Science.gov

Sample records for high-intensity laser interactions

  1. High intensity laser interactions with atomic clusters

    SciTech Connect

    Ditmire, T

    2000-08-07

    The development of ultrashort pulse table top lasers with peak pulse powers in excess of 1 TW has permitted an access to studies of matter subject to unprecedented light intensities. Such interactions have accessed exotic regimes of multiphoton atomic and high energy-density plasma physics. Very recently, the nature of the interactions between these very high intensity laser pulses and atomic clusters of a few hundred to a few thousand atoms has come under study. Such studies have found some rather unexpected results, including the striking finding that these interactions appear to be more energetic than interactions with either single atoms or solid density plasmas. Recent experiments have shown that the explosion of such clusters upon intense irradiation can expel ions from the cluster with energies from a few keV to nearly 1 MeV. This phenomenon has recently been exploited to produce DD fusion neutrons in a gas of exploding deuterium clusters. Under this project, we have undertaken a general study of the intense femtosecond laser cluster interaction. Our goal is to understand the macroscopic and microscopic coupling between the laser and the clusters with the aim of optimizing high flux fusion neutron production from the exploding deuterium clusters or the x-ray yield in the hot plasmas that are produced in this interaction. In particular, we are studying the physics governing the cluster explosions. The interplay between a traditional Coulomb explosion description of the cluster disassembly and a plasma-like hydrodynamic explosion is not entirely understood, particularly for small to medium sized clusters (<1000 atoms) and clusters composed of low-Z atoms. We are focusing on experimental studies of the ion and electron energies resulting from such explosions through various experimental techniques. We are also examining how an intense laser pulse propagates through a dense medium containing these clusters.

  2. High-power, high-intensity laser propagation and interactions

    SciTech Connect

    Sprangle, Phillip; Hafizi, Bahman

    2014-05-15

    This paper presents overviews of a number of processes and applications associated with high-power, high-intensity lasers, and their interactions. These processes and applications include: free electron lasers, backward Raman amplification, atmospheric propagation of laser pulses, laser driven acceleration, atmospheric lasing, and remote detection of radioactivity. The interrelated physical mechanisms in the various processes are discussed.

  3. Interaction of high-intensity laser radiation with metals.

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.

    1971-01-01

    The interaction is characterized by the production of plasma, within which the primary absorption occurs. Absorption of laser radiation by a plasma may occur by several processes. The absorption process called 'inverse bremsstrahlung' is discussed. The interaction of a laser beam with the plasma produced from a thick metal target was studied. The results of the measurements of the ion kinetic energies are presented in a graph. In addition to measurements with thick targets, information was also obtained with a thin foil of gold.

  4. High Intensity Laser Interactions with Narrow Gap Semiconductors

    NASA Astrophysics Data System (ADS)

    Hasselback, Michael Peter

    1995-01-01

    Two-photon absorption in solids is a well known and thoroughly characterized nonlinear optical process. Higher order multi-photon absorption however, has received comparatively little study. In this dissertation, results of experiments with bulk, narrow gap semiconductors InSb and InAs are reported. By performing Z-scans and pump-probe measurements at different laser wavelengths and sample temperatures, various nonlinear optical processes are identified. Data obtained with InAs is consistent with photocarrier generation by three and four-photon absorption. It is believed this is the first direct evidence of four-photon absorption in a semiconductor. Leakage two-photon is observed with InSb at 15K. This novel effect arises from dynamic band un-blocking caused by laser heating of conduction electrons. All phenomena are excited with picosecond CO_2 laser pulses at irradiances below the material damage threshold. Physical models describing the observations are presented.

  5. High-Power, High-Intensity Laser Propagation and Interactions

    DTIC Science & Technology

    2014-03-10

    Figure 3. Radiation beam is guided (Δk > 0) by electron beam in an FEL amplifier. wave fronts e - beam 6 b) Efficiency Enhancement...wave Brillouin mixing [89,90]. transmitted beam is phase conjugated target initial wave front nn  1 turbulent air Figure 14. Using phase and...presence of radioactive material ( rad ). The electron density at the end of the ionizing laser pulse approaches the value of 3cm eN

  6. Spectroscopic Analysis of High Intensity Laser Beam Jets Interaction Experiments on the Leopard Laser at UNR

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Weller, M. E.; Kantsyrev, V. L.; Safronova, A. S.; Moschella, J. J.; Shrestha, I.; Shlyapsteva, V. V.; Stafford, A.; Keim, S. F.; University of Nevada Reno Team

    2013-10-01

    Results of Ar gas-puff experiments performed on the high power Leopard laser at UNR are presented. Flux density of laser radiation in focal spot was up to 2 × 1016 W/cm2 (pulse duration was 0.8 ns and laser wavelength was 1.057 μm). Specifically, spectroscopic analysis of K-shell Ar spectra are investigated and compared as functions of the orientation of the laser beam to linear gas jet. The laser beam axis was positioned either along the jet plane or orthogonal to it at a distance of 1 mm from the nozzle output. The diagnostics used included a time-integrated x-ray spectrometer along with a set of filtered Si diodes with various cutoff energies. In order to identify lines, a non-local thermodynamic equilibrium (non-LTE) kinetic model was utilized and was also used to determine plasma parameters such as electron temperature and density. The importance of the spectroscopic study of high intensity laser beam-jets interaction experiments is discussed. This work was supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno, and in part by the DOE/NNSA Cooperative agreements DE-NA0001984 and DE-FC52-06NA27616.

  7. James Clerk Maxwell Prize Address: High Intensity Laser Propagation and Interactions

    NASA Astrophysics Data System (ADS)

    Sprangle, Phillip

    2013-10-01

    High intensity laser radiation sources cover a wide range of parameters, e.g., peak powers from tera to peta watts, pulse lengths from pico to femto seconds, repetition rates ranging from kilo to mega hertz and average powers of many tens of watts. This talk will cover, among other things, some of the unique physical processes which result when high intensity laser radiation interacts with gases and plasmas. One of the interesting topics to be discussed is the propagation of these laser pulses in a turbulent atmosphere which results in a multitude of coupled linear and nonlinear processes including filamentation and scintillation. Phase conjugation techniques to reduce the effects of atmospheric turbulence (scintillation) will be described. This talk will also discuss a range of potential applications of these high intensity lasers, including: electron acceleration in spatially periodic and tapered plasma channels, detection of radioactive material using electromagnetic signatures, atmospheric lasing of N2 molecules, as well as incoherent and coherent x-ray generation mechanisms. Research supported by NRL, ONR and UMD.

  8. Femtosecond dynamics of energetic electrons in high intensity laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bisesto, F.; Botton, M.; Castellano, M.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Ferrario, M.; Galletti, M.; Henis, Z.; Petrarca, M.; Schleifer, E.; Zigler, A.

    2016-10-01

    Highly energetic electrons are generated at the early phases of the interaction of short-pulse high-intensity lasers with solid targets. These escaping particles are identified as the essential core of picosecond-scale phenomena such as laser-based acceleration, surface manipulation, generation of intense magnetic fields and electromagnetic pulses. Increasing the number of the escaping electrons facilitate the late time processes in all cases. Up to now only indirect evidences of these important forerunners have been recorded, thus no detailed study of the governing mechanisms was possible. Here we report, for the first time, direct time-dependent measurements of energetic electrons ejected from solid targets by the interaction with a short-pulse high-intensity laser. We measured electron bunches up to 7 nanocoulombs charge, picosecond duration and 12 megaelectronvolts energy. Our ’snapshots’ capture their evolution with an unprecedented temporal resolution, demonstrat- ing a significant boost in charge and energy of escaping electrons when increasing the geometrical target curvature. These results pave the way toward significant improvement in laser acceleration of ions using shaped targets allowing the future development of small scale laser-ion accelerators.

  9. Femtosecond dynamics of energetic electrons in high intensity laser-matter interactions

    PubMed Central

    Pompili, R.; Anania, M. P.; Bisesto, F.; Botton, M.; Castellano, M.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Ferrario, M.; Galletti, M.; Henis, Z.; Petrarca, M.; Schleifer, E.; Zigler, A.

    2016-01-01

    Highly energetic electrons are generated at the early phases of the interaction of short-pulse high-intensity lasers with solid targets. These escaping particles are identified as the essential core of picosecond-scale phenomena such as laser-based acceleration, surface manipulation, generation of intense magnetic fields and electromagnetic pulses. Increasing the number of the escaping electrons facilitate the late time processes in all cases. Up to now only indirect evidences of these important forerunners have been recorded, thus no detailed study of the governing mechanisms was possible. Here we report, for the first time, direct time-dependent measurements of energetic electrons ejected from solid targets by the interaction with a short-pulse high-intensity laser. We measured electron bunches up to 7 nanocoulombs charge, picosecond duration and 12 megaelectronvolts energy. Our ’snapshots’ capture their evolution with an unprecedented temporal resolution, demonstrat- ing a significant boost in charge and energy of escaping electrons when increasing the geometrical target curvature. These results pave the way toward significant improvement in laser acceleration of ions using shaped targets allowing the future development of small scale laser-ion accelerators. PMID:27713541

  10. Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC

    SciTech Connect

    Liang, Taiee

    2015-09-25

    A systematic study of photon and neutron radiation doses generated in high-intensity laser-solid interactions is underway at SLAC National Accelerator Laboratory. We found that these laser-solid experiments are being performed using a 25 TW (up to 1 J in 40 fs) femtosecond pulsed Ti:sapphire laser at the Linac Coherent Light Source’s (LCLS) Matter in Extreme Conditions (MEC) facility. Additionally, radiation measurements were performed with passive and active detectors deployed at various locations inside and outside the target chamber. Results from radiation dose measurements for laser-solid experiments at SLAC MEC in 2014 with peak intensity between 1018 to 7.1x1019 W/cm2 are presented.

  11. Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma.

    PubMed

    Willingale, L; Mangles, S P D; Nilson, P M; Clarke, R J; Dangor, A E; Kaluza, M C; Karsch, S; Lancaster, K L; Mori, W B; Najmudin, Z; Schreiber, J; Thomas, A G R; Wei, M S; Krushelnick, K

    2006-06-23

    A beam of multi-MeV helium ions has been observed from the interaction of a short-pulse high-intensity laser pulse with underdense helium plasma. The ion beam was found to have a maximum energy for He2+ of (40(+3)(-8)) MeV and was directional along the laser propagation path, with the highest energy ions being collimated to a cone of less than 10 degrees. 2D particle-in-cell simulations show that the ions are accelerated by a sheath electric field that is produced at the back of the gas target. This electric field is generated by transfer of laser energy to a hot electron beam, which exits the target generating large space-charge fields normal to its boundary.

  12. Resistively enhanced proton acceleration via high-intensity laser interactions with cold foil targets

    SciTech Connect

    Gibbon, Paul

    2005-08-01

    The acceleration of MeV protons by high-intensity laser interaction with foil targets is studied using a recently developed plasma simulation technique. Based on a hierarchical N-body tree algorithm, this method provides a natural means of treating three-dimensional, collisional transport effects hitherto neglected in conventional explicit particle-in-cell simulations. For targets with finite resistivity, hot electron transport is strongly inhibited, even at temperatures in the MeV range. This leads to suppression of ion acceleration from the rear of the target and an enhancement in energies and numbers of protons originating from the front.

  13. Appearance of Density Cavitations in the Laser Wake in Simulations of High Intensity Laser-Plasma Interactions

    SciTech Connect

    Wang, T.-L.

    2009-01-22

    Nonlinear interactions of high intensity, ultrashort laser pulses with underdense plasmas produce many interesting features that may appear in computer simulations. One of these features commonly observed in Particle-In-Cell (PIC) simulations is the spontaneous appearance of long-lived density cavitations in the plasma wake region behind the laser pulse. To study these cavitations, several small 2D PIC simulations are run in which plasma density, density ramps, total simulation time, laser pulsewidth, laser intensity, and laser polarization parameters have been varied. Based on the simulation results, some possible aspects of an experiment designed to directly detect these structures are discussed.

  14. Comparing Particle-in-Cell QED Models for High-Intensity Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Luedtke, Scott V.; Labun, Lance A.; Hegelich, Björn Manuel

    2016-10-01

    High-intensity lasers, such as the Texas Petawatt, are pushing into new regimes of laser-matter interaction, requiring continuing improvement and inclusion of new physics effects in computer simulations. Experiments at the Texas Petawatt are reaching intensity regimes where new physics-quantum electrodynamics (QED) corrections to otherwise classical plasma dynamics-becomes important. We have two particle-in-cell (PIC) codes with different QED implementations. We review the theory of photon emission in QED-strong fields, and cover the differing PIC implementations. We show predictions from the two codes and compare with ongoing experiments. This work was supported by NNSA cooperative agreement DE-NA0002008, the Defense Advanced Research Projects Agency's PULSE program (12-63-PULSE-FP014) and the Air Force Office of Scientific Research (FA9550-14-1-0045). HPC resources provided by TACC.

  15. Characterization of the fast electrons distribution produced in a high intensity laser target interaction

    SciTech Connect

    Westover, B.; Chen, C. D.; Patel, P. K.; McLean, H.; Beg, F. N.

    2014-03-15

    Experiments on the Titan laser (∼150 J, 0.7 ps, 2 × 10{sup 20} W cm{sup −2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo code Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2 MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5 MeV and 4 MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.

  16. Radiation from high-intensity ultrashort-laser-pulse and gas-jet magnetized plasma interaction.

    PubMed

    Dorranian, Davoud; Starodubtsev, Mikhail; Kawakami, Hiromichi; Ito, Hiroaki; Yugami, Noboru; Nishida, Yasushi

    2003-08-01

    Using a gas-jet flow, via the interaction between an ultrashort high-intensity laser pulse and plasma in the presence of a perpendicular external dc magnetic field, the short pulse radiation from a magnetized plasma wakefield has been observed. Different nozzles are used in order to generate different densities and gas profiles. The neutral density of the gas-jet flow measured with a Mach-Zehnder interferometer is found to be proportional to back pressure of the gas jet in the range of 1 to 8 atm. Strength of the applied dc magnetic field varies from 0 to 8 kG at the interaction region. The frequency of the emitted radiation with the pulse width of 200 ps (detection limit) is in the millimeter wave range. Polarization and spatial distributions of the experimental data are measured to be in good agreement with the theory based on the V(p)xB radiation scheme, where V(p) is the phase velocity of the electron plasma wave and B is the steady magnetic field intensity. Characteristics of the radiation are extensively studied as a function of plasma density and magnetic field strength. These experiments should contribute to the development of a new kind of millimeter wavelength radiation source that is tunable in frequency, pulse duration, and intensity.

  17. Revisiting argon cluster formation in a planar gas jet for high-intensity laser matter interaction

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Hagmeijer, R.; van der Weide, E. T. A.; Bastiaens, H. M. J.; Boller, K.-J.

    2016-04-01

    We determine the size of argon clusters generated with a planar nozzle, based on the optical measurements in conjunction with theoretical modelling. Using a quasi-one dimensional model for the moments of the cluster size distribution, we determine the influence of critical physical assumptions. These refer to the surface tension depending on the presence of thermal equilibrium, the mass density of clusters, and different methods to model the growth rate of the cluster radius. We show that, despite strong variation in the predicted cluster size, , the liquid mass ratio, g, can be determined with high trustworthiness, because g is predicted as being almost independent of the specific model assumptions. Exploiting this observation, we use the calculated value for g to retrieve the cluster size from optical measurements, i.e., calibrated Rayleigh scattering and interferometry. Based on the measurements of the cluster size vs. the nozzle stagnation pressure, we provide a new power law for the prediction of the cluster size in experiments with higher values of the Hagena parameter (Γ*>104 ) . This range is of relevance for experiments on high-intensity laser matter interactions.

  18. An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets

    SciTech Connect

    Price, C. J. Giltrap, S.; Stuart, N. H.; Parker, S.; Patankar, S.; Lowe, H. F.; Smith, R. A.; Donnelly, T. D.; Drew, D.; Gumbrell, E. T.

    2015-03-15

    We report on the design, construction, and characterisation of a new class of in-vacuo optical levitation trap optimised for use in high-intensity, high-energy laser interaction experiments. The system uses a focused, vertically propagating continuous wave laser beam to capture and manipulate micro-targets by photon momentum transfer at much longer working distances than commonly used by optical tweezer systems. A high speed (10 kHz) optical imaging and signal acquisition system was implemented for tracking the levitated droplets position and dynamic behaviour under atmospheric and vacuum conditions, with ±5 μm spatial resolution. Optical trapping of 10 ± 4 μm oil droplets in vacuum was demonstrated, over timescales of >1 h at extended distances of ∼40 mm from the final focusing optic. The stability of the levitated droplet was such that it would stay in alignment with a ∼7 μm irradiating beam focal spot for up to 5 min without the need for re-adjustment. The performance of the trap was assessed in a series of high-intensity (10{sup 17} W cm{sup −2}) laser experiments that measured the X-ray source size and inferred free-electron temperature of a single isolated droplet target, along with a measurement of the emitted radio-frequency pulse. These initial tests demonstrated the use of optically levitated microdroplets as a robust target platform for further high-intensity laser interaction and point source studies.

  19. An in-vacuo optical levitation trap for high-intensity laser interaction experiments with isolated microtargets.

    PubMed

    Price, C J; Donnelly, T D; Giltrap, S; Stuart, N H; Parker, S; Patankar, S; Lowe, H F; Drew, D; Gumbrell, E T; Smith, R A

    2015-03-01

    We report on the design, construction, and characterisation of a new class of in-vacuo optical levitation trap optimised for use in high-intensity, high-energy laser interaction experiments. The system uses a focused, vertically propagating continuous wave laser beam to capture and manipulate micro-targets by photon momentum transfer at much longer working distances than commonly used by optical tweezer systems. A high speed (10 kHz) optical imaging and signal acquisition system was implemented for tracking the levitated droplets position and dynamic behaviour under atmospheric and vacuum conditions, with ±5 μm spatial resolution. Optical trapping of 10 ± 4 μm oil droplets in vacuum was demonstrated, over timescales of >1 h at extended distances of ∼40 mm from the final focusing optic. The stability of the levitated droplet was such that it would stay in alignment with a ∼7 μm irradiating beam focal spot for up to 5 min without the need for re-adjustment. The performance of the trap was assessed in a series of high-intensity (10(17) W cm(-2)) laser experiments that measured the X-ray source size and inferred free-electron temperature of a single isolated droplet target, along with a measurement of the emitted radio-frequency pulse. These initial tests demonstrated the use of optically levitated microdroplets as a robust target platform for further high-intensity laser interaction and point source studies.

  20. Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions.

    PubMed

    Schumaker, W; Nakanii, N; McGuffey, C; Zulick, C; Chyvkov, V; Dollar, F; Habara, H; Kalintchenko, G; Maksimchuk, A; Tanaka, K A; Thomas, A G R; Yanovsky, V; Krushelnick, K

    2013-01-04

    Using electron bunches generated by laser wakefield acceleration as a probe, the temporal evolution of magnetic fields generated by a 4 × 10(19) W/cm(2) ultrashort (30 fs) laser pulse focused on solid density targets is studied experimentally. Magnetic field strengths of order B(0) ~ 10(4) T are observed expanding at close to the speed of light from the interaction point of a high-contrast laser pulse with a 10-μm-thick aluminum foil to a maximum diameter of ~1 mm. The field dynamics are shown to agree with particle-in-cell simulations.

  1. Proton beam generation by ultra-high intensity laser-solid interaction

    NASA Astrophysics Data System (ADS)

    Manclossi, M.; Guemnie-Tafo, A.; Batani, D.; Malka, V.; Fritzler, S.; Lefebvre, E.; D'Humieres, E.

    2005-10-01

    We report on some recent experimental results on proton production from ultra-intense laser pulse interaction with thin aluminium and plastic foil targets. These results were obtained at Laboratoire d'Optique Appliquee with the 100TW 'salle jaune' laser system, delivering 35 fs laser pulses at 0.8 mu m, reaching a maximum intensity on target of a few 10(19) W/cm(2). In such extreme interaction conditions, an intense and collimated relativistic electron current is injected from the plasma created on the laser focal spot into the cold interior of the target. Its transport through dense matter, ruled by both collisions and self-induced (electro-magnetic) field effects, is the driving mechanism for proton acceleration from the rear side of thin foils: when reaching and leaving the foil rear-side, the fast electrons create a large charge separation and a huge electrostatic field with a maximum value of few TV/m, capable of accelerating protons. A parametric study as a function of the laser driver and target parameters indicates an optimal value for target thickness, which strongly depends on the laser prepulse duration. In our experiments, we did irradiate targets of various materials (CH, Al, Au) changing the prepulse duration by using fast Pockels cells in the laser chain. CR-39 nuclear track detectors with Al filters of different thickness and a Thomson parabola were used to detect proton generation. The best results were obtained for 2 mu m Al targets, leading to the generation of proton energies with energies up to 12 MeV.

  2. Target material dependence of positron generation from high intensity laser-matter interactions

    DOE PAGES

    Williams, G. J.; Barnak, D.; Fiksel, G.; ...

    2016-12-06

    Here, the effective scaling of positron-electron pair production by direct, ultraintense laser-matter interaction is investigated for a range of target materials and thicknesses. An axial magnetic field, acting as a focusing lens, was employed to measure positron signals for targets with atomic numbers as low as copper (Z – 29). The pair production yield was found to be consistent with the Bethe-Heitler mechanism, where the number of positrons emitted into a 1 steradian cone angle from the target rear was found to be proportional to Z2. The unexpectedly low scaling results from Coulomb collisions that act to stop or scattermore » positrons into high angles. Monte Carlo simulations support the experimental results, providing a comprehensive power-law scaling relationship for all elemental materials and densities.« less

  3. Target material dependence of positron generation from high intensity laser-matter interactions

    NASA Astrophysics Data System (ADS)

    Williams, G. J.; Barnak, D.; Fiksel, G.; Hazi, A.; Kerr, S.; Krauland, C.; Link, A.; Manuel, M. J.-E.; Nagel, S. R.; Park, J.; Peebles, J.; Pollock, B. B.; Beg, F. N.; Betti, R.; Chen, Hui

    2016-12-01

    The effective scaling of positron-electron pair production by direct, ultraintense laser-matter interaction is investigated for a range of target materials and thicknesses. An axial magnetic field, acting as a focusing lens, was employed to measure positron signals for targets with atomic numbers as low as copper (Z = 29). The pair production yield was found to be consistent with the Bethe-Heitler mechanism, where the number of positrons emitted into a 1 steradian cone angle from the target rear was found to be proportional to Z2. The unexpectedly low scaling results from Coulomb collisions that act to stop or scatter positrons into high angles. Monte Carlo simulations support the experimental results, providing a comprehensive power-law scaling relationship for all elemental materials and densities.

  4. Target material dependence of positron generation from high intensity laser-matter interactions

    SciTech Connect

    Williams, G. J.; Barnak, D.; Fiksel, G.; Hazi, A.; Kerr, S.; Krauland, C.; Link, A.; Manuel, M. J. -E.; Nagel, S. R.; Park, J.; Peebles, J.; Pollock, B. B.; Beg, F. N.; Betti, R.; Chen, Hui

    2016-12-06

    Here, the effective scaling of positron-electron pair production by direct, ultraintense laser-matter interaction is investigated for a range of target materials and thicknesses. An axial magnetic field, acting as a focusing lens, was employed to measure positron signals for targets with atomic numbers as low as copper (Z – 29). The pair production yield was found to be consistent with the Bethe-Heitler mechanism, where the number of positrons emitted into a 1 steradian cone angle from the target rear was found to be proportional to Z2. The unexpectedly low scaling results from Coulomb collisions that act to stop or scatter positrons into high angles. Monte Carlo simulations support the experimental results, providing a comprehensive power-law scaling relationship for all elemental materials and densities.

  5. Circular polarization effects in ion acceleration from high intensity, short pulse laser interactions

    NASA Astrophysics Data System (ADS)

    Dollar, F.; Zulick, C.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; Matsuoka, T.; McGuffey, C.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Maksimchuk, A.; Krushelnick, K.; Petrov, G.; Davis, J.

    2011-10-01

    Experiments were performed to investigate ion acceleration effects from circular polarization from thin targets, using a high contrast, ultra-short laser pulse from the HERCULES laser facility at the Univ. of Michigan. Experiments were performed with 50 TW, 35 fs pulses at an intensity of >1021Wcm-2 on Si3N4 and Mylar targets of 30 nm to 1 μm thickness with contrast <10-13 . Protons with maximum energy 18 MeV and Carbon ions with energies of up to 10 MeV per nucleon were measured. Particle-in-cell simulations demonstrating the acceleration mechanism will be presented as well. Supported by NSF Physics Frontier Center FOCUS (Grant PHY-0114336), Defense Threat Reduction Agency, and Naval Research Laboratory. We acknowledge the OSIRIS consortium for the use of OSIRIS.

  6. Development of time resolved x-ray spectroscopy in high intensity laser-plasma interactions

    SciTech Connect

    Notley, M. M.; Weber, R. L.; Fell, B.; Jeffries, J.; Freeman, R. R.; Mackinnon, A. J.; Dickson, R.; Hey, D.; Khattak, F.; Saiz, E. Garcia; Gregori, G.

    2006-10-15

    This article discusses the design of a novel time resolved von Hamos Bragg spectrometer to provide spectra in the region around the titanium K-{alpha} and He-{alpha} lines. The instrument consists of a highly oriented pyrolitic graphite mosaic crystal coupled to a picosecond x-ray streak camera. Measurements of the time dependent behavior from Ti foils illuminated with intense laser pulses can be used to improve the understanding of recombination dynamics, electron transport, and phase transitions in strongly coupled dense plasma. This is important for the modeling of the compression phase in inertial confinement fusion research and the study of astrophysical environments.

  7. Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser-Plasma Interactions

    DTIC Science & Technology

    2016-08-19

    amuch higher peak current of hot electronswhich induced current in parallel wires through strong electric andmagneticfield growth . In theHERCULES shots...interaction. This was consistent with an induced current resulting from the growth and decay of a magnetic field of the form ( ) ( )»B t r I t r...Alternatively, direct current would be expected to scale exponentially , while an expanding plasma could be expected to scale as r1 2. It is of interest to note

  8. Effect of Laser Wavelength and Ablator Material on Hot Electron Generation in High Power Laser Plasma Interaction at Shock Ignition High Intensity Conditions

    NASA Astrophysics Data System (ADS)

    Wei, M. S.; Alexander, N. B.; Krauland, C. M.; Zhang, S.; Beg, F. N.; Theobald, W.; Betti, R.

    2015-11-01

    Hot electrons with energies <100 keV have been found to augment ablation pressure leading to Gbar shocks in strong spherical shock experiments on OMEGA*. To study this potential benefit at shock ignition-relevant high intensities (~1016 W/cm2) , we have conducted an experiment using the high-energy OMEGA EP laser system to examine the effect of laser wavelength, intensity and ablator material on hot electron generation and energy coupling. Targets are multilayered planar foils consisting of Cu and Al layers with an ablator made of either plastic (CH) or lithium. The target is first irradiated by multi-kJ UV beams at low intensity to produce a long scalelength, hot plasma, as is the case in the shock ignition regime. Correspondingly, this is followed by the injection of the high intensity UV or IR main interaction pulse. The resultant energy, spectrum and angular distributions of the hot electrons are measured via their induced Cu fluorescence emission and the bremsstrahlung radiation. Details of the experiment and results will be presented. Work supported by the DOE/NNSA under Contract DE-NA0002730 (NLUF).

  9. High intensity laser interactions with underdense plasma: a source of energetic electrons, ions, neutrons and gamma-rays

    NASA Astrophysics Data System (ADS)

    Najmudin, Zulfikar

    2002-11-01

    With the rapid advances in laser technology, laser beams are now available that can be routinely focused to intensities approaching 10^20 Wcm-2. At these intensities all matter becomes ionised on a time scale close to the period of the laser. The subsequent interaction is therefore characterised by the interaction of an intense laser beam with a highly dissociated medium (plasma). The interaction is particularly interesting since at these intensities, the normalised momentum of the electrons in the laser field is given by a_0=0.89× I(10^18 Wcm-2× λ^2(μ m)). Hence the quiver velocity of the plasma electrons in the electric field of the laser beam becomes relativistic. The interaction of the laser beam with a plasma at such elevated intensities is highly non-linear, and can lead to a whole host of interesting phenomena. These include relativistic self-focusing, harmonic generation, and Raman type parametric instabilities. These processes are of interest, not only from a scientific perspective, but also a technological one, with the prospect that such an interaction can provide useful sources of energetic particles. In this context, plasma wave generation by laser beam self-modulation, proton acceleration by Coulomb explosions and thermonuclear fusion neutron generation by extreme heating of intense laser beams will be discussed. Recent highlights of this research include the detection of protons of energies in excess of 1 MeV, the heating of an underdense deuterium plasma to temperatures in excess of 1 keV, resulting in the detection in excess of 10^6 fusion neutrons; and the detection of electrons accelerated to greater than 200 MeV due to the generation of relativistically steepened plasma waves. The latter measurement is particularly noteworthy since it is obtained with a 1 J, 10 Hz laser system, (Salle Jaune, LOA).

  10. Characterization of preformed plasmas with an interferometer for ultra-short high-intensity laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Sagisaka, A.; Daido, H.; Ogura, K.; Orimo, S.; Hayashi, Y.; Nishiuchi, M.; Mori, M.; Matsukado, K.; Fukumi, A.; Li, Z.; Nakamura, S.; Takagaki, K.; Hazama, H.; Suzuki, M.; Utsumi, T.; Bulanov, S. V.; Esirkepov, T.

    The evolution of an Al preformed plasma produced by a prepulse was observed before and after the arrival of the main pulse by an interferometer using a femtosecond probe pulse. A central density depression due to the ponderomotive force of the main laser pulse in the preformed plasma with a 100 μm scale length was clearly visible after the main pulse irradiation at an intensity of 5×1016 W/cm2. The temporal profiles of the prepulse, characterized by a cross-correlation in conjunction with a precise density profile measurement by an interferometer, contribute to the better understanding of femtosecond laser-matter interactions.

  11. Short-pulse, high-intensity lasers at Los Alamos

    SciTech Connect

    Taylor, A.J.; Roberts, J.P.; Rodriguez, G.; Fulton, R.D.; Kyrala, G.A.; Schappert, G.T.

    1994-03-01

    Advances in ultrafast lasers and optical amplifiers have spurred the development of terawatt-class laser systems capable of delivering focal spot intensities approaching 10{sup 20} W/cm{sup 2}. At these extremely high intensities, the optical field strength is more than twenty times larger than the Bohr electric field, permitting investigations of the optical properties of matter in a previously unexplored regime. The authors describe two laser systems for high intensity laser interaction experiments: The first is a terawatt system based on amplification of femtosecond pulses in XeCl which yields 250 mJ in 275 fs and routinely produces intensifies on target in excess of 10{sup 18} W/cm{sup 2}. The second system is based on chirped pulse amplification of 100-fs pulses in Ti:sapphire.

  12. Double ionization effect in electron accelerations by high-intensity laser pulse interaction with a neutral gas

    NASA Astrophysics Data System (ADS)

    Nandan Gupta, Devki

    2013-11-01

    We study the effect of laser-induced double-ionization of a helium gas (with inhomogeneous density profile) on vacuum electron acceleration. For enough laser intensity, helium gas can be found doubly ionized and it strengthens the divergence of the pulse. The double ionization of helium gas can defocus the laser pulse significantly, and electrons are accelerated by the front of the laser pulse in vacuum and then decelerated by the defocused trail part of the laser pulse. It is observed that the electrons experience a very low laser-intensity at the trailing part of the laser pulse. Hence, there is not much electron deceleration at the trailing part of the pulse. We found that the inhomogeneity of the neutral gas reduced the rate of tunnel ionization causing less defocusing of the laser pulse and thus the electron energy gain is reduced.

  13. Superhot-X-ray and -electron transport in high-intensity CO2-laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Enright, G. D.; Burnett, N. H.

    1985-12-01

    A comprehensive investigation of the high-energy (70-400-keV) X-ray emission from CO2 laser-produced plasmas at intensities up to 3 x 10 to the 14th W/sq cm has revealed the presence of a 'superhot' component. The intensity of this component scales very strongly with incident laser intensity. It is expected that for intensities greater than about 5 x 10 to the 15th W/sq cm energy balance in CO2-laser-produced plasmas would be dominated by the energetic electrons responsible for this high-energy X-ray emission.

  14. Effects of electron recirculation on a hard x-ray source observed during the interaction of a high intensity laser pulse with thin Au targets

    SciTech Connect

    Compant La Fontaine, A.; Courtois, C.; Lefebvre, E.; Bourgade, J. L.; Landoas, O.; Thorp, K.; Stoeckl, C.

    2013-12-15

    The interaction of a high intensity laser pulse on the preplasma of a high-Z solid target produced by the pulse's pedestal generates high-energy electrons. These electrons subsequently penetrate inside the solid target and produce bremsstrahlung photons, generating an x-ray source which can be used for photonuclear studies or to radiograph high area density objects. The source characteristics are compared for targets with thin (20 μm) and thick (100 μm) Au foils on the Omega EP laser at Laboratory for Laser Energetics. Simulations using the particle-in-cell code CALDER show that for a 20 μm thickness Au target, electrons perform multiple round-trips in the target under the effect of the laser ponderomotive potential and the target electrostatic potential. These relativistic electrons have random transverse displacements, with respect to the target normal, attributed to electrostatic fluctuation fields. As a result, the x-ray spot size is increased by a factor 2 for thin target compared to thick targets, in agreement with experimental results. In addition, the computed doses agree with the measured ones provided that electron recirculation in the thin target is taken into account. A dose increase by a factor 1.7 is then computed by allowing for recirculation. In the 100 μm target case, on the other hand, this effect is found to be negligible.

  15. Acceleration of high charge-state target ions in high-intensity laser interactions with sub-micron targets

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Raymond, A.; Batson, T.; Hua, R.; Petrov, G. M.; Kim, J.; Krauland, C. M.; Maksimchuk, A.; Thomas, A. G. R.; Yanovsky, V.; Krushelnick, K.; Beg, F. N.

    2016-11-01

    We have studied laser acceleration of ions from Si3N4 and Al foils ranging in thickness from 1800 to 8 nm with particular interest in acceleration of ions from the bulk of the target. The study includes results of experiments conducted with the HERCULES laser with pulse duration 40 fs and intensity 3 × 1020 W cm-2 and corresponding two-dimensional particle-in-cell simulations. When the target thickness was reduced the distribution of ion species heavier than protons transitioned from being dominated by carbon contaminant ions of low ionization states to being dominated by high ionization states of bulk ions (such as Si12+) and carbon. Targets in the range 50-150 nm yielded dramatically greater particle number and higher ion maximum energy for these high ionization states compared to thicker targets typifying the Target Normal Sheath Acceleration (TNSA) regime. The high charge states persisted for the thinnest targets, but the accelerated particle numbers decreased for targets 35 nm and thinner. This transition to an enhanced ion TNSA regime, which more efficiently generates ion beams from the bulk target material, is also seen in the simulations.

  16. High-intensity laser-induced electron acceleration in vacuum.

    PubMed

    Wang, J X; Ho, Y K; Feng, L; Kong, Q; Wang, P X; Yuan, Z S; Scheid, W

    1999-12-01

    In this paper, an approximate pulsed-laser-beam solution of Maxwell's equation in vacuum is derived. Then with the numerical simulation method, electron acceleration induced by high-intensity [Q(0)=eE(0)/(m(e)omega c)=3] lasers is discussed in connection with the recent experiment of Malka et al. It is found that the maximum energy gain and the relationship between the final energy and the scattering angle can be well reproduced, but the polarization effect of electron-laser interactions is not very prominent. These results show that the ponderomotive potential model is still applicable, which means that the stimulated Compton scattering is the main fundamental mechanism responsible for the electron acceleration at this laser intensity.

  17. Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions

    SciTech Connect

    Mori, Warren, B.

    2012-12-01

    We present results from the grant entitled, Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions. The research significantly advanced the understanding of basic high-energy density science (HEDS) on ultra intense laser and particle beam plasma interactions. This advancement in understanding was then used to to aid in the quest to make 1 GeV to 500 GeV plasma based accelerator stages. The work blended basic research with three-dimensions fully nonlinear and fully kinetic simulations including full-scale modeling of ongoing or planned experiments. The primary tool was three-dimensional particle-in-cell simulations. The simulations provided a test bed for theoretical ideas and models as well as a method to guide experiments. The research also included careful benchmarking of codes against experiment. High-fidelity full-scale modeling provided a means to extrapolate parameters into regimes that were not accessible to current or near term experiments, thereby allowing concepts to be tested with confidence before tens to hundreds of millions of dollars were spent building facilities. The research allowed the development of a hierarchy of PIC codes and diagnostics that is one of the most advanced in the world.

  18. Axion-like-particle search with high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Döbrich, Babette; Gies, Holger

    2010-10-01

    We study ALP -photon-conversion within strong inhomogeneous electromagnetic fields as provided by contemporary high-intensity laser systems. We observe that probe photons traversing the focal spot of a superposition of Gaussian beams of a single high-intensity laser at fundamental and frequency-doubled mode can experience a frequency shift due to their intermittent propagation as axion-like-particles. This process is strongly peaked for resonant masses on the order of the involved laser frequencies. Purely laser-based experiments in optical setups are sensitive to ALPs in the eV mass range and can thus complement ALP searches at dipole magnets.

  19. Proton shock acceleration using a high contrast high intensity laser

    NASA Astrophysics Data System (ADS)

    Gauthier, Maxence; Roedel, Christian; Kim, Jongjin; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Propp, Adrienne; Goyon, Clement; Pak, Art; Kerr, Shaun; Ramakrishna, Bhuvanesh; Ruby, John; William, Jackson; Glenzer, Siegfried

    2015-11-01

    Laser-driven proton acceleration is a field of intense research due to the interesting characteristics of this novel particle source including high brightness, high maximum energy, high laminarity, and short duration. Although the ion beam characteristics are promising for many future applications, such as in the medical field or hybrid accelerators, the ion beam generated using TNSA, the acceleration mechanism commonly achieved, still need to be significantly improved. Several new alternative mechanisms have been proposed such as collisionless shock acceleration (CSA) in order to produce a mono-energetic ion beam favorable for those applications. We report the first results of an experiment performed with the TITAN laser system (JLF, LLNL) dedicated to the study of CSA using a high intensity (5x1019W/cm2) high contrast ps laser pulse focused on 55 μm thick CH and CD targets. We show that the proton spectrum generated during the interaction exhibits high-energy mono-energetic features along the laser axis, characteristic of a shock mechanism.

  20. Plasma-based polarization modulator for high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu; Pukhov, Alexander

    2016-12-01

    Manipulation of laser pulses at high intensities is an important yet challenging issue. New types of plasma-based optical devices are promising alternatives to achieve this goal. Here we propose to modulate the polarization state of intense lasers based on oblique reflection from solid-plasma surfaces. A new analytical description is presented considering the plasma as an uniaxial medium that causes birefringence effect. Particle-in-cell simulation results numerically demonstrate that such a scheme can provide a tunable polarization control of the laser pulses even in the relativistic regime. The results are thus relevant for the design of compact, easy to use, and versatile polarization modulators for high-intensity laser pulses.

  1. Response of graphene to femtosecond high-intensity laser irradiation

    SciTech Connect

    Roberts, Adam; Cormode, Daniel; Reynolds, Collin; Newhouse-Illige, Ty; LeRoy, Brian J.; Sandhu, Arvinder S.

    2011-08-01

    We study the response of graphene to high-intensity, 50-femtosecond laser pulse excitation. We establish that graphene has a high ({approx}3 x 10{sup 12} Wcm{sup -2}) single-shot damage threshold. Above this threshold, a single laser pulse cleanly ablates graphene, leaving microscopically defined edges. Below this threshold, we observe laser-induced defect formation leading to degradation of the lattice over multiple exposures. We identify the lattice modification processes through in-situ Raman microscopy. The effective lifetime of chemical vapor deposition grown graphene under femtosecond near-infrared irradiation and its dependence on laser intensity is determined. These results also define the limits of non-linear applications of graphene in femtosecond high-intensity regime.

  2. Strong Radiation-Damping Effects in a Gamma-Ray Source Generated by the Interaction of a High-Intensity Laser with a Wakefield-Accelerated Electron Beam

    NASA Astrophysics Data System (ADS)

    Thomas, A. G. R.; Ridgers, C. P.; Bulanov, S. S.; Griffin, B. J.; Mangles, S. P. D.

    2012-10-01

    A number of theoretical calculations have studied the effect of radiation-reaction forces on radiation distributions in strong-field counterpropagating electron-beam-laser interactions, but could these effects—including quantum corrections—be observed in interactions with realistic bunches and focusing fields, as is hoped in a number of soon-to-be-proposed experiments? We present numerical calculations of the angularly resolved radiation spectrum from an electron bunch with parameters similar to those produced in laser-wakefield-acceleration experiments, interacting with an intense, ultrashort laser pulse. For our parameters, the effect of radiation damping on the angular distribution and energy distribution of photons is not easily discernible for a realistic moderate-emittance electron beam. However, experiments using such a counterpropagating beam-laser geometry should be able to measure these effects using current laser systems through measurement of the electron-beam properties. In addition, the brilliance of this source is very high, with peak spectral brilliance exceeding 1029photonss-1mm-2mrad-2(0.1%bandwidth)-1 with an approximately 2% conversion efficiency and with a peak energy of 10 MeV.

  3. The effect of external magnetic field on the bremsstrahlung nonlinear absorption mechanism in the interaction of high intensity short laser pulse with collisional underdense plasma

    SciTech Connect

    Sedaghat, M.; Ettehadi-Abari, M.; Shokri, B. Ghorbanalilu, M.

    2015-03-15

    Laser absorption in the interaction between ultra-intense femtosecond laser and solid density plasma is studied theoretically here in the intensity range Iλ{sup 2}≃10{sup 14}−10{sup 16}Wcm{sup −2}μm{sup 2}. The collisional effect is found to be significant when the incident laser intensity is less than 10{sup 16}Wcm{sup −2}μm{sup 2}. In the current work, the propagation of a high frequency electromagnetic wave, for underdense collisional plasma in the presence of an external magnetic field is investigated. It is shown that, by considering the effect of the ponderomotive force in collisional magnetized plasmas, the increase of laser pulse intensity leads to steepening of the electron density profile and the electron bunches of plasma makes narrower. Moreover, it is found that the wavelength of electric and magnetic fields oscillations increases by increasing the external magnetic field and the density distribution of electrons also grows in comparison with the unmagnetized collisional plasma. Furthermore, the spatial damping rate of laser energy and the nonlinear bremsstrahlung absorption coefficient are obtained in the collisional regime of magnetized plasma. The other remarkable result is that by increasing the external magnetic field in this case, the absorption coefficient increases strongly.

  4. Strong radiation damping effects in a gamma-ray source generated by the interaction of a high intensity laser with a wakefield accelerated electron beam

    NASA Astrophysics Data System (ADS)

    Thomas, Alexander; Ridgers, Christopher; Bulanov, Stepan; Griffin, Blake; Mangles, Stuart

    2012-10-01

    We present numerical calculations of the angularly resolved radiation spectrum from a relativistic electron beam interacting with an ultrashort laser pulse. These calculations include the effect of semi-classical radiation reaction forces including a Gaunt factor for synchrotron radiation. For a laser of 5x10^21 Wcm-2 intensity interacting with a 200 MeV electron beam with an emittance similar to that in laser wakefield acceleration experiments, radiation reaction does not produce a significant change in the angular and energy distribution of photons. However the effects of radiation reaction are clear when observing the electron beam properties. The result is that near-term experiments using such a counter-propagating beam-laser geometry should be able to measure the effects of quantum effects in radiation reaction. The calculations also show that the brilliance of this source is very high, with a peak spectral brilliance exceeding 10^29 photons,s-1mm-2mrad-2(0.1% bandwidth)-1 with approximately 2% efficiency and with a peak energy of 10 MeV.

  5. Dose estimation and shielding calculation for X-ray hazard at high intensity laser facilities

    NASA Astrophysics Data System (ADS)

    Qiu, Rui; Zhang, Hui; Yang, Bo; James, C. Liu; Sayed, H. Rokni; Michael, B. Woods; Li, Jun-Li

    2014-12-01

    An ionizing radiation hazard produced from the interaction between high intensity lasers and solid targets has been observed. Laser-plasma interactions create “hot” electrons, which generate bremsstrahlung X-rays when they interact with ions in the target. However, up to now only limited studies have been conducted on this laser-induced radiological protection issue. In this paper, the physical process and characteristics of the interaction between high intensity lasers and solid targets are analyzed. The parameters of the radiation sources are discussed, including the energy conversion efficiency from laser to hot electrons, hot electron energy spectrum and electron temperature, and the bremsstrahlung X-ray energy spectrum produced by hot electrons. Based on this information, the X-ray dose generated with high-Z targets for laser intensities between 1014 and 1020 W/cm2 is estimated. The shielding effects of common shielding items such as the glass view port, aluminum chamber wall and concrete wall are also studied using the FLUKA Monte Carlo code. This study provides a reference for the dose estimation and the shielding design of high intensity laser facilities.

  6. Computational Simulations of High Intensity X-Ray Matter Interaction

    SciTech Connect

    London, R A; Rionta, R; Tatchyn, R; Roessler, S

    2001-08-02

    Free electron lasers have the promise of producing extremely high-intensity short pulses of coherent, monochromatic radiation in the 1-10 keV energy range. For example, the Linac Coherent Light Source at Stanford is being designed to produce an output intensity of 2 x 10{sup 14} W/cm{sup 2} in a 230 fs pulse. These sources will open the door to many novel research studies. However, the intense x-ray pulses may damage the optical components necessary for studying and controlling the output. At the full output intensity, the dose to optical components at normal incidence ranges from 1-10 eV/atom for low-Z materials (Z < 14) at photon energies of 1 keV. It is important to have an understanding of the effects of such high doses in order to specify the composition, placement, and orientation of optical components, such as mirrors and monochromators. Doses of 10 eV/atom are certainly unacceptable since they will lead to ablation of the surface of the optical components. However, it is not precisely known what the damage thresholds are for the materials being considered for optical components for x-ray free electron lasers. In this paper, we present analytic estimates and computational simulations of the effects of high-intensity x-ray pulses on materials. We outline guidelines for the maximum dose to various materials and discuss implications for the design of optical components.

  7. Frequency conversion of high-intensity, femtosecond laser pulses

    SciTech Connect

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  8. Postionisation of a spatially nonuniform plasma plume under high-intensity femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Krestovskikh, D. A.; Ivanov, K. A.; Tsymbalov, I. N.; Shulyapov, S. A.; Bukin, V. V.; Volkov, R. V.; Rupasov, A. A.; Savel’ev, A. B.

    2017-02-01

    The plasma plume formed by a high-power nanosecond laser pulse on the surface of solid targets as well as the plume parameters after its irradiation by a high-intensity femtosecond laser pulse are investigated by optical diagnostic techniques. Two-dimensional patterns of the electron plasma density are reconstructed from experimentally recorded interferograms at different stages of plasma evolution. It is shown that the interaction of the high-intensity femtosecond radiation with the plasma cloud is accompanied by the field ionisation of atoms and ions as well as by a significant increase in the electron density throughout the interaction volume. Presented at ECLIM2016 (Moscow, 18–23 September 2016).

  9. Hot electron generation and energy coupling in planar experiments with shock ignition high intensity lasers

    NASA Astrophysics Data System (ADS)

    Wei, M. S.; Krauland, C.; Alexander, N.; Zhang, S.; Peebles, J.; Beg, F. N.; Theobald, W.; Borwick, E.; Ren, C.; Yan, R.; Haberberger, D.; Betti, R.; Campbell, E. M.

    2016-10-01

    Hot electrons produced in nonlinear laser plasma interactions are critical issues for shock ignition (SI) laser fusion. We conducted planar target experiments to characterize hot electron and energy coupling using the high energy OMEGA EP laser system at SI high intensities. Targets were multilayered foils consisting of an ablator (either plastic or lithium) and a Cu layer to facilitate hot electron detection via fluorescence and bremsstrahlung measurements. The target was first irradiated by multi-kJ, low-intensity UV beams to produce a SI-relevant mm-scale hot ( 1 keV) preformed plasma. The main interaction pulse, either a kJ 1-ns UV pulse with intensity 1.6x1016 Wcm-2 or a kJ 0.1-ns IR pulse with intensity up to 2x1017 Wcm-2was injected at varied timing delays. The high intensity IR beam was found to strongly interact with underdense plasmas breaking into many filaments near the quarter critical density region followed by propagation of those filaments to critical density, producing hot electrons with Thot 70 keV in a well-contained beam. While the high intensity UV beam showed poor energy coupling. Details of the experiments and the complementary PIC modeling results will be presented. Work supported by U.S. DOE under contracts DE-NA0002730 (NLUF) and DE-SC0014666 (HEDLP).

  10. High Energy X-Ray Source Generation by Short Pulse High Intensity Lasers

    SciTech Connect

    Park, H-S; Koch, J A; Landen, O L; Phillips, T W; Goldsack, T; Clark, E; Eagleton, R; Edwards, R

    2003-09-02

    We are studying the feasibility of utilizing K{alpha} x-ray sources in the range of 20 to 100 keV as a backlighters for imaging various stages of implosions and high areal density planar samples driven by the NIF laser facility. The hard x-ray K{alpha} sources are created by relativistic electron plasma interactions in the target material after a radiation by short pulse high intensity lasers. In order to understand K{alpha} source characteristics such as production efficiency and brightness as a function of laser parameters, we have performed experiments using the 10 J, 100 fs JanUSP laser. We utilized single-photon counting spectroscopy and x-ray imaging diagnostics to characterize the K{alpha} source. We find that the K{alpha} conversion efficiency from the laser energy at 22 keV is {approx} 3 x 10{sup -4}.

  11. Third harmonic generation with ultra-high intensity laser pulses

    SciTech Connect

    Rax, J.M.; Fisch, N.J.

    1992-04-01

    When an intense, plane-polarized, laser pulse interacts with a plasma, the relativistic nonlinearities induce a third harmonic polarization. A phase-locked growth of a third harmonic wave can take place, but the differences between the nonlinear dispersion of the pump and driven waves leads to a rapid unlocking, resulting in a saturation. What becomes third harmonic amplitude oscillations are identified here, and the nonlinear phase velocity and the renormalized electron mass due to plasmon screening are calculated. A simple phase-matching scheme, based on a resonant density modulation, is then proposed and analyzed.

  12. High Intensity Laser Therapy (HILT) versus TENS and NSAIDs in low back pain: clinical study

    NASA Astrophysics Data System (ADS)

    Zati, Allesandro; Fortuna, Damiano; Valent, A.; Filippi, M. V.; Bilotta, Teresa W.

    2004-09-01

    Low back pain, caused by lumbar disc herniation, is prevalently treated with a conservative approach. In this study we valued the efficacy of High Intensity Laser Therapy (HILT), compared with accepted therapies such as TENS and NSAIDs. Laser therapy obtained similar results in the short term, but better clinical effect over time than TENS and NSAIDs. In conclusion high intensity laser therapy appears to be a interesting new treatment, worthy of further research.

  13. Energy gain and spectral tailoring of ion beams using ultra-high intensity laser beams

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra; Swantusch, Marco; Cerchez, Mirela; Spickermann, Sven; Auorand, Bastian; Wowra, Thomas; Boeker, Juergen; Willi, Oswald

    2015-11-01

    The field of laser driven ion acceleration over the past decade has produced a huge amount of research. Nowadays, several multi-beam facilities with high rep rate system, e.g. ELI, are being developed across the world for different kinds of experiments. The study of interaction dynamics of multiple beams possessing ultra-high intensity and ultra-short pulse duration is of vital importance. Here, we present the first experimental results on ion acceleration using two ultra-high intensity beams. Thanks to the unique capability of Arcturus laser at HHU Düsseldorf, two almost identical, independent beams in laser parameters such as intensity (>1020 W/cm2), pulse duration (30 fs) and contrast (>1010), could be accessed. Both beams are focused onto a 5 μm thin Ti target. While ensuring spatial overlap of the two beams, at relative temporal delay of ~ 50 ps (optimum delay), the proton and carbon ion energies were enhanced by factor of 1.5. Moreover, strong modulation in C4+ions near the high energy cut-off is observed later than the optimum delay for the proton enhancement. This offers controlled tailoring of the spectral content of heavy ions.

  14. Diffraction Gratings for High-Intensity Laser Applications

    SciTech Connect

    Britten, J

    2008-01-23

    The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy have further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.

  15. Thomson scattering in high-intensity chirped laser pulses

    SciTech Connect

    Holkundkar, Amol R.; Harvey, Chris Marklund, Mattias

    2015-10-15

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion of its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.

  16. Generation of Ultra-high Intensity Laser Pulses

    SciTech Connect

    N.J. Fisch; V.M. Malkin

    2003-06-10

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 10{sup 25} W/cm{sup 2} can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers.

  17. An electron of helium atom under a high-intensity laser field

    NASA Astrophysics Data System (ADS)

    Falaye, Babatunde James; Sun, Guo-Hua; Adepoju, Adenike Grace; Liman, Muhammed S.; Oyewumi, K. J.; Dong, Shi-Hai

    2017-02-01

    We scrutinize the behavior of eigenvalues of an electron in a helium (He) atom as it interacts with electric field directed along the z-axis and is exposed to linearly polarized intense laser field radiation. To achieve this, we freeze one electron of the He atom at its ionic ground state and the motion of the second electron in the ion core is treated via a more general case of screened Coulomb potential model. Using the Kramers-Henneberger (KH) unitary transformation, which is the semiclassical counterpart of the Block-Nordsieck transformation in the quantized field formalism, the squared vector potential that appears in the equation of motion is eliminated and the resultant equation is expressed in the KH frame. Within this frame, the resulting potential and the corresponding wave function are expanded in Fourier series and using Ehlotzky’s approximation, we obtain a laser-dressed potential to simulate intense laser field. By fitting the more general case of screened Coulomb potential model into the laser-dressed potential, and then expanding it in Taylor series up to O≤ft({{r}4},α 09\\right) , we obtain the solution (eigenvalues and wave function) of an electron in a He atom under the influence of external electric field and high-intensity laser field, within the framework of perturbation theory formalism. We found that the variation in frequency of laser radiation has no effect on the eigenvalues of a He electron for a particular electric field intensity directed along z-axis. Also, for a very strong external electric field and an infinitesimal screening parameter, the system is strongly bound. This work has potential application in the areas of atomic and molecular processes in external fields including interactions with strong fields and short pulses.

  18. Edward Teller medal lecture: high intensity lasers and the road to ignition

    SciTech Connect

    Key, M.H.

    1997-06-02

    There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement.

  19. The Edward Teller Medal Lecture: High Intensity Lasers and the Road to Ignition (lirpp Vol. 13)

    NASA Astrophysics Data System (ADS)

    Key, M. H.

    2016-10-01

    There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement.

  20. Spontaneous transitions in atomic system in the presence of high-intensity laser field

    NASA Astrophysics Data System (ADS)

    Bogatskaya, Anna; Volkova, Ekaterina; Popov, Alexander

    2016-10-01

    A new approach to the study of the spontaneous emission of the quantum system driven by a high-intensity laser field is developed. This approach is based on the accurate consideration of quantum system interaction with vacuum quantized field modes in the first order of perturbation theory, while the intense laser field is considered classically beyond the perturbation theory which allows to observe any-order stimulated processes governed by classical field. The proposed approach is applied to the study of a number of quantum systems in intense laser field. The obtained data are compared with those obtained in the frames of semiclassical approximation typically used for analyzing of the strong-field dynamic. It is found that the applicability of the semiclassical approach is strictly limited. It is valid for calculation of transitions to the initially populated state only if the population of this state is close to unity during the pulse and in the after-pulse regime. If its population is depleted, the semiclassical approach fails.

