the lamps to consume more power than at low frequency, thus increasing their light output and raising their efficiency. When used to expose color photographic film, light from the lamps produces results approximately equal to sunlight.

  4. Harmonic generation at high intensities

    SciTech Connect

    Schafer, K.J.; Krause, J.L.; Kulander, K.C.

    1993-06-01

    Atomic electrons subject to intense laser fields can absorb many photons, leading either to multiphoton ionization or the emission of a single, energetic photon which can be a high multiple of the laser frequency. The latter process, high-order harmonic generation, has been observed experimentally using a range of laser wavelengths and intensities over the past several years. Harmonic generation spectra have a generic form: a steep decline for the low order harmonics, followed by a plateau extending to high harmonic order, and finally an abrupt cutoff beyond which no harmonics are discernible. During the plateau the harmonic production is a very weak function of the process order. Harmonic generation is a promising source of coherent, tunable radiation in the XUV to soft X-ray range which could have a variety of scientific and possibly technological applications. Its conversion from an interesting multiphoton phenomenon to a useful laboratory radiation source requires a complete understanding of both its microscopic and macroscopic aspects. We present some recent results on the response of single atoms at intensities relevant to the short pulse experiments. The calculations employ time-dependent methods, which we briefly review in the next section. Following that we discuss the behavior of the harmonics as a function of laser intensity. Two features are notable: the slow scaling of the harmonic intensities with laser intensity, and the rapid variation in the phase of the individual harmonics with respect to harmonic order. We then give a simple empirical formula that predicts the extent of the plateau for a given ionization potential, wavelength and intensity.

  5. Femtosecond Laser Interaction with Energetic Materials

    SciTech Connect

    Roos, E; Benterou, J; Lee, R; Roeske, F; Stuart, B

    2002-03-25

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  6. Femtosecond laser interaction with energetic materials

    NASA Astrophysics Data System (ADS)

    Roos, Edward V.; Benterou, Jerry J.; Lee, Ronald S.; Roseke, Frank; Stuart, Brent C.

    2002-09-01

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  7. Laser-matter interaction in laser shock processing

    NASA Astrophysics Data System (ADS)

    Sollier, Arnaud; Berthe, Laurent; Peyre, Patrice; Bartnicki, Eric; Fabbro, Remy

    2003-03-01

    Laser shock processing (LSP) is an emerging industrial process in the field of surface treatment with particular application to the improvement of fatigue and corrosion properties. In the standard configuration, the metal sample is coated with a sacrificial layer in order to protect it from detrimental thermal effects, and a water overlay is used to improve the mechanical coupling by a confining like effect. Whereas the induced mechanical effects are now well understood, very few studies have been realized concerning the thermal effects. For this purpose, the knowledge of the confined plasma microscopic parameters has a great importance. A complete model describing the laser-liquid-metal interaction is presented. The model predicts the time evolution of the plasma parmmeters (temperature, density, ionization) and allows us to compute the induced pressure and temperature in the metal sample. By comparing the numerical results with various experimental measurements, predictions can be made concerning the best laser irradiation conditions for LSP.

  8. Ultrashort Pulse (USP) Laser-Matter Interactions

    DTIC Science & Technology

    2013-03-05

    unlimited 2D electron wavepacket quantum simulation Source: Luis Plaja, U Salamanca 31 Direct Frequency Comb Spectroscopy in the Extreme...intensity short pulse laser interacting with structured targets yields an enhancement in the number and energy of hot electron. • Monte Carlo

  9. Laser-plasma interactions for fast ignition

    NASA Astrophysics Data System (ADS)

    Kemp, A. J.; Fiuza, F.; Debayle, A.; Johzaki, T.; Mori, W. B.; Patel, P. K.; Sentoku, Y.; Silva, L. O.

    2014-05-01

    In the electron-driven fast-ignition (FI) approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser-plasma interactions (LPI) relevant to FI. Increases in computational and modelling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multi-dimensional particle-in-cell simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporal evolution. Scaling with irradiation conditions such as laser intensity are considered, as well as the dependence on plasma parameters. Different numerical modelling approaches and configurations are addressed, providing an overview of the modelling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of today's experiments for the full-scale FI problem.

  10. Study of Laser Interaction with Thin Targets

    SciTech Connect

    Boley, C D; Cutter, K P; Fochs, S N; Pax, P H; Rotter, M D; Rubenchik, A M; Yamamoto, R M

    2009-03-06

    For many targets of interest, the thickness is small compared to the conduction length during the engagement. In addition, the laser-material interaction region can be treated as flat. We have studied this regime with our 25 kW solid-state laser. We have demonstrated that airflow can reduce by approximately 40% the energy required to break through a thin target. This reduction is caused by the bulging of the softened material and the tearing and removal of the material by aerodynamic forces. We present elastic modeling which explains these results.

  11. Theoretical Understanding of Enhanced Proton Energies from Laser-Cone Interactions

    SciTech Connect

    Kluge, T.; Gaillard, S. A.; Bussmann, M.; Burris-Mog, T.; Kraft, S. D.; Metzkes, J.; Rassuchine, J.; Schramm, U.; Zeil, K.; Cowan, T. E.; Flippo, K. A.; Offermann, D. T.; Gall, B.; Geissel, M.; Schollmeier, M.; Lockard, T.; Sentoku, Y.

    2010-11-04

    For the past ten years, the highest proton energies accelerated with high-intensity lasers was 58 MeV, observed in 2000 at the LLNL NOVA Petawatt laser, using flat foil targets. Recently, 67.5 MeV protons were observed in experiments at the Los Alamos National Laboratory (LANL) Trident laser, using one-fifth of the PW laser pulse energy, incident into novel conical targets. We present a focused study of new theoretical understanding of this measured enhancement from collisional Particle-in-Cell simulations, which shows that the hot electron temperature, number and maximum energy, responsible for the Target Normal Sheath Acceleration (TNSA) at the cone-top, are significantly increased when the laser grazes the cone wall. This is mainly due to the extraction of electrons from the cone wall by the laser electric field, and their boost in the forward direction by the vxB term of the Lorentz force. This result is in contrast to previous predictions of optical collection and wall-guiding of electrons in angled cones. This new wall-grazing mechanism offers the prospect to linearly increase the hot electron temperature, and thereby the TNSA proton energy, by extending the length over which the laser interacts in a grazing fashion in suitably optimized targets. This may allow achieving much higher proton energies for interesting future applications, with smaller, lower energy laser systems that allow for a high repetition rate.

  12. Initial design of a beamline for ultra-intense laser-matter interactions at the BELLA-i PW laser user facility

    NASA Astrophysics Data System (ADS)

    Steinke, Sven; Bulanov, Stepan; Ji, Qing; Schenkel, Thomas; Esarey, Eric; Leemens, Wim

    2015-11-01

    BELLA, the Berkeley Lab laser accelerator center hosts a 1 PW Ti:sapp laser with 1 Hz repetition rate, where electron acceleration to 4.5 GeV was demonstrated recently. For electron acceleration, irradiances of up to 1019 W/cm2 are desired and these are implemented with a long focal length laser beamline and beam spots of w0 = 52 μm. Much higher irradiances of 1022 W/cm2 can be achieved when the laser beam is focus more tightly, to a spot of w0<5 μm in a shorter focal length beamline. A key requirement for many application of laser-matter interaction in this regime, such as laser-ion acceleration or the generation of relativistic surface high harmonics is the ultra-high intensity contrast of the laser pulse. We will describe our design for a short focal lengths beamline, BELLA-i, including multiple plasma mirrors for ultra-high contrast in the laser pulse. The resulting laser pulses will enable reliable access to many exciting aspects of high energy density laboratory physics and laser-matter interactions in the relativistic regime for a community of users. This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  13. Coherence-based transverse measurement of synchrotron x-ray radiation from relativistic laser-plasma interaction and laser-accelerated electrons

    SciTech Connect

    Shah, R. C.; Albert, F.; Ta Phuoc, K.; Shevchenko, O.; Boschetto, D.; Burgy, F.; Rousseau, J.-P.; Rousse, A.; Pukhov, A.; Kiselev, S.

    2006-10-15

    We observe Fresnel edge diffraction of the x-ray beam generated by the relativistic interaction of a high-intensity laser pulse with He gas. The observed diffraction at center energy 4.5 keV agrees with Gaussian incoherent source profile of full-width-half-maximum (FWHM)<8 {mu}m. Analysis indicates this corresponds to an upper limit on the transverse profile of laser-accelerated electrons within the plasma in agreement with three-dimensional, particle-in-cell results (FWHM=4 {mu}m)

  14. Coherence-based transverse measurement of synchrotron x-ray radiation from relativistic laser-plasma interaction and laser-accelerated electrons.

    PubMed

    Shah, R C; Albert, F; Ta Phuoc, K; Shevchenko, O; Boschetto, D; Pukhov, A; Kiselev, S; Burgy, F; Rousseau, J-P; Rousse, A

    2006-10-01

    We observe Fresnel edge diffraction of the x-ray beam generated by the relativistic interaction of a high-intensity laser pulse with He gas. The observed diffraction at center energy 4.5 keV agrees with Gaussian incoherent source profile of full-width-half-maximum (FWHM) < 8 microm. Analysis indicates this corresponds to an upper limit on the transverse profile of laser-accelerated electrons within the plasma in agreement with three-dimensional, particle-in-cell results (FWHM = 4 microm).

  15. Ultra-intense, short pulse laser-plasma interactions with applications to the fast ignitor

    SciTech Connect

    Wilks, S.C.; Kruer, W.L.; Young, P.E.; Hammer, J.; Tabak, M.

    1995-04-01

    Due to the advent of chirped pulse amplification (CPA) as an efficient means of creating ultra-high intensity laser light (I > 5{times}10{sup 17} W/cm{sup 2}) in pulses less than a few picoseconds, new ideas for achieving ignition and gain in DT targets with less than 1 megajoule of input energy are currently being pursued. Two types of powerful lasers are employed in this scheme: (1) channeling beams and (2) ignition beams. The current state of laser-plasma interactions relating to this fusion scheme will be discussed. In particular, plasma physics issues in the ultra-intense regime are crucial to the success of this scheme. We compare simulation and experimental results in this highly nonlinear regime.

  16. Modeling of laser interactions with composite materials

    SciTech Connect

    Rubenchik, Alexander M.; Boley, Charles D.

    2013-05-07

    In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.

  17. Modeling of laser interactions with composite materials

    DOE PAGES

    Rubenchik, Alexander M.; Boley, Charles D.

    2013-05-07

    In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.

  18. The Nuclear Epoch of Laser Interactions

    SciTech Connect

    Borisov, Alex B.; Khan, Shahab F.; Poopalasingam, Sankar; McCorkindale, John C.; Zhao, Ji; Boguta, John; Longworth, James W.; Racz, Ervin; Rhodes, Charles K.

    2009-12-03

    The history of power compression is a series of developmental epochs that are (1) characteristically marked by a technological breakthrough and (2) generally separated by a factor of approx10{sup 10} in power density. Based on new advances in high-power coherent x-ray technology, the transition to a new nuclear epoch of laser interactions is presently commencing. Chief outcomes foreseen are (1) the generation of power densities in the 10{sup 28}-10{sup 30} W/cm{sup 3} realm, (2) the controlled induction of nuclear interactions, and (3) the production of new states and forms of nuclear matter.

  19. The scaling of electron and positron generation in intense laser-solid interactions

    SciTech Connect

    Chen, Hui; Link, A.; Fiuza, F.; Hazi, A.; Heeter, R. F.; Kemp, A. J.; Kemp, G. E.; Nagel, S. R.; Park, J.; Tommasini, R.; Williams, G. J.; Sentoku, Y.; Audebert, P.; Hill, M.; Hobbs, L.; Kerr, S.; Meyerhofer, D. D.; Myatt, J.

    2015-05-15

    This paper presents experimental scalings of the electrons and positrons produced by intense laser-target interactions at relativistic laser intensities (10{sup 18}–10{sup 20} W cm{sup −2}). The data were acquired from three short-pulse laser facilities with laser energies ranging from 80 to 1500 J. We found a non-linear (≈E{sub L}{sup 2}) scaling of positron yield [Chen et al., Phys. Rev. Lett. 114, 215001 (2015)] and a linear scaling of electron yield with the laser energy. These scalings are explained by theoretical and numerical analyses. Positron acceleration by the target sheath field is confirmed by the positron energy spectrum, which has a pronounced peak at energies near the sheath potential, as determined by the observed maximum energies of accelerated protons. The parameters of laser-produced electron-positron jets are summarized together with the theoretical energy scaling. The measured energy-squared scaling of relativistic electron-positron jets indicates the possibility to create an astrophysically relevant experimental platform with such jets using multi-kilojoule high intensity lasers currently under construction.

  20. High Intensity Radiation Laboratory Reverberation Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This photo depicts the interior of the large Reverberation Chamber located in the High Intensity, Radiation Facility (HIRL). These chambers are used to test susceptibility of aircraft avionics systems responses to high intensity radiated fields. These resources include a Gigahertz Transverse Electromagnetic Cell (GTEM), which provides a uniform field of up to 1000V/m from 10 kHz to 18 Ghz.

  1. The use of high-intensity ultrasonics

    NASA Astrophysics Data System (ADS)

    Puskar, A.

    Features of the application of high-intensity ultrasonics are related to intensity measurements of ultrasonic oscillation and high-intensity ultrasonic effects on the resonance system. High-intensity ultrasonics applications in various technologies are considered, taking into account filtration and catalysis, drying, aerosol and hydrosol coagulation, emulsification and dispersion, metal-powder production, ultrasonic liquid degassing, cavitation, ultrasonic cleaning, metallizing and soldering, welding in an ultrasonic field, and ultrasonics in material machining. Other topics considered are related to ultrasonics in the crystallization of metals and alloys, ultrasonics in heat and chemical-heat treatment, safety and hygiene of working with ultrasonic devices, the effect of high-intensity ultrasonics on solids, the properties of materials after prior action of high-intensity ultrasound, the fatigue of materials during high-frequency stressing, and ultrasonic oscillation and material deformation characteristics. The technological exploitation of ultrasound during material forming is also discussed.

  2. Laser energy deposition in crossing shock interaction

    NASA Astrophysics Data System (ADS)

    Yan, H.; Knight, D.; Elliott, G.

    A combined computational and experimental study was performed to investigate the effect of a single laser energy pulse on the transition from a Mach Reflection (MR) to a Regular Reflection (RR) in the Dual Solution Domain (DSD). The freestream Mach number is 3.45 and two oblique shock waves are formed by two symmetric 22° wedges. These conditions correspond to a point midway within the DSD wherein either an MR or an RR is possible. A steady MR was first obtained experimentally and numerically, then a single laser pulse was deposited above the horizontal center plane. The experiment showed that the Mach stem height decreased to 30% of its original height due to the interaction with the thermal spot generated by the laser pulse and then returned to its original height by 300μs. That the Mach stem returned to its original height was most likely due to freestream turbulence in the wind tunnel. The numerical simulation successfully predicted the reverse transition from a stable MR to a stable RR and the stable RR persisted across the span. This study showed the capability of a laser energy pulse to control the reverse transition of MR → RR within the Dual Solution Domain.

  3. Ion beam control in laser plasma interaction

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Izumiyama, T.; Sato, D.; Nagashima, T.; Takano, M.; Barada, D.; Gu, Y. J.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Wang, W. M.

    2016-03-01

    By a two-stage successive acceleration in laser ion acceleration, our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by a few hundreds of MeV; the maximum proton energy reaches about 250MeV. The ions are accelerated by the inductive continuous post-acceleration in a laser plasma interaction together with the target normal sheath acceleration and the breakout afterburner mechanism. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when an intense short- pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in the plasma. During the increase phase in the magnetic field strength, the moving longitudinal inductive electric field is induced by the Faraday law, and accelerates the forward-moving ions continously. The multi-stage acceleration provides a unique controllability in the ion energy and its quality.

  4. Subpicosecond KrF{asterisk}-laser plasma interaction at intensities between 10{sup 14} and 10{sup 17} W/cm{sup 2}

    SciTech Connect

    Teubner, U.; Gibbon, P.; Foerster, E.; Fallies, F.; Audebert, P.; Geindre, J.P.; Gauthier, J.C.

    1996-07-01

    The interaction of high-intensity subpicosecond KrF{asterisk}-laser pulses with aluminium plasmas is investigated at intensities between 10{sup 14} and 10{sup 17} W/cm{sup 2}. Using a one-dimensional hydrocode, the laser energy absorption and time evolution of plasma parameters have been studied as a function of laser intensity, incidence angle, and polarization. Complementary particle-in-cell simulations have also been performed to check the collisionless absorption component carried by hot electrons and ions. These simulations are compared to previous experiments on laser pulse absorption and x-ray generation. {copyright} {ital 1996 American Institute of Physics.}

  5. HIGH-INTENSITY, HIGH CHARGE-STATE HEAVY ION SOURCES

    SciTech Connect

    ALESSI,J.G.

    2004-08-16

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions is reviewed. These sources include ECR, EBIS, and Laser ion sources. Benefits and limitations for these type sources are described. Possible future improvements in these sources are also mentioned.

  6. Gamma-ray emission in ultra-intense laser interaction with solid targets

    NASA Astrophysics Data System (ADS)

    Klimo, Ondrej; Vyskocil, Jiri; Kumar, Deepak; Limpouch, Jiri; Weber, Stefan

    2016-10-01

    Electrons moving in ultra-intense laser fields emit hard radiation due to radiation reaction and non-linear Compton scattering. Multi-MeV γ-rays were measured by scattering of electrons generated from laser wakefield with a focused laser of intensity a0 1 . However, non-linear Compton scattering and radiation reaction is also an efficient mechanism for generating copious amount of γ-rays in laser interaction with solids at intensities approaching 1022 W/cm2. Emission of γ-rays due to radiation reaction and bremsstrahlung are investigated here in the high intensity regime of laser-solid target interaction by using a combination of Particle-in-Cell and Monte Carlo radiation transport simulations. The relative contribution of these processes is analyzed as a function of the target parameters. We concentrate on the influence of the target thickness, material, preplasma conditions or a surface structure on the generation of high energy photons and study separately their energy and angular distributions. It is demonstrated that the presence of preplasma or a special surface structure may significantly enhance emission of hard γ photons and their cut-off energy and change their angular distribution. Supported by Czech Science Foundation project 15-02964S.

  7. Hazards from High Intensity Lamps and Arcs

    NASA Technical Reports Server (NTRS)

    Sliney, D. H.

    1970-01-01

    The principal occupational health problem generally associated with high intensity arc lamps results from exposure of the eye and skin to ultraviolet radiation. Occasionally, the chorioretinal burns are of concern. The eye is generally more susceptible than the skin to injury from high intensity optical radiation sources whether ultraviolet, visible or infrared. Recent developments in technology have shown that some high intensity optical radiation sources which have output parameters greatly different from those encountered in the natural environment present a serious chorioretinal burn hazard.

