Science.gov

Sample records for high-isoelectric-point superoxide dismutase1cw

  1. Alternative Splicing Studies of the Reactive Oxygen Species Gene Network in Populus Reveal Two Isoforms of High-Isoelectric-Point Superoxide Dismutase1[C][W

    PubMed Central

    Srivastava, Vaibhav; Srivastava, Manoj Kumar; Chibani, Kamel; Nilsson, Robert; Rouhier, Nicolas; Melzer, Michael; Wingsle, Gunnar

    2009-01-01

    Recent evidence has shown that alternative splicing (AS) is widely involved in the regulation of gene expression, substantially extending the diversity of numerous proteins. In this study, a subset of expressed sequence tags representing members of the reactive oxygen species gene network was selected from the PopulusDB database to investigate AS mechanisms in Populus. Examples of all known types of AS were detected, but intron retention was the most common. Interestingly, the closest Arabidopsis (Arabidopsis thaliana) homologs of half of the AS genes identified in Populus are not reportedly alternatively spliced. Two genes encoding the protein of most interest in our study (high-isoelectric-point superoxide dismutase [hipI-SOD]) have been found in black cottonwood (Populus trichocarpa), designated PthipI-SODC1 and PthipI-SODC2. Analysis of the expressed sequence tag libraries has indicated the presence of two transcripts of PthipI-SODC1 (hipI-SODC1b and hipI-SODC1s). Alignment of these sequences with the PthipI-SODC1 gene showed that hipI-SODC1b was 69 bp longer than hipI-SODC1s due to an AS event involving the use of an alternative donor splice site in the sixth intron. Transcript analysis showed that the splice variant hipI-SODC1b was differentially expressed, being clearly expressed in cambial and xylem, but not phloem, regions. In addition, immunolocalization and mass spectrometric data confirmed the presence of hipI-SOD proteins in vascular tissue. The functionalities of the spliced gene products were assessed by expressing recombinant hipI-SOD proteins and in vitro SOD activity assays. PMID:19176719

  2. pH-Responsive poly(itaconic acid-co-N-vinylpyrrolidone) hydrogels with reduced ionic strength loading solutions offer improved oral delivery potential for high isoelectric point-exhibiting therapeutic proteins

    PubMed Central

    Koetting, Michael C.; Peppas, Nicholas A.

    2014-01-01

    pH-Responsive hydrogels comprised of itaconic acid copolymerized with N-vinylpyrrolidone (P(IA-co-NVP)) were synthesized and tested as carriers for the oral delivery of high isoelectric point (pI) exhibiting therapeutic proteins. Swelling studies show that P(IA-co-NVP) hydrogels exhibit significantly greater and faster pH-responsive swelling than previously studied methacrylic acid-based hydrogels, achieving up to 68% greater equilibrium swelling and 10.4 times greater swelling in time-limited experiments. Using salmon calcitonin as a model high pI protein therapeutic, we show that P(IA-co-NVP) hydrogels exhibit significantly greater delivery potential than methacrylic acid-based hydrogels. Additionally, we show that utilizing a lower ionic strength solution during drug loading significantly improves drug delivery potential for high pI therapeutics. By using a 1.5 mM PBS buffer rather than the standard 150 mM PBS buffer during loading, up to 83 times as much calcitonin can be delivered in neutral conditions, with up to a 9.6 fold improvement in percent release. Using P(IA-co-NVP) hydrogel microparticles and a low ionic strength loading solution, up to 48 μg calcitonin/mg hydrogel can be delivered in small intestinal conditions. Based on expected absorption in the small intestine, this is sufficient delivery potential for achieving therapeutic dosage via a single, regularly-sized pill taken daily. PMID:24853463

  3. Air Revitalization Using Superoxides

    NASA Technical Reports Server (NTRS)

    Wydeven, Theodore; Wood, Peter C.; Spitze, L. A.

    1988-01-01

    Pellets made from powder mixtures of potassium superoxide, KO2, and calcium superoxide, Ca(O2)2, proven markedly superior to pellets of pure KO2 for adding O2 to and removing CO2 from atmospheric-pressure flow of humidified CO2 in He. Superoxides used extensively to supply O2 and scrub CO2 in variety of ambient-pressure life-support applications, including portable self-contained breathing apparatuses, spacecraft, and undersea submersible craft.