  1. Phase contrast imaging of high-intensity laser hole boring of solid-density wires at LCLS-MEC

    NASA Astrophysics Data System (ADS)

    Schumaker, W.; Brown, S.; Curry, C.; Gauthier, M.; Gamboa, E.; Goede, S.; Fletcher, L.; Kim, J.; MacDonald, M.; Mishra, R.; Roedel, C.; Glenzer, S.; Fiuza, F.; Granados, E.; Nagler, B.; Zhou, Z.; MacKinnon, A.; Obst, L.; Ziel, K.; Pak, A.; Williams, G.; Fajardo, M.

    2016-10-01

    High-intensity, relativistic (a0 > 1) laser plasma interactions on solid surfaces produce a rich mix of dynamics on the laser timescale (Weibel instabilities, surface effects, sheath formation, etc.) and hydrodynamic timescale (hole-boring, shocks, etc.). Probing these interactions optically is difficult due to critical density layer obscuring the surface of the target, whereas probing with hard X-rays from K-alpha sources does not sufficiently resolve these interactions temporally as they are typically many ps in duration. Presented here are the first experimental measurements of laser hole-boring on a carbon wire surfaces performed at the LCLS-MEC facility. With laser intensities of up to 1019 W / cm2 , we observe the dissociation of micron-sized wires over 100 ps timescale with peak hole boring velocities up to 0.001 c using phase-contrast imaging. This work was funded by DOE FES under FWP #100182.

  2. Laser-enhanced high-intensity focused ultrasound heating in an in vivo small animal model

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Yang, Xinmai

    2016-11-01

    The enhanced heating effect during the combination of high-intensity focused ultrasound (HIFU) and low-optical-fluence laser illumination was investigated by using an in vivo murine animal model. The thighs of murine animals were synergistically irradiated by HIFU and pulsed nano-second laser light. The temperature increases in the target region were measured by a thermocouple under different HIFU pressures, which were 6.2, 7.9, and 9.8 MPa, in combination with 20 mJ/cm2 laser exposures at 532 nm wavelength. In comparison with conventional laser therapies, the laser fluence used here is at least one order of magnitude lower. The results showed that laser illumination could enhance temperature during HIFU applications. Additionally, cavitation activity was enhanced when laser and HIFU irradiation were concurrently used. Further, a theoretical simulation showed that the inertial cavitation threshold was indeed decreased when laser and HIFU irradiation were utilized concurrently.

  3. The effects of high intensity laser therapy on pain and function in patients with knee osteoarthritis.

    PubMed

    Kim, Gook-Joo; Choi, Jioun; Lee, Sangyong; Jeon, Chunbae; Lee, Kwansub

    2016-11-01

    [Purpose] The purpose of this study was to examine the effects of high intensity laser therapy (HILT) on pain and function in patients with knee osteoarthritis. [Subjects and Methods] In this study, an experiment was conducted on 20 subjects who were divided into the control group (n=10), which would receive conservative physical therapy (CPT), and the experimental group (n=10), which would receive effects of high intensity laser therapy after conservative physical therapy. All patients received their respective therapies three times each week over a four-week period. In terms of the intensity of the high intensity laser therapy, it was applied to each patient in the tibia and femoral epicondyle for five minutes while the patient's knee joint was bent at around 30° and the separation distance between the handpiece and the skin was maintained at around 1 cm. The visual analogue scale was used to measure pain, and the Korean Western Ontario and McMaster Universities Osteoarthritis Index was used for functional evaluations. [Results] The comparison of differences in the measurements taken before and after the experiment within each group showed a statistically significant decline in both the VAS and the K-WOMAC. The comparison of the two groups showed that the high intensity laser therapy group had statistically significant lower scores in both the visual analogue scale and the Korean Western Ontario and McMaster Universities Osteoarthritis Index than the conservative physical therapy group. [Conclusion] High intensity laser therapy is considered an effective non-surgical intervention for reducing pain in patients with knee osteoarthritis and helping them to perform daily activities.

  4. The effects of high intensity laser therapy on pain and function in patients with knee osteoarthritis

    PubMed Central

    Kim, Gook-Joo; Choi, Jioun; Lee, Sangyong; Jeon, Chunbae; Lee, Kwansub

    2016-01-01

    [Purpose] The purpose of this study was to examine the effects of high intensity laser therapy (HILT) on pain and function in patients with knee osteoarthritis. [Subjects and Methods] In this study, an experiment was conducted on 20 subjects who were divided into the control group (n=10), which would receive conservative physical therapy (CPT), and the experimental group (n=10), which would receive effects of high intensity laser therapy after conservative physical therapy. All patients received their respective therapies three times each week over a four-week period. In terms of the intensity of the high intensity laser therapy, it was applied to each patient in the tibia and femoral epicondyle for five minutes while the patient’s knee joint was bent at around 30° and the separation distance between the handpiece and the skin was maintained at around 1 cm. The visual analogue scale was used to measure pain, and the Korean Western Ontario and McMaster Universities Osteoarthritis Index was used for functional evaluations. [Results] The comparison of differences in the measurements taken before and after the experiment within each group showed a statistically significant decline in both the VAS and the K-WOMAC. The comparison of the two groups showed that the high intensity laser therapy group had statistically significant lower scores in both the visual analogue scale and the Korean Western Ontario and McMaster Universities Osteoarthritis Index than the conservative physical therapy group. [Conclusion] High intensity laser therapy is considered an effective non-surgical intervention for reducing pain in patients with knee osteoarthritis and helping them to perform daily activities. PMID:27942148

  5. 20-100 keV K(alpha) X-Ray Source Generation by Short Pulse High Intensity Lasers

    SciTech Connect

    Park, H-S; Koch, J A; Landen, O L; Phillips, T W; Goldsack, T

    2003-08-22

    We are studying the feasibility of utilizing K{alpha} x-ray sources in the range of 20 to 100 keV as a backlighters for imaging various stages of implosions and high areal density planar samples driven by the NIF laser facility. The hard x-ray K{alpha} sources are created by relativistic electron plasma interactions in the target material after a radiation by short pulse high intensity lasers. In order to understand K{alpha} source characteristics such as production efficiency and brightness as a function of laser parameters, we have performed experiments using the 10 J, 100 fs JanUSP laser. We utilized single-photon counting spectroscopy and x-ray imaging diagnostics to characterize the K{alpha} source. We find that the K{alpha} conversion efficiency from the laser energy is {approx} 3 x 10{sup -4}.

  6. Condensation of ablation plumes in the irradiation of metals by high-intensity nanosecond laser pulses at atmospheric pressure

    SciTech Connect

    Kozadaev, K V

    2016-01-31

    The Anisimov–Luk'yanchuk model is adapted for describing the condensation of vapour-plasma plumes produced in the irradiation of metal targets by high-intensity (10{sup 8} – 10{sup 10} W cm{sup -2}) nanosecond (10 – 100 ns) pulses at atmospheric pressure. The resultant data suggest that the initial stages of the development of metal ablation plumes correspond with a high degree of accuracy to the Zel'dovich–Raizer theory of dynamic condensation; however, at the stage of the ablation plume decay, the liquid-droplet phase is formed primarily by coalescence of 'nuclei'. (interaction of laser radiation with matter. laser plasma)

  7. Studies of Ion Acceleration from Thin Solid-Density Targets on High-Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Willis, Christopher R.

    experiment utilized new liquid crystal film targets developed at OSU, which may be formed at variable thicknesses from tens of nanometers to several microns. On this experiment, an optimum ion energy and flux was reached for targets of 600-900 nm, providing a peak proton energy of 24 MeV, and total ion flux of > 109 protons over 3.4 MeV from 5.5 J of laser energy at an intensity of 1 x 1020 W cm -2. The primary ion diagnostics for these two experiments are described in detail, including the analysis techniques needed to extract absolutely calibrated spatial and spectral distributions of the accelerated ions. Additionally, a new technique for target alignment is presented, providing repeatable target alignment on the micron scale. This allows for a repeatable laser intensity on target, allowing improved shot to shot consistency on high intensity experiments. In addition to these two experiments, work on the upgrade and characterization of the 400 TW Scarlet laser is discussed, including several calculations critical to the design and upgrade of the laser system, as well as prepulse characterization needed for experiments on thin targets.

  8. High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions

    NASA Technical Reports Server (NTRS)

    Nayfeh, Taysir; Fast, Brian; Raible, Daniel; Dinca, Dragos; Tollis, Nick; Jalics, Andrew

    2011-01-01

    High Intensity Laser Power Beaming (HILPB) has been developed as a technique to achieve Wireless Power Transmission (WPT) for both space and terrestrial applications. In this paper, the system architecture and hardware results for a terrestrial application of HILPB are presented. These results demonstrate continuous conversion of high intensity optical energy at near-IR wavelengths directly to electrical energy at output power levels as high as 6.24 W from the single cell 0.8 cm2 aperture receiver. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers. This type of system would enable long range optical refueling of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion.

  9. Channeling of multikilojoule high-intensity laser beams in an inhomogeneous plasma

    SciTech Connect

    Ivancic, S.; Haberberger, D.; Habara, H.; Iwawaki, T.; Anderson, K. S.; Craxton, R. S.; Froula, D. H.; Meyerhofer, D. D.; Stoeckl, C.; Tanaka, K. A.; Theobald, W.

    2015-05-01

    Channeling experiments were performed that demonstrate the transport of high-intensity (>10¹⁸ W/cm²), multikilojoule laser light through a millimeter-sized, inhomogeneous (~300-μm density scale length) laser produced plasma up to overcritical density, which is an important step forward for the fast-ignition concept. The background plasma density and the density depression inside the channel were characterized with a novel optical probe system. The channel progression velocity was measured, which agrees well with theoretical predictions based on large scale particle-in-cell simulations, confirming scaling laws for the required channeling laser energy and laser pulse duration, which are important parameters for future integrated fast-ignition channeling experiments.

  10. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target.

    PubMed

    Gauthier, M; Kim, J B; Curry, C B; Aurand, B; Gamboa, E J; Göde, S; Goyon, C; Hazi, A; Kerr, S; Pak, A; Propp, A; Ramakrishna, B; Ruby, J; Willi, O; Williams, G J; Rödel, C; Glenzer, S H

    2016-11-01

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  11. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    NASA Astrophysics Data System (ADS)

    Gauthier, M.; Kim, J. B.; Curry, C. B.; Aurand, B.; Gamboa, E. J.; Göde, S.; Goyon, C.; Hazi, A.; Kerr, S.; Pak, A.; Propp, A.; Ramakrishna, B.; Ruby, J.; Willi, O.; Williams, G. J.; Rödel, C.; Glenzer, S. H.

    2016-11-01

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  12. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    DOE PAGES

    Gauthier, M.; Kim, J. B.; Curry, C. B.; ...

    2016-08-24

    Here, we report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetitionmore » rate capability, this target is promising for future applications.« less

  13. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    SciTech Connect

    Gauthier, M.; Kim, J. B.; Curry, C. B.; Aurand, B.; Gamboa, E. J.; Göde, S.; Goyon, C.; Hazi, A.; Kerr, S.; Pak, A.; Propp, A.; Ramakrishna, B.; Ruby, J.; Willi, O.; Williams, G. J.; Rödel, C.; Glenzer, S. H.

    2016-08-24

    Here, we report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications.

  14. Channeling of multikilojoule high-intensity laser beams in an inhomogeneous plasma.

    PubMed

    Ivancic, S; Haberberger, D; Habara, H; Iwawaki, T; Anderson, K S; Craxton, R S; Froula, D H; Meyerhofer, D D; Stoeckl, C; Tanaka, K A; Theobald, W

    2015-05-01

    Channeling experiments were performed that demonstrate the transport of high-intensity (>10(18)W/cm(2)), multikilojoule laser light through a millimeter-sized, inhomogeneous (∼300-μm density scale length) laser-produced plasma up to overcritical density, which is an important step forward for the fast-ignition concept. The background plasma density and the density depression inside the channel were characterized with a novel optical probe system. The channel progression velocity was measured, which agrees well with theoretical predictions based on large scale particle-in-cell simulations, confirming scaling laws for the required channeling laser energy and laser pulse duration, which are important parameters for future integrated fast-ignition channeling experiments.

  15. Spectroscopic study of gold nanoparticle formation through high intensity laser irradiation of solution

    SciTech Connect

    Nakamura, Takahiro Sato, Shunichi; Herbani, Yuliati; Ursescu, Daniel; Banici, Romeo; Dabu, Razvan Victor

    2013-08-15

    A spectroscopic study of the gold nanoparticle (NP) formation by high-intensity femtosecond laser irradiation of a gold ion solution was reported. The effect of varying energy density of the laser on the formation of gold NPs was also investigated. The surface plasmon resonance (SPR) peak of the gold nanocolloid in real-time UV-visible absorption spectra during laser irradiation showed a distinctive progress; the SPR absorption peak intensity increased after a certain irradiation time, reached a maximum and then gradually decreased. During this absorption variation, at the same time, the peak wavelength changed from 530 to 507 nm. According to an empirical equation derived from a large volume of experimental data, the estimated mean size of the gold NPs varied from 43.4 to 3.2 nm during the laser irradiation. The mean size of gold NPs formed at specific irradiation times by transmission electron microscopy showed the similar trend as that obtained in the spectroscopic analysis. From these observations, the formation mechanism of gold NPs during laser irradiation was considered to have two steps. The first is a reduction of gold ions by reactive species produced through a non-linear reaction during high intensity laser irradiation of the solution; the second is the laser fragmentation of produced gold particles into smaller pieces. The gold nanocolloid produced after the fragmentation by excess irradiation showed high stability for at least a week without the addition of any dispersant because of the negative charge on the surface of the nanoparticles probably due to the surface oxidation of gold nanoparticles. A higher laser intensity resulted in a higher efficiency of gold NPs fabrication, which was attributed to a larger effective volume of the reaction.

  16. Effectiveness of High Intensity Laser Therapy for Reduction of Pain in Knee Osteoarthritis

    PubMed Central

    2016-01-01

    Introduction. Osteoarthritis is the most common type of arthritis. It is the main cause of chronic musculoskeletal pain and disability among the elderly population. Aim. This is a pilot, randomized clinical study about the effect of high intensity laser therapy in patients with osteoarthritis of the knee (OA of the knee). Material and Method. 72 patients (aged between 39 and 83 years) with (clinically and radiographically proved) OA of the knee were included in the study. They were randomized in two groups: therapeutic (test) one (n = 37, 65,11 ± 1,40 (mean ± SD) years old; patients were treated with HILT) and control group (n = 35, 64,71 ± 1,98; patients receive sham laser). Both groups had seven sessions of treatment. VAS and dolorimetry were used for assessment of pain before and after the therapy. Pedobarometric analysis (static and dynamic) was used to assess comparatively the contact surface area and maximum pressure under the heel. Results. Pain levels measured by VAS and dolorimetry decreased significantly in the therapeutic group after seven days of treatment (p< 0,001). Conclusion. The results after seven days of treatment show more intensive and cumulative effect after the application of high intensity laser therapy in comparison to sham laser. This is the reason why HILT can be a method of choice in the treatment of gonarthrosis. PMID:28096711

  17. Epithermal Neutron Source for Neutron Resonance Spectroscopy (NRS) using High Intensity, Short Pulse Lasers

    SciTech Connect

    Higginson, D P; McNaney, J M; Swift, D C; Bartal, T; Hey, D S; Pape, S L; Mackinnon, A; Mariscal, D; Nakamura, H; Nakanii, N; Beg, F N

    2010-04-22

    A neutron source for neutron resonance spectroscopy (NRS) has been developed using high intensity, short pulse lasers. This measurement technique will allow for robust measurements of interior ion temperature of laser-shocked materials and provide insight into equation of state (EOS) measurements. The neutron generation technique uses protons accelerated by lasers off of Cu foils to create neutrons in LiF, through (p,n) reactions with {sup 7}Li and {sup 19}F. The distribution of the incident proton beam has been diagnosed using radiochromic film (RCF). This distribution is used as the input for a (p,n) neturon prediction code which is compared to experimentally measured neutron yields. From this calculation, a total fluence of 1.8 x 10{sup 9} neutrons is infered, which is shown to be a reasonable amount for NRS temperature measurement.

  18. Study of point defects created by high-intensity ultrashort pulse laser in YLF crystals

    NASA Astrophysics Data System (ADS)

    Courrol, Lilia C.; dos Santos, Everson B.; Samad, Ricardo E.; Ranieri, Izilda M.; Gomes, Laercio; de Freitas, Anderson Z.; Vieira, Nilson D., Jr.

    2005-03-01

    In this work we report the creation of color centers in LiF and YLF crystals by high intensity, ultrashort laser pulses. We used pure and Tm3+ and Oxygen doped samples, all irradiated with a Ti:Sapphire CPA laser system and also with electron beam, at room temperature. In both kinds of irradiations the production of photochromic damages and color centers that have absorption bands in UV and visible range was observed. A comparison between the two kinds of irradiation was done and the involved processes are described in this paper. F2+ stable centers were produced by the ultrashort laser pulses irradiation in contrast to the well-known, short lived centers produced by electron beams, and a mechanism was proposed to explain the observed stability.

  19. High-intensity laser therapy during chronic degenerative tenosynovitis experimentally induced in broiler chickens

    NASA Astrophysics Data System (ADS)

    Fortuna, Damiano; Rossi, Giacomo; Bilotta, Teresa W.; Zati, Allesandro; Gazzotti, Valeria; Venturini, Antonio; Pinna, Stefania; Serra, Christian; Masotti, Leonardo

    2002-10-01

    The aims of this study was the safety and the efficacy of High Intensity Laser Therapy (HILT) on chronic degenerative tenosynovitis. We have effectuated the histological evaluation and seroassay (C reactive protein) on 18 chickens affect by chronic degenerative tenosynovitis experimentally induced. We have been employed a Nd:YAG laser pulsed wave; all irradiated subjects received the same total energy (270 Joule) with a fluence of 7,7 J/cm2 and intensity of 10,7 W/cm2. The histological findings revealed a distinct reduction of the mineralization of the choral matrix, the anti-inflammatory effect of the laser, the hyperplasia of the synoviocytes and ectasia of the lymphatic vessels.

  20. Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Sundqvist, Chantal

    2016-07-01

    Vacuum birefringence is one of the most striking predictions of strong field quantum electrodynamics: Probe photons traversing a strong field region can indirectly sense the applied "pump" electromagnetic field via quantum fluctuations of virtual charged particles which couple to both pump and probe fields. This coupling is sensitive to the field alignment and can effectively result in two different indices of refraction for the probe photon polarization modes giving rise to a birefringence phenomenon. In this article, we perform a dedicated theoretical analysis of the proposed discovery experiment of vacuum birefringence at an x-ray free electron laser/optical high-intensity laser facility. Describing both pump and probe laser pulses realistically in terms of their macroscopic electromagnetic fields, we go beyond previous analyses by accounting for various effects not considered before in this context. Our study facilitates stringent quantitative predictions and optimizations of the signal in an actual experiment.

  1. High intensity physics with a table-top 20 TW laser system

    SciTech Connect

    Ditmire, T; Perry, M D

    1999-02-24

    The purpose of this project was to develop a high peak power laser system (100 TW) and begin initial high intensity experiments that exploit its short pulse width (30 fs) and high repetition rate (1 - 10 Hz). Such a laser system presents unique capabilities such as permitting ultrafast time-resolved plasma physics experiments by probing the plasma with the 30 fs laser pulse. The high repetition rate also allows detailed, systematic studies of phenomena, not possible with large, single shot laser systems. During the previous year we have made good progress on the development of the laser. We have demonstrated the production of pulses up to the 5 TW level at 10 Hz and have installed an additional amplifier to take the system to 20 TW. We have pulse compressed the pulses to 30 fs and have developed a number of diagnostics to characterize the laser prepulse. During this year we have also activated a target chamber to begin plasma physics experiments in gas jet targets.

  2. Optical Frequency Optimization of a High Intensity Laser Power Beaming System Utilizing VMJ Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Raible, Daniel E.; Dinca, Dragos; Nayfeh, Taysir H.

    2012-01-01

    An effective form of wireless power transmission (WPT) has been developed to enable extended mission durations, increased coverage and added capabilities for both space and terrestrial applications that may benefit from optically delivered electrical energy. The high intensity laser power beaming (HILPB) system enables long range optical 'refueling" of electric platforms such as micro unmanned aerial vehicles (MUAV), airships, robotic exploration missions and spacecraft platforms. To further advance the HILPB technology, the focus of this investigation is to determine the optimal laser wavelength to be used with the HILPB receiver, which utilizes vertical multi-junction (VMJ) photovoltaic cells. Frequency optimization of the laser system is necessary in order to maximize the conversion efficiency at continuous high intensities, and thus increase the delivered power density of the HILPB system. Initial spectral characterizations of the device performed at the NASA Glenn Research Center (GRC) indicate the approximate range of peak optical-to-electrical conversion efficiencies, but these data sets represent transient conditions under lower levels of illumination. Extending these results to high levels of steady state illumination, with attention given to the compatibility of available commercial off-the-shelf semiconductor laser sources and atmospheric transmission constraints is the primary focus of this paper. Experimental hardware results utilizing high power continuous wave (CW) semiconductor lasers at four different operational frequencies near the indicated band gap of the photovoltaic VMJ cells are presented and discussed. In addition, the highest receiver power density achieved to date is demonstrated using a single photovoltaic VMJ cell, which provided an exceptionally high electrical output of 13.6 W/sq cm at an optical-to-electrical conversion efficiency of 24 percent. These results are very promising and scalable, as a potential 1.0 sq m HILPB receiver of

  3. Comparison of High-Intensity Laser Therapy and Ultrasound Treatment in the Patients with Lumbar Discopathy

    PubMed Central

    Boyraz, Ismail; Yildiz, Ahmet; Koc, Bunyamin

    2015-01-01

    The aim of the present study was to evaluate the efficiency of high intensity laser and ultrasound therapy in patients who were diagnosed with lumbar disc herniation and who were capable of performing physical exercises. 65 patients diagnosed with lumbar disc were included in the study. The patients were randomly divided into three groups: Group 1 received 10 sessions of high intensity laser to the lumbar region, Group 2 received 10 sessions of ultrasound, and Group 3 received medical therapy for 10 days and isometric lumbar exercises. The efficacy of the treatment modalities was compared with the assessment of the patients before the therapy at the end of the therapy, and in third month after the therapy. Comparing the changes between groups, statically significant difference was observed in MH (mental health) parameter before treatment between Groups 1 and 2 and in MH parameter and VAS score in third month of the therapy between Groups 2 and 3. However, the evaluation of the patients after ten days of treatment did not show significant differences between the groups compared to baseline values. We found that HILT, ultrasound, and exercise were efficient therapies for lumbar discopathy but HILT and ultrasound had longer effect on some parameters. PMID:25883952

  4. High-intensity laser for Ta and Ag implantation into different substrates for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Mackova, A.; Malinsky, P.; Matousek, J.; Torrisi, L.; Ullschmied, J.

    2015-07-01

    High-intensity lasers generating non-equilibrium plasma, can be employed to accelerate ions in the keV-MeV region, useful for many applications. In the present work, we performed study of ion implantation into different substrates by using a high-intensity laser at the PALS laboratory in Prague. Multi-energy ions generated by plasma from Ta and Ag targets were implanted into polyethylene and metallic substrates (Al, Ti) at energies of tens of keV per charge state. The ion emission was monitored online using time-of-flight detectors and electromagnetic deflection systems. Rutherford Backscattering Spectrometry (RBS) was used to characterise the elemental composition in the implanted substrates by ion plasma emission and to provide the implanted ion depth profiling. These last measurements enable offline plasma characterisation and provide information on the useful potentiality of multi-ion species and multi-energy ion implantation into different substrates. XPS analysis gives information on the chemical bonds and their modifications in the first superficial implanted layers. The depth distributions of implanted Ta and Ag ions were compared with the theoretical ones achieved by using the SRIM-2012 simulation code.

  5. High-intensity fibre laser design for micro-machining applications

    NASA Astrophysics Data System (ADS)

    Ortiz-Neria, D. I.; Martinez-Piñón, F.; Hernandez-Escamilla, H.; Alvarez-Chavez, J. A.

    2010-11-01

    This work is focused on the design of a 250W high-intensity continuous-wave fibre optic laser with a 15μm spot size beam and a beam parameter product (BPP) of 1.8 for its use on Laser-assisted Cold Spray process (LCS) in the micro-machining areas. The metal-powder deposition process LCS, is a novel method based on Cold Spray technique (CS) assisted by laser technology. The LCS accelerates metal powders by the use of a high-pressure gas in order to achieve flash welding of particles over substrate. In LCS, the critical velocity of impact is lower with respect with CS while the powder particle is heated before the deposition by a laser beam. Furthermore, LCS does not heat the powder to achieve high temperatures as it happens in plasma processes. This property puts aside cooling problems which normally happen in sintered processes with high oxygen/nitrogen concentration levels. LCS will be used not only in deposition of thin layers. After careful design, proof of concept, experimental data, and prototype development, it should be feasible to perform micro-machining precise work with the use of the highintensity fibre laser presented in this work, and selective deposition of particles, in a similar way to the well-known Direct Metal Laser Sintering process (DMLS). The fibre laser consists on a large-mode area, Yb3+-doped, semi-diffraction limited, 25-m fibre laser cavity, operating in continuous wave regime. The fibre shows an arguably high slope-efficiency with no signs of roll-over. The measured M2 value is 1.8 and doping concentration of 15000ppm. It was made with a slight modification of the traditional MCVD technique. A full optical characterization will be presented.

  6. Impact of Pre-Plasma on Fast Electron Generation and Transport from Short Pulse High Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Peebles, J.; McGuffey, C.; Krauland, C.; Jarrott, L. C.; Sorokovikova, A.; Qiao, B.; Krasheninnikov, S.; Beg, F. N.; Wei, M. S.; Park, J.; Link, A.; Chen, H.; McLean, H. S.; Wagner, C.; Minello, V.; McCary, E.; Meadows, A.; Spinks, M.; Gaul, E.; Dyer, G.; Hegelich, B. M.; Martinez, M.; Donovan, M.; Ditmire, T.

    2014-10-01

    We present the results and analysis from recent short pulse laser matter experiments using the Texas Petawatt Laser to study the impact of pre-plasma on fast electron generation and transport. The experimental setup consisted of 3 separate beam elements: a main, high intensity, short pulse beam for the interaction, a secondary pulse of equal intensity interacting with a separate thin foil target to generate protons for side-on proton imaging and a third, low intensity, wider beam to generate a varied scale length pre-plasma. The main target consisted of a multilayer planar Al foil with a buried Cu fluor layer. The electron beam was characterized with multiple diagnostics, including several bremsstrahlung spectrometers, magnetic electron spectrometers and Cu-K α imaging. The protons from the secondary target were used to image the fields on the front of the target in the region of laser plasma interaction. Features seen in the interaction region by these protons will be presented along with characteristics of the generated electron beam. This work performed under the auspices of the US DOE under Contracts DE-FOA-0000583 (FES, NNSA).

  7. The study towards high intensity high charge state laser ion sources

    NASA Astrophysics Data System (ADS)

    Zhao, H. Y.; Jin, Q. Y.; Sha, S.; Zhang, J. J.; Li, Z. M.; Liu, W.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W.

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  8. Spectral anomalies in high intensity stimulated Raman backscattering in laser plasmas

    SciTech Connect

    Skoric, M.M.; Jovanovic, M.S.

    1995-12-31

    A large amount of effort is put into studies of fascinating new physics that is observed as one moves into a regime for collective effects with ultra short pulse high intensity laser plasmas. Recently, a Livermore-UCLA collaboration has observed a sub-psec version of classic laser plasma stimulated Raman backscattering (SRBS) instability. The backscattered light displays novel spectral signatures that depend on laser intensity. Broad and modulated frequency spectrum that spreads to the blue side of the incident wavelength; that is obviously different from classic SRBS which downshifts the incident frequency by approximately the electron plasma frequency (EPW). The authors study anomalous SRBS signatures in the 1-D model of underdense uniform weakly collisional plasma Layer. The set of three coupled equations, that account for pump depletion and relativistic detuning of EPW is simulated in space-time. By increasing a laser pump, a generic route via steady state periodic and quasi-periodic regime with an intermittent transition to spatio-temporal chaos is discovered. This type of intermittency in which quasi-periodic oscillations are interrupted by chaotic bursts displays modulated spectra with many peaks immersed in a broad band chaotic background. The picture reveals patches of turbulence inside the coherent state; the continuous transition amounts to a progressive increase of turbulence through the increase of the pump strength. Features, such as spiky burst-like reflectivity, anomalous broadening and blue shifted SRBS spectra are obtained and compared with recent experiments. Consistency, with observed anomalous spectral data is outlined.

  9. Monoenergetic proton emission from nuclear reaction induced by high intensity laser-generated plasma.

    PubMed

    Torrisi, L; Cavallaro, S; Cutroneo, M; Giuffrida, L; Krasa, J; Margarone, D; Velyhan, A; Kravarik, J; Ullschmied, J; Wolowski, J; Szydlowski, A; Rosinski, M

    2012-02-01

    A 10(16) W∕cm(2) Asterix laser pulse intensity, 1315 nm at the fundamental frequency, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD(2) targets placed inside a high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deutons and carbon ions emission with energy of up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deutons may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD(2) targets can be employed to be irradiated by the plasma-accelerated deutons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  10. The study towards high intensity high charge state laser ion sources.

    PubMed

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  11. Temporal narrowing of neutrons produced by high-intensity short-pulse lasers

    SciTech Connect

    Higginson, D. P.; Vassura, L.; Gugiu, M. M.; Antici, P.; Borghesi, M.; Brauckmann, S.; Diouf, C.; Green, A.; Palumbo, L.; Petrascu, H.; Sofia, S.; Stardubtsev, M.; Willi, O.; Kar, S.; Negoita, F.; Fuchs, J.

    2015-07-28

    The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ~3 ns duration neutron pulse with 104 n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. Finally, this neutron pulse compares favorably to the duration of conventional accelerator sources and should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.

  12. Temporal narrowing of neutrons produced by high-intensity short-pulse lasers

    DOE PAGES

    Higginson, D. P.; Vassura, L.; Gugiu, M. M.; ...

    2015-07-28

    The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ~3 ns duration neutron pulse with 104 n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. Finally, this neutron pulse compares favorably to the duration of conventional accelerator sources and shouldmore » scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.« less

  13. Temporal Narrowing of Neutrons Produced by High-Intensity Short-Pulse Lasers.

    PubMed

    Higginson, D P; Vassura, L; Gugiu, M M; Antici, P; Borghesi, M; Brauckmann, S; Diouf, C; Green, A; Palumbo, L; Petrascu, H; Sofia, S; Stardubtsev, M; Willi, O; Kar, S; Negoita, F; Fuchs, J

    2015-07-31

    The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ∼3  ns duration neutron pulse with 10(4)  n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. This neutron pulse compares favorably to the duration of conventional accelerator sources and should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.

  14. Temporal Narrowing of Neutrons Produced by High-Intensity Short-Pulse Lasers

    NASA Astrophysics Data System (ADS)

    Higginson, D. P.; Vassura, L.; Gugiu, M. M.; Antici, P.; Borghesi, M.; Brauckmann, S.; Diouf, C.; Green, A.; Palumbo, L.; Petrascu, H.; Sofia, S.; Stardubtsev, M.; Willi, O.; Kar, S.; Negoita, F.; Fuchs, J.

    2015-07-01

    The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ˜3 ns duration neutron pulse with 104 n /MeV /sr /shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. This neutron pulse compares favorably to the duration of conventional accelerator sources and should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.

  15. Amplification properties of vacuum ultraviolet Ar2* produced by infrared high-intensity laser

    NASA Astrophysics Data System (ADS)

    Kaku, Masanori; Harano, Shinya; Matsumoto, Ryota; Katto, Masahito; Kubodera, Shoichi

    2011-07-01

    We report optical amplification of Ar2* at 126nm, pumped by optical-field-induced ionization (OFI) created by an infrared high-intensity laser. A gain--length product of 0.84 was obtained by using multipass amplification with a vacuum ultraviolet (VUV) cavity. The gain--length product was increased up to 4.3 through the use of single-pass amplification with a VUV reflector and a hollow 5.0cm-long fiber. Similar small signal gain coefficients of 0.84 and 0.86cm-1 were obtained in two different experiments, in which OFI Ar plasma gain media were produced in free space filled with Ar and inside an Ar-filled hollow fiber.

  16. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation

    SciTech Connect

    Albertazzi, B.; Chen, S. N.; Fuchs, J.; Antici, P.; Böker, J.; Swantusch, M.; Willi, O.; Borghesi, M.; Breil, J.; Feugeas, J. L.; Nicolaï, Ph.; Tikhonchuk, V. T.; D'Humières, E.; Dervieux, V.; Nakatsutsumi, M.; Romagnagni, L.; Lancia, L.; Shepherd, R.; Sentoku, Y.; Starodubtsev, M.; and others

    2015-12-15

    The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 10{sup 19 }W cm{sup −2}) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10–20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8–10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.

  17. Production of stabilized color centers in YLiF{sub 4} crystals by high-intensity ultrashort laser pulses

    SciTech Connect

    Courrol, Lilia C.; Samad, Ricardo E.; Ranieri, Izilda M.; Gomes, Laercio; Baldochi, So circumflex nia L.; Freitas, Anderson Z. de; Vieira, Nilson D. Jr.

    2005-12-01

    In this work we show that is possible to produce stable color centers in YLiF{sub 4} crystals, with dimensional control, by focusing high-intensity ultrashort laser pulses in the bulk. In particular, with the spectroscopic characterization of ultrashort laser-irradiated YLF samples, it was possible to discuss the basic formation mechanisms of these centers.

  18. Simulation of the Generation of Low Frequency Radiation From Argon Clusters lluminated by High-Intensity Short Pulse Lasers

    NASA Astrophysics Data System (ADS)

    Cordova, Clay

    2005-10-01

    The interaction of high-powered lasers with small plasma clusters is of interest due to its range of applications including the generation of fast ions and electrons for advanced accelerators, self-focusing phenomenon in optics, and production of x-ray and extreme ultraviolet (EUV) radiation. We simulate the interaction of high-intensity lasers with solid density clusters using the fully electromagnetic PIC code TurboWAVE^2. We analyze a range of cluster sizes, laser intensities, and pulse durations to investigate the dependence of low frequency radiation production on these parameters. In this poster, we illustrate the results of this study. In particular, we present calculations of the energy absorbed and released from the cluster, as well as an analysis of the far-field radiation distribution, intensity, and power spectrum. Finally, we present conclusions that may guide future simulations and experiments. 1. ccor@lanl.gov 2. D. Gordon et al. IEEE TRANSACTIONS ON PLASMA SCIENCE, 28 (4), 8/2000, 1135

  19. Comparison of Square and Radial Geometries for High Intensity Laser Power Beaming Receivers

    NASA Technical Reports Server (NTRS)

    Raible, Daniel E.; Fast, Brian R.; Dinca, Dragos; Nayfeh, Taysir H.; Jalics, Andrew K.

    2012-01-01

    In an effort to further advance a realizable form of wireless power transmission (WPT), high intensity laser power beaming (HILPB) has been developed for both space and terrestrial applications. Unique optical-to-electrical receivers are employed with near infrared (IR-A) continuous-wave (CW) semiconductor lasers to experimentally investigate the HILPB system. In this paper, parasitic feedback, uneven illumination and the implications of receiver array geometries are considered and experimental hardware results for HILPB are presented. The TEM00 Gaussian energy profile of the laser beam presents a challenge to the effectiveness of the receiver to perform efficient photoelectric conversion, due to the resulting non-uniform illumination of the photovoltaic cell arrays. In this investigation, the geometry of the receiver is considered as a technique to tailor the receiver design to accommodate the Gaussian beam profile, and in doing so it is demonstrated that such a methodology is successful in generating bulk receiver output power levels reaching 25 W from 7.2 sq cm of photovoltaic cells. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers to achieve a 1.0 sq m receiver capable of generating over 30 kW of electrical power. This type of system would enable long range optical "refueling" of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion. In addition, a smaller HILPB receiver aperture size could be utilized to establish a robust optical communications link within environments containing high levels of background radiance, to achieve high signal to noise ratios.

  20. f Number Increase of a High-Intensity Green Laser Beam in a Plasma

    NASA Astrophysics Data System (ADS)

    Cobble, J. A.; Johnson, R. P.; Mason, R. J.

    1997-11-01

    Earlier(J. A. Cobble, R. P. Johnson, R. J. Mason, Phys. Plasmas 6, 3006 (1997).), we studied the increase in f number of a high-intensity, 1054-nm laser beam passing through a low density, preformed plasma, i. e., an exploding foil. We have extended this work to 527-nm light. Again we find an increase in the f number of the probe beam. Near field imaging of the transmitted green beam shows a factor of four reduction in beam divergence at 8 percent of the critical density. The change is less for lower densities, and the beam compression corresponds to the critical power dropping below the laser power (0.6 TW) as the density increases. The density is estimated from the spectra of stimulated Raman back scatter and from modeling of the target plasma with LASNEX. A CCD camera and a spectrometer with a 200-nm bandwidth were used to record the backscattered spectra. *Work performed under the auspices of the U. S. Department of Energy.

  1. Rewriting the rules governing high intensity interactions of light with matter

    NASA Astrophysics Data System (ADS)

    Borisov, Alex B.; McCorkindale, John C.; Poopalasingam, Sankar; Longworth, James W.; Simon, Peter; Szatmári, Sándor; Rhodes, Charles K.

    2016-04-01

    The trajectory of discovery associated with the study of high-intensity nonlinear radiative interactions with matter and corresponding nonlinear modes of electromagnetic propagation through material that have been conducted over the last 50 years can be presented as a landscape in the intensity/quantum energy [I-ħω] plane. Based on an extensive series of experimental and theoretical findings, a universal zone of anomalous enhanced electromagnetic coupling, designated as the fundamental nonlinear domain, can be defined. Since the lower boundaries of this region for all atomic matter correspond to ħω ~ 103 eV and I  ≈  1016 W cm-2, it heralds a future dominated by x-ray and γ-ray studies of all phases of matter including nuclear states. The augmented strength of the interaction with materials can be generally expressed as an increase in the basic electromagnetic coupling constant in which the fine structure constant α  →  Z 2 α, where Z denotes the number of electrons participating in an ordered response to the driving field. Since radiative conditions strongly favoring the development of this enhanced electromagnetic coupling are readily produced in self-trapped plasma channels, the processes associated with the generation of nonlinear interactions with materials stand in natural alliance with the nonlinear mechanisms that induce confined propagation. An experimental example involving the Xe (4d105s25p6) supershell for which Z  ≅  18 that falls in the specified anomalous nonlinear domain is described. This yields an effective coupling constant of Z 2 α  ≅  2.4  >  1, a magnitude comparable to the strong interaction and a value rendering as useless conventional perturbative analyses founded on an expansion in powers of α. This enhancement can be quantitatively understood as a direct consequence of the dominant role played by coherently driven multiply-excited states in the dynamics of the coupling. It is also

  2. Simulations of High-Intensity Short-Pulse Lasers Incident on Reduced Mass Targets

    NASA Astrophysics Data System (ADS)

    King, Frank W.

    This thesis presents the results of a series of fully kinetic particle-in-cell (PIC) simulations of reduced mass targets with pre-plasma subjected to high-intensity short-pulse lasers. The simulations are performed in one, two, and three dimensions. The results of these simulations show that the creation of an electrostatic collisionless ion shock in the preplasma controls the creation of an above solid density ion perturbation in the target bulk, and this determines the reduced mass target heating and deformation. The ion perturbation is initiated by a population of high-energy electrons that rapidly spread throughout the target and reflux. The perturbation spreads longitudinally and transversely through the target and results in compression followed by the destruction of the target. This deformation requires a kinetic treatment due to the generation of non-equilibrium particle distributions and the role of ballistic electrons and ions. Kinetic and fluid simulations are compared and both exhibit the basic features of the above solid density ion perturbation, but the magnitude of the effect and the speed of propagation vary significantly between the two methods. Kinetic simulations do not naturally include equation-of-state physics and other aspects of the problem. Both approaches are complementary. The requirements on spatial resolution, particle count, and other numerical parameters are addressed in this work. From these simulations, the behavior of the reduced mass targets is found to vary significantly depending on the laser focal spot size or the intensity of the laser pulse. This occurs even if the energy and power of the laser pulses are held constant. The number of dimensions used in the particle-in-cell simulations has been observed to have a significant effect on late-time heating of the target, but not during or shortly after laser excitation. This is due to the representation of the equilibration process as the initial population of laser heated

  3. Evaluation of Surface Roughness and Bacterial Adhesion on Tooth Enamel Irradiated With High Intensity Lasers.

    PubMed

    Nogueira, Ruchele D; Silva, Camilla B; Lepri, Cesar P; Palma-Dibb, Regina Guenka; Geraldo-Martins, Vinicius R

    2017-01-01

    The aim was to evaluate the surface roughness and bacterial adhesion on enamel irradiated with high intensity lasers, associated or not to a fluoride varnish. Eighty fragments of bovine enamel were equally divided in 8 groups (n=10). Group 1 was not treated and Group 2 received only a 5% fluoride varnish application. The other groups were irradiated with an Er:Cr:YSGG (8.92 J/cm2), an Nd:YAG (84.9 J/cm2) and a diode laser (199.04 J/cm2), associated or not to a 5% fluoride varnish. The surface roughness was measured before and after treatments. Afterward, all samples were incubated in a suspension of S. mutans at 37 °C for 24 h. The colony-forming units (CFU) were counted by a stereoscope and the results were expressed in CFU/mm2. One-way ANOVA and the Tukey´s test compared the roughness data and the Student´s test compared the results obtained in the bacterial adhesion test (a=5%). The results showed that the irradiated samples without varnish presented the same roughness and the same bacterial adhesion that the non-irradiated samples. However, samples irradiated in the presence of fluoride varnish showed higher surface roughness and higher bacterial adhesion than the non-irradiated samples and those irradiated without varnish. Presence of pigments in the varnish increased the lasers' action on the enamel surface, which produced ablation in this hard tissue and significantly increased its surface roughness. For this reason, the enamel's susceptibility to bacterial adhesion was higher when the irradiation of the samples was made in presence of fluoride varnish.

  4. Propagation and absorption of high-intensity femtosecond laser radiation in diamond

    SciTech Connect

    Kononenko, V V; Konov, V I; Gololobov, V M; Zavedeev, E V

    2014-12-31

    Femtosecond interferometry has been used to experimentally study the photoexcitation of the electron subsystem of diamond exposed to femtosecond laser pulses of intensity 10{sup 11} to 10{sup 14} W cm{sup -2}. The carrier concentration has been determined as a function of incident intensity for three harmonics of a Ti : sapphire laser (800, 400 and 266 nm). The results demonstrate that, in a wide range of laser fluences (up to those resulting in surface and bulk graphitisation), a well-defined multiphoton absorption prevails. We have estimated nonlinear absorption coefficients for pulsed radiation at λ = 800 nm (four-photon transition) and at 400 and 266 nm (indirect and direct two-photon transitions, respectively). It has also been shown that, at any considerable path length of a femtosecond pulse in diamond (tens of microns or longer), the laser beam experiences a severe nonlinear transformation, determining the amount of energy absorbed by the lattice, which is important for the development of technology for diamond photostructuring by ultrashort pulses. The competition between wave packet self-focusing and the plasma defocusing effect is examined as a major mechanism governing the propagation of intense laser pulses in diamond. (interaction of laser radiation with matter. laser plasma)

  5. High Intensity Beam and X-Ray Converter Target Interactions and Mitigation

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jiuan; McCarrick, James F.; Guethlein, Gary; Caporaso, George J.; Chambers, Frank; Falabella, Steven; Lauer, Eugene; Richardson, Roger; Sampayan, Steve; Weir, John

    2002-12-01

    Ions extracted from a solid surface or plasma by impact of an high intensity and high current electron beam can partially neutralize the beam space charge and change the focusing system. We have investigated ion emission computationally and experimentally. By matching PIC simulation results with available experimental data, our finding suggests that if a mix of ion species is available at the emitting surface, protons dominate the backstreaming ion effects, and that, unless there is surface flashover, ion emission is source limited. We have also investigated mitigation, such as e-beam cleaning, laser cleaning and ion trapping with a foil barrier. The temporal behavior of beam spot size with a foil barrier and a focusing scheme to improve foil barrier performance are discussed.

  6. High Intensity Beam and X-Ray Converter Target Interactions and Mitigation

    SciTech Connect

    Chem, Y-J; McCarrick, J F; Guethlein, G; Chambers, F; Falabella, S; Lauer, E; Richardson, R; Weir, J

    2002-07-31

    Ions extracted from a solid surface or plasma by impact of an high intensity and high current electron beam can partially neutralize the beam space charge and change the focusing system. We have investigated ion emission computationally and experimentally. By matching PIC simulation results with available experimental data, our finding suggests that if a mix of ion species is available at the emitting surface, protons dominate the backstreaming ion effects, and that, unless there is surface flashover, ion emission is source limited. We have also investigated mitigation, such as e-beam cleaning, laser cleaning and ion trapping with a foil barrier. The temporal behavior of beam spot size with a foil barrier and a focusing scheme to improve foil barrier performance are discussed.

  7. Generation of high-order harmonics in a high-intensity laser radiation field

    SciTech Connect

    Platonenko, Viktor T; Strelkov, V V

    1998-07-31

    An analysis is made of the generation of high-order harmonics by atoms and ions in high-intensity laser beams. A brief description is given of the main experimental relationships governing such generation, of methods for numerical solution of the Schrodinger equation for an atom in a strong field, and of some approximate models which make it possible to understand the mechanism of the effect (in particular, the 'semiclassical' model). A detailed discussion is made of an analytic quantum-mechanical theory of high-order harmonic generation in a one-electron system with the Coulomb, delta-like, and other potentials. Expressions are provided for the complex amplitudes of harmonics generated by monochromatic and bichromatic excitation. The results of simulation of high-order harmonic generation in an extended medium are given. This simulation takes into account the phases of the harmonics and their dependences on the amplitude of the fundamental-frequency field. The phase-matching problem and ways of solving it, the problem of the spectrum and duration of a pulse of a single harmonic and of the feasibility of controlling them, the problem of the total harmonic field, and other topics are considered. (review)

  8. Guiding of high intensity ultrashort laser pulses in plasma channels produced with the dual laser pulse ignitor-heater technique

    SciTech Connect

    Volfbeyn, P.; Leemans, W.P.

    1998-07-01

    The authors present results of experimental investigations of laser guiding in plasma channels. A new technique for plasma channel creation, the Ignitor-Heater scheme is proposed and experimentally tested in hydrogen and nitrogen. It makes use of two laser pulses. The Ignitor, an ultrashort (< 100 fs) laser pulse, is brought to a line focus using a cylindrical lens to ionize the gas. The Heater pulse (160 ps long) is used subsequently to heat the existing spark via inverse Bremsstrahlung. The hydrodynamic shock expansion creates a partially evacuated plasma channel with a density minimum on axis. Such a channel has properties of an optical waveguide. This technique allows creation of plasma channels in low atomic number gases, such as hydrogen, which is of importance for guiding of highly intense laser pulses. The channel density was diagnosed with time resolved longitudinal interferometry. From these measurements the plasma temperature was inferred. The guiding properties of the channels were tested by injecting a > 5 {times} 10{sup 17} W/cm{sup 2}, 75 fs laser pulse.

  9. Higher-Order Nonlocal Effects of a Relativistic Ponderomotive Force in High-Intensity Laser Fields

    NASA Astrophysics Data System (ADS)

    Iwata, Natsumi; Kishimoto, Yasuaki

    2014-01-01

    We have developed a new formula for a relativistic ponderomotive force of transversely localized laser fields based on the noncanonical Lie perturbation method by finding proper coordinates and gauges in the variational principle. The formula involves new terms represented by second and third spatial derivatives of the field amplitude, so that the ponderomotive force depends not only on the local field gradient, but also on the curvature and its variation. The formula is then applicable to a regime in which the conventional formula is hardly applied such that nonlocal and/or global extent of the field profile becomes important. The result can provide a theoretical basis for describing nonlinear laser-plasma interaction including such nonlocal effects, which is examined via particle-in-cell simulation of laser propagation in a plasma with a super Gaussian transverse field profile.

  10. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    SciTech Connect

    Pogorelsky, I.V.

    1996-11-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO{sub 2} laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps CO{sub 2} laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 {angstrom}) x-rays of 10-ps pulse duration, with a flux of {approximately} 10{sup 19} photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10{sup 22} photons/sec level, after the ongoing ATF CO{sub 2} laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ``table-top`` LSS of monochromatic gamma radiation may become feasible.

  11. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    SciTech Connect

    Pogorelsky, I.V.

    1997-01-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high- brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high- brightness electron beam and the high-power C0{sub 2} laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10 GW, 100 ps C0{sub 2} laser beam will be brought to a head-on collision with a 10 ps, 0.5 nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 A) x-rays of 10-ps pulse duration, with a flux of {approximately}10{sup 19} photons/sec, will be produced via linear Compton backscattering. The x-ray spectra is tunable proportionally to the e- beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10{sup 22} photon/sec level, after the ongoing ATF C0{sub 2} laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ``table- top`` LSS of monochromatic gamma radiation may become feasible.

  12. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.

    1997-03-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO2 laser may be used for prototype LSS demonstration. In a feasible demonstration experiment, 10-GW, 100-ps CO2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 Å) x-rays of 10-ps pulse duration, with a flux of ˜1019photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 1022 photons/sec level, after the ongoing ATF CO2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact "table-top" LSS of monochromatic gamma radiation may become feasible.

  13. Propagation instabilities of high-intensity laser-produced electron beams.

    PubMed

    Tatarakis, M; Beg, F N; Clark, E L; Dangor, A E; Edwards, R D; Evans, R G; Goldsack, T J; Ledingham, K W D; Norreys, P A; Sinclair, M A; Wei, M-S; Zepf, M; Krushelnick, K

    2003-05-02

    Measurements of energetic electron beams generated from ultrahigh intensity laser interactions (I>10(19) W/cm(2)) with dense plasmas are discussed. These interactions have been shown to produce very directional beams, although with a broad energy spectrum. In the regime where the beam density approaches the density of the background plasma, we show that these beams are unstable to filamentation and "hosing" instabilities. Particle-in-cell simulations also indicate the development of such instabilities. This is a regime of particular interest for inertial confinement fusion applications of these beams (i.e., "fast ignition").

  14. Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.

    2013-10-01

    Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

  15. Model simulation of a localized high intensity heat source interacting with cooled metal plates

    NASA Astrophysics Data System (ADS)

    Cranfill, F. M.

    The basic, generic problem of a localized high intensity heat source directed against one surface of a plate of finite thickness was investigated using the finite element program ANSYS. After reviewing similar work in nuclear fuel and laser machining, ANSYS was verified against a known solution. ANSYS was used to create a model that yields minimum heat transfer coefficients needed to prevent the initiation of melting in thin aluminum, titanium, and stainless steel (AISI 304) plates. These heat transfer coefficients were converted into minimum local Nusselt numbers and graphed against local Nusselt number correlations for constant temperature flat plates in forced and free convection regimes. A detailed listing of both laminar and turbulent correlations is presented along with references. The suitability of liquid sodium, air, and water (under high pressure) as coolants for a source intensity of 2.0 x 10 to the 7th power w/sq m was examined. For free convection, only liquid sodium cooling a titanium plate is feasible, For forced convection, liquid sodium is feasible in laminar flow fo r all three plates with velocities ranging from 0.28 m/s to 1.09 m/s. Water is feasible for aluminum and titanium in turbulent flow at velocities of approximately 4 m/s.

  16. Plume splitting and rebounding in a high-intensity CO{sub 2} laser induced air plasma

    SciTech Connect

    Chen Anmin; Jiang Yuanfei; Liu Hang; Jin Mingxing; Ding Dajun

    2012-07-15

    The dynamics of plasma plume formed by high-intensity CO{sub 2} laser induced breakdown of air at atmospheric pressure is investigated. The laser wavelength is 10.6 {mu}m. Measurements were made using 3 ns gated fast photography as well as space and time resolved optical emission spectroscopy. The behavior of the plasma plume was studied with a laser energy of 3 J and 10 J. The results show that the evolution of the plasma plume is very complicated. The splitting and rebounding of the plasma plume is observed to occur early in the plumes history.

  17. Feasibility of laser-integrated high intensity focused ultrasound (HIFU) treatment for bladder tumors: in vitro study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Phuc; Park, Suhyun; Oh, Junghwan; Kang, Hyun Wook

    2016-02-01

    Previous studies have shown that photothemal therapy combined with high intensity focused ultrasound (HIFU) can provide a promising method to achieve rapid thermal coagulation during surgical procedures. The current study investigated the feasibility of the laser-integrated high intensity focused ultrasound (HIFU) application to treat bladder tumors by enhancing thermal effects and therapeutic depth in vitro. To generate thermal coagulation, a single element HIFU transducer with a central frequency of 2.0 MHz was used to transmit acoustic energy to 15 fresh porcine bladders injected with an artificial tumor (100 µl gelatin and hemoglobin solution) in vitro. Simultaneously, an 80-W 532-nm laser system was also implemented to induce thermal necrosis in the targeted tissue. The intensity of 570 W/cm2 at the focus of HIFU and laser energy of 0.9 W were applied to all the samples for 40 s. The temperature rise increased up to about 1.6 or 3 folds (i.e., ΔT=32±3.8 K for laser-integrated HIFU, ΔT=20±6.5 K for HIFU only, and ΔT=11±5.6 K for laser only). The estimated lesion depth also increased by 1.3 and 2 folds during the dual-thermal treatment, in comparison with the treatment by either HIFU or laser. The results indicated that the laser-integrated HIFU treatment can be an efficient hyperthermic method for tumor coagulation.

  18. Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high intensity laser waves

    SciTech Connect

    Rax, J.M.

    1992-04-01

    The dynamics of electrons in two-dimensional, linearly or circularly polarized, ultra-high intensity (above 10{sup 18}W/cm{sup 2}) laser waves, is investigated. The Compton harmonic resonances are identified as the source of various stochastic instabilities. Both Arnold diffusion and resonance overlap are considered. The quasilinear kinetic equation, describing the evolution of the electron distribution function, is derived, and the associated collisionless damping coefficient is calculated. The implications of these new processes are considered and discussed.

  19. Photon-electron-ion momentum transfer in high intensityIR laser pulse ionization

    NASA Astrophysics Data System (ADS)

    Bandrauk, Andre D.; Chelkowski, Szczefan; Corkum, Paul

    2016-05-01

    Photon momentum sharing between electrons and parent ions in high intensityIR multiphoton ionization requires going beyond the traditional perturbative dipole approximation. Using numerical solutions of the 2-D TDSE(Time dependent Schroedinger equation) for one electron atom models, we show that the radiation pressure on photoelectrons is sensitive to the ionization mechanism, either direct or by recollision. A complex electron-ion response is obtained due to the interplay between the Lorentz force and Coulomb attraction of the ion.The influence of the photon momentum sharing is shown to be discernible in IR high intensity atomic and/or molecular holographic patterns thus suggesting a new research subject in IR strong field physics.

  20. The CO2 gasdynamic laser as a high-intensity radiation facility

    NASA Technical Reports Server (NTRS)

    Lundell, J. H.; Dickey, R. R.; Otten, L. J.

    1975-01-01

    The basic theory of CO2 gasdynamic lasers is discussed and related to the design of the Ames laser, which is described in detail. Results of the experimental calibration of the laser are reported and compared with theoretical predictions, and the agreement is excellent. Finally, several applications of the laser as a radiation source for materials testing, both with and without air flow, are described.

  1. Studies of bimolecular reaction dynamics using pulsed high-intensity vacuum-ultraviolet lasers for photoionization detection.