  8. Hazards from High Intensity Lamps and Arcs

    NASA Technical Reports Server (NTRS)

    Sliney, D. H.

    1970-01-01

    The principal occupational health problem generally associated with high intensity arc lamps results from exposure of the eye and skin to ultraviolet radiation. Occasionally, the chorioretinal burns are of concern. The eye is generally more susceptible than the skin to injury from high intensity optical radiation sources whether ultraviolet, visible or infrared. Recent developments in technology have shown that some high intensity optical radiation sources which have output parameters greatly different from those encountered in the natural environment present a serious chorioretinal burn hazard.

  9. Controlling Second Harmonic Efficiency of Laser Beam Interactions

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2011-01-01

    A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.

  10. THE HIGH INTENSITY SOLAR ENVIRONMENT TEST SYSTEM

    NASA Image and Video Library

    2016-01-15

    TODD SCHNEIDER LOOKS UP FROM WORK AT THE DOOR OF T HE HIGH INTENSITY SOLAR ENVIRONMENT TEST SYSTEM IN BUILDING 4605. SCHNEIDER IS A PHYSICIST IN THE MATERIALS AND PROCESSES DEPARTMENT AT MSFC AND IS PRINCIPAL INVESTIGATOR FOR HISET.

  11. High-Intensity Plasma Glass Melter

    SciTech Connect

    2004-01-01

    Modular high-intensity plasma melter promises improved performance, reduced energy use, and lower emissions. The glass industry has used the same basic equipment for melting glass for the past 100 years.

  12. Weibel magnetic field competes with Biermann fields in laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Shukla, Nitin; Schoeffler, Kevin; Vieira, Jorge; Fonseca, Ricardo; Silva, Luis

    2016-10-01

    Biermann battery induced magnetic fields caused by non-parallel density and temperature gradients, first investigated experimentally, continue to be measured in many current experiments. A detailed study of Biermann generated magnetic fields in collisionless systems has been carried out, showing that for large system sizes (L /de >= 100) , where de is the electron inertial length, the Weibel instability dominates as the major source of magnetic field. In this work, we demonstrate the possibility of experimentally generating this strong Weibel magnetic field. We model, using ab initio PIC simulations, the interaction of a short (ps) high intensity (a0 >= 1) laser pulse, with a target of sufficiently large gradient scale length, L. The expanding hot energetic electron population generated by the laser produces an anisotropy in the velocity distribution. This anisotropy provides the free energy that drives the Weibel instability that appears on the surfaces of the target and dominates over the Biermann battery field.

  13. Intense ultrashort laser-Xe cluster interaction

    NASA Astrophysics Data System (ADS)

    Davis, J.; Whitney, K. G.; Petrova, Tz. B.; Petrov, G. M.

    2012-09-01

    The last several years have witnessed a surge of activity involving the interaction of clusters with intense ultrashort pulse lasers. The interest in laser-cluster interaction has not been only of academic interest, but also because of the wide variety of potential applications. Clusters can be used as a compact source of X-rays, incoherent as well as coherent, and of fast ions capable of driving a fusion reaction in deuterium plasmas. In one set of xenon cluster experiments, in particular, amplification of ˜2.8 Å X-rays has been observed [28]. X-ray amplification in cluster media is a phenomenon of critical importance and may lead to applications such as EUV lithography, EUV and X-ray microscopy, X-ray tomography, and variety of applications in biology and material sciences. However, while amplification of ˜2.8 Å X-rays has been documented in experiments, the mechanism for producing it remains to be fully understood. In this talk, a xenon model of laser-cluster interaction dynamics is presented to shed light on the processes responsible for amplification. The focus of this research is on the feasibility of creating population inversions and gain in some of the inner-shell hole state transitions within the M-shell of highly ionized xenon. The model couples a molecular dynamics (MD) treatment of the explosively-driven, non-Maxwellian cluster expansion to a comprehensive multiphoton-radiative ionization dynamic (ID) model including single- and double-hole state production within the Co- and Fe-like ionization stages of xenon. The hole-state dynamics is self-consistently coupled to a detailed valence-state collisional-radiative dynamics of the Ni-, Co-, and Fe-like ionization stages of xenon. In addition, the model includes tunneling ionization rates that confirm an initial condition assumption that Ni-like ground states can be created almost instantaneously, on the order of a femtosecond or less, i.e., at laser intensities larger than 1019 W/cm2, all of the N

  14. Modeling of high power laser interaction with metals

    NASA Astrophysics Data System (ADS)

    Mustafa, Kurt; Zahide, Demircioǧlu

    2017-02-01

    Laser matter interaction has been very popular subject from the first recognition of lasers. Laser application in industry or laboratory applications are based on definite interactions of the laser beam with the workpiece. In this paper, an effective model related with high power radiation interaction with metals is presented. In metals, Lorentz-Drude model is used calculate permeability theoretically. The plasma frequency was calculated at various temperatures and using the obtained results the refractive index of the metal (Ag) was investigated. The calculation result revealed that the effect of the temperature need to be considered at reflection and transmission of the laser beam.

  15. High-intensity training in football.

    PubMed

    Iaia, F Marcello; Rampinini, Ermanno; Bangsbo, Jens

    2009-09-01

    This article reviews the major physiological and performance effects of aerobic high-intensity and speed-endurance training in football, and provides insight on implementation of individual game-related physical training. Analysis and physiological measurements have revealed that modern football is highly energetically demanding, and the ability to perform repeated high-intensity work is of importance for the players. Furthermore, the most successful teams perform more high-intensity activities during a game when in possession of the ball. Hence, footballers need a high fitness level to cope with the physical demands of the game. Studies on football players have shown that 8 to 12 wk of aerobic high-intensity running training (> 85% HR(max)) leads to VO2(max) enhancement (5% to 11%), increased running economy (3% to 7%), and lower blood lactate accumulation during submaximal exercise, as well as improvements in the yo-yo intermittent recovery (YYIR) test performance (13%). Similar adaptations are observed when performing aerobic high-intensity training with small-sided games. Speed-endurance training has a positive effect on football-specific endurance, as shown by the marked improvements in the YYIR test (22% to 28%) and the ability to perform repeated sprints (approximately 2%). In conclusion, both aerobic and speed-endurance training can be used during the season to improve high-intensity intermittent exercise performance. The type and amount of training should be game related and specific to the technical, tactical, and physical demands imposed on each player.

  16. Proton acceleration in the interaction of high power laser and cryogenic hydrogen targets

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini; Fiuza, Frederico; Glenzer, Siegfried

    2014-10-01

    High intensity laser driven ion acceleration has attracted great interest due to many prospective applications ranging from inertial confinement fusion, cancer therapy, particle accelerators. Particle-in-Cell (PIC) simulations are performed to model and design experiments at MEC for high power laser interaction with cryogenic hydrogen targets of tunable density and thickness. Preliminary 1D and 2D simulations, using fully relativistic particle-in-cell code PICLS, show a unique regime of proton acceleration, e.g. ~ 300 MeV peak energy protons are observed in the 1D run for interaction of ~1020 W/cm2, 110 fs intense laser with 6nc dense (nc = 1021 cm-3) and 2 micron thin target. The target is relativistically under-dense for the laser and we observe that a strong (multi-terawatt) shock electric field is produced and protons are reflected to high velocities by this field. Further, the shock field and the laser field keep propagating through the hydrogen target and meets up with target normal sheath acceleration (TNSA) electric field produced at the target rear edge and vacuum interface and this superposition amplifies the TNSA fields resulting in higher proton energy. In addition, the electrons present at the rear edge of the target continue to gain energy via strong interaction with laser that crosses the target and these accelerated electrons maintains higher electric sheath fields which further provides acceleration to protons. We will also present detailed investigation with 2D PICLS simulations to gain a better insight of such physical processes to characterize multidimensional effects and establish analytical scaling between laser and target conditions for the optimization of proton acceleration.

  17. Excimer laser interaction with dentin of the human tooth

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Gilliam, Ruth L.; Baker, George R.

    1989-01-01

    The use an excimer laser produced many unusual conical structures within the dentin of the inner part of the human tooth. By varying the frequency of the laser one can disperse the energy and cause more bleeding in laser surgery, but not destroy the cells associated with the incision. Therefore, the healing process will virtually be without scarring. Whereas, using the infrared laser the blood loss would be less, but the healing process would tend to be longer because cells are being destroyed due to the cauterization effect of the laser. The question is, are these structures produced as an interaction with the laser or are they an intrinsic part of the structure. The effects of the laser interaction upon dentin was studied, and in using electron microscopy the interaction of the excimer laser upon the tooth dentin and other various biological tissue is more clearly understood.

  18. Study of laser-plasma interaction using a physics-based model for understanding the physical mechanism of double-pulse effect in nanosecond laser ablation

    SciTech Connect

    Wu Benxin; Zhou Yun; Forsman, Andrew

    2009-12-21

    This paper studies the double-pulse effect in high-intensity ({>=}{approx}GW/cm{sup 2}) nanosecond (ns) laser ablation, which refers to the significant material removal rate enhancement for ablation by two ns laser pulses (often separated by a delay time of {approx}10 to 100 ns). The early-stage interaction of the second laser pulse with the plasma plume created by the first pulse is very important for understanding the physical mechanism of the double pulse effect. However, the plasma properties in the early stage (during a laser pulse or within 20 to 30 ns after the completion of the pulse) are very difficult to measure experimentally. In this letter, a physics-based predictive model is used as the investigation tool, which was previously verified based on experiments on plasma properties in the late stage, which are relatively easy to measure. The study shows that the second laser pulse does not directly strike the target condensed phase. Instead, it mainly interacts with the plasma plume created by the first laser pulse, heats and accelerates the ablated material in the plume lingering above the target surface.

  19. Rapidly pulsed, high intensity, incoherent light source

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1974-01-01

    A rapid pulsing, high intensity, incoherent light is produced by selectively energizing a plurality of discharge lamps with a triggering circuit. Each lamp is connected to a capacitor, and a power supply is electrically connected to all but one of the capacitors. This last named capacitor is electrically connected to a discharge lamp which is connected to the triggering circuit.

  20. High-intensity source of extreme ultraviolet

    NASA Technical Reports Server (NTRS)

    Paresce, E.; Kumar, S.; Bowyer, S.

    1972-01-01

    High intensity ultraviolet radiation source was developed which is suitable for emission below 500 A. Source, useful for 100 to 1000 A range, is simple and inexpensive to construct, easy to operate, and very stable. Because of sufficiently intense output spectrum, source can be used with monochromator at wavelengths as low as 160 A.

  1. The NASA High Intensity Radiated Fields Laboratory

    NASA Technical Reports Server (NTRS)

    Williams, Reuben A.

    1997-01-01

    High Intensity Radiated Fields (HIRF) are the result of a multitude of intentional and nonintentional electromagnetic sources that currently exists in the world. Many of today's digital systems are susceptible to electronic upset if subjected to certain electromagnetic environments (EME). Modern aerospace designers and manufacturers increasingly rely on sophisticated digital electronic systems to provide critical flight control in both military, commercial, and general aviation aircraft. In an effort to understand and emulate the undesired environment that high energy RF provides modern electronics, the Electromagnetics Research Branch (ERB) of the Flight Electronics and Technology Division (FETD) conducts research on RF and microwave measurement methods related to the understanding of HIRF. In the High Intensity Radiated Fields Laboratory, the effects of high energy radiating electromagnetic fields on avionics and electronic systems are tested and studied.

  2. Positron microanalysis with high intensity beams

    SciTech Connect

    Hulett, L.D. Jr.; Donohue, D.L.

    1990-01-01

    One of the more common applications for a high intensity slow positron facility will be microanalysis of solid materials. In the first section of this paper some examples are given of procedures that can be developed. Since most of the attendees of this workshop are experts in positron spectroscopy, comprehensive descriptions will be omitted. With the exception of positron emission microscopy, most of the procedures will be based on those already in common use with broad beams. The utility of the methods have all been demonstrated, but material scientists use very few of them because positron microbeams are not generally available. A high intensity positron facility will make microbeams easier to obtain and partially alleviate this situation. All microanalysis techniques listed below will have a common requirement, which is the ability to locate the microscopic detail or area of interest and to focus the positron beam exclusively on it. The last section of this paper is a suggestion of how a high intensity positron facility might be designed so as to have this capability built in. The method will involve locating the specimen by scanning it with the microbeam of positrons and inducing a secondary electron image that will immediately reveal whether or not the positron beam is striking the proper portion of the specimen. This scanning positron microscope' will be a somewhat prosaic analog of the conventional SEM. It will, however, be an indispensable utility that will enhance the practicality of positron microanalysis techniques. 6 refs., 1 fig.

  3. High Intensity X-Ray Coupling to Meteorite Targets

    NASA Astrophysics Data System (ADS)

    Remo, J. L.; Furnish, M. D.; Hammerling, P.

    2001-06-01

    The responses of iron-nickel and stony meteorite samples to high-intensity X-ray pulses (70 - 215 GW/cm^2) pulses generated by exploding wire array hohlraums from the Sandia Z machine are reported. Induced shock waves created particle velocities of 25 - 75 m/s after rarefaction overtake, as measured by VISAR. From these values both momentum and energy coupling coefficients were obtained. These results are compared to recent high-powered-pulsed ( 1 GW/cm2 for 20 ns) 1054 nm laser induced shock pressures and momentum transfer, and energy coupling to iron-rich and stony meteorite targets (J. L. Remo et al, Laser and Particle Beams, 17, 25-44, 1999). These comparisons provide data on the scaling of shock induced effects on inhomogeneous materials in general and meteoritic materials in particular. The combination of both of these experiments extends the regime of high intensity pulsed energy deposition on non-homogeneous materials from the GW/cm^2 to 100's of GW/cm^2, providing valuable empirical insights into the shock critical equations of state and coupling responses. Application to astrophysical and geophysical modeling will be discussed.

  4. Interaction of Laser Induced Micro-shockwaves

    NASA Astrophysics Data System (ADS)

    Leela, Ch.; Bagchi, Suman; Tewari, Surya P.; Kiran, P. Prem

    Laser induced Shock Waves (LISWs) characterized by several optical methods provide Equation of State (EOS) for a variety of materials used in high-energy density physics experiments at Mbar pressures [1, 2]. Other applications include laser spark ignition for fuel-air mixtures, internal combustion engines, pulse detonation engines, laser shock peening [3], surface cleaning [4] and biological applications (SW lithotripsy) [5] to name a few.

  5. On the Acceleration and Transport of Electrons Generated by Intense Laser-Plasma Interactions at Sharp Interfaces

    NASA Astrophysics Data System (ADS)

    May, Joshua Joseph

    The continued development of the chirped pulse amplification technique has allowed for the development of lasers with powers of in excess of 10 15W, for pulse lengths with durations of between .01 and 10 picoseconds, and which can be focused to energy densities greater than 100 giga-atmospheres. When such lasers are focused onto material targets, the possibility of creating particle beams with energy fluxes of comparable parameters arises. Such interactions have a number of theorized applications. For instance, in the Fast Ignition concept for Inertial Confinement Fusion [1], a high-intensity laser efficiently transfers its energy into an electron beam with an appropriate spectra which is then transported into a compressed target and initiate a fusion reaction. Another possible use is the so called Radiation Pressure Acceleration mechanism, in which a high-intensity, circularly polarized laser is used to create a mono-energetic ion beam which could then be used for medical imaging and treatment, among other applications. For this latter application, it is important that the laser energy is transferred to the ions and not to the electrons. However the physics of such high energy-density laser-matter interactions is highly kinetic and non-linear, and presently not fully understood. In this dissertation, we use the Particle-in-Cell code OSIRIS [2, 3] to explore the generation and transport of relativistic particle beams created by high intensity lasers focused onto solid density matter at normal incidence. To explore the generation of relativistic electrons by such interactions, we use primarily one-dimensional (1D) and two-dimensional (2D), and a few three-dimensional simulations (3D). We initially examine the idealized case of normal incidence of relatively short, plane-wave lasers on flat, sharp interfaces. We find that in 1D the results are highly dependent on the initial temperature of the plasma, with significant absorption into relativistic electrons only

  6. Special session on environment and energy, and repeated emphasis from early-`80s onwards, hybrid-drive targets for penetrating beams, that encompasses ultra high intensity lasers and/or particle beams

    SciTech Connect

    Mark, J.W. ||

    1994-10-05

    In this special session, we discuss {bold global} {bold climate} {bold change} concerns, as well as {bold cleanup} {bold of} {bold wastes} {bold and}/{bold or} {bold toxic} {bold materials}, their relations to energy and other technologies. We especially bring together scientists to discuss available and/or developable technologies of amelioration or cleanup, for consideration of unusual uses of {bold Lasers}, {bold Particle} {bold Beams} {bold and} {bold other} {bold plasma} Phenomena. {copyright}{ital American} {ital Institute} {ital of} {ital Physics} 1994

  7. Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion

    DOE PAGES

    Geissel, Matthias; Awe, Thomas James; Bliss, David E.; ...

    2016-03-04

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Wemore » determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.« less

  8. Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion

    SciTech Connect

    Geissel, Matthias; Awe, Thomas James; Bliss, David E.; Campbell, Edward Michael; Gomez, Matthew R.; Harding, Eric; Harvey-Thompson, Adam James; Hansen, Stephanie B.; Jennings, Christopher Ashley; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; McBride, Ryan D.; Peterson, Kyle; Schollmeier, Marius; Scoglietti, Daniel; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher; Vesey, Roger A.; Porter, John L.

    2016-03-04

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. We determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.

  9. Laser-Plasma Interactions in High-Energy Density Plasmas

    SciTech Connect

    Constantin, C G; Baldis, H A; Schneider, M B; Hinkel, D E; Langdon, A B; Seka, W; Bahr, R; Depierreaux, S

    2005-08-24

    Laser-plasma interactions (LPI) have been studied experimentally in high-temperature, high-energy density plasmas. The studies have been performed using the Omega laser at the Laboratory for Laser Energetics (LLE), Rochester, NY. Up to 10 TW of power was incident upon reduced-scale hohlraums, distributed in three laser beam cones. The hot hohlraums fill quickly with plasma. Late in the laser pulse, most of the laser energy is deposited at the laser entrance hole, where most of the LPI takes place. Due to the high electron temperature, the stimulated Raman scattering (SRS) spectrum extends well beyond {omega}{sub 0}/2, due to the Bohm-Gross shift. This high-temperature, high-energy density regime provides a unique opportunity to study LPI beyond inertial confinement fusion (ICF) conditions.