  4. Superoxide flashes in single mitochondria.

    PubMed

    Wang, Wang; Fang, Huaqiang; Groom, Linda; Cheng, Aiwu; Zhang, Wanrui; Liu, Jie; Wang, Xianhua; Li, Kaitao; Han, Peidong; Zheng, Ming; Yin, Jinhu; Wang, Weidong; Mattson, Mark P; Kao, Joseph P Y; Lakatta, Edward G; Sheu, Shey-Shing; Ouyang, Kunfu; Chen, Ju; Dirksen, Robert T; Cheng, Heping

    2008-07-25

    In quiescent cells, mitochondria are the primary source of reactive oxygen species (ROS), which are generated by leakiness of the electron transport chain (ETC). High levels of ROS can trigger cell death, whereas lower levels drive diverse and important cellular functions. We show here by employing a newly developed mitochondrial matrix-targeted superoxide indicator, that individual mitochondria undergo spontaneous bursts of superoxide generation, termed "superoxide flashes." Superoxide flashes occur randomly in space and time, exhibit all-or-none properties, and provide a vital source of superoxide production across many different cell types. Individual flashes are triggered by transient openings of the mitochondrial permeability transition pore stimulating superoxide production by the ETC. Furthermore, we observe a flurry of superoxide flash activity during reoxygenation of cardiomyocytes after hypoxia, which is inhibited by the cardioprotective compound adenosine. We propose that superoxide flashes could serve as a valuable biomarker for a wide variety of oxidative stress-related diseases.

  5. Synthesis of calcium superoxide

    NASA Technical Reports Server (NTRS)

    Rewick, R. T.; Blucher, W. G.; Estacio, P. L.

    1972-01-01

    Efforts to prepare Ca(O2) sub 2 from reactions of calcium compounds with 100% O3 and with O(D-1) atoms generated by photolysis of O3 at 2537 A are described. Samples of Ca(OH) sub 2, CaO, CaO2, Ca metal, and mixtures containing suspected impurities to promote reaction have been treated with excess O3 under static and flow conditions in the presence and absence of UV irradiation. Studies with KO2 suggest that the superoxide anion is stable to radiation at 2537 A but reacts with oxygen atoms generated by the photolysis of O3 to form KO3. Calcium superoxide is expected to behave in an analogous.

  6. Superoxide Dismutase Assays

    DTIC Science & Technology

    1987-06-16

    rapidly catalyzed the dismutation of Superoxide free radical anions in the reaction : enzyme 0 * + 0’~ + 2H > O...its rate of dismutation both enzymically and spontaneously. By allowing the generator reaction to proceed for a specific time period before the addi...concentration is adjusted to give a reaction rate so that the change at 550 rm is 0.02 to 0.04 OD/min. Stock of Xanthine Oxidase BC 1.1.3.22 is at

  7. OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipI- superoxide dismutase Populus plants

    PubMed Central

    2013-01-01

    Background Reactive oxygen species (ROS) are involved in the regulation of diverse physiological processes in plants, including various biotic and abiotic stress responses. Thus, oxidative stress tolerance mechanisms in plants are complex, and diverse responses at multiple levels need to be characterized in order to understand them. Here we present system responses to oxidative stress in Populus by integrating data from analyses of the cambial region of wild-type controls and plants expressing high-isoelectric-point superoxide dismutase (hipI-SOD) transcripts in antisense orientation showing a higher production of superoxide. The cambium, a thin cell layer, generates cells that differentiate to form either phloem or xylem and is hypothesized to be a major reason for phenotypic perturbations in the transgenic plants. Data from multiple platforms including transcriptomics (microarray analysis), proteomics (UPLC/QTOF-MS), and metabolomics (GC-TOF/MS, UPLC/MS, and UHPLC-LTQ/MS) were integrated using the most recent development of orthogonal projections to latent structures called OnPLS. OnPLS is a symmetrical multi-block method that does not depend on the order of analysis when more than two blocks are analysed. Significantly affected genes, proteins and metabolites were then visualized in painted pathway diagrams. Results The main categories that appear to be significantly influenced in the transgenic plants were pathways related to redox regulation, carbon metabolism and protein degradation, e.g. the glycolysis and pentose phosphate pathways (PPP). The results provide system-level information on ROS metabolism and responses to oxidative stress, and indicate that some initial responses to oxidative stress may share common pathways. Conclusion The proposed data evaluation strategy shows an efficient way of compiling complex, multi-platform datasets to obtain significant biological information. PMID:24341908

  8. Models of Superoxide Dismutases

    SciTech Connect

    Cabelli, Diane E.; Riley, Dennis; Rodriguez, Jorge A.; Valentine, Joan Selverstone; Zhu, Haining