    PubMed

    Albert, Daniel R; Davis, H Floyd

    2013-09-21

    This article describes recent progress on the development and application of pulsed high-intensity (~0.1 mJ per pulse) vacuum-ultraviolet (VUV) radiation produced by commercial tabletop lasers for studies of gas phase chemical reaction dynamics involving polyatomic free radicals. Our approach employs near-triply resonant four-wave mixing of unfocussed nanosecond dye lasers in an atomic gas as an alternative to the use of synchrotron light sources for sensitive universal soft photoionization detection of reaction products using a rotatable source crossed molecular beams apparatus with fixed detector. We illustrate this approach in studies of the reactions of phenyl radicals with molecular oxygen and with propene. Future prospects for the use of tabletop laser-based VUV sources for studies of chemical reaction dynamics are discussed.

  2. [Survival and success rate of dental implants treated with high intensity laser].

    PubMed

    Joób-Fancsaly, Arpád; Divinyi, Tamás; Karacs, Albert; Koncz, Szilvia; Pető, Gábor; Sulyok, Lili

    2015-09-01

    Clinical and radiological evaluations were conducted in patients with high energy Nd : glass laser-treated dental implants. These patients underwent dental implantation surgery between 1997 and 2006. Strict success criteria were used for the examination and analysis of implants. Based on clinical and radiological evaluation, success and survival rates of laser surface treated dental implants were similar to those of sandblasted, acid-etched surface implants frequently reported in the literature. Specific surface morphology and high degree of purity of laser surface treated dental implants ensure excellent osseointegration and a good clinical performance also on the long-term.

  3. Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes.

    PubMed

    Martí-López, L; Ocaña, R; Porro, J A; Morales, M; Ocaña, J L

    2009-07-01

    We report an experimental study of the temporal and spatial dynamics of shock waves, cavitation bubbles, and sound waves generated in water during laser shock processing by single Nd:YAG laser pulses of nanosecond duration. A fast ICCD camera (2 ns gate time) was employed to record false schlieren photographs, schlieren photographs, and Mach-Zehnder interferograms of the zone surrounding the laser spot site on the target, an aluminum alloy sample. We recorded hemispherical shock fronts, cylindrical shock fronts, plane shock fronts, cavitation bubbles, and phase disturbance tracks.

  4. Rubidium Recycling in a High Intensity Short Duration Pulsed Alkali Laser

    DTIC Science & Technology

    2010-03-01

    rubidium laser27 and a 48 W CW cesium laser .28 As time goes on the maximum output power of DPAL devices is 16 expected to rise with this research...greatly over the next couple of years. In 2007 Zhdanov and Knize demonstrated a 10 W CW cesium DPAL.11 This was followed in 2008 by a 17 W CW ...Encyclopedia of Optical Engineering, 901, 2003. 11. Boris Zhadanov and R. J. Knize. Diode-pumped 10 W continuous wave cesium laser . Optics Letters, 32:2167

  5. Picosecond soft-x-ray pulses from a high-intensity laser-plasma source.

    PubMed

    Pelletier, J F; Chaker, M; Kieffer, J C

    1996-07-15

    We report time-resolved spectroscopic analysis of laser-produced plasma x-ray sources. Plasmas produced by a 400-fs 1-TW tabletop laser are characterized with a transmission grating spectrometer coupled to a soft-x-ray streak camera. Soft-x-ray radiation in the 1-6-nm range with durations of 2-7 ps is observed for copper and tantalum plasmas. The effect of incident laser energy on the x-ray pulse duration is also investigated.

  6. Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes

    SciTech Connect

    Marti-Lopez, L.; Ocana, R.; Porro, J. A.; Morales, M.; Ocana, J. L.

    2009-07-01

    We report an experimental study of the temporal and spatial dynamics of shock waves, cavitation bubbles, and sound waves generated in water during laser shock processing by single Nd:YAG laser pulses of nanosecond duration. A fast ICCD camera (2 ns gate time) was employed to record false schlieren photographs, schlieren photographs, and Mach-Zehnder interferograms of the zone surrounding the laser spot site on the target, an aluminum alloy sample. We recorded hemispherical shock fronts, cylindrical shock fronts, plane shock fronts, cavitation bubbles, and phase disturbance tracks.

  7. High Intensity Femtosecond XUV Pulse Interactions with Atomic Clusters: Final Report

    SciTech Connect

    Ditmire, Todd

    2016-10-12

    We propose to expand our recent studies on the interactions of intense extreme ultraviolet (XUV) femtosecond pulses with atomic and molecular clusters. The work described follows directly from work performed under BES support for the past grant period. During this period we upgraded the THOR laser at UT Austin by replacing the regenerative amplifier with optical parametric amplification (OPA) using BBO crystals. This increased the contrast of the laser, the total laser energy to ~1.2 J , and decreased the pulse width to below 30 fs. We built a new all reflective XUV harmonic beam line into expanded lab space. This enabled an increase influence by a factor of 25 and an increase in the intensity by a factor of 50. The goal of the program proposed in this renewal is to extend this class of experiments to available higher XUV intensity and a greater range of wavelengths. In particular we plan to perform experiments to confirm our hypothesis about the origin of the high charge states in these exploding clusters, an effect which we ascribe to plasma continuum lowering (ionization potential depression) in a cluster nano-­plasma. To do this we will perform experiments in which XUV pulses of carefully chosen wavelength irradiate clusters composed of only low-Z atoms and clusters with a mixture of this low-­Z atom with higher Z atoms. The latter clusters will exhibit higher electron densities and will serve to lower the ionization potential further than in the clusters composed only of low Z atoms. This should have a significant effect on the charge states produced in the exploding cluster. We will also explore the transition of explosions in these XUV irradiated clusters from hydrodynamic expansion to Coulomb explosion. The work proposed here will explore clusters of a wider range of constituents, including clusters from solids. Experiments on clusters from solids will be enabled by development we performed during the past grant period in which we constructed and

  8. Simulations On Pair Creation In Collision Of γ-Beams Produced With High Intensity Lasers

    NASA Astrophysics Data System (ADS)

    Jansen, Oliver; Ribeyre, Xavier; D'Humieres, Emmanuel; Lobet, Mathieu; Jequier, Sophie; Tikhonchuk, Vladimir

    2016-10-01

    Direct production of electron-positron pairs in two photon collisions, the Breit-Wheeler process, is one of the most basic processes in the universe. However, this process has never been directly observed in the laboratory due to the lack of high intensity γ sources. For a feasibility study and for the optimisation of experimental set-ups we developed a high-performance tree-code. Different possible set-ups with MeV photon sources were discussed and compared using collision detection for huge number of particles in a quantum-electrodynamic regime. The authors acknowledge the financial support from the French National Research Agency (ANR) in the framework of ''The Investments for the Future'' programme IdEx Bordeaux - LAPHIA (ANR-10IDEX-03-02)-Project TULIMA.

  9. Research activities on high-intensity laser and high field physics at APRI-GIST

    NASA Astrophysics Data System (ADS)

    Jeong, Tae Moon

    2015-05-01

    The performance of a 0.1-Hz-repetition-rate, 30-fs, 1.5-PW Ti:sapphire laser which is using for research on high field physics in APRI-GIST is presented. The charged particles (electrons and protons) are accelerated and an efficient x-ray generation is demonstrated using the PW laser. Protons are accelerated up to 80 MeV when an ultra-thin polymer target is irradiated by a circularly-polarized PW laser pulse. Electrons are accelerated to multi-GeV level with a help of injector and accelerator scheme. In the relativistic harmonic generation experiment, the harmonic order is dramatically extended, by optimizing the intensity of pre-pulse level, up to 164th that corresponds to 4.9 nm in wavelength and the experimental results can be explained by the oscillatory flying mirror model. The upgrade of the PW laser to the multi-PW level is under way.

  10. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media

    NASA Astrophysics Data System (ADS)

    Todt, Michael A.; Albert, Daniel R.; Davis, H. Floyd

    2016-06-01

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9-14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  11. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media.

    PubMed

    Todt, Michael A; Albert, Daniel R; Davis, H Floyd

    2016-06-01

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9-14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  12. Characteristics of a High Intensity, Pulsed, Potassium Vapor Laser in a Heat Pipe

    DTIC Science & Technology

    2011-03-01

    metals form the first column of the periodic table. From the top, this column includes lithium, sodium , potassium, rubidium, and cesium . They...pumped rubidium vapor laser by Krupke [2]. Since then, cesium (Cs), rubidium (Rb), and potassium (K) vapor lasers have been demonstrated and are the...would degrade the population inversion necessary for lasing to occur. Fortunately, the cesium and rubidium DPALs have much greater spin-orbit

  13. Electron-positron pair production from vacuum in the field of high-intensity laser radiation

    NASA Astrophysics Data System (ADS)

    Popov, V. S.; Mur, V. D.; Narozhnyi, N. B.; Popruzhenko, S. V.

    2016-03-01

    The works dealing with the theory of e + e - pair production from vacuum under the action of highintensity laser radiation are reviewed. The following problems are discussed: pair production in a constant electric field E and time-variable homogeneous field E( t); the dependence of the number of produced pairs {N_{{e^ + }{e^ - }}} on the shape of a laser pulse (dynamic Schwinger effect); and a realistic three-dimensional model of a focused laser pulse, which is based on exact solution of Maxwell's equations and contains parameters such as focal spot radius R, diffraction length L, focusing parameter Δ, pulse duration τ, and pulse shape. This model is used to calculate {N_{{e^ + }{e^ - }}} for both a single laser pulse ( n = 1) and several ( n ≥ 2) coherent pulses with a fixed total energy that simultaneously "collide" in a laser focus. It is shown that, at n ≫ 1, the number of pairs increases by several orders of magnitude as compared to the case of a single pulse. The screening of a laser field by the vapors that are generated in vacuum, its "depletion," and the limiting fields to be achieved in laser experiments are considered. The relation between pair production, the problem of a quantum frequency-variable oscillator, and the theory of groups SU(1, 1) and SU(2) is discussed. The relativistic version of the imaginary time method is used in calculations. In terms of this version, a relativistic theory of tunneling is developed and the Keldysh theory is generalized to the case of ionization of relativistic bound systems, namely, atoms and ions. The ionization rate of a hydrogen-like ion with a charge 1 ≤ Z ≤ 92 is calculated as a function of laser radiation intensity ( F and ellipticity ρ.

  14. Development of experimental platform for high energy density sciences using high-intensity optical lasers at the SACLA x-ray free electron laser facility

    NASA Astrophysics Data System (ADS)

    Yabuuchi, Toshinori; Yabashi, Makina; Inubushi, Yuichi; Kon, Akira; Togashi, Tadashi; Tomizawa, Hiromitsu

    2016-10-01

    Combinations of high intensity optical laser and x-ray free electron laser (XFEL) open new frontiers in high energy density (HED) sciences. An experimental platform equipped with high-power Ti:Sapphire laser systems is under commissioning for HED sciences at the XFEL facility, SACLA. The Ti:Sapphire laser system is designed to deliver two laser beams with a maximum power of 500 TW in each to the sample chamber. A hard x-ray beamline of SACLA is also transported to the chamber with a beam focusing capability down to a few microns using sets of compound refractive lenses. The second optical laser pulse or the energetic particles and photons generated by the laser pulse can provide additional flexibilities for HED-related pump-probe experiments, which have been generally performed using single optical laser and XFEL. The development status and future perspectives of the experimental platform will be presented.

  15. High-intensity coherent vacuum ultraviolet source using unfocussed commercial dye lasers.

    PubMed

    Albert, Daniel R; Proctor, David L; Davis, H Floyd

    2013-06-01

    Using two or three commercial pulsed nanosecond dye lasers pumped by a single 30 Hz Nd:YAG laser, generation of 0.10 mJ pulses at 125 nm (6 × 10(13) photons∕pulse) has been demonstrated by resonance enhanced four-wave mixing of collimated (unfocussed) laser beams in mercury (Hg) vapor. Phase matching at various vacuum ultraviolet (VUV) wavelengths is achieved by tuning one laser in the vicinity of the 6 (1)S0 → 6 (3)P1 resonance near 253.1 nm. A number of different mixing schemes are characterized. Our observations using broadband lasers (~0.15 cm(-1) bandwidths) are compared to previous calculations pertaining to four-wave mixing of low intensity narrowband laser beams. Prospects for further increases in pulse energies are discussed. We find that VUV tuning curves and intensities are in good agreement with theoretical predictions. The utility of the VUV light source is demonstrated by "soft universal" single-photon VUV ionization in crossed molecular beam studies and for generation of light at 130.2 nm for oxygen atom Rydberg time-of-flight experiments.

  16. Ellipsoidal plasma mirror focusing of high power laser pulses to ultra-high intensities

    NASA Astrophysics Data System (ADS)

    Wilson, R.; King, M.; Gray, R. J.; Carroll, D. C.; Dance, R. J.; Armstrong, C.; Hawkes, S. J.; Clarke, R. J.; Robertson, D. J.; Neely, D.; McKenna, P.

    2016-03-01

    The design and development of an ellipsoidal F/1 focusing plasma mirror capable of increasing the peak intensity achievable on petawatt level laser systems to >1022 W cm-2 is presented. A factor of 2.5 reduction in the focal spot size is achieved when compared to F/3 focusing with a conventional (solid state) optic. We find a factor of 3.6 enhancement in peak intensity, taking into account changes in plasma mirror reflectivity and focal spot quality. The sensitivity of the focusing plasma optic to misalignment is also investigated. It is demonstrated that an increase in the peak laser intensity from 3 ×1020 W cm-2 to 1021 W cm-2 results in a factor of 2 increase in the maximum energy of sheath-accelerated protons from a thin foil positioned at the focus of the intense laser light.

  17. High-intensity Nd:YAG laser accelerates bone regeneration in calvarial defect models.

    PubMed

    Kim, Kwansik; Kim, In Sook; Cho, Tae Hyung; Seo, Young-Kwon; Hwang, Soon Jung

    2015-08-01

    High-power pulsed lasers have been recently regarded to be anabolic to bone, but in vivo evidence is still lacking. This study aimed to investigate the capacity of bone repair using a high-power, Q-switched, pulsed, neodymium-doped yttrium aluminium garnet (Nd:YAG) laser, using bilateral calvarial defect models having non-critical sized, 5 mm (rat) or 8 mm (rabbit) diameter. One of the bilateral defects, which were all filled with collagen sponge or left empty, was irradiated with a Nd:YAG laser once every 2 days for 2 weeks at a constant total fluence rate (344 J/cm(2) ), output power (0.75 W), pulse repetition rate (15 pps) and wavelength (1064 nm) and examined for the laser effect. The same experimental scheme was designed using a rabbit calvarial defect model implanted with sponge, which was explored for the dose effect of output power at 0.75 and 3 W with the same quantities of the other parameters. New bone formation was evaluated by micro-computed tomography-based analysis and histological observation at 4 weeks after surgery. Laser irradiation significantly increased new bone formation by approximately 45%, not only in the sponge-filled defects of rats but also when the defects were left empty, compared to the non-irradiated group. Consistently, both doses of output power (0.75 and 3 W) enhanced new bone formation, but there was no significant difference between the two doses. This study is one of the first to demonstrate the beneficial effect of Nd:YAG lasers on the regeneration of bone defects which were left empty or filled with collagen sponge, suggesting its great potential in postoperative treatment targeting local bone healing.

  18. Pulsed x-ray imaging of high-density objects using a ten picosecond high-intensity laser driver

    NASA Astrophysics Data System (ADS)

    Rusby, D. R.; Brenner, C. M.; Armstrong, C.; Wilson, L. A.; Clarke, R.; Alejo, A.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Mirfayzi, S. R.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-10-01

    Point-like sources of X-rays that are pulsed (sub nanosecond), high energy (up to several MeV) and bright are very promising for industrial and security applications where imaging through large and dense objects is required. Highly penetrating X-rays can be produced by electrons that have been accelerated by a high intensity laser pulse incident onto a thin solid target. We have used a pulse length of 10ps to accelerate electrons to create a bright x-ray source. The bremsstrahlung temperature was measured for a laser intensity from 8.5-12×1018 W/cm2. These x-rays have sequentially been used to image high density materials using image plate and a pixelated scintillator system.

  19. Comparison of high-intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting.

    PubMed

    Seiffert, Gary; Hopkins, Carl; Sutcliffe, Chris

    2017-01-01

    Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high-intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting-fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high-intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117-123, 2017.

  20. Reflectivity of plasmas created by high-intensity, ultra-short laser pulses

    SciTech Connect

    Gold, David Michael

    1994-06-01

    Experiments were performed to characterize the creation and evolution of high-temperature (T e~100eV), high-density (ne>1022cm-3) plasmas created with intense (~1012-1016W/cm2), ultra-short (130fs) laser pulses. The principle diagnostic was plasma reflectivity at optical wavelengths (614nm). An array of target materials (Al, Au, Si, SiO2) with widely differing electronic properties tested plasma behavior over a large set of initial states. Time-integrated plasma reflectivity was measured as a function of laser intensity. Space- and time-resolved reflectivity, transmission and scatter were measured with a spatial resolution of ~3μm and a temporal resolution of 130fs. An amplified, mode-locked dye laser system was designed to produce ~3.5mJ, ~130fs laser pulses to create and nonintrusively probe the plasmas. Laser prepulse was carefully controlled to suppress preionization and give unambiguous, high-density plasma results. In metals (Al and Au), it is shown analytically that linear and nonlinear inverse Bremsstrahlung absorption, resonance absorption, and vacuum heating explain time-integrated reflectivity at intensities near 1016W/cm2. In the insulator, SiO2, a non-equilibrium plasma reflectivity model using tunneling ionization, Helmholtz equations, and Drude conductivity agrees with time-integrated reflectivity measurements. Moreover, a comparison of ionization and Saha equilibration rates shows that plasma formed by intense, ultra-short pulses can exist with a transient, non-equilibrium distribution of ionization states. All targets are shown to approach a common reflectivity at intensities ~1016W/cm2, indicating a material-independent state insensitive to atomic or solid-state details.

  1. An investigation of laser oscillators and amplifiers using high-intensity diode-pumping

    NASA Astrophysics Data System (ADS)

    Moore, Nicholas

    1998-12-01

    The work presented in this thesis is split into two related areas. The first area of research was the construction of high gain, high power, all-solid-state laser amplifiers for use in master oscillator, power amplifier (MOPA) systems. The second area was the operation of solid-state lasers on low gain transitions. The two areas are related by the fact that the primary aim in each was to maximise the available gain on a given laser transition. Two diode-pumped travelling wave amplifiers are described, both using Nd:YLF as the active medium, and both employed to amplify the output from a modelocked 1047nm Nd:YLF laser. The first amplifier was pumped by a 4W diode, and produced a small signal gain of 34. To suppress gain saturation in the amplifier, the input signal to the amplifier was formed into pulse trains of duration 10μs. The average gain achieved during these pulses was 20, giving rise to an average output power of 5W during the pulse. The amplifier output was subsequently frequency-doubled by a single pass through an LBO crystal. An average conversion efficiency of 57% was obtained, giving an average green power of 2.9W. The green output was subsequently used to pump both an OPO based on LBO, and a Ti:Sapphire laser. The second amplifier had a pump power of 28W. This produced a small-signal gain of 40 at 1047nm, and yielded 6W of amplified modelocked output on a cw basis rather than pulsed as in the first amplifier. The output from this amplifier was used to pump an OPO based on PPLN, and this was able to oscillate at a maximum wavelength of 6.2μm. The work on low gain lasers was addressed at the 1123nm transition in Nd:YAG. This has a cross-section ~15 times lower than at 1064nm. The pump source was a 7W diode-bar, and using this 1.7W of TEM00 output at 1123nm was obtained in a beam with an M2 of 1.1. This output was subsequently used as the pump for a Tm:ZBLAN fibre laser, which produced a maximum of 230mW of 480nm blue light. A second application

  2. Generation of heavy ion beams using high-intensity short pulse lasers

    NASA Astrophysics Data System (ADS)

    Petrov, George; McGuffey, Chris; Thomas, Alec; Krushelnick, Karl; Beg, Farhat

    2016-10-01

    A theoretical study of ion acceleration from high-Z material irradiated by intense sub-picosecond lasers is presented. The underlying physics of beam formation and acceleration is similar for light and heavy ions, however, nuances of the acceleration process make the heavy ions more challenging. At least four technical hurdles have been identified: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration and poor energy coupling due to high reflectivity of the plasma. Using two dimensional particle-in-cell (PIC) simulations, we observed transitions from Radiation Pressure Acceleration (RPA) to the Breakout Afterburner regime (BoA) and to Target Normal Sheath Acceleration (TNSA) akin to light ions. The numerical simulations predict gold ions beams with high directionality (<10 degrees half-angle), high fluxes (>1011 ions/sr) and energy (>10 MeV/nucleon) from laser systems delivering >20 J of energy on target.

  3. Optical guiding of high intensity laser pulses in plasma channel: Interferometrical investigations

    SciTech Connect

    Vogel, N.

    1997-03-01

    The excitation of the electric and self-generated magnetic field by pondermotive force during propagation of 100 ps laser pulse in air are investigated experimentally. Measurements of electron density distribution with high temporal (100 ps) and spatial resolution ({lt}1{mu}m) by interferometry and absorption photography are presented. It is shown that under certain conditions a hollow current channel can be generated. The azimuthal magnetic field in the micro-channel was determined by Faraday rotation of a probing laser beam to 7.6 MG. The charged partical densities in channel exceed 6{center_dot}10{sup 20}cm{sup {minus}3}. Ion acceleration in a pinched annular current channel up to 6 MeV analogous to a micro-{open_quotes}plasma focus{close_quotes} conditions may be realized just at length of 100 {mu}m. {copyright} {ital 1997 American Institute of Physics.}

  4. Scientific Researches on High Intensity Laser Plasma in Asia-Pacific Region

    NASA Astrophysics Data System (ADS)

    Takabe, Hideaki

    The important topics of the presentations in the titled session are briefly summarized with author's comments for the further maturity and more challenge as plasma science. The topics of the session has been classified to three; fundamental plasma science, particle and photon sources, and quantum polarization of vacuum and non-linear QED plasma. In order not to make the paper only for a memorandum of the titled session, very important and related topics were also picked up from the other sessions. It is concluded that we have to go forward to more challenging plasma physics, not staying at almost the same place where many people are sitting for a long time compared to the time scale of the rapid progress of intense and ultra-intense laser technology and related laser plasma diagnostics.

  5. High-intensity double-pulse X-ray free-electron laser

    DOE PAGES

    Marinelli, A.; Ratner, D.; Lutman, A. A.; ...

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore » in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less

  6. Continuous dual-wavelength, high-intensive Nd:YAG laser in operative urology

    NASA Astrophysics Data System (ADS)

    Reznikov, Leonid L.; Pupkova, Ludmila S.; Miroshnicov, B. I.; Snezhko, D. A.; Nikitichev, A. A.; Pokrovskiy, Vasiliy P.; Gomberg, Vladimir G.

    1994-05-01

    A ruby laser with a 0.694 mkm wavelength was used as a source of a new model of laser lithotriptor. The optical irradiation parameters selected included 1 mks duration pulse, frequency from 1 to 5 Hz, energy at an output of up to 120 mJ, transmitted via light guide quartz fiber of 400 kmk. The tip of the light guide was directed to the calculus through a catheterized cystoscope. Light guide position control was done by the presence of a specific acoustic signal accompanying plasma formation. Plasma is not formed by laser action on the ureter wall. In doubtful cases we used roentgenological examination. After lithotripsy and direct processing by irradiation, histological investigations of the ureter wall showed only slight submucosal hemorrhage or revealed no changes. Implantation of the calculus and fiber particles into the ureter wall was not observed. Twenty-nine patients were subjected to lithotripsy of calculus (oxalates, urates, phosphates) in the low and mid-ureter. Usually from 1000 to 3000 impulses were used to destroy the calculus. Calculus fragments passed without assistance (13 patients) or were removed by extractors (7 patients). The recovery of passing of urine and removal of renal colic were observed during lithotripsy if obturation had occurred (8 patients). Ureteral perforation, blood loss, and acute pyelonephritis did not occur.

  7. High-intensity double-pulse X-ray free-electron laser

    SciTech Connect

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F. J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; Vetter, S.; Maxwell, T. J.; Ding, Y.; Coffee, R.; Wakatsuki, S.; Huang, Z.

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.

  8. Transport of high intensity laser-generated hot electrons in cone coupled wire targets

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2008-04-01

    In this talk, we present results from a series of experiments where cone-wire targets were employed both to assess hot electron coupling efficiency, and to reveal the source temperature of the hot electrons. Experiments were performed on the petawatt laser at the Rutherford Appleton Laboratory. A 500J, 1ps laser (I ˜ 4 x 10^20 W/cm-2) was focused by an f/3 off-axis parabolic mirror into hollow aluminum cones joined at their tip to Cu wires of diameters from 10 to 40 μm. The three main diagnostics fielded were a copper Kalpha Bragg crystal imager, a single hit CCD camera spectrometer and a Highly Oriented Pyrolytic Graphite (HOPG) spectrometer. The resulting data were cross-calibrated to obtain the absolute Kalpha yield. Comparison of the axially diminishing absolute Cu Kα intensity with modeling shows that the penetration of the hot electrons is consistent with one dimensional ohmic potential limited transport (1/e length ˜ 100 μm). The laser coupling efficiency to electron energy within the wire is shown to be proportional to the cross sectional area of the wire, reaching 15% for 40 μm wires. We find that the hot electron temperature within the wire was <=750 keV, significantly lower than that predicted by the ponderomotive scaling. A comparison of the experimental results with 2D hybrid PIC simulations using e-PLAS code will be presented and relevance to Fast Ignition will be discussed at the meeting. *In collaboration with J.A. King, M.H. Key, K.U. Akli, R.R. Freeman, J. Green, S. P. Hatchett, D. Hey, P. Jaanimagi, J. Koch, K. L. Lancaster, T. Ma, A.J. MacKinnon, A. MacPhee, R. Mason, P.A. Norreys, P.K Patel, T. Phillips, R. Stephens, W. Theobald, R.P.J. Town, M. Wei, L. Van Woerkom, B. Zhang.

  9. Helium and hydrogen plasma waveguides for high-intensity laser channeling

    NASA Astrophysics Data System (ADS)

    Zgadzaj, Rafal Bogumil

    The results of cross polarized pump-probe experiments in preformed He plasma waveguides are reported. Pump and probe have same wavelength and duration of 800nm and 80fs respectively. Peak pump intensity is Iguided = 0.2x1018 W/cm2 ˜1000 Iprobe. Single shot probe spectra and mode profiles at the channel exit are discriminated from the pump with a polarization analyzer and captured at various relative time delays Deltat. Frequency-domain interference (FDI) between the probe and a weak depolarized component of the pump is observed for |Deltat| ≳ 100fs. Although the depolarized component is nearly undetectable through measurement of pump leakage alone, FDI sensitively reveals its substantially non-Gaussian structure. The possible depolarization mechanisms are analyzed. When probe is positioned at the leading edge of the pump, Deltat ≲ 0, its spectrum suffers a blue shift not measurable in the transmitted pump itself. The evidence suggests the channel interior is fully ionized and the partially formed channel ends are the origin of both depolarization and blue shift. A robust, pulsed, differentially-pumped plasma channel generation cell for high intensity guiding experiments has been developed. The design includes an axicon lens, windows for transverse interferometry, and permits injection of one or two different gases (main gas plus high Z seed gas) with several millisecond injection times and simultaneous 0.1ms pressure sensing resolution. Very well formed plasma waveguides have been formed in helium as well as hydrogen, at repeatable and well controlled pressures up to 1000Torr, with very uniform interior density, rapid density drop at boundaries, and very low exterior density. The possible danger associated with the use of large amounts of hydrogen was considered and a complex safety system was designed, constructed and used. Extensive analysis of channel profile reconstruction through transverse interferometry was performed. This includes an intuitive

  10. Multiphoton ionization of atoms and ions by high-intensity X-ray lasers

    SciTech Connect

    Popruzhenko, S. B. Mur, V. D.; Popov, V. S.; Bauer, D.

    2009-06-15

    Coulomb corrections to the action function and rate of multiphoton ionization of atoms and ions in a strong linearly polarized electromagnetic field are calculated for high values of the Keldysh adiabaticity parameter. The Coulomb corrections significantly increase the ionization rate for atoms (by several orders of magnitude). An interpolation formula proposed for ionization rate is valid for arbitrary values of the adiabaticity parameter. The high accuracy of the formula is confirmed by comparison with the results of numerical calculations. The general case of elliptic polarization of laser radiation is also considered.

  11. Second-harmonic generation of femtosecond high-intensity Ti:sapphire laser pulses

    NASA Astrophysics Data System (ADS)

    Mori, Kurumi; Tamaki, Yusuke; Obara, Minoru; Midorikawa, Katsumi

    1998-03-01

    The second-harmonic generation (SHG) of ultrashort Ti:sapphire laser pulses in potassium dihydrogen phosphate crystal in type-I phase-matching geometry has been investigated theoretically, including the effects of cubic nonlinearity. It is found that the phase mismatch due to the broad bandwidth associated with the short pulse width limits the maximum conversion efficiency to less than 60%, and the temporal shape of the converted pulse has an intensity modulation at an incident intensity of 100 GW/cm2 for a 100 fs pulse. In order to increase the energy conversion efficiency and improve the temporal pulse shape, a new SHG geometry using two antiparallel tilted crystals is discussed.

  12. Raman spectra from Symmetric Hydrogen Bonds in Water by High-intensity Laser-induced Breakdown

    PubMed Central

    Men, Zhiwei; Fang, Wenhui; Li, Dongfei; Li, Zhanlong; Sun, Chenglin

    2014-01-01

    Raman spectra of ice VII and X were investigated using strong plasma shockwave generated by laser-induced breakdown (LIB) in liquid water. Simultaneously, the occurrence of the hydrogen emission lines of 656 nm (Hα), 486 nm (Hβ), 434 nm (Hγ) and 410 nm (Hδ) was observed. At 5 × 1012 W/cm2 optical power density, the O-H symmetric stretching, translational and librational modes of ice VII and a single peak at 785 cm−1 appeared in the spectra. The band was assigned to the Raman-active O-O mode of the monomolecular phase, which was the symmetric hydrogen bond of cuprite ice X. The spectra indicated that ice VII and X structure were formed, as the trajectory of the strong plasma shockwave passes through the stable Pressure-Temperature range of ice VII and X. The shockwave temperature and pressure were calculated by the Grüneisen model. PMID:24709652

  13. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    SciTech Connect

    Habibi, M.; Ghamari, F.

    2014-05-15

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.

  14. Laser-induced fluorescence thermometry of heating in water from short bursts of high intensity focused ultrasound.

    PubMed

    Al-Qraini, Moath M; Canney, Michael S; Oweis, Ghanem F

    2013-04-01

    Free field experimental measurements of the temperature rise of water in the focal region of a 2 MHz high intensity focused ultrasound (HIFU) transducer were performed. The transducer was operated in pulse-mode with millisecond bursts, at acoustic intensities of 5 to 18.5 kW/cm(2) at the focus, resulting in non-linear wave propagation and shock wave formation. Pulsed, planar, laser-induced fluorescence (LIF) was used as a fast rise-time, non-intrusive, temperature measurement method of the water present in the focal region. LIF thermometry is based on calibrating the temperature-dependent fluorescence intensity signal emitted by a passive dye dissolved in water when excited by a pulse of laser light. The laser beam was formed into a thin light sheet to illuminate a planar area in the HIFU focal region. The laser light sheet was oriented transverse to the acoustic axis. Cross-sectional, instantaneous temperature field measurements within the HIFU focal volume showed that the water temperature increased steadily with increasing HIFU drive voltage. Heating rates of 4000-7000°C/s were measured within the first millisecond of the HIFU burst. Increasing the length of the burst initially resulted in an increase in the water temperature within the HIFU focal spot (up to ∼3 ms), after which it steadied or slightly dropped. Acoustic streaming was measured and shown to be consistent with the reduction in heating with increased burst length due to convective cooling. LIF thermometry may thus be a viable non-invasive method for the characterization of HIFU transducers at high power intensities.

  15. Self-focusing of a high-intensity laser pulse by a magnetized plasma lens in sub-relativistic regime

    NASA Astrophysics Data System (ADS)

    Abari, Mehdi Etehadi; Sedaghat, Mahsa; Hosseinnejad, Mohammad Taghi

    2017-01-01

    Interaction of high power circularly polarized short laser pulses with a cold underdense magnetized thin plasma lens is analyzed in the sub-relativistic regime. The magnetic field is applied along the direction of the laser field propagation. The evolution equation of the beam spot size is derived and solved by making use of the variational principle approach method. The theoretical investigations reveal that not only the magnetized plasma lens more sufficiently decreases the laser spot size, but also the left-handed circularly polarized beam is more effectively focused by a magnetized plasma lens compared to the right-handed circularly polarized beam.

  16. Self-focusing of a high-intensity laser in a collisional plasma under weak relativistic-ponderomotive nonlinearity

    SciTech Connect

    Gupta, D. N.; Islam, M. R.; Jaroszynski, D. A.; Jang, D. G.; Suk, H.

    2013-12-15

    Self-focusing a laser beam in collisional plasma is investigated under the weak relativistic-ponderomotive nonlinearity. In this case, the plasma equilibrium density is modified and it causes generation of the nonlinearity due to the Ohmic heating of electrons, collisions, and the weak relativistic-ponderomotive force during the interaction of the laser beam with the plasma. Our theoretical and simulation results show that a significant nonlinearity in laser self-focusing can occur under the weak relativistic-ponderomotive regime for some appropriate simulation parameters.

  17. MR thermometry analysis program for laser- or high-intensity focused ultrasound (HIFU)-induced heating at a clinical MR scanner

    NASA Astrophysics Data System (ADS)

    Kim, Eun Ju; Jeong, Kiyoung; Oh, Seung Jae; Kim, Daehong; Park, Eun Hae; Lee, Young Han; Suh, Jin-Suck

    2014-12-01

    Magnetic resonance (MR) thermometry is a noninvasive method for monitoring local temperature change during thermal therapy. In this study, a MR temperature analysis program was established for a laser with gold nanorods (GNRs) and high-intensity focused ultrasound (HIFU)-induced heating MR thermometry. The MR temperature map was reconstructed using the water proton resonance frequency (PRF) method. The temperature-sensitive phase difference was acquired by using complex number subtraction instead of direct phase subtraction in order to avoid another phase unwrapping process. A temperature map-analyzing program was developed and implemented in IDL (Interactive Data Language) for effective temperature monitoring. This one program was applied to two different heating devices at a clinical MR scanner. All images were acquired with the fast spoiled gradient echo (fSPGR) pulse sequence on a 3.0 T GE Discovery MR750 scanner with an 8-channel knee array coil or with a home-built small surface coil. The analyzed temperature values were confirmed by using values simultaneously measured with an optical temperature probe (R2 = 0.996). The temperature change in small samples induced by a laser or by HIFU was analyzed by using a raw data, that consisted of complex numbers. This study shows that our MR thermometry analysis program can be used for thermal therapy study with a laser or HIFU at a clinical MR scanner. It can also be applied to temperature monitoring for any other thermal therapy based on the PRF method.

  18. The Effectiveness of Cervical Spondylosis Therapy with Saunders Traction Device and High-Intensity Laser Therapy: A Randomized Controlled Trial

    PubMed Central

    Haładaj, Robert; Pingot, Mariusz; Topol, Mirosław

    2017-01-01

    Background Among all spinal therapies, treatment of the cervical segment is the most difficult. The cervical segment is particularly sensitive to injuries and pain, and it also requires special care due to its great mobility and most delicate construction. The aim of this research was to evaluate analgesic efficacy and improvement of active mobility of the cervical spine after traction therapy with the Saunders device and high-intensity laser therapy (HILT) immediately after therapy, and in short-, medium-, and long-term follow-up in patients with cervical spondylosis. Material/Methods The study included 174 patients (114 women and 60 men) aged 24–67 years. The patients were divided into two randomized groups. In group I (88 subjects) traction therapy with the Saunders device was applied, and in group II (86 subjects) HILT was applied. The measurement of the range of cervical spine movement, a subjective visual scale for pain (Visual Analog Scale [VAS]), and the Neck Disability Index-Polish Version (NDI) questionnaire were used. Results The results obtained by the Saunders and HILT methods were similar immediately after the therapy and after 4 weeks (the medium-term follow-up). However, in long-term follow-up, there was a significant increase in the maintenance of positive therapeutic effects with the HILT method. Conclusions Both therapeutic methods improved the efficiency and demonstrated analgesic efficacy in patients with cervical spondylosis immediately and in the medium term after the therapy. HILT was more effective than the Saunders method in long-term follow-up. PMID:28104903

  19. Study of photo-proton reactions driven by bremsstrahlung radiation of high-intensity laser generated electrons

    NASA Astrophysics Data System (ADS)

    Spohr, K. M.; Shaw, M.; Galster, W.; Ledingham, K. W. D.; Robson, L.; Yang, J. M.; McKenna, P.; McCanny, T.; Melone, J. J.; Amthor, K.-U.; Ewald, F.; Liesfeld, B.; Schwoerer, H.; Sauerbrey, R.

    2008-04-01

    Photo-nuclear reactions were investigated using a high power table-top laser. The laser system at the University of Jena (I ~ 3-5×1019 W cm-2) produced hard bremsstrahlung photons (kT~2.9 MeV) via a laser-gas interaction which served to induce (γ, p) and (γ, n) reactions in Mg, Ti, Zn and Mo isotopes. Several (γ, p) decay channels were identified using nuclear activation analysis to determine their integral reaction yields. As the laser-generated bremsstrahlung spectra stretches over the energy regime dominated by the giant dipole resonance (GDR), these yield measurements were used in conjunction with theoretical estimates of the resonance energies Eres and their widths Γres to derive the integral reaction cross-section σint(γ,p) for 25Mn, 48, 49Ti, 68Zn and 97, 98Mo isotopes for the first time. This study enabled the determination of the previously unknown \\frac{{\\sigma}^int(\\gamma,n)}{{\\sigma}^int(\\gamma,p)} cross-section ratios for these isotopes. The experiments were supported by extensive model calculations (Empire) and the results were compared to the Thomas-Reiche-Kuhn (TRK) dipole sum rule as well as to the experimental data in neighboring isotopes and good agreement was observed. The Coulomb barrier and the neutron excess strongly influence the \\frac{{\\sigma}^int(\\gamma,n)}{{\\sigma}^int(\\gamma,p)} ratios for increasing target proton and neutron numbers.

  20. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  1. Possibility of applying a hydrodynamic model to describe the laser erosion of metals irradiated by high-intensity nanosecond pulses

    SciTech Connect

    Kozadaev, K V

    2014-04-28

    We report the results of experimental investigations of the production and development of plasma-vapour plumes upon irradiation of metal targets by nanosecond (10–100 ns) pulses with a high (10{sup 8}–10{sup 10} W cm{sup -2}) power density under atmospheric conditions. The transition from a quasi-stationary thermal mechanism of metal erosion to an explosion hydrodynamic one takes place when the radiation power density increases from 10{sup 8} to 10{sup 9} W cm{sup -2}. The resultant experimental information is extremely important for the laser deposition of metal nanostructures under atmospheric conditions, which is possible only for power densities of 10{sup 8}–10{sup 9} W cm{sup -2}. (interaction of laser radiation with matter)

  2. Nonlinear threshold effect in the Z-scan method of characterizing limiters for high-intensity laser light

    NASA Astrophysics Data System (ADS)

    Tereshchenko, S. A.; Savelyev, M. S.; Podgaetsky, V. M.; Gerasimenko, A. Yu.; Selishchev, S. V.

    2016-09-01

    A threshold model is described which permits one to determine the properties of limiters for high-powered laser light. It takes into account the threshold characteristics of the nonlinear optical interaction between the laser beam and the limiter working material. The traditional non-threshold model is a particular case of the threshold model when the limiting threshold is zero. The nonlinear characteristics of carbon nanotubes in liquid and solid media are obtained from experimental Z-scan data. Specifically, the nonlinear threshold effect was observed for aqueous dispersions of nanotubes, but not for nanotubes in solid polymethylmethacrylate. The threshold model fits the experimental Z-scan data better than the non-threshold model. Output characteristics were obtained that integrally describe the nonlinear properties of the optical limiters.

  3. Dynamics of high-energy proton beam acceleration and focusing from hemisphere-cone targets by high-intensity lasers.

    PubMed

    Qiao, B; Foord, M E; Wei, M S; Stephens, R B; Key, M H; McLean, H; Patel, P K; Beg, F N

    2013-01-01

    Acceleration and focusing of high-energy proton beams from fast-ignition (FI) -related hemisphere-cone assembled targets have been numerically studied by hybrid particle-in-cell simulations and compared with those from planar-foil and open-hemisphere targets. The whole physical process including the laser-plasma interaction has been self-consistently modeled for 15 ps, at which time the protons reach asymptotic motion. It is found that the achievable focus of proton beams is limited by the thermal pressure gradients in the co-moving hot electrons, which induce a transverse defocusing electric field that bends proton trajectories near the axis. For the advanced hemisphere-cone target, the flow of hot electrons along the cone wall induces a local transverse focusing sheath field, resulting in a clear enhancement in proton focusing; however, it leads to a significant loss of longitudinal sheath potential, reducing the total conversion efficiency from laser to protons.

  4. 3-D simulation of high-intensity ultra-short laser pulse propagation through atmospheric optical systems

    NASA Astrophysics Data System (ADS)

    Dodd, Evan S.; Schmitt, Mark J.

    2001-10-01

    The manipulation of ultra-short pulses (USPs) in the laboratory is affected by three main factors; (a) the layout of optical elements in the optical train, (b) the non-linear interaction of the pulse with the transmissive optical elements (including the intervening atmosphere) and (c) ionization effects near beam focal regions. These effects have been included in our simulation code in order to examine 3-D aspects of USP propagation through "real" optical systems. Our models for optical elements include the ability to examine the effects of element misalignments and asymmetric finite apertures. In the atmosphere, we have included the effect of the USP electric field intensity on the local index of refraction. A model to include the effects of ionization in the atmosphere has also been added. The collective behavior from these sources results in complex interactions within the laser pulse as it propagates. This is important since it reduces the distance the pulse may travel and the spatial and temporal energy distribution of the pulse after propagation. Simulation examples are presented.

  5. Adaptation and penetration of resin-based root canal sealers in root canals irradiated with high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Moura-Netto, Cacio; Mello-Moura, Anna Carolina Volpi; Palo, Renato Miotto; Prokopowitsch, Igor; Pameijer, Cornelis H.; Marques, Marcia Martins

    2015-03-01

    This research analyzed the quality of resin-based sealer adaptation after intracanal laser irradiation. Extracted teeth (n=168) were root canal treated and divided into four groups, according to dentin surface treatment: no laser; Nd:YAG laser (1.5 W, 100 mJ, 15 Hz) diode laser (2.5 W in CW), and Er:YAG laser (1 W, 100 mJ, 10 Hz). The teeth were divided into four subgroups according to the sealer used: AH Plus, EndoREZ, Epiphany, and EpiphanySE. For testing the sealing after root canal obturation, the penetration of silver nitrate solution was measured, whereas to evaluate the adaptation and penetration of the sealer into the dentin, environmental scanning electron microscopy (ESEM) was used. The ESEM images were analyzed using a four-grade criteria score by three evaluators. The inter-examiner agreement was confirmed by Kappa test and the scores statistically compared by the Kruskal-Wallis' test (p<0.05). Both adaptation and sealer penetration in root canals were not affected by the laser irradiation. Nd:YAG and diode laser decreased the tracer penetration for AH Plus, whereas EndoREZ and EpiphanySE performances were affected by Nd:YAG irradiation (p<0.05). It can be concluded that intracanal laser irradiation can be used as an adjunct in endodontic treatment; however, the use of hydrophilic resin sealers should be avoided when root canals were irradiated with Nd:YAG laser.

  6. Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar{sup +} laser beam

    SciTech Connect

    Niry, M. D.; Khalesifard, H. R.; Mostafavi-Amjad, J.; Ahangary, A.; Azizian-Kalandaragh, Y.

    2012-02-01

    Formation and motion of the silver nanoparticles inside an ion-exchanged soda-lime glass in the presence of a focused high intensity continuous wave Ar{sup +} laser beam (intensity: 9.2 x 10{sup 4} W/cm{sup 2}) have been studied in here. One-dimensional diffusion equation has been used to model the diffusion of the silver ions into the glass matrix, and a two-dimensional reverse diffusion model has been introduced to explain the motion of the silver clusters and their migration toward the glass surface in the presence of the laser beam. The results of the mentioned models were in agreement with our measurements on thickness of the ion-exchange layer by means of optical microscopy and recorded morphology of the glass surface around the laser beam axis by using a Mirau interferometer. SEM micrographs were used to extract the size distribution of the migrated silver particles over the glass surface.

  7. Resonance laser-plasma excitation of coherent terahertz phonons in the bulk of fluorine-bearing crystals under high-intensity femtosecond laser irradiation

    SciTech Connect

    Potemkin, F V; Mareev, E I; Khodakovskii, N G; Mikheev, P M

    2013-08-31

    The dynamics of coherent phonons in fluorine-containing crystals was investigated by pump-probe technique in the plasma production regime. Several phonon modes, whose frequencies are overtones of the 0.38-THz fundamental frequency, were simultaneously observed in a lithium fluoride crystal. Phonons with frequencies of 1 and 0.1 THz were discovered in a calcium fluoride crystal and coherent phonons with frequencies of 1 THz and 67 GHz were observed in a barium fluoride crystal. Furthermore, in the latter case the amplitudes of phonon mode oscillations were found to significantly increase 15 ps after laser irradiation. (interaction of laser radiation with matter)

  8. Enhanced high harmonic generation driven by high-intensity laser in argon gas-filled hollow core waveguide.

    PubMed

    Cassou, Kevin; Daboussi, Sameh; Hort, Ondrej; Guilbaud, Olivier; Descamps, Dominique; Petit, Stéphane; Mével, Eric; Constant, Eric; Kazamias, Sophie

    2014-07-01

    We show that a significant enhancement of the photon flux produced by high harmonic generation can be obtained through guided configuration at high laser intensity largely above the saturation intensity. We identify two regimes. At low pressure, we observe an intense second plateau in the high harmonic spectrum in argon. At relatively high pressure, complex interplay between strongly time-dependent ionization processes and propagation effects leads to important spectral broadening without loss of spectral brightness. We show that the relevant parameter for this physical process is the product of laser peak power by gas pressure. We compare source performances with high harmonic generation using a gas jet in loose focusing geometry and conclude that the source developed is a good candidate for injection devices such as seeded soft x-ray lasers or free electron lasers in the soft x-ray range.

  9. Long-term effect of pulsed high-intensity laser therapy in the treatment of post-mastectomy pain syndrome: a double blind, placebo-control, randomized study.

    PubMed

    Ebid, Anwar Abdelgayed; El-Sodany, Ahmed Mohamed

    2015-08-01

    We assess the long-term effect of pulsed high-intensity laser therapy (HILT) in the treatment of the post-mastectomy pain syndrome (PMPS). A total of 61 women participated in this study (30 in the laser group and 31 in the placebo laser group), with a mean age of 53.56 ± 1.11 years. Patients who were randomly assigned to the laser group received HILT three times per week for 4 weeks, plus a routine physical therapy program (RPTP). The placebo laser group received placebo HILT plus RPTP. The outcomes measured were pain level by visual analog scale (VAS), shoulder range of motion (ROM), and quality of life (QOL). Statistical analysis was performed by ANOVA with repeated measures to compare the differences between baseline and post-treatment measurements and after 12 weeks of follow-up for both groups. The level of statistical significance was set at P < 0.05. Shoulder ROM significantly increased in the laser group after 4 weeks of treatment and after 12 weeks of follow-up compared with the placebo group. VAS results showed a significant decrease post-treatment in the laser group relative to the placebo group, and QOL results showed a significant improvement in the laser group compared with the placebo group and still improved after 12 weeks of follow-up. HILT combined with an RPTP appears to be more effective in patients with PMPS than a placebo laser procedure with RPTP.

  10. Review of laser-solid interaction and its possibilities for space propulsion

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.

    1972-01-01

    Literature on laser-solid interaction is surveyed and the important regimes of this process are delineated. This information is used to discuss the possibility of a laser induced ablation thruster. It is concluded that such a thruster may be feasible if a sufficiently high intensity, high frequency laser beam is available and that further study of interaction is needed.

  11. Wavefront-correction for nearly diffraction-limited focusing of dual-color laser beams to high intensities.

    PubMed

    Zhao, Baozhen; Zhang, Jun; Chen, Shouyuan; Liu, Cheng; Golovin, Grigory; Banerjee, Sudeep; Brown, Kevin; Mills, Jared; Petersen, Chad; Umstadter, Donald

    2014-11-03

    We demonstrate wavefront correction of terawatt-peak-power laser beams at two distinct and well-separated wavelengths. Simultaneous near diffraction-limited focusability is achieved for both the fundamental (800 nm) and second harmonic (400 nm) of Ti:sapphire-amplified laser light. By comparing the relative effectiveness of various correction loops, the optimal ones are found. Simultaneous correction of both beams of different color relies on the linear proportionality between their wavefront aberrations. This method can enable two-color experiments at relativistic intensities.

  12. Spectral broadening and compression of high-intensity laser pulses in quasi-periodic systems with Kerr nonlinearity

    SciTech Connect

    Vlasov, Sergei N; Koposova, E V; Yashin, V E

    2012-11-30

    We report the results of theoretical studies and numerical simulations of optical high-power pulse compression systems based on the spectral broadening in a Kerr nonlinear medium with subsequent pulse compression in a dispersive delay line. It is shown that the effective spectral broadening requires suppressing a smallscale instability arising due to self-focusing, which is possible in quasi-periodic systems consisting of a nonlinear medium and optical relay telescopes transmitting images of the laser beam through the system. The numerical calculations have shown the possibility of broadening the spectrum, followed by 15-fold pulse compression until the instability is excited. (control of laser radiation parameters)

  13. Laser Physics and Laser-Tissue Interaction

    PubMed Central

    Welch, A. J.; Torres, Jorge H.; Cheong, Wai-Fung

    1989-01-01

    Within the last few years, lasers have gained increasing use in the management of cardiovascular disease, and laser angioplasty has become a widely performed procedure. For this reason, a basic knowledge of lasers and their applications is essential to vascular surgeons, cardiologists, and interventional radiologists. To elucidate some fundamental concepts regarding laser physics, we describe how laser light is generated and review the properties that make lasers useful in medicine. We also discuss beam profile and spotsize, as well as dosimetric specifications for laser angioplasty. After considering laser-tissue interaction and light propagation in tissue, we explain how the aforementioned concepts apply to direct laser angioplasty and laser-balloon angioplasty. An understanding of these issues should prove useful not only in performing laser angioplasty but in comparing the reported results of various laser applications. (Texas Heart Institute Journal 1989;16:141-9) PMID:15227198

  14. A treatise on the interaction of molecular systems with short-pulsed highly-intense external fields

    NASA Astrophysics Data System (ADS)

    Paul, Amit K.; Adhikari, Satrajit; Baer, Michael

    2010-11-01

    In this review, we consider two gauges: one, the field-free gauge, is formed by the field-free electronic eigenstates and the other, the field-dressed gauge, is formed by the field-dressed electronic basis set. The field-free gauge is used, of course, in the case of time-independent systems but then it is also the more common one to be used in the case of molecular systems exposed to external fields. This gauge is conceptually simple and therefore numerically friendly - two features which make it versatile for numerical application. The field-dressed gauge is, eventually, more involved but yields deeper insight which might lead to a better understanding of the complicated interaction between a molecular system and external fields. In addition, these features can be exploited to develop efficient and reliable approximations that may save CPU (computer processing unit) time in numerical applications. These two gauges are the main topics of the present review. Once the general derivation of the two gauges is completed, two additional issues are discussed: (i) we extend these gauges to include external fields formed by non-classical photon-state distributions (also known as non-coherent Fock-state distributions). These photon state distributions, recently considered for the first time for molecular systems [A.K. Paul, S. Adhikari, M. Baer, R. Baer, Phys. Rev. A 81 (2010) 013412], are interesting on their own footing. Although here they mainly serve as a vehicle to test the above-mentioned novel approximations, we also devote part of the review to studying the importance of non-coherent Fock states for obtaining an unbiased correct understanding of the interaction of molecular systems with strong, short-pulsed laser fields. For this purpose, we study the photo-dissociation process of H2+ and show (a) that the approximations, recently introduced, diminish the CPU time by about one order of magnitude with minimal loss of accuracy and (b) indeed non-coherent Fock states

  15. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses

    NASA Astrophysics Data System (ADS)

    Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke

    2015-02-01

    Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 1018 W/cm2 is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200 MV/m and 7 ps, respectively.

  16. Fabrication and characterization of freestanding ultrathin diamond-like carbon targets for high-intensity laser applications

    NASA Astrophysics Data System (ADS)

    Ho, Timothy T.; Gupta, Manisha; Chowdhury, Fatema Rezwana; Chen, Zhijiang; Tsui, Ying Yin

    2013-12-01

    Here, we report the fabrication of diamond-like carbon (DLC) thin films using pulsed laser deposition (PLD). PLD is a well-established technique for deposition of high-quality DLC thin films. Carbon tape target was ablated using a KrF (248 nm, 25 ns, 20 Hz) excimer laser to deposit DLC films on soap-coated substrates. A laser fluence between 8.5 and 14 J/cm2 and a target to substrate distance of 10 cm was used. These films were then released from substrates to obtain freestanding DLC thin foils. Foil thicknesses from 20 to 200 nm were deposited using this technique to obtain freestanding targets of up to 1-inch square area. Typically, 100-nm-thick freestanding DLC films were characterized using different techniques such as AFM, XPS, and nano-indentation. AFM was used to obtain the film surface roughness of 9 nm rms of the released film. XPS was utilized to obtain 74 % sp2, 23 % sp3, and 3 % C-O bond components. Nano-indentation was used to characterize the film hardness of 10 GPa and Young's modulus of 110 GPa. Damage threshold properties of the DLC foils were studied (1,064 nm, 6 ns) and found to be 7 × 1010 W/cm2 peak intensity for our best ultrathin DLC foils.

  17. Ta-ion implantation induced by a high-intensity laser for plasma diagnostics and target preparation

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Malinsky, P.; Mackova, A.; Matousek, J.; Torrisi, L.; Slepicka, P.; Ullschmied, J.

    2015-12-01

    The present work is focused on the implantation of Ta ions into silicon substrates covered by a silicon dioxide layer 50-300 nm thick. The implantation is achieved using sub-nanosecond pulsed laser ablation (1015 W/cm2) with the objective of accelerating non-equilibrium plasma ions. The accelerated Ta ions are implanted into the exposed silicon substrates at energies of approximately 20 keV per charge state. By changing a few variables in the laser pulse, it is possible to control the kinetic energy, the yield and the angular distribution of the emitted ions. Rutherford Back-Scattering analysis was performed using 2.0 MeV He+ as the probe ions to determine the elemental depth profiles and the chemical composition of the laser-implanted substrates. The depth distributions of the implanted Ta ions were compared to SRIM 2012 simulations. The evaluated results of energy distribution were compared with online techniques, such as Ion Collectors (IC) and an Ion Energy Analyser (IEA), for a detailed identification of the produced ion species and their energy-to-charge ratios (M/z). Moreover, XPS (X-ray Photon Spectroscopy) and AFM (Atomic Force Microscopy) analyses were carried out to obtain information on the surface morphology and the chemical composition of the modified implanted layers, as these features are important for further application of such structures.