  10. Interaction of cold atoms with short laser pulses.

    NASA Astrophysics Data System (ADS)

    Chamberlin, Karen; Lilla, Derek; Taylor, Kyle; Zick, Kevin; Taft, Greg; Nguyen, Hai

    2006-05-01

    We present a powerful diagnostic system to observe the interaction of ultrafast laser pulses with trapped ^87Rb atoms. The ionization of cold atoms and the formation of cold molecules in an intense laser field in the μK temperature range open new branches of research in chemistry, metrology, and quantum physics. However, the interaction of cold atoms with short laser pulses and the subsequent ionization or molecule formation are processes which are not well understood and can be easily misinterpreted. In our proposed experimental setup, an existing ultrafast laser system at the University of Wisconsin-Stevens Point will be used in conjunction with Magneto Optical Trap Recoil Ion Momentum Spectroscopy (MOTRIMS) to directly measure the products formed by the interaction of ultrafast laser pulses with the cold trapped ^87Rb atoms.

  11. ELECTRON COUD DYNAMICS IN HIGH-INTENSITY RINGS.

    SciTech Connect

    WANG, L.; WEI, J.

    2005-05-16

    Electron cloud due to beam-induced multipacting is one of the main concerns for the high intensity. Electrons generated and accumulated inside the beam pipe form an ''electron cloud'' that interacts with the circulating charged particle beam. With sizeable amount of electrons, this interaction can cause beam instability, beam loss and emittance growth. At the same time, the vacuum pressure will rise due to electron desorption. This talk intends to provide an overview of the mechanism and dynamics of the typical electron multipacting in various magnetic fields and mitigation measures with different beams.

  12. On the scaling of multicrystal data sets collected at high-intensity X-ray and electron sources

    PubMed Central

    Coppens, Philip; Fournier, Bertrand

    2015-01-01

    The need for data-scaling has become increasingly evident as time-resolved pump-probe photocrystallography is rapidly developing at high intensity X-ray sources. Several aspects of the scaling of data sets collected at synchrotrons, XFELs (X-ray Free Electron Lasers) and high-intensity pulsed electron sources are discussed. They include laser-ON/laser-OFF data scaling, inter- and intra-data set scaling. PMID:26798829

  13. Laser-tissue photothermal interaction and tissue temperature change

    NASA Astrophysics Data System (ADS)

    Ives, Andrea K.; Chen, Wei R.; Jassemnejad, Baha; Bartels, Kenneth E.; Liu, Hong; Nordquist, John A.; Nordquist, Robert E.

    2000-06-01

    Responses of tissue to laser stimulation are crucial in both disease diagnostics and treatment. In general, when tissue absorbs laser energy photothermal interaction occurs. The most important signature of the photothermal reaction is the tissue temperature change during and after the laser irradiation. Experimentally, the tissue reaction to laser irradiation can be measured by numerous methods including direct temperature measurement and measurement of perfusion change. In this study, a multiple-channel temperature probe was used to measure tissue temperature change during irradiation of lasers with different wavelengths at different power settings. Tissue temperature in chicken breast tissue as well as skin and breast tumor of rats was measured during irradiation of an 805-nm diode laser. The vertical profiles of temperature were obtained using simultaneous measurement at several different locations. The absorption of laser energy by tissue was enhanced by injecting laser-absorbing dye into the tissue. A Nd:YAG laser of 1064-nm wavelength was also used to irradiate turkey breast tissue. Our results showed that both laser penetration ability and photothermal reaction depended on the wavelength of lasers. In the case of 805-nm laser, the temperature increased rapidly only in the region close to the laser source and the thermal equilibrium could be reached within a short time period. The laser absorbing dye drastically enhanced the thermal reaction, resulting in approximately 4-fold temperature increase. On the contrary, the laser beam with 1064-nm wavelength penetrated deeply into tissue and the tissue temperature continued increasing even after a 10-minute laser irradiation.

  14. Advanced modeling of high intensity accelerators

    SciTech Connect

    Ryne, R.D.; Habib, S.; Wangler, T.P.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goals of this project were three-fold: (1) to develop a new capability, based on high performance (parallel) computers, to perform large scale simulations of high intensity accelerators; (2) to apply this capability to modeling high intensity accelerators under design at LANL; and (3) to use this new capability to improve the understanding of the physics of intense charge particle beams, especially in regard to the issue of beam halo formation. All of these goals were met. In particular, the authors introduced split-operator methods as a powerful and efficient means to simulate intense beams in the presence of rapidly varying accelerating and focusing fields. They then applied these methods to develop scaleable, parallel beam dynamics codes for modeling intense beams in linacs, and in the process they implemented a new three-dimensional space charge algorithm. They also used the codes to study a number of beam dynamics issues related to the Accelerator Production of Tritium (APT) project, and in the process performed the largest simulations to date for any accelerator design project. Finally, they used the new modeling capability to provide direction and validation to beam physics studies, helping to identify beam mismatch as a major source of halo formation in high intensity accelerators. This LDRD project ultimately benefited not only LANL but also the US accelerator community since, by promoting expertise in high performance computing and advancing the state-of-the-art in accelerator simulation, its accomplishments helped lead to approval of a new DOE Grand Challenge in Computational Accelerator Physics.

  15. Laser plasma interactions in fused silica cavities

    SciTech Connect

    Zeng, Xianzhong; Mao, Xianglei; Mao, Samuel S.; Yoo, Jong H.; Greif, Ralph; Russo, Richard E.

    2003-06-24

    The effect of laser energy on formation of a plasma inside a cavity was investigated. The temperature and electron number density of laser-induced plasmas in a fused silica cavity were determined using spectroscopic methods, and compared with laser ablation on a flat surface. Plasma temperature and electron number density during laser ablation in a cavity with aspect ratio of 4 increased faster with irradiance after the laser irradiance reached a threshold of 5 GW/cm{sup 2}. The threshold irradiance of particulate ejection was lower for laser ablation in a cavity compared with on a flat surface; the greater the cavity aspect ratio, the lower the threshold irradiance. The ionization of silicon becomes saturated and the crater depths were increased approximately by an order of magnitude after the irradiance reached the threshold. Phase explosion was discussed to explain the large change of both plasma characteristics and mass removal when irradiance increased beyond a threshold value. Self-focusing of the laser beam was discussed to be responsible for the decrease of the threshold in cavities.

  16. High intensity, pulsed thermal neutron source

    DOEpatents

    Carpenter, J.M.

    1973-12-11

    This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)

  17. Plating Processes Utilizing High Intensity Acoustic Beams

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor); Denofrio, Charles (Inventor)

    2002-01-01

    A system and a method for selective plating processes are disclosed which use directed beams of high intensity acoustic waves to create non-linear effects that alter and improve the plating process. The directed beams are focused on the surface of an object, which in one embodiment is immersed in a plating solution, and in another embodiment is suspended above a plating solution. The plating processes provide precise control of the thickness of the layers of the plating, while at the same time, in at least some incidents, eliminates the need for masking.

  18. Comparative study on interactions between laser and arc plasma during laser-GTA welding and laser-GMA welding

    NASA Astrophysics Data System (ADS)

    Chen, Minghua; Xu, Jiannan; Xin, Lijun; Zhao, Zuofu; Wu, Fufa

    2016-10-01

    This paper describes an investigation on differences in interactions between laser and arc plasma during laser-gas tungsten arc (LT) welding and laser-gas metal arc (LM) welding. The characteristics of LT heat source and LM heat source, such as plasma behavior, heat penetration ability and spectral information were comparably studied. Based on the plasma discharge theory, the interactions during plasma discharge were modeled and analyzed. Results show that in both LT and LM welding, coupling discharge between the laser keyhole plasma and arc happens, which strongly enhance the arc. But, the enhancing effect in LT welding is much more sensitive than that in LM welding when parameters are adjusted.

  19. Dense Monoenergetic Proton Beams from Chirped Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Galow, Benjamin J.; Salamin, Yousef I.; Liseykina, Tatyana V.; Harman, Zoltán; Keitel, Christoph H.

    2011-10-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (107 particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 1021W/cm2.

  20. Surface electron acceleration in relativistic laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Chen, Min; Sheng, Zheng-Ming; Zheng, Jun; Ma, Yan-Yun; Bari, Muhammad; Li, Yu-Tong; Zhang, Jie

    2006-04-01

    Under the grazing incidence of a relativistic intense laser pulse onto a solid target, two-dimensional particle-in-cell simulations show that intense quasistatic magnetic and electric fields are generated near the front target surface during the interaction. Some electrons are confined in these quasistatic fields and move along the target surface with betatron oscillations. When this oscillating frequency is close to the laser frequency in the particle frame, these electrons can be accelerated significantly in the reflected laser field, similar to the inverse free-electron-laser acceleration. An analytical model for this surface betatron acceleration is proposed.

  1. Modeling of High-Energy Pulsed Laser Interactions with Coupons

    SciTech Connect

    Boley, C D; Rubenchik, A M

    2003-02-06

    We describe a computational model of laser-materials interactions in the regime accessed by the solid state heat capacity lasers (SSHCLs) built at LLNL. We show that its predictions compare quite favorably with coupon experiments by the 10 kW SSHCL at LLNL. The body of this paper describes the following topics, listed by section number: (2) model in quiescent air, (3) comparison with experiments in quiescent air, (4) effects of air flow, (5) comparison with experiments involving air flow, (6) importance of material properties, (7) advantage of pulsed lasers over CW lasers, and (8) conclusions and recommendations.

  2. Laser-matter Interaction with Submerged Samples

    SciTech Connect

    Mariella, R; Rubenchik, A; Norton, M; Donohue, G; Roberts, K

    2010-03-25

    With the long-term goal in mind of investigating if one could possibly design a 'universal solid-sample comminution technique' for debris and rubble, we have studied pulsed-laser ablation of solid samples that were contained within a surrounding fluid. Using pulses with fluences between 2 J and 0.3 J, wavelengths of 351 and 527 nm, and samples of rock, concrete, and red brick, each submerged in water, we have observed conditions in which {micro}m-scale particles can be preferentially generated in a controlled manner, during the laser ablation process. Others have studied laser peening of metals, where their attention has been to the substrate. Our study uses non-metallic substrates and analyzes the particles that are ablated from the process. The immediate impact of our investigation is that laser-comminution portion of a new systems concept for chemical analysis has been verified as feasible.

  3. Silicon Nanostructures, Excitonic Interactions, Laser Consequences

    DTIC Science & Technology

    2008-07-11

    Optically pumped laser emission is achieved at cryogenic temperatures (ៅK) on carbon- implanted nano -pattemed silicon-on-insulator. By using ion...DISTRIBUTIONIAVAILABIUTY STATEMENT Approved for Public Release; distribution is Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Optically pumped laser emission...is achieved at cryogenic temperatures (ៅK) on carbon-implanted nano -patterned silicon-on-insulator. By using ion-implantation and solid-phase

  4. Fluid-dynamical aspects of laser-metal interaction

    NASA Astrophysics Data System (ADS)

    Cantello, M.; Menin, R.; Donati, V.; Garifo, L.; La Rocca, A. V.; Onorato, M.

    During the interaction of a high-power laser beam with a material surface many fluid-dynamical phenomena arise. The produced flow field interacts with the beam and affects the thermal coupling between the laser energy and the target metal. In this paper the fluid-dynamical aspects of these phenomena are discussed and new experimental results are illustrated. The experiments have been performed in conditions of interest for industrial laser processes with a 15-kW CW CO2 laser. The development and the motion of bright clouds ignited from metal targets at incident laser power up to 11.6 kW, using an f/18 focusing system, have been studied by high speed photographic records. The properties of the cloud have been examined by spectroscopic analysis and absorption measurements.

  5. High intensity discharge device containing oxytrihalides

    DOEpatents

    Lapatovich, Walter P.; Keeffe, William M.; Liebermann, Richard W.; Maya, Jakob

    1987-01-01

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO.sub.2, with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube.

  6. High intensity discharge device containing oxytrihalides

    DOEpatents

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  7. Laser-Bioplasma Interaction: The Blood Type Transmutation Induced by Multiple Ultrashort Wavelength Laser Beams

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2015-11-01

    The interaction of ultrashort wavelength multi laser beams with the flowing blood thin films leads to the transmutation of the blood types A, B, and AB into O type. This is a novel mechanism of importance for the transfusion medicine. Laser radiation is in resonance with the eigen-frequency modes of the antigen proteins and forces the proteins to parametrically oscillate until they get kicked out from the surface. The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation), upon the antigen protein molecule must exceed its weight. The scanning laser beam is partially reflected as long as the antigen(s) is not eliminated. The process of the protein detachment can last a few minutes. Supported by Nikola Tesla Labs., Stefan University.

  8. Ultrashort laser pulse interaction with photo-thermo-refractive glass

    NASA Astrophysics Data System (ADS)

    Siiman, Leo A.

    Photo-thermo-refractive (PTR) glass is an ideal photosensitive material for recording phase volume holograms. It is a homogeneous multi-component silicate glass that demonstrates all the advantages of optical glass: thermal stability, high laser damage threshold, and a wide transparency range. Moreover the ability to record phase patterns (i.e. spatial refractive index variations) into PTR glass has resulted in the fabrication of volume holograms with diffraction efficiency greater than 99%. The conventional method of recording a hologram in PTR glass relies on exposure to continuous-wave ultraviolet laser radiation. In this dissertation the interaction between infrared ultrashort laser pulses and PTR glass is studied. It is shown that photosensitivity in PTR glass can be extended from the UV region to longer wavelengths (near-infrared) by exposure to ultrashort laser pulses. It is found that there exists a focusing geometry and laser pulse intensity interval for which photoionization and refractive index change in PTR glass after thermal development occur without laser-induced optical damage. Photoionization of PTR glass by IR ultrashort laser pulses is explained in terms of strong electric field ionization. This phenomenon is used to fabricate phase optical elements in PTR glass. The interaction between ultrashort laser pulses and volume holograms in PTR glass is studied in two laser intensity regimes. At intensities below ˜10 12 W/cm2 properties such as diffraction efficiency, angular divergence, selectivity, and pulse front tilt are shown to agree with the theory of linear diffraction for broad spectral width lasers. A volume grating pair arrangement is shown to correct the laser pulse distortions arising from pulse front tilt and angular divergence. At higher intensities of irradiation, nonlinear generation and diffraction of third harmonic is observed for three types of interactions: sum-frequency generation, front-surface THG generation, and THG due to

  9. Interaction between the laser beam and keyhole wall during high power fiber laser keyhole welding.

    PubMed

    Zou, Jianglin; Ha, Na; Xiao, Rongshi; Wu, Qiang; Zhang, Qunli

    2017-07-24

    The crucial factor of laser welding is the laser energy conversion. For a better understanding of the process, the interaction process between the laser beam and keyhole wall was investigated by observing the keyhole wall evaporation during high-power fiber laser welding. The results show that the evaporation vapor, induced by the laser beam, discretely distributed on the keyhole wall. A tiny 'hollow' zone was observed at the spot center-action region on the FKW. The evaporation vapor induced by the spot center moved downward along the front keyhole wall (FKW) with a period of about 0.3~0.75 ms, which indicates that the keyhole formation is reminiscent of a periodical laser drilling process on the FKW. The evaporation vapor on the keyhole wall suggest the assumption that the laser energy coupling mode in the keyhole was multiple-reflection, and the keyhole depth was mainly determined by the drilling behavior induced by the first absorption on the FKW.

  10. Characterization of a cryogenically cooled high-pressure gas jet for laser/cluster interaction experiments

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Ditmire, T.; Tisch, J. W. G.

    1998-11-01

    We have developed and carried out detailed characterization of a cryogenically cooled (34-300 K), high-pressure (55 kTorr) solenoid driven pulsed valve that has been used to produce dense jets of atomic clusters for high intensity laser interaction studies. Measurements including Rayleigh scattering and short pulse interferometry show that clusters of controlled size, from a few to >104 atoms/cluster can be produced from a broad range of light and heavy gases, at average atomic densities up to 4×1019 atoms/cc. Continuous temperature and pressure control of the valve allows us to vary mean cluster size while keeping the average atomic density constant, and we find that many aspects of the valves behavior are consistent with ideal gas laws. However, we also show that effects including the build up of flow on milliseconds time scales, the cooling of gas flowing into the valve, and condensation of gas inside the valve body at temperatures well above the liquefaction point need to be carefully characterized in order to decouple the operation of the jet from the laser interaction physics.

  11. Investigation of energy partitioning from Leopard short-pulse laser interactions in mass limited targets

    NASA Astrophysics Data System (ADS)

    Griffin, B.; Sawada, H.; Yabuuchi, T.; McLean, H.; Patel, P.; Beg, F.

    2013-10-01

    The energy distribution in the interaction of a high-intensity, short-pulse laser with a mass limited target was investigated by simultaneously collecting x-ray and particle data. The Leopard laser system at the Nevada Terawatt Facility delivered 15 J of energy in a 350 fs pulse duration. With a beam spot size limited to within 8 μm, the target interaction achieved a peak intensity of 1019 W/cm2 at 20° incidence. The size of the Cu foil targets was varied from 2-20 μm in thickness and from 50 by 50 μm to 2000 by 2000 μm in surface area. A Bragg crystal x-ray spectrometer and a spherical crystal imager were used to measure 7.5-9.5 keV x-rays and 8.05 keV monochromatic x-ray images respectively. The escaping electrons and protons in the rear were monitored with a magnet-based electron spectrometer and radiochromic film. Preliminary results show both a decrease of the K β/K α ratio and a stronger He α emission for smaller sized targets, less than 250 by 250 μm. The detailed analyses of the K α images and particle data will be presented.

  12. Pulsed laser interactions with space debris: Target shape effects

    DOE PAGES

    Liedahl, D. A.; Rubenchik, A.; Libby, S. B.; ...

    2013-05-24

    Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes.more » We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon pressure is the dominant momentum transfer mechanism, showing that shape and orientation effects influence the target response in a similar, but not identical, manner. As a result, we address the related problem of target spin and, by way of a few simple examples, show how ablation can alter the spin state of a target, which often has a pronounced effect on the recoil dynamics.« less

  13. Pulsed laser interactions with space debris: Target shape effects

    SciTech Connect

    Liedahl, D. A.; Rubenchik, A.; Libby, S. B.; Nikolaev, S.; Phipps, C. R.

    2013-05-24

    Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes. We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon pressure is the dominant momentum transfer mechanism, showing that shape and orientation effects influence the target response in a similar, but not identical, manner. As a result, we address the related problem of target spin and, by way of a few simple examples, show how ablation can alter the spin state of a target, which often has a pronounced effect on the recoil dynamics.

  14. Investigation of laser-tissue interaction in medicine by means of laser spectroscopic measurements

    NASA Astrophysics Data System (ADS)

    Lademann, Juergen; Weigmann, Hans-Juergen

    1995-01-01

    Toxic and carcinogenic substances were produced during laser application in medicine for the cutting and evaporation of tissue. The laser smoke presents a danger potential for the medical staff and the patients. The laser tissue interaction process was investigated by means of laser spectroscopic measurements which give the possibility of measuring metastable molecular states directly as a prerequisite to understand and to influence fundamental laser tissue interaction processes in order to reduce the amount of harmful chemicals. Highly excited atomic and molecular states and free radicals (CN, OH, C2, CH, CH2) have been detected applying spontaneous and laser induced fluorescence methods. It was found that the formation of harmful substances in the laser plumes can be reduced significantly by optimization of the surrounding gas atmosphere. A high content of oxygen or water in the interaction zone has been found, in agreement with the results of classical and analytical methods, as a suitable way to decrease pollutant emission. The experimental methods and the principal results are applicable not only in laser medicine but in laser material treatment generally.