    1998-05-20

    In this review we have focused much of our discussion on the mechanistic details of how the native enzymes function and how mechanistic developments/insights with synthetic small molecule complexes possessing SOD activity have influenced our understanding of the electron transfer processes involved with the natural enzymes. A few overriding themes have emerged. Clearly, the SOD enzymes operate at near diffusion controlled rates and to achieve such catalytic turnover activity, several important physical principles must be operative. Such fast electron transfer processes requires a role for protons; i.e., proton-coupled electron transfer (''H-atom transfer'') solves the dilemma of charge separation developing in the transition state for the electron transfer step. Additionally, outer-sphere electron transfer is likely a most important pathway for manganese and iron dismutases. This situation arises because the ligand exchange rates on these two ions in water never exceed {approx}10{sup +7} s{sup -1}; consequently, 10{sup +9} catalytic rates require more subtle mechanistic insights. In contrast, copper complexes can achieve diffusion controlled (>10{sup +9}) exchange rates in water; thus inner-sphere electron transfer processes are more likely to be operative in the Cu/Zn enzymes. Recent studies have continued to expand our understanding of the mechanism of action of this most important class of redox active enzymes, the superoxide dismutases, which have been critical in the successful adaptation of life on this planet to an oxygen-based metabolism. The design of SOD mimic drugs, synthetic models compounds that incorporate this superoxide dismutase catalytic activity and are capable of functioning in vivo, offers clear potential benefits in the control of diseases, ranging from the control of neurodegenerative conditions, such as Parkinson's or Alzheimer's disease, to cancer.

  9. Economical synthesis of potassium superoxide

    NASA Technical Reports Server (NTRS)

    Bell, A. T.; Sadhukhan, P.

    1979-01-01

    High-frequency discharge in oxygen can be used to prepare superoxides of alkali and alkaline-earth metals. Since no direct-current discharge at the electrodes is present, no sputtering can contaminate the product, hence a high conversion efficiency.

  10. Superoxide dismutase: an evolutionary puzzle

    SciTech Connect

    Lee, Y.M.; Friedman, D.J.; Ayala, F.J.

    1985-02-01

    The authors have obtained the complete amino acid sequence of copper/zinc-containing superoxide dismutase (SOD, superoxide:superoxide oxidoreductase, EC 1.15.1.1) from Drosophila melanogaster. The sequence of this enzyme is also known for man, horse, cow, and the yeast Saccharomyces cerevisiae. The rate of evolution of this enzyme is far from constant. The number of amino acid substitutions per 100 residues per 100 million years is 30.9 when the three mammals are compared to each other, 10.6 when Drosophila is compared to the three mammals, and 5.8 when the yeast is compared to the four animals. The first value represents one of the fastest evolutionary rates for any protein, the second is similar to the globin rate, and the third is similar to some cytochromes and other slowly evolving proteins. Hence, SOD is not acceptable evolutionary clock. Another peculiarity of this enzyme is that a two-amino-acid deletion must have occurred independently in the lineages going to the cow and to Drosophila. The authors conclude that using the primary structure of a single gene or protein to time evolutionary events or to reconstruct phylogenetic relationships is potentially fraught with error.

  11. Superoxide dismutases in chronic gastritis.

    PubMed

    Švagelj, Dražen; Terzić, Velimir; Dovhanj, Jasna; Švagelj, Marija; Cvrković, Mirta; Švagelj, Ivan

    2016-04-01

    Human gastric diseases have shown significant changes in the activity and expression of superoxide dismutase (SOD) isoforms. The aim of this study was to detect Mn-SOD activity and expression in the tissue of gastric mucosa, primarily in chronic gastritis (immunohistochemical Helicobacter pylori-negative gastritis, without other pathohistological changes) and to evaluate their possible connection with pathohistological diagnosis. We examined 51 consecutive outpatients undergoing endoscopy for upper gastrointestinal symptoms. Patients were classified based on their histopathological examinations and divided into three groups: 51 patients (archive samples between 2004-2009) with chronic immunohistochemical Helicobacter pylori-negative gastritis (mononuclear cells infiltration were graded as absent, moderate, severe) divided into three groups. Severity of gastritis was graded according to the updated Sydney system. Gastric tissue samples were used to determine the expression of Mn-SOD with anti-Mn-SOD Ab immunohistochemically. The Mn-SOD expression was more frequently present in specimens with severe and moderate inflammation of gastric mucosa than in those with normal mucosa. In patients with normal histological finding, positive immunoreactivity of Mn-SOD was not found. Our results determine the changes in Mn-SOD expression occurring in the normal gastric mucosa that had undergone changes in the intensity of chronic inflammatory infiltrates in the lamina propria.