  18. Radiation reaction in high-intensity fields

    NASA Astrophysics Data System (ADS)

    Seto, Keita

    2015-10-01

    Since the development of a radiating electron model by Dirac in 1938 [P. A. M. Dirac, Proc. R. Soc. Lond. A 167, 148 (1938)], many authors have tried to reformulate this model of the so-called "radiation reaction". Recently, this effect has become important in ultra-intense laser-electron (plasma) interactions. In our recent research, we found a way of stabilizing the radiation reaction by quantum electrodynamics (QED) vacuum fluctuation [K Seto et al., Prog. Theor. Exp. Phys. 2014, 043A01 (2014); K. Seto, Prog. Theor. Exp. Phys. 2015, 023A01 (2015)]. On the other hand, the modification of the radiated field by highly intense incoming laser fields should be taken into account when the laser intensity is higher than 10^{22} W/cm2, which could be achieved by next-generation ultra-short-pulse 10 PW lasers, like the ones under construction for the ELI-NP facility. In this paper, I propose a running charge-mass method for the description of the QED-based synchrotron radiation by high-intensity external fields with stabilization by the QED vacuum fluctuation as an extension from the model by Dirac.

  19. Possibility of applying a hydrodynamic model to describe the laser erosion of metals irradiated by high-intensity nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Kozadaev, K. V.

    2014-04-01

    We report the results of experimental investigations of the production and development of plasma-vapour plumes upon irradiation of metal targets by nanosecond (10-100 ns) pulses with a high (108-1010 W cm-2) power density under atmospheric conditions. The transition from a quasi-stationary thermal mechanism of metal erosion to an explosion hydrodynamic one takes place when the radiation power density increases from 108 to 109 W cm-2. The resultant experimental information is extremely important for the laser deposition of metal nanostructures under atmospheric conditions, which is possible only for power densities of 108-109 W cm-2.

  20. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses.

    PubMed

    Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke

    2015-02-05

    Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 10(18) W/cm(2) is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200 MV/m and 7 ps, respectively.

  1. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses

    PubMed Central

    Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke

    2015-01-01

    Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 1018 W/cm2 is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200 MV/m and 7 ps, respectively. PMID:25652694

  2. Computer simulation of heat and mass transfer in tissue during high-intensity long-range laser irradiation.

    PubMed

    Director, L B; Frid, S E; Mendeleev VYa; Scovorod'Ko, S N

    1998-09-11

    Three-dimensional transient finite difference numerical model of the biological tissue irradiated by powerful laser beam is developed. It is used to simulate the thermal behavior of tissue assuming that radiation wavelength is chosen to give rise for volumetric heat sources. A three-dimensional seven-flow model is used to calculate radiation propagation. Evaporation and burn-out of tissue resulting in a through hole along the axis of the beam are taken into account. Besides the water boiling and corresponding changes of thermal and optical tissue properties the model takes into account one of the heat steam transfer mechanisms. Estimates are carried out for the effects of diffusion transfer and vaporization of water from the tissue surface. Kinetics of protein denaturation process are calculated by Arrenius equation. The problem is solved numerically using discrete grid technique and adaptive time-step control algorithm.

  3. Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators

    NASA Astrophysics Data System (ADS)

    Sato, S. A.; Yabana, K.; Shinohara, Y.; Otobe, T.; Lee, K.-M.; Bertsch, G. F.

    2015-11-01

    We calculate the energy deposition by very short laser pulses in SiO2 (α -quartz) with a view to establishing systematics for predicting damage and nanoparticle production. The theoretical framework is time-dependent density functional theory, implemented by the real-time method in a multiscale representation. For the most realistic simulations we employ a meta-GGA Kohn-Sham potential similar to that of Becke and Johnson. We find that the deposited energy in the medium can be accurately modeled as a function of the local electromagnetic pulse fluence. The energy-deposition function can in turn be quite well fitted to the strong-field Keldysh formula for a range of intensities from below the melting threshold to well beyond the ablation threshold. We find reasonable agreement between the damage threshold and the energy required to melt the substrate. Also, the depth of the ablated crater at higher energies is fairly well reproduced assuming that the material ablated with the energy exceeds that required to convert it to an atomic fluid. However, the calculated ablation threshold is higher than experiment, suggesting a nonthermal mechanism for the surface ablation.

  4. Quasilinear Theory of Laser-Plasma Interactions.

    NASA Astrophysics Data System (ADS)

    Neil, Alastair John

    The interaction of a high intensity laser beam with a plasma is generally susceptible to the filamentation instability due to nonuniformities in the laser profile. In ponderomotive filamentation high intensity spots in the beam expell plasma by ponderomotive force, lowering the local density, causing even more light to be focused into the already high intensity region. The result--the beam is broken up into a filamentary structure. Several optical smoothing techniques have been proposed to eliminate this problem. In the Random Phase Plates (RPS) approach, the beam is split into a very fine scale, time-stationary interference pattern. The irregularities in this pattern are small enough that thermal diffusion is then responsible for smoothing the illumination. In the Induced Spatial Incoherence (ISI) approach the beam is broken up into a larger scale but non-time-stationary interference pattern. In this dissertation we propose that the photons in an ISI beam resonantly interact with the sound waves in the wake of the beam. Such a resonant interaction induces diffusion in the velocity space of the photons. The diffusion will tend to spread the distribution of photons, thus if the diffusion time is much shorter than the e-folding time of the filamentation instability, the instability will be suppressed. Using a wave-kinetic description of laser-plasma interactions we have applied quasilinear theory to model the resonant interaction of the photons in an ISI beam with the beam's wake field. We have derived an analytic expression for the transverse diffusion coefficient. The quasilinear hypothesis was tested numerically and shown to yield an underestimate of the diffusion rate. By comparing the quasilinear diffusion rate, gamma_ {D}, with the maximum growth rate for the ponderomotive filamentation of a uniform beam, gamma_{f_{max}} , we have derived a worst case criterion for stability against ponderomotive filamentation: { gamma_{f_{max}} over gamma_ D} ~ .5 { ~ f^5/~ D

  5. High-Intensity and High Energy Laser Interactions with Single Droplets

    DTIC Science & Technology

    1994-04-29

    approach the liquid-air interface very near the critical angle for total internal reflection and hence, experience a large Goos - Hanchen shift which causes...angle have a large Goos - HAnchen shift. The associated penetration depth is related to the decreased mode spacing. Goos - HAnchen shift is large when...parameter alone. We believe the inclusion of the Goos HAnchen shift and the associated penetration depth into the region outside the droplet surface helps

  6. Long-term effects of pulsed high-intensity laser therapy in the treatment of post-burn pruritus: a double-blind, placebo-controlled, randomized study.

    PubMed

    Ebid, Anwar Abdelgayed; Ibrahim, Abeer Ramadan; Omar, Mohammed Taher; El Baky, Amal Mohamed Abd

    2017-04-01

    We assessed the long-term effects of pulsed high-intensity laser therapy (HILT) in post-burn pruritus treatment. A total of 49 adult burn patients with mean age of 31.53 ± 10.14 years participated, with 24 patients randomly assigned to the active laser group (ALG) and 25 in the placebo laser group (PLG). The ALG received HILT three times per week for 6 weeks, while the PLG received placebo HILT. Both groups received 10-mg cetirizine tablets twice daily and 10 mg at bedtime. All patients were advised to massage their burn scars with coconut oil for 5 min four times daily. The outcomes measured were the itch severity scale (ISS), impairment of pruritus-related quality of life (QoL), pain level by the visual analog scale (VAS), hand grip strength by handheld dynamometer, and daily cetirizine intake. Repeated-measures ANOVA was used to compare the baseline and post-treatment measurements and after 12 weeks of follow-up. Statistical significance was set at P < 0.05. ISS decreased significantly in the ALG after 6 weeks of treatment and after 12 weeks of follow-up compared with the PLG. The QoL results showed a significant improvement in the ALG compared with the PLG, which continued after 12 weeks. VAS results significantly decrease, hand grip strength significantly improved, and cetirizine intake significantly decreased post-treatment in the ALG relative to the PLG. HILT combined with cetirizine seems more effective in patients with post-burn pruritus than a placebo laser procedure with cetirizine.

  7. Detection of 1 - 100 keV x-rays from high intensity, 500 fs laser- produced plasmas using charge-coupled devices

    SciTech Connect

    Dunn, J.; Young, B.K.F.; Conder, A.D.; Stewart, R.E.

    1996-01-01

    We describe a compact, vacuum compatible, large format, charge- coupled device (CCD) camera for scientific imaging and detection of 1- 100 keV x rays in experiments at LLNL JANUS-1ps laser. A standard, front-illuminated, multi-pin phase device with 250 k electron full well capacity, low dark current (10 pA/cm{sup 2} at 20 C) and low read noise (5 electron rms) is cooled to -35 C to give the camera excellent 15-bit dynamic range and signal-to-noise response. Intensity and x-ray energy linear response were determined for optical and x-ray (<65 keV) photons and are in excellent agreement. Departure from linearity was less than 0.7%. Inherent linearity and energy dispersive characteristics of CCD cameras are well suited for hard x-ray photon counting. X-rays absorbed within the depletion and field-free regions can be distinguished by studying the pulse height spectrum. Results are presented for the detection of 1-100 keV Bremsstrahlung continuum, K-shell and L-shell fluorescence spectra emitted from high intensity (10{sup 18}W cm{sup -2}), 500 fs laser- produced plasmas.

  8. Flash imaging of fine structures of cellular organelles by contact x-ray microscopy with a high intensity laser plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Kado, Masataka; Ishino, Masahiko; Kishimoto, Maki; Tamotsu, Satoshi; Yasuda, Keiko; Kinjo, Yasuhito; Shinohara, Kunio

    2011-09-01

    X-ray flash imaging by contact microscopy with a highly intense laser-plasma x-ray source was achieved for the observation of wet biological cells. The exposure time to obtain a single x-ray image was about 600 ps as determined by the pulse duration of the driving laser pulse. The x-ray flash imaging makes it possible to capture an x-ray image of living biological cells without any artificial treatment such as staining, fixation, freezing, and so on. The biological cells were cultivated directly on the surface of the silicon nitride membranes, which are used for the x-ray microscope. Before exposing the cells to x-rays they were observed by a conventional fluorescent microscope as reference, since the fluorescent microscopes can visualize specific organelles stained with fluorescent dye. Comparing the x-ray images with the fluorescent images of the exact same cells, each cellular organelle observed in the x-ray images was identified one by one and actin filaments and mitochondria were clearly identified in the x-ray images.

  9. High intensity hadron accelerators

    SciTech Connect

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics.

  10. Interaction of Ultraintense Laser Vortices with Plasma Mirrors

    NASA Astrophysics Data System (ADS)

    Denoeud, A.; Chopineau, L.; Leblanc, A.; Quéré, F.

    2017-01-01

    Laser beams carrying orbital angular momentum (OAM) have found major applications in a variety of scientific fields, and their potential for ultrahigh-intensity laser-matter interactions has since recently been considered theoretically. We present an experiment where such beams interact with plasma mirrors up to laser intensities such that the motion of electrons in the laser field is relativistic. By measuring the spatial intensity and phase profiles of the high-order harmonics generated in the reflected beam, we obtain evidence for the helical wavefronts of the high-intensity laser at focus, and study the conservation of OAM in highly nonlinear optical processes at extreme laser intensities. The physical effects determining the field mode content of the twisted harmonic beams are elucidated.

  11. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Mechanism of high-energy electron production in a laser plasma

    NASA Astrophysics Data System (ADS)

    Belyaev, V. S.

    2004-01-01

    A mechanism of high-energy electron production in the interaction of high-intensity short laser pulses with a solid target is proposed and analysed. The theoretical dependences of fast-electron kinetic energy on the parameters of laser radiation and target material are given. The effect of ionisation of the target material is considered. The generation of ultrastrong magnetic fields in the laser plasma is shown to play the key part in the formation, transfer, and acceleration of electron beams. This results in the production of vortex electric fields accelerating electrons. The theoretical dependences yield well-proved limits for the electron energy and are in good agreement with the results of experiments performed on high-intensity laser setups, including the results obtained with participation of the author.

  12. Energy transport and isochoric heating of a low-Z, reduced-mass target irradiated with a high intensity laser pulse

    SciTech Connect

    Nishimura, H.; Nakamura, H.; Tanabe, M.; Fujiwara, T.; Yamamoto, N.; Fujioka, S.; Mima, K.; Mishra, R.; Sentoku, Y.; Mancini, R.; Hakel, P.; Ohshima, S.; Batani, D.; Veltcheva, M.; Desai, T.; Jafer, R.; Kawamura, T.; Koike, F.

    2011-02-15

    Heat transport in reduced-mass targets irradiated with a high intensity laser pulse was studied. K{alpha} lines from partially ionized chlorine embedded in the middle of a triple-layered plastic target were measured to evaluate bulk electron temperature in the tracer region inside the target. Two groups of K{alpha} lines, one from Cl{sup +}-Cl{sup 6+} (hereby called ''cold K{alpha}''), and the other from Cl{sup 9+} and Cl{sup 10+} (''shifted K{alpha}'') are observed from different regions within the target. Two-dimensional collisional particle-in-cell simulations show two distinct heating mechanisms occurring concurrently: uniform heating by refluxing electrons and local heating by diffusive electrons in the central region. These two heating processes, which made the target temperature distribution nonuniform, are responsible for producing the two groups of K{alpha} lines in the experiment. The blue-shift of cold K{alpha} lines in the experiment is the signature of higher temperatures achieved by the refluxing heating in smaller-mass targets.

  13. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography

    NASA Astrophysics Data System (ADS)

    Courtois, C.; Edwards, R.; Compant La Fontaine, A.; Aedy, C.; Bazzoli, S.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Dain, L. Le; Mastrosimone, D.; Pichoff, N.; Pien, G.; Stoeckl, C.

    2013-08-01

    Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 1019 W/cm2) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can be resolved up to an external areal density of 85 g/cm2. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 μm (full width half maximum of the x-ray source Point Spread Function).

  14. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography

    SciTech Connect

    Courtois, C.; Compant La Fontaine, A.; Bazzoli, S.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Dain, L. Le; Pichoff, N.; Edwards, R.; Aedy, C.; Mastrosimone, D.; Pien, G.; Stoeckl, C.

    2013-08-15

    Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 10{sup 19} W/cm{sup 2}) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can be resolved up to an external areal density of 85 g/cm{sup 2}. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 μm (full width half maximum of the x-ray source Point Spread Function)

  15. High Intensity Polarized Electron Gun

    SciTech Connect

    Redwine, Robert P.

    2012-07-31

    The goal of the project was to investigate the possibility of building a very high intensity polarized electron gun for the Electron-Ion Collider. This development is crucial for the eRHIC project. The gun implements a large area cathode, ring-shaped laser beam and active cathode cooling. A polarized electron gun chamber with a large area cathode and active cathode cooling has been built and tested. A preparation chamber for cathode activation has been built and initial tests have been performed. Major parts for a load-lock chamber, where cathodes are loaded into the vacuum system, have been manufactured.

  16. Laser-capillary interaction for the EXIN project

    NASA Astrophysics Data System (ADS)

    Bisesto, F. G.; Anania, M. P.; Bacci, A. L.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Galletti, M.; Gallo, A.; Ghigo, A.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Pompili, R.; Rossi, A. R.; Serafini, L.; Vaccarezza, C.

    2016-09-01

    The EXIN project is under development within the SPARC_LAB facility of the National Laboratory of Frascati (LNF-INFN). This project aims to accelerate pre-existing electron bunches with high brightness by exploiting the wakefield plasma acceleration technique, while preserving the initial brightness. The wakefield is excited inside a dielectric capillary by high intensity laser pulses produced by the FLAME laser interacting with a gas. In this work, we present numerical simulations in order to optimize energy coupling between our laser with super-Gaussian transverse profile and a dielectric capillary. Moreover, an overview of the experimental layout will be given.

  17. High intensity neutrino beams

    SciTech Connect

    Ichikawa, A. K.

    2015-07-15

    High-intensity proton accelerator complex enabled long baseline neutrino oscillation experiments with a precisely controlled neutrino beam. The beam power so far achieved is a few hundred kW with enourmorous efforts of accelerator physicists and engineers. However, to fully understand the lepton mixing structure, MW-class accelerators are desired. We describe the current intensity-frontier high-energy proton accelerators, their plans to go beyond and technical challenges in the neutrino beamline facilities.

  18. Fast Ignition relevant study of the flux of high intensity laser generated electrons via a hollow cone into a laser-imploded plasma

    SciTech Connect

    Key, M; Adam, J; Akli, K; Borgheshi, M; Chen, M; Evans, R; Freeman, R; Hatchett, S; Hill, J; Heron, A; King, J; Lancaster, K; Mackinnon, A; Norreys, P; Phillips, T; Romagnani, L; Snavely, R; Stephens, R; Stoeckl, C

    2005-10-11

    An integrated experiment relevant to fast ignition is described. A Cu doped CD spherical shell target is imploded around an inserted hollow Au cone by a six beam 600J, 1ns laser to a peak density of 4gcm{sup -3} and a diameter of 100 {micro}m. A 10 ps, 20TW laser pulse is focused into the cone at the time of peak compression. The flux of high-energy electrons through the imploded material is determined from the yield of Cu K{alpha} fluorescence by comparison with a Monte Carlo model and is estimated to carry 15% of the laser energy. Collisional and Ohmic heating are modeled. An electron spectrometer shows significantly greater reduction of the transmitted electron flux than is due to binary collisions and Ohmic potential. Enhanced scattering by instability-induced magnetic fields is suggested.

  19. Laser-electron Compton interaction in plasma channels

    SciTech Connect

    Pogorelsky, I.V.; Ben-Zvi, I.; Hirose, T.

    1998-10-01

    A concept of high intensity femtosecond laser synchrotron source (LSS) is based on Compton backscattering of focused electron and laser beams. The short Rayleigh length of the focused laser beam limits the length of interaction to a few picoseconds. However, the technology of the high repetition rate high-average power picosecond lasers required for high put through LSS applications is not developed yet. Another problem associated with the picosecond laser pulses is undesirable nonlinear effects occurring when the laser photons are concentrated in a short time interval. To avoid the nonlinear Compton scattering, the laser beam has to be split, and the required hard radiation flux is accumulated over a number of consecutive interactions that complicates the LSS design. In order to relieve the technological constraints and achieve a practically feasible high-power laser synchrotron source, the authors propose to confine the laser-electron interaction region in the extended plasma channel. This approach permits to use nanosecond laser pulses instead of the picosecond pulses. That helps to avoid the nonlinear Compton scattering regime and allows to utilize already existing technology of the high-repetition rate TEA CO{sub 2} lasers operating at the atmospheric pressure. They demonstrate the advantages of the channeled LSS approach by the example of the prospective polarized positron source for Japan Linear Collider.

  20. Study of 1–8 keV K-α x-ray emission from high intensity femtosecond laser produced plasma

    SciTech Connect

    Arora, V. Naik, P. A.; Chakera, J. A.; Bagchi, S.; Tayyab, M.; Gupta, P. D.

    2014-04-15

    We report an experimental study on the optimization of a laser plasma based x-ray source of ultra-short duration K-α line radiation. The interaction of pulses from a CPA based Ti:sapphire laser (10 TW, 45 fs, 10 Hz) system with magnesium, titanium, iron and copper solid target generates bright 1-8 keV K-α x-ray radiation. The x-ray yield was optimized with the laser pulse duration (at fixed fluence) which is varied in the range of 45 fs to 1.4 ps. It showed a maximum at laser pulse duration of ∼740 fs, 420 fs, 350 and 250 fs for Mg (1.3 keV), Ti (4.5 keV), Fe (6.4 keV) and Cu (8.05 keV) respectively. The x-ray yield is observed to be independent of the sign of the chirp. The scaling of the K-α yield (I{sub x} ∝ I{sub L}{sup β}) for 45 fs and optimized pulse duration were measured for laser intensities in the region of 3 × 10{sup 14} – 8 × 10{sup 17}. The x-ray yield shows a much faster scaling exponent β = 1.5, 2.1, 2.4 and 2.6 for Mg, Ti, Fe and Cu respectively at optimized pulse duration compared to scaling exponent of 0.65, 1.3, 1.5, and 1.7 obtained for 45 fs duration laser pulses. The laser to x-ray energy conversion efficiencies obtained for different target materials are η{sub Mg} = 1.2 × 10{sup −5}, η{sub Ti} = 3.1 × 10{sup −5}, η{sub Fe} = 2.7 × 10{sup −5}, η{sub Cu} = 1.9 × 10{sup −5}. The results have been explained from the efficient generation of optimal energy hot electrons at longer laser pulse duration. The faster scaling observed at optimal pulse duration indicates that the x-ray source is generated at the target surface and saturation of x-ray emission would appear at larger laser fluence. An example of utilization of the source for measurement of shock-wave profiles in a silicon crystal by time resolved x-ray diffraction is also presented.

  1. Laser/tissue interaction.

    PubMed

    Dederich, D N

    1991-01-01

    When laser light impinges on tissue, it can reflect, scatter, be absorbed, or transmit to the surrounding tissue. Absorption controls to a great degree the extent to which reflection, scattering and transmission occur, and wavelength is the primary determinant of absorption. The CO2 laser is consistently absorbed by most materials and tissues and the Nd-YAG laser wavelength is preferentially absorbed in pigmented tissues. The factors which determine the initial tissue effect include the laser wavelength, laser power, laser waveform, tissue optical properties, and tissue thermal properties. There are almost an infinite number of combinations of these factors possible, many of which would result in unacceptable damage to the tissues. This underscores the need to thoroughly test any particular combination of these factors on the conceptual, in-vitro, and in-vivo level before a treatment is offered.

  2. Laser shaping of a relativistic circularly polarized pulse by laser foil interaction

    SciTech Connect

    Zou, D. B.; Zhuo, H. B.; Yu, T. P.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ouyang, J. M.; Ge, Z. Y.; Zhang, G. B.; Wang, P.

    2013-07-15

    Laser shaping of a relativistic circularly polarized laser pulse in ultra-intense laser thin-foil interaction is investigated by theoretical analysis and particle-in-cell simulations. It is found that the plasma foil as a nonlinear optical shutter has an obvious cut-out effect on the laser temporal and spatial profiles. Two-dimensional particle-in-cell simulations show that the high intensity part of a Gaussian laser pulse can be well extracted from the whole pulse. The transmitted pulse with longitudinal steep rise front and transverse super-Gaussian profile is thus obtained which would be beneficial for the radiation pressure acceleration regime. The Rayleigh-Taylor-like instability is observed in the simulations, which destroys the foil and results in the cut-out effect of the pulse in the rise front of a circularly polarized laser.

  3. The interaction of intense subpicosecond laser pulses with underdense plasmas

    SciTech Connect

    Coverdale, Christine Ann

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 1016 W/cm2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by Lplasma ≥ 2LRayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (no ≤ 0.05ncr). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  4. Optimum laser intensity for the production of energetic deuterium ions from laser-cluster interaction

    SciTech Connect

    Bang, W.; Dyer, G.; Quevedo, H. J.; Bernstein, A. C.; Gaul, E.; Rougk, J.; Aymond, F.; Donovan, M. E.; Ditmire, T.

    2013-09-15

    We measured, using Petawatt-level pulses, the average ion energy and neutron yield in high-intensity laser interactions with molecular clusters as a function of laser intensity. The interaction volume over which fusion occurred (1–10 mm{sup 3}) was larger than previous investigations, owing to the high laser power. Possible effects of prepulses were examined by implementing a pair of plasma mirrors. Our results show an optimum laser intensity for the production of energetic deuterium ions both with and without the use of the plasma mirrors. We measured deuterium plasmas with 14 keV average ion energies, which produced 7.2 × 10{sup 6} and 1.6 × 10{sup 7} neutrons in a single shot with and without plasma mirrors, respectively. The measured neutron yields qualitatively matched the expected yields calculated using a cylindrical plasma model.

  5. Laser-plasma interactions relevant to Inertial Confinement Fusion

    SciTech Connect

    Wharton, K. B.

    1998-11-01

    Research into laser-driven inertial confinement fusion is now entering a critical juncture with the construction of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Many of the remaining unanswered questions concerning NIF involve interactions between lasers and plasmas. With the eventual goal of fusion power in mind, laser-plasma interactions relevant to laser fusion schemes is an important topic in need of further research. This work experimentally addresses some potential shortcuts and pitfalls on the road to laser-driven fusion power. Current plans on NIF have 192 laser beams directed into a small cylindrical cavity which will contain the fusion fuel; to accomplish this the beams must cross in the entrance holes, and this intersection will be in the presence of outward-flowing plasma. To investigate the physics involved, interactions of crossing laser beams in flowing plasmas are investigated with experiments on the Nova laser facility at LLNL. It was found that in a flowing plasma, energy is transferred between two crossing laser beams, and this may have deleterious consequences for energy balance and ignition in NIF. Possible solutions to this problem are presented. A recently-proposed alternative to standard laser-driven fusion, the ''fast ignitor'' concept, is also experimentally addressed in this dissertation. Many of the laser-plasma interactions necessary for the success of the fast ignitor have not previously been explored at the relevant laser intensities. Specifically, the transfer of high-intensity laser energy to electrons at solid-target interfaces is addressed. 20-30% conversion efficiencies into forward-propagated electrons were measured, along with an average electron energy that varied with the type of target material. The directionality of the electrons was also measured, revealing an apparent beaming of the highest energy electrons. This work was extended to various intensities and pulse lengths and a

  6. High intensity solar cell radiometer

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W.; Spisz, E. W.

    1972-01-01

    Device can be employed under high intensity illumination conditions such as would occur in a close-solar-approach space mission or in monitoring high intensity lamps. Radiometer consists of silicon solar cells with thin semi-transparent coatings of aluminum deposited on the front surfaces to permit transmission of small percentage of light and reflect the remainder.

  7. Penetration of high-intensity Er:YAG laser light emitted by IR hollow optical fibers with sealing caps in water.

    PubMed

    Iwai, Katsumasa; Shi, Yi-Wei; Endo, Masashi; Ito, Kentaro; Matsuura, Yuji; Miyagi, Mitsunobu; Jelinkova, Helena

    2004-04-20

    The penetration depth in water was measured for Er:YAG laser light in a high density relevant to clinical applications. Various types of focusing elements were used to guide the light efficiently. We found that the transmission distance depended strongly on the beam shape in the water. When we used a plano-convex type of focusing cap, the penetration depth was larger than that when a dome- or ball-type cap were used.

  8. Toward Extrapolating Two-Dimensional High-intensity Laser-Plasma Ion Acceleration Particle-in-Cell Simulations to Three Dimensions

    NASA Astrophysics Data System (ADS)

    Stark, D. J.; Yin, L.; Albright, B. J.; Guo, F.

    2016-10-01

    A PIC study of laser-ion acceleration via relativistic induced transparency points to how 2D-S (laser polarization in the simulation plane) and -P (out-of-plane) simulations may capture different physics characterizing these systems, visible in their entirety in (often cost-prohibitive) 3D simulations. The electron momentum anisotropy induced in the target by the laser pulse is dramatically different in the two 2D cases, manifesting in differences in polarization shift, electric field strength, density threshold for onset of relativistic induced transparency, and target expansion timescales. In particular, a trajectory analysis of individual electrons and ions may allow one to delineate the role of the fields and modes responsible for ion acceleration. With this information, we consider how 2D simulations might be used to develop, in some respects, a fully 3D understanding of the system. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Los Alamos National Laboratory Directed Research and Development Program.

  9. Production of Neutrons up to 18 MeV in High-Intensity, Short-Pulse Laser Matter Interactions

    DTIC Science & Technology

    2011-10-24

    calculating the amount of energy an incident deuteron deposits in the active layer of the IP using the collisional Monte- Carlo code SRIM.13 The technique...H. Key, A. J. Mackinnon, A. G. MacPhee, P. K. Patel, R. R. Freeman, L. D. Van Woerkom, and C. M. Castaneda , Rev. Sci. Instrum. 79, 053501 (2008

  10. Mechanism and computational model for Lyman-{alpha}-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    SciTech Connect

    Louchev, Oleg A.; Saito, Norihito; Wada, Satoshi; Bakule, Pavel; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko

    2011-09-15

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-{alpha} (Ly-{alpha}) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-{alpha} generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-{alpha} radiation generation can achieve a value of {approx}5x10{sup -4} which is restricted by the total combined absorption of the fundamental and generated radiation.

  11. Mechanism and computational model for Lyman-α-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    NASA Astrophysics Data System (ADS)

    Louchev, Oleg A.; Bakule, Pavel; Saito, Norihito; Wada, Satoshi; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko

    2011-09-01

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-α (Ly-α) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-α generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-α radiation generation can achieve a value of ˜5×10-4 which is restricted by the total combined absorption of the fundamental and generated radiation.

  12. PIC-DSMC analysis on interaction of a laser induced discharge and shock wave

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei

    2015-09-01

    Laser induced discharge and the shock wave have attracted great interest for use in the electrical engineering. When the high intensity laser (10 GW >) is focused in the atmosphere, the breakdown occurs and the discharge wave propagates toward to the laser irradiation. The shock wave is generated around the discharge wave, which is called as the laser supported detonation wave. After breakdown occurred, the initial electron of the avalanche ionization is produced by the photoionization due to the plasma radiation. It is well recognized that the radiation of the laser plasma affects the propagation mechanism of the laser induced discharge wave after the initiation of the breakdown. However, it is difficult to observe the interaction between the plasma radiation and the electron avalanche in the ionization-wave front in experimentally except in the high intensity laser. In the numerical calculation of the laser-induced discharge, the fluid dynamics based on the Navier-Stokes equation have been widely used. However, it is difficult to investigate the avalanche ionization at the wave front using the fluid dynamics simulation. To investigate the interaction of the ionization-wave front and the shock wave, it is appropriate to utilize the PIC-DSMC method. The present study showed the propagation of the ionization front of the discharge wave and the shock wave using the particle simulation. This work was supported by Kato Foundation for Promotion of Science and Japan Power Academy.

  13. Direct observation of resonance effects in laser cluster interactions

    SciTech Connect

    Zweiback, J. S.

    1999-06-01

    Time resolved dynamics of high intensity laser interactions with atomic clusters have been studied with both theoretical analysis and experiment. A short-pulse Ti:sapphire laser system, which could produce 50 mJ of energy in a 50 fs pulse, was built to perform these experiments. The laser used a novel single grating stretcher and was pumped, in part, by a custom Nd:YLF laser system, including 19 mm Nd:YLF amplifiers. It was found that there is an optimal pulse width to maximize absorption for a given cluster size. This optimal pulse width ranged from 400 fs for 85 A radius xenon clusters to 1.2 ps for 205 {angstrom} radius xenon clusters. Using a pump-probe configuration, the absorption of the probe radiation was observed to reach a maximum for a particular time delay between pump and probe, dependent on the cluster size. The delay for peak absorption was 800, 1400, and 2100 fs for 85 Å, 130 Å, and 170 Å radius xenon clusters respectively. Model calculations suggest that these effects are due to resonant heating of the spherical plasma in agreement with the hydrodynamic interpretation of cluster interactions. While this simple hydrodynamic code produces reasonable agreement with data, it does not include bulk plasma or non-linear propagation effects and is limited to the regime where resonant behavior dominates. We also measured the scattered laser light from the laser-cluster interaction. Similar to the absorption measurements, there is an optimal pulse width which maximizes the scattered signal. This pulse width is larger than the optimal pulse width for absorption. This disagrees with model calculations which show both pulse widths being similar. Further experiments measuring the scattered light in a pump-probe configuration should help to resolve this disagreement.

  14. Synergistic effect of high-intensity focused ultrasound and low-fluence Q-switched Nd:YAG laser in the treatment of the aging neck and décolletage.

    PubMed

    Nam, Jae-Hui; Choi, Young-Jun; Lim, Jae Yun; Min, Joon Hong; Kim, Won-Serk

    2017-01-01

    High-intensity focused ultrasound (HIFU) is regarded as an effective skin-lifting device; however, literature regarding treatment of the aging neck and décolletage with HIFU is scarce. Our study aimed to evaluate the efficacy of combination with HIFU and low-fluence Q-switched Nd:YAG (LQSNY) laser on the aging neck and décolletage. Nineteen women were assessed. HIFU at two visits and LQSNY laser at six visits were used to irradiate the neck and chest. At week 16, improvements were rated using the Dedo classification, Fabi/Bolton Chest Wrinkle Scale (FBCWS), and Global Aesthetic Improvement Scales (GAIS). Erythema and melanin indices (EMIs) and cervicomental angle were measured. Subject GAIS and satisfaction were evaluated at follow-up visits. At week 16, neck sagging and chest rhytides were improved on Dedo classification and FBCWS, respectively. Pigmentation and rhytides of the neck and chest were rated as improved in 30 % or more of the subjects by physician GAIS and in approximately 80 % of the subjects by subject GAIS. The above differences seemed to be attributable to the initial expectation level and mild severity pertaining to dress custom in Korea. Eighty-four percent of subjects were satisfied with treatment outcomes. EMIs were decreased on the chest. The combination of HIFU and LQSNY is an effective treatment option to mitigate rhytides and pigmentation of the neck and décolletage.

  15. Ultrashort Pulse (USP) Laser-Matter Interactions

    DTIC Science & Technology

    2013-03-05

    Sunlight He - Ne cw laser W ik ip ed ia W ik ip ed ia DISTRIBUTION A: Approved for public release; distribution is unlimited time time time time...1996) DISTRIBUTION A: Approved for public release; distribution is unlimited 26 Timescales of electron and lattice processes in laser - excited ...vortex, SSTF beams) – Novel laser -matter interaction geometries (confined microexplosions, SSTF excitation , few-cycle pulses) SSTF focus

  16. Extreme field limits in the interaction of laser light with ultrarelativistic electrons

    SciTech Connect

    Bulanov, S. V.; Esirkepov, T. Zh.; Hayashi, Y.; Kando, M.; Kiriyama, H.; Koga, J.; Kondo, K.; Kotaki, H.; Pirozhkov, A.; Bulanov, S. S.; Zhidkov, A.; Chen, P.; Neely, D.; Kato, Y.; Narozhny, N. B.; Korn, G.

    2012-07-11

    The critical electric field of quantum electrodynamics is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. This field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. A feasibility of the experiments on the collision of laser light and high intensity electromagnetic pulses, generated by relativistic flying mirrors, with relativistic electrons for the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is discussed.

  17. High-Power γ-Ray Flash Generation in Ultraintense Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Nakamura, Tatsufumi; Koga, James K.; Esirkepov, Timur Zh.; Kando, Masaki; Korn, Georg; Bulanov, Sergei V.

    2012-05-01

    When high-intensity laser interaction with matter enters the regime of dominated radiation reaction, the radiation losses open the way for producing short pulse high-power γ-ray flashes. The γ-ray pulse duration and divergence are determined by the laser pulse amplitude and by the plasma target density scale length. On the basis of theoretical analysis and particle-in-cell simulations with the radiation friction force incorporated, optimal conditions for generating a γ-ray flash with a tailored overcritical density target are found.

  18. Microengineering Laser Plasma Interactions at Relativistic Intensities

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Ji, L. L.; Audesirk, H.; George, K. M.; Snyder, J.; Krygier, A.; Poole, P.; Willis, C.; Daskalova, R.; Chowdhury, E.; Lewis, N. S.; Schumacher, D. W.; Pukhov, A.; Freeman, R. R.; Akli, K. U.

    2016-02-01

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.

  19. Microengineering Laser Plasma Interactions at Relativistic Intensities.

    PubMed

    Jiang, S; Ji, L L; Audesirk, H; George, K M; Snyder, J; Krygier, A; Poole, P; Willis, C; Daskalova, R; Chowdhury, E; Lewis, N S; Schumacher, D W; Pukhov, A; Freeman, R R; Akli, K U

    2016-02-26

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.

  20. High Efficiency Electron-Laser Interactions in Tapered Helical Undulators

    NASA Astrophysics Data System (ADS)

    Duris, Joseph Patrick

    Efficient coupling of relativistic electron beams with high power radiation lies at the heart of advanced accelerator and light source research and development. The inverse free electron laser is a stable accelerator capable of harnessing very high intensity laser electric fields to efficiently transfer large powers from lasers to electron beams. In this dissertation, we first present the theoretical framework to describe the interaction, and then apply our improved understanding of the IFEL to the design and numerical study of meter-long, GeV IFELs for compact light sources. The central experimental work of the dissertation is the UCLA BNL helical inverse free electron laser experiment at the Accelerator Test Facility in Brookhaven National Laboratory which used a strongly tapered 54cm long, helical, permanent magnet undulator and a several hundred GW CO2 laser to accelerate electrons from 52 to 106MeV, setting new records for inverse free electron laser energy gain (54MeV) and average accelerating gradient (100MeV/m). The undulator design and fabrication as well as experimental diagnostics are presented. In order to improve the stability and quality of the accelerated electron beam, we redesigned the undulator for a slightly reduced output energy by modifying the magnet gap throughout the undulator, and we used this modified undulator to demonstrated capture of >25% of the injected beam without prebunching. In the study of heavily loaded GeV inverse free electron lasers, we show that a majority of the power may be transferred from a laser to the accelerated electron beam. Reversing the process to decelerate high power electron beams, a mechanism we refer to as tapering enhanced stimulated superradiant amplification, offers a clear path to high power light sources. We present studies of radiation production for a wide range of wavelengths (10mum, 13nm, and 0.3nm) using this method and discuss the design for a deceleration experiment using the same undulator used

  1. High intensity portable fluorescent light

    NASA Technical Reports Server (NTRS)

    Kendall, F. B.

    1972-01-01

    Eight high intensity portable fluorescent lights were produced. Three prototype lights were also produced, two of which were subsequently updated to the physical and operational configuration of the qualification and flight units. Positioning of lamp apertures and reflectors in these lights is such that the light is concentrated and intensified in a specific pattern rather than widely diffused. Indium amalgam control of mercury vapor pressure in the lamp gives high output at lamp ambient temperatures up to 105 C. A small amount of amalgam applied to each electrode stem helps to obtain fast warm-up. Shrinking a Teflon sleeve on the tube and potting metal caps on each end of the lamp minimizes dispersion of mercury vapor and glass particles in the event of accidental lamp breakage. Operation at 20 kHz allows the lamps to consume more power than at low frequency, thus increasing their light output and raising their efficiency. When used to expose color photographic film, light from the lamps produces results approximately equal to sunlight.

  2. Harmonic generation at high intensities

    SciTech Connect

    Schafer, K.J.; Krause, J.L.; Kulander, K.C.

    1993-06-01

    Atomic electrons subject to intense laser fields can absorb many photons, leading either to multiphoton ionization or the emission of a single, energetic photon which can be a high multiple of the laser frequency. The latter process, high-order harmonic generation, has been observed experimentally using a range of laser wavelengths and intensities over the past several years. Harmonic generation spectra have a generic form: a steep decline for the low order harmonics, followed by a plateau extending to high harmonic order, and finally an abrupt cutoff beyond which no harmonics are discernible. During the plateau the harmonic production is a very weak function of the process order. Harmonic generation is a promising source of coherent, tunable radiation in the XUV to soft X-ray range which could have a variety of scientific and possibly technological applications. Its conversion from an interesting multiphoton phenomenon to a useful laboratory radiation source requires a complete understanding of both its microscopic and macroscopic aspects. We present some recent results on the response of single atoms at intensities relevant to the short pulse experiments. The calculations employ time-dependent methods, which we briefly review in the next section. Following that we discuss the behavior of the harmonics as a function of laser intensity. Two features are notable: the slow scaling of the harmonic intensities with laser intensity, and the rapid variation in the phase of the individual harmonics with respect to harmonic order. We then give a simple empirical formula that predicts the extent of the plateau for a given ionization potential, wavelength and intensity.

  3. Interaction of intense ultrashort pulse lasers with clusters.

    NASA Astrophysics Data System (ADS)

    Petrov, George

    2007-11-01

    The last ten years have witnessed an explosion of activity involving the interaction of clusters with intense ultrashort pulse lasers. Atomic or molecular clusters are targets with unique properties, as they are halfway between solid and gases. The intense laser radiation creates hot dense plasma, which can provide a compact source of x-rays and energetic particles. The focus of this investigation is to understand the salient features of energy absorption and Coulomb explosion by clusters. The evolution of clusters is modeled with a relativistic time-dependent 3D Molecular Dynamics (MD) model [1]. The Coulomb interaction between particles is handled by a fast tree algorithm, which allows large number of particles to be used in simulations [2]. The time histories of all particles in a cluster are followed in time and space. The model accounts for ionization-ignition effects (enhancement of the laser field in the vicinity of ions) and a variety of elementary processes for free electrons and charged ions, such as optical field and collisional ionization, outer ionization and electron recapture. The MD model was applied to study small clusters (1-20 nm) irradiated by a high-intensity (10^16-10^20 W/cm^2) sub-picosecond laser pulse. We studied fundamental cluster features such as energy absorption, x-ray emission, particle distribution, average charge per atom, and cluster explosion as a function of initial cluster radius, laser peak intensity and wavelength. Simulations of novel applications, such as table-top nuclear fusion from exploding deuterium clusters [3] and high power synchrotron radiation for biological applications and imaging [4] have been performed. The application for nuclear fusion was motivated by the efficient absorption of laser energy (˜100%) and its high conversion efficiency into ion kinetic energy (˜50%), resulting in neutron yield of 10^6 neutrons/Joule laser energy. Contributors: J. Davis and A. L. Velikovich. [1] G. M. Petrov, et al Phys

  4. Laser Ion Acceleration from the Interaction of Ultra-Intense laser Pulse with thi foils

    SciTech Connect

    Allen, Matthew Mark

    2004-03-12

    The discovery that ultra-intense laser pulses (I > 1018 W/cm2) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 1018 W/cm2), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by Up = ([1 + Iλ2/1.3 x 1018]1/2 - 1) moc2, where Iλ2 is the irradiance in Wμm2/cm2 and moc2 is the electron rest mass.At laser irradiance of Iλ2 ~ 1018 Wμm2/cm2, the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target.

  5. Short Wavelength Laser/Materials Interactions

    DTIC Science & Technology

    1989-12-20

    lasterials interaction phenomena and effects, and 4) materials evaluation. The program has led to major advances in science-based understanding of...3.0 RESULTS 5 3.1 MATERIALS SELECTION and CHARACTERIZATION 5 3.2 DEVELOPMENT of NEW INSTRUMENTATION 8 3.2.1 Laser Sources 8 3.2.2 Multiwavelength ...high temperature during laser irradiation. The program has led to major advances in science-based understanding of materials performance under extreme

  6. Interaction of laser-induced stress waves with metals

    NASA Technical Reports Server (NTRS)

    Clauer, A. H.; Fairand, B. P.

    1979-01-01

    An investigation of the effect of high intensity laser induced stress waves on the hardness and tensile strength of 2024 and 7075 aluminum and on the fatigue properties of 7075 aluminum were investigated. Laser shocking increases the hardness of the underaged 2024-T351 but has little or no effect on the peak aged 2024-T351 and 7075-T651 or the overaged 7075-T73. The fretting fatigue life of fastener joints of 7075-T6 was increased by orders of magnitude by laser shocking the region around the fastener hole; the fatigue crack propagation rates were decreased by laser shocking.

  7. Dissipative Structures At Laser-Solid Interactions

    NASA Astrophysics Data System (ADS)

    Nanai, Laszlo

    1989-05-01

    The questions which are discussed in this lecture refer to one of sections of laser-solid interactions, namely: to formation of different dissipative structures on the surface of metals and semiconductors when they are irradiated by intensive laser light in chemically active media (f.e.air). Some particular examples of the development at different spatial and time instabilities, periodic and stochastic structures, auto-wave processes are present-ed using testing materials vanadium metal and semiconducting V205 single crystals and light sources: cw and pulsed CO2 and YAG lasers.

  8. Laser Interaction with Metallic Surfaces.

    DTIC Science & Technology

    1982-12-01

    opaque targets the absorptance is one m~nus the reflectance , measurement of the time dependence of the metal surface reflectance will yield the laser...1O 4 TIME (ps) TIME (ns) (a) REFLECTANCE MEASUREMENTS (b) GENERAL REFLECTANCE WC) REFLECTANCE MEASUREMENT OF SONCH-8RUEVICH et al CURVE OF ZAVECZ et al...integrating sphere by Bonch-Bruevich and, therefore, a total reflectance measurement while Zavecz et al. measured only the specular reflectance. In

  9. Laser-Material Interaction of Powerful Ultrashort Laser Pulses

    SciTech Connect

    Komashko, A

    2003-01-06

    Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material, Thus collateral damage is reduced. These and other features make USLPs attractive for a variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications. The study is concentrated on two types of materials - simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization. Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume. Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of

  10. Femtosecond laser interaction with energetic materials

    NASA Astrophysics Data System (ADS)

    Roos, Edward V.; Benterou, Jerry J.; Lee, Ronald S.; Roseke, Frank; Stuart, Brent C.

    2002-09-01

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  11. Femtosecond Laser Interaction with Energetic Materials

    SciTech Connect

    Roos, E; Benterou, J; Lee, R; Roeske, F; Stuart, B

    2002-03-25

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  12. Laser-matter interaction in laser shock processing

    NASA Astrophysics Data System (ADS)

    Sollier, Arnaud; Berthe, Laurent; Peyre, Patrice; Bartnicki, Eric; Fabbro, Remy

    2003-03-01

    Laser shock processing (LSP) is an emerging industrial process in the field of surface treatment with particular application to the improvement of fatigue and corrosion properties. In the standard configuration, the metal sample is coated with a sacrificial layer in order to protect it from detrimental thermal effects, and a water overlay is used to improve the mechanical coupling by a confining like effect. Whereas the induced mechanical effects are now well understood, very few studies have been realized concerning the thermal effects. For this purpose, the knowledge of the confined plasma microscopic parameters has a great importance. A complete model describing the laser-liquid-metal interaction is presented. The model predicts the time evolution of the plasma parmmeters (temperature, density, ionization) and allows us to compute the induced pressure and temperature in the metal sample. By comparing the numerical results with various experimental measurements, predictions can be made concerning the best laser irradiation conditions for LSP.

  13. Theoretical Understanding of Enhanced Proton Energies from Laser-Cone Interactions

    SciTech Connect

    Kluge, T.; Gaillard, S. A.; Bussmann, M.; Burris-Mog, T.; Kraft, S. D.; Metzkes, J.; Rassuchine, J.; Schramm, U.; Zeil, K.; Cowan, T. E.; Flippo, K. A.; Offermann, D. T.; Gall, B.; Geissel, M.; Schollmeier, M.; Lockard, T.; Sentoku, Y.

    2010-11-04

    For the past ten years, the highest proton energies accelerated with high-intensity lasers was 58 MeV, observed in 2000 at the LLNL NOVA Petawatt laser, using flat foil targets. Recently, 67.5 MeV protons were observed in experiments at the Los Alamos National Laboratory (LANL) Trident laser, using one-fifth of the PW laser pulse energy, incident into novel conical targets. We present a focused study of new theoretical understanding of this measured enhancement from collisional Particle-in-Cell simulations, which shows that the hot electron temperature, number and maximum energy, responsible for the Target Normal Sheath Acceleration (TNSA) at the cone-top, are significantly increased when the laser grazes the cone wall. This is mainly due to the extraction of electrons from the cone wall by the laser electric field, and their boost in the forward direction by the vxB term of the Lorentz force. This result is in contrast to previous predictions of optical collection and wall-guiding of electrons in angled cones. This new wall-grazing mechanism offers the prospect to linearly increase the hot electron temperature, and thereby the TNSA proton energy, by extending the length over which the laser interacts in a grazing fashion in suitably optimized targets. This may allow achieving much higher proton energies for interesting future applications, with smaller, lower energy laser systems that allow for a high repetition rate.

  14. Coherence-based transverse measurement of synchrotron x-ray radiation from relativistic laser-plasma interaction and laser-accelerated electrons

    SciTech Connect

    Shah, R. C.; Albert, F.; Ta Phuoc, K.; Shevchenko, O.; Boschetto, D.; Burgy, F.; Rousseau, J.-P.; Rousse, A.; Pukhov, A.; Kiselev, S.

    2006-10-15

    We observe Fresnel edge diffraction of the x-ray beam generated by the relativistic interaction of a high-intensity laser pulse with He gas. The observed diffraction at center energy 4.5 keV agrees with Gaussian incoherent source profile of full-width-half-maximum (FWHM)<8 {mu}m. Analysis indicates this corresponds to an upper limit on the transverse profile of laser-accelerated electrons within the plasma in agreement with three-dimensional, particle-in-cell results (FWHM=4 {mu}m)

  15. Ultra-intense, short pulse laser-plasma interactions with applications to the fast ignitor

    SciTech Connect

    Wilks, S.C.; Kruer, W.L.; Young, P.E.; Hammer, J.; Tabak, M.

    1995-04-01

    Due to the advent of chirped pulse amplification (CPA) as an efficient means of creating ultra-high intensity laser light (I > 5{times}10{sup 17} W/cm{sup 2}) in pulses less than a few picoseconds, new ideas for achieving ignition and gain in DT targets with less than 1 megajoule of input energy are currently being pursued. Two types of powerful lasers are employed in this scheme: (1) channeling beams and (2) ignition beams. The current state of laser-plasma interactions relating to this fusion scheme will be discussed. In particular, plasma physics issues in the ultra-intense regime are crucial to the success of this scheme. We compare simulation and experimental results in this highly nonlinear regime.

  16. High Intensity Radiation Laboratory Reverberation Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This photo depicts the interior of the large Reverberation Chamber located in the High Intensity, Radiation Facility (HIRL). These chambers are used to test susceptibility of aircraft avionics systems responses to high intensity radiated fields. These resources include a Gigahertz Transverse Electromagnetic Cell (GTEM), which provides a uniform field of up to 1000V/m from 10 kHz to 18 Ghz.

  17. HIGH-INTENSITY, HIGH CHARGE-STATE HEAVY ION SOURCES

    SciTech Connect

    ALESSI,J.G.

    2004-08-16

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions is reviewed. These sources include ECR, EBIS, and Laser ion sources. Benefits and limitations for these type sources are described. Possible future improvements in these sources are also mentioned.

  18. Modeling of laser interactions with composite materials

    DOE PAGES

    Rubenchik, Alexander M.; Boley, Charles D.

    2013-05-07

    In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.

  19. The scaling of electron and positron generation in intense laser-solid interactions

    SciTech Connect

    Chen, Hui; Link, A.; Fiuza, F.; Hazi, A.; Heeter, R. F.; Kemp, A. J.; Kemp, G. E.; Nagel, S. R.; Park, J.; Tommasini, R.; Williams, G. J.; Sentoku, Y.; Audebert, P.; Hill, M.; Hobbs, L.; Kerr, S.; Meyerhofer, D. D.; Myatt, J.

    2015-05-15

    This paper presents experimental scalings of the electrons and positrons produced by intense laser-target interactions at relativistic laser intensities (10{sup 18}–10{sup 20} W cm{sup −2}). The data were acquired from three short-pulse laser facilities with laser energies ranging from 80 to 1500 J. We found a non-linear (≈E{sub L}{sup 2}) scaling of positron yield [Chen et al., Phys. Rev. Lett. 114, 215001 (2015)] and a linear scaling of electron yield with the laser energy. These scalings are explained by theoretical and numerical analyses. Positron acceleration by the target sheath field is confirmed by the positron energy spectrum, which has a pronounced peak at energies near the sheath potential, as determined by the observed maximum energies of accelerated protons. The parameters of laser-produced electron-positron jets are summarized together with the theoretical energy scaling. The measured energy-squared scaling of relativistic electron-positron jets indicates the possibility to create an astrophysically relevant experimental platform with such jets using multi-kilojoule high intensity lasers currently under construction.

  20. The Nuclear Epoch of Laser Interactions

    SciTech Connect

    Borisov, Alex B.; Khan, Shahab F.; Poopalasingam, Sankar; McCorkindale, John C.; Zhao, Ji; Boguta, John; Longworth, James W.; Racz, Ervin; Rhodes, Charles K.

    2009-12-03

    The history of power compression is a series of developmental epochs that are (1) characteristically marked by a technological breakthrough and (2) generally separated by a factor of approx10{sup 10} in power density. Based on new advances in high-power coherent x-ray technology, the transition to a new nuclear epoch of laser interactions is presently commencing. Chief outcomes foreseen are (1) the generation of power densities in the 10{sup 28}-10{sup 30} W/cm{sup 3} realm, (2) the controlled induction of nuclear interactions, and (3) the production of new states and forms of nuclear matter.

  1. Hazards from High Intensity Lamps and Arcs

    NASA Technical Reports Server (NTRS)

    Sliney, D. H.

    1970-01-01

    The principal occupational health problem generally associated with high intensity arc lamps results from exposure of the eye and skin to ultraviolet radiation. Occasionally, the chorioretinal burns are of concern. The eye is generally more susceptible than the skin to injury from high intensity optical radiation sources whether ultraviolet, visible or infrared. Recent developments in technology have shown that some high intensity optical radiation sources which have output parameters greatly different from those encountered in the natural environment present a serious chorioretinal burn hazard.

  2. Subpicosecond KrF{asterisk}-laser plasma interaction at intensities between 10{sup 14} and 10{sup 17} W/cm{sup 2}

    SciTech Connect

    Teubner, U.; Gibbon, P.; Foerster, E.; Fallies, F.; Audebert, P.; Geindre, J.P.; Gauthier, J.C.

    1996-07-01

    The interaction of high-intensity subpicosecond KrF{asterisk}-laser pulses with aluminium plasmas is investigated at intensities between 10{sup 14} and 10{sup 17} W/cm{sup 2}. Using a one-dimensional hydrocode, the laser energy absorption and time evolution of plasma parameters have been studied as a function of laser intensity, incidence angle, and polarization. Complementary particle-in-cell simulations have also been performed to check the collisionless absorption component carried by hot electrons and ions. These simulations are compared to previous experiments on laser pulse absorption and x-ray generation. {copyright} {ital 1996 American Institute of Physics.}

  3. High-Intensity Plasma Glass Melter

    SciTech Connect

    2004-01-01

    Modular high-intensity plasma melter promises improved performance, reduced energy use, and lower emissions. The glass industry has used the same basic equipment for melting glass for the past 100 years.

  4. Ion beam control in laser plasma interaction

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Izumiyama, T.; Sato, D.; Nagashima, T.; Takano, M.; Barada, D.; Gu, Y. J.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Wang, W. M.

    2016-03-01

    By a two-stage successive acceleration in laser ion acceleration, our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by a few hundreds of MeV; the maximum proton energy reaches about 250MeV. The ions are accelerated by the inductive continuous post-acceleration in a laser plasma interaction together with the target normal sheath acceleration and the breakout afterburner mechanism. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when an intense short- pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in the plasma. During the increase phase in the magnetic field strength, the moving longitudinal inductive electric field is induced by the Faraday law, and accelerates the forward-moving ions continously. The multi-stage acceleration provides a unique controllability in the ion energy and its quality.

  5. Laser energy deposition in crossing shock interaction

    NASA Astrophysics Data System (ADS)

    Yan, H.; Knight, D.; Elliott, G.

    A combined computational and experimental study was performed to investigate the effect of a single laser energy pulse on the transition from a Mach Reflection (MR) to a Regular Reflection (RR) in the Dual Solution Domain (DSD). The freestream Mach number is 3.45 and two oblique shock waves are formed by two symmetric 22° wedges. These conditions correspond to a point midway within the DSD wherein either an MR or an RR is possible. A steady MR was first obtained experimentally and numerically, then a single laser pulse was deposited above the horizontal center plane. The experiment showed that the Mach stem height decreased to 30% of its original height due to the interaction with the thermal spot generated by the laser pulse and then returned to its original height by 300μs. That the Mach stem returned to its original height was most likely due to freestream turbulence in the wind tunnel. The numerical simulation successfully predicted the reverse transition from a stable MR to a stable RR and the stable RR persisted across the span. This study showed the capability of a laser energy pulse to control the reverse transition of MR → RR within the Dual Solution Domain.