  15. Nanoplasma Formation by High Intensity Hard X-rays

    PubMed Central

    Tachibana, T.; Jurek, Z.; Fukuzawa, H.; Motomura, K.; Nagaya, K.; Wada, S.; Johnsson, P.; Siano, M.; Mondal, S.; Ito, Y.; Kimura, M.; Sakai, T.; Matsunami, K.; Hayashita, H.; Kajikawa, J.; Liu, X.-J.; Robert, E.; Miron, C.; Feifel, R.; Marangos, J. P.; Tono, K.; Inubushi, Y.; Yabashi, M.; Son, S.-K.; Ziaja, B.; Yao, M.; Santra, R.; Ueda, K.

    2015-01-01

    Using electron spectroscopy, we have investigated nanoplasma formation from noble gas clusters exposed to high-intensity hard-x-ray pulses at ~5 keV. Our experiment was carried out at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan. Dedicated theoretical simulations were performed with the molecular dynamics tool XMDYN. We found that in this unprecedented wavelength regime nanoplasma formation is a highly indirect process. In the argon clusters investigated, nanoplasma is mainly formed through secondary electron cascading initiated by slow Auger electrons. Energy is distributed within the sample entirely through Auger processes and secondary electron cascading following photoabsorption, as in the hard x-ray regime there is no direct energy transfer from the field to the plasma. This plasma formation mechanism is specific to the hard-x-ray regime and may, thus, also be important for XFEL-based molecular imaging studies. In xenon clusters, photo- and Auger electrons contribute more significantly to the nanoplasma formation. Good agreement between experiment and simulations validates our modelling approach. This has wide-ranging implications for our ability to quantitatively predict the behavior of complex molecular systems irradiated by high-intensity hard x-rays. PMID:26077863

  16. Ultra-relativistic laser-plasma interaction and beyond

    NASA Astrophysics Data System (ADS)

    Ping, Yuan

    2011-10-01

    Relativistic laser-plasma interaction (LPI) is of broad interest in modern physics, with applications ranging from particle acceleration, laboratory astrophysics, to fast ignition for inertial confinement fusion. LPI is a highly dynamic process, especially in the relativistic regime. The plasma conditions evolve rapidly upon intense laser irradiation, which modifies laser absorption and energy partition. This talk summarizes recent advances in understanding laser absorption and dynamics of ultra-relativistic LPI. It is found that the total absorption of laser pulses by solid targets is strongly enhanced in the ultra-relativistic regime, reaching a surprisingly high level of ~90% at intensities above 1020 W / cm2 . Both presence of preplasma and hole boring contribute to the high absorption. The dynamics of hole boring is studied with a novel single-shot time-resolved diagnostic based on Frequency Resolved Optical Gating (FROG). Time history of the Doppler shift in the reflected light indicates that ponderomotive steepening occurs rapidly and majority of the laser pulse interacts with a sharpened density profile. Two-dimensional (2D) Particle-In-Cell (PIC) simulation results agree well with measurements for short pulses (<5 ps), however discrepancy showing up after 5ps for longer pulses, indicating 3D effect starts to play a role. In case of high-contrast laser pulses interacting with solid targets, the preplasma is minimal and the delicate competition between plasma creation and ponderomotive pushing results in a snake-like structure in the reflected spectrum. Finally, the talk will briefly cover potential schemes utilizing LPI as an amplification process of laser pulses for next-generation laser systems, which could enable ``vacuum boiling'' laser intensities for future experiments. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  17. Mechanisms of Laser-Tissue Interaction: II. Tissue Thermal Properties

    PubMed Central

    Ansari, Mohammad Ali; Erfanzadeh, Mohsen; Mohajerani, Ezeddin

    2013-01-01

    Laser-tissue interaction is of great interest due to its significant application in biomedical optics in both diagnostic and treatment purposes. Major aspects of the laser-tissue interaction which has to be considered in biomedical studies are the thermal properties of the tissue and the thermal changes caused by the interaction of light and tissue. In this review paper the effects of light on the tissue at different temperatures are discussed. Then, due to the noticeable importance of studying the heat transfer quantitatively, the equations governing this phenomenon are presented. Finally a method of medical diagnosis called thermography and some of its applications are explained. PMID:25606316

  18. Characterization of laser beam interaction with carbon materials

    NASA Astrophysics Data System (ADS)

    Janićijević, Milovan; Srećković, Milesa; Kaluđerović, Branka; Bojanić, Slobodan; Družijanić, Dragan; Dinulović, Mirko; Kovačević, Aleksander

    2013-05-01

    This paper presents simulation and experimental results for the exposure of some carbon-based materials to alexandrite and Nd3+:YAG (yttrium aluminum garnet) laser radiation. Simulation of the heating effects was carried out using the COMSOL Multiphysics 3.5 package for samples of carbon-based P7295-2 fiber irradiated using an alexandrite laser and carbon-based P4396-2 fiber irradiated using an Nd3+:YAG laser, as well as by applying finite element modeling for P7295-2 samples irradiated using an Nd3+:YAG laser. In the experimental part, P7295-2 samples were exposed to alexandrite laser radiation while samples of carbon-based composite 3D C/C were exposed to Nd3+:YAG laser radiation. Micrographs of the laser induced craters were obtained by light and scanning electron microscopy, and the images analyzed using the ImageJ software. The results obtained enable identification of the laser-material interaction spots, and characterization of the laser induced changes in the materials investigated.

  19. Mathematical Modelling of Laser/Material Interactions.

    DTIC Science & Technology

    1983-11-25

    translated to the model input. Even an experimental mode print can also be digitalised for the model. In trying to describe high order modes matliematically...4. Mazumder J. Steen W.M. "Welding of Ti 6al - 4V by continuous wave CO2 laser". Metal construction Sept. 1980 pp423 - 427. 5. Kogelnik H, Li.T Proc

  20. Acceleration of electrons by inverse free electron laser interaction

    NASA Astrophysics Data System (ADS)

    Musumeci, Pietro

    Laser accelerators hold the promise to constitute the future of particle accelerators. The Inverse Free Electron Laser accelerator is one of the most efficient schemes to transfer energy from very high power lasers to electron beams. This scheme uses an undulator magnet to couple the transverse electromagnetic waves to the electron motion. In this dissertation we discuss the theoretical background of the Inverse Free Electron Laser interaction and we present the simulation tool developed to study and design an Inverse Free Electron Laser accelerator. The main object of the dissertation is the discussion of the Inverse Free Electron Laser experiment at the Neptune Laboratory at UCLA where we observed an energy gain in excess of 20 MeV. In this experiment, a 14.5 MeV electron beam is injected in an undulator strongly tapered in period and field amplitude. The IFEL driver is a CO2 10.6 mum laser with power larger than 400 GW. The Rayleigh range of the laser, ˜1.8 cm, is much shorter than the undulator length so that the interaction is diffraction dominated. A few per cent of the injected particles are trapped in a stable accelerating bucket. Electron with energies up to 35 MeV are measured in a magnetic spectrometer. Experimental results on the dependence of the acceleration on injection energy, laser focus position, and laser power are discussed. Three-dimensional simulations, in good agreement with the measured electron energy spectrum, indicate that most of the acceleration occurs in the first 25 cm of the undulator, corresponding to an energy gradient larger than 70 MeV/m. The measured energy spectrum also indicates that higher harmonic Inverse Free Electron Laser interaction is taking place in the second section of the undulator. The possibility of coupling the laser wave and the electron beam on a different spectral line of the undulator radiation adds a new degree of flexibility in the design of Inverse Free Electron Laser interaction schemes and this novel

  1. Interaction of intense multi-picosecond laser pulses with matter

    NASA Astrophysics Data System (ADS)

    Kemp, Andreas; Divol, Laurent; Cohen, Bruce

    2011-10-01

    We present new results on the two- and three-dimensional kinetic modeling of short-pulse laser-matter interaction of Petawatt pulses at the spatial and temporal scales relevant to current experiments. We address key questions such as characterizing the multi-picosecond evolution of the laser energy conversion into hot electrons, i.e., conversion efficiency as well as angular- and energy distribution; the impact of return currents on the laser-plasma interaction; and the effect of self-generated electric and magnetic fields on electron transport. We will report applications to current experiments at LLNL's Titan laser and Omega EP, and to a Fast-Ignition point design. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Plasma Jet Interaction with Thomson Scattering Probe Laser

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Banasek, Jacob; Potter, William; Kusse, Bruce

    2016-10-01

    Thomson scattering systems can diagnose plasma temperatures and velocities. When probing a plasma jet with the Thomson scattering laser, we observe a laser-plasma interaction that inputs energy into the plasma jet. The absorbed energy causes a bubble of low density ( 5*1017 cm-2) in the jet (unperturbed 1018 cm-2). A pulsed power machine (1 MA peak current, 100 ns rise time) with a radial foil (15 μm thick Al) configuration generates the plasma jet. We compare the effects of using 10 J and 1 J laser energies, for which the 10 J laser is a larger perturbation. We discuss how the interaction affects the Thomson scattering temperature and velocity measurements. Work supported by National Nuclear Security Administration (NNSA) Stewardship Sciences Academic Programs under Department of Energy (DOE) Cooperative Agreement DE-NA0001836 and National Science Foundation (NSF) Grant PHY-1102471.

  3. Short-pulse laser interactions with disordered materials and liquids

    SciTech Connect

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L.

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  4. Return current and proton emission from wire targets interacting with an intense short pulse laser

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2004-05-01

    One of the important characteristics of short pulse high intensity laser-solid interactions is the generation of energetic charged particles, which result from the very efficient conversion of laser energy into hot electrons. Since the electrons in the electric field of the laser have relativistic quiver motions, the temperature of the hot electron distribution of the plasma produced at such extreme intensities can become very high. A large number of hot electrons (1013-1014) having an average energy of the order of 1-2 MeV can be generated as intensities exceed 1019 Wcm-2. Since the resulting beam current exceeds the Alfvén limit, a neutralizing return current of cold plasma electrons moving in the opposite direction is produced. Another source of return current is that due to the escape of very energetic electrons from the target, which then creates a large electrostatic potential due to charge separation. These return currents can cause significant ohmic heating. In addition escaping electrons establish the large electrostatic fields, accelerating a large number of protons from the target with energies of 10's of MeV. The experiments reported here were performed at the Rutherford Appleton Laboratory with the VULCAN laser facility at intensity greater than 5 x1019 Wcm-2 on wire targets. In some shots an additional wire or foil was placed nearby. The laser was blocked by the main wire target so that no laser light reached the additional wire or foil. Three main observations were made: (i) a Z-pinch was driven in the wire due to the return current, (ii) optical transition radiation (OTR) at 2w was generated and (iii) energetic proton emission was observed. The wire targets were observed to be ohmically heated and were m=0 unstable. The OTR emission is likely due to electron bunches accelerated by the ponderomotive force of the laser. The proton emission was in a form of thin disk perpendicular to the wire and centered on the wire at the laser focus. Proton

  5. Exploring novel structures for manipulating relativistic laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Ji, Liangliang

    2016-10-01

    The prospect of realizing compact particle accelerators and x-ray sources based on high power lasers has gained numerous attention. Utilization of all the proposed schemes in the field requires the laser-matter-interaction process to be repeatable or moreover, controllable. This has been very challenging at ultra-high light intensities due to the pre-pulse issue and the limitation on target manufacturing. With recent development on pulse cleaning technique, such as XPW and the use of plasma mirror, we now propose a novel approach that leverages recent advancements in 3D nano-printing of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. The current 3D direct laser-writing (DLW) technique can produce repeatable structures with at a resolution as high as 100 nm. Based on 3D PIC simulations, we explored two typical structures, the micro-cylinder and micro-tube targets. The former serves to enhance and control laser-electron acceleration and the latter is dedicated to manipulate relativistic light intensity. First principle-of-proof experiments were carried out in the SCARLET laser facility and confirmed some of our predictions on enhancing direct laser acceleration of electrons and ion acceleration. We believe that the use of the micro-structured elements provides another degree of freedom in LPI and these new results will open new paths towards micro-engineering interaction process that will benefit high field science, laser-based proton therapy, near-QED physics, and relativistic nonlinear optics. This work is supported by the AFOSR Basic Research Initiative (FA9550-14-1-0085).

  6. Experiments on laser-produced plasmas and laser plasma- wall interactions

    NASA Astrophysics Data System (ADS)

    Wang, Quan

    2001-06-01

    The study of the interaction of laser-produced plasmas with a secondary wall has both practical and theoretical significance. The laser-produced plasmas are sources of highly-charged ions, fast electrons, as well as continuum and monochromatic x-ray radiation. Intense x-ray radiation also results when a nanosecond laser-produced plasma collides with a secondary wall positioned close to the target. The study of this interaction is essential to understand the laser-produced plasma expansion, shock wave formation, recombination, collisional excitation and many other transition processes. The laser plasma-wall interaction experiment has been carried out with laser pulses with vastly different time scales. In nanosecond experiment, the plasma-wall interaction was studied with varying target-wall distance. We conclude that the isothermal plasma expansion followed by the shock wave formation near the wall surface contributes to the intense x-ray radiation. We also have done some preliminary research in the femtosecond regime. We claim that the shock wave formation that plays an important role in nanosecond experiment does not play the same role in femtosecond one. We suggest that a femtosecond laser-produced plasma could be an efficient fast electron and monochromatic x- ray source. We also provide some suggestions and predictions for further investigations.

  7. Simulation of Laser Interaction with Ablative Plasma and ydrodynamic of Laser Supported Plasma(LSP)

    NASA Astrophysics Data System (ADS)

    Huifeng, Tong; Zhiping, Tang

    2011-06-01

    A general Godunov finite difference schemes-WENO(Weighted Essentially Non-Oscillatory) Schemes which have fifth-order accuracy was used to make a numerical calculation for 2-dimensional axis symmetrical laser-supported plasma flow field under laser ablated solid target. The models of the calculation of ionization degree of plasma and the interaction between laser beam and plasma and the simplified eos(equation of state) of plasma were considered in the simulation. The plasma field parameters during and after laser duration variation with time are also obtained. The simulation results show that the laser beam power was strong absorbed by plasma of target surface, and the velocity of LSD(Laser Supported Detonation) wave is half of ideal LSD value which derived from C-J detonation theory.

  8. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    NASA Astrophysics Data System (ADS)

    Tong, Huifeng; Yuan, Hong; Tang, Zhiping

    2013-01-01

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  9. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    SciTech Connect

    Tong Huifeng; Yuan Hong; Tang Zhiping

    2013-01-28

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  10. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  11. Long Range Interactions With Laser Cooled Neutral Atoms

    SciTech Connect

    Gattobigio, Giovanni Luca; Michaud, Franck; Labeyrie, Guillaume; Kaiser, Robin; Loureiro, Jorge; Mendonca, Jose Tito; Tercas, Hugo; Pohl, Thomas

    2008-09-07

    Multiple scattering of light in a trap of laser cooled neutral atoms leads to repulsion forces between the atoms. The corresponding interactions have long range behavior in 1/r{sup 2} and are thus similar to Coulomb interaction in an one component confined plasma. Consequences of these interactions will be described in this paper, including the limitation of the spatial density one can obtain in such systems and self-sustained oscillations of the cloud.

  12. Interaction of repetitively pulsed high energy laser radiation with matter

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, M.

    1986-05-01

    Laser target interaction processes and methods of improving the overall energy balance are discussed. This can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed using a pulsed CO2 laser at mean powers up to 2 KW and repetition rates up to 100 Hz. The rates of temperature rise of aluminum for example are increased by more than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements are found for the overall absorptivities, that are increased by more than an order of magnitude.

  13. Interaction of laser radiation with metal island films

    NASA Astrophysics Data System (ADS)

    Benditskii, A. A.; Viduta, L. V.; Ostranitsa, A. P.; Tomchuk, P. M.; Iakovlev, V. A.

    1986-08-01

    The emission phenomena arising during the interaction of pulsed laser emission with island films are examined with reference to experimental results obtained for island films of gold irradiated by a CO2 laser at a wavelength of 10.6 microns. Well reproducible emission pulses that are also accompanied by light pulses are produced at intensities less than 10 to the 5th W/sq cm, with the film structure remaining unchanged. The maximum energy of the electrons emitted under the effect of laser radiation is estimated at 3 eV; the work function is 2.1 eV.

  14. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.

    PubMed

    Kemp, A J; Divol, L

    2012-11-09

    We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion.

  15. High-Speed Optical Diagnostics of Laser-Interactions

    NASA Astrophysics Data System (ADS)

    Bin Suaidi, Mohamad Kadim

    Available from UMI in association with The British Library. The interaction of an 8 ns, 10 mJ and 1.06 μm infrared pulse of radiation from a Q-switched Nd-YAG laser with water near a solid boundary is studied using high speed photographic techniques. The laser-liquid interaction has been used to generate high frequency sound waves by the mechanism of dielectric breakdown of the liquid around the beam waist of the focused laser beam. This leads to the production of a short duration plasma which rapidly heats and vaporises the surrounding liquid giving rise to a vapour cavity and the formation of a cavitation bubble resulting in the emission of a spherical acoustic wave. The acoustic transient associated with the breakdown, in turn interacted with a liquid-polymer interface leading to the generation of acoustic waves at this boundary and the propagation of stress-waves in the solid. Diagnostics of the laser-interaction events are recorded using a Mach-Zehnder interferometer illuminated by a sub-nanosecond nitrogen laser-pumped dye laser and computer-controlled video-imaging and capture systems. Measurements of the transient pressure distributions from the digitally recorded interferograms are carried out using a process known as Abel inversion. Dynamic photoelastic studies of the stress-waves propagation in the solid are performed using a circular polariscope arrangement thus producing the photoelastic fringe patterns. Identification of the wave structures are greatly enhanced by also recording the events in schlieren and focused shadowgraphy as well as by the combination of the above techniques. The initial part of the project also involved the design and development of a nitrogen laser and tunable dye laser system. The short-duration and high peak power output pulse of the nitrogen laser is then used to pump the dye laser giving sufficiently high power output with good spectral linewidth to provide an ideal light source for high-speed photography of the laser

  16. Laser tissue interaction in the porcine otic capsule tissue model

    NASA Astrophysics Data System (ADS)

    Wong, Brian J.; Lee, Jon P.; Berns, Michael W.; White, Joel M.; Neev, Joseph

    1996-01-01

    The absence of a hard tissue model reflecting the properties of the inner and middle ear has made it difficult to draw consistent conclusions on the many experimental laser studies in ear surgery. Porcine otic capsule tissue has been studied by our group extensively in a wide variety of laser-tissue interaction studies and is an economically attractive and simple to use hard tissue source. Porcine otic capsule was harvested from the temporal bone of freshly sacrificed domestic pigs via a craniotomy approach. The technique when performed with power instruments takes less than 5 minutes and the entire otic capsule bone is removed intact as the suture line is not fused to the remaining petrous apex. The tissue specimen contains a vestibule, cochlea, oval and round windows, and internal auditory canals which can be used as an intact middle ear/inner ear system. The tissue can also be micromachined into thin slabs of bone varying for 100 - 1000 micrometers in thickness. In order to quantify more precisely the laser-tissue interactions in otic capsule, optical properties (absorption and scattering) and physical properties were determined (acoustic impedance). The tissue has been used in a wide variety of basic studies investigating the laser-tissue interactions with argon, KTP, (Nd:YAG), carbon dioxide, Ho:YAG, Er:YAG, and XeCl lasers. Porcine otic capsule is an ideal tissue on which standardized test can be performed to compare the relative effects of various laser in otosurgical models.