  12. DPI induces mitochondrial superoxide-mediated apoptosis.

    PubMed

    Li, Nianyu; Ragheb, Kathy; Lawler, Gretchen; Sturgis, Jennie; Rajwa, Bartek; Melendez, J Andres; Robinson, J Paul

    2003-02-15

    The iodonium compounds diphenyleneiodonium (DPI) and diphenyliodonium (IDP) are well-known phagocyte NAD(P)H oxidase inhibitors. However, it has been shown that at high concentrations they can inhibit the mitochondrial respiratory chain as well. Since inhibition of the mitochondrial respiratory chain has been shown to induce superoxide production and apoptosis, we investigated the effect of iodonium compounds on mitochondria-derived superoxide and apoptosis. Mitochondrial superoxide production was measured on both cultured cells and isolated rat-heart submitochondrial particles. Mitochondria function was examined by monitoring mitochondrial membrane potential. Apoptotic pathways were studied by measuring cytochrome c release and caspase 3 activation. Apoptosis was characterized by detecting DNA fragmentation on agarose gel and measuring propidium iodide- (PI-) stained subdiploid cells using flow cytometry. Our results showed that DPI could induce mitochondrial superoxide production. The same concentration of DPI induced apoptosis by decreasing mitochondrial membrane potential and releasing cytochrome c. Addition of antioxidants or overexpression of MnSOD significantly reduced DPI-induced mitochondrial damage, cytochrome c release, caspase activation, and apoptosis. These observations suggest that DPI can induce apoptosis via induction of mitochondrial superoxide. DPI-induced mitochondrial superoxide production may prove to be a useful model to study the signaling pathways of mitochondrial superoxide.

  13. Mast cell release of superoxide

    SciTech Connect

    Dileepan, K.N.; Simpson, K.M.; Stechschulte, D.J.

    1987-05-01

    The ability of rat serosal mast cells (MC) to release superoxide (O/sub 2//sup -/) upon activation by immunologic and nonimmunologic stimuli was investigated. Purified MC (90-95%) were either sensitized with monoclonal IgE reactive against dinitrophenyl bovine serum albumin (DNP-BSA) and challenged with DNP-BSA, or naive MC were treated with compound 48/80 or ionophore A23187. O/sub 2//sup -/ release was measured by O/sub 2//sup -/ dismutase (SOD)-sensitive reduction of cytochrome C and MC activation was assessed by the release of histamine or (/sup 14/C)5-hydroxytryptamine (5HT). The results reveal that activation of MC by 48/80 or immunologic challenge does not release O/sub 2//sup -/, although these stimuli induce substantial release of histamine and 5HT (40-70%). In contrast, A23187 released O/sub 2//sup -/ (3-6 nMols/10/sup 6/ MC) and histamine (40-80%). In mixed cell preparations containing MC and macrophages (M0), activation of MC with 48/80 resulted in inhibition of M0 O/sub 2//sup -/ release. The MC-mediated inhibition of O/sub 2//sup -/ production was not due to histamine or 5HT, but was due to MC-granule SOD. MC contain abundant quantities of SOD and, therefore, release O/sub 2//sup -/ only when its production exceeds the intracellular SOD threshold following activation with selective stimuli. In addition, the apparent differences in the mode and site of action of various stimuli on MC may contribute to the discriminative release of O/sub 2//sup -/.

  14. Metal Uptake by Manganese Superoxide Dismutase

    PubMed Central

    Whittaker, James W.

    2009-01-01

    Manganese superoxide dismutase is an important antioxidant defense metalloenzyme that protects cells from damage by the toxic oxygen metabolite, superoxide free radical, formed as an unavoidable by-product of aerobic metabolism. Many years of research have gone into understanding how the metal cofactor interacts with small molecules in its catalytic role. In contrast, very little is presently known about how the protein acquires its metal cofactor, an important step in the maturation of the protein and one that is absolutely required for its biological function. Recent work is beginning to provide insight into the mechanisms of metal delivery to manganese superoxide dismutase in vivo and in vitro. PMID:19699328

  15. Oxygen plasmas used to synthesize superoxides

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Production of alkali metal superoxides by interaction of molecular oxygen with alkali metals or their salts is discussed. Diagram of reactor to show components and operating principles is provided. Analysis of chemical reactions involved is developed.

  16. Biological Superoxide In Manganese Oxide Formation

    NASA Astrophysics Data System (ADS)

    Hansel, C.; Learman, D.; Zeiner, C.; Santelli, C. M.