  6. High-intensity training in football.

    PubMed

    Iaia, F Marcello; Rampinini, Ermanno; Bangsbo, Jens

    2009-09-01

    This article reviews the major physiological and performance effects of aerobic high-intensity and speed-endurance training in football, and provides insight on implementation of individual game-related physical training. Analysis and physiological measurements have revealed that modern football is highly energetically demanding, and the ability to perform repeated high-intensity work is of importance for the players. Furthermore, the most successful teams perform more high-intensity activities during a game when in possession of the ball. Hence, footballers need a high fitness level to cope with the physical demands of the game. Studies on football players have shown that 8 to 12 wk of aerobic high-intensity running training (> 85% HR(max)) leads to VO2(max) enhancement (5% to 11%), increased running economy (3% to 7%), and lower blood lactate accumulation during submaximal exercise, as well as improvements in the yo-yo intermittent recovery (YYIR) test performance (13%). Similar adaptations are observed when performing aerobic high-intensity training with small-sided games. Speed-endurance training has a positive effect on football-specific endurance, as shown by the marked improvements in the YYIR test (22% to 28%) and the ability to perform repeated sprints (approximately 2%). In conclusion, both aerobic and speed-endurance training can be used during the season to improve high-intensity intermittent exercise performance. The type and amount of training should be game related and specific to the technical, tactical, and physical demands imposed on each player.

  7. Gamma-ray emission in ultra-intense laser interaction with solid targets

    NASA Astrophysics Data System (ADS)

    Klimo, Ondrej; Vyskocil, Jiri; Kumar, Deepak; Limpouch, Jiri; Weber, Stefan

    2016-10-01

    Electrons moving in ultra-intense laser fields emit hard radiation due to radiation reaction and non-linear Compton scattering. Multi-MeV γ-rays were measured by scattering of electrons generated from laser wakefield with a focused laser of intensity a0 1 . However, non-linear Compton scattering and radiation reaction is also an efficient mechanism for generating copious amount of γ-rays in laser interaction with solids at intensities approaching 1022 W/cm2. Emission of γ-rays due to radiation reaction and bremsstrahlung are investigated here in the high intensity regime of laser-solid target interaction by using a combination of Particle-in-Cell and Monte Carlo radiation transport simulations. The relative contribution of these processes is analyzed as a function of the target parameters. We concentrate on the influence of the target thickness, material, preplasma conditions or a surface structure on the generation of high energy photons and study separately their energy and angular distributions. It is demonstrated that the presence of preplasma or a special surface structure may significantly enhance emission of hard γ photons and their cut-off energy and change their angular distribution. Supported by Czech Science Foundation project 15-02964S.

  8. Weibel magnetic field competes with Biermann fields in laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Shukla, Nitin; Schoeffler, Kevin; Vieira, Jorge; Fonseca, Ricardo; Silva, Luis

    2016-10-01

    Biermann battery induced magnetic fields caused by non-parallel density and temperature gradients, first investigated experimentally, continue to be measured in many current experiments. A detailed study of Biermann generated magnetic fields in collisionless systems has been carried out, showing that for large system sizes (L /de >= 100) , where de is the electron inertial length, the Weibel instability dominates as the major source of magnetic field. In this work, we demonstrate the possibility of experimentally generating this strong Weibel magnetic field. We model, using ab initio PIC simulations, the interaction of a short (ps) high intensity (a0 >= 1) laser pulse, with a target of sufficiently large gradient scale length, L. The expanding hot energetic electron population generated by the laser produces an anisotropy in the velocity distribution. This anisotropy provides the free energy that drives the Weibel instability that appears on the surfaces of the target and dominates over the Biermann battery field.

  9. Controlling Second Harmonic Efficiency of Laser Beam Interactions

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2011-01-01

    A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.

  10. Proton acceleration in the interaction of high power laser and cryogenic hydrogen targets

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini; Fiuza, Frederico; Glenzer, Siegfried

    2014-10-01

    High intensity laser driven ion acceleration has attracted great interest due to many prospective applications ranging from inertial confinement fusion, cancer therapy, particle accelerators. Particle-in-Cell (PIC) simulations are performed to model and design experiments at MEC for high power laser interaction with cryogenic hydrogen targets of tunable density and thickness. Preliminary 1D and 2D simulations, using fully relativistic particle-in-cell code PICLS, show a unique regime of proton acceleration, e.g. ~ 300 MeV peak energy protons are observed in the 1D run for interaction of ~1020 W/cm2, 110 fs intense laser with 6nc dense (nc = 1021 cm-3) and 2 micron thin target. The target is relativistically under-dense for the laser and we observe that a strong (multi-terawatt) shock electric field is produced and protons are reflected to high velocities by this field. Further, the shock field and the laser field keep propagating through the hydrogen target and meets up with target normal sheath acceleration (TNSA) electric field produced at the target rear edge and vacuum interface and this superposition amplifies the TNSA fields resulting in higher proton energy. In addition, the electrons present at the rear edge of the target continue to gain energy via strong interaction with laser that crosses the target and these accelerated electrons maintains higher electric sheath fields which further provides acceleration to protons. We will also present detailed investigation with 2D PICLS simulations to gain a better insight of such physical processes to characterize multidimensional effects and establish analytical scaling between laser and target conditions for the optimization of proton acceleration.

  11. Intense ultrashort laser-Xe cluster interaction

    NASA Astrophysics Data System (ADS)

    Davis, J.; Whitney, K. G.; Petrova, Tz. B.; Petrov, G. M.

    2012-09-01

    The last several years have witnessed a surge of activity involving the interaction of clusters with intense ultrashort pulse lasers. The interest in laser-cluster interaction has not been only of academic interest, but also because of the wide variety of potential applications. Clusters can be used as a compact source of X-rays, incoherent as well as coherent, and of fast ions capable of driving a fusion reaction in deuterium plasmas. In one set of xenon cluster experiments, in particular, amplification of ˜2.8 Å X-rays has been observed [28]. X-ray amplification in cluster media is a phenomenon of critical importance and may lead to applications such as EUV lithography, EUV and X-ray microscopy, X-ray tomography, and variety of applications in biology and material sciences. However, while amplification of ˜2.8 Å X-rays has been documented in experiments, the mechanism for producing it remains to be fully understood. In this talk, a xenon model of laser-cluster interaction dynamics is presented to shed light on the processes responsible for amplification. The focus of this research is on the feasibility of creating population inversions and gain in some of the inner-shell hole state transitions within the M-shell of highly ionized xenon. The model couples a molecular dynamics (MD) treatment of the explosively-driven, non-Maxwellian cluster expansion to a comprehensive multiphoton-radiative ionization dynamic (ID) model including single- and double-hole state production within the Co- and Fe-like ionization stages of xenon. The hole-state dynamics is self-consistently coupled to a detailed valence-state collisional-radiative dynamics of the Ni-, Co-, and Fe-like ionization stages of xenon. In addition, the model includes tunneling ionization rates that confirm an initial condition assumption that Ni-like ground states can be created almost instantaneously, on the order of a femtosecond or less, i.e., at laser intensities larger than 1019 W/cm2, all of the N

  12. Modeling of high power laser interaction with metals

    NASA Astrophysics Data System (ADS)

    Mustafa, Kurt; Zahide, Demircioǧlu

    2017-02-01

    Laser matter interaction has been very popular subject from the first recognition of lasers. Laser application in industry or laboratory applications are based on definite interactions of the laser beam with the workpiece. In this paper, an effective model related with high power radiation interaction with metals is presented. In metals, Lorentz-Drude model is used calculate permeability theoretically. The plasma frequency was calculated at various temperatures and using the obtained results the refractive index of the metal (Ag) was investigated. The calculation result revealed that the effect of the temperature need to be considered at reflection and transmission of the laser beam.

  13. Excimer laser interaction with dentin of the human tooth

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Gilliam, Ruth L.; Baker, George R.

    1989-01-01

    The use an excimer laser produced many unusual conical structures within the dentin of the inner part of the human tooth. By varying the frequency of the laser one can disperse the energy and cause more bleeding in laser surgery, but not destroy the cells associated with the incision. Therefore, the healing process will virtually be without scarring. Whereas, using the infrared laser the blood loss would be less, but the healing process would tend to be longer because cells are being destroyed due to the cauterization effect of the laser. The question is, are these structures produced as an interaction with the laser or are they an intrinsic part of the structure. The effects of the laser interaction upon dentin was studied, and in using electron microscopy the interaction of the excimer laser upon the tooth dentin and other various biological tissue is more clearly understood.

  14. High-intensity source of extreme ultraviolet

    NASA Technical Reports Server (NTRS)

    Paresce, E.; Kumar, S.; Bowyer, S.

    1972-01-01

    High intensity ultraviolet radiation source was developed which is suitable for emission below 500 A. Source, useful for 100 to 1000 A range, is simple and inexpensive to construct, easy to operate, and very stable. Because of sufficiently intense output spectrum, source can be used with monochromator at wavelengths as low as 160 A.

  15. Rapidly pulsed, high intensity, incoherent light source

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1974-01-01

    A rapid pulsing, high intensity, incoherent light is produced by selectively energizing a plurality of discharge lamps with a triggering circuit. Each lamp is connected to a capacitor, and a power supply is electrically connected to all but one of the capacitors. This last named capacitor is electrically connected to a discharge lamp which is connected to the triggering circuit.

  16. The NASA High Intensity Radiated Fields Laboratory

    NASA Technical Reports Server (NTRS)

    Williams, Reuben A.

    1997-01-01

    High Intensity Radiated Fields (HIRF) are the result of a multitude of intentional and nonintentional electromagnetic sources that currently exists in the world. Many of today's digital systems are susceptible to electronic upset if subjected to certain electromagnetic environments (EME). Modern aerospace designers and manufacturers increasingly rely on sophisticated digital electronic systems to provide critical flight control in both military, commercial, and general aviation aircraft. In an effort to understand and emulate the undesired environment that high energy RF provides modern electronics, the Electromagnetics Research Branch (ERB) of the Flight Electronics and Technology Division (FETD) conducts research on RF and microwave measurement methods related to the understanding of HIRF. In the High Intensity Radiated Fields Laboratory, the effects of high energy radiating electromagnetic fields on avionics and electronic systems are tested and studied.

  17. Positron microanalysis with high intensity beams

    SciTech Connect

    Hulett, L.D. Jr.; Donohue, D.L.

    1990-01-01

    One of the more common applications for a high intensity slow positron facility will be microanalysis of solid materials. In the first section of this paper some examples are given of procedures that can be developed. Since most of the attendees of this workshop are experts in positron spectroscopy, comprehensive descriptions will be omitted. With the exception of positron emission microscopy, most of the procedures will be based on those already in common use with broad beams. The utility of the methods have all been demonstrated, but material scientists use very few of them because positron microbeams are not generally available. A high intensity positron facility will make microbeams easier to obtain and partially alleviate this situation. All microanalysis techniques listed below will have a common requirement, which is the ability to locate the microscopic detail or area of interest and to focus the positron beam exclusively on it. The last section of this paper is a suggestion of how a high intensity positron facility might be designed so as to have this capability built in. The method will involve locating the specimen by scanning it with the microbeam of positrons and inducing a secondary electron image that will immediately reveal whether or not the positron beam is striking the proper portion of the specimen. This scanning positron microscope' will be a somewhat prosaic analog of the conventional SEM. It will, however, be an indispensable utility that will enhance the practicality of positron microanalysis techniques. 6 refs., 1 fig.

  18. High Intensity X-Ray Coupling to Meteorite Targets

    NASA Astrophysics Data System (ADS)

    Remo, J. L.; Furnish, M. D.; Hammerling, P.

    2001-06-01

    The responses of iron-nickel and stony meteorite samples to high-intensity X-ray pulses (70 - 215 GW/cm^2) pulses generated by exploding wire array hohlraums from the Sandia Z machine are reported. Induced shock waves created particle velocities of 25 - 75 m/s after rarefaction overtake, as measured by VISAR. From these values both momentum and energy coupling coefficients were obtained. These results are compared to recent high-powered-pulsed ( 1 GW/cm2 for 20 ns) 1054 nm laser induced shock pressures and momentum transfer, and energy coupling to iron-rich and stony meteorite targets (J. L. Remo et al, Laser and Particle Beams, 17, 25-44, 1999). These comparisons provide data on the scaling of shock induced effects on inhomogeneous materials in general and meteoritic materials in particular. The combination of both of these experiments extends the regime of high intensity pulsed energy deposition on non-homogeneous materials from the GW/cm^2 to 100's of GW/cm^2, providing valuable empirical insights into the shock critical equations of state and coupling responses. Application to astrophysical and geophysical modeling will be discussed.

  19. ELECTRON COUD DYNAMICS IN HIGH-INTENSITY RINGS.

    SciTech Connect

    WANG, L.; WEI, J.

    2005-05-16

    Electron cloud due to beam-induced multipacting is one of the main concerns for the high intensity. Electrons generated and accumulated inside the beam pipe form an ''electron cloud'' that interacts with the circulating charged particle beam. With sizeable amount of electrons, this interaction can cause beam instability, beam loss and emittance growth. At the same time, the vacuum pressure will rise due to electron desorption. This talk intends to provide an overview of the mechanism and dynamics of the typical electron multipacting in various magnetic fields and mitigation measures with different beams.

  20. Measuring the coherence properties of light emission from laser-plasma interactions. Final report

    SciTech Connect

    Batha, S.H.

    1998-03-06

    Several detrimental instabilities can be excited when a high-intensity laser interacts with plasma. The temporal evolution and spectra of the scattered light emitted by many of these instabilities are used to characterize the instabilities and to benchmark theories. It has been difficult to image the emission region with sufficient resolution to make quantitative comparisons with theory. Direct measurement of the emission region would yield information on ponderomotive steepening phenomena, the true emission zone of convective instabilities, and on the saturation of absolute instabilities. The increase in laser intensity caused by the filamentation instability is conjectured to elevate the levels of parametric instabilities found in high-energy laser-plasma interactions. Because the diameter of the filaments is very small (on the order of 10 {micro}m), it is impossible to image the emission sites directly and either to prove or to disprove this conjecture. The research reported here examines an alternate method of measuring the emission region of scattered light from parametric instabilities. This report provides a brief background of coherence theory by defining the relevant parameters in Section 2. A concrete example of the effect that multiple scattering sites would have on the proposed measurement is provided in Section 3. The following section briefly describes experiments that might be able to demonstrate the proposed technique. The conclusion raises the issue of coherence and its effect on the expected angular distribution of scattering light from parametric instabilities.

  1. Special session on environment and energy, and repeated emphasis from early-`80s onwards, hybrid-drive targets for penetrating beams, that encompasses ultra high intensity lasers and/or particle beams

    SciTech Connect

    Mark, J.W. ||

    1994-10-05

    In this special session, we discuss {bold global} {bold climate} {bold change} concerns, as well as {bold cleanup} {bold of} {bold wastes} {bold and}/{bold or} {bold toxic} {bold materials}, their relations to energy and other technologies. We especially bring together scientists to discuss available and/or developable technologies of amelioration or cleanup, for consideration of unusual uses of {bold Lasers}, {bold Particle} {bold Beams} {bold and} {bold other} {bold plasma} Phenomena. {copyright}{ital American} {ital Institute} {ital of} {ital Physics} 1994

  2. On the scaling of multicrystal data sets collected at high-intensity X-ray and electron sources

    PubMed Central

    Coppens, Philip; Fournier, Bertrand

    2015-01-01

    The need for data-scaling has become increasingly evident as time-resolved pump-probe photocrystallography is rapidly developing at high intensity X-ray sources. Several aspects of the scaling of data sets collected at synchrotrons, XFELs (X-ray Free Electron Lasers) and high-intensity pulsed electron sources are discussed. They include laser-ON/laser-OFF data scaling, inter- and intra-data set scaling. PMID:26798829

  3. Plating Processes Utilizing High Intensity Acoustic Beams

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor); Denofrio, Charles (Inventor)

    2002-01-01

    A system and a method for selective plating processes are disclosed which use directed beams of high intensity acoustic waves to create non-linear effects that alter and improve the plating process. The directed beams are focused on the surface of an object, which in one embodiment is immersed in a plating solution, and in another embodiment is suspended above a plating solution. The plating processes provide precise control of the thickness of the layers of the plating, while at the same time, in at least some incidents, eliminates the need for masking.

  4. High intensity, pulsed thermal neutron source

    DOEpatents

    Carpenter, J.M.

    1973-12-11

    This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)

  5. Interaction of Laser Induced Micro-shockwaves

    NASA Astrophysics Data System (ADS)

    Leela, Ch.; Bagchi, Suman; Tewari, Surya P.; Kiran, P. Prem

    Laser induced Shock Waves (LISWs) characterized by several optical methods provide Equation of State (EOS) for a variety of materials used in high-energy density physics experiments at Mbar pressures [1, 2]. Other applications include laser spark ignition for fuel-air mixtures, internal combustion engines, pulse detonation engines, laser shock peening [3], surface cleaning [4] and biological applications (SW lithotripsy) [5] to name a few.

  6. High intensity discharge device containing oxytrihalides

    DOEpatents

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  7. High intensity discharge device containing oxytrihalides

    DOEpatents

    Lapatovich, Walter P.; Keeffe, William M.; Liebermann, Richard W.; Maya, Jakob

    1987-01-01

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO.sub.2, with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube.

  8. Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion

    SciTech Connect

    Geissel, Matthias; Awe, Thomas James; Bliss, David E.; Campbell, Edward Michael; Gomez, Matthew R.; Harding, Eric; Harvey-Thompson, Adam James; Hansen, Stephanie B.; Jennings, Christopher Ashley; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; McBride, Ryan D.; Peterson, Kyle; Schollmeier, Marius; Scoglietti, Daniel; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher; Vesey, Roger A.; Porter, John L.

    2016-03-04

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. We determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.

  9. Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion

    DOE PAGES

    Geissel, Matthias; Awe, Thomas James; Bliss, David E.; ...

    2016-03-04

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Wemore » determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.« less

  10. Laser-Plasma Interactions in High-Energy Density Plasmas

    SciTech Connect

    Constantin, C G; Baldis, H A; Schneider, M B; Hinkel, D E; Langdon, A B; Seka, W; Bahr, R; Depierreaux, S

    2005-08-24

    Laser-plasma interactions (LPI) have been studied experimentally in high-temperature, high-energy density plasmas. The studies have been performed using the Omega laser at the Laboratory for Laser Energetics (LLE), Rochester, NY. Up to 10 TW of power was incident upon reduced-scale hohlraums, distributed in three laser beam cones. The hot hohlraums fill quickly with plasma. Late in the laser pulse, most of the laser energy is deposited at the laser entrance hole, where most of the LPI takes place. Due to the high electron temperature, the stimulated Raman scattering (SRS) spectrum extends well beyond {omega}{sub 0}/2, due to the Bohm-Gross shift. This high-temperature, high-energy density regime provides a unique opportunity to study LPI beyond inertial confinement fusion (ICF) conditions.

  11. Laser-tissue photothermal interaction and tissue temperature change

    NASA Astrophysics Data System (ADS)

    Ives, Andrea K.; Chen, Wei R.; Jassemnejad, Baha; Bartels, Kenneth E.; Liu, Hong; Nordquist, John A.; Nordquist, Robert E.

    2000-06-01

    Responses of tissue to laser stimulation are crucial in both disease diagnostics and treatment. In general, when tissue absorbs laser energy photothermal interaction occurs. The most important signature of the photothermal reaction is the tissue temperature change during and after the laser irradiation. Experimentally, the tissue reaction to laser irradiation can be measured by numerous methods including direct temperature measurement and measurement of perfusion change. In this study, a multiple-channel temperature probe was used to measure tissue temperature change during irradiation of lasers with different wavelengths at different power settings. Tissue temperature in chicken breast tissue as well as skin and breast tumor of rats was measured during irradiation of an 805-nm diode laser. The vertical profiles of temperature were obtained using simultaneous measurement at several different locations. The absorption of laser energy by tissue was enhanced by injecting laser-absorbing dye into the tissue. A Nd:YAG laser of 1064-nm wavelength was also used to irradiate turkey breast tissue. Our results showed that both laser penetration ability and photothermal reaction depended on the wavelength of lasers. In the case of 805-nm laser, the temperature increased rapidly only in the region close to the laser source and the thermal equilibrium could be reached within a short time period. The laser absorbing dye drastically enhanced the thermal reaction, resulting in approximately 4-fold temperature increase. On the contrary, the laser beam with 1064-nm wavelength penetrated deeply into tissue and the tissue temperature continued increasing even after a 10-minute laser irradiation.

  12. Nanoplasma Formation by High Intensity Hard X-rays

    PubMed Central

    Tachibana, T.; Jurek, Z.; Fukuzawa, H.; Motomura, K.; Nagaya, K.; Wada, S.; Johnsson, P.; Siano, M.; Mondal, S.; Ito, Y.; Kimura, M.; Sakai, T.; Matsunami, K.; Hayashita, H.; Kajikawa, J.; Liu, X.-J.; Robert, E.; Miron, C.; Feifel, R.; Marangos, J. P.; Tono, K.; Inubushi, Y.; Yabashi, M.; Son, S.-K.; Ziaja, B.; Yao, M.; Santra, R.; Ueda, K.

    2015-01-01

    Using electron spectroscopy, we have investigated nanoplasma formation from noble gas clusters exposed to high-intensity hard-x-ray pulses at ~5 keV. Our experiment was carried out at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan. Dedicated theoretical simulations were performed with the molecular dynamics tool XMDYN. We found that in this unprecedented wavelength regime nanoplasma formation is a highly indirect process. In the argon clusters investigated, nanoplasma is mainly formed through secondary electron cascading initiated by slow Auger electrons. Energy is distributed within the sample entirely through Auger processes and secondary electron cascading following photoabsorption, as in the hard x-ray regime there is no direct energy transfer from the field to the plasma. This plasma formation mechanism is specific to the hard-x-ray regime and may, thus, also be important for XFEL-based molecular imaging studies. In xenon clusters, photo- and Auger electrons contribute more significantly to the nanoplasma formation. Good agreement between experiment and simulations validates our modelling approach. This has wide-ranging implications for our ability to quantitatively predict the behavior of complex molecular systems irradiated by high-intensity hard x-rays. PMID:26077863

  13. Dense Monoenergetic Proton Beams from Chirped Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Galow, Benjamin J.; Salamin, Yousef I.; Liseykina, Tatyana V.; Harman, Zoltán; Keitel, Christoph H.

    2011-10-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (107 particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 1021W/cm2.

  14. Modeling of High-Energy Pulsed Laser Interactions with Coupons

    SciTech Connect

    Boley, C D; Rubenchik, A M

    2003-02-06

    We describe a computational model of laser-materials interactions in the regime accessed by the solid state heat capacity lasers (SSHCLs) built at LLNL. We show that its predictions compare quite favorably with coupon experiments by the 10 kW SSHCL at LLNL. The body of this paper describes the following topics, listed by section number: (2) model in quiescent air, (3) comparison with experiments in quiescent air, (4) effects of air flow, (5) comparison with experiments involving air flow, (6) importance of material properties, (7) advantage of pulsed lasers over CW lasers, and (8) conclusions and recommendations.

  15. Comparative study on interactions between laser and arc plasma during laser-GTA welding and laser-GMA welding

    NASA Astrophysics Data System (ADS)

    Chen, Minghua; Xu, Jiannan; Xin, Lijun; Zhao, Zuofu; Wu, Fufa

    2016-10-01

    This paper describes an investigation on differences in interactions between laser and arc plasma during laser-gas tungsten arc (LT) welding and laser-gas metal arc (LM) welding. The characteristics of LT heat source and LM heat source, such as plasma behavior, heat penetration ability and spectral information were comparably studied. Based on the plasma discharge theory, the interactions during plasma discharge were modeled and analyzed. Results show that in both LT and LM welding, coupling discharge between the laser keyhole plasma and arc happens, which strongly enhance the arc. But, the enhancing effect in LT welding is much more sensitive than that in LM welding when parameters are adjusted.

  16. Laser-matter Interaction with Submerged Samples

    SciTech Connect

    Mariella, R; Rubenchik, A; Norton, M; Donohue, G; Roberts, K

    2010-03-25

    With the long-term goal in mind of investigating if one could possibly design a 'universal solid-sample comminution technique' for debris and rubble, we have studied pulsed-laser ablation of solid samples that were contained within a surrounding fluid. Using pulses with fluences between 2 J and 0.3 J, wavelengths of 351 and 527 nm, and samples of rock, concrete, and red brick, each submerged in water, we have observed conditions in which {micro}m-scale particles can be preferentially generated in a controlled manner, during the laser ablation process. Others have studied laser peening of metals, where their attention has been to the substrate. Our study uses non-metallic substrates and analyzes the particles that are ablated from the process. The immediate impact of our investigation is that laser-comminution portion of a new systems concept for chemical analysis has been verified as feasible.

  17. Silicon Nanostructures, Excitonic Interactions, Laser Consequences

    DTIC Science & Technology

    2008-07-11

    Optically pumped laser emission is achieved at cryogenic temperatures (ៅK) on carbon- implanted nano -pattemed silicon-on-insulator. By using ion...DISTRIBUTIONIAVAILABIUTY STATEMENT Approved for Public Release; distribution is Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Optically pumped laser emission...is achieved at cryogenic temperatures (ៅK) on carbon-implanted nano -patterned silicon-on-insulator. By using ion-implantation and solid-phase

  18. Fluid-dynamical aspects of laser-metal interaction

    NASA Astrophysics Data System (ADS)

    Cantello, M.; Menin, R.; Donati, V.; Garifo, L.; La Rocca, A. V.; Onorato, M.

    During the interaction of a high-power laser beam with a material surface many fluid-dynamical phenomena arise. The produced flow field interacts with the beam and affects the thermal coupling between the laser energy and the target metal. In this paper the fluid-dynamical aspects of these phenomena are discussed and new experimental results are illustrated. The experiments have been performed in conditions of interest for industrial laser processes with a 15-kW CW CO2 laser. The development and the motion of bright clouds ignited from metal targets at incident laser power up to 11.6 kW, using an f/18 focusing system, have been studied by high speed photographic records. The properties of the cloud have been examined by spectroscopic analysis and absorption measurements.

  19. Characterization of a cryogenically cooled high-pressure gas jet for laser/cluster interaction experiments

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Ditmire, T.; Tisch, J. W. G.

    1998-11-01

    We have developed and carried out detailed characterization of a cryogenically cooled (34-300 K), high-pressure (55 kTorr) solenoid driven pulsed valve that has been used to produce dense jets of atomic clusters for high intensity laser interaction studies. Measurements including Rayleigh scattering and short pulse interferometry show that clusters of controlled size, from a few to >104 atoms/cluster can be produced from a broad range of light and heavy gases, at average atomic densities up to 4×1019 atoms/cc. Continuous temperature and pressure control of the valve allows us to vary mean cluster size while keeping the average atomic density constant, and we find that many aspects of the valves behavior are consistent with ideal gas laws. However, we also show that effects including the build up of flow on milliseconds time scales, the cooling of gas flowing into the valve, and condensation of gas inside the valve body at temperatures well above the liquefaction point need to be carefully characterized in order to decouple the operation of the jet from the laser interaction physics.

  20. Investigation of energy partitioning from Leopard short-pulse laser interactions in mass limited targets

    NASA Astrophysics Data System (ADS)

    Griffin, B.; Sawada, H.; Yabuuchi, T.; McLean, H.; Patel, P.; Beg, F.

    2013-10-01

    The energy distribution in the interaction of a high-intensity, short-pulse laser with a mass limited target was investigated by simultaneously collecting x-ray and particle data. The Leopard laser system at the Nevada Terawatt Facility delivered 15 J of energy in a 350 fs pulse duration. With a beam spot size limited to within 8 μm, the target interaction achieved a peak intensity of 1019 W/cm2 at 20° incidence. The size of the Cu foil targets was varied from 2-20 μm in thickness and from 50 by 50 μm to 2000 by 2000 μm in surface area. A Bragg crystal x-ray spectrometer and a spherical crystal imager were used to measure 7.5-9.5 keV x-rays and 8.05 keV monochromatic x-ray images respectively. The escaping electrons and protons in the rear were monitored with a magnet-based electron spectrometer and radiochromic film. Preliminary results show both a decrease of the K β/K α ratio and a stronger He α emission for smaller sized targets, less than 250 by 250 μm. The detailed analyses of the K α images and particle data will be presented.

  1. Ultrashort laser pulse interaction with photo-thermo-refractive glass

    NASA Astrophysics Data System (ADS)

    Siiman, Leo A.

    Photo-thermo-refractive (PTR) glass is an ideal photosensitive material for recording phase volume holograms. It is a homogeneous multi-component silicate glass that demonstrates all the advantages of optical glass: thermal stability, high laser damage threshold, and a wide transparency range. Moreover the ability to record phase patterns (i.e. spatial refractive index variations) into PTR glass has resulted in the fabrication of volume holograms with diffraction efficiency greater than 99%. The conventional method of recording a hologram in PTR glass relies on exposure to continuous-wave ultraviolet laser radiation. In this dissertation the interaction between infrared ultrashort laser pulses and PTR glass is studied. It is shown that photosensitivity in PTR glass can be extended from the UV region to longer wavelengths (near-infrared) by exposure to ultrashort laser pulses. It is found that there exists a focusing geometry and laser pulse intensity interval for which photoionization and refractive index change in PTR glass after thermal development occur without laser-induced optical damage. Photoionization of PTR glass by IR ultrashort laser pulses is explained in terms of strong electric field ionization. This phenomenon is used to fabricate phase optical elements in PTR glass. The interaction between ultrashort laser pulses and volume holograms in PTR glass is studied in two laser intensity regimes. At intensities below ˜10 12 W/cm2 properties such as diffraction efficiency, angular divergence, selectivity, and pulse front tilt are shown to agree with the theory of linear diffraction for broad spectral width lasers. A volume grating pair arrangement is shown to correct the laser pulse distortions arising from pulse front tilt and angular divergence. At higher intensities of irradiation, nonlinear generation and diffraction of third harmonic is observed for three types of interactions: sum-frequency generation, front-surface THG generation, and THG due to

  2. Laser-Bioplasma Interaction: The Blood Type Transmutation Induced by Multiple Ultrashort Wavelength Laser Beams

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2015-11-01

    The interaction of ultrashort wavelength multi laser beams with the flowing blood thin films leads to the transmutation of the blood types A, B, and AB into O type. This is a novel mechanism of importance for the transfusion medicine. Laser radiation is in resonance with the eigen-frequency modes of the antigen proteins and forces the proteins to parametrically oscillate until they get kicked out from the surface. The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation), upon the antigen protein molecule must exceed its weight. The scanning laser beam is partially reflected as long as the antigen(s) is not eliminated. The process of the protein detachment can last a few minutes. Supported by Nikola Tesla Labs., Stefan University.

  3. Pulsed laser interactions with space debris: Target shape effects

    SciTech Connect

    Liedahl, D. A.; Rubenchik, A.; Libby, S. B.; Nikolaev, S.; Phipps, C. R.

    2013-05-24

    Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes. We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon pressure is the dominant momentum transfer mechanism, showing that shape and orientation effects influence the target response in a similar, but not identical, manner. As a result, we address the related problem of target spin and, by way of a few simple examples, show how ablation can alter the spin state of a target, which often has a pronounced effect on the recoil dynamics.

  4. Pulsed laser interactions with space debris: Target shape effects

    DOE PAGES

    Liedahl, D. A.; Rubenchik, A.; Libby, S. B.; ...

    2013-05-24

    Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes.more » We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon pressure is the dominant momentum transfer mechanism, showing that shape and orientation effects influence the target response in a similar, but not identical, manner. As a result, we address the related problem of target spin and, by way of a few simple examples, show how ablation can alter the spin state of a target, which often has a pronounced effect on the recoil dynamics.« less

  5. Applications of High Intensity Proton Accelerators

    NASA Astrophysics Data System (ADS)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  6. Investigation of laser-tissue interaction in medicine by means of laser spectroscopic measurements

    NASA Astrophysics Data System (ADS)

    Lademann, Juergen; Weigmann, Hans-Juergen

    1995-01-01

    Toxic and carcinogenic substances were produced during laser application in medicine for the cutting and evaporation of tissue. The laser smoke presents a danger potential for the medical staff and the patients. The laser tissue interaction process was investigated by means of laser spectroscopic measurements which give the possibility of measuring metastable molecular states directly as a prerequisite to understand and to influence fundamental laser tissue interaction processes in order to reduce the amount of harmful chemicals. Highly excited atomic and molecular states and free radicals (CN, OH, C2, CH, CH2) have been detected applying spontaneous and laser induced fluorescence methods. It was found that the formation of harmful substances in the laser plumes can be reduced significantly by optimization of the surrounding gas atmosphere. A high content of oxygen or water in the interaction zone has been found, in agreement with the results of classical and analytical methods, as a suitable way to decrease pollutant emission. The experimental methods and the principal results are applicable not only in laser medicine but in laser material treatment generally.

  7. High intensity neutrino oscillation facilities in Europe

    SciTech Connect

    Edgecock, T. R.; Caretta, O.; Davenne, T.; Densam, C.; Fitton, M.; Kelliher, D.; Loveridge, P.; Machida, S.; Prior, C.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Wildner, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoni, S.; Hansen, C.; Benedetto, E.; Jensen, E.; Kosmicki, A.; Martini, M.; Osborne, J.; Prior, G.; Stora, T.; Melo Mendonca, T.; Vlachoudis, V.; Waaijer, C.; Cupial, P.; Chancé, A.; Longhin, A.; Payet, J.; Zito, M.; Baussan, E.; Bobeth, C.; Bouquerel, E.; Dracos, M.; Gaudiot, G.; Lepers, B.; Osswald, F.; Poussot, P.; Vassilopoulos, N.; Wurtz, J.; Zeter, V.; Bielski, J.; Kozien, M.; Lacny, L.; Skoczen, B.; Szybinski, B.; Ustrycka, A.; Wroblewski, A.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophine, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Burt, G.; Dexter, A. C.; Kravchuk, V. L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Laveder, M.; Mazzocco, M.; Mezzetto, M.; Signorini, C.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Migliozzi, P.; Moro, R.; Palladino, V.; Gelli, N.; Berkovits, D.; Hass, M.; Hirsh, T. Y.; Schaumann, M.; Stahl, A.; Wehner, J.; Bross, A.; Kopp, J.; Neuffer, D.; Wands, R.; Bayes, R.; Laing, A.; Soler, P.; Agarwalla, S. K.; Cervera Villanueva, A.; Donini, A.; Ghosh, T.; Gómez Cadenas, J. J.; Hernández, P.; Martín-Albo, J.; Mena, O.; Burguet-Castell, J.; Agostino, L.; Buizza-Avanzini, M.; Marafini, M.; Patzak, T.; Tonazzo, A.; Duchesneau, D.; Mosca, L.; Bogomilov, M.; Karadzhov, Y.; Matev, R.; Tsenov, R.; Akhmedov, E.; Blennow, M.; Lindner, M.; Schwetz, T.; Fernández Martinez, E.; Maltoni, M.; Menéndez, J.; Giunti, C.; González García, M. C.; Salvado, J.; Coloma, P.; Huber, P.; Li, T.; López Pavón, J.; Orme, C.; Pascoli, S.; Meloni, D.; Tang, J.; Winter, W.; Ohlsson, T.; Zhang, H.; Scotto-Lavina, L.; Terranova, F.; Bonesini, M.; Tortora, L.; Alekou, A.; Aslaninejad, M.; Bontoiu, C.; Kurup, A.; Jenner, L. J.; Long, K.; Pasternak, J.; Pozimski, J.; Back, J. J.; Harrison, P.; Beard, K.; Bogacz, A.; Berg, J. S.; Stratakis, D.; Witte, H.; Snopok, P.; Bliss, N.; Cordwell, M.; Moss, A.; Pattalwar, S.; Apollonio, M.

    2013-02-01

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.

  8. BEAM LOSS MECHANISMS IN HIGH INTENSITY LINACS

    SciTech Connect

    Plum, Michael A

    2012-01-01

    In the present operation of the Oak Ridge Spallation Neutron Source, 60-Hz, 825-us H beam pulses are accelerated to 910 MeV, and then compressed to less than a microsecond in the storage ring, to deliver 1 MW of beam power to the spallation target. The beam loss in the superconducting portion of the linac is higher than expected, and it has shown a surprising counter-intuitive correlation with quadrupole magnetic fields, with a loss minimum occurring when the quadrupoles are set to approximately half their design values. This behavior can now be explained by a recent set of experiments that show the beam loss is primarily due to intra-beam stripping. Beam halo is another important beam loss contributor, and collimation in the 2.5 MeV Medium Energy Beam Transport has proven to be an effective mitigation strategy. In this presentation, we will summarize these and other beam loss mechanisms that are important for high intensity linacs.

  9. High-intensity sweeteners and energy balance.

    PubMed

    Swithers, Susan E; Martin, Ashley A; Davidson, Terry L

    2010-04-26

    Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance.

  10. Portable, high intensity isotopic neutron source provides increased experimental accuracy

    NASA Technical Reports Server (NTRS)

    Mohr, W. C.; Stewart, D. C.; Wahlgren, M. A.

    1968-01-01

    Small portable, high intensity isotopic neutron source combines twelve curium-americium beryllium sources. This high intensity of neutrons, with a flux which slowly decreases at a known rate, provides for increased experimental accuracy.

  11. Mechanisms of Laser-Tissue Interaction: II. Tissue Thermal Properties

    PubMed Central

    Ansari, Mohammad Ali; Erfanzadeh, Mohsen; Mohajerani, Ezeddin

    2013-01-01

    Laser-tissue interaction is of great interest due to its significant application in biomedical optics in both diagnostic and treatment purposes. Major aspects of the laser-tissue interaction which has to be considered in biomedical studies are the thermal properties of the tissue and the thermal changes caused by the interaction of light and tissue. In this review paper the effects of light on the tissue at different temperatures are discussed. Then, due to the noticeable importance of studying the heat transfer quantitatively, the equations governing this phenomenon are presented. Finally a method of medical diagnosis called thermography and some of its applications are explained. PMID:25606316

  12. Effect of Laser Beam Filamentation on Second Harmonic Spectrum in Laser Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Sharma, Prerana; Sharma, R. P.

    2009-11-01

    This paper presents the laser beam filamentation at ultra relativistic laser powers, when the restriction on the beam is relaxed during filamentation process. On account of laser beam intensity gradient and background density gradients in filamentary regions the electron plasma wave (epw) at pump wave frequency is generated, this epw is found to be highly localized on account of the laser beam filaments. Interaction of incident laser beam with these epw leads to second harmonic generation. The second harmonic spectrum has also been studied in detail and its correlation with the filamentation of the laser beam has been established. Starting almost with a monochromatic component of laser beam propagation, the second harmonic spectrum becomes more complicated and broadened as the laser beam propagates further, and filamentation takes place. For the typical laser beam and plasma parameters: λ0= 1064 nm, power flux (10^22 W/cm^2),φp=0.03φ0, vth=0.1c, n0=1.9x10^19. We found that conversion efficiency comes out to be (E2/E0) = 8x10-3, and the spectrum is quite broad which depends upon the laser beam propagation distance. The results (specifically, second harmonic spectral feature) presented here may be used for the diagnostics of laser produced plasmas.

  13. Mathematical Modelling of Laser/Material Interactions.

    DTIC Science & Technology

    1983-11-25

    translated to the model input. Even an experimental mode print can also be digitalised for the model. In trying to describe high order modes matliematically...4. Mazumder J. Steen W.M. "Welding of Ti 6al - 4V by continuous wave CO2 laser". Metal construction Sept. 1980 pp423 - 427. 5. Kogelnik H, Li.T Proc

  14. Characterization of laser beam interaction with carbon materials

    NASA Astrophysics Data System (ADS)

    Janićijević, Milovan; Srećković, Milesa; Kaluđerović, Branka; Bojanić, Slobodan; Družijanić, Dragan; Dinulović, Mirko; Kovačević, Aleksander

    2013-05-01

    This paper presents simulation and experimental results for the exposure of some carbon-based materials to alexandrite and Nd3+:YAG (yttrium aluminum garnet) laser radiation. Simulation of the heating effects was carried out using the COMSOL Multiphysics 3.5 package for samples of carbon-based P7295-2 fiber irradiated using an alexandrite laser and carbon-based P4396-2 fiber irradiated using an Nd3+:YAG laser, as well as by applying finite element modeling for P7295-2 samples irradiated using an Nd3+:YAG laser. In the experimental part, P7295-2 samples were exposed to alexandrite laser radiation while samples of carbon-based composite 3D C/C were exposed to Nd3+:YAG laser radiation. Micrographs of the laser induced craters were obtained by light and scanning electron microscopy, and the images analyzed using the ImageJ software. The results obtained enable identification of the laser-material interaction spots, and characterization of the laser induced changes in the materials investigated.

  15. High Intensity Organic Light-emitting Diodes

    NASA Astrophysics Data System (ADS)

    Qi, Xiangfei

    This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and

  16. Return current and proton emission from wire targets interacting with an intense short pulse laser

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2004-05-01

    One of the important characteristics of short pulse high intensity laser-solid interactions is the generation of energetic charged particles, which result from the very efficient conversion of laser energy into hot electrons. Since the electrons in the electric field of the laser have relativistic quiver motions, the temperature of the hot electron distribution of the plasma produced at such extreme intensities can become very high. A large number of hot electrons (1013-1014) having an average energy of the order of 1-2 MeV can be generated as intensities exceed 1019 Wcm-2. Since the resulting beam current exceeds the Alfvén limit, a neutralizing return current of cold plasma electrons moving in the opposite direction is produced. Another source of return current is that due to the escape of very energetic electrons from the target, which then creates a large electrostatic potential due to charge separation. These return currents can cause significant ohmic heating. In addition escaping electrons establish the large electrostatic fields, accelerating a large number of protons from the target with energies of 10's of MeV. The experiments reported here were performed at the Rutherford Appleton Laboratory with the VULCAN laser facility at intensity greater than 5 x1019 Wcm-2 on wire targets. In some shots an additional wire or foil was placed nearby. The laser was blocked by the main wire target so that no laser light reached the additional wire or foil. Three main observations were made: (i) a Z-pinch was driven in the wire due to the return current, (ii) optical transition radiation (OTR) at 2w was generated and (iii) energetic proton emission was observed. The wire targets were observed to be ohmically heated and were m=0 unstable. The OTR emission is likely due to electron bunches accelerated by the ponderomotive force of the laser. The proton emission was in a form of thin disk perpendicular to the wire and centered on the wire at the laser focus. Proton

  17. Short-pulse laser interactions with disordered materials and liquids

    SciTech Connect

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.; Tien, C.L.

    1995-12-31

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regime in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.

  18. Plasma Jet Interaction with Thomson Scattering Probe Laser

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Banasek, Jacob; Potter, William; Kusse, Bruce

    2016-10-01

    Thomson scattering systems can diagnose plasma temperatures and velocities. When probing a plasma jet with the Thomson scattering laser, we observe a laser-plasma interaction that inputs energy into the plasma jet. The absorbed energy causes a bubble of low density ( 5*1017 cm-2) in the jet (unperturbed 1018 cm-2). A pulsed power machine (1 MA peak current, 100 ns rise time) with a radial foil (15 μm thick Al) configuration generates the plasma jet. We compare the effects of using 10 J and 1 J laser energies, for which the 10 J laser is a larger perturbation. We discuss how the interaction affects the Thomson scattering temperature and velocity measurements. Work supported by National Nuclear Security Administration (NNSA) Stewardship Sciences Academic Programs under Department of Energy (DOE) Cooperative Agreement DE-NA0001836 and National Science Foundation (NSF) Grant PHY-1102471.

  19. Interaction of intense multi-picosecond laser pulses with matter

    NASA Astrophysics Data System (ADS)

    Kemp, Andreas; Divol, Laurent; Cohen, Bruce

    2011-10-01

    We present new results on the two- and three-dimensional kinetic modeling of short-pulse laser-matter interaction of Petawatt pulses at the spatial and temporal scales relevant to current experiments. We address key questions such as characterizing the multi-picosecond evolution of the laser energy conversion into hot electrons, i.e., conversion efficiency as well as angular- and energy distribution; the impact of return currents on the laser-plasma interaction; and the effect of self-generated electric and magnetic fields on electron transport. We will report applications to current experiments at LLNL's Titan laser and Omega EP, and to a Fast-Ignition point design. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Exploring novel structures for manipulating relativistic laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Ji, Liangliang

    2016-10-01

    The prospect of realizing compact particle accelerators and x-ray sources based on high power lasers has gained numerous attention. Utilization of all the proposed schemes in the field requires the laser-matter-interaction process to be repeatable or moreover, controllable. This has been very challenging at ultra-high light intensities due to the pre-pulse issue and the limitation on target manufacturing. With recent development on pulse cleaning technique, such as XPW and the use of plasma mirror, we now propose a novel approach that leverages recent advancements in 3D nano-printing of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. The current 3D direct laser-writing (DLW) technique can produce repeatable structures with at a resolution as high as 100 nm. Based on 3D PIC simulations, we explored two typical structures, the micro-cylinder and micro-tube targets. The former serves to enhance and control laser-electron acceleration and the latter is dedicated to manipulate relativistic light intensity. First principle-of-proof experiments were carried out in the SCARLET laser facility and confirmed some of our predictions on enhancing direct laser acceleration of electrons and ion acceleration. We believe that the use of the micro-structured elements provides another degree of freedom in LPI and these new results will open new paths towards micro-engineering interaction process that will benefit high field science, laser-based proton therapy, near-QED physics, and relativistic nonlinear optics. This work is supported by the AFOSR Basic Research Initiative (FA9550-14-1-0085).

  1. Experiments on laser-produced plasmas and laser plasma- wall interactions

    NASA Astrophysics Data System (ADS)

    Wang, Quan

    2001-06-01

    The study of the interaction of laser-produced plasmas with a secondary wall has both practical and theoretical significance. The laser-produced plasmas are sources of highly-charged ions, fast electrons, as well as continuum and monochromatic x-ray radiation. Intense x-ray radiation also results when a nanosecond laser-produced plasma collides with a secondary wall positioned close to the target. The study of this interaction is essential to understand the laser-produced plasma expansion, shock wave formation, recombination, collisional excitation and many other transition processes. The laser plasma-wall interaction experiment has been carried out with laser pulses with vastly different time scales. In nanosecond experiment, the plasma-wall interaction was studied with varying target-wall distance. We conclude that the isothermal plasma expansion followed by the shock wave formation near the wall surface contributes to the intense x-ray radiation. We also have done some preliminary research in the femtosecond regime. We claim that the shock wave formation that plays an important role in nanosecond experiment does not play the same role in femtosecond one. We suggest that a femtosecond laser-produced plasma could be an efficient fast electron and monochromatic x- ray source. We also provide some suggestions and predictions for further investigations.

  2. Long Range Interactions With Laser Cooled Neutral Atoms

    SciTech Connect

    Gattobigio, Giovanni Luca; Michaud, Franck; Labeyrie, Guillaume; Kaiser, Robin; Loureiro, Jorge; Mendonca, Jose Tito; Tercas, Hugo; Pohl, Thomas

    2008-09-07

    Multiple scattering of light in a trap of laser cooled neutral atoms leads to repulsion forces between the atoms. The corresponding interactions have long range behavior in 1/r{sup 2} and are thus similar to Coulomb interaction in an one component confined plasma. Consequences of these interactions will be described in this paper, including the limitation of the spatial density one can obtain in such systems and self-sustained oscillations of the cloud.

  3. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    SciTech Connect

    Tong Huifeng; Yuan Hong; Tang Zhiping

    2013-01-28

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  4. Simulation of Laser Interaction with Ablative Plasma and ydrodynamic of Laser Supported Plasma(LSP)

    NASA Astrophysics Data System (ADS)

    Huifeng, Tong; Zhiping, Tang

    2011-06-01

    A general Godunov finite difference schemes-WENO(Weighted Essentially Non-Oscillatory) Schemes which have fifth-order accuracy was used to make a numerical calculation for 2-dimensional axis symmetrical laser-supported plasma flow field under laser ablated solid target. The models of the calculation of ionization degree of plasma and the interaction between laser beam and plasma and the simplified eos(equation of state) of plasma were considered in the simulation. The plasma field parameters during and after laser duration variation with time are also obtained. The simulation results show that the laser beam power was strong absorbed by plasma of target surface, and the velocity of LSD(Laser Supported Detonation) wave is half of ideal LSD value which derived from C-J detonation theory.

  5. Simulation of laser interaction with ablative plasma and hydrodynamic behavior of laser supported plasma

    NASA Astrophysics Data System (ADS)

    Tong, Huifeng; Yuan, Hong; Tang, Zhiping

    2013-01-01

    When an intense laser beam irradiates on a solid target, ambient air ionizes and becomes plasma, while part of the target rises in temperature, melts, vaporizes, ionizes, and yet becomes plasma. A general Godunov finite difference scheme WENO (Weighted Essentially Non-Oscillatory Scheme) with fifth-order accuracy is used to simulate 2-dimensional axis symmetrical laser-supported plasma flow field in the process of laser ablation. The model of the calculation of ionization degree of plasma and the interaction between laser beam and plasma are considered in the simulation. The numerical simulations obtain the profiles of temperature, density, and velocity at different times which show the evolvement of the ablative plasma. The simulated results show that the laser energy is strongly absorbed by plasma on target surface and that the velocity of laser supported detonation (LSD) wave is half of the ideal LSD value derived from Chapman-Jouguet detonation theory.

  6. Interaction physics of multipicosecond Petawatt laser pulses with overdense plasma.

    PubMed

    Kemp, A J; Divol, L

    2012-11-09

    We study the interaction of intense petawatt laser pulses with overdense plasma over several picoseconds, using two- and three-dimensional kinetic particle simulations. Sustained irradiation with non-diffraction-limited pulses at relativistic intensities yields conditions that differ qualitatively from what is experimentally available today. Nonlinear saturation of laser-driven density perturbations at the target surface causes recurrent emissions of plasma, which stabilize the surface and keep absorption continuously high. This dynamics leads to the acceleration of three distinct groups of electrons up to energies many times the laser ponderomotive potential. We discuss their energy distribution for applications like the fast-ignition approach to inertial confinement fusion.

  7. Interaction of repetitively pulsed high energy laser radiation with matter

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, M.

    1986-05-01

    Laser target interaction processes and methods of improving the overall energy balance are discussed. This can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed using a pulsed CO2 laser at mean powers up to 2 KW and repetition rates up to 100 Hz. The rates of temperature rise of aluminum for example are increased by more than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements are found for the overall absorptivities, that are increased by more than an order of magnitude.

  8. Interaction of laser radiation with metal island films

    NASA Astrophysics Data System (ADS)

    Benditskii, A. A.; Viduta, L. V.; Ostranitsa, A. P.; Tomchuk, P. M.; Iakovlev, V. A.

    1986-08-01

    The emission phenomena arising during the interaction of pulsed laser emission with island films are examined with reference to experimental results obtained for island films of gold irradiated by a CO2 laser at a wavelength of 10.6 microns. Well reproducible emission pulses that are also accompanied by light pulses are produced at intensities less than 10 to the 5th W/sq cm, with the film structure remaining unchanged. The maximum energy of the electrons emitted under the effect of laser radiation is estimated at 3 eV; the work function is 2.1 eV.

  9. High-Speed Optical Diagnostics of Laser-Interactions

    NASA Astrophysics Data System (ADS)

    Bin Suaidi, Mohamad Kadim

    Available from UMI in association with The British Library. The interaction of an 8 ns, 10 mJ and 1.06 μm infrared pulse of radiation from a Q-switched Nd-YAG laser with water near a solid boundary is studied using high speed photographic techniques. The laser-liquid interaction has been used to generate high frequency sound waves by the mechanism of dielectric breakdown of the liquid around the beam waist of the focused laser beam. This leads to the production of a short duration plasma which rapidly heats and vaporises the surrounding liquid giving rise to a vapour cavity and the formation of a cavitation bubble resulting in the emission of a spherical acoustic wave. The acoustic transient associated with the breakdown, in turn interacted with a liquid-polymer interface leading to the generation of acoustic waves at this boundary and the propagation of stress-waves in the solid. Diagnostics of the laser-interaction events are recorded using a Mach-Zehnder interferometer illuminated by a sub-nanosecond nitrogen laser-pumped dye laser and computer-controlled video-imaging and capture systems. Measurements of the transient pressure distributions from the digitally recorded interferograms are carried out using a process known as Abel inversion. Dynamic photoelastic studies of the stress-waves propagation in the solid are performed using a circular polariscope arrangement thus producing the photoelastic fringe patterns. Identification of the wave structures are greatly enhanced by also recording the events in schlieren and focused shadowgraphy as well as by the combination of the above techniques. The initial part of the project also involved the design and development of a nitrogen laser and tunable dye laser system. The short-duration and high peak power output pulse of the nitrogen laser is then used to pump the dye laser giving sufficiently high power output with good spectral linewidth to provide an ideal light source for high-speed photography of the laser

  10. Laser tissue interaction in the porcine otic capsule tissue model

    NASA Astrophysics Data System (ADS)

    Wong, Brian J.; Lee, Jon P.; Berns, Michael W.; White, Joel M.; Neev, Joseph

    1996-01-01

    The absence of a hard tissue model reflecting the properties of the inner and middle ear has made it difficult to draw consistent conclusions on the many experimental laser studies in ear surgery. Porcine otic capsule tissue has been studied by our group extensively in a wide variety of laser-tissue interaction studies and is an economically attractive and simple to use hard tissue source. Porcine otic capsule was harvested from the temporal bone of freshly sacrificed domestic pigs via a craniotomy approach. The technique when performed with power instruments takes less than 5 minutes and the entire otic capsule bone is removed intact as the suture line is not fused to the remaining petrous apex. The tissue specimen contains a vestibule, cochlea, oval and round windows, and internal auditory canals which can be used as an intact middle ear/inner ear system. The tissue can also be micromachined into thin slabs of bone varying for 100 - 1000 micrometers in thickness. In order to quantify more precisely the laser-tissue interactions in otic capsule, optical properties (absorption and scattering) and physical properties were determined (acoustic impedance). The tissue has been used in a wide variety of basic studies investigating the laser-tissue interactions with argon, KTP, (Nd:YAG), carbon dioxide, Ho:YAG, Er:YAG, and XeCl lasers. Porcine otic capsule is an ideal tissue on which standardized test can be performed to compare the relative effects of various laser in otosurgical models.

  11. Laser Shock Processing of Metallic Materials: Coupling of Laser-Plasma Interaction and Material Behaviour Models for the Assessment of Key Process Issues

    SciTech Connect

    Ocana, J. L.; Morales, M.; Molpeceres, C.; Porro, J. A.

    2010-10-08

    Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm{sup 2} with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals. The main advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Although significant work from the experimental side has been contributed to explore the optimum conditions of application of the treatments and to assess their ultimate capability to provide enhanced mechanical behaviour to work-pieces of typical materials, only limited attempts have been developed in the way of full comprehension and predictive assessment of the characteristic physical processes and material transformations with a specific consideration of real material properties. In the present paper, a review on the physical issues dominating the development of LSP processes from a high intensity laser-matter interaction point of view is presented along with the theoretical and computational methods developed by the authors for their predictive assessment and practical results at laboratory scale on the application of the technique to different materials.

  12. Development of High Power Lasers for Materials Interactions

    SciTech Connect

    Hackel, L A

    2003-04-11

    radiation for radiography, particle beam generation and eventually for a new class of fusion experiments call fast ignition. We have also built a record setting 50 watts of average output from a picosecond class laser and are using this technology for materials processing such as fine hole drilling and safe cutting of munitions. The laser science and technology program has developed and deployed a laser guide star on the Lick telescope on Mt. Hamilton and most recently on the Keck telescope in Hawaii. Our current development work in this area is focused on developing a much more compact all solid state diode pumped laser fiber system. Finally in a program originally initiated by DARPA we have developed a phase conjugated Nd:glass laser system with record setting performance and successfully deployed it for Navy and Air Force satellite imaging applications and have more recently successfully transferred it to industry for use in an emerging technology called laser peening. This laser technology is capable of 25 J to 100 J per pulse, 10 ns to 1000 ns pulse duration, 5 Hz laser. The technology has been industrially deployed and is proving to be highly effective in generating high intensity shocks that induce compressive residual stress into metal components. The compressive stress retards fatigue and stress corrosion cracking and is proving to extend the lifetime of high value components by factors of ten. This processing adds lifetime, enhances safety and can improve performance of aircraft systems. Laser peening is now being evaluated to reduce the weight of aircraft and may play a major role in the future combat system and its air transport by enabling lighter craft, longer range and greater payload. The laser peening technology is also being moved forward in NRC license application as the means to eliminate stress corrosion cracking for Yucca Mountain nuclear waste disposal canisters as well as a broad range of other applications.