  17. Laser Analytical Probing of Ultra-Short-Laser-Matter Interaction: Ejected Particles And Surface Topography

    SciTech Connect

    Husinsky, W.; Bashir, S.; Rafique, M. S.; Ajami, A.

    2009-03-17

    Ultra fast laser interaction with surfaces results in fast electronic and thermal ablation processes. The way, how the energy is deposited, determines to a large extent, how efficiently the different processes contribute to laser-matter interaction. It will be shown, how laser analytical techniques can help to identify the time behavior of the energy deposition, the composition and energy of the emitted particles. Atomic Force Microscopy (AFM) allows determining the surface topography after different stages of ultra-short laser-matter interaction. Both techniques combined can yield substantial information for better understanding the physics involved. The appearance of so-called nano-hillocks on the surface can be regarded as a typical topographic feature associated with fast electronic processes (correlated with the existence of hot electrons), in particular, demonstrating the efficient localization of energy in small volumes.

  18. Development of High Power Lasers for Materials Interactions

    SciTech Connect

    Hackel, L A

    2003-04-11

    radiation for radiography, particle beam generation and eventually for a new class of fusion experiments call fast ignition. We have also built a record setting 50 watts of average output from a picosecond class laser and are using this technology for materials processing such as fine hole drilling and safe cutting of munitions. The laser science and technology program has developed and deployed a laser guide star on the Lick telescope on Mt. Hamilton and most recently on the Keck telescope in Hawaii. Our current development work in this area is focused on developing a much more compact all solid state diode pumped laser fiber system. Finally in a program originally initiated by DARPA we have developed a phase conjugated Nd:glass laser system with record setting performance and successfully deployed it for Navy and Air Force satellite imaging applications and have more recently successfully transferred it to industry for use in an emerging technology called laser peening. This laser technology is capable of 25 J to 100 J per pulse, 10 ns to 1000 ns pulse duration, 5 Hz laser. The technology has been industrially deployed and is proving to be highly effective in generating high intensity shocks that induce compressive residual stress into metal components. The compressive stress retards fatigue and stress corrosion cracking and is proving to extend the lifetime of high value components by factors of ten. This processing adds lifetime, enhances safety and can improve performance of aircraft systems. Laser peening is now being evaluated to reduce the weight of aircraft and may play a major role in the future combat system and its air transport by enabling lighter craft, longer range and greater payload. The laser peening technology is also being moved forward in NRC license application as the means to eliminate stress corrosion cracking for Yucca Mountain nuclear waste disposal canisters as well as a broad range of other applications.

  19. Laser Shock Processing of Metallic Materials: Coupling of Laser-Plasma Interaction and Material Behaviour Models for the Assessment of Key Process Issues

    SciTech Connect

    Ocana, J. L.; Morales, M.; Molpeceres, C.; Porro, J. A.

    2010-10-08

    Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm{sup 2} with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals. The main advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Although significant work from the experimental side has been contributed to explore the optimum conditions of application of the treatments and to assess their ultimate capability to provide enhanced mechanical behaviour to work-pieces of typical materials, only limited attempts have been developed in the way of full comprehension and predictive assessment of the characteristic physical processes and material transformations with a specific consideration of real material properties. In the present paper, a review on the physical issues dominating the development of LSP processes from a high intensity laser-matter interaction point of view is presented along with the theoretical and computational methods developed by the authors for their predictive assessment and practical results at laboratory scale on the application of the technique to different materials.

  20. Laser Shock Processing of Metallic Materials: Coupling of Laser-Plasma Interaction and Material Behaviour Models for the Assessment of Key Process Issues

    NASA Astrophysics Data System (ADS)

    Ocaña, J. L.; Morales, M.; Molpeceres, C.; Porro, J. A.

    2010-10-01

    Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals. The main advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Although significant work from the experimental side has been contributed to explore the optimum conditions of application of the treatments and to assess their ultimate capability to provide enhanced mechanical behaviour to work-pieces of typical materials, only limited attempts have been developed in the way of full comprehension and predictive assessment of the characteristic physical processes and material transformations with a specific consideration of real material properties. In the present paper, a review on the physical issues dominating the development of LSP processes from a high intensity laser-matter interaction point of view is presented along with the theoretical and computational methods developed by the authors for their predictive assessment and practical results at laboratory scale on the application of the technique to different materials.

  1. BEAM LOSS MECHANISMS IN HIGH INTENSITY LINACS

    SciTech Connect

    Plum, Michael A

    2012-01-01

    In the present operation of the Oak Ridge Spallation Neutron Source, 60-Hz, 825-us H beam pulses are accelerated to 910 MeV, and then compressed to less than a microsecond in the storage ring, to deliver 1 MW of beam power to the spallation target. The beam loss in the superconducting portion of the linac is higher than expected, and it has shown a surprising counter-intuitive correlation with quadrupole magnetic fields, with a loss minimum occurring when the quadrupoles are set to approximately half their design values. This behavior can now be explained by a recent set of experiments that show the beam loss is primarily due to intra-beam stripping. Beam halo is another important beam loss contributor, and collimation in the 2.5 MeV Medium Energy Beam Transport has proven to be an effective mitigation strategy. In this presentation, we will summarize these and other beam loss mechanisms that are important for high intensity linacs.

  2. High-Intensity Sweeteners and Energy Balance

    PubMed Central

    Swithers, Susan E.; Martin, Ashley A.; Davidson, Terry L.

    2010-01-01

    Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance. PMID:20060008

  3. High-intensity sweeteners and energy balance.

    PubMed

    Swithers, Susan E; Martin, Ashley A; Davidson, Terry L

    2010-04-26

    Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance.

  4. A Novel Compact Electron Spectrometer for Hot Electron Measurement in Pulsed Laser Solid Interaction

    SciTech Connect

    Chen, H; Patel, P; Price, D F; Young, B K; Springer, P T; Berry, R; Booth, R; Bruns, C; Nelson, D

    2002-07-05

    Ultra-intense laser-matter interactions provide a unique source of temporally short, broad spectrum electrons, which may be utilized in many varied applications. One such, which we are pursuing, is as part of a novel diagnostic to trace magnetic field lines in a magnetically-confined fusion device. An essential aspect of this scheme is to have a detailed characterization of the electron angular and energy distribution. To this effect we designed and constructed a compact electron spectrometer that uses permanent magnets for electron energy dispersion and over 100 scintillating fibers coupled to a 1024 x 1024 pixel CCD as the detection system. This spectrometer has electron energy coverage from 10 keV to 2 MeV. We tested the spectrometer on a high intensity (10{sup 17} to 10{sup 21} W/cm{sup 2}) short pulse (< 100 fs) laser, JanUSP, at Lawrence Livermore National laboratory using various solid targets. The details of the spectrometer and the experimental results will be reported.

  5. Portable, high intensity isotopic neutron source provides increased experimental accuracy

    NASA Technical Reports Server (NTRS)

    Mohr, W. C.; Stewart, D. C.; Wahlgren, M. A.

    1968-01-01

    Small portable, high intensity isotopic neutron source combines twelve curium-americium beryllium sources. This high intensity of neutrons, with a flux which slowly decreases at a known rate, provides for increased experimental accuracy.

  6. Laser-Matter Interactions with a 527 nm Drive

    SciTech Connect

    Glenzer, S; Niemann, C; Witman, P; Wegner, P; Mason, D; Haynam, C; Parham, T; Datte, P

    2007-02-16

    The primary goal of this Exploratory Research is to develop an understanding of laser-matter interactions with 527-nm light (2{omega}) for studies of interest to numerous Laboratory programs including inertial confinement fusion (ICF), material strength, radiation transport, and hydrodynamics. In addition, during the course of this work we will develop the enabling technology and prototype instrumentation to diagnose a high fluence laser beam for energy, power, and near field intensity profile at 2{omega}. Through this Exploratory Research we have established an extensive experimental and modeling data base on laser-matter interaction with 527 nm laser light (2{omega}) in plasma conditions of interest to numerous Laboratory programs. The experiments and the laser-plasma interaction modeling using the code pF3D have shown intensity limits and laser beam conditioning requirements for future 2{omega} laser operations and target physics experiments on the National Ignition Facility (NIF). These findings have set requirements for which present radiation-hydrodynamic simulations indicate the successful generation of relevant pressure regimes in future 2{omega} experiments. To allow these experiments on the NIF, optics and optical mounts were prepared for the 18mm Second Harmonic Generation Crystal (SHG crystal) that would provide the desired high conversion efficiency from 1{omega} to 2{omega}. Supporting experimental activities on NIF included high-energy 1{omega} shots at up to 22kJ/beamline (4MJ full NIF 1{omega} equivalent energy) that demonstrated, in excess, the 1{omega} drive capability of the main laser that is required for 2{omega} operations. Also, a very extensive 3{omega} campaign was completed (see ''The National Ignition Facility Laser Performance Status'' UCRL-JRNL-226553) that demonstrated that not only doubling the laser, but also tripling the laser (a much more difficult and sensitive combination) met our model predictions over a wide range of laser

  7. Curriculum in biomedical optics and laser-tissue interactions

    NASA Astrophysics Data System (ADS)

    Jacques, Steven L.

    2003-10-01

    A graduate student level curriculum has been developed for teaching the basic principles of how lasers and light interact with biological tissues and materials. The field of Photomedicine can be divided into two topic areas: (1) where tissue affects photons, used for diagnostic sensing, imaging, and spectroscopy of tissues and biomaterials, and (2) where photons affect tissue, used for surgical and therapeutic cutting, dissecting, machining, processing, coagulating, welding, and oxidizing tissues and biomaterials. The courses teach basic principles of tissue optical properties and light transport in tissues, and interaction of lasers and conventional light sources with tissues via photochemical, photothermal and photomechanical mechanisms.

  8. Nail-like targets for laser plasma interaction experiments

    SciTech Connect

    Pasley, J; Wei, M; Shipton, E; Chen, S; Ma, T; Beg, F N; Alexander, N; Stephens, R B; MacPhee, A G; Hey, D; Pape, S L; Patel, P; Mackinnon, A J; Key, M H; Offermann, D; Link, A; Chowdhury, E; Van-Woerkom, L D; Freeman, R R

    2007-12-18

    The interaction of ultra-high power picosecond laser pulses with solid targets is of interest both for benchmarking the results of hybrid particle in cell (PIC) codes and also for applications to re-entrant cone guided fast ignition. We describe the construction of novel targets in which copper/titanium wires are formed into 'nail-like' objects by a process of melting and micromachining, so that energy can be reliably coupled to a 24 {micro}m diameter wire. An extreme-ultraviolet image of the interaction of the Titan laser with such a target is shown.

  9. High-Energy Laser-Target Interactions

    DTIC Science & Technology

    1975-10-06

    Second Workshop held at RPI, Hartford Graduate Center, t ,edited by H.J. Schwarz and H Hora , Plenum Press. 23. Keldysh, L. V. (1965) Soviet Physics JETP...insofar as the ac magnetic field contributes to the nonlinear force discussed by Hora 1 7 (22) The wave period T = 2r/u of the laser radiation is much...the laws of classical physics can be used to describe the plasma. (25) The nonlinear force term fNL " 1 [-1eIoEy12 + 1 aIHzI2] (6) discussed by Hora 1

  10. Ultlra-intense laser-matter interactions at extreme parameters

    SciTech Connect

    Hegellich, Bjorn M

    2010-11-24

    The field of shortpulse lasers has seen rapid growth in the recent years with the three major boundaries of energy, pulse duration and repetition rate being pushed in ever extremer regions. At peak powers, already exceeding 10{sup 22} W/cm{sup 2}, in virtually every experiment in relativistic laser physics, the laser pulse interacts with a more or less extended and heated plasma, due to prepulses and ASE-like pedestals on ps - ns time scales. By developing a new technique for ultrahigh contrast, we were able to initiate the next paradigm shift in relativistic laser-matter interactions, allowing us to interact ultrarelativistic pulses volumetrically with overdense targets. This becomes possible by using target and laser parameters that will turn the target relativistically transparent during the few 10s-100s femtoseconds fo the interaction. Specifically, we interact an ultraintese, ultrahigh contrast pulse with solid density, free standing, nanometer diamond target. This paradigm change towards a volumetric overdense interaction in turn enables new particle acceleration mechanisms for both electrons and ions, as well as forward directed relativistic surface harmonics. We report here on first experiments done on those topics at the 200 TW Trident laser at Los Alamos as well as at the Ti:Sapphire system at MBI. We will compare the experimental data to massive large scale 3D simulations done on the prototype of LANL's new Petafiop supercomputer Roadrunner, which is leading the current top 500 list. Specifically, we developed a shortpulse OPA based pulse cleaning technique. Fielding it at the Trident 200 TW laser at Los Alamos, we were able to improve the pulse contrast by 6 orders of magnitude to better than 2 x 10{sup -12} at less than a ps. This enabled for the first time the interaction of a 100J, 200TW laser pulse with a truly solid target with virtually no expansion before the main pulse - target interaction, making possible the use of very thin targets, The

  11. Simulations of Relativistic Laser-Plasma Interactions

    SciTech Connect

    Nikolic, Lj.; Skoric, M.M.; Ishiguro, S.

    2004-12-01

    To investigate the growth of instabilities in an underdense plasma, a number of simulations was carried out using the one-dimensional electromagnetic (EM) relativistic particle-in-cell code. A new type of Raman-like scattering was identified in a subcritical regime, which is overdense for standard SRS. This novel instability is a parametric decay of the relativistic EM wave into a scattered light and an electron-acoustic ({omega} < {omega}p) electrostatic wave. In the linear stage, resonant matchings are well satisfied, while the scattered Stokes wave is always driven near critical. During nonlinear saturation, due to rapid growth and strong localization of the Stokes wave, narrow intense EM soliton-like structures with down-shifted laser light trapped inside are formed; eventually, to be irradiated through the plasma-vacuum interface in the form of intense low-frequency EM bursts. This behavior alters the distribution of laser energy between transmission, scattering losses and generation of energetic electrons.

  12. High-intensity photoionization of H sub 2

    SciTech Connect

    Allendorf, S.W.; Szoeke, A.

    1991-05-01

    A tunable, high-intensity picosecond dye laser system has been employed with electron energy analysis to investigate the dynamics of (3+1) resonance-enhanced multiphoton ionization of H{sub 2} via different vibrational levels of its B{sub 1}{Sigma}{sub u}{sup +} and C{sup 1}{Pi}{sub u} electronic states. We observe production of molecular ions in various vibrational levels, with a shift to increased population of lower vibrational states of H{sub 2}{sup +} consistent with the a.c. Stark shift of the correspondingly lower vibrational levels of the C state into resonance with the three- photon energy of the laser. Clear evidence of direct dissociation of H{sub 2} followed by single-photon ionization of the excited H atom is observed as well. Above threshold ionization of these two processes occurs readily. We also find that dissociative ionization is an increasingly important ionization pathway as the wavelength is increased. Finally, we see evidence of a new ionization pathway, which we assign to photoionization into a transient bound state created by the avoided crossing of the first repulsive electronic state of H{sub 2}{sup +}, {vert bar}2p{sigma}{sub u}, n{r angle}, with the single-photon-dressed ground state of H{sub 2}{sup +}, {vert bar}1s{sigma}{sub g},n + 1{r angle}. 6 refs., 2 figs.

  13. High intensity neutrino oscillation facilities in Europe

    DOE PAGES

    Edgecock, T. R.; Caretta, O.; Davenne, T.; ...

    2013-02-20

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ– beams in a storage ring. The far detector in this case ismore » a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. Furthermore, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.« less

  14. High Intensity Organic Light-emitting Diodes

    NASA Astrophysics Data System (ADS)

    Qi, Xiangfei

    This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and

  15. High intensity neutrino oscillation facilities in Europe

    SciTech Connect

    Edgecock, T. R.; Caretta, O.; Davenne, T.; Densam, C.; Fitton, M.; Kelliher, D.; Loveridge, P.; Machida, S.; Prior, C.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Wildner, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoni, S.; Hansen, C.; Benedetto, E.; Jensen, E.; Kosmicki, A.; Martini, M.; Osborne, J.; Prior, G.; Stora, T.; Melo Mendonca, T.; Vlachoudis, V.; Waaijer, C.; Cupial, P.; Chance, A.; Longhin, A.; Payet, J.; Zito, M.; Baussan, E.; Bobeth, C.; Bouquerel, E.; Dracos, M.; Gaudiot, G.; Lepers, B.; Osswald, F.; Poussot, P.; Vassilopoulos, N.; Wurtz, J.; Zeter, V.; Bielski, J.; Kozien, M.; Lacny, L.; Skoczen, B.; Szybinski, B.; Ustrycka, A.; Wroblewski, A.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophine, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Burt, G.; Dexter, A. C.; Kravchuk, V. L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Laveder, M.; Mazzocco, M.; Mezzetto, M.; Signorini, C.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Migliozzi, P.; Moro, R.; Palladino, V.; Gelli, N.; Berkovits, D.; Hass, M.; Hirsh, T. Y.; Schaumann, M.; Stahl, A.; Wehner, J.; Bross, A.; Kopp, J.; Neuffer, D.; Wands, R.; Bayes, R.; Laing, A.; Soler, P.; Agarwalla, S. K.; Cervera Villanueva, A.; Donini, A.; Ghosh, T.; Gomez Cadenas, J. J.; Hernandez, P.; Martin-Albo, J.; Mena, O.; Burguet-Castell, J.; Agostino, L.; Buizza-Avanzini, M.; Marafini, M.; Patzak, T.; Tonazzo, A.; Duchesneau, D.; Mosca, L.; Bogomilov, M.; Karadzhov, Y.; Matev, R.; Tsenov, R.; Akhmedov, E.; Blennow, M.; Lindner, M.; Schwetz, T.; Fernandez Martinez, E.; Maltoni, M.; Menendez, J.; Giunti, C.; Gonzalez Garcia, M. C.; Salvado, J.; Coloma, P.; Huber, P.; Li, T.; Lopez Pavon, J.; Orme, C.; Pascoli, S.; Meloni, D.; Tang, J.; Winter, W.; Ohlsson, T.; Zhang, H.; Scotto-Lavina, L.; Terranova, F.; Bonesini, M.; Tortora, L.; Alekou, A.; Aslaninejad, M.; Bontoiu, C.; Kurup, A.; Jenner, L. J.; Long, K.; Pasternak, J.; Pozimski, J.; Back, J. J.; Harrison, P.; Beard, K.; Bogacz, A.; Berg, J. S.; Stratakis, D.; Witte, H.; Snopok, P.; Bliss, N.; Cordwell, M.; Moss, A.; Pattalwar, S.; Apollonio, M.