    2011-12-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants within the environment, controlling the fate and transport of numerous elements and the degradation of recalcitrant carbon. Both bacteria and fungi mediate the oxidation of Mn(II) to Mn(III/IV) oxides but the genetic and biochemical mechanisms responsible remain poorly understood. Furthermore, the physiological basis for microbial Mn(II) oxidation remains an enigma. We have recently reported that a common marine bacterium (Roseobacter sp. AzwK-3b) oxidizes Mn(II) via reaction with extracellular superoxide (O2-) produced during exponential growth. Here we expand this superoxide-mediated Mn(II) oxidation pathway to fungi, introducing a surprising homology between prokaryotic and eukaryotic metal redox processes. For instance, Stibella aciculosa, a common soil Ascomycete filamentous fungus, precipitates Mn oxides at the base of asexual reproductive structures (synnemata) used to support conidia (Figure 1). This distribution is a consequence of localized production of superoxide (and it's dismutation product hydrogen peroxide, H2O2), leading to abiotic oxidation of Mn(II) by superoxide. Disruption of NADPH oxidase activity using the oxidoreductase inhibitor DPI leads to diminished cell differentiation and subsequent Mn(II) oxidation inhibition. Addition of Cu(II) (an effective superoxide scavenger) leads to a concentration dependent decrease in Mn oxide formation. We predict that due to the widespread production of extracellular superoxide within the fungal and likely bacterial kingdoms, biological superoxide may be an important contributor to the cycling of Mn, as well as other metals (e.g., Hg, Fe). Current and future explorations of the genes and proteins involved in superoxide production and Mn(II) oxidation will ideally lend insight into the physiological and biochemical basis for these processes.

  17. Periplasmic Superoxide Dismutase in Meningococcal Pathogenicity

    PubMed Central

    Wilks, Kathryn E.; Dunn, Kate L. R.; Farrant, Jayne L.; Reddin, Karen M.; Gorringe, Andrew R.; Langford, Paul R.; Kroll, J. Simon

    1998-01-01

    Meningococcal sodC encodes periplasmic copper- and zinc-cofactored superoxide dismutase (Cu,Zn SOD) which catalyzes the conversion of the superoxide radical anion to hydrogen peroxide, preventing a sequence of reactions leading to production of toxic hydroxyl free radicals. From its periplasmic location, Cu,Zn SOD was inferred to acquire its substrate from outside the bacterial cell and was speculated to play a role in preserving meningococci from the action of microbicidal oxygen free radicals produced in the context of host defense. A sodC mutant was constructed by allelic exchange and was used to investigate the role of Cu,Zn SOD in pathogenicity. Wild-type and mutant meningococci grew at comparable rates and survived equally long in aerobic liquid culture. The mutant showed no increased sensitivity to paraquat, which generates superoxide within the cytosol, but was approximately 1,000-fold more sensitive to the toxicity of superoxide generated in solution by the xanthine/xanthine oxidase system. These data support a role for meningococcal Cu,Zn SOD in protection against exogenous superoxide. In experiments to translate this into a role in pathogenicity, wild-type and mutant organisms were used in an intraperitoneal mouse infection model. The sodC mutant was significantly less virulent. We conclude that periplasmic Cu,Zn SOD contributes to the virulence of Neisseria meningitidis, most likely by reducing the effectiveness of toxic oxygen host defenses. PMID:9423860

  18. Process for the preparation of calcium superoxide

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Wood, P. C.; Wydeven, T. J.; Spitze, L. A. (Inventor)

    1978-01-01

    Calcium superoxide is prepared in high yields by spreading a quantity of calcium peroxide diperoxyhydrate on the surface of a container, positioning said container in a vacuum chamber on a support structure through which a coolant fluid can be circulated, partially evacuating said vacuum chamber, allowing the temperature of the diperoxyhydrate to reach the range of about 0 to about 40 C; maintaining the temperature selected for a period of time sufficient to complete the disproproriation of the diperoxyhydrate to calcium superoxide, calcium hydroxide, oxygen, and water; constantly and systematically removing the water as it is formed by sweeping the reacting material with a current of dry inert gas and/or by condensation of said water on a cold surface; backfilling the chamber with a dry inert gas; and finally, recovering the calcium superoxide produced.