  13. Laser-Matter Interactions with a 527 nm Drive

    SciTech Connect

    Glenzer, S; Niemann, C; Witman, P; Wegner, P; Mason, D; Haynam, C; Parham, T; Datte, P

    2007-02-16

    The primary goal of this Exploratory Research is to develop an understanding of laser-matter interactions with 527-nm light (2{omega}) for studies of interest to numerous Laboratory programs including inertial confinement fusion (ICF), material strength, radiation transport, and hydrodynamics. In addition, during the course of this work we will develop the enabling technology and prototype instrumentation to diagnose a high fluence laser beam for energy, power, and near field intensity profile at 2{omega}. Through this Exploratory Research we have established an extensive experimental and modeling data base on laser-matter interaction with 527 nm laser light (2{omega}) in plasma conditions of interest to numerous Laboratory programs. The experiments and the laser-plasma interaction modeling using the code pF3D have shown intensity limits and laser beam conditioning requirements for future 2{omega} laser operations and target physics experiments on the National Ignition Facility (NIF). These findings have set requirements for which present radiation-hydrodynamic simulations indicate the successful generation of relevant pressure regimes in future 2{omega} experiments. To allow these experiments on the NIF, optics and optical mounts were prepared for the 18mm Second Harmonic Generation Crystal (SHG crystal) that would provide the desired high conversion efficiency from 1{omega} to 2{omega}. Supporting experimental activities on NIF included high-energy 1{omega} shots at up to 22kJ/beamline (4MJ full NIF 1{omega} equivalent energy) that demonstrated, in excess, the 1{omega} drive capability of the main laser that is required for 2{omega} operations. Also, a very extensive 3{omega} campaign was completed (see ''The National Ignition Facility Laser Performance Status'' UCRL-JRNL-226553) that demonstrated that not only doubling the laser, but also tripling the laser (a much more difficult and sensitive combination) met our model predictions over a wide range of laser

  14. Nail-like targets for laser plasma interaction experiments

    SciTech Connect

    Pasley, J; Wei, M; Shipton, E; Chen, S; Ma, T; Beg, F N; Alexander, N; Stephens, R B; MacPhee, A G; Hey, D; Pape, S L; Patel, P; Mackinnon, A J; Key, M H; Offermann, D; Link, A; Chowdhury, E; Van-Woerkom, L D; Freeman, R R

    2007-12-18

    The interaction of ultra-high power picosecond laser pulses with solid targets is of interest both for benchmarking the results of hybrid particle in cell (PIC) codes and also for applications to re-entrant cone guided fast ignition. We describe the construction of novel targets in which copper/titanium wires are formed into 'nail-like' objects by a process of melting and micromachining, so that energy can be reliably coupled to a 24 {micro}m diameter wire. An extreme-ultraviolet image of the interaction of the Titan laser with such a target is shown.

  15. High-Energy Laser-Target Interactions

    DTIC Science & Technology

    1975-10-06

    Second Workshop held at RPI, Hartford Graduate Center, t ,edited by H.J. Schwarz and H Hora , Plenum Press. 23. Keldysh, L. V. (1965) Soviet Physics JETP...insofar as the ac magnetic field contributes to the nonlinear force discussed by Hora 1 7 (22) The wave period T = 2r/u of the laser radiation is much...the laws of classical physics can be used to describe the plasma. (25) The nonlinear force term fNL " 1 [-1eIoEy12 + 1 aIHzI2] (6) discussed by Hora 1

  16. High-intensity therapeutic ultrasound: metrological requirements versus clinical usage

    NASA Astrophysics Data System (ADS)

    Aubry, J.-F.

    2012-10-01

    High-intensity therapeutic ultrasound (HITU) is an appealing non-invasive, non-ionizing therapeutic modality with a wide range of tissue interactions ranging from transient permeabilization of cell membranes to thermal ablation. The ability to guide and monitor the treatment with an associated ultrasonic or magnetic resonance imaging device has resulted in a dramatic rise in the clinical use of therapeutic ultrasound in the past two decades. Nevertheless, the range of clinical applications and the number of patients treated has grown at a much higher pace than the definition of standards. In this paper the metrological requirements of the therapeutic beams are reviewed and are compared with the current clinical use of image-guided HITU mostly based on a practical approach. Liver therapy, a particularly challenging clinical application, is discussed to highlight the differences between some complex clinical situations and the experimental conditions of the metrological characterization of ultrasonic transducers.

  17. Ultlra-intense laser-matter interactions at extreme parameters

    SciTech Connect

    Hegellich, Bjorn M

    2010-11-24

    The field of shortpulse lasers has seen rapid growth in the recent years with the three major boundaries of energy, pulse duration and repetition rate being pushed in ever extremer regions. At peak powers, already exceeding 10{sup 22} W/cm{sup 2}, in virtually every experiment in relativistic laser physics, the laser pulse interacts with a more or less extended and heated plasma, due to prepulses and ASE-like pedestals on ps - ns time scales. By developing a new technique for ultrahigh contrast, we were able to initiate the next paradigm shift in relativistic laser-matter interactions, allowing us to interact ultrarelativistic pulses volumetrically with overdense targets. This becomes possible by using target and laser parameters that will turn the target relativistically transparent during the few 10s-100s femtoseconds fo the interaction. Specifically, we interact an ultraintese, ultrahigh contrast pulse with solid density, free standing, nanometer diamond target. This paradigm change towards a volumetric overdense interaction in turn enables new particle acceleration mechanisms for both electrons and ions, as well as forward directed relativistic surface harmonics. We report here on first experiments done on those topics at the 200 TW Trident laser at Los Alamos as well as at the Ti:Sapphire system at MBI. We will compare the experimental data to massive large scale 3D simulations done on the prototype of LANL's new Petafiop supercomputer Roadrunner, which is leading the current top 500 list. Specifically, we developed a shortpulse OPA based pulse cleaning technique. Fielding it at the Trident 200 TW laser at Los Alamos, we were able to improve the pulse contrast by 6 orders of magnitude to better than 2 x 10{sup -12} at less than a ps. This enabled for the first time the interaction of a 100J, 200TW laser pulse with a truly solid target with virtually no expansion before the main pulse - target interaction, making possible the use of very thin targets, The

  18. A compact high intensity cooler (CHIC)

    NASA Astrophysics Data System (ADS)

    Bland, T. J.; Niggemann, R. E.; Parekh, M. B.

    1983-07-01

    A unique heat exchanger has been developed with potential applications for cooling high power density electronics and perhaps high energy laser mirrors. The device was designed to absorb heat fluxes of approximately 50 w/sq cm (158,000 Btu/hr sq ft), with a low thermal resistance, a high surface temperature uniformity, and very low hydraulic pumping power. A stack of thin copper orifice plates and spacers was bonded together and arranged to provide liquid jet impingement heat transfer on successive plates. This configuration resulted in effective heat transfer coefficients, based on the prime surface, of about 85,000 w/sq m deg C (15,000 Btu/hr sq ft deg F) and 1.8 watts (0.002 hp) hydraulic power with liquid Freon 11 as coolant.

  19. Generation of Energetic Particles in Intense Laser Matter Interaction

    NASA Astrophysics Data System (ADS)

    Ramakrishna, Bhuvanesh; Muhammad, Tayyab; Bagchi, Suman; Mandal, Tirtha; Chakera, Juzer; Naik, Prasad; Gupta, Parshotam Dass; Department of Physics, Indian Institute of Technology Hyderabad, India. Collaboration; Laser Plasma Division, Raja Ramanna CentreAdvanced Technology, Indore, India. Collaboration

    2016-10-01

    The acceleration of high energy ion beams up to several tens of MeV per nucleon following the interaction of an ultra-short (t <50 fs), intense (Iλ2 >1018 W.cm-2. μm-2) laser pulse with solid targets, is one of the burgeoning fields of research in the last few years. Mechanisms leading to forward-accelerated, high quality ion beams, operating at currently accessible laser intensities (up to 1021 W/cm2) in laser-matter interactions, are mainly associated with large electric fields set up at the target rear interface by the laser-accelerated electrons leaving the target. In this paper, we present our recent experimental results on MeV ion generation by mildly relativistic (1019 W / cm - 2) short-pulse (45 fs) laser interaction with foil targets of varying thicknesses, structured / uniform targets (e.g. nano structures on thin metallic foils, sandwich targets). Spectral modification / bunching, and divergence from structured targets will be discussed. DST Ramanujan Fellowship (SR/S2/RJN-25/2012).

  20. Dense monoenergetic proton beams from chirped laser-plasma interaction.

    PubMed

    Galow, Benjamin J; Salamin, Yousef I; Liseykina, Tatyana V; Harman, Zoltán; Keitel, Christoph H

    2011-10-28

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (10(7) particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10(21) W/cm(2).

  1. Laser-Tissue Interaction in Tattoo Removal by Q-Switched Lasers

    PubMed Central

    Barua, Shyamanta

    2015-01-01

    Q-switched (QS) lasers are widely considered the gold standard for tattoo removal, with excellent clinical results, impressive predictability, and a good safety profile. The generation of giant pulses by the method of Q-switching is responsible for the unique laser-tissue interaction that is seen in tattoo removal by QS lasers. The QS lasers work by impaction and dissolution of the tattoo pigments. Mechanical fragmentation of the tattoo pigments encased in intracellular lamellated organelles followed by their phagocytosis by macrophages is thought to be the major event in the clearance of pigments by QS lasers. A few novel techniques have been tried in recent times to hasten the clearance of tattoo pigments. PMID:25949016

  2. Laser-tissue interaction in tattoo removal by q-switched lasers.

    PubMed

    Barua, Shyamanta

    2015-01-01

    Q-switched (QS) lasers are widely considered the gold standard for tattoo removal, with excellent clinical results, impressive predictability, and a good safety profile. The generation of giant pulses by the method of Q-switching is responsible for the unique laser-tissue interaction that is seen in tattoo removal by QS lasers. The QS lasers work by impaction and dissolution of the tattoo pigments. Mechanical fragmentation of the tattoo pigments encased in intracellular lamellated organelles followed by their phagocytosis by macrophages is thought to be the major event in the clearance of pigments by QS lasers. A few novel techniques have been tried in recent times to hasten the clearance of tattoo pigments.

  3. Excimer laser interaction with zinc oxide

    NASA Astrophysics Data System (ADS)

    Khan, Enamul Haque

    When single crystal ZnO is exposed to 193-nm laser photons in vacuum at fluences below 100 mJ/cm2, isolated Zn vacancies are produced due to the emission of energetic Zn+. The pair wise formation of Zn vacancies and Zn+ interstitials is attributed to the photochemical excitation of anti-bonding Zn-O bonds. Interstitial Zn + diffuses to the surface where it is loosely bound to the surface---often atop a photoionizable electron trap; adsorbed Zn+ is emitted when the underlying trap is photoionized. Isolated Zn vacancies also diffuse following the laser pulse. These electron traps can reduce the near-surface free carrier concentration by as much as a factor of five on irradiated samples. At fluences between 150 and 200 mJ/cm2, 193-nm irradiation produces sustained emission of ionic and neutral species. The near-surface region of the irradiated sample becomes increasingly metallic and zinc rich. At fluences in the 250--300 mJ/cm2 range, a slower component of the Zn+ emission appears which is attributed to the excitation of an auto-ionizing state at 12.77 eV. The same excitation also yields Zn atomic light emission, predominately due to transitions on the triplet manifold. Rydberg Zn* atoms in high-lying quantum states appear at a threshold fluence of about 350 mJ/cm2. At fluences greater than or equal to 2 J/cm2, atomic light emission due to optical breakdown is observed.

  4. X-Ray Free Electron Laser Interaction With Matter

    SciTech Connect

    Hau-Riege, S

    2009-05-12

    X-ray free electron lasers (XFELs) will enable studying new areas of laser-matter interaction. We summarize the current understanding of the interaction of XFEL pulses with matter and describe some of the simulation approaches that are used to design experiments on future XFEL sources. Modified versions of these models have been successful in guiding and analyzing experiments performed at the extreme-ultraviolet FEL FLASH at wavelengths of 6 nm and longer. For photon energies of several keV, no XFEL-matter interaction experiments have been performed yet but data is anticipated to become available in the near future, which will allow to test our understanding of the interaction physics in this wavelength regime.

  5. Axial interaction free-electron laser

    DOEpatents

    Carlsten, B.E.

    1997-09-02

    Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies. 5 figs.

  6. Axial interaction free-electron laser

    DOEpatents

    Carlsten, Bruce E.

    1997-01-01

    Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies.

  7. High-energy laser interaction with solids: a laser safety perspective

    NASA Astrophysics Data System (ADS)

    Daigle, Jean-François; Pudo, Dominik; Théberge, Francis; Châteauneuf, Marc

    2016-10-01

    Laser safety regulating the deployment of kW-class high energy laser (HEL) technologies in outdoor applications can rapidly cause significant planning and operations issues due to the ranges involved. Safety templates based on the American National Standard Institute (ANSI) rules can easily result in ranges of tens of kilometers for kW-class lasers. Due to the complexity of HEL-matter interactions, the assumptions underlying the aforementioned approach are however deemed inappropriate. In this paper, we identify a more suitable approach backed by experimental results.

  8. Integrated Laser-Target Interaction Experiments on the RAL Petawatt Laser

    SciTech Connect

    Patel, P K; Key, M H; Mackinnon, A J; Berry, R; Borghesi, M; Chambers, D M; Chen, H; Clarke, R; Damian, C; Eagleton, R; Freeman, R; Glenzer, S; Gregori, G; Heathcote, R; Hey, D; Izumi, N; Kar, S; King, J; Nikroo, A; Niles, A; Park, H S; Pasley, J; Patel, N; Shepherd, R; Snavely, R A; Steinman, D; Stoeckl, C; Storm, M; Town, R; Van Maren, R; Theobald, W; Wilks, S C; Zhang, B

    2006-10-11

    Since the construction of the first Petawatt laser on the Nova laser facility at Lawrence Livermore National Laboratory we are witnessing the emergence of similar Petawatt-class laser systems at laboratories all around the world. This new generation of lasers, able to deliver several hundred joules of energy in a sub-picosecond pulse, has enabled a host of new discoveries to be made and continues to provide a valuable tool to explore new regimes in relativistic laser-plasma physics--encompassing high energy X-rays and -rays, relativistic electrons, intense ion beams, and superstrong magnetic fields. The coupling in the near-future of multi-kiloJoule Petawatt-class lasers with large-scale fusion lasers.including the NIF and Omega EP (US), LIL (France), and FIREX (Japan)--will further expand opportunities in fast ignition, high energy X-ray radiography, and high energy density physics research. The 500 J Petawatt laser at the Rutherford Appleton Laboratory is currently the highest energy short-pulse laser in the world. In this paper we describe a recent experimental campaign carried out on the facility. The campaign, performed by a large collaborative team from eight different laboratories, was designed to study a variety of relativistic laser-interaction phenomena including laser absorption, fast electron transport, proton heating, and high-brightness x-ray generation. The wide scope of the experiment necessitated the deployment of a very large set of diagnostics--in total twenty-five separate instruments. In order to obtain the most comprehensive set of measurements all twenty-five diagnostics were fielded simultaneously on every shot.

  9. Interaction of high intensity focused ultrasound with biological materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Mal, A.; Feng, F.; Kabo, M.; Wang, J.

    2002-01-01

    This work is motivated by the possible medical application of focused ultrasound in minimally invasive treatment of a variety of disorders including those associated with soft tissue or disk element disruption in the vicinity of the spine causing impingement on the spinal cord.

  10. On the scaling of multicrystal data sets collected at high-intensity X-ray and electron sources

    SciTech Connect

    Coppens, Philip; Fournier, Bertrand

    2015-11-11

    Here, the need for data-scaling has become increasingly evident as time-resolved pump-probe photocrystallography is rapidly developing at high intensity X-ray sources. Several aspects of the scaling of data sets collected at synchrotrons, XFELs (X-ray Free Electron Lasers) and high-intensity pulsed electron sources are discussed. They include laser-ON/laser-OFF data scaling, inter- and intra-data set scaling. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

  11. Front surface structured targets for enhancing laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Snyder, Joseph; George, Kevin; Ji, Liangliang; Yalamanchili, Sasir; Simonoff, Ethan; Cochran, Ginevra; Daskalova, Rebecca; Poole, Patrick; Willis, Christopher; Lewis, Nathan; Schumacher, Douglass

    2016-10-01

    We present recent progress made using front surface structured interfaces for enhancing ultrashort, relativistic laser-plasma interactions. Structured targets can increase laser absorption and enhance ion acceleration through a number of mechanisms such as direct laser acceleration and laser guiding. We detail experimental results obtained at the Scarlet laser facility on hollow, micron-scale plasma channels for enhancing electron acceleration. These targets show a greater than three times enhancement in the electron cutoff energy as well as an increased slope temperature for the electron distribution when compared to a flat interface. Using three-dimensional particle-in-cell (PIC) simulations, we have modeled the interaction to give insight into the physical processes responsible for the enhancement. Furthermore, we have used PIC simulations to design structures that are more advantageous for ion acceleration. Such targets necessitate advanced target fabrication methods and we describe techniques used to manufacture optimized structures, including vapor-liquid-solid growth, cryogenic etching, and 3D printing using two-photon-polymerization. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0085.

  12. Laser-material interactions: A study of laser energy coupling with solids

    SciTech Connect

    Shannon, Mark Alan

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding.

  13. Particle interaction measurements using laser tweezers optical trapping.

    SciTech Connect

    Koehler, Timothy P.; Brinker, C. Jeffrey; Brotherton, Christopher M.; Grillet, Anne M.; Molecke, Ryan A.

    2008-08-01

    Laser tweezers optical trapping provides a unique noninvasive capability to trap and manipulate particles in solution at the focal point of a laser beam passed through a microscope objective. Additionally, combined with image analysis, interaction forces between colloidal particles can be quantitatively measured. By looking at the displacement of particles within the laser trap due to the presence of a neighboring particle or looking at the relative diffusion of two particles held near each other by optical traps, interparticle interaction forces ranging from pico- to femto-Newtons can be measured. Understanding interaction forces is critical for predicting the behavior of particle dispersions including dispersion stability and flow rheology. Using a new analysis method proposed by Sainis, Germain, and Dufresne, we can simultaneously calculate the interparticle velocity and particle diffusivity which allows direct calculation of the interparticle potential for the particles. By applying this versatile tool, we measure difference in interactions between various phospholipid bilayers that have been coated onto silica spheres as a new type of solid supported liposome. We measure bilayer interactions of several cell membrane lipids under various environmental conditions such as pH and ionic strength and compare the results with those obtained for empty liposomes. These results provide insight into the role of bilayer fluctuations in liposome fusion, which is of fundamental interest to liposome based drug delivery schemes.

  14. THz Radiation Generation via Laser Plasma Interaction Experiments

    NASA Astrophysics Data System (ADS)

    Yugami, Noboru; Higashiguchi, Takeshi

    2008-12-01

    Recently radiation generation from the interaction between laser and plasma is studied. Terahertz radiation from photo-conductive antenna which is based on semiconductor technology is widely used, The power is in the order of nano-watt level so that it is hard to use for application. On the other hand, terahertz radiation from laser plasma interaction is much higher than that of semiconductor technology. In our experiments, we have studied by use DARC (dc to ac radiation converter) mechanism by using YAG laser with nano-second pulse duration. DARC is novel radiation source using the interaction between laser-created ionization front and static electric field. The frequency of radiation is determined by both plasma density of ionization front and the geometry of DARC structure. We observed radiation pulse of frequency of 1.2 THz and pulse duration of 2 ps with ZnSe crystal as media detected by EO (electro-optics) sampling technique. Note from Publisher: This article contains the abstract only.

  15. Quantum beam generations via the laser-cluster interactions

    NASA Astrophysics Data System (ADS)

    Fukuda, Yuji; Faenov, Anatoly; Pikuz, Tania; Tampo, Motonobu; Yogo, Akifumi; Kando, Masaki; Hayashi, Yukio; Kameshima, Takeshi; Homma, Takayuki; Pirozhkov, Alexander; Kato, Yoshiaki; Tajima, Toshiki; Daido, Hiroyuki; Bulanov, Sergei

    2008-11-01

    The novel soft X-ray light source using the supersonic expansion of the mixed gas of He and CO2, when irradiated by a femtosecond Ti:sapphire laser pulse, is observed to enhance the radiation of soft X-rays from the CO2 clusters. Using this soft X-ray emissions, nanostructure images of 100-nm thick Mo foils in a wide field of view (mm^2 scale) with high spatial resolution (800 nm) are obtained with high dynamic range LiF crystal detectors. We also demonstrate the acceleration of charged particles via the laser-cluster interactions.

  16. Intense terahertz radiation from relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Liao, G. Q.; Li, Y. T.; Li, C.; Liu, H.; Zhang, Y. H.; Jiang, W. M.; Yuan, X. H.; Nilsen, J.; Ozaki, T.; Wang, W. M.; Sheng, Z. M.; Neely, D.; McKenna, P.; Zhang, J.

    2017-01-01

    The development of tabletop intense terahertz (THz) radiation sources is extremely important for THz science and applications. This paper presents our measurements of intense THz radiation from relativistic laser-plasma interactions under different experimental conditions. Several THz generation mechanisms have been proposed and investigated, including coherent transition radiation (CTR) emitted by fast electrons from the target rear surface, transient current radiation at the front of the target, and mode conversion from electron plasma waves (EPWs) to THz waves. The results indicate that relativistic laser plasma is a promising driver of intense THz radiation sources.

  17. Improving the Capabilities of a Continuum Laser Plasma Interaction Code

    SciTech Connect

    Hittinger, J F; Dorr, M R

    2006-06-15

    The numerical simulation of plasmas is a critical tool for inertial confinement fusion (ICF). We have been working to improve the predictive capability of a continuum laser plasma interaction code pF3d, which couples a continuum hydrodynamic model of an unmagnetized plasma to paraxial wave equations modeling the laser light. Advanced numerical techniques such as local mesh refinement, multigrid, and multifluid Godunov methods have been adapted and applied to nonlinear heat conduction and to multifluid plasma models. We describe these algorithms and briefly demonstrate their capabilities.

  18. Theory of the laser diode interaction in scanning force microscopy

    SciTech Connect

    Sarid, D.; Iams, D.A.; Ingle, J.T.; Weissenberger, V.

    1989-08-01

    The theory of interaction of a vibrating cantilever and a laser diode used in a scanning force microscope is given in terms of a feedback-dependent parameter C, which determines the gain associated with this interaction. It is shown that both C and the amplitude of vibrations can be determined experimentally from the measurement of the first and second harmonics. Experimental results, which are in good agreement with the theory, yield a value for C which is 0.045. Under these weak feedback conditions, it is found that the interaction can be modeled approximately as a simple homodyne process.

  19. POWER RECYCLING OF BURST-MODE LASER PULSES FOR LASER PARTICLE INTERACTIONS

    SciTech Connect

    Liu, Yun

    2016-01-01

    A number of laser-particle interaction experiments such as the laser assisted hydrogen ion beam stripping or X-/ -ray generations via inverse-Compton scattering involve light sources operating in a burst mode to match the tem-poral structure of the particle beam. To mitigate the laser power challenge, it is important to make the interaction inside an optical cavity to recycle the laser power. In many cases, conventional cavity locking techniques will not work since the burst normally has a very small duty factor and low repetition rate and it is impossible to gen-erate an effective control signal. This work reports on the development of a doubly-resonant optical cavity scheme and its locking techniques that enables a simultaneous resonance of two laser beams with different spectra and/or temporal structures. We demonstrate that such a cavity can be used to recycle burst-mode ultra-violet laser pulses with arbitrary burst lengths and repetition rates.

  20. Phenomenological model of laser-tissue interaction with application to Benign Prostatic Hyperplasia (BPH) simulation.

    PubMed

    Zhou, Xiangmin; Zhang, Nan; Shen, Yunhe; Burke, Dan; Konchada, Vamsi; Sweet, Robert

    2011-01-01

    Laser-tissue interaction is a multi-physics phenomenon not yet mathematically describable and computationally predictable. It is a challenge to model the laser-tissue interaction for real time laser Benign Prostatic Hyperplasia (BPH) simulation which requires the laser-tissue interaction model to be computationally efficient and accurate. Under the consideration and enforcement of the thermodynamic first law and treating the laser-tissue interaction as a gray-box, utilizing the sensitivity analysis of some key parameters that will affect the laser intensity on the tissue surface with respect to the tissue vaporization rate, a phenomenological model of laser-tissue interaction is developed. The developed laser-tissue interaction model has been implemented for a laser BPH simulator and achieves real time performance (more than 30 frames per second). The model agrees well with the available experimental data.

  1. Deposition of tantalum carbide coatings on graphite by laser interactions

    NASA Technical Reports Server (NTRS)

    Veligdan, James; Branch, D.; Vanier, P. E.; Barietta, R. E.

    1994-01-01

    Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000 C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing involved the use of a CO2 laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl5 gas near the substrate. The results of preliminary experiments using these techniques are described.

  2. Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Strozzi, D. J.; Bailey, D. S.; Michel, P.; Divol, L.; Sepke, S. M.; Kerbel, G. D.; Thomas, C. A.; Ralph, J. E.; Moody, J. D.; Schneider, M. B.

    2017-01-01

    The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. This model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.

  3. Modeling of a UV laser beam—silicon nitride interaction

    NASA Astrophysics Data System (ADS)

    Dgheim, J. A.

    2016-11-01

    A numerical model is developed to study heat and radiation transfers during the interaction between a UV laser beam and silicon nitride. The laser beam has temporal Gaussian or Gate shapes of a wavelength of 247 nm, with pulse duration of 27 ns. The mathematical model is based on the heat equation coupled to Lambert-Beer relationship by taking into account the conduction, convection and radiation phenomena. The resulting equations are schemed by the finite element method. Comparison with the literature shows qualitative and quantitative agreements. The investigated parameters are the temperature, the timing of the melting process and the melting phase thickness. The effects of the laser fluences, ranging from 500 to 16 000 J.m-2, the Gaussian and Gate shapes on the heat transfer, and the melting phenomenon are studied.

  4. Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics

    DOE PAGES

    Strozzi, D. J.; Bailey, D. S.; Michel, P.; ...

    2017-01-12

    The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling andmore » data from hohlraum experiments on wall x-ray emission and capsule implosion shape.« less

  5. Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Manfred

    1986-10-01

    The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.

  6. Structural and functional bases of laser-microvessels interaction

    NASA Astrophysics Data System (ADS)

    Kozlov, Valentine I.; Terman, Oleg A.; Builin, Vitalij; Lebedeva, Natalia A.; Samoilov, Nickolai

    1993-07-01

    Structural and functional microcirculatory changes in tissues and organs (muscles, liver, derma, epinephros, brain cortex) under various dosages and powers of laser irradiation in the red (633 nm) and near infrared (890 nm) spectrum regions have been studied in experiments and clinic. In case of nonsensitized tissues the `photoactivation' range of power densities and doses of laser irradiation has been established. We have identified a short-term reaction of microvessels and a long-term reaction (adaptation). The former consists of intensification of microcirculation and metabolism rise in parenchymatous cells; the latter is connected with neoangiogenesis acceleration. The intensification of the blood microcirculation includes a dilation of microvessels of all orders, an amplification of arteriolar vasomotions and an opening of `reserved' capillaries. Data on the structural reconstruction of myocytes and endotheliocytes have shown that the high differential parenchymatous cells and its membrane structures are sensitive to low energy laser irradiation and, on the other hand, under low energy laser irradiation there is an activation of synthetic processes in the cells. Thus, during the laser-tissue interaction in such complex system as human organism the microcirculation plays the key role among the other systems.

  7. Interaction of UV laser pulses with reactive dusty plasmas

    NASA Astrophysics Data System (ADS)

    van de Wetering, Ferdi; Beckers, Job; Nijdam, Sander; Oosterbeek, Wouter; Kovacevic, Eva; Berndt, Johannes

    2016-09-01

    This contribution deals with the effects of UV photons on the synthesis and transport of nanoparticles in reactive complex plasmas (capacitively coupled RF discharge). First measurements showed that the irradiation of a reactive acetylene-argon plasma with high-energy, ns UV laser pulses (355 nm, 75 mJ pulse energy, repetition frequency 10Hz) can have a large effect on the global discharge characteristics. One particular example concerns the formation of a dust void in the center of the discharge. At sufficiently high pulse energies, this formation of a dust free region - which occurs without laser irradiation-is totally suppressed. Moreover the experiments indicate that the laser pulses influence the early stages of the particle formation. Although the interaction between the laser and the plasma is not yet fully understood, it is remarkable that these localized nanosecond laser pulses can influence the plasma on a global scale. Besides new insights into fundamental problems, this phenomenon opens also new possibilities for the controlled manipulation of particle growth and particle transport in reactive plasmas.

  8. Maxwell's equations-based dynamic laser-tissue interaction model.

    PubMed

    Ahmed, Elharith M; Barrera, Frederick J; Early, Edward A; Denton, Michael L; Clark, C D; Sardar, Dhiraj K

    2013-12-01

    Since its invention in the early 1960s, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the dynamic changes in the spatial and temporal temperature rise during laser exposure to biological tissues. Unlike conventional models, the new approach is grounded on the rigorous electromagnetic theory that accounts for wave interference, polarization, and nonlinearity in propagation using a Maxwell's equations-based technique.

  9. Interactions between lasers and two-dimensional transition metal dichalcogenides.

    PubMed

    Lu, Junpeng; Liu, Hongwei; Tok, Eng Soon; Sow, Chorng-Haur

    2016-05-03

    The recent increasing research interest in two-dimensional (2D) layered materials has led to an explosion of in the discovery of novel physical and chemical phenomena in these materials. Among the 2D family, group-VI transition metal dichalcogenides (TMDs), such as represented by MoS2 and WSe2, are remarkable semiconductors with sizable energy band gaps, which make the TMDs promising building blocks for new generation optoelectronics. On the other hand, the specificity and tunability of the band gaps can generate particularly strong light-matter interactions between TMD crystals and specific photons, which can trigger complex and interesting phenomena such as photo-scattering, photo-excitation, photo-destruction, photo-physical modification, photochemical reaction and photo-oxidation. Herein, we provide an overview of the phenomena explained by various interactions between lasers and the 2D TMDs. Characterizations of the optical fundamentals of the TMDs via laser spectroscopies are reviewed. Subsequently, photoelectric conversion devices enabled by laser excitation and the functionality extension and performance improvement of the TMDs materials via laser modification are comprehensively summarized. Finally, we conclude the review by discussing the prospects for further development in this research area.

  10. The radiation reaction effect in ultra intense laser foil interactions

    NASA Astrophysics Data System (ADS)

    Klimo, O.; Jirka, M.; Masek, M.; Limpouch, J.; Bussmann, M.; Korn, G.

    2013-05-01

    Since the radiation reaction effect on electron propagation is very small in most cases, it can be usually neglected and the Lorentz force equation can be applied. However, ultra-intense lasers with normalized vector potential of the order of 100 can accelerate electrons to relativistic velocities with very high gamma factor. When the electron is accelerated to such high velocities the amount of emitted radiation may become large and radiation damping and emission of energetic photons should be considered. This work studies the influence of the radiation reaction force on laser interaction with solid foil targets. It compares different approaches adopted in PIC simulations to take into account the radiation reaction. The simulations of a counter-propagating relativistic electron and an ultra-intense laser beam demonstrate a strong energy loss of electrons due to non-linear Compton scattering. The interaction of ultra-intense laser pulse with solid foil is studied using PIC simulations. It is shown that the effect of radiation reaction strongly depends on the recirculation of high-energy electrons. When the recirculation is efficient, the radiation coming from the target is much more intense and it shows different spectral and angular characteristics.

  11. Report from the NSLS workshop: Sources and applications of high intensity uv-vuv light

    SciTech Connect

    Johnson, E.D.; Hastings, J.B.

    1990-12-31

    A workshop was held to evaluate sources and applications of high intensity, ultra violet (UV) radiation for biological, chemical, and materials sciences. The proposed sources are a UV free electron laser (FEL) driven by a high brightness linac and undulators in long, straight sections of a specially designed low energy (400 MeV) storage ring. These two distinct types of sources will provide a broad range of scientific opportunities that were discussed in detail during the workshop.

  12. Report from the NSLS workshop: Sources and applications of high intensity uv-vuv light

    SciTech Connect

    Johnson, E.D.; Hastings, J.B.

    1990-01-01

    A workshop was held to evaluate sources and applications of high intensity, ultra violet (UV) radiation for biological, chemical, and materials sciences. The proposed sources are a UV free electron laser (FEL) driven by a high brightness linac and undulators in long, straight sections of a specially designed low energy (400 MeV) storage ring. These two distinct types of sources will provide a broad range of scientific opportunities that were discussed in detail during the workshop.

  13. Broadband Brillouin Scatter from CO2-Laser-Target Interactions

    NASA Astrophysics Data System (ADS)

    Mitchel, G. R.; Grek, B.; Johnston, T. W.; Pépin, H.; Church, P.; Lavigne, P.; Martin, F.; Décoste, R.

    1982-05-01

    Light scattered near the incident wavelength from CO2 laser-solid target interactions in oblique incidence shows the spectral signature of Brillouin scattering both in the backward and in the near specular directions. This instability is apparently seeded by broadband scatter from the critical density surface and then amplified in the underdense plasma. 60% of the incident light is scattered, and the Brillouin contribution to total scatter may be large if the source is also large.

  14. Mechanism of laser immunotherapy: role of immunoadjuvant and selective photothermal laser-tissue interaction

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Liu, Hong; Nordquist, Robert E.

    2002-04-01

    Immunotherapy has been used for cancer treatment in the past century. Although different approaches have been attempted, the basic strategy has been targeting specific tumor antigens to induce host immune responses. Laser immunotherapy is a novel approach in treating metastatic tumors. The combination of two major interactions in laser immunotherapy - selective photothermal and photoimmunological interactions - is designed to induce a tumor-specific host immune response. The hypothetical mechanism is as follows. The intratumor injection of laser- absorbing dye and the noninvasive irradiation of a near- infrared laser produce an acute, selective thermal tumor killing, and at the same time, release tumor antigens. The in-situ immunoadjuvant then combines with the liberated tumor antigens to stimulate and direct the host immune system to fight against remaining tumor cells both locally and in remote metastatic sites. In effect, an in-situ vaccination against the tumor was achieved. Such an immune response eventually leads to a systemic, long-term tumor resistance. Our pre-clinical animal studies have demonstrated such a long-term immunity. Specifically, a novel immunoadjuvant, glycated chitosan (GC), was used in laser immunotherapy. Because the use of immunoadjuvant is crucial in cancer immunotherapy, the role of GC was investigated.

  15. Influence Of Laser-Target Interaction On The Polarization Of A CO2-Laser

    NASA Astrophysics Data System (ADS)

    Du, Keming; Herziger, Gerd; Loosen, Peter; Seelig, W.

    1989-03-01

    Laser materials processing shows a special pecularity compared to other customary techniques: the (generally reflecting) target introduces optical feedback into the system. This feedback changes the mode properties of the laser radiation according to the targets dynamics. We report on one of these aspects of laser-target interaction resulting in the change of the polarization of the incident light. Based on rate equations, a theoretical model is presented that allows the calculation of this change with respect of the target properties, yielding a simple relation for the two orthogonal planes of polarization of a laser mode. This relation turns out to be linearly dependent of a function ψ(t) which describes the optical feedback. The relation holds for target reflexions of up to 10% and for times larger than T1 • T2/T1 - T2 (where T1, T2 are the time constants of the passive resonator for the two orthogonal Planes of polarization). Experiments supporting the model are presented. The model offers a method for the modulation of laser radiation without change of frequency or intensity. It might also be of interest for high-power CO2 laser cutting and welding of metals.

  16. Ion Acceleration by Laser Plasma Interaction from Cryogenic Microjets

    SciTech Connect

    Propp, Adrienne

    2015-08-16

    Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. However, this mechanism is not ideal for creating the high-energy proton beams needed for future applications. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for exploring new regimes of ion acceleration. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an e ort to test this hypothesis, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the ow of current up the jet into the nozzle during the interaction, heating the jet and damaging the ori ce. However, we achieved a pure proton beam with evidence of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic lms (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the possibility of transforming our liquid cryogenic jets

  17. Operation of the Proto-MPEX High Intensity Plasma Source

    NASA Astrophysics Data System (ADS)

    Caughman, J. B. O.; Goulding, R. H.; Biewer, T. M.; Bigelow, T. S.; Campbell, I. H.; Diem, S. J.; Martin, E. H.; Pesavento, P. V.; Rapp, J.; Ray, H. B.; Shaw, G. C.; Showers, M. A.; Luo, G.-N.

    2015-11-01

    The Prototype Materials Plasma Experiment (Proto-MPEX) is a linear high-intensity rf plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is produced by coupling 13.56 MHz rf power at levels up to 100 kW. Microwaves at 28 GHz (~ 150 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW). Ion cyclotron heating (~ 30 kW) will be via a magnetic beach approach. Plasma diagnostics include Thomson Scattering and a retarding field energy analyzer near the target, while a microwave interferometer and double-Langmuir probes are used to determine plasma parameters elsewhere in the system. Filterscopes are being used to measure D-alpha emission and He line ratios at multiple locations, and IR cameras image the target plates to determine heat deposition. High plasma densities in the helicon region have been produced in He (>3x1019/m3) and D (>1.5x1019/m3) , and operation with on-axis magnetic field strength >1 T has been demonstrated. Details of the experimental results and future plans for studying plasma surface/RF antenna interactions will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  18. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator.

    PubMed

    Roychowdhury, P; Chakravarthy, D P

    2009-12-01

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10(11) cm(-3) and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 pi mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  19. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator

    SciTech Connect

    Roychowdhury, P.; Chakravarthy, D. P.

    2009-12-15

    Electron cyclotron resonance (ECR) proton source at 50 keV, 50 mA has been designed, developed, and commissioned for the low energy high intensity proton accelerator (LEHIPA). Plasma characterization of this source has been performed. ECR plasma was generated with 400-1100 W of microwave power at 2.45 GHz, with hydrogen as working gas. Microwave was fed in the plasma chamber through quartz window. Plasma density and temperature was studied under various operating conditions, such as microwave power and gas pressure. Langmuir probe was used for plasma characterization using current voltage variation. The typical hydrogen plasma density and electron temperature measured were 7x10{sup 11} cm{sup -3} and 6 eV, respectively. The total ion beam current of 42 mA was extracted, with three-electrode extraction geometry, at 40 keV of beam energy. The extracted ion current was studied as a function of microwave power and gas pressure. Depending on source pressure and discharge power, more than 30% total gas efficiency was achieved. The optimization of the source is under progress to meet the requirement of long time operation. The source will be used as an injector for continuous wave radio frequency quadrupole, a part of 20 MeV LEHIPA. The required rms normalized emittance of this source is less than 0.2 {pi} mm mrad. The simulated value of normalized emittance is well within this limit and will be measured shortly. This paper presents the study of plasma parameters, first beam results, and the status of ECR proton source.

  20. Development of a cryogenic hydrogen microjet for high-intensity, high-repetition rate experiments

    NASA Astrophysics Data System (ADS)

    Kim, J. B.; Göde, S.; Glenzer, S. H.

    2016-11-01

    The advent of high-intensity, high-repetition-rate lasers has led to the need for replenishing targets of interest for high energy density sciences. We describe the design and characterization of a cryogenic microjet source, which can deliver a continuous stream of liquid hydrogen with a diameter of a few microns. The jet has been imaged at 1 μm resolution by shadowgraphy with a short pulse laser. The pointing stability has been measured at well below a mrad, for a stable free-standing filament of solid-density hydrogen.

  1. Light shield and cooling apparatus. [high intensity ultraviolet lamp

    NASA Technical Reports Server (NTRS)

    Meador, T. G., Jr. (Inventor)

    1974-01-01

    A light shield and cooling apparatus was developed for a high intensity ultraviolet lamp including water and high pressure air for cooling and additional apparatus for shielding the light and suppressing the high pressure air noise.

  2. Space Station Live: High-Intensity Exercise in Space

    NASA Video Gallery

    NASA Public Affairs Officer Lori Meggs talks with SPRINT Principal Investigator Lori Ploutz-Snyder to learn more about this high-intensity exercise research taking place aboard the International Sp...

  3. Nonlinear modal interactions in parity-time (PT) symmetric lasers

    PubMed Central

    Ge, Li; El-Ganainy, Ramy

    2016-01-01

    Parity-time symmetric lasers have attracted considerable attention lately due to their promising applications and intriguing properties, such as free spectral range doubling and single-mode lasing. In this work we discuss nonlinear modal interactions in these laser systems under steady state conditions, and we demonstrate that several gain clamping scenarios can occur for lasing operation in the -symmetric and -broken phases. In particular, we show that, depending on the system’s design and the external pump profile, its operation in the nonlinear regime falls into two different categories: in one the system is frozen in the phase space as the applied gain increases, while in the other the system is pulled towards its exceptional point. These features are first illustrated by a coupled mode formalism and later verified by employing the Steady-state Ab-initio Laser Theory (SALT). Our findings shine light on the robustness of single-mode operation against saturation nonlinearity in -symmetric lasers. PMID:27143324

  4. Probing the dynamics of the interaction between few-cycle laser pulses and single crystal (100) Si and GaAs near the laser-induced damage threshold

    NASA Astrophysics Data System (ADS)

    Talisa, Noah; Werner, Kevin; Kafka, Kyle; Austin, Drake R.; Chowdhury, Enam

    2016-12-01

    The dynamics of the laser-solid interaction with high intensity ultra-short s-polarized few-cycle pulses (FCPs) (Ephoton 1.65 eV) and single crystals (100) Si and GaAs (Egap 1.14 and 1.4 eV, respectivly) near the multipulse laser-induced damage threshold (LIDT) were measured using a pump-probe reflectivity technique. FCP's with central wavelength 760 nm and FWHM duration 5 fs used as both pump and probe pulses were incident at 45°, and the reflectivity of each probe pulse was measured as the delay between the pump and probe pulses was varied with 0.1 fs resolution. Near zero delay, the probe pulse reflectivity displayed oscillatory behavior relative to the unexcited reflectivity for both materials, with a period equal to the optical cycle ( 2.6 fs). For Si, the crystal orientation was varied so that the field polarization was parallel to the (010) and (011) directions, and half way in between. Significantly larger zero delay oscillations were observed for the field polarization parallel to the (011) direction compared to those for the other two directions.

  5. Studies of Positron Generation from Ultraintense Laser-Matter Interactions

    NASA Astrophysics Data System (ADS)

    Williams, Gerald Jackson

    Laser-produced pair jets possess unique characteristics that offer great potential for their use in laboratory-astrophysics experiments to study energetic phenomenon such as relativistic shock accelerations. High-flux, high-energy positron sources may also be used to study relativistic pair plasmas and useful as novel diagnostic tools for high energy density conditions. Copious amounts of positrons are produced with MeV energies from directly irradiating targets with ultraintense lasers where relativistic electrons, accelerated by the laser field, drive positron-electron pair production. Alternatively, laser wakefield accelerated electrons can produce pairs by the same mechanisms inside a secondary converter target. This dissertation describes a series of novel experiments that investigate the characteristics and scaling of pair production from ultraintense lasers, which are designed to establish a robust platform for laboratory-based relativistic pair plasmas. Results include a simple power-law scaling to estimate the effective positron yield for elemental targets for any Maxwellian electron source, typical of direct laser-target interactions. To facilitate these measurements, a solenoid electromagnetic coil was constructed to focus emitted particles, increasing the effective collection angle of the detector and enabling the investigation of pair production from thin targets and low-Z materials. Laser wakefield electron sources were also explored as a compact, high repetition rate platform for the production of high energy pairs with potential applications to the creation of charge-neutral relativistic pair plasmas. Plasma accelerators can produce low-divergence electron beams with energies approaching a GeV at Hz frequencies. It was found that, even for high-energy positrons, energy loss and scattering mechanisms in the target create a fundamental limit to the divergence and energy spectrum of the emitted positrons. The potential future application of laser

  6. Modeling plasma plumes generated from laser solid interactions

    NASA Astrophysics Data System (ADS)

    Wilks, Scott C.; Higginson, D. P.; Link, A. J.; Park, H.-S.; Ping, Y.; Rinderknecht, H. G.; Ross, J. S.; Orban, C.; Hua, R.

    2016-10-01

    Laser pulses interacting with solid targets sitting in a vacuum form the basis for a large class of High Energy Density physics experiments. The resulting hydrodynamical evolution of the target during and after this interaction can be modeled using myriad techniques. These techniques range from pure particle-in-cell (PIC) to pure radiation-hydrodynamics, and include a large number of hybrid techniques in between. The particular method employed depends predominately on laser intensity. We compare and contrast several methods relevant for a large range of laser intensities (from Iλ2 1 ×1012W . μm2 /cm2 to Iλ2 1 ×1019W . μm2 /cm2) and energies (from E 100 mJ to E 100 kJ .) Density, temperature, and velocity profiles are benchmarked against recent experimental data. These experimental data include proton radiographs, time resolved x-ray images, and neutron yield and spectra. Methods to self-consistently handle backscatter and detailed energy deposition will also be discussed. LLNL-ABS-697767. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Inertial fusion with ultra-powerful lasers

    SciTech Connect

    Tabak, M.; Hammer, J.; Glinsky, M.; Kruer, W.; Wilks, S.; Woodworth, J.; Campbell, E.M.; Perry, M.D.; Mason, R.

    1993-10-01

    Ultra-high intensity lasers can be used to ignite ICF capsules with a few tens of kilojoules of light and can lead to high gain with as little as 100 kilojoules of incident laser light. We propose a scheme with three phases. First, a capsule is imploded as in the conventional approach to inertial fusion to assemble a high density fuel configuration. Second, a hole is bored through capsule corona composed of ablated material, pushing critical density close to the high density core of the capsule, by employing the ponderomotive force associated with high intensity laser light. Finally, the fuel is ignited by suprathermal electrons, produced in the high intensity laser plasma interactions, which propagate from critical density to this high density core. This paper reviews two models of energy gain in ICF capsules and explains why ultra-high intensity lasers allow access to the model producing the higher gains. This new scheme also drastically reduces the difficulty of the implosion and thereby allows lower quality fabrication and less stringent beam quality and symmetry requirements from the implosion driver. The difficulty of the fusion scheme is transferred to the technological difficulty of producing the ultra-high-intensity laser and of transporting this energy to the fuel.

  8. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Laser plume spectroscopy. 1. Graphite target

    NASA Astrophysics Data System (ADS)

    Osipov, V. V.; Solomonov, V. I.; Platonov, V. V.; Snigireva, O. A.; Ivanov, M. G.; Lisenkov, V. V.

    2005-05-01

    Spectral and kinetic characteristics of a plume formed in the vicinity of a graphite target exposed to radiation from a pulsed CO2 laser at 10.6 μm with a peak power of 9 kW (pulse energy 1.69 J, pulse duration 330 μs at the 0.1 level) in air are studied at room temperature. It is shown that the plume propagating at a right angle to the target surface and at an angle of 45° to the laser radiation is a nonequilibrium gas plasma flow at a temperature of the order of 10 kK; its shape and size are determined by the shape and power of the laser pulse. Emission of C+ ions and C2 molecules is excited in the plume. The temperature and emission are sustained by the energy of the exothermic reaction of association of carbon atoms and the vibrationally excited molecules formed in it.

  9. High-resolution multi-MeV x-ray radiography using relativistic laser-solid interaction

    SciTech Connect

    Courtois, C.; Compant La Fontaine, A.; Barbotin, M.; Bazzoli, S.; Brebion, D.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Le Dain, L.; Lefebvre, E.; Pichoff, N.; Edwards, R.; Aedy, C.; Biddle, L.; Drew, D.; Gardner, M.; Ramsay, M.; Simons, A.; Sircombe, N.

    2011-02-15

    When high intensity ({>=}10{sup 19} W cm{sup -2}) laser light interacts with matter, multi-MeV electrons are produced. These electrons can be utilized to generate a MeV bremsstrahlung x-ray emission spectrum as they propagate into a high-Z solid target positioned behind the interaction area. The short duration (<10 ps) and the small diameter (<500 {mu}m) of the x-ray pulse combined with the MeV x-ray spectrum offers an interesting alternative to conventional bremsstrahlung x-ray sources based on an electron accelerator used to radiograph dense, rapidly moving objects. In experiments at the Omega EP laser, a multi-MeV x-ray source is characterized consistently with number of independent diagnostics. An unfiltered x-ray dose of approximately 2 rad in air at 1 m and a source diameter of less than 350 {mu}m are inferred. Radiography of a complex and high area density (up to 61 g/cm{sup 2}) object is then performed with few hundred microns spatial resolution.

  10. Ion Acceleration from the Interaction of Ultra-Intense Lasers with Solid Foils

    SciTech Connect

    Allen, Matthew M.

    2004-01-01

    The discovery that ultra-intense laser pulses (I > 1018 W/cm2) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 1018 W/cm2), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by Up = ([1 + Iλ2/1.3 x 1018]1/2 - 1) m{sub o}c2, where Iλ2 is the irradiance in W μm2/cm2 and moc2 is the electron rest mass. At laser irradiance of Iλ2 ~ 1020 W μm2/cm2, the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target. In this thesis we present several experiments that study the accelerated ions by

  11. Microwave modeling of laser plasma interactions. Final report

    SciTech Connect

    Not Available

    1983-08-01

    For a large laser fusion targets and nanosecond pulse lengths, stimulated Brillouin scattering (SBS) and self-focusing are expected to be significant problems. The goal of the contractual effort was to examine certain aspects of these physical phenomena in a wavelength regime (lambda approx.5 cm) more amenable to detailed diagnostics than that characteristic of laser fusion (lambda approx.1 micron). The effort was to include the design, fabrication and operation of a suitable experimental apparatus. In addition, collaboration with Dr. Neville Luhmann and his associates at UCLA and with Dr. Curt Randall of LLNL, on analysis and modelling of the UCLA experiments was continued. Design and fabrication of the TRW experiment is described under ''Experiment Design'' and ''Experimental Apparatus''. The design goals for the key elements of the experimental apparatus were met, but final integration and operation of the experiment was not accomplished. Some theoretical considerations on the interaction between Stimulated Brillouin Scattering and Self-Focusing are also presented.

  12. Pump-controlled modal interactions in microdisk lasers

    NASA Astrophysics Data System (ADS)

    Liew, Seng Fatt; Ge, Li; Redding, Brandon; Solomon, Glenn S.; Cao, Hui

    2015-04-01

    We demonstrate an effective control of nonlinear interactions of lasing modes in a semiconductor microdisk cavity by shaping the pump profile. A target mode is selected at the expense of its competing modes either by increasing their lasing thresholds or suppressing their power slopes above the lasing threshold. Despite the strong spatial overlap of the lasing modes at the disk boundary, adaptive pumping enables an efficient selection of any lasing mode to be the dominant one, leading to a switch of lasing frequency. The theoretical analysis illustrates both linear and nonlinear effects of selective pumping and quantifies their contributions to lasing-mode selection. This work shows that adaptive pumping not only provides a powerful tool to control the nonlinear process in multimode lasers, but also enables the tuning of lasing characteristic after the lasers have been fabricated.

  13. Laser-plasma interactions in large gas-filled hohlraums

    SciTech Connect

    Turner, R.E.; Powers, L.V.; Berger, R.L.

    1996-06-01

    Indirect-drive targets planned for the National Ignition Facility (NIF) laser consist of spherical fuel capsules enclosed in cylindrical Au hohlraums. Laser beams, arranged in cylindrical rings, heat the inside of the Au wall to produce x rays that in turn heat and implode the capsule to produce fusion conditions in the fuel. Detailed calculations show that adequate implosion symmetry can be maintained by filling the hohlraum interior with low-density, low-Z gases. The plasma produced from the heated gas provides sufficient pressure to keep the radiating Au surface from expanding excessively. As the laser heats this gas, the gas becomes a relatively uniform plasma with small gradients in velocity and density. Such long-scale-length plasmas can be ideal mediums for stimulated Brillouin Scattering (SBS). SBS can reflect a large fraction of the incident laser light before it is absorbed by the hohlraum; therefore, it is undesirable in an inertial confinement fusion target. To examine the importance of SBS in NIF targets, the authors used Nova to measure SBS from hohlraums with plasma conditions similar to those predicted for high-gain NIF targets. The plasmas differ from the more familiar exploding foil or solid targets as follows: they are hot (3 keV); they have high electron densities (n{sub e}=10{sup 21}cm{sup {minus}3}); and they are nearly stationary, confined within an Au cylinder, and uniform over large distances (>2 mm). These hohlraums have <3% peak SBS backscatter for an interaction beam with intensities of 1-4 x 10{sup 15} W/cm{sup 2}, a laser wavelength of 0.351{micro}m, f/4 or f/8 focusing optics, and a variety of beam smoothing implementations. Based on these conditions the authors conclude that SBS does not appear to be a problem for NIF targets.

  14. Repeated high-intensity exercise in professional rugby union.

    PubMed

    Austin, Damien; Gabbett, Tim; Jenkins, David

    2011-07-01

    The aim of the present study was to describe the frequency, duration, and nature of repeated high-intensity exercise in Super 14 rugby union. Time-motion analysis was used during seven competition matches over the 2008 and 2009 Super 14 seasons; five players from each of four positional groups (front row forwards, back row forwards, inside backs, and outside backs) were assessed (20 players in total). A repeated high-intensity exercise bout was considered to involve three or more sprints, and/or tackles and/or scrum/ruck/maul activities within 21 s during the same passage of play. The range of repeated high-intensity exercise bouts for each group in a match was as follows: 11-18 for front row forwards, 11-21 for back row forwards, 13-18 for inside backs, and 2-11 for outside backs. The durations of the most intense repeated high-intensity exercise bouts for each position ranged from 53 s to 165 s and the minimum recovery periods between repeated high-intensity exercise bouts ranged from 25 s for the back row forwards to 64 s for the front row forwards. The present results show that repeated high-intensity exercise bouts vary in duration and activities relative to position but all players in a game will average at least 10 changes in activity in the most demanding bouts and complete at least one tackle and two sprints. The most intense periods of activity are likely to last as long as 120 s and as little as 25 s recovery may separate consecutive repeated high-intensity exercise bouts. The present findings can be used by coaches to prepare their players for the most demanding passages of play likely to be experienced in elite rugby union.

  15. Progress in Long Scale Length Laser-Plasma Interactions

    SciTech Connect

    Glenzer, S H; Arnold, P; Bardsley, G; Berger, R L; Bonanno, G; Borger, T; Bower, D E; Bowers, M; Bryant, R; Buckman, S; Burkhart, S C; Campbell, K; Chrisp, M P; Cohen, B I; Constantin, G; Cooper, F; Cox, J; Dewald, E; Divol, L; Dixit, S; Duncan, J; Eder, D; Edwards, J; Erbert, G; Felker, B; Fornes, J; Frieders, G; Froula, D H; Gardner, S D; Gates, C; Gonzalez, M; Grace, S; Gregori, G; Greenwood, A; Griffith, R; Hall, T; Hammel, B A; Haynam, C; Heestand, G; Henesian, M; Hermes, G; Hinkel, D; Holder, J; Holdner, F; Holtmeier, G; Hsing, W; Huber, S; James, T; Johnson, S; Jones, O S; Kalantar, D; Kamperschroer, J H; Kauffman, R; Kelleher, T; Knight, J; Kirkwood, R K; Kruer, W L; Labiak, W; Landen, O L; Langdon, A B; Langer, S; Latray, D; Lee, A; Lee, F D; Lund, D; MacGowan, B; Marshall, S; McBride, J; McCarville, T; McGrew, L; Mackinnon, A J; Mahavandi, S; Manes, K; Marshall, C; Mertens, E; Meezan, N; Miller, G; Montelongo, S; Moody, J D; Moses, E; Munro, D; Murray, J; Neumann, J; Newton, M; Ng, E; Niemann, C; Nikitin, A; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rekow, V; Rinnert, R; Riordan, B; Rhodes, M

    2003-11-11

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 mm and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3{omega}) with a total intensity of 2 x 10{sup 15} W cm{sup -2}. The targets were filled with 1 atm of CO{sub 2} producing of up to 7 mm long homogeneously heated plasmas with densities of n{sub e} = 6 x 10{sup 20} cm{sup -3} and temperatures of T{sub e} = 2 keV. The high energy in a NIF quad of beams of 16kJ, illuminating the target from one direction, creates unique conditions for the study of laser plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last {approx}1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 6% for the smallest length ({approx}2 mm). increasing to 12% for {approx}7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modeling of the laser-plasma interactions at ignition-size scale lengths.