    2013-02-20

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. Furthermore, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.

  16. Generation of Energetic Particles in Intense Laser Matter Interaction

    NASA Astrophysics Data System (ADS)

    Ramakrishna, Bhuvanesh; Muhammad, Tayyab; Bagchi, Suman; Mandal, Tirtha; Chakera, Juzer; Naik, Prasad; Gupta, Parshotam Dass; Department of Physics, Indian Institute of Technology Hyderabad, India. Collaboration; Laser Plasma Division, Raja Ramanna CentreAdvanced Technology, Indore, India. Collaboration

    2016-10-01

    The acceleration of high energy ion beams up to several tens of MeV per nucleon following the interaction of an ultra-short (t <50 fs), intense (Iλ2 >1018 W.cm-2. μm-2) laser pulse with solid targets, is one of the burgeoning fields of research in the last few years. Mechanisms leading to forward-accelerated, high quality ion beams, operating at currently accessible laser intensities (up to 1021 W/cm2) in laser-matter interactions, are mainly associated with large electric fields set up at the target rear interface by the laser-accelerated electrons leaving the target. In this paper, we present our recent experimental results on MeV ion generation by mildly relativistic (1019 W / cm - 2) short-pulse (45 fs) laser interaction with foil targets of varying thicknesses, structured / uniform targets (e.g. nano structures on thin metallic foils, sandwich targets). Spectral modification / bunching, and divergence from structured targets will be discussed. DST Ramanujan Fellowship (SR/S2/RJN-25/2012).

  17. Lasers in Cancer Treatment

    MedlinePlus

    ... in a narrow beam and creates a very high-intensity light. This powerful beam of light may be ... it used in cancer treatment? Laser therapy uses high-intensity light to treat cancer and other illnesses. Lasers ...

  18. Laser-Tissue Interaction in Tattoo Removal by Q-Switched Lasers

    PubMed Central

    Barua, Shyamanta

    2015-01-01

    Q-switched (QS) lasers are widely considered the gold standard for tattoo removal, with excellent clinical results, impressive predictability, and a good safety profile. The generation of giant pulses by the method of Q-switching is responsible for the unique laser-tissue interaction that is seen in tattoo removal by QS lasers. The QS lasers work by impaction and dissolution of the tattoo pigments. Mechanical fragmentation of the tattoo pigments encased in intracellular lamellated organelles followed by their phagocytosis by macrophages is thought to be the major event in the clearance of pigments by QS lasers. A few novel techniques have been tried in recent times to hasten the clearance of tattoo pigments. PMID:25949016

  19. Laser-tissue interaction in tattoo removal by q-switched lasers.

    PubMed

    Barua, Shyamanta

    2015-01-01

    Q-switched (QS) lasers are widely considered the gold standard for tattoo removal, with excellent clinical results, impressive predictability, and a good safety profile. The generation of giant pulses by the method of Q-switching is responsible for the unique laser-tissue interaction that is seen in tattoo removal by QS lasers. The QS lasers work by impaction and dissolution of the tattoo pigments. Mechanical fragmentation of the tattoo pigments encased in intracellular lamellated organelles followed by their phagocytosis by macrophages is thought to be the major event in the clearance of pigments by QS lasers. A few novel techniques have been tried in recent times to hasten the clearance of tattoo pigments.

  20. Selective Laser Sintering of Filled Polymer Systems: Bulk Properties and Laser Beam Material Interaction

    NASA Astrophysics Data System (ADS)

    Wudy, Katrin; Lanzl, Lydia; Drummer, Dietmar

    Additive manufacturing techniques, such as selective laser melting of plastics, generate components directly from a CAD data set without using a specific mold. The range of materials commercially available for selective laser sintering merely includes some semi crystalline polymers mainly polyamides, which leads to an absence of realizable component properties. The presented investigations are concerned with the manufacturing and analysis of components made from filled polymer systems by means of selective laser sintering. The test specimens were generated at varied filler concentration, filler types and manufacturing parameter like laser power or scan speed. In addition to the characterization of the mixed powders, resulting melt depth were analyzed in order to investigate the beam material interaction. The basic understanding of the influence of different fillers, filler concentration and manufacturing parameters on resulting component properties will lead to new realizable component properties and thus fields of application of selective laser sintering.

  1. Radiating electron source generation in ultraintense laser-foil interactions

    SciTech Connect

    Capdessus, R. King, M.; McKenna, P.

    2016-08-15

    A radiating electron source is shown to be created by a laser pulse (with intensity of 10{sup 23 }W/cm{sup 2} and duration equal to 30 fs) interacting with a near-critical density plasma. It is shown that the back radiation reaction resulting from high energy synchrotron radiation tends to counteract the action of the ponderomotive force. This enhances the collective dynamics of the radiating electrons in the highest field areas, resulting in the production of a compact radiation source (containing 80% of the synchrotron radiation emission), with an energy on the order of tens of MeV over the laser pulse duration. These phenomena are investigated using a QED-particle-in-cell code, and compared with a kinetic model accounting for the radiation reaction force in the electron distribution function. The results shed new light on electron-photon sources at ultra-high laser intensities and could be tested on future laser facilities.

  2. Dense monoenergetic proton beams from chirped laser-plasma interaction.

    PubMed

    Galow, Benjamin J; Salamin, Yousef I; Liseykina, Tatyana V; Harman, Zoltán; Keitel, Christoph H

    2011-10-28

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (10(7) particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10(21) W/cm(2).

  3. Semicircular Canal Pressure Changes During High-intensity Acoustic Stimulation.

    PubMed

    Maxwell, Anne K; Banakis Hartl, Renee M; Greene, Nathaniel T; Benichoux, Victor; Mattingly, Jameson K; Cass, Stephen P; Tollin, Daniel J

    2017-08-01

    Acoustic stimulation generates measurable sound pressure levels in the semicircular canals. High-intensity acoustic stimuli can cause hearing loss and balance disruptions. To examine the propagation of acoustic stimuli to the vestibular end-organs, we simultaneously measured fluid pressure in the cochlea and semicircular canals during both air- and bone-conducted sound presentation. Five full-cephalic human cadaveric heads were prepared bilaterally with a mastoidectomy and extended facial recess. Vestibular pressures were measured within the superior, lateral, and posterior semicircular canals, and referenced to intracochlear pressure within the scala vestibuli with fiber-optic pressure probes. Pressures were measured concurrently with laser Doppler vibrometry measurements of stapes velocity during stimulation with both air- and bone-conduction. Stimuli were pure tones between 100 Hz and 14 kHz presented with custom closed-field loudspeakers for air-conducted sounds and via commercially available bone-anchored device for bone-conducted sounds. Pressures recorded in the superior, lateral, and posterior semicircular canals in response to sound stimulation were equal to or greater in magnitude than those recorded in the scala vestibuli (up to 20 dB higher). The pressure magnitudes varied across canals in a frequency-dependent manner. High sound pressure levels were recorded in the semicircular canals with sound stimulation, suggesting that similar acoustical energy is transmitted to the semicircular canals and the cochlea. Since these intralabyrinthine pressures exceed intracochlear pressure levels, our results suggest that the vestibular end-organs may also be at risk for injury during exposure to high-intensity acoustic stimuli known to cause trauma in the auditory system.

  4. Excimer laser interaction with zinc oxide

    NASA Astrophysics Data System (ADS)

    Khan, Enamul Haque

    When single crystal ZnO is exposed to 193-nm laser photons in vacuum at fluences below 100 mJ/cm2, isolated Zn vacancies are produced due to the emission of energetic Zn+. The pair wise formation of Zn vacancies and Zn+ interstitials is attributed to the photochemical excitation of anti-bonding Zn-O bonds. Interstitial Zn + diffuses to the surface where it is loosely bound to the surface---often atop a photoionizable electron trap; adsorbed Zn+ is emitted when the underlying trap is photoionized. Isolated Zn vacancies also diffuse following the laser pulse. These electron traps can reduce the near-surface free carrier concentration by as much as a factor of five on irradiated samples. At fluences between 150 and 200 mJ/cm2, 193-nm irradiation produces sustained emission of ionic and neutral species. The near-surface region of the irradiated sample becomes increasingly metallic and zinc rich. At fluences in the 250--300 mJ/cm2 range, a slower component of the Zn+ emission appears which is attributed to the excitation of an auto-ionizing state at 12.77 eV. The same excitation also yields Zn atomic light emission, predominately due to transitions on the triplet manifold. Rydberg Zn* atoms in high-lying quantum states appear at a threshold fluence of about 350 mJ/cm2. At fluences greater than or equal to 2 J/cm2, atomic light emission due to optical breakdown is observed.

  5. X-Ray Free Electron Laser Interaction With Matter

    SciTech Connect

    Hau-Riege, S

    2009-05-12

    X-ray free electron lasers (XFELs) will enable studying new areas of laser-matter interaction. We summarize the current understanding of the interaction of XFEL pulses with matter and describe some of the simulation approaches that are used to design experiments on future XFEL sources. Modified versions of these models have been successful in guiding and analyzing experiments performed at the extreme-ultraviolet FEL FLASH at wavelengths of 6 nm and longer. For photon energies of several keV, no XFEL-matter interaction experiments have been performed yet but data is anticipated to become available in the near future, which will allow to test our understanding of the interaction physics in this wavelength regime.

  6. Axial interaction free-electron laser

    DOEpatents

    Carlsten, B.E.

    1997-09-02

    Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies. 5 figs.

  7. Axial interaction free-electron laser

    DOEpatents

    Carlsten, Bruce E.

    1997-01-01

    Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies.

  8. High-energy laser interaction with solids: a laser safety perspective

    NASA Astrophysics Data System (ADS)

    Daigle, Jean-François; Pudo, Dominik; Théberge, Francis; Châteauneuf, Marc

    2016-10-01

    Laser safety regulating the deployment of kW-class high energy laser (HEL) technologies in outdoor applications can rapidly cause significant planning and operations issues due to the ranges involved. Safety templates based on the American National Standard Institute (ANSI) rules can easily result in ranges of tens of kilometers for kW-class lasers. Due to the complexity of HEL-matter interactions, the assumptions underlying the aforementioned approach are however deemed inappropriate. In this paper, we identify a more suitable approach backed by experimental results.

  9. Integrated Laser-Target Interaction Experiments on the RAL Petawatt Laser

    SciTech Connect

    Patel, P K; Key, M H; Mackinnon, A J; Berry, R; Borghesi, M; Chambers, D M; Chen, H; Clarke, R; Damian, C; Eagleton, R; Freeman, R; Glenzer, S; Gregori, G; Heathcote, R; Hey, D; Izumi, N; Kar, S; King, J; Nikroo, A; Niles, A; Park, H S; Pasley, J; Patel, N; Shepherd, R; Snavely, R A; Steinman, D; Stoeckl, C; Storm, M; Town, R; Van Maren, R; Theobald, W; Wilks, S C; Zhang, B

    2006-10-11

    Since the construction of the first Petawatt laser on the Nova laser facility at Lawrence Livermore National Laboratory we are witnessing the emergence of similar Petawatt-class laser systems at laboratories all around the world. This new generation of lasers, able to deliver several hundred joules of energy in a sub-picosecond pulse, has enabled a host of new discoveries to be made and continues to provide a valuable tool to explore new regimes in relativistic laser-plasma physics--encompassing high energy X-rays and -rays, relativistic electrons, intense ion beams, and superstrong magnetic fields. The coupling in the near-future of multi-kiloJoule Petawatt-class lasers with large-scale fusion lasers.including the NIF and Omega EP (US), LIL (France), and FIREX (Japan)--will further expand opportunities in fast ignition, high energy X-ray radiography, and high energy density physics research. The 500 J Petawatt laser at the Rutherford Appleton Laboratory is currently the highest energy short-pulse laser in the world. In this paper we describe a recent experimental campaign carried out on the facility. The campaign, performed by a large collaborative team from eight different laboratories, was designed to study a variety of relativistic laser-interaction phenomena including laser absorption, fast electron transport, proton heating, and high-brightness x-ray generation. The wide scope of the experiment necessitated the deployment of a very large set of diagnostics--in total twenty-five separate instruments. In order to obtain the most comprehensive set of measurements all twenty-five diagnostics were fielded simultaneously on every shot.

  10. Front surface structured targets for enhancing laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Snyder, Joseph; George, Kevin; Ji, Liangliang; Yalamanchili, Sasir; Simonoff, Ethan; Cochran, Ginevra; Daskalova, Rebecca; Poole, Patrick; Willis, Christopher; Lewis, Nathan; Schumacher, Douglass

    2016-10-01

    We present recent progress made using front surface structured interfaces for enhancing ultrashort, relativistic laser-plasma interactions. Structured targets can increase laser absorption and enhance ion acceleration through a number of mechanisms such as direct laser acceleration and laser guiding. We detail experimental results obtained at the Scarlet laser facility on hollow, micron-scale plasma channels for enhancing electron acceleration. These targets show a greater than three times enhancement in the electron cutoff energy as well as an increased slope temperature for the electron distribution when compared to a flat interface. Using three-dimensional particle-in-cell (PIC) simulations, we have modeled the interaction to give insight into the physical processes responsible for the enhancement. Furthermore, we have used PIC simulations to design structures that are more advantageous for ion acceleration. Such targets necessitate advanced target fabrication methods and we describe techniques used to manufacture optimized structures, including vapor-liquid-solid growth, cryogenic etching, and 3D printing using two-photon-polymerization. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0085.

  11. High-intensity therapeutic ultrasound: metrological requirements versus clinical usage

    NASA Astrophysics Data System (ADS)

    Aubry, J.-F.

    2012-10-01

    High-intensity therapeutic ultrasound (HITU) is an appealing non-invasive, non-ionizing therapeutic modality with a wide range of tissue interactions ranging from transient permeabilization of cell membranes to thermal ablation. The ability to guide and monitor the treatment with an associated ultrasonic or magnetic resonance imaging device has resulted in a dramatic rise in the clinical use of therapeutic ultrasound in the past two decades. Nevertheless, the range of clinical applications and the number of patients treated has grown at a much higher pace than the definition of standards. In this paper the metrological requirements of the therapeutic beams are reviewed and are compared with the current clinical use of image-guided HITU mostly based on a practical approach. Liver therapy, a particularly challenging clinical application, is discussed to highlight the differences between some complex clinical situations and the experimental conditions of the metrological characterization of ultrasonic transducers.

  12. Laser-material interactions: A study of laser energy coupling with solids

    SciTech Connect

    Shannon, Mark Alan

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding.

  13. A compact high intensity cooler (CHIC)

    NASA Astrophysics Data System (ADS)

    Bland, T. J.; Niggemann, R. E.; Parekh, M. B.

    1983-07-01

    A unique heat exchanger has been developed with potential applications for cooling high power density electronics and perhaps high energy laser mirrors. The device was designed to absorb heat fluxes of approximately 50 w/sq cm (158,000 Btu/hr sq ft), with a low thermal resistance, a high surface temperature uniformity, and very low hydraulic pumping power. A stack of thin copper orifice plates and spacers was bonded together and arranged to provide liquid jet impingement heat transfer on successive plates. This configuration resulted in effective heat transfer coefficients, based on the prime surface, of about 85,000 w/sq m deg C (15,000 Btu/hr sq ft deg F) and 1.8 watts (0.002 hp) hydraulic power with liquid Freon 11 as coolant.

  14. Particle interaction measurements using laser tweezers optical trapping.

    SciTech Connect

    Koehler, Timothy P.; Brinker, C. Jeffrey; Brotherton, Christopher M.; Grillet, Anne M.; Molecke, Ryan A.

    2008-08-01

    Laser tweezers optical trapping provides a unique noninvasive capability to trap and manipulate particles in solution at the focal point of a laser beam passed through a microscope objective. Additionally, combined with image analysis, interaction forces between colloidal particles can be quantitatively measured. By looking at the displacement of particles within the laser trap due to the presence of a neighboring particle or looking at the relative diffusion of two particles held near each other by optical traps, interparticle interaction forces ranging from pico- to femto-Newtons can be measured. Understanding interaction forces is critical for predicting the behavior of particle dispersions including dispersion stability and flow rheology. Using a new analysis method proposed by Sainis, Germain, and Dufresne, we can simultaneously calculate the interparticle velocity and particle diffusivity which allows direct calculation of the interparticle potential for the particles. By applying this versatile tool, we measure difference in interactions between various phospholipid bilayers that have been coated onto silica spheres as a new type of solid supported liposome. We measure bilayer interactions of several cell membrane lipids under various environmental conditions such as pH and ionic strength and compare the results with those obtained for empty liposomes. These results provide insight into the role of bilayer fluctuations in liposome fusion, which is of fundamental interest to liposome based drug delivery schemes.

  15. THz Radiation Generation via Laser Plasma Interaction Experiments

    NASA Astrophysics Data System (ADS)

    Yugami, Noboru; Higashiguchi, Takeshi

    2008-12-01

    Recently radiation generation from the interaction between laser and plasma is studied. Terahertz radiation from photo-conductive antenna which is based on semiconductor technology is widely used, The power is in the order of nano-watt level so that it is hard to use for application. On the other hand, terahertz radiation from laser plasma interaction is much higher than that of semiconductor technology. In our experiments, we have studied by use DARC (dc to ac radiation converter) mechanism by using YAG laser with nano-second pulse duration. DARC is novel radiation source using the interaction between laser-created ionization front and static electric field. The frequency of radiation is determined by both plasma density of ionization front and the geometry of DARC structure. We observed radiation pulse of frequency of 1.2 THz and pulse duration of 2 ps with ZnSe crystal as media detected by EO (electro-optics) sampling technique. Note from Publisher: This article contains the abstract only.

  16. Intense terahertz radiation from relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Liao, G. Q.; Li, Y. T.; Li, C.; Liu, H.; Zhang, Y. H.; Jiang, W. M.; Yuan, X. H.; Nilsen, J.; Ozaki, T.; Wang, W. M.; Sheng, Z. M.; Neely, D.; McKenna, P.; Zhang, J.

    2017-01-01

    The development of tabletop intense terahertz (THz) radiation sources is extremely important for THz science and applications. This paper presents our measurements of intense THz radiation from relativistic laser-plasma interactions under different experimental conditions. Several THz generation mechanisms have been proposed and investigated, including coherent transition radiation (CTR) emitted by fast electrons from the target rear surface, transient current radiation at the front of the target, and mode conversion from electron plasma waves (EPWs) to THz waves. The results indicate that relativistic laser plasma is a promising driver of intense THz radiation sources.