  19. In vitro inhibition of superoxide anion production and superoxide dismutase activity by zinc in human spermatozoa.

    PubMed

    Gavella, M; Lipovac, V; Vucić, M; Sverko, V

    1999-08-01

    The in vitro effect of zinc on superoxide anion (O2-) generation and on SOD-like activity in spermatozoa of infertile men was investigated. The formation of superoxide anion was stimulated by NADPH and the level of superoxide anion was measured by the reduction of ferricytochrome c. Both Percoll-isolated (n = 14) and washed spermatozoa (n = 14) exposed to 1 mmol/L zinc (60 min, 37 degrees C), released less (p < 0.002 and p < 0.04, respectively) superoxide anions than did zinc-untreated spermatozoa. These results implicate a possible role for zinc as a scavenger of excessive superoxide anions produced by defective spermatozoa in semen after ejaculation. Additionally, zinc was found to dose-dependently inhibit superoxide dismutase (SOD)-like activity of spermatozoa in vitro. The inhibition of SOD-like activity by an equal concentration of zinc (1 mmol/L) was less pronounced in oligospermic (p < 0.002; n = 16) and asthenozoospermic (p < 0.0005; n = 20) than in normozoospermic samples (p < 0.0001; n = 20). This differential ability of zinc to inhibit SOD-like activity may be relevant to the physiological function of spermatozoa in fertilization. The evidence that zinc may elicit an inhibition of both superoxide anion production and SOD-like activity in human spermatozoa, indicate the existence of novel, zinc-related mechanism(s) involved in the oxidative events occurring after ejaculation, with a possible modulatory effect on germ cell function.

  20. Diagnosis of superoxide anion radical induced in liquids by atmospheric-pressure plasma using superoxide dismutase

    NASA Astrophysics Data System (ADS)

    Tani, Atsushi; Fukui, Satoshi; Ikawa, Satoshi; Kitano, Katsuhisa

    2015-01-01

    To confirm the formation of the superoxide anion radical (O2-•) in liquids by atmospheric-pressure plasma, we investigated plasma-induced radical species in water using the electron spin resonance (ESR) spin-trapping technique combined with two proteins: superoxide dismutase (SOD), which has enzymatic activity to quench the superoxide anion radical, and bovine serum albumin (BSA), which does not have this enzymatic activity. Different setups of contact and non-contact atmospheric-pressure helium plasma were tested with an additional supply of oxygen gas. For each setup of plasma, no superoxide anion adduct ESR signal was observed in the aqueous solution with SOD, whereas the ESR signal appears in the samples with BSA and without any additive proteins. This means that a superoxide anion radical in the solution is sufficiently quenched by SOD before the formation of the spin adduct. The superoxide anion radical is actually induced in an aqueous solution by atmospheric-pressure plasma when ambient gases contain oxygen.

  1. Superoxide Dismutases and Reactive Oxygen Species

    SciTech Connect

    Cabelli, D.E.

    2011-01-01

    The 'free radical theory' of aging was introduced over a half-century ago. In this theory, much of the deleterious effects of aging were attributed to the cumulative buildup of damage from reactive oxygen species. When discussing reactive oxygen species (ROS) in aerobic systems, both superoxide radicals (O{sub 2}{sup -}) and superoxide dismutases (SODs) are considered to play prominent roles. O{sub 2}{sup -} is formed by attachment of the electron to oxygen (O{sub 2}) that is present in tens to hundreds of micromolar concentration in vivo. SODs are enzymes that serve to eliminate O{sub 2}{sup -} by rapidly converting it to O{sub 2} and hydrogen peroxide (H{sub 2}O{sub 2}). Both the radical and the enzyme will be discussed with the focus on the systems that are present in humans.

  2. Role of extracellular superoxide dismutase in hypertension.

    PubMed

    Gongora, Maria Carolina; Qin, Zhenyu; Laude, Karine; Kim, Ha Won; McCann, Louise; Folz, J Rodney; Dikalov, Sergey; Fukai, Tohru; Harrison, David G

    2006-09-01

    We previously found that angiotensin II-induced hypertension increases vascular extracellular superoxide dismutase (ecSOD), and proposed that this is a compensatory mechanism that blunts the hypertensive response and preserves endothelium-dependent vasodilatation. To test this hypothesis, we studied ecSOD-deficient mice. ecSOD(-/-) and C57Blk/6 mice had similar blood pressure at baseline; however, the hypertension caused by angiotensin II was greater in ecSOD(-/-) compared with wild-type mice (168 versus 147 mm Hg, respectively; P<0.01). In keeping with this, angiotensin II increased superoxide and reduced endothelium-dependent vasodilatation in small mesenteric arterioles to a greater extent in ecSOD(-/-) than in wild-type mice. In contrast to these findings in resistance vessels, angiotensin II paradoxically improved endothelium-dependent vasodilatation, reduced intracellular and extracellular superoxide, and increased NO production in aortas of ecSOD(-/-) mice. Whereas aortic expression of endothelial NO synthase, Cu/ZnSOD, and MnSOD were not altered in ecSOD(-/-) mice, the activity of Cu/ZnSOD was increased by 80% after angiotensin II infusion. This was associated with a concomitant increase in expression of the copper chaperone for Cu/ZnSOD in the aorta but not in the mesenteric arteries. Moreover, the angiotensin II-induced increase in aortic reduced nicotinamide-adenine dinucleotide phosphate oxidase activity was diminished in ecSOD(-/-) mice as compared with controls. Thus, during angiotensin II infusion, ecSOD reduces hypertension, minimizes vascular superoxide production, and preserves endothelial function in resistance arterioles. We also identified novel compensatory mechanisms involving upregulation of copper chaperone for Cu/ZnSOD, increased Cu/ZnSOD activity, and decreased reduced nicotinamide-adenine dinucleotide phosphate oxidase activity in larger vessels. These compensatory mechanisms preserve large vessel function when ecSOD is absent in