  16. Strongly Interacting Atom Lasers in Three-Dimensional Optical Lattices

    SciTech Connect

    Hen, Itay; Rigol, Marcos

    2010-10-29

    We show that the dynamical melting of a Mott insulator in a three-dimensional lattice leads to condensation at nonzero momenta, a phenomenon that can be used to generate strongly interacting atom lasers in optical lattices. For infinite on-site repulsion, the case considered here, the momenta at which bosons condense are determined analytically and found to have a simple dependence on the hopping amplitudes. The occupation of the condensates is shown to scale linearly with the total number of atoms in the initial Mott insulator. Our results are obtained by using a Gutzwiller-type mean-field approach, gauged against exact-diagonalization solutions of small systems.

  17. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Laser ablation plume dynamics in nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Osipov, V. V.; Platonov, V. V.; Lisenkov, V. V.

    2009-06-01

    The dynamics of the plume ejected from the surface of solid targets (YSZ, Nd:YAG and graphite) by a CO2 laser pulse with a duration of ~500 μs (at the 0.03 level), energy of 1.0-1.3 J and peak power of 6-7 kW have been studied using high-speed photography of the plume luminescence and shadow. The targets were used to produce nanopowders by laser evaporation. About 200 μs after termination of the pulse, shadowgraph images of the plumes above the YSZ and Nd:YAG targets showed dark straight tracks produced by large particles. The formation of large (~10 μm) particles is tentatively attributed to cracking of the solidified melt at the bottom of the ablation crater. This is supported by the fact that no large particles are ejected from graphite, which sublimes without melting. Further support to this hypothesis is provided by numerical 3D modelling of melt cooling in craters produced by laser pulses of different shapes.

  18. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Properties of the interaction of laser radiation with a gaseous dust medium

    NASA Astrophysics Data System (ADS)

    Glova, A. F.; Lysikov, A. Yu; Zverev, M. M.

    2009-06-01

    It is found that upon irradiation of a mixture of the atmospheric air and carbon particles of size 30-300 μm at a concentration of ~102 cm-3 by a cw CO2 laser, the active combustion of particles in the mixture appears when the radiation intensity in the focal region achieves ~103 W cm-2. The dependences of the threshold radiation intensity for the evaporation of particles on their radius are obtained for a gaseous dust medium in the form of a free vertical jet of spherical aluminium and carbon microparticles in nitrogen. It is shown that particles of size ~10 μm can be completely evaporated in a focused cw laser beam of power ~102 W.

  19. Analytical model for interaction of short intense laser pulse with solid target

    SciTech Connect

    Luan, S. X.; Ma, G. J.; Yu, Wei; Yu, M. Y.; Zhang, Q. J.; Sheng, Z. M.; Murakami, M.

    2011-04-15

    A simple but comprehensive two-dimensional analytical model for the interaction of a normally incident short intense laser pulse with a solid-density plasma is proposed. Electron cavitation near the target surface by the laser ponderomotive force induces a strong local electrostatic charge-separation field. The cavitation makes possible mode conversion of the laser light into longitudinal electron oscillation at laser frequency, even for initial normal incidence of laser pulse. The intense charge-separation field in the cavity can significantly enhance the laser induced uxB electron oscillation at twice laser frequency to density levels even higher than that of the initial target.

  20. High-intensity aerobic interval exercise in chronic heart failure.

    PubMed

    Meyer, Philippe; Gayda, Mathieu; Juneau, Martin; Nigam, Anil

    2013-06-01

    Aerobic exercise training is strongly recommended in patients with heart failure (HF) and reduced left ventricular ejection fraction (LVEF) to improve symptoms and quality of life. Moderate-intensity aerobic continuous exercise (MICE) is the best established training modality in HF patients. For about a decade, however, another training modality, high-intensity aerobic interval exercise (HIIE), has aroused considerable interest in cardiac rehabilitation. Originally used by athletes, HIIE consists of repeated bouts of high-intensity exercise interspersed with recovery periods. The rationale for its use is to increase exercise time spent in high-intensity zones, thereby increasing the training stimulus. Several studies have demonstrated that HIIE is more effective than MICE, notably for improving exercise capacity in patients with HF. The aim of the present review is to describe the general principles of HIIE prescription, the acute physiological effects, the longer-term training effects, and finally the future perspectives of HIIE in patients with HF.

  1. Beam diagnostics at high-intensity storage rings

    SciTech Connect

    Plum, M. )

    1994-10-10

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics, issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. I will discuss in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of our discussion is inspired by the problems we have encountered and the useful things we have learned while commissioning and developing the PSR. Another inspiration is our work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  2. Beam diagnostics at high-intensity storage rings

    SciTech Connect

    Plum, M.

    1993-11-01

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics. Issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. The author discusses in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of the discussion is inspired by the problems that were encountered and the useful things learned while commissioning and developing the PSR. Another inspiration is the work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  3. A target inserter for the Vulcan Petawatt Laser interaction chamber

    NASA Astrophysics Data System (ADS)

    Heathcote, Robert; Clarke, Robert J.

    2016-09-01

    The ability to maximise the shot rate of large scale laser facilities is dependent on the turnaround time of the laser, diagnostics and targetry. In a move to improve the last of these, a combined target mount and carousel are being implemented on the Vulcan Petawatt facility. The Vulcan Petawatt interaction chamber currently operates with either a single target or with a target wheel; which has limited positions and varying degrees of subsequent target survivability. Whenever the target holder needs to be changed the chamber vacuum has to be cycled, delaying shots by up to an hour. The new carousel design is capable of holding 30 target assemblies at a safe distance from the interaction point, with each target capable of being dialed in to position on demand. This allows for a whole day's worth of shots with the flexibility to choose any target or reference object without having to break vacuum. Here we present the design, characterisation and implementation of this new target inserter.

  4. Laser-driven Ion Acceleration using Nanodiamonds

    NASA Astrophysics Data System (ADS)

    D'Hauthuille, Luc; Nguyen, Tam; Dollar, Franklin

    2016-10-01

    Interactions of high-intensity lasers with mass-limited nanoparticles enable the generation of extremely high electric fields. These fields accelerate ions, which has applications in nuclear medicine, high brightness radiography, as well as fast ignition for inertial confinement fusion. Previous studies have been performed with ensembles of nanoparticles, but this obscures the physics of the interaction due to the wide array of variables in the interaction. The work presented here looks instead at the interactions of a high intensity short pulse laser with an isolated nanodiamond. Specifically, we studied the effect of nanoparticle size and intensity of the laser on the interaction. A novel target scheme was developed to isolate the nanodiamond. Particle-in-cell simulations were performed using the EPOCH framework to show the sheath fields and resulting energetic ion beams.

  5. On the high intensity aspects of AGS Booster proton operation

    SciTech Connect

    Reece, R.K.; Ahrens, L.A.; Bleser, E.J.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Roser, T.; Shoji, Y.; van Asselt, W.; Weng, W.T.

    1993-01-01

    Observations of high intensity effects on the proton performance of the AGS Booster are presented, including present operational limits and correction methods. The transverse emittances, optimum tune working points, damping of coherent transverse oscillations and correction of stopband resonances through third-order are discussed in addition to the observed tune spread due to space charge forces. The initial longitudinal phase space distribution, capture and acceleration parameters and measurements are also given. Operational tools and strategies relevant to the high intensity setup are mentioned.

  6. On the high intensity aspects of AGS Booster proton operation

    SciTech Connect

    Reece, R.K.; Ahrens, L.A.; Bleser, E.J.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Roser, T.; Shoji, Y.; van Asselt, W.; Weng, W.T.

    1993-06-01

    Observations of high intensity effects on the proton performance of the AGS Booster are presented, including present operational limits and correction methods. The transverse emittances, optimum tune working points, damping of coherent transverse oscillations and correction of stopband resonances through third-order are discussed in addition to the observed tune spread due to space charge forces. The initial longitudinal phase space distribution, capture and acceleration parameters and measurements are also given. Operational tools and strategies relevant to the high intensity setup are mentioned.

  7. Analysis of high intensity activity in Premier League soccer.

    PubMed

    Di Salvo, V; Gregson, W; Atkinson, G; Tordoff, P; Drust, B

    2009-03-01

    The aim of the present investigation was to provide a detailed analysis of the high intensity running activity completed by elite soccer players during match-play. A further aim of the study was to evaluate the importance of high intensity running activity to overall team success. Observations on individual match performance measures were undertaken on 563 outfield players (median of 8 games per player; range=1-57) competing in the English Premier League from 2003/2004 to 2005/2006 using a computerised tracking system (Prozone, Leeds, England). High intensity activities selected for analysis included total high intensity running distance (THIR), total sprint distance (TSD) and the number and type of sprints undertaken. Total high intensity running distance in possession and without possession of the ball was also analysed. The THIR was dependant upon playing position with wide midfield (1,049+/-106 m) and central defenders (681+/-128 m) completing the highest and lowest distance respectively (p<0.001). High intensity activity was also related to team success with teams finishing in the bottom five (919+/-128 m) and middle ten (917+/-143 m) league positions completing significantly more THIR compared with teams in the top five (885+/-113 m) (p=0.003). The THIR and TSD also significantly declined during the 2nd half with the greatest decrements observed in wide midfield and attacking players (p<0.05). Both positional differences in high intensity activity and the observed change in activity throughout the game were also influenced by team success (p<0.05). The results of the present study indicate that high intensity activity in elite soccer match-play is influenced by both playing position and previous activity in the game. These activity patterns are also dependant upon success of the team. This may indicate that overall technical and tactical effectiveness of the team rather than high levels of physical performance per se are more important in determining success

  8. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Interaction of a smoothed laser beam with supercritical-density porous targets on the ABC facility

    NASA Astrophysics Data System (ADS)

    Strangio, C.; Caruso, A.; Gus'kov, Sergei Yu; Rozanov, Vladislav B.; Rupasov, A. A.

    2006-05-01

    We present the results of experiments on the interaction of laser radiation with low-density porous targets performed on the ABC facility at the ENEA Research Centre (Frascati, Italy). Porous plastic targets with densities of 5 and 20 mg cm-3 were irradiated by a focused neodymium-laser beam at the fundamental frequency (λ = 1.054 μm) at a radiation intensity of 1013 W cm-2 at the target. The beam was preliminarily allowed to pass through an optical system intended to spatially smooth the radiation intensity over the beam cross section. The use a smoothed beam was important to discover in the plasma and in the accelerated dense material the features related to the porous structure of the target under conditions which rule out the effect of the inhomogeneities of the heating beam itself. The spatial plasma structure in the laser beam—target interaction region and at the rear side of the target were investigated by using optical schlieren plasma photography. The time dependent transmission of the laser radiation through the target was also investigated by imaging the target in transmitted radiation to a properly masked photodiode.

  9. Measurement of the relaxation time of hot electrons in laser-solid interaction at relativistic laser intensities

    SciTech Connect

    Chen, H; Shepherd, R; Chung, H K; Dyer, G; Faenov, A; Fournier, K B; Hansen, S B; Hunter, J; Kemp, A; Pikuz, T; Ping, Y; Widmann, K; Wilks, S C; Beiersdorfer, P

    2006-08-22

    The authors have measured the relaxation time of hot electrons in short pulse laser-solid interactions using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. Employing laser intensities of 10{sup 17}, 10{sup 18}, and 10{sup 19} W/cm{sup 2}, they find increased laser coupling to hot electrons as the laser intensity becomes relativistic and thermalization of hot electrons at timescales on the order of 10 ps at all laser intensities. They propose a simple model based on collisional coupling and plasma expansion to describe the rapid relaxation of hot electrons. The agreement between the resulting K{sub {alpha}} time-history from this model with the experiments is best at highest laser intensity and less satisfactory at the two lower laser intensities.

  10. High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Green, J. S.; Robinson, A. P. L.; Booth, N.; Carroll, D. C.; Dance, R. J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Murphy, C. D.; Rusby, D.; Wilson, L.

    2014-05-01

    Bright proton beams with maximum energies of up to 30 MeV have been observed in an experiment investigating ion sheath acceleration driven by a short pulse (<50 fs) laser. The scaling of maximum proton energy and total beam energy content at ultra-high intensities of ˜1021 W cm-2 was investigated, with the interplay between target thickness and laser pre-pulse found to be a key factor. While the maximum proton energies observed were maximised for μm-thick targets, the total proton energy content was seen to peak for thinner, 500 nm, foils. The total proton beam energy reached up to 440 mJ (a conversion efficiency of 4%), marking a significant step forward for many laser-driven ion applications. The experimental results are supported by hydrodynamic and particle-in-cell simulations.

  11. High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions

    SciTech Connect

    Green, J. S. Robinson, A. P. L.; Booth, N.; Carroll, D. C.; Rusby, D.; Wilson, L.; Dance, R. J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Murphy, C. D.

    2014-05-26

    Bright proton beams with maximum energies of up to 30 MeV have been observed in an experiment investigating ion sheath acceleration driven by a short pulse (<50 fs) laser. The scaling of maximum proton energy and total beam energy content at ultra-high intensities of ∼10{sup 21} W cm{sup −2} was investigated, with the interplay between target thickness and laser pre-pulse found to be a key factor. While the maximum proton energies observed were maximised for μm-thick targets, the total proton energy content was seen to peak for thinner, 500 nm, foils. The total proton beam energy reached up to 440 mJ (a conversion efficiency of 4%), marking a significant step forward for many laser-driven ion applications. The experimental results are supported by hydrodynamic and particle-in-cell simulations.

  12. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Laser acceleration of electrons in vacuum up to energies of ~ 109 eV

    NASA Astrophysics Data System (ADS)

    Bahari, A.; Taranukhin, Vladimir D.

    2004-02-01

    A new mechanism of laser acceleration of charged particles is investigated in detail. Upon irradiation by tightly focused high-intensity ultrashort laser pulses, the acceleration of electrons travelling along the laser beam axis is determined by the longitudinal ponderomotive force and the longitudinal component of the electric field of the laser wave. It is found that the action of the longitudinal field on an electron may be unidirectional during many optical cycles, i.e., the phase slip effect is overcome. Lasers with currently highest possible parameters are shown to enable electron acceleration up to energies ɛ ~ 1 GeV, which is comparable to the energies attainable on `large' accelerators of the SLAC type (ɛ ~ 30 — 50 GeV). Unlike the schemes considered in the literature, the acceleration in this case is insensitive to the initial field phase (the effect of electron bunching is absent), it is possible to accelerate slow (nonrelativistic) electrons, and the problem of accelerated electron extraction from the field does not exist.

  13. Clinical applications of high-intensity focused ultrasound.

    PubMed

    She, W H; Cheung, T T; Jenkins, C R; Irwin, M G

    2016-08-01

    Ultrasound has been developed for therapeutic use in addition to its diagnostic ability. The use of focused ultrasound energy can offer a non-invasive method for tissue ablation, and can therefore be used to treat various solid tumours. High-intensity focused ultrasound is being increasingly used in the treatment of both primary and metastatic tumours as these can be precisely located for ablation. It has been shown to be particularly useful in the treatment of uterine fibroids, and various solid tumours including those of the pancreas and liver. High-intensity focused ultrasound is a valid treatment option for liver tumours in patients with significant medical co-morbidity who are at high risk for surgery or who have relatively poor liver function that may preclude hepatectomy. It has also been used as a form of bridging therapy while patients awaiting cadaveric donor liver transplantation. In this article, we outline the principles of high-intensity focused ultrasound and its clinical applications, including the management protocol development in the treatment of hepatocellular carcinoma in Hong Kong by performing a search on MEDLINE (OVID), EMBASE, and PubMed. The search of these databases ranged from the date of their establishment until December 2015. The search terms used were: high-intensity focused ultrasound, ultrasound, magnetic resonance imaging, liver tumour, hepatocellular carcinoma, pancreas, renal cell carcinoma, prostate cancer, breast cancer, fibroids, bone tumour, atrial fibrillation, glaucoma, Parkinson's disease, essential tremor, and neuropathic pain.

  14. Reuse Recycler: High Intensity Proton Stacking at Fermilab

    SciTech Connect

    Adamson, P.

    2016-07-17

    After a successful career as an antiproton storage and cooling ring, Recycler has been converted to a high intensity proton stacker for the Main Injector. We discuss the commissioning and operation of the Recycler in this new role, and the progress towards the 700 kW design goal.

  15. High-Intensity Interval Training for Improving Postprandial Hyperglycemia

    ERIC Educational Resources Information Center

    Little, Jonathan P.; Francois, Monique E.

    2014-01-01

    High-intensity interval training (HIIT) has garnered attention in recent years as a time-efficient exercise option for improving cardiovascular and metabolic health. New research demonstrates that HIIT may be particularly effective for improving postprandial hyperglycemia in individuals with, or at risk for, type 2 diabetes (T2D). These findings…

  16. High-intensity and resistance training and elite young athletes.

    PubMed

    Ratel, Sébastien

    2011-01-01

    Although in the past resistance and high-intensity exercise training among young children was the subject of numerous controversies, it is now well-documented that this training mode is a safe and effective means of developing maximal strength, maximal power output and athletic performance in youth, provided that exercises are performed with appropriate supervision and precautions. Muscular strength and power output values measured from vertical jump and Wingate anaerobic tests are higher in elite than in non-elite young athletes and normal children, and the specific training effects on maximal power output normalised for body size are clearly more distinct before puberty. At present, there is no scientific evidence to support the view that high-intensity and/or resistance training might hinder growth and maturation in young children. Pre-pubertal growth is not adversely affected by sport at a competitive level and anthropometric factors are of importance for choice of sport in children. However, coaches, teachers and parents should be aware that unsupervised high-intensity and resistance training programmes involving maximal loads or too frequently repeated resistance exercises increase the risk of injury. Resistance training alone is an effective additional means of developing athletic performance throughout planned youth sports training programmes. Strategies for enhancing the effectiveness and safety of youth resistance and high-intensity exercise training are discussed in this chapter.

  17. Drift tube suspension for high intensity linear accelerators

    DOEpatents

    Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

    1980-03-11

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  18. Drift tube suspension for high intensity linear accelerators

    DOEpatents

    Liska, Donald J.; Schamaun, Roger G.; Clark, Donald C.; Potter, R. Christopher; Frank, Joseph A.

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  19. High Intensity Pressure Noise Transmission in Human Ear: A Three Dimensional Simulation Study

    NASA Astrophysics Data System (ADS)

    Hawa, Takumi; Gan, Rong; Leckness, Kegan

    2015-03-01

    High intensity pressure noise generated by explosions and jet engines causes auditory damage and hearing loss of the military service personals, which are the most common disabilities in the veterans. Authors have investigated the high intensity pressure noise transmission from the ear canal to middle ear cavity. A fluid-structure interaction with a viscoelastic model for the tympanic membrane (TM) as well as the ossicular chain has been considered in the study. For the high intensity pressure simulation the geometry of the ear was based on a 3D finite element (FE) model of the human ear reported by Gan et al. (Ann Biomed Eng 2004). The model consists of the ear canal, TM, ossicular chain, and the middle ear cavity. The numerical approach includes two steps: 1) FE based finite-volume method simulation to compute pressure distributions in the ear canal and the middle ear cavity using CFX; and 2) FE modeling of TM and middle ear ossicles in response to high intensity sound using multi-physics analysis in ANSYS. The simulations provide the displacement of the TM/ossicular chain and the pressure fields in the ear canal and the middle ear cavity. These results are compared with human temporal bone experimental data obtained in our group. This work was supported by DOD W81XWH-14-1-0228.

  20. Simulation study on thermal effect of long pulse laser interaction with CFRP material

    NASA Astrophysics Data System (ADS)

    Ma, Yao; Jin, Guangyong; Yuan, Boshi

    2016-10-01

    Laser machining is one of most widely used technologies nowadays and becoming a hot industry as well. At the same time, many kinds of carbon fiber material have been used in different area, such as sports products, transportation, microelectronic industry and so on. Moreover, there is lack of the combination research on the laser interaction with Carbon Fiber Reinforced Polymer (CFRP) material with simulation method. In this paper, the temperature status of long pulse laser interaction with CFRP will be simulated and discussed. Firstly, a laser thermal damage model has been built considering the heat conduction theory and thermal-elasto-plastic theory. Then using COMSOL Multiphysics software to build the geometric model and to simulate the mathematic results. Secondly, the functions of long pulse laser interaction with CFRP has been introduced. Material surface temperature increased by time during the laser irradiating time and the increasing speed is faster when the laser fluence is higher. Furthermore, the peak temperature of the center of material surface is increasing by enhanced the laser fluence when the pulse length is a constant value. In this condition, both the ablation depth and the Heat Affected Zone(HAZ) is larger when increased laser fluence. When keep the laser fluence as a constant value, the laser with shorter pulse length is more easier to make the CFRP to the vaporization material. Meanwhile, the HAZ is becoming larger when the pulse length is longer, and the thermal effect depth is as the same trend as the HAZ. As a result, when long pulse laser interaction with CFRP material, the thermal effect is the significant value to analysis the process, which is mostly effect by laser fluence and pulse length. For laser machining in different industries, the laser parameter choose should be different. The shorter pulse length laser is suitable for the laser machining which requires high accuracy, and the longer one is better for the deeper or larger

  1. Film-substrate hydrodynamic interaction initiated by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Khokhlov, V. A.; Inogamov, N. A.; Zhakhovsky, V. V.; Ilnitsky, D. K.; Migdal, K. P.; Shepelev, V. V.

    2017-01-01

    Action of an ultrashort single laser pulse onto a thin metal film is considered. Disruption of a plane freestanding film quickly heated by a laser is the simplest model of the laser thermomechanical spallation. There is a sharp spallation (ablation) threshold Fabl dividing dynamics of a freestanding film to two regimes: below or above the threshold Fabl. Problem of significant importance is: how this picture will change when a film is deposited onto a substrate? We have solved this problem. It is found that there are two thresholds Fdelam < F < Fabl and the four regimes of motion relative to the case of a freestanding film. For the range of fluences 0 < F < Fdelam a film oscillates remaining on a substrate. Oscillations decay in time due to irradiation of the sonic waves into substrate. For Fdelam < F < Fabl + ΔF the film delaminates from the substrate because negative pressure (tensile stress) propagating from the vacuum boundary with the rarefaction acoustic wave achieves the film-substrate contact boundary and overcomes adhesion strength of a contact. The addition ΔF to the freestanding case is small in the case when the ratio η of the acoustic impedances of substrate to a film is small. This is the case of the gold or silver films on a glass. The third is the complicated regime with interacting delamination and spallation processes when F ≈ Fabl + ΔF. In the fourth regime Fabl + ΔF < F there is the disruption of a film into two halves. The external half flies away while the internal one remains on substrate.

  2. Electromagnetic Pulses Generated From Laser Target Interactions at Shenguang II Laser Facility

    NASA Astrophysics Data System (ADS)

    Yang, Jinwen; Li, Tingshuai; Yi, Tao; Wang, Chuanke; Yang, Ming; Yang, Weiming; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun

    2016-10-01

    Significant electromagnetic pulses (EMP) can be generated by the intensive laser irradiating solid targets in inertial confinement fusion (ICF). To evaluate the EMP intensity and distribution in and outside the laser chamber, we designed and fabricated a discone antenna with ultra-wide bands of over 10 GHz. The return loss (S11 parameter) of this antenna was below -10 dB and could even achieve under -30 dB at 3.1 GHz. The EMP intensity in this study at 80 cm and 40 cm away from the target chamber center (TCC) reached 400 kV/m and 2000 kV/m. The current results are expected to offer preliminary information to study physics regarding laser plasma interactions and will also lay experimental foundation for EMI shielding design to protect various diagnostics. supported by the Fundamental Research Funds for the Central Universities of China (No. ZYGX2015J108) and National Natural Science Foundation of China (Nos. 11575166 and 51581140)

  3. Coupling between electron plasma waves in laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Everett, M. J.; Lal, A.; Clayton, C. E.; Mori, W. B.; Joshi, C.; Johnston, T. W.

    1996-05-01

    A Lagrangian fluid model (cold plasma, fixed ions) is developed for analyzing the coupling between electron plasma waves. This model shows that a small wave number electron plasma wave (ω2,k2) will strongly affect a large wave number electron plasma wave (ω1,k1), transferring its energy into daughter waves or sidebands at (ω1+nω2,k1+nk2) in the lab frame. The accuracy of the model is checked via particle-in-cell simulations, which confirm that the energy in the mode at (ω1,k1) can be completely transferred to the sidebands at (ω1+nω2,k1+nk2) by the presence of the electron plasma mode at (ω2,k2). Conclusive experimental evidence for the generation of daughter waves via this coupling is then presented using time- and wave number-resolved spectra of the light from a probe laser coherently Thomson scattered by the electron plasma waves generated by the interaction of a two-frequency CO2 laser with a plasma.

  4. Mono-Energetic Beams from Laser Plasma Interactions

    SciTech Connect

    Geddes, C.G.R.; Esarey, E.; Leemans, W.P.; Schroeder, C.B.; Toth,Cs.; van Tilborg, J.; Cary, John R.; Bruhwiler, David L.; Nieter, Chet

    2005-05-09

    A laser driven wakefield accelerator has been tuned to produce high energy electron bunches with low emittance and energy spread by extending the interaction length using a plasma channel. Wakefield accelerators support gradients thousands of times those achievable in RF accelerators, but short acceleration distance, limited by diffraction, has resulted in low energy beams with 100 percent electron energy spread. In the present experiments on the L'OASIS laser, the relativistically intense drive pulse was guided over 10 diffraction ranges by a plasma channel. At a drive pulse power of 9 TW, electrons were trapped from the plasma and beams of percent energy spread containing > 200 pC charge above 80 MeV and with normalized emittance estimated at< 2pi-mm-mrad were produced. Data and simulations (VORPAL code) show the high quality bunch was formed when beam loading turned off injection after initial trapping, and when the particles were extracted as they dephased from the wake. Up to 4TW was guided without trapping, potentially providing a platform for controlled injection. The plasma channel technique forms the basis of a new class of accelerators, with high gradients and high beam quality.

  5. Contrasting the beam interaction characteristics of selected lasers with a partially stabilized zirconia bio-ceramic

    NASA Astrophysics Data System (ADS)

    Lawrence, J.

    2002-08-01

    Differences in the beam interaction characteristics of a CO2 laser, a Nd : YAG laser, a high power diode laser (HPDL) and an excimer laser with a partially stabilized zirconia bio-ceramic have been studied. A derivative of Beer-Lambert's law was applied and the laser beam absorption lengths of the four lasers were calculated as 33.55×10-3 cm for the CO2 laser, 18.22×10-3 cm for the Nd : YAG laser, 17.17×10-3 cm for the HPDL and 8.41×10-6 cm for the excimer laser. It was determined graphically that the fluence threshold values at which significant material removal was effected by the CO2 laser, the Nd : YAG laser, the HPDL and the excimer laser were 52 J cm-2, 97 J cm-2, 115 J cm-2 and 0.48 J cm-2, respectively. The thermal loading value for the CO2 laser, the Nd : YAG laser, the HPDL and the excimer laser were calculated as being 1.55 kJ cm-3, 5.32 kJ cm3, 6.69 kJ cm-3 and 57.04 kJ cm-3, respectively.

  6. Silicone rubber curing by high intensity infrared radiation

    SciTech Connect

    Huang, T.; Tsai, J.; Cherng, C.; Chen, J.

    1994-08-10

    A high-intensity (12 kW) and compact (80 cm) infrared heating oven for fast curing (12 seconds) of tube-like silicone rubber curing studies is reported. Quality inspection by DSC and DMA and results from pilot-scale curing oven all suggest that infrared heating provides a better way of vulcanization regarding to curing time, quality, cost, and spacing over conventional hot air heating. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  7. Silicone rubber curing by high intensity infrared radiation

    NASA Astrophysics Data System (ADS)

    Huang, Tung-Way; Tsai, Jen-Hui; Cherng, Chung-Pin; Chen, Jan-Ku

    1994-08-01

    A high-intensity (12 kW) and compact (80 cm) infrared heating oven for fast curing (12 seconds) of tube-like silicone rubber curing studies is reported. Quality inspection by DSC and DMA and results from pilot-scale curing oven all suggest that infrared heating provides a better way of vulcanization regarding to curing time, quality, cost, and spacing over conventional hot air heating.

  8. Spallation neutron source and other high intensity froton sources

    SciTech Connect

    Weiren Chou

    2003-02-06

    This lecture is an introduction to the design of a spallation neutron source and other high intensity proton sources. It discusses two different approaches: linac-based and synchrotron-based. The requirements and design concepts of each approach are presented. The advantages and disadvantages are compared. A brief review of existing machines and those under construction and proposed is also given. An R&D program is included in an appendix.

  9. PULSED POWER APPLICATIONS IN HIGH INTENSITY PROTON RINGS.

    SciTech Connect

    ZHANG, S.Y.; SANDBERG, J.; ET AL.

    2005-05-16

    Pulsed power technology has been applied in particle accelerators and storage rings for over four decades. It is most commonly used in injection, extraction, beam manipulation, source, and focusing systems. These systems belong to the class of repetitive pulsed power. In this presentation, we review and discuss the history, present status, and future challenge of pulsed power applications in high intensity proton accelerators and storage rings.

  10. Ion source and injection line for high intensity medical cyclotron

    SciTech Connect

    Jia, XianLu Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  11. Impurity and defect interactions during laser thermal annealing in Ge

    SciTech Connect

    Milazzo, R. De Salvador, D.; Carnera, A.; Napolitani, E.; Impellizzeri, G.; Privitera, V.; Piccinotti, D.; La Magna, A.; Fortunato, G.; Portavoce, A.; Mangelinck, D.

    2016-01-28

    The microscopic mechanisms involving dopants, contaminants, and defects in Ge during pulsed melting laser thermal annealing (LTA) are investigated in detail. Samples both un-implanted and implanted with As or B are processed by LTA as well as characterized in terms of chemical (1D and 3D), electrical, and strain profiling. The clustering of As is directly measured by 3D chemical profiling and correlated with its partial electrical activation along with a reduction of the lattice strain induced by As atoms. A semi-quantitative microscopic model involving the interaction with mobile As-vacancy (AsV) complexes is proposed to describe the clustering mechanism. Boron is shown to follow different clustering behavior that changes with depth and marked by completely different strain levels. Oxygen penetrates from the surface into all the samples as a result of LTA and, only in un-implanted Ge, it occupies an interstitial position inducing also positive strain in the lattice. On the contrary, data suggest that the presence of As or B forces O to assume different configurations with negligible strain, through O-V or O-B interactions for the two dopant species, respectively. These data suggest that LTA does not inject a significant amount of vacancies in Ge, at variance with Si, unless As atoms or possibly other n-type dopants are present. These results have to be carefully considered for modeling the LTA process in Ge and its implementation in technology.

  12. Muscle fatigue during high-intensity exercise in children.

    PubMed

    Ratel, Sébastien; Duché, Pascale; Williams, Craig A

    2006-01-01

    Children are able to resist fatigue better than adults during one or several repeated high-intensity exercise bouts. This finding has been reported by measuring mechanical force or power output profiles during sustained isometric maximal contractions or repeated bouts of high-intensity dynamic exercises. The ability of children to better maintain performance during repeated high-intensity exercise bouts could be related to their lower level of fatigue during exercise and/or faster recovery following exercise. This may be explained by muscle characteristics of children, which are quantitatively and qualitatively different to those of adults. Children have less muscle mass than adults and hence, generate lower absolute power during high-intensity exercise. Some researchers also showed that children were equipped better for oxidative than glycolytic pathways during exercise, which would lead to a lower accumulation of muscle by-products. Furthermore, some reports indicated that the lower ability of children to activate their type II muscle fibres would also explain their greater resistance to fatigue during sustained maximal contractions. The lower accumulation of muscle by-products observed in children may be suggestive of a reduced metabolic signal, which induces lower ratings of perceived exertion. Factors such as faster phosphocreatine resynthesis, greater oxidative capacity, better acid-base regulation, faster readjustment of initial cardiorespiratory parameters and higher removal of metabolic by-products in children could also explain their faster recovery following high-intensity exercise.From a clinical point of view, muscle fatigue profiles are different between healthy children and children with muscle and metabolic diseases. Studies of dystrophic muscles in children indicated contradictory findings of changes in contractile properties and the muscle fatigability. Some have found that the muscle of boys with Duchenne muscular dystrophy (DMD) fatigued less

  13. Four-color laser irradiation system for laser-plasma interaction experiments

    SciTech Connect

    Pennington, D.M.; Henesian, M.A.; Wilcox, R.B.

    1996-06-01

    Since 1986, optical smoothing of the laser irradiance on targets for Inertial Confinement Fusion (ICF) has gained increasing attention. Optical smoothing can significantly reduce wavefront aberrations that produce nonuniformities in the energy distribution of the focal spot. Hot spots in the laser irradiance can induce local self focusing of the light, producing filamentation of the plasma. Filamentation can have detrimental consequences on the hydrodynamics of an ICF plasma, and can affect the growth of parametric instabilities, as well as add to the complexity of the study of such instabilities as stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS). As experiments approach and exceed breakeven (i.e., where driver energy = fusion yield), the likelihood of significant excitation of these processes increases. As a result, the authors are including a scheme for implementing optical-beam smoothing for target experiments in the baseline design for the proposed next-generation ICF facility--the National Ignition Facility (NIF). To verify the efficacy of this design for the suppression of parametric instabilites in NIF-like indirect-drive targets, the authors successfully modified a Nova beamline to simulate the proposed NIF conditions. In this article, they discuss the laser science associated with a four-color target campaign on Nova to test the effect of f-number (ratio of focal length to beam diameter) and temporal smoothing on the scaling of SBS with a four-segment interaction beam using NIF-like parameters. The results of the target series associated with the four-color configuration are discussed elsewhere.

  14. A Theory of Interaction Mechanism between Laser Beam and Paper Material

    NASA Astrophysics Data System (ADS)

    Piili, Heidi

    Paper making and converting industry in Europe is suffering from transfer of basic manufacturing to fast-growing economies, such as China and Brazil. Pulp and paper production volume in Finland, Sweden and France was the same in 2011 as it was in 2000. Meanwhile China has tripled its volume and Brazil doubled. This is a situation where innovative solutions for papermaking and converting industry are needed. Laser can be solution for this, as it is fast, flexible, accurate and reliable. Before industrial application, characteristics of laser beam and paper material interaction has to be understood. When this fundamental knowledge is known, new innovations can be created. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. This study was executed by treating dried kraft pulp (grammage 67 g m-2) with different laser power levels, focal point settings and interaction time. Laser equipment was TRUMPF TLF HQ2700 CO2 laser (wavelength 10.6 μm). Interaction between laser beam and dried kraft pulp was detected with multi-monitoring system (MMS), which consisted of spectrometer, pyrometer and active illumination imaging system. There is two different dominating mechanisms in interaction between laser beam and paper material. Furthermore, it was noticed that there is different interaction phases within these two interaction mechanisms. These interaction phases appear as function of time and as function of peak intensity of laser beam. Limit peak intensity divides interaction mechanism from one-phase interaction into dual-phase interaction.

  15. INTERACTION OF LASER RADIATION WITH MATTER: Influence of a target on operation of a pulsed CO2 laser emitting microsecond pulses

    NASA Astrophysics Data System (ADS)

    Baranov, V. Yu; Dolgov, V. A.; Malyuta, D. D.; Mezhevov, V. S.; Semak, V. V.

    1987-12-01

    The profile of pulses emitted by a TEA CO2 laser with an unstable resonator changed as a result of interaction of laser radiation with the surface of a metal in the presence of a breakdown plasma. This influence of a target on laser operation and its possible applications in laser processing of materials are analyzed.

  16. Inverse Bremsstrahlung Heating in Laser-Matter Interactions: the effects of other particles

    NASA Astrophysics Data System (ADS)

    Pandit, Rishi; Sentoku, Yasuhiko; Ackad, Edward

    2016-10-01

    The laser-matter interaction of inverse bremsstrahlung heating is studied via a particle in cell code, PICLS and via molecular dynamics code, MD. Inverse bremsstrahlung heating, an important process in the laser-matter interaction, involves three different kinds of interactions, i)the interaction of the electrons with the external laser field, ii) the electron-ion interaction and iii) the electron-electron interaction. In the interaction of atomic clusters with femtosecond laser pulses, nanoplasmas with high density are created. A new scaling for the rate of energy absorption in inverse bremsstrahlung heating has been derived which depends on the external laser field as well as electric field due to the other particles. Electric fields due to the particles depend on a parameter, the potential depth. Thus, inverse bremsstrahlung heating also depends on potential depth. We will discuss the particle in cell code results and molecular dynamics code results by varying laser intensities and potential depths to understand the effect of potential depth as well as the particle's field's dependence of inverse bremsstrahlung heating in laser-matter interaction. This work was supported by Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0247.

  17. Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction.

    PubMed

    Wang, H Y; Lin, C; Liu, B; Sheng, Z M; Lu, H Y; Ma, W J; Bin, J H; Schreiber, J; He, X T; Chen, J E; Zepf, M; Yan, X Q

    2014-01-01

    A three-stage heavy ion acceleration scheme for generation of high-energy quasimonoenergetic heavy ion beams is investigated using two-dimensional particle-in-cell simulation and analytical modeling. The scheme is based on the interaction of an intense linearly polarized laser pulse with a compound two-layer target (a front heavy ion layer + a second light ion layer). We identify that, under appropriate conditions, the heavy ions preaccelerated by a two-stage acceleration process in the front layer can be injected into the light ion shock wave in the second layer for a further third-stage acceleration. These injected heavy ions are not influenced by the screening effect from the light ions, and an isolated high-energy heavy ion beam with relatively low-energy spread is thus formed. Two-dimensional particle-in-cell simulations show that ∼100MeV/u quasimonoenergetic Fe24+ beams can be obtained by linearly polarized laser pulses at intensities of 1.1×1021W/cm2.

  18. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA Generation of an electric signal in the interaction of HF-laser radiation with bottom surface of a water column

    NASA Astrophysics Data System (ADS)

    Andreev, Stepan N.; Kazantsev, S. Yu; Kononov, I. G.; Pashinin, Pavel P.; Firsov, K. N.

    2010-10-01

    Generation of an electrical signal (ES) is experimentally investigated in the interaction of the pulse of a non-chain electric-discharge HF laser with the bottom surface of a water column. It was found that the ES amplitude is influenced by thin water layers (water contacts) present in the system under study, which undergo mechanical action in the process of water column movement initiated by the laser. Approximately ten-fold increase in the ES amplitude is observed if the water layer is present in the gap between the end of the water cell and surface of the quartz plate covering the cell and having a contact with the top water column boundary, as compared to the case of the free top boundary. Possible reasons for the thin water layer influence on ES characteristics and for the mechanism for the second ES peak origin in collapsing of the vapour cavity produced during water volume explosive boiling under the laser radiation are qualitatively discussed.

  19. Few-cycle optical probe-pulse for investigation of relativistic laser-plasma interactions

    SciTech Connect

    Schwab, M. B.; Sävert, A.; Polz, J.; Schnell, M.; Rinck, T.; Möller, M.; Hansinger, P.; Jäckel, O.; Paulus, G. G.; Kaluza, M. C.; Veisz, L.

    2013-11-04

    The development of a few-cycle optical probe-pulse for the investigation of laser-plasma interactions driven by a Ti:sapphire, 30 Terawatt (TW) laser system is described. The probe is seeded by a fraction of the driving laser's energy and is spectrally broadened via self-phase modulation in a hollow core fiber filled with a rare gas, then temporally compressed to a few optical cycles via chirped mirrors. Shadowgrams of the laser-driven plasma wave created in relativistic electron acceleration experiments are presented with few-fs temporal resolution, which is shown to be independent of post-interaction spectral filtering of the probe-beam.

  20. Thermal Blooming and Air Breakdown Interaction for Pulsed High Energy Lasers,

    DTIC Science & Technology

    1978-06-01

    illustrates the exoerimental arrangement. A single shot Lumonics 602A CO2 Transversely Excited Atmospheric (TEA) laser beam, 45 3 energy output, with...BREAKDOWN INTERACTION (~~~~ Jf~fl fl~~~~ThFOR PULSED HIGH ENERGY LASERS fl ~~~~~~~~~~~~~~~~~ ~,; JUN~~~ U JUL 12 1918 j ’ *~OBERF $ / I~QHDE,~~~ RUDOLF G... Laser pulse transmission as related to Army high energy laser systems involves many interacting effects which generally degrade the performance of the

  1. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Composition and dynamics of an erosion plasma produced by microsecond laser pulses

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Grishina, V. G.; Derkach, O. N.; Sebrant, A. Yu; Stepanova, M. A.

    1995-08-01

    The ion and energy compositions were determined and the dynamics was studied of an erosion plume formed by microsecond CO2 laser pulses incident on a graphite target. The ionic emission lines were used to find the electron density and temperature of the plasma on the target surface. The temperature of the plasma source did not change throughout the line emission time (4 μs). At the plasma recombination stage the lines of the C II, C III, and C IV ions were accompanied by bands of the C2 molecule near the target surface and also near the surface of an substrate when a plasma flow interacted with it. Ways were found for controlling the plume expansion anisotropy and for producing plasma flows with controlled parameters by selection of the conditions during formation of a quasisteady erosion plasma flow.

  2. High-intensity tone generation by aeroacoustic sources

    NASA Technical Reports Server (NTRS)

    Shakkottai, P.; Kwack, E. Y.; Cho, Y. I.; Back, L. H.

    1987-01-01

    An experimental investigation has been carried out on the production of high-intensity tones by axisymmetric ring cavities. Maximum sound production occurs during an acoustic resonance at Strouhal numbers, which depend only on the local flow velocity independent of cavity location. Values of sound pressure of about 115 dB at 1-m distance can be generated by axisymmetric ring cavities on projectiles moving at a relatively low flight speed equal to 70 m/s. Frequencies in the audible range up to several kilohertz can be generated aeroacoustically. A simple analytical model has been developed to explain the experimental observations.

  3. Fast damping in mismatched high intensity beam transportation

    NASA Astrophysics Data System (ADS)

    Variale, V.

    2001-08-01

    A very fast damping of beam envelope oscillation amplitudes was recently observed in simulations of high intensity beam transport, through periodic FODO cells, in mismatched conditions [V. Variale, Nuovo Cimento Soc. Ital. Fis. 112A, 1571-1582 (1999) and T. Clauser et al., in Proceedings of the Particle Accelerator Conference, New York, 1999 (IEEE, Piscataway, NJ, 1999), p. 1779]. A Landau damping mechanism was proposed at the origin of observed effect. In this paper, to further investigate the source of this fast damping, extensive simulations have been carried out. The results presented here support the interpretation of the mechanism at the origin of the fast damping as a Landau damping effect.

  4. Survey of proposed high intensity accelerators and their applications

    SciTech Connect

    Schriber, S.O.

    1994-09-01

    Many interesting applications are being considered for high intensity accelerators. Implications of the technology developments that are enhancing these opportunities, or making them possible, will be covered in context of the applications. Applications include those for research (in areas such as material science, biological sciences, nuclear and high energy physics), accelerator-driven transmutation technologies, defense, and medicine. Specific examples will be used to demonstrate the impact that technology development can have and how transfer of this technology to industry can have an impact in the consumer and commercial arenas. Technology Development in rf power, controls, beam optics, rf structures, magnets, injectors, and beam halos will be considered.

  5. HELIOS: A high intensity chopper spectrometer at LANSCE

    SciTech Connect

    Mason, T.E.; Broholm, C.; Fultz, B.

    1998-12-31

    A proposal to construct a high intensity chopper spectrometer at LANSCE as part of the SPSS upgrade project is discussed. HELIOS will be optimized for science requiring high sensitivity neutron spectroscopy. This includes studies of phonon density of states in small polycrystalline samples, magnetic excitations in quantum magnets and highly correlated electron systems, as well as parametric studies (as a function of pressure, temperature, or magnetic field) of S(Q,{omega}). By employing a compact design together with the use of supermirror guide in the incident flight path the neutron flux at HELIOS will be significantly higher than any other comparable instrument now operating.

  6. The development of a high intensity dance performance fitness test.

    PubMed

    Redding, Emma; Weller, Peter; Ehrenberg, Shantel; Irvine, Sarah; Quin, Edel; Rafferty, Sonia; Wyon, Matthew; Cox, Carol

    2009-01-01

    While there is currently a validated dance-specific exercise method of measuring aerobic fitness, no such test has been developed to measure high intensity capabilities in dance. The purpose of this study was to initiate an intermittent high intensity dance-specific fitness test. The test was designed to be able to observe changes in heart rate (HR), thereby allowing for a measurement of physical fitness at high intensities. Sixteen professional dancers (4 males and 12 females) volunteered to take part in this study. The fitness test protocol consists of movements that are representative of contemporary dance, and contains exercise and rest periods that mimic the intermittent nature of dance. The participants performed four trials. The physiological variables measured were HR (b.min(-1)) for each one minute bout of the four minute test for all trials, oxygen uptake (VO(2)) throughout the test, and end blood lactate (BLa mmol.L) for each trial. In addition, five of the participants undertook a maximal oxygen uptake treadmill test, and the scores obtained were compared with those from the dance test. Results show HR consistency across each one minute bout of the test and across each of the four trials of testing for all participants, indicating that the test is reliable. There was good reliability between bouts of each trial (typical error as % of CV = 1.5), intraclass "r" = 0.8, and good reliability between the four trials (typical error as % of CV = 2.1), intraclass "r" = 0.82. There were no significant differences between the maximal VO(2) and BLa scores established in the treadmill and dance tests, demonstrating validity. Thus, the results of this study indicate that the high intensity dance-specific test is a reliable and valid means of assessing and monitoring the cardiovascular fitness of dancers. The test allows dancers to be assessed within an environment that they are accustomed to (the studio), using a mode of exercise that is relevant (dance), and it is

  7. High-intensity sound in air saturated fibrous bulk porous materials

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L., II

    1982-01-01

    The interaction high-intensity sound with bulk porous materials in porous materials including Kevlar 29 is reported. The nonlinear behavior of the materials was described by dc flow resistivity tests. Then acoustic propagation and reflection were measured and small signal broadband measurements of phase speed and attenuation were carried out. High-intensity tests were made with 1, 2, and 3 kHz tone bursts to measure harmonic generation and extra attenuation of the fundamental. Small signal standing wave tests measured impedence between 0.1 and 3.5 kHz. High level tests with single cycle tone bursts at 1 to 4 kHz show that impedance increases with intensity. A theoretical analysis is presented for high-porosity, rigid-frame, isothermal materials. One dimensional equations of motion are derived and solved by perturbation. The experiments show that there is excess attenuation of the fundamental component and in some cases a close approach to saturation. A separate theoretical model, developed to explain the excess attenuation, yields predictions that are in good agreement with the measurements. Impedance and attenuation at high intensities are modeled.

  8. Laser-to-hot-electron conversion limitations in relativistic laser matter interactions due to multi-picosecond dynamics

    DOE PAGES

    Schollmeier, Marius; Sefkow, Adam B.; Geissel, Matthias; ...

    2015-04-20

    High-energy short-pulse lasers are pushing the limits of plasma-based particle acceleration, x-ray generation, and high-harmonic generation by creating strong electromagnetic fields at the laser focus where electrons are being accelerated to relativistic velocities. Understanding the relativistic electron dynamics is key for an accurate interpretation of measurements. We present a unified and self-consistent modeling approach in quantitative agreement with measurements and differing trends across multiple target types acquired from two separate laser systems, which differ only in their nanosecond to picosecond-scale rising edge. Insights from high-fidelity modeling of laser-plasma interaction demonstrate that the ps-scale, orders of magnitude weaker rising edge ofmore » the main pulse measurably alters target evolution and relativistic electron generation compared to idealized pulse shapes. This can lead for instance to the experimentally observed difference between 45 MeV and 75 MeV maximum energy protons for two nominally identical laser shots, due to ps-scale prepulse variations. Our results indicate that the realistic inclusion of temporal laser pulse profiles in modeling efforts is required if predictive capability and extrapolation are sought for future target and laser designs or for other relativistic laser ion acceleration schemes.« less

  9. Laser-to-hot-electron conversion limitations in relativistic laser matter interactions due to multi-picosecond dynamics

    SciTech Connect

    Schollmeier, Marius; Sefkow, Adam B.; Geissel, Matthias; Arefiev, Alexey V.; Flippo, Kirk A.; Gaillard, Sandrine A.; Johnson, Randy P.; Kimmel, Mark W.; Offermann, Dustin T.; Rambo, Patrick K.; Schwarz, Jens; Shimada, Tom

    2015-04-20

    High-energy short-pulse lasers are pushing the limits of plasma-based particle acceleration, x-ray generation, and high-harmonic generation by creating strong electromagnetic fields at the laser focus where electrons are being accelerated to relativistic velocities. Understanding the relativistic electron dynamics is key for an accurate interpretation of measurements. We present a unified and self-consistent modeling approach in quantitative agreement with measurements and differing trends across multiple target types acquired from two separate laser systems, which differ only in their nanosecond to picosecond-scale rising edge. Insights from high-fidelity modeling of laser-plasma interaction demonstrate that the ps-scale, orders of magnitude weaker rising edge of the main pulse measurably alters target evolution and relativistic electron generation compared to idealized pulse shapes. This can lead for instance to the experimentally observed difference between 45 MeV and 75 MeV maximum energy protons for two nominally identical laser shots, due to ps-scale prepulse variations. Our results indicate that the realistic inclusion of temporal laser pulse profiles in modeling efforts is required if predictive capability and extrapolation are sought for future target and laser designs or for other relativistic laser ion acceleration schemes.

  10. 355, 532, and 1064 nm picosecond laser interaction with grass tissues

    NASA Astrophysics Data System (ADS)

    Kim, Jaehun; Ki, Hyungson

    2012-12-01

    In this article, we investigate how 355, 532, and 1064 nm picosecond lasers interact with grass tissues. We have identified five interaction regimes, and based on this classification, interaction maps have been constructed from a systematic experiment. The optical properties of light absorbing grass constituents are studied theoretically in order to understand how and how much light is absorbed by grass tissues. Scanning electron microscopy and optical microscopy are employed for observing morphological and structural changes of grass tissues. To the best of the authors' knowledge, this is the first investigation into laser interaction with plant leaves and reveals some fundamental findings regarding how a laser interacts with grass tissues and how plant leaves can be processed using lasers.

  11. CO2 and Er:YAG laser interaction with grass tissues

    NASA Astrophysics Data System (ADS)

    Kim, Jaehun; Ki, Hyungson

    2013-01-01

    Plant leaves are multi-component optical materials consisting of water, pigments, and dry matter, among which water is the predominant constituent. In this article, we investigate laser interaction with grass using CO2 and Er:YAG lasers theoretically and experimentally, especially targeting water in grass tissues. We have first studied the optical properties of light absorbing constituents of grass theoretically, and then have identified interaction regimes and constructed interaction maps through a systematic experiment. Using the interaction maps, we have studied how interaction regimes change as process parameters are varied. This study reveals some interesting findings concerning carbonization and ablation mechanisms, the effect of laser beam diameter, and the ablation efficiency and quality of CO2 and Er:YAG lasers.

  12. Hydrodynamic modeling of laser interaction with micro-structured targets

    SciTech Connect

    Velechovsky, Jan; Limpouch, Jiri; Liska, Richard; Tikhonchuk, Vladimir

    2016-08-03

    A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian–Eulerian hydrocode PALE. In conclusion, the numerical simulations of laser penetration into low-density foams compare favorably with published experimental data.

  13. Left ventricular mechanics and arterial-ventricular coupling following high-intensity interval exercise.

    PubMed

    Cote, Anita T; Bredin, Shannon S D; Phillips, Aaron A; Koehle, Michael S; Glier, Melissa B; Devlin, Angela M; Warburton, Darren E R

    2013-12-01

    High-intensity exercise induces marked physiological stress affecting the secretion of catecholamines. Sustained elevations in catecholamines are thought to desensitize cardiac beta receptors and may be a possible mechanism in impaired cardiac function following strenuous exercise. In addition, attenuated arterial-ventricular coupling may identify vascular mechanisms in connection with postexercise attenuations in ventricular function. Thirty-nine normally active (NA) and endurance-trained (ET) men and women completed an echocardiographic evaluation of left ventricular function before and after an acute bout of high-intensity interval exercise (15 bouts of 1:2 min work:recovery cycling: 100% peak power output and 50 W, respectively). Following exercise, time to peak twist and peak untwisting velocity were delayed (P < 0.01) but did not differ by sex or training status. Interactions for sex and condition (rest vs. exercise) were found for longitudinal diastolic strain rate (men, 1.46 ± 0.19 to 1.28 ± 0.23 s(-1) vs. women, 1.62 ± 0.25 to 1.63 ± 0.26 s(-1); P = 0.01) and arterial elastance (men 2.20 ± 0.65 to 3.24 ± 1.02 mmHg · ml(-1) · m(-2) vs. women 2.51 ± 0.61 to 2.93 ± 0.68 mmHg · ml(-1) · m(-2); P = 0.04). No cardiac variables were found associated with catecholamine levels. The change in twist mechanics was associated with baseline aortic pulse-wave velocity (r(2) = 0.27, P = 0.001). We conclude that males display greater reductions in contractility in response to high-intensity interval exercise, independent of catecholamine concentrations. Furthermore, a novel association of arterial stiffness and twist mechanics following high-intensity acute exercise illustrates the influence of vascular integrity on cardiac mechanics.

  14. Soft X-Ray Emission from Alexandrite Laser-Matter-Interaction

    DTIC Science & Technology

    1993-07-15

    34AD-A267 905 NRL/MR/6681--93-7359 Soft X-ray Emission from Alexandrite Laser-Matter-Interaction P. G. BURKHALTER Dvnamit s of Solids Branch Condensed...Soft X-ray Emission from Alexandrite Laser-Matter-Interaction 6. AUTHOR(S) P.G. Burkhalter, D.J. Harter*, E.F. Gabl**, P. Bado**, and D.A. Newman*** 7...Proscribed by ANSI Std 230-13 290-102 SOFT X-RAY EMISSION FROM ALEXANDRITE LASER-MATTER-INTERACTION Accesion For NTIS CRA&I DTIC TAB Unannounced 5

  15. Enhanced stability of nitrogen-sealed carbon nanotube saturable absorbers under high-intensity irradiation.

    PubMed

    Martinez, Amos; Fuse, Kazuyuki; Yamashita, Shinji

    2013-02-25

    Due to their broadband saturable absorption and fast response, carbon nanotubes have proven to be an excellent material for the modelocking of fiber lasers and have become a promising device for the implementation of novel laser configurations. However, it is imperative to address the issue of their long-term reliability under intense optical pulses before they can be exploited in widespread commercial applications. In this work, we study how carbon nanotubes degrade due to oxidation when exposed to high-intensity continuous-wave light and we demonstrate that by sealing the carbon nanotubes in a nitrogen gas, the damage threshold can be increased by over one order of magnitude. We then monitor over 24 hours the performance of the carbon nanotube saturable absorbers as the passive modelocking device of an erbium-doped fiber laser with intracavity powers ranging from 5 mW to 316 mW. We observe that when the carbon nanotubes are sealed in nitrogen environment, oxidation can be efficiently prevented and the laser can operate without any deterioration at intracavity powers higher than 300 mW. However, in the case where carbon nanotubes are unprotected (i.e. those directly exposed to the air in the environment), the nanotubes start to deteriorate at intracavity powers lower than 50 mW.