  17. Quantum beam generations via the laser-cluster interactions

    NASA Astrophysics Data System (ADS)

    Fukuda, Yuji; Faenov, Anatoly; Pikuz, Tania; Tampo, Motonobu; Yogo, Akifumi; Kando, Masaki; Hayashi, Yukio; Kameshima, Takeshi; Homma, Takayuki; Pirozhkov, Alexander; Kato, Yoshiaki; Tajima, Toshiki; Daido, Hiroyuki; Bulanov, Sergei

    2008-11-01

    The novel soft X-ray light source using the supersonic expansion of the mixed gas of He and CO2, when irradiated by a femtosecond Ti:sapphire laser pulse, is observed to enhance the radiation of soft X-rays from the CO2 clusters. Using this soft X-ray emissions, nanostructure images of 100-nm thick Mo foils in a wide field of view (mm^2 scale) with high spatial resolution (800 nm) are obtained with high dynamic range LiF crystal detectors. We also demonstrate the acceleration of charged particles via the laser-cluster interactions.

  18. Improving the Capabilities of a Continuum Laser Plasma Interaction Code

    SciTech Connect

    Hittinger, J F; Dorr, M R

    2006-06-15

    The numerical simulation of plasmas is a critical tool for inertial confinement fusion (ICF). We have been working to improve the predictive capability of a continuum laser plasma interaction code pF3d, which couples a continuum hydrodynamic model of an unmagnetized plasma to paraxial wave equations modeling the laser light. Advanced numerical techniques such as local mesh refinement, multigrid, and multifluid Godunov methods have been adapted and applied to nonlinear heat conduction and to multifluid plasma models. We describe these algorithms and briefly demonstrate their capabilities.

  19. Theory of the laser diode interaction in scanning force microscopy

    SciTech Connect

    Sarid, D.; Iams, D.A.; Ingle, J.T.; Weissenberger, V.

    1989-08-01

    The theory of interaction of a vibrating cantilever and a laser diode used in a scanning force microscope is given in terms of a feedback-dependent parameter C, which determines the gain associated with this interaction. It is shown that both C and the amplitude of vibrations can be determined experimentally from the measurement of the first and second harmonics. Experimental results, which are in good agreement with the theory, yield a value for C which is 0.045. Under these weak feedback conditions, it is found that the interaction can be modeled approximately as a simple homodyne process.

  20. Higher harmonic inverse free-electron laser interaction.

    PubMed

    Musumeci, P; Pellegrini, C; Rosenzweig, J B

    2005-07-01

    We expand the theory of the inverse free electron laser (IFEL) interaction to include the possibility of energy exchange that takes place when relativistic particles traversing an undulator interact with an electromagnetic wave of a frequency that is a harmonic of the fundamental wiggler resonant frequency. We derive the coupling coefficients as a function of the IFEL parameters for all harmonics, both odd and even. The theory is supported by simulation results obtained with a three-dimensional Lorentz equation solver code. Comparisons are made between the results of theory and simulations, and the recent UCLA IFEL experimental results where higher harmonic IFEL interaction was observed.

  1. Higher harmonic inverse free-electron laser interaction

    NASA Astrophysics Data System (ADS)

    Musumeci, P.; Pellegrini, C.; Rosenzweig, J. B.

    2005-07-01

    We expand the theory of the inverse free electron laser (IFEL) interaction to include the possibility of energy exchange that takes place when relativistic particles traversing an undulator interact with an electromagnetic wave of a frequency that is a harmonic of the fundamental wiggler resonant frequency. We derive the coupling coefficients as a function of the IFEL parameters for all harmonics, both odd and even. The theory is supported by simulation results obtained with a three-dimensional Lorentz equation solver code. Comparisons are made between the results of theory and simulations, and the recent UCLA IFEL experimental results where higher harmonic IFEL interaction was observed.

  2. POWER RECYCLING OF BURST-MODE LASER PULSES FOR LASER PARTICLE INTERACTIONS

    SciTech Connect

    Liu, Yun

    2016-01-01

    A number of laser-particle interaction experiments such as the laser assisted hydrogen ion beam stripping or X-/ -ray generations via inverse-Compton scattering involve light sources operating in a burst mode to match the tem-poral structure of the particle beam. To mitigate the laser power challenge, it is important to make the interaction inside an optical cavity to recycle the laser power. In many cases, conventional cavity locking techniques will not work since the burst normally has a very small duty factor and low repetition rate and it is impossible to gen-erate an effective control signal. This work reports on the development of a doubly-resonant optical cavity scheme and its locking techniques that enables a simultaneous resonance of two laser beams with different spectra and/or temporal structures. We demonstrate that such a cavity can be used to recycle burst-mode ultra-violet laser pulses with arbitrary burst lengths and repetition rates.

  3. Efficient energy conversion from laser to proton beam in a laser-foil interaction

    SciTech Connect

    Takahashi, K.; Kawata, S.; Satoh, D.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.

    2010-09-15

    Demonstrated is a remarkable improvement on the energy conversion efficiency from laser to protons in a laser-foil interaction by particle simulations. The total laser-proton energy conversion efficiency becomes 16.7%, although a conventional plane foil target serves a rather low efficiency. In our previous study we found that Al multihole thin-foil target was efficient for the energy conversion from laser to protons [Y. Nodera and S. Kawata, Phys. Rev. E 78, 046401 (2008)], and the energy conversion efficiency was 9.3%. In our 2.5-dimensional particle-in-cell simulations the Al multihole structure is also employed, and the parameters of the Al multihole wing width and length are optimized in the paper. The present results clarify the roles of the target Al hole width and depth in the laser-proton energy conversion. The main physical reason for the enhancement of the conversion efficiency is a reduction of the laser reflection at the target surface area. The optimized multihole foil target provides a remarkable increase in the laser-proton energy conversion efficiency as shown above.

  4. Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS

    SciTech Connect

    Cikhardt, J.; Klír, D.; Řezáč, K.; Krása, J.; De Marco, M.; Pfeifer, M.; Velyhan, A.; Krouský, E.; Cikhardtová, B.; Kubeš, P.; Kravárik, J.; Ullschmied, J.; Skála, J.

    2014-10-15

    Measurements of the return-current flowing through a solid target irradiated with the sub-nanosecond kJ-class Prague Asterix Laser System is reported. A new inductive target probe was developed which allows us measuring the target current derivative in a kA/ns range. The dependences of the target current on the laser pulse energy for cooper, graphite, and polyethylene targets are reported. The experiment shows that the target current is proportional to the deposited laser energy and is strongly affected by the shot-to-shot fluctuations. The corresponding maximum target charge exceeded a value of 10 μC. A return-current dependence of the electromagnetic pulse produced by the laser-target interaction is presented.

  5. Interaction physics for the stimulated Brillouin scattering of a laser in laser driven fusion

    SciTech Connect

    Yadav, Pinki; Gupta, D.N.; Avinash, K.

    2014-07-01

    Energy exchange between pump wave and ion-acoustic wave during the stimulated Brillouin Scattering process in relativistic laser-plasma interactions is studied, including the effect of damping coefficient of electron-ion collision by obeying the energy and momentum conservations. The variations of plasma density and damping coefficient of electron-ion collision change the amplitudes of the interacting wave. The relativistic mass effect modifies the dispersion relations of the interacting waves and consequently, the energy exchange during the stimulated Brillouin Scattering is affected. The collisional damping of electron-ion collision in the plasma is shown to have an important effect on the evolution of the interacting waves. (author)

  6. Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Manfred

    1986-10-01

    The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.

  7. Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics

    DOE PAGES

    Strozzi, D. J.; Bailey, D. S.; Michel, P.; ...

    2017-01-12

    The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling andmore » data from hohlraum experiments on wall x-ray emission and capsule implosion shape.« less

  8. Modeling of a UV laser beam—silicon nitride interaction

    NASA Astrophysics Data System (ADS)

    Dgheim, J. A.

    2016-11-01

    A numerical model is developed to study heat and radiation transfers during the interaction between a UV laser beam and silicon nitride. The laser beam has temporal Gaussian or Gate shapes of a wavelength of 247 nm, with pulse duration of 27 ns. The mathematical model is based on the heat equation coupled to Lambert-Beer relationship by taking into account the conduction, convection and radiation phenomena. The resulting equations are schemed by the finite element method. Comparison with the literature shows qualitative and quantitative agreements. The investigated parameters are the temperature, the timing of the melting process and the melting phase thickness. The effects of the laser fluences, ranging from 500 to 16 000 J.m-2, the Gaussian and Gate shapes on the heat transfer, and the melting phenomenon are studied.

  9. Deposition of tantalum carbide coatings on graphite by laser interactions

    NASA Technical Reports Server (NTRS)

    Veligdan, James; Branch, D.; Vanier, P. E.; Barietta, R. E.

    1994-01-01

    Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000 C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing involved the use of a CO2 laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl5 gas near the substrate. The results of preliminary experiments using these techniques are described.

  10. Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Strozzi, D. J.; Bailey, D. S.; Michel, P.; Divol, L.; Sepke, S. M.; Kerbel, G. D.; Thomas, C. A.; Ralph, J. E.; Moody, J. D.; Schneider, M. B.

    2017-01-01

    The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. This model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.

  11. On the scaling of multicrystal data sets collected at high-intensity X-ray and electron sources

    DOE PAGES

    Coppens, Philip; Fournier, Bertrand

    2015-11-11

    Here, the need for data-scaling has become increasingly evident as time-resolved pump-probe photocrystallography is rapidly developing at high intensity X-ray sources. Several aspects of the scaling of data sets collected at synchrotrons, XFELs (X-ray Free Electron Lasers) and high-intensity pulsed electron sources are discussed. They include laser-ON/laser-OFF data scaling, inter- and intra-data set scaling. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

  12. On the scaling of multicrystal data sets collected at high-intensity X-ray and electron sources

    SciTech Connect

    Coppens, Philip; Fournier, Bertrand

    2015-11-11

    Here, the need for data-scaling has become increasingly evident as time-resolved pump-probe photocrystallography is rapidly developing at high intensity X-ray sources. Several aspects of the scaling of data sets collected at synchrotrons, XFELs (X-ray Free Electron Lasers) and high-intensity pulsed electron sources are discussed. They include laser-ON/laser-OFF data scaling, inter- and intra-data set scaling. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

  13. Interaction of high intensity focused ultrasound with biological materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Mal, A.; Feng, F.; Kabo, M.; Wang, J.

    2002-01-01

    This work is motivated by the possible medical application of focused ultrasound in minimally invasive treatment of a variety of disorders including those associated with soft tissue or disk element disruption in the vicinity of the spine causing impingement on the spinal cord.

  14. Structural and functional bases of laser-microvessels interaction

    NASA Astrophysics Data System (ADS)

    Kozlov, Valentine I.; Terman, Oleg A.; Builin, Vitalij; Lebedeva, Natalia A.; Samoilov, Nickolai

    1993-07-01

    Structural and functional microcirculatory changes in tissues and organs (muscles, liver, derma, epinephros, brain cortex) under various dosages and powers of laser irradiation in the red (633 nm) and near infrared (890 nm) spectrum regions have been studied in experiments and clinic. In case of nonsensitized tissues the `photoactivation' range of power densities and doses of laser irradiation has been established. We have identified a short-term reaction of microvessels and a long-term reaction (adaptation). The former consists of intensification of microcirculation and metabolism rise in parenchymatous cells; the latter is connected with neoangiogenesis acceleration. The intensification of the blood microcirculation includes a dilation of microvessels of all orders, an amplification of arteriolar vasomotions and an opening of `reserved' capillaries. Data on the structural reconstruction of myocytes and endotheliocytes have shown that the high differential parenchymatous cells and its membrane structures are sensitive to low energy laser irradiation and, on the other hand, under low energy laser irradiation there is an activation of synthetic processes in the cells. Thus, during the laser-tissue interaction in such complex system as human organism the microcirculation plays the key role among the other systems.

  15. Maxwell's equations-based dynamic laser-tissue interaction model.

    PubMed

    Ahmed, Elharith M; Barrera, Frederick J; Early, Edward A; Denton, Michael L; Clark, C D; Sardar, Dhiraj K

    2013-12-01

    Since its invention in the early 1960s, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the dynamic changes in the spatial and temporal temperature rise during laser exposure to biological tissues. Unlike conventional models, the new approach is grounded on the rigorous electromagnetic theory that accounts for wave interference, polarization, and nonlinearity in propagation using a Maxwell's equations-based technique.

  16. Laser-Plasma Interactions in High-Energy-Density Plasmas

    SciTech Connect

    Baldis, H

    2006-10-17

    High temperature hohlraums (HTH) are designed to reach high radiation temperatures by coupling a maximum amount of laser energy into a small target in a short time. These 400-800 {micro}m diameter gold cylinders rapidly fill with hot plasma during irradiation with multiple beams in 1ns laser pulses. The high-Z plasmas are dense, (electron density, n{sub e}/n{sub c} {approx} 0.1-0.4), hot (electron temperature, T{sub e} {approx} 10keV) and are bathed in a high-temperature radiation field (radiation temperature, T{sub rad} {approx} 300eV). Here n{sub c}, the critical density, equals 9 x 10{sup 21}/cm{sup 3}. The laser beams heating this plasma are intense ({approx} 10{sup 15} - 10{sup 17} W/cm{sup 2}). The coupling of the laser to the plasma is a rich regime for Laser-Plasma Interaction (LPI) physics. The LPI mechanisms in this study include beam deflection and forward scattering. In order to understand the LPI mechanisms, the plasma parameters must be known. An L-band spectrometer is used to measure the and electron temperature. A ride-along experiment is to develop the x-radiation emitted by the thin back wall of the half-hohlraum into a thermal radiation source.

  17. Interaction of UV laser pulses with reactive dusty plasmas

    NASA Astrophysics Data System (ADS)

    van de Wetering, Ferdi; Beckers, Job; Nijdam, Sander; Oosterbeek, Wouter; Kovacevic, Eva; Berndt, Johannes

    2016-09-01

    This contribution deals with the effects of UV photons on the synthesis and transport of nanoparticles in reactive complex plasmas (capacitively coupled RF discharge). First measurements showed that the irradiation of a reactive acetylene-argon plasma with high-energy, ns UV laser pulses (355 nm, 75 mJ pulse energy, repetition frequency 10Hz) can have a large effect on the global discharge characteristics. One particular example concerns the formation of a dust void in the center of the discharge. At sufficiently high pulse energies, this formation of a dust free region - which occurs without laser irradiation-is totally suppressed. Moreover the experiments indicate that the laser pulses influence the early stages of the particle formation. Although the interaction between the laser and the plasma is not yet fully understood, it is remarkable that these localized nanosecond laser pulses can influence the plasma on a global scale. Besides new insights into fundamental problems, this phenomenon opens also new possibilities for the controlled manipulation of particle growth and particle transport in reactive plasmas.

  18. Interactions between lasers and two-dimensional transition metal dichalcogenides.

    PubMed

    Lu, Junpeng; Liu, Hongwei; Tok, Eng Soon; Sow, Chorng-Haur

    2016-05-03

    The recent increasing research interest in two-dimensional (2D) layered materials has led to an explosion of in the discovery of novel physical and chemical phenomena in these materials. Among the 2D family, group-VI transition metal dichalcogenides (TMDs), such as represented by MoS2 and WSe2, are remarkable semiconductors with sizable energy band gaps, which make the TMDs promising building blocks for new generation optoelectronics. On the other hand, the specificity and tunability of the band gaps can generate particularly strong light-matter interactions between TMD crystals and specific photons, which can trigger complex and interesting phenomena such as photo-scattering, photo-excitation, photo-destruction, photo-physical modification, photochemical reaction and photo-oxidation. Herein, we provide an overview of the phenomena explained by various interactions between lasers and the 2D TMDs. Characterizations of the optical fundamentals of the TMDs via laser spectroscopies are reviewed. Subsequently, photoelectric conversion devices enabled by laser excitation and the functionality extension and performance improvement of the TMDs materials via laser modification are comprehensively summarized. Finally, we conclude the review by discussing the prospects for further development in this research area.

  19. Mechanism of laser immunotherapy: role of immunoadjuvant and selective photothermal laser-tissue interaction

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Liu, Hong; Nordquist, Robert E.

    2002-04-01

    Immunotherapy has been used for cancer treatment in the past century. Although different approaches have been attempted, the basic strategy has been targeting specific tumor antigens to induce host immune responses. Laser immunotherapy is a novel approach in treating metastatic tumors. The combination of two major interactions in laser immunotherapy - selective photothermal and photoimmunological interactions - is designed to induce a tumor-specific host immune response. The hypothetical mechanism is as follows. The intratumor injection of laser- absorbing dye and the noninvasive irradiation of a near- infrared laser produce an acute, selective thermal tumor killing, and at the same time, release tumor antigens. The in-situ immunoadjuvant then combines with the liberated tumor antigens to stimulate and direct the host immune system to fight against remaining tumor cells both locally and in remote metastatic sites. In effect, an in-situ vaccination against the tumor was achieved. Such an immune response eventually leads to a systemic, long-term tumor resistance. Our pre-clinical animal studies have demonstrated such a long-term immunity. Specifically, a novel immunoadjuvant, glycated chitosan (GC), was used in laser immunotherapy. Because the use of immunoadjuvant is crucial in cancer immunotherapy, the role of GC was investigated.

  20. Broadband Brillouin Scatter from CO2-Laser-Target Interactions

    NASA Astrophysics Data System (ADS)

    Mitchel, G. R.; Grek, B.; Johnston, T. W.; Pépin, H.; Church, P.; Lavigne, P.; Martin, F.; Décoste, R.

    1982-05-01

    Light scattered near the incident wavelength from CO2 laser-solid target interactions in oblique incidence shows the spectral signature of Brillouin scattering both in the backward and in the near specular directions. This instability is apparently seeded by broadband scatter from the critical density surface and then amplified in the underdense plasma. 60% of the incident light is scattered, and the Brillouin contribution to total scatter may be large if the source is also large.

  1. Influence Of Laser-Target Interaction On The Polarization Of A CO2-Laser

    NASA Astrophysics Data System (ADS)

    Du, Keming; Herziger, Gerd; Loosen, Peter; Seelig, W.

    1989-03-01

    Laser materials processing shows a special pecularity compared to other customary techniques: the (generally reflecting) target introduces optical feedback into the system. This feedback changes the mode properties of the laser radiation according to the targets dynamics. We report on one of these aspects of laser-target interaction resulting in the change of the polarization of the incident light. Based on rate equations, a theoretical model is presented that allows the calculation of this change with respect of the target properties, yielding a simple relation for the two orthogonal planes of polarization of a laser mode. This relation turns out to be linearly dependent of a function ψ(t) which describes the optical feedback. The relation holds for target reflexions of up to 10% and for times larger than T1 • T2/T1 - T2 (where T1, T2 are the time constants of the passive resonator for the two orthogonal Planes of polarization). Experiments supporting the model are presented. The model offers a method for the modulation of laser radiation without change of frequency or intensity. It might also be of interest for high-power CO2 laser cutting and welding of metals.