  3. Superoxide decay kinetics in the southern ocean.

    PubMed

    Heller, Maija I; Croot, Peter L

    2010-01-01

    Measurements of superoxide (O(2)(-)) reaction kinetics were made during a transect with the research icebreaker Polarstern (ANT24-3) in the Antarctic through the Drake Passage in austral autumn 2008. Our sampling strategy was designed to investigate the sinks of superoxide in Polar waters; principally through reactions with dissolved organic matter (DOM) or metals (copper and iron). We modified an existing chemiluminescence flow injection system using methyl Cypridina luciferin analog (MCLA) for the detection of O(2)(-) and added O(2)(-) using KO(2) as the source. Our results indicate that O(2)(-) in ambient seawater had a half-life ranging from 9.3 to 194 s. DTPA additions to seawater, to remove the effects of reactions with metals, revealed O(2)(-) decay rates consistent with a second order reaction, indicating that the dismutation reaction dominated and that reactions with DOM were not significant. Titrations of seawater by the addition of nanomolar amounts of iron or copper revealed the importance of organic chelation of Fe and/or Cu in controlling the reactivity with O(2)(-). Throughout the water column reactions with Cu appeared to be the major sink for superoxide in the Southern Ocean. This new strategy suggests an alternative approach for speciation measurements of Fe and Cu in seawater.

  4. The structural biochemistry of the superoxide dismutases

    PubMed Central

    Perry, J.J.P.; Shin, D.S.; Getzoff, E.D.; Tainer, J.A.

    2011-01-01

    The discovery of superoxide dismutases (SODs), which convert superoxide radicals to molecular oxygen and hydrogen peroxide, has been termed the most important discovery of modern biology never to win a Nobel Prize. Here, we review the reasons this discovery has been underappreciated, as well as discuss the robust results supporting its premier biological importance and utility for current research. We highlight our understanding of SOD function gained through structural biology analyses, which reveal important hydrogen-bonding schemes and metal-binding motifs. These structural features create remarkable enzymes that promote catalysis at faster than diffusion-limited rates by using electrostatic guidance. These architectures additionally alter the redox potential of the active site metal center to a range suitable for the superoxide disproportionation reaction and protect against inhibition of catalysis by molecules such as phosphate. SOD structures may also control their enzymatic activity through product inhibition; manipulation of these product inhibition levels has the potential to generate therapeutic forms of SOD. Markedly, structural destabilization of the SOD architecture can lead to disease, as mutations in Cu,ZnSOD may result in familial amyotrophic lateral sclerosis, a relatively common, rapidly progressing and fatal neurodegenerative disorder. We describe our current understanding of how these Cu,ZnSOD mutations may lead to aggregation/fibril formation, as a detailed understanding of these mechanisms provides new avenues for the development of therapeutics against this so far untreatable neurodegenerative pathology. PMID:19914407

  5. Extracellular superoxide dismutase of boar seminal plasma.

    PubMed

    Kowalowka, M; Wysocki, P; Fraser, L; Strzezek, J

    2008-08-01

    Superoxide dismutase (SOD) is an enzymatic component of the antioxidant defense system that protects spermatozoa by catalysing the dismutation of superoxide anions to hydrogen peroxide and oxygen. Age and season effects on SOD activity in the seminal plasma were measured in boars at the onset of 8 months through a 35-month period. It was found that age-related changes in SOD activity in the seminal plasma were markedly higher in boars less than 2 years of age. However, it appeared that SOD activity was established at the early sexual maturity age (8-12 months). There were variations in SOD activity throughout the season, being significantly higher in spring and autumn than in summer. A secretory extracellular form of SOD (EC-SOD) was purified to homogeneity (350-fold) from boar seminal plasma, using a three-step purification protocol (affinity chromatography followed by ion exchange and ceramic hydroxyapatite chromatography). The molecular properties and specificity of SOD (molecular mass, isoelectric point, optimum pH, thermostability and susceptibility to inhibitors) confirmed that the purified enzyme is an extracellular form of Cu/Zn-superoxide dismutase occurring in boar seminal plasma. The results of this study indicate that EC-SOD is an important antioxidant enzyme of boar seminal plasma, which plays an important physiological role in counteracting oxidative stress in spermatozoa.