  16. Free-field propagation of high intensity noise

    NASA Technical Reports Server (NTRS)

    Welz, Joseph P.; Mcdaniel, Oliver H.

    1990-01-01

    Observed spectral data from supersonic jet aircraft are known to contain much more high frequency energy than can be explained by linear acoustic propagation theory. It is believed that the high frequency energy is an effect of nonlinear distortion due to the extremely high acoustic levels generated by the jet engines. The objective, to measure acoustic waveform distortion for spherically diverging high intensity noise, was reached by using an electropneumatic acoustic source capable of generating sound pressure levels in the range of 140 to 160 decibels (re 20 micro Pa). The noise spectrum was shaped to represent the spectra generated by jet engines. Two microphones were used to capture the acoustic pressure waveform at different points along the propagation path in order to provide a direct measure of the waveform distortion as well as spectral distortion. A secondary objective was to determine that the observed distortion is an acoustic effect. To do this an existing computer prediction code that deals with nonlinear acoustic propagation was used on data representative of the measured data. The results clearly demonstrate that high intensity jet noise does shift the energy in the spectrum to the higher frequencies along the propagation path. In addition, the data from the computer model are in good agreement with the measurements, thus demonstrating that the waveform distortion can be accounted for with nonlinear acoustic theory.

  17. Transcranial Clot Lysis Using High Intensity Focused Ultrasound

    NASA Astrophysics Data System (ADS)

    Hölscher, Thilo; Zadicario, Eyal; Fisher, David J.; Bradley, William G.

    2010-03-01

    Stroke is the third common cause of death worldwide. The majority of strokes are caused by sudden vessel occlusion, due to a blood clot. Vessel recanalization is the primary goal of all acute stroke treatment strategies. Initial data using ultrasound in combination with a therapeutic agent for clot lysis in stroke are promising. However, sound absorption and defocusing of the ultrasound beam occur during transskull insonation, limiting the efficiency of this approach to high extent. Using a transskull High Intensity Focused Ultrasound (HIFU) head system we were able to lyse blood clots within seconds and in absence of further lytic agents. We could show that any correction for the distortion might be negligible to focus the ultrasound beam after transskull insonation. The use of transskull HIFU for immediate clot lysis in the human brain without the need of further drugs and disregarding individual skull bone characteristics could become a successful strategy in early stroke treatment. Using magnetic resonance tomography for neuronavigation MRI Guided High Intensity Focused Ultrasound has the potential to open new avenues for therapeutic applications in the brain including Stroke, Intracranial Hemorrhages, Braintumors, Neurodegenerative Diseases, Thalamic Pain, BBB opening, and local drug delivery. First results in transcranial clot lysis will be presented in this paper.

  18. Studies on the interaction between the YAG laser and the MNOS-type CCD

    NASA Astrophysics Data System (ADS)

    Ni, Xiao-Wu; Lu, Jian

    1995-09-01

    In this paper, the interaction process of high-power Q-switched YAG laser and MNOS-type charge-coupled devices (CCD) is studied with the help of plasma shape and structure under the repeated actions of laser pulses. Mach-Zehnder interferograms of plasmas and related experimental results produced by a 1064 nm laser beam with a pulse width of 15 ns acted upon the MNOS-type CCD are obtained for the first time.

  19. Layered structure in the interaction of thin foil with two laser pulses

    SciTech Connect

    Yu, Yahong; Shen, Baifei E-mail: jill@siom.ac.cn; Yu, Wei; Wang, Wenpeng; Zhang, Xiaomei; Ji, Liangliang E-mail: jill@siom.ac.cn; Zhao, Xueyan; Wang, Xiaofeng; Yi, Longqing; Shi, Yin; Xu, Tongjun; Zhang, Lingang; Wen, Meng

    2014-02-15

    An interesting layered structure of multiple high density layers are formed when two counter-propagating circularly polarized laser pulses with the same polarization direction irradiate on an ultra-thin foil. This structure changes periodically. For light atoms most of which electrons may be fully ionized, this layered structure can keep for dozens of laser periods after the laser-foil interaction. This interesting structure may have potential applications.

  20. Interaction between pulsed infrared laser and carbon fiber reinforced polymer composite laminates

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Chi; Wu, Chen-Wu; Song, Hong-Wei; Huang, Chen-Guang

    2016-10-01

    The Laser drilling processes, in particular the interaction between the pulsed infrared Laser and the target materials were investigated on the CFRP composite laminate. The incremental freezing method was designed to reveal experimentally the temporal patterns of the ablation profiles in the CFRP composite laminates subjected to pulsed Laser irradiation. The temperature characteristics of the specimens were analyzed with Finite Element Method (FEM) and the phase change history studied. The theoretical results match well with the experimental outcome.

  1. Laser-material interaction during atom probe tomography of oxides with embedded metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Shinde, D.; Arnoldi, L.; Devaraj, A.; Vella, A.

    2016-10-01

    Oxide-supported metal nano-particles are of great interest in catalysis but also in the development of new large-spectrum-absorption materials. The design of such nano materials requires three-dimensional characterization with a high spatial resolution and elemental selectivity. The laser assisted Atom Probe Tomography (La-APT) presents both these capacities if an accurate understanding of laser-material interaction is developed. In this paper, we focus on the fundamental physics of field evaporation as a function of sample geometry, laser power, and DC electric field for Au nanoparticles embedded in MgO. By understanding the laser-material interaction through experiments and a theoretical model of heat diffusion inside the sample after the interaction with laser pulse, we point out the physical origin of the noise and determine the conditions to reduce it by more than one order of magnitude, improving the sensitivity of the La-APT for metal-dielectric composites.

  2. Fast electron beam measurements from relativistically intense, frequency-doubled laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Scott, R. H. H.; Pérez, F.; Streeter, M. J. V.; Clark, E. L.; Davies, J. R.; Schlenvoigt, H.-P.; Santos, J. J.; Hulin, S.; Lancaster, K. L.; Dorchies, F.; Fourment, C.; Vauzour, B.; Soloviev, A. A.; Baton, S. D.; Rose, S. J.; Norreys, P. A.

    2013-09-01

    Experimental measurements of the fast electron beam created by the interaction of relativistically intense, frequency-doubled laser light with planar solid targets and its subsequent transport within the target are presented and compared with those of a similar experiment using the laser fundamental frequency. Using frequency-doubled laser light, the fast electron source size is significantly reduced, while evidence suggests the divergence angle may be reduced. Pyrometric measurements of the target rear surface temperature and the Cu Kα imager data indicate the laser to fast electron absorption fraction is reduced using frequency doubled laser light. Bremsstrahlung measurements indicate the fast electron temperature is 125 keV, while the laser energy absorbed into forward-going fast electrons was found to be 16 ± 4% for frequency doubled light at a mean laser intensity of 5 ± 3 × 1018 W cm-2.

  3. Laser beam interactions with vapor plumes during Nd:YAG laser welding on aluminum

    NASA Astrophysics Data System (ADS)

    Peebles, H. C.; Russo, A. J.; Hadley, G. R.; Akau, R. L.

    Welds produced on pure aluminum targets using pulsed Nd:YAG lasers can be accurately described using a relatively simple conduction mode heat transfer model provided that the fraction of laser energy absorbed is known and the amount of metal vaporized is smalled however at laser fluences commonly used in many production welding schedules significant aluminum vaporization does occur. The possible mechanisms have been identified which could result in laser beam attenuation by the vapor plume.

  4. Applications of Ultra-Intense, Short Laser Pulses

    NASA Astrophysics Data System (ADS)

    Ledingham, Ken W. D.

    The high intensity laser production of electron, proton, ion and photon beams is reviewed particularly with respect to the laser-plasma interaction which drives the acceleration process. A number of applications for these intense short pulse beams is discussed e.g. ion therapy, PET isotope production and laser driven transmutation studies. The future for laser driven nuclear physics at the huge new, multi-petawatt proposed laser installation ELI in Bucharest is described. Many people believe this will take European nuclear research to the next level.

  5. Resonant interaction between laser and electrons undergoing betatron oscillations in the bubble regime

    NASA Astrophysics Data System (ADS)

    Curcio, Alessandro; Giulietti, Danilo; Dattoli, Giuseppe; Ferrario, Massimo

    2015-10-01

    > The betatron radiation in the bubble regime is studied in the presence of resonant interaction between the accelerated electrons and the driver laser pulse tail. The calculations refer to experimental parameters available at the FLAME laser facility at the National Laboratories of Frascati (LNF), and represent the radiation spectra and spatial distributions to be expected in forthcoming experiments.

  6. Advances in laser and tissue interactions: laser microbeams and optical trapping (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.; Makropoulou, Mersini; Papadopoulos, Dimitris; Papagiakoumou, Eirini; Pietreanu, D.

    2005-04-01

    The increasing use of lasers in biomedical research and clinical praxis leads to the development and application of new, non-invasive, therapeutic, surgical and diagnostic techniques. In laser surgery, the theory of ablation dictates that pulsed mid-infrared laser beams exhibit strong absorption by soft and hard tissues, restricting residual thermal damage to a minimum zone. Therefore, the development of high quality 3 μm lasers is considered to be an alternative for precise laser ablation of tissue. Among them are the high quality oscillator-two stages amplifier lasers developed, which will be described in this article. The beam quality delivered by these lasers to the biological tissue is of great importance in cutting and ablating operations. As the precision of the ablation is increased, the cutting laser interventions could well move to the microsurgery field. Recently, the combination of a laser scalpel with an optical trapping device, under microscopy control, is becoming increasingly important. Optical manipulation of microscopic particles by focused laser beams, is now widely used as a powerful tool for 'non-contact' micromanipulation of cells and organelles. Several laser sources are employed for trapping and varying laser powers are used in a broad range of applications of optical tweezers. For most of the lasers used, the focal spot of the trapping beam is of the order of a micron. As the trapped objects can vary in size from hundreds of nanometres to hundreds of microns, the technique has recently invaded in to the nanocosomos of genes and molecules. However, the use of optical trapping for quantitative research into biophysical processes requires accurate calculation of the optical forces and torques acting within the trap. The research and development efforts towards a mid-IR microbeam laser system, the design and realization efforts towards a visible laser trapping system and the first results obtained using a relatively new calibration method to

  7. High-Intensity Sweeteners in Alternative Tobacco Products

    PubMed Central

    Miao, Shida; Beach, Evan S.; Sommer, Toby J.; Zimmerman, Julie B.

    2016-01-01

    Introduction: Sweeteners in tobacco products may influence use initiation and reinforcement, with special appeal to adolescents. Recent analytical studies of smokeless tobacco products (snuff, snus, dissolvables) detected flavorants identical to those added to confectionary products such as hard candy and chewing gum. However, these studies did not determine the levels of sweeteners. The objective of the present study was to quantify added sweeteners in smokeless tobacco products, a dissolvable product, electronic cigarette liquids and to compare with sweetener levels in confectionary products. Methods: Sweetener content of US-sourced smokeless tobacco, electronic cigarette liquid, and confectionary product samples was analyzed by liquid chromatography-electrospray ionization–mass spectrometry (LC-ESI-MS). Results: All smokeless products contained synthetic high intensity sweeteners, with snus and dissolvables exceeding levels in confectionary products (as much as 25-fold). All snus samples contained sucralose and most also aspartame, but no saccharin. In contrast, all moist snuff samples contained saccharin. The dissolvable sample contained sucralose and sorbitol. Ethyl maltol was the most common sweet-associated component in electronic cigarette liquids. Discussion: Sweetener content was dependent on product category, with saccharin in moist snuff, an older category, sucralose added at high levels to more recently introduced products (snus, dissolvable) and ethyl maltol in electronic cigarette liquid. The very high sweetener concentrations may be necessary for the consumer to tolerate the otherwise aversive flavors of tobacco ingredients. Regulation of sweetener levels in smokeless tobacco products may be an effective measure to modify product attractiveness, initiation and use patterns. Implications: Dissolvables, snus and electronic cigarettes have been promoted as risk-mitigation products due to their relatively low content of nitrosamines and other tobacco

  8. Generation of high intensity rf pulses in the ionosphere by means of in situ compression

    SciTech Connect

    Cowley, S.C.; Perkins, F.W.; Valeo, E.J.

    1993-04-01

    We demonstrate, using a simple model, that high intensity pulses can be generated from a frequency-chirped modifier of much lower intensity by making use of the dispersive properties of the ionosphere. We show that a frequency-chirped pulse can be constructed so that its various components overtake each other at a prescribed height, resulting in large (up to one hundred times) transient intensity enhancements as compared to those achievable from a steady modifier operating at the same power. We examine briefly one possible application: the enhancement of plasma wave amplitudes which occurs as a result of the interaction of such a compressed pulse with pre-generated turbulence.

  9. Improvement of energy-conversion efficiency from laser to proton beam in a laser-foil interaction.

    PubMed

    Nodera, Y; Kawata, S; Onuma, N; Limpouch, J; Klimo, O; Kikuchi, T

    2008-10-01

    Improvement of energy-conversion efficiency from laser to proton beam is demonstrated by particle simulations in a laser-foil interaction. When an intense short-pulse laser illuminates the thin-foil target, the foil electrons are accelerated around the target by the ponderomotive force. The hot electrons generate a strong electric field, which accelerates the foil protons, and the proton beam is generated. In this paper a multihole thin-foil target is proposed in order to increase the energy-conversion efficiency from laser to protons. The multiholes transpiercing the foil target help to enhance the laser-proton energy-conversion efficiency significantly. Particle-in-cell 2.5-dimensional ( x, y, vx, vy, vz) simulations present that the total laser-proton energy-conversion efficiency becomes 9.3% for the multihole target, though the energy-conversion efficiency is 1.5% for a plain thin-foil target. The maximum proton energy is 10.0 MeV for the multihole target and is 3.14 MeV for the plain target. The transpiercing multihole target serves as a new method to increase the energy-conversion efficiency from laser to ions.

  10. High-Intensity Focused Ultrasound Treatment for Advanced Pancreatic Cancer

    PubMed Central

    Zhou, Yufeng

    2014-01-01

    Pancreatic cancer is under high mortality but has few effective treatment modalities. High-intensity focused ultrasound (HIFU) is becoming an emerging approach of noninvasively ablating solid tumor in clinics. A variety of solid tumors have been tried on thousands of patients in the last fifteen years with great success. The principle, mechanism, and clinical outcome of HIFU were introduced first. All 3022 clinical cases of HIFU treatment for the advanced pancreatic cancer alone or in combination with chemotherapy or radiotherapy in 241 published papers were reviewed and summarized for its efficacy, pain relief, clinical benefit rate, survival, Karnofsky performance scale (KPS) score, changes in tumor size, occurrence of echogenicity, serum level, diagnostic assessment of outcome, and associated complications. Immune response induced by HIFU ablation may become an effective way of cancer treatment. Comments for a better outcome and current challenges of HIFU technology are also covered. PMID:25053938

  11. Digital control of high-intensity acoustic testing

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1975-01-01

    A high intensity acoustic test system is reported that consists of a reverberation room measuring 18 feet wide by 21 feet long by 26 feet high, with an internal volume of 10,900 cubic feet. The room is rectangular in shape. Acoustic energy is supplied through two 50-Hz cutoff exponential horns about 12 feet long. Each of the two horns has two transducers rated at 4000 acoustic watts each. A gaseous nitrogen supply is used to supply the energy. The equalized electrical signal is corrected by a circuit designed to compensate for the transducer nonlinearity, then fed into one channel of a phase linear power amplifier, then into the transducer. The amplifiers have been modified to increase their reliability. The acoustic energy in the room is monitored by six B and K 1/2-inch condenser microphones. The electrical signal from each microphone is fed into a six channel real time averager to give a spatial average of the signals.

  12. Digital control of high-intensity acoustic testing

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1975-01-01

    To eliminate previous system instabilities and control high-intensity acoustic tests, a digital control vibration test system is modified by a software change. Three systems for the control of acoustic testing are compared: a hybrid digital/analog system, a digital vibration system, and the same digital vibration system modified by a software change to allow acoustic testing. It is shown that the hybrid system and the modified vibration system exhibit almost equal performance, although the hybrid system performs testing twice as fast. The development of a specialized acoustic test control system is justified since it costs far less than the general-purpose vibration control system. However, the latter is much easier to set up for a test, which is important in preventing overtesting of valuable spacecraft components.

  13. High Intensity Interval Training For Maximizing Health Outcomes.

    PubMed

    Karlsen, Trine; Aamot, Inger-Lise; Haykowsky, Mark; Rognmo, Øivind

    2017-04-03

    Regular physical activity or exercise training are important actions to improve cardiorespiratory fitness and maintain health throughout life. There is solid evidence that exercise is an effective preventative strategy against at least 25 medical conditions, including cardiovascular disease, stroke, hypertension, colon and breast cancer, and type 2 diabetes. Traditionally, endurance exercise training (ET) to improve health related outcomes has consisted of low- to moderate ET intensity. However, a growing body of evidence suggests that higher exercise intensities may be superior to moderate intensity for maximizing health outcomes. The primary objective of this review is to discuss how aerobic high-intensity interval training (HIIT) as compared to moderate continuous training may maximize outcomes, and to provide practical advices for successful clinical and home-based HIIT.

  14. Optimal conditions for tissue perforation using high intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Mochizuki, Takashi; Kihara, Taizo; Ogawa, Kouji; Tanabe, Ryoko; Yosizawa, Shin; Umemura, Shin-ichiro; Kakimoto, Takashi; Yamashita, Hiromasa; Chiba, Toshio

    2012-10-01

    To perforate tissue lying deep part in body, a large size transducer was assembled by combining four spherical-shaped transducers, and the optimal conditions for tissue perforation have studied using ventricle muscle of chicken as a target. The ex vivo experiments showed that ventricle muscle was successfully perforated both when it was exposed to High Intensity Focused Ultrasound (HIFU) directly and when it was exposed to HIFU through atrial muscle layer. Moreover, it was shown that calculated acoustic power distributions are well similar to the perforation patterns, and that the acoustic energy distributes very complexly near the focus. Lastly, perforation on the living rabbit bladder wall was demonstrated as a preliminary in vivo experiment.

  15. Superheavy Elements Production in High Intensive Neutron Fluxes

    NASA Astrophysics Data System (ADS)

    Lutostansky, Yu. S.; Lyashuk, V. I.; Panov, I. V.

    2013-06-01

    The possibility of superheavy elements production in high intensive neutron fluxes is being studied. A model of the transuranium isotopes production under conditions of pulse nucleosynthesis in a neutron flux with densities of up to ~1025 neutron/cm2 is considered. The pulse process allows us to divide it in time into two stages: the process of multiple neutron captures (with t < 10-6 s) and the subsequent β-decay of neutron-rich nuclei. The modeling of the transuranium yields takes into account the adiabatic character of the process, the probability of delayed fission, and the emission of delayed neutrons. A target with a binary composition of 238U and 239Pu, 248Cm, and 251Cf isotopes is used to predict the yields of heavy and superheavy isotopes.

  16. Fermilab main injector: High intensity operation and beam loss control

    NASA Astrophysics Data System (ADS)

    Brown, Bruce C.; Adamson, Philip; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K.; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen

    2013-07-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  17. Comparison of Two High Intensity Acoustic Test Facilities

    NASA Astrophysics Data System (ADS)

    Launay, A.; Tadao Sakita, M.; Kim, Youngkey K.

    2004-08-01

    In two different countries, at the same period of time, the institutes in charge of the development of space activities have decided to extend their satellite integration and test center, and to implement a reverberant acoustic chamber. In Brazil the INPE laboratory (LIT : Laboratorio de Integracao e Testes) and in South Korea the KARI laboratory (SITC : Satellite Integration and Test Center) started their projects in July 2000 for the RATF (Reverberant Acoustic Test Facility) and in May 2001 for the HIAC (High Intensity Acoustic Chamber) respectively, writing the technical specifications. The kick-off meetings took place in December 2000 and in February 2002 and the opening ceremonies in December 19, 2002 in Brazil and in August 22, 2003 in Korea. This paper compares the two projects in terms of design choices, manufacturing processes, equipment installed and technical final characteristics.

  18. Increased collection efficiency of LIFI high intensity electrodeless light source

    NASA Astrophysics Data System (ADS)

    Hafidi, Abdeslam; DeVincentis, Marc; Duelli, Markus; Gilliard, Richard

    2008-02-01

    Recently, RF driven electrodeless high intensity light sources have been implemented successfully in the projection display systems for HDTV and videowall applications. This paper presents advances made in the RF waveguide and electric field concentrator structures with the purpose of reducing effective arc size and increasing light collection. In addition, new optical designs are described that further improve system efficiency. The results of this work demonstrate that projection system light throughput is increased relative to previous implementations and performance is optimized for home theater and other front projector applications that maintain multi-year lifetime without re-lamping, complete spectral range, fast start times and high levels of dynamic contrast due to dimming flexibility in the light source system.

  19. Characterization of high intensity focused ultrasound transducers using acoustic streaming.

    PubMed

    Hariharan, Prasanna; Myers, Matthew R; Robinson, Ronald A; Maruvada, Subha H; Sliwa, Jack; Banerjee, Rupak K

    2008-03-01

    A new approach for characterizing high intensity focused ultrasound (HIFU) transducers is presented. The technique is based upon the acoustic streaming field generated by absorption of the HIFU beam in a liquid medium. The streaming field is quantified using digital particle image velocimetry, and a numerical algorithm is employed to compute the acoustic intensity field giving rise to the observed streaming field. The method as presented here is applicable to moderate intensity regimes, above the intensities which may be damaging to conventional hydrophones, but below the levels where nonlinear propagation effects are appreciable. Intensity fields and acoustic powers predicted using the streaming method were found to agree within 10% with measurements obtained using hydrophones and radiation force balances. Besides acoustic intensity fields, the streaming technique may be used to determine other important HIFU parameters, such as beam tilt angle or absorption of the propagation medium.

  20. Polarization dependence of laser interaction with carbon fibers and CFRP.

    PubMed

    Freitag, Christian; Weber, Rudolf; Graf, Thomas

    2014-01-27

    A key factor for laser materials processing is the absorptivity of the material at the laser wavelength, which determines the fraction of the laser energy that is coupled into the material. Based on the Fresnel equations, a theoretical model is used to determine the absorptivity for carbon fiber fabrics and carbon fiber reinforced plastics (CFRP). The surface of each carbon fiber is considered as multiple layers of concentric cylinders of graphite. With this the optical properties of carbon fibers and their composites can be estimated from the well-known optical properties of graphite.

  1. Interaction of UV-Laser Radiation with Molecular Surface Films.

    DTIC Science & Technology

    2014-09-26

    reverse if nee~tary an~d Identify by biock number) FIEL GROP SU GR- Laser, Microelectronics , Surface Chemistry 19 ABSTRACT i CoiEIDue on reverset of...direct writing are also being pursued at the Microelectronics Sciences Laboratories at Columbia under separate funding. In addition, extensive interchange...R.M. Osgood and T.F. Deutsch, "Laser-Induced Chemistry for Microelectronics ," Science, Vol.277, pp. 709-714, 1985. R.M. Osgood and H.H. Gilgen, "Laser

  2. A fiber-optic diagnostic technique for mechanical detection of the laser-metal interaction underwater

    NASA Astrophysics Data System (ADS)

    Xu, R. Q.; Chen, X.; Shen, Z. H.; Lu, J.; Ni, X. W.

    2004-03-01

    A new fiber-optic force sensor based on optical beam deflection for the investigation of the mechanical effects during laser-metal interaction underwater is developed. This sensor is applied to detect the laser-induced plasma ablation force and liquid-jet impact during the cavitation bubble collapse near a solid boundary when a Q-switched laser is focused on a metal in water. The experimental results indicate the liquid-jet effect outweighs the well-known laser-induced plasma ablation force. This technique has the advantages of high-frequency response, simple structure, and nondestructive examination.

  3. High flux, narrow bandwidth compton light sources via extended laser-electron interactions

    DOEpatents

    Barty, V P

    2015-01-13

    New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.

  4. Wakefield evolution and electron acceleration in interaction of frequency-chirped laser pulse with inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Rezaei-Pandari, M.; Niknam, A. R.; Massudi, R.; Jahangiri, F.; Hassaninejad, H.; Khorashadizadeh, S. M.

    2017-02-01

    The nonlinear interaction of an ultra-short intense frequency-chirped laser pulse with an underdense plasma is studied. The effects of plasma inhomogeneity and laser parameters such as chirp, pulse duration, and intensity on plasma density and wakefield evolutions, and electron acceleration are examined. It is found that a properly chirped laser pulse could induce a stronger laser wakefield in an inhomogeneous plasma and result in higher electron acceleration energy. It is also shown that the wakefield amplitude is enhanced by increasing the slope of density in the inhomogeneous plasma.

  5. Experimental study of the interaction between DC discharge microplasmas and CW lasers.

    PubMed

    Forati, Ebrahim; Piltan, Shiva; Li, Aobo; Sievenpiper, Dan

    2016-01-25

    A high power (~ 1W) continuous wave (CW) laser was focused on argon microplasma generated in the microgap between two electrodes with submillimeter diameters. Dependence of breakdown (V(BD)) and quench (V(Q)) voltages of microplasma to the laser power, wavelength, and spot location were studied as the gap size and pressure varied. It was observed that the laser-plasma interaction can only occur thermally through the electrodes. Also, the thermal effect of the laser was noticeable at relatively higher pressures (> 10Torr), and in most cases led to a decrease in V(BD), proportional to the pressure.

  6. Immunoadjuvants in treatment of metastatic breast tumors using selective laser photothermal interaction

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Lucroy, Michael D.; Liu, Hong; Bartels, Kenneth E.; Jassemnejad, Baha; Barker, Shawn L.; Gandhi, Punit; Nordquist, Robert E.

    2001-07-01

    A novel immunoadjuvant, glycated chitosan, has been used in combinations with a near-infrared laser and a laser- absorbing dye to treat metastatic tumors in rats. The laser-dye combination provides selective photothermal tumor destruction. The addition of the in situ immunoadjuvant works in tandem with the photothermal interaction to induce a host antitumor immunity. Our previous experiments have shown the efficacy of this novel modality against a metastatic breast cancer in rat model, using the three components. The current study is to investigate the roles of different components, namely, the laser, the dye and the immunoadjuvant. Firs, the selective photothermal laser- tissue interactions are studied in vivo using rat leg muscles and rat tumors. Our results showed that with appropriate combination of laser parameter and dye does, an optimal selective photothermal tissue interaction could be achieved. The immune response is crucial in control of tumor metastasis and the immunoadjuvant has played pivotal role in the induction of the immunity in our experiment. Therefore, the role of immunoadjuvants in the laser cancer treatment is also investigated in the current study. Specifically, three different concentrations of glycated chitosan solutions - 0.5%, 1% and 2% - were used. In comparison, the 1% solution provided the best treatment outcome. Two additional immunoadjuvants, incomplete Freund's adjuvant and complete Freund's adjuvant were also used in the same laser-dye-adjuvant treatment protocol. The functions of different adjuvants are compared.

  7. Radiation reaction in the interaction of ultraintense laser with matter and gamma ray source

    NASA Astrophysics Data System (ADS)

    Ong, J. F.; Teo, W. R.; Moritaka, Toseo; Takabe, H.

    2016-05-01

    Radiation reaction (RR) force plays an important role in gamma ray production in the interaction of ultraintense laser with relativistic counterpropagating electron at intensity 1022 W/cm2 and beyond. The relationship between emission spectrum and initial kinetic energy of electron at such intensities is yet to be clear experimentally. On the other hand, the energy from both the relativistic electron beam and laser pulse may be converted into the gamma rays. Therefore, the conversion efficiency of energy purely from laser pulse into gamma rays is of great interest. We present simulation results of an electron dynamics in strong laser field by taking into account the RR effects. We investigated how the RR effects influence the emission spectrum and photon number distribution for different laser condition. We showed that the peaks of emission spectra are suppressed if higher initial kinetic energy of electron interacts with long laser pulse duration. We then list the conversion efficiencies of laser pulse energy into gamma ray. We note that an electron with energy of 40 MeV would convert up to 80% of the total of electromagnetic work and initial kinetic energy of electron when interacting with 10 fs laser pulse at intensity 2 ×1023 W/cm2. For a bunch of electron with charge 1 nC would emit around 0.1 J of energy into gamma ray emission.

  8. A laser-heterodyne bunch length monitor for the SLC interaction point

    SciTech Connect

    Kotseroglou, T.; Alley, R.; Jobe, K.

    1997-05-01

    Since 1996, the transverse beam sizes at the SLC interaction point (IP) can be determined with a `laser wire`, by detecting the rate of Compton-scattered photons as a function of the beam-laser separation in space. Nominal laser parameters are: 350 nm wavelength, 2 mJ energy per pulse, 40 Hz repetition rate, and 150 ps FWHM pulse length. The laser system is presently being modified to enable measurements of the longitudinal beam profile. For this purpose, two laser pulses of slightly different frequency are superimposed, which creates a travelling fringe pattern and, thereby, introduces a bunch-to-bunch variation of the Compton rate. The magnitude of this variation depends on the beat wavelength and on the Fourier transform of the longitudinal distribution. This laser heterodyne technique is implemented by adding a 1-km long optical fibre at the laser oscillator output, which produces a linearly chirped laser pulse with 4.5-A linewidth and 60-ps FWHM pulse length. Also, the pulse is amplified in a regenerative amplifier and tripled with two nonlinear crystals. Then a Michelson interferometer spatially overlaps two split chirped pulses, which are temporally shifted with respect to each other, generating a quasi-sinusoidal adjustable fringe pattern. This laser pulse is then transported to the Interaction Point.

  9. Final Report: Laser-Material Interactions Relevant to Analytic Spectroscopy of Wide Band Gap Materials

    SciTech Connect

    Dickinson, J. T.

    2014-04-05

    We summarize our studies aimed at developing an understanding of the underlying physics and chemistry in terms of laser materials interactions relevant to laser-based sampling and chemical analysis of wide bandgap materials. This work focused on the determination of mechanisms for the emission of electrons, ions, atoms, and molecules from laser irradiation of surfaces. We determined the important role of defects on these emissions, the thermal, chemical, and physical interactions responsible for matrix effects and mass-dependent transport/detection. This work supported development of new techniques and technology for the determination of trace elements contained such as nuclear waste materials.

  10. Studies on the interaction between the YAG laser and the MNOS-type CCD

    SciTech Connect

    Ni, X.W.; Lu, J.

    1995-12-31

    Owing to its small size, little distortion of image, not being incomplete images and long life, the charge-coupled devices (CCD) has been used widely in photography, detection, information processing and storage. In some special situations, CCD was used together with laser sources, so it was unavoidable that the laser interacted with the CCD or even produced damage. In this paper, the interaction process of high-power Q-switched YAG laser and MNOS-type CCD is studied with the help of plasma shape and structure under the repeated actions of laser pulses. Mach-Zehnder interferograms of plasmas and related experimental results produced by a 1,064 nm laser beam with a pulse width of 15 ns acted upon the MNOS-type CCD are obtained for the first time.

  11. Ultra-intense laser-plasma interaction toward Weibel-mediated collisionless shocks formation

    NASA Astrophysics Data System (ADS)

    Grassi, Anna; Grech, M.; Amiranoff, F.; Macchi, A.; Riconda, C.

    2016-10-01

    The rapid developments in laser technology will soon offer the opportunity to study in the laboratory the processes driving Weibel-mediated collisionless shocks, typical of various astrophysical scenarii. The interaction of an ultra-intense laser with an overdense plasma has been identified as the preferential configuration. Yet, the experimental requirements still need to be properly investigated. High performance computing simulations are a necessary tool for this study. In this work, we present a series of kinetic simulations performed with the PIC code SMILEI, varying the laser and plasma parameters. In particular, we will study the effect of the laser polarisation and plasma density to obtain the best conditions for the creation of a collisionless shock. The role of the electrons heated at the interaction surface and of particles accelerated via the Hole Boring (laser-piston) mechanism on the generation of the current filamentation instability and the subsequent shock front formation will be highlighted.

  12. Proton Beam Generated by Multi-Lasers Interaction with Rear-Holed Target

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Fan, Da-Peng; Li, Yu-Xiao

    2017-03-01

    Multi-lasers are proposed to enhance the proton acceleration in laser plasma interaction. A rear-holed target is illuminated by three lasers from different directions. The scheme is demonstrated by two-dimensional particle-in-cell simulations. The electron cloud shape is controlled well and the electron density is improved significantly. The electrons accelerated by the three lasers induce an enhanced target normal sheath acceleration (TNSA) which suppresses the proton beam divergence and improves the maximum proton energy. The maximum proton energy is 22.9 MeV, which increased significantly than that of a single-laser target interaction. Meanwhile, the average divergence angle (22.3°) is reduced. The dependence of the proton beam on the length of sidewall is investigated in detail and the optimal length is obtained.

  13. First Laser-Plasma Interaction and Hohlraum Experiments on NIF

    SciTech Connect

    Dewald, E L; Glenzer, S H; Landen, O L; Suter, L J; Jones, O S; Schein, J; Froula, D; Divol, L; Campbell, K; Schneider, M S; McDonald, J W; Niemann, C; Mackinnon, A J

    2005-06-17

    Recently the first hohlraum experiments have been performed at the National Ignition Facility (NIF) in support of indirect drive Inertial Confinement Fusion (ICF) designs. The effects of laser beam smoothing by spectral dispersion (SSD) and polarization smoothing (PS) on the beam propagation in long scale gas-filled pipes has been studied at plasma scales as found in indirect drive gas filled ignition hohlraum designs. The long scale gas-filled target experiments have shown propagation over 7 mm of dense plasma without filamentation and beam break up when using full laser smoothing. Vacuum hohlraums have been irradiated with laser powers up to 6 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several diagnostics, to study the hohlraum radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. Subsequently, novel long laser pulse hohlraum experiments have tested models of hohlraum plasma filling and long pulse hohlraum radiation production. The validity of the plasma filling assessment in analytical models and in LASNEX calculations has been proven for the first time. The comparison of these results with modeling will be discussed.

  14. Study of laser plasma interactions in the relativistic regime

    SciTech Connect

    Umstadter, D.

    1997-08-13

    We discuss the first experimental demonstration of electron acceleration by a laser wakefield over instances greater than a Rayleigh range (or the distance a laser normally propagates in vacuum). A self-modulated laser wakefield plasma wave is shown to have a field gradient that exceeds that of an RF linac by four orders of magnitude (E => 200 GV/m) and accelerates electrons with over 1-nC of charge per bunch in a beam with space-charge-limited emittance (1 mm-mrad). Above a laser power threshold, a plasma channel, created by the intense ultrashort laser pulse (I approx. 4 x1018 W/CM2, gamma = 1 micron, r = 400 fs), was found to increase the laser propagation distance, decrease the electron beam divergence, and increase the electron energy. The plasma wave, directly measured with coherent Thomson scattering is shown to damp-due to beam loading-in a duration of 1.5 ps or approx. 100 plasma periods. These results may have important implications for the proposed fast ignitor concept.

  15. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Excitation of nuclear isomers by X rays from laser plasma

    NASA Astrophysics Data System (ADS)

    Andreev, Aleksandr A.; Platonov, Konstantin Yu; Rozhdestvenskii, Yu V.; Karpeshin, F.; Trzhaskovskaya, M. B.

    2010-06-01

    The possibility of obtaining isomer nuclei is studied by the example of the molybdenum isomer 93Mo upon irradiation of a niobium 93Nb target by ~50-J, 100-fs laser pulses. It is shown that the modern laser technique allows production of isomer nuclei by accelerated protons and radiative de-excitation of isomer nuclear states by thermal or line X-rays from laser plasma.

  16. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Ion acceleration by ultrahigh-power ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Brantov, A. V.; Bychenkov, V. Yu; Rozmus, V.

    2007-09-01

    Two- and three-dimensional numerical simulations of fast-ion generation under ultrashort high-power laser pulse irradiation of stratified targets of different density and thickness are performed by the 'particle-in-cell' technique. The intent of these simulations was to determine the optimal target for maximising the ion energy for a given energy of the laser pulse. The simulations were carried out for the presently highest laser radiation intensities.

  17. Laser-intensity requirements for generating enhanced kilovolt bremsstrahlung emission in intense laser-cluster interactions

    NASA Astrophysics Data System (ADS)

    Whitney, K. G.; Davis, J.; Petrova, Tz. B.; Petrov, G. M.

    2012-06-01

    The effects of ultrahigh-intensity laser radiation on dynamical processes such as electron scattering, bremsstrahlung emission, and pair production, have received growing theoretical interest as laser intensities in the laboratory continue to increase. Recently, for example, a calculation was published that predicted resonant increases of more than four orders of magnitude in bremsstrahlung emission in the presence of intense optical laser radiation [A. A. Lebed and S. P. Roshchupkin, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.81.033413 81, 033413 (2010)]. The analysis in that paper was limited to laser intensities of ≤1017 W/cm2, and it was applied only to bremsstrahlung emissions at the laser frequency. In the present paper, we extend this Lebed and Roshchupkin analysis in order to assess the possibility of achieving some enhancement in bremsstrahlung emissions at significantly higher harmonics of the optical laser photon energies (˜6 keV) and thereby to appraise whether or not enhanced bremsstrahlung emissions may have played a hidden role in producing the population inversions and kilovolt x-ray amplifications that have been seen experimentally [A. B. Borisov , J. Phys. B 40, F307 (2007)]. In those experiments, light from a KrF laser was focused onto a gas of xenon clusters to intensities ≳1019 W/cm2. A model of the expansion and ionization dynamics of a xenon cluster when heated by such laser intensities has been constructed [Tz. B. Petrova , High Energy Density Phys.1574-181810.1016/j.hedp.2012.03.007 8, 209 (2012)]. It is capable of replicating the x-ray gains seen experimentally, but only under the assumption that sufficiently high inner-shell photoionization rates are generated in the experiments. We apply this model to show that such photoionization rates are achievable, but only if there are enhancements of the Bethe-Heitler bremsstrahlung emission rate of three to four orders of magnitude. Our extended analysis of the Lebed and Roshchupkin work

  18. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  19. Ignition of a Liquid Fuel under High Intensity Radiation.

    DTIC Science & Technology

    1980-01-01

    outward motion of the liquid, probably caused by a surface * DD I OR 1473 EDITION or INov as IS OB1SOL9?UCASFE ti ~ ~ ~ 7 SECURITY CLASSIFICATION Of...close examination of the pictures in figures 6 and 7, the speed of the rising plume is at least this order of magnitude. The amount of the energy ...laser beam through the vapor parallel to but above the liquid decane surface. 8 To absorb enough energy from the laser beam to heat the gas phase to

  20. Hot electrons transverse refluxing in ultraintense laser-solid interactions.

    PubMed

    Buffechoux, S; Psikal, J; Nakatsutsumi, M; Romagnani, L; Andreev, A; Zeil, K; Amin, M; Antici, P; Burris-Mog, T; Compant-La-Fontaine, A; d'Humières, E; Fourmaux, S; Gaillard, S; Gobet, F; Hannachi, F; Kraft, S; Mancic, A; Plaisir, C; Sarri, G; Tarisien, M; Toncian, T; Schramm, U; Tampo, M; Audebert, P; Willi, O; Cowan, T E; Pépin, H; Tikhonchuk, V; Borghesi, M; Fuchs, J

    2010-07-02

    We have analyzed the coupling of ultraintense lasers (at ∼2×10{19}  W/cm{2}) with solid foils of limited transverse extent (∼10  s of μm) by monitoring the electrons and ions emitted from the target. We observe that reducing the target surface area allows electrons at the target surface to be reflected from the target edges during or shortly after the laser pulse. This transverse refluxing can maintain a hotter, denser and more homogeneous electron sheath around the target for a longer time. Consequently, when transverse refluxing takes places within the acceleration time of associated ions, we observe increased maximum proton energies (up to threefold), increased laser-to-ion conversion efficiency (up to a factor 30), and reduced divergence which bodes well for a number of applications.

  1. Free-field propagation of high intensity noise. [supersonic jets

    NASA Technical Reports Server (NTRS)

    Mcdaniel, O. H.; Roth, S. D.; Welz, J. P.

    1981-01-01

    Research on high intensity (finite amplitude) acoustic waves shows that nonlinear distortion effects generally result in a shift of energy to higher frequencies. The higher intensities associated with supersonic jets would therefore indicate that high frequency enhancement of the spectrum should occur, resulting in the differences observed between subsonic and supersonic jets. A 10,000 acoustic watt source installed in an anechoic chamber generates sound levels such that acoustic shocks are readily observable. Dual frequency excitation of the source produces a strong parametric effect with a difference frequency comparable in level to the primary frequency. The test set up and recording equipment being used to determine the finite amplitude noise representative of an actual supersonic jet are described as well as the development of a computer program based on Burger's equation. The spectra of 1/2 octave band, 1 kHz sine wave, and dual frequency input and output are presented in graphs along with waveforms at Z = .025, 0.1, and 1.0.

  2. A methodology for assessing high intensity RF effects in aircraft

    SciTech Connect

    Zacharias, R.A.; Avalle, C.A.; Kunz, K.S.; Molau, N.E.; Pennock, S.T.; Poggio, A.J.; Sharpe, R.M.

    1993-07-01

    Optical components have an inherent immunity to the electromagnetic interference (EMI) associated with High Intensity Radiated Fields (HIRF). The optical technology embodied in Fly-by-Light (FBL) might therefore minimize the effects of HIRF on digitally controlled systems while providing lifetime immunity to signal EMI. This is one of the primary motivations for developing FBL systems for aircraft. FBL has the potential to greatly simplify EMI certification by enabling technically acceptable laboratory tests of subsystems, as opposed to expensive full airplane tests. In this paper the authors describe a methodology for assessing EMI effects on FBL aircraft that reduces or potentially eliminates the need for full airplane tests. This methodology is based on comparing the applied EMI stress--the level of interference signal that arrives at a unit under test--versus the EMI strength of the unit--the interference level it can withstand without upset. This approach allows one to use computer models and/or low power coupling measurement and similarity (to other previously tested aircraft) to determine the stress applied to installed subsystems, and to use benchtop cable injection tests and/or mode stirred chamber radiated tests to determine the strength of the subsystem.

  3. High-intensity positron microprobe at Jefferson Lab

    SciTech Connect

    Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.

    2014-06-19

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of the beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

  4. HIGH INTENSITY EFFECTS IN THE SNS ACCUMULATOR RING

    SciTech Connect

    Holmes, Jeffrey A; Cousineau, Sarah M; Danilov, Viatcheslav; Plum, Michael A; Shishlo, Andrei P

    2008-01-01

    Currently operating at 0.5 MW beam power on target, the Spallation Neutron Source (SNS) is already the world's most powerful pulsed neutron source. However, we are only one third of the way to full power. As we ramp toward full power, the control of the beam and beam loss in the ring will be critical. In addition to practical considerations, such as choice of operating point, painting scheme, RF bunching, and beam scattering, it may be necessary to understand and mitigate collective effects due to space charge, impedances, and electron clouds. At each stage of the power ramp-up, we use all available resources to understand and to minimize beam losses. From the standpoint of beam dynamics, the losses observed so far under normal operating conditions have not involved collective phenomena. We are now entering the intensity regime in which this may change. In dedicated high intensity beam studies, we have already observed resistive wall, extraction kicker impedance-driven, and electron cloud activities. The analysis and simulation of this data are important ongoing activities at SNS. This paper discusses the status of this work, as well as other considerations necessary to the successful full power operation of SNS.

  5. A review of adolescent high-intensity interval training.

    PubMed

    Logan, Greig R M; Harris, Nigel; Duncan, Scott; Schofield, Grant

    2014-08-01

    Despite the promising evidence supporting positive effects of high-intensity interval training (HIIT) on the metabolic profile in adults, there is limited research targeting adolescents. Given the rising burden of chronic disease, it is essential to implement strategies to improve the cardiometabolic health in adolescence, as this is a key stage in the development of healthy lifestyle behaviours. This narrative review summarises evidence of the relative efficacy of HIIT regarding the metabolic health of adolescents. Methodological inconsistencies confound our ability to draw conclusions; however, there is meaningful evidence supporting HIIT as a potentially efficacious exercise modality for use in the adolescent cohort. Future research must examine the effects of various HIIT protocols to determine the optimum strategy to deliver cardiometabolic health benefits. Researchers should explicitly show between-group differences for HIIT intervention and steady-state exercise or control groups, as the magnitude of difference between HIIT and other exercise modalities is of key interest to public health. There is scope for research to examine the palatability of HIIT as an exercise modality for adolescents through investigating perceived enjoyment during and after HIIT, and consequent long-term exercise adherence.

  6. Robotic Assisted Laparoscopic Prostatectomy after High Intensity Focused Ultrasound Failure

    PubMed Central

    Telis, Leon; Jazayeri, Seyed Behzad

    2017-01-01

    Background. Prostate cancer is the most common cancer diagnosed in men. As new focal therapies become more popular in treatment of prostate cancer, failure cases requiring salvage therapy with either surgical or other techniques are being reported. Objective. To report the options in treatment of prostate cancer after recurrence or failure of the primary treatment modality. Methods. We report a salvage robotic assisted laparoscopic radical prostatectomy (RALP) for prostate cancer recurrence following high intensity focused ultrasound treatment (HIFU) in the United States. Results. A 67-year-old man who underwent HIFU treatment for prostate adenocarcinoma 2 years prior was presented with a rising prostate specific antigen of 6.1 ng/mL to our clinic. A biopsy proven recurrent disease in the area of previous treatment documented the failure of treatment. The patient elected to undergo a salvage RALP. The operation time was 159 minutes. The patient was discharged from the hospital on postoperative day 1 with no complications. The catheter was removed on post-op day 10. The patient reserved sexual function and urinary continence. The PSA levels on 6 months' follow-up are undetectable. Conclusions. Salvage RALP is an effective and safe treatment choice for recurrent prostate adenocarcinoma following failed HIFU treatment if operated by an experienced surgeon. PMID:28243479

  7. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    SciTech Connect

    Yelon, W.B.; Schupp, G.

    1993-02-01

    The QUEGS facility at MURR has produced a number of new results and demonstrated the range of potential applications of high resolution, high intensity Moessbauer scattering. This work has been carried out by both MU and Purdue researchers and includes published results on Na, W, pentadecane, polydimethylsiloxane and other systems, manuscripts submitted on alkali halides (Phys. Rev. B) and accurate Moessbauer lineshape measurements (Phys. Rev. C), and manuscripts in preparation on glycerol, NiAl and Moessbauer spectra obtained by modulating a scattering crystal. Recently, new collaborations have been initiated which will substantially enhance our efforts. These are with W. Steiner (Vienna), G. Coddens (Saclay), and R. D. Taylor (Los Alamos). Steiner is experienced with Fe-57 Moessbauer scattering, while Coddens specializes in quasielastic neutron scattering; both of these areas naturally complement our work. R. D. Taylor has pioneered Moessbauer spectroscopy from the time of its discovery and has already made important contributions to our study of lattice dynamics and superconductivity for lead alloyed with small quantities of tin. At the same time, a significant instrument upgrade is underway, funded in part by the DOE-URIP program.

  8. Formation of a high intensity low energy positron string

    NASA Astrophysics Data System (ADS)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  9. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect

    Grote, D P; Friedman, A; Vay, J L; Haber, I

    2004-12-09

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{_}summary.html.

  10. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect

    Grote, David P.; Friedman, Alex; Vay, Jean-Luc; Haber, Irving

    2005-03-15

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse 'slice' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{sub s}ummary.html.

  11. High intensity focused ultrasound in clinical tumor ablation

    PubMed Central

    Zhou, Yu-Feng

    2011-01-01

    Recent advances in high intensity focused ultrasound (HIFU), which was developed in the 1940s as a viable thermal tissue ablation approach, have increased its popularity. In clinics, HIFU has been applied to treat a variety of solid malignant tumors in a well-defined volume, including the pancreas, liver, prostate, breast, uterine fibroids, and soft-tissue sarcomas. In comparison to conventional tumor/cancer treatment modalities, such as open surgery, radio- and chemo-therapy, HIFU has the advantages of non-invasion, non-ionization, and fewer complications after treatment. Over 100 000 cases have been treated throughout the world with great success. The fundamental principles of HIFU ablation are coagulative thermal necrosis due to the absorption of ultrasound energy during transmission in tissue and the induced cavitation damage. This paper reviews the clinical outcomes of HIFU ablation for applicable cancers, and then summarizes the recommendations for a satisfactory HIFU treatment according to clinical experience. In addition, the current challenges in HIFU for engineers and physicians are also included. More recent horizons have broadened the application of HIFU in tumor treatment, such as HIFU-mediated drug delivery, vessel occlusion, and soft tissue erosion (“histotripsy”). In summary, HIFU is likely to play a significant role in the future oncology practice. PMID:21603311

  12. Spectroscopic imaging of metal halide high-intensity discharge lamps

    NASA Astrophysics Data System (ADS)

    Bonvallet, Geoffrey A.

    The body of this work consists of three main research projects. An optical- and near-ultraviolet-wavelength absorption study sought to determine absolute densities of ground and excited level Sc atoms, ground level Sc + ions, and ground level Na atoms in a commercial 250 W metal halide high intensity discharge lamp during operation. These measurements also allowed the determination of the arc temperature and absolute electron density as functions of radius. Through infrared emission spectroscopy, relative densities of sodium and scandium were determined as functions of radius. Using the absolute densities gained from the optical experiment, these relative densities were calibrated. In addition, direct observation of the infrared emission allowed us to characterize the infrared power losses of the lamp. When considered as a fraction of the overall power consumption, the near-infrared spectral power losses were not substantial enough to warrant thorough investigation of their reduction in these lamps. The third project was an attempt to develop a portable x-ray diagnostic experiment. Two-dimensional spatial maps of the lamps were analyzed to determine absolute elemental mercury densities and the arc temperature as a function of radius. Two methods were used to improve the calibration of the density measurements and to correct for the spread in x-ray energy: known solutions of mercury in nitric acid, and an arc lamp which was uniformly heated to evaporate the mercury content. Although many complexities arose in this experiment, its goal was successfully completed.

  13. High-intensity positron microprobe at Jefferson Lab

    DOE PAGES

    Golge, Serkan; Vlahovic, Branislav; Wojtsekhowski, Bogdan B.

    2014-06-19

    We present a conceptual design for a novel continuous wave electron-linac based high-intensity slow-positron production source with a projected intensity on the order of 1010 e+/s. Reaching this intensity in our design relies on the transport of positrons (T+ below 600 keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. The performance of the integrated beamline has been verified through computational studies. The computational results include Monte Carlo calculations of the optimized electron/positron beam energies, converter target thickness, synchronized raster system, transport of themore » beam from the converter target to the moderator, extraction of the beam from the channel, and moderation efficiency calculations. For the extraction of positrons from the magnetic channel a magnetic field terminator plug prototype has been built and experimental data on the effectiveness of this prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.« less

  14. High Intensity Focused Ultrasound Tumor Therapy System and Its Application

    NASA Astrophysics Data System (ADS)

    Sun, Fucheng; He, Ye; Li, Rui

    2007-05-01

    At the end of last century, a High Intensity Focused Ultrasound (HIFU) tumor therapy system was successfully developed and manufactured in China, which has been already applied to clinical therapy. This article aims to discuss the HIFU therapy system and its application. Detailed research includes the following: power amplifiers for high-power ultrasound, ultrasound transducers with large apertures, accurate 3-D mechanical drives, a software control system (both high-voltage control and low-voltage control), and the B-mode ultrasonic diagnostic equipment used for treatment monitoring. Research on the dosage of ultrasound required for tumour therapy in multiple human cases has made it possible to relate a dosage formula, presented in this paper, to other significant parameters such as the volume of thermal tumor solidification, the acoustic intensity (I), and the ultrasound emission time (tn). Moreover, the HIFU therapy system can be applied to the clinical treatment of both benign and malignant tumors in the pelvic and abdominal cavity, such as uterine fibroids, liver cancer and pancreatic carcinoma.

  15. Anomalous absorption in CO2-laser-target interactions

    NASA Astrophysics Data System (ADS)

    Offenberger, A. A.; Ng, A.

    1980-10-01

    Efficient absorption of long-pulse CO2-laser radiation is observed to follow a transient phase of stimulated Brillouin backscatter in critical density, laminar oxygen gas target irradiation experiments. Nearly complete energy absorption occurs for not more than 10 nsec following stimulated Brillouin backscatter after which target burnthrough and refraction dominate. Inverse bremsstrahlung and resonance absorption cannot account for the general features observed. Anomalous collisions due to strong ion turbulence produced by the incident laser radiation are postulated to account for the efficient absorption.

  16. Novette: a short wavelength laser-target interaction system

    SciTech Connect

    Manes, K.R.; Speck, D.R.; Suski, G.J.; Barr, O.C.; Gritton, D.G.; Hildum, J.S.; Johnson, B.C.; Kuizenga, D.J.; Patton, H.G.; Thompson, C.E.

    1983-02-01

    Novette has been designed to deliver 18.0 kJ in 1 nsec and 28 kJ in 3 nsec as maximum damage limited drive to the frequency conversion arrays. We expect maximum frequency doubled on-target energies of 13 kJ in 1 nsec and 20 kJ in 3 nsec. Propagation studies performed as Novette has been activated will be reviewed and their bearing on the Nova laser design discussed. The characteristics of the incident laser radiation in the target chamber center will be described.

  17. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-05-01

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10-6%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon-acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  18. Overview of novel photovoltaic conversion techniques at high intensity levels

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1978-01-01

    The paper describes several photovoltaic devices currently under development that can operate under light intensities considerably higher than can silicon solar cells. The technologies discussed include GaAs heteroface solar cells, multi-color systems, thermophotovoltaics, and laser energy conversion. Array costs for the GaAs and multi-color elements are estimated.

  19. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Formation of a coupled state in a laser plume

    NASA Astrophysics Data System (ADS)

    Kask, Nikolai E.; Michurin, Sergei V.; Fedorov, Gennadii M.; Chopornyak, D. B.

    2005-04-01

    The results of experimental investigation of a low-temperature plasma produced by laser irradiation at the surface of metal targets are reported. The optical characteristics and the plasma pressure in the laser plume are found to exhibit a threshold behaviour under vaporised-material density variation. The results are interpreted using the model of a coupled plasma state with limitation of plasma expansion.

  20. Photon dose estimation from ultraintense laser-solid interactions and shielding calculation with Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Qiu, Rui; Li, JunLi; Lu, Wei; Wu, Zhen; Li, Chunyan

    2017-02-01

    When a strong laser beam irradiates a solid target, a hot plasma is produced and high-energy electrons are usually generated (the so-called "hot electrons"). These energetic electrons subsequently generate hard X-rays in the solid target through the Bremsstrahlung process. To date, only limited studies have been conducted on this laser-induced radiological protection issue. In this study, extensive literature reviews on the physics and properties of hot electrons have been conducted. On the basis of these information, the photon dose generated by the interaction between hot electrons and a solid target was simulated with the Monte Carlo code FLUKA. With some reasonable assumptions, the calculated dose can be regarded as the upper boundary of the experimental results over the laser intensity ranging from 1019 to 1021 W/cm2. Furthermore, an equation to estimate the photon dose generated from ultraintense laser-solid interactions based on the normalized laser intensity is derived. The shielding effects of common materials including concrete and lead were also studied for the laser-driven X-ray source. The dose transmission curves and tenth-value layers (TVLs) in concrete and lead were calculated through Monte Carlo simulations. These results could be used to perform a preliminary and fast radiation safety assessment for the X-rays generated from ultraintense laser-solid interactions.