  2. Interaction of UV-Laser Radiation with Molecular Surface Films.

    DTIC Science & Technology

    2014-09-26

    the adsorption of the UV light in the metal and adsorbed molecular layers. The details of this theory were described in part in an article published...A-RI5S 59 INTERACTION OF UV-LRSER RADIATION WITH MOLECULAR / SURFACE FILRS(U) COLUMBIA UNJY NEW YORK DEPT OF ELECTRICAL ENGINEERING R N OSGOOD 91...TITLE 1I"’c’" d stru.’ty clam"’fic98onII"Interaction of UV- Laser Radiation with Molecular Surface Films" __________________ * 12. PERSONAL AUTHORIS

  3. Ion Acceleration by Laser Plasma Interaction from Cryogenic Microjets

    SciTech Connect

    Propp, Adrienne

    2015-08-16

    Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high-power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. However, this mechanism is not ideal for creating the high-energy proton beams needed for future applications. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for exploring new regimes of ion acceleration. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an effort to test this hypothesis, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the flow of current up the jet into the nozzle during the interaction, heating the jet and damaging the orifice. However, we achieved a pure proton beam with evidence of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic films (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the possibility of transforming our liquid cryogenic

  4. Nonlinear modal interactions in parity-time (PT) symmetric lasers

    PubMed Central

    Ge, Li; El-Ganainy, Ramy

    2016-01-01

    Parity-time symmetric lasers have attracted considerable attention lately due to their promising applications and intriguing properties, such as free spectral range doubling and single-mode lasing. In this work we discuss nonlinear modal interactions in these laser systems under steady state conditions, and we demonstrate that several gain clamping scenarios can occur for lasing operation in the -symmetric and -broken phases. In particular, we show that, depending on the system’s design and the external pump profile, its operation in the nonlinear regime falls into two different categories: in one the system is frozen in the phase space as the applied gain increases, while in the other the system is pulled towards its exceptional point. These features are first illustrated by a coupled mode formalism and later verified by employing the Steady-state Ab-initio Laser Theory (SALT). Our findings shine light on the robustness of single-mode operation against saturation nonlinearity in -symmetric lasers. PMID:27143324

  5. Report from the NSLS workshop: Sources and applications of high intensity uv-vuv light

    SciTech Connect

    Johnson, E.D.; Hastings, J.B.

    1990-12-31

    A workshop was held to evaluate sources and applications of high intensity, ultra violet (UV) radiation for biological, chemical, and materials sciences. The proposed sources are a UV free electron laser (FEL) driven by a high brightness linac and undulators in long, straight sections of a specially designed low energy (400 MeV) storage ring. These two distinct types of sources will provide a broad range of scientific opportunities that were discussed in detail during the workshop.

  6. Report from the NSLS workshop: Sources and applications of high intensity uv-vuv light

    SciTech Connect

    Johnson, E.D.; Hastings, J.B.

    1990-01-01

    A workshop was held to evaluate sources and applications of high intensity, ultra violet (UV) radiation for biological, chemical, and materials sciences. The proposed sources are a UV free electron laser (FEL) driven by a high brightness linac and undulators in long, straight sections of a specially designed low energy (400 MeV) storage ring. These two distinct types of sources will provide a broad range of scientific opportunities that were discussed in detail during the workshop.

  7. Studies of Positron Generation from Ultraintense Laser-Matter Interactions

    NASA Astrophysics Data System (ADS)

    Williams, Gerald Jackson

    Laser-produced pair jets possess unique characteristics that offer great potential for their use in laboratory-astrophysics experiments to study energetic phenomenon such as relativistic shock accelerations. High-flux, high-energy positron sources may also be used to study relativistic pair plasmas and useful as novel diagnostic tools for high energy density conditions. Copious amounts of positrons are produced with MeV energies from directly irradiating targets with ultraintense lasers where relativistic electrons, accelerated by the laser field, drive positron-electron pair production. Alternatively, laser wakefield accelerated electrons can produce pairs by the same mechanisms inside a secondary converter target. This dissertation describes a series of novel experiments that investigate the characteristics and scaling of pair production from ultraintense lasers, which are designed to establish a robust platform for laboratory-based relativistic pair plasmas. Results include a simple power-law scaling to estimate the effective positron yield for elemental targets for any Maxwellian electron source, typical of direct laser-target interactions. To facilitate these measurements, a solenoid electromagnetic coil was constructed to focus emitted particles, increasing the effective collection angle of the detector and enabling the investigation of pair production from thin targets and low-Z materials. Laser wakefield electron sources were also explored as a compact, high repetition rate platform for the production of high energy pairs with potential applications to the creation of charge-neutral relativistic pair plasmas. Plasma accelerators can produce low-divergence electron beams with energies approaching a GeV at Hz frequencies. It was found that, even for high-energy positrons, energy loss and scattering mechanisms in the target create a fundamental limit to the divergence and energy spectrum of the emitted positrons. The potential future application of laser

  8. Modeling plasma plumes generated from laser solid interactions

    NASA Astrophysics Data System (ADS)

    Wilks, Scott C.; Higginson, D. P.; Link, A. J.; Park, H.-S.; Ping, Y.; Rinderknecht, H. G.; Ross, J. S.; Orban, C.; Hua, R.

    2016-10-01

    Laser pulses interacting with solid targets sitting in a vacuum form the basis for a large class of High Energy Density physics experiments. The resulting hydrodynamical evolution of the target during and after this interaction can be modeled using myriad techniques. These techniques range from pure particle-in-cell (PIC) to pure radiation-hydrodynamics, and include a large number of hybrid techniques in between. The particular method employed depends predominately on laser intensity. We compare and contrast several methods relevant for a large range of laser intensities (from Iλ2 1 ×1012W . μm2 /cm2 to Iλ2 1 ×1019W . μm2 /cm2) and energies (from E 100 mJ to E 100 kJ .) Density, temperature, and velocity profiles are benchmarked against recent experimental data. These experimental data include proton radiographs, time resolved x-ray images, and neutron yield and spectra. Methods to self-consistently handle backscatter and detailed energy deposition will also be discussed. LLNL-ABS-697767. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Laser plume spectroscopy. 1. Graphite target

    NASA Astrophysics Data System (ADS)

    Osipov, V. V.; Solomonov, V. I.; Platonov, V. V.; Snigireva, O. A.; Ivanov, M. G.; Lisenkov, V. V.

    2005-05-01

    Spectral and kinetic characteristics of a plume formed in the vicinity of a graphite target exposed to radiation from a pulsed CO2 laser at 10.6 μm with a peak power of 9 kW (pulse energy 1.69 J, pulse duration 330 μs at the 0.1 level) in air are studied at room temperature. It is shown that the plume propagating at a right angle to the target surface and at an angle of 45° to the laser radiation is a nonequilibrium gas plasma flow at a temperature of the order of 10 kK; its shape and size are determined by the shape and power of the laser pulse. Emission of C+ ions and C2 molecules is excited in the plume. The temperature and emission are sustained by the energy of the exothermic reaction of association of carbon atoms and the vibrationally excited molecules formed in it.

  10. Probing the dynamics of the interaction between few-cycle laser pulses and single crystal (100) Si and GaAs near the laser-induced damage threshold

    NASA Astrophysics Data System (ADS)

    Talisa, Noah; Werner, Kevin; Kafka, Kyle; Austin, Drake R.; Chowdhury, Enam

    2016-12-01

    The dynamics of the laser-solid interaction with high intensity ultra-short s-polarized few-cycle pulses (FCPs) (Ephoton 1.65 eV) and single crystals (100) Si and GaAs (Egap 1.14 and 1.4 eV, respectivly) near the multipulse laser-induced damage threshold (LIDT) were measured using a pump-probe reflectivity technique. FCP's with central wavelength 760 nm and FWHM duration 5 fs used as both pump and probe pulses were incident at 45°, and the reflectivity of each probe pulse was measured as the delay between the pump and probe pulses was varied with 0.1 fs resolution. Near zero delay, the probe pulse reflectivity displayed oscillatory behavior relative to the unexcited reflectivity for both materials, with a period equal to the optical cycle ( 2.6 fs). For Si, the crystal orientation was varied so that the field polarization was parallel to the (010) and (011) directions, and half way in between. Significantly larger zero delay oscillations were observed for the field polarization parallel to the (011) direction compared to those for the other two directions.

  11. Laser safety evaluation for high-energy laser interaction with solids

    NASA Astrophysics Data System (ADS)

    Daigle, Jean-François; Pudo, Dominik; Théberge, Francis; Châteauneuf, Marc

    2017-02-01

    Laser safety regulating the deployment of kW-class high-energy laser (HEL) technologies in outdoor applications can rapidly cause significant planning and operations issues due to the ranges involved. Safety templates based on a simplistic approach of assuming a continuous wave laser beam incident on a highly reflective totally flat solid surface of infinite size can easily result in ranges of tens of kilometers for kW-class lasers. Due to the complexity of HEL-matter interactions, the assumptions underlying the aforementioned approach are, however, deemed inappropriate. We identify a more suitable approach, which assumes a time-variant reflection pattern as well as a change in the variance of beam divergence as it reflects from the target's surface. Based on experimental results, we instead propose to assess the nominal ocular hazard distance by applying the American National Standard Institute rules for time-variant multipulse laser exposure and using measured divergence angles from the target's surface. The resulting safety templates, thus, exhibit a higher fidelity with respect to the behavior of the reflection patterns while reducing the hazard zones.

  12. Pump-controlled modal interactions in microdisk lasers

    NASA Astrophysics Data System (ADS)

    Liew, Seng Fatt; Ge, Li; Redding, Brandon; Solomon, Glenn S.; Cao, Hui

    2015-04-01

    We demonstrate an effective control of nonlinear interactions of lasing modes in a semiconductor microdisk cavity by shaping the pump profile. A target mode is selected at the expense of its competing modes either by increasing their lasing thresholds or suppressing their power slopes above the lasing threshold. Despite the strong spatial overlap of the lasing modes at the disk boundary, adaptive pumping enables an efficient selection of any lasing mode to be the dominant one, leading to a switch of lasing frequency. The theoretical analysis illustrates both linear and nonlinear effects of selective pumping and quantifies their contributions to lasing-mode selection. This work shows that adaptive pumping not only provides a powerful tool to control the nonlinear process in multimode lasers, but also enables the tuning of lasing characteristic after the lasers have been fabricated.

  13. Microwave modeling of laser plasma interactions. Final report

    SciTech Connect

    Not Available

    1983-08-01

    For a large laser fusion targets and nanosecond pulse lengths, stimulated Brillouin scattering (SBS) and self-focusing are expected to be significant problems. The goal of the contractual effort was to examine certain aspects of these physical phenomena in a wavelength regime (lambda approx.5 cm) more amenable to detailed diagnostics than that characteristic of laser fusion (lambda approx.1 micron). The effort was to include the design, fabrication and operation of a suitable experimental apparatus. In addition, collaboration with Dr. Neville Luhmann and his associates at UCLA and with Dr. Curt Randall of LLNL, on analysis and modelling of the UCLA experiments was continued. Design and fabrication of the TRW experiment is described under ''Experiment Design'' and ''Experimental Apparatus''. The design goals for the key elements of the experimental apparatus were met, but final integration and operation of the experiment was not accomplished. Some theoretical considerations on the interaction between Stimulated Brillouin Scattering and Self-Focusing are also presented.

  14. Ion Acceleration from the Interaction of Ultra-Intense Lasers with Solid Foils

    SciTech Connect

    Allen, Matthew M.

    2004-01-01

    The discovery that ultra-intense laser pulses (I > 1018 W/cm2) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 1018 W/cm2), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by Up = ([1 + Iλ2/1.3 x 1018]1/2 - 1) m{sub o}c2, where Iλ2 is the irradiance in W μm2/cm2 and moc2 is the electron rest mass. At laser irradiance of Iλ2 ~ 1020 W μm2/cm2, the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target. In this thesis we present several experiments that study the accelerated ions by

  15. Inertial fusion with ultra-powerful lasers

    SciTech Connect

    Tabak, M.; Hammer, J.; Glinsky, M.; Kruer, W.; Wilks, S.; Woodworth, J.; Campbell, E.M.; Perry, M.D.; Mason, R.

    1993-10-01

    Ultra-high intensity lasers can be used to ignite ICF capsules with a few tens of kilojoules of light and can lead to high gain with as little as 100 kilojoules of incident laser light. We propose a scheme with three phases. First, a capsule is imploded as in the conventional approach to inertial fusion to assemble a high density fuel configuration. Second, a hole is bored through capsule corona composed of ablated material, pushing critical density close to the high density core of the capsule, by employing the ponderomotive force associated with high intensity laser light. Finally, the fuel is ignited by suprathermal electrons, produced in the high intensity laser plasma interactions, which propagate from critical density to this high density core. This paper reviews two models of energy gain in ICF capsules and explains why ultra-high intensity lasers allow access to the model producing the higher gains. This new scheme also drastically reduces the difficulty of the implosion and thereby allows lower quality fabrication and less stringent beam quality and symmetry requirements from the implosion driver. The difficulty of the fusion scheme is transferred to the technological difficulty of producing the ultra-high-intensity laser and of transporting this energy to the fuel.

  16. Laser-plasma interactions in large gas-filled hohlraums

    SciTech Connect

    Turner, R.E.; Powers, L.V.; Berger, R.L.

    1996-06-01

    Indirect-drive targets planned for the National Ignition Facility (NIF) laser consist of spherical fuel capsules enclosed in cylindrical Au hohlraums. Laser beams, arranged in cylindrical rings, heat the inside of the Au wall to produce x rays that in turn heat and implode the capsule to produce fusion conditions in the fuel. Detailed calculations show that adequate implosion symmetry can be maintained by filling the hohlraum interior with low-density, low-Z gases. The plasma produced from the heated gas provides sufficient pressure to keep the radiating Au surface from expanding excessively. As the laser heats this gas, the gas becomes a relatively uniform plasma with small gradients in velocity and density. Such long-scale-length plasmas can be ideal mediums for stimulated Brillouin Scattering (SBS). SBS can reflect a large fraction of the incident laser light before it is absorbed by the hohlraum; therefore, it is undesirable in an inertial confinement fusion target. To examine the importance of SBS in NIF targets, the authors used Nova to measure SBS from hohlraums with plasma conditions similar to those predicted for high-gain NIF targets. The plasmas differ from the more familiar exploding foil or solid targets as follows: they are hot (3 keV); they have high electron densities (n{sub e}=10{sup 21}cm{sup {minus}3}); and they are nearly stationary, confined within an Au cylinder, and uniform over large distances (>2 mm). These hohlraums have <3% peak SBS backscatter for an interaction beam with intensities of 1-4 x 10{sup 15} W/cm{sup 2}, a laser wavelength of 0.351{micro}m, f/4 or f/8 focusing optics, and a variety of beam smoothing implementations. Based on these conditions the authors conclude that SBS does not appear to be a problem for NIF targets.

  17. High-resolution multi-MeV x-ray radiography using relativistic laser-solid interaction

    SciTech Connect

    Courtois, C.; Compant La Fontaine, A.; Barbotin, M.; Bazzoli, S.; Brebion, D.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Le Dain, L.; Lefebvre, E.; Pichoff, N.; Edwards, R.; Aedy, C.; Biddle, L.; Drew, D.; Gardner, M.; Ramsay, M.; Simons, A.; Sircombe, N.

    2011-02-15

    When high intensity ({>=}10{sup 19} W cm{sup -2}) laser light interacts with matter, multi-MeV electrons are produced. These electrons can be utilized to generate a MeV bremsstrahlung x-ray emission spectrum as they propagate into a high-Z solid target positioned behind the interaction area. The short duration (<10 ps) and the small diameter (<500 {mu}m) of the x-ray pulse combined with the MeV x-ray spectrum offers an interesting alternative to conventional bremsstrahlung x-ray sources based on an electron accelerator used to radiograph dense, rapidly moving objects. In experiments at the Omega EP laser, a multi-MeV x-ray source is characterized consistently with number of independent diagnostics. An unfiltered x-ray dose of approximately 2 rad in air at 1 m and a source diameter of less than 350 {mu}m are inferred. Radiography of a complex and high area density (up to 61 g/cm{sup 2}) object is then performed with few hundred microns spatial resolution.

  18. Development of a cryogenic hydrogen microjet for high-intensity, high-repetition rate experiments

    SciTech Connect

    Kim, J. B.; Göde, S.; Glenzer, S. H.

    2016-08-19

    The advent of high-intensity, high-repetition-rate lasers has led to the need for replenishing targets of interest for high energy density sciences. We describe the design and characterization of a cryogenic microjet source, which can deliver a continuous stream of liquid hydrogen with a diameter of a few microns. The jet has been imaged at 1 μm resolution by shadowgraphy with a short pulse laser. In conclusion, the pointing stability has been measured at well below a mrad, for a stable free-standing filament of solid-density hydrogen.

  19. Development of a cryogenic hydrogen microjet for high-intensity, high-repetition rate experiments

    NASA Astrophysics Data System (ADS)

    Kim, J. B.; Göde, S.; Glenzer, S. H.

    2016-11-01

    The advent of high-intensity, high-repetition-rate lasers has led to the need for replenishing targets of interest for high energy density sciences. We describe the design and characterization of a cryogenic microjet source, which can deliver a continuous stream of liquid hydrogen with a diameter of a few microns. The jet has been imaged at 1 μm resolution by shadowgraphy with a short pulse laser. The pointing stability has been measured at well below a mrad, for a stable free-standing filament of solid-density hydrogen.

  20. Operation of the Proto-MPEX High Intensity Plasma Source

    NASA Astrophysics Data System (ADS)

    Caughman, J. B. O.; Goulding, R. H.; Biewer, T. M.; Bigelow, T. S.; Campbell, I. H.; Diem, S. J.; Martin, E. H.; Pesavento, P. V.; Rapp, J.; Ray, H. B.; Shaw, G. C.; Showers, M. A.; Luo, G.-N.

    2015-11-01

    The Prototype Materials Plasma Experiment (Proto-MPEX) is a linear high-intensity rf plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is produced by coupling 13.56 MHz rf power at levels up to 100 kW. Microwaves at 28 GHz (~ 150 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW). Ion cyclotron heating (~ 30 kW) will be via a magnetic beach approach. Plasma diagnostics include Thomson Scattering and a retarding field energy analyzer near the target, while a microwave interferometer and double-Langmuir probes are used to determine plasma parameters elsewhere in the system. Filterscopes are being used to measure D-alpha emission and He line ratios at multiple locations, and IR cameras image the target plates to determine heat deposition. High plasma densities in the helicon region have been produced in He (>3x1019/m3) and D (>1.5x1019/m3) , and operation with on-axis magnetic field strength >1 T has been demonstrated. Details of the experimental results and future plans for studying plasma surface/RF antenna interactions will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.