  6. Scavenging of superoxide anions by lecithinized superoxide dismutase in HL-60 cells.

    PubMed

    Ishihara, Tsutomu; Shibui, Misaki; Hoshi, Takaya; Mizushima, Tohru

    2016-01-01

    Superoxide dismutase covalently bound to four lecithin molecules (PC-SOD) has been found to have beneficial therapeutic effects in animal models of various diseases. However, the mechanism underlying these improved therapeutic effects has not yet been elucidated. It has previously been shown that PC-SOD localizes on the plasma membrane and in the lysosomes of cells. In this study, we evaluated the superoxide anion-scavenging activity of PC-SOD in HL-60 human promyelocytic leukemia cells. Compared to SOD, PC-SOD had only 17% scavenging activity in cell-free systems. Nevertheless, by analyzing enzyme activities in cell suspensions containing PC-SOD or SOD, PC-SOD and SOD showed almost equal activity for scavenging extracellular superoxide anions produced by HL-60 cells. Furthermore, the activity for scavenging extracellular superoxide anions increased with increased amount of PC-SOD on the plasma membrane. Moreover, PC-SOD exhibited no obvious inhibitory effect on the scavenging of intracellular superoxide anions. These results suggested that the association of PC-SOD with the plasma membrane plays a key role in its beneficial therapeutic effects. Thus, this finding may provide a rationale for selecting target diseases for PC-SOD treatment.

  7. Superoxide Dismutase in the Symbiont Anabaena azollae Strasb. 1

    PubMed Central

    Canini, A.; Galiazzo, F.; Rotilio, G.; Caiola, M. Grilli

    1991-01-01

    Superoxide dismutase was investigated in the symbiont Anabaena azollae Strasb. living in Azolla filiculoides Lam. In vegetative cells, three isoenzymatic forms of superoxide dismutase, containing manganese, iron, and the hybrid iron-manganese, respectively, were present. Hybrid superoxide dismutase, detected for the first time in cyanobacteria, was 7% of the total superoxide dismutase present in vegetative cells. All three superoxide dismutase forms increased in the Anabaena vegetative cells obtained from irradiated plants grown in winter. In heterocysts, only an iron superoxide dismutase was present, which amounted to 25% of total vegetative cell superoxide dismutase activity. Hybrid superoxide dismutase appeared in heterocysts after irradiation. In vegetative cells of Anabaena from plants grown in summer, the basal level of total superoxide dismutase increased by 60% as compared with winter, and was unaffected by irradiation. The levels of superoxide dismutase in heterocysts from control and exposed plants grown in summer were comparable to those observed in heterocysts obtained from the plants grown during winter. No direct correlation was found between nitrogenase activity and superoxide dismutase in heterocysts. The presence of cyanophycin granules, either within the heterocyst pore channel or close to the transversal septum of vegetative cells, suggested a mechanism to stop communications between vegetative cells and heterocysts. ImagesFigure 1Figure 3Figure 4Figure 5 PMID:16668392

  8. Differential effects of superoxide dismutase and superoxide dismutase/catalase mimetics on human breast cancer cells.

    PubMed

    Shah, Manisha H; Liu, Guei-Sheung; Thompson, Erik W; Dusting, Gregory J; Peshavariya, Hitesh M

    2015-04-01

    Reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H2O2) have been implicated in development and progression of breast cancer. In the present study, we have evaluated the effects of the superoxide dismutase (SOD) mimetic MnTmPyP and the SOD/catalase mimetic EUK 134 on superoxide and H2O2 formation as well as proliferation, adhesion, and migration of MCF-7 and MDA-MB-231 cells. Superoxide and H2O2 production was examined using dihydroethidium and Amplex red assays, respectively. Cell viability and adhesion were measured using a tetrazolium-based MTT assay. Cell proliferation was determined using trypan blue assay. Cell cycle progression was analyzed using flow cytometry. Clonal expansion of a single cell was performed using a colony formation assay. Cell migration was measured using transwell migration assay. Dual luciferase assay was used to determine NF-κB reporter activity. EUK 134 effectively reduced both superoxide and H2O2, whereas MnTmPyP removed superoxide but enhanced H2O2 formation. EUK 134 effectively attenuated viability, proliferation, clonal expansion, adhesion, and migration of MCF-7 and MDA-MB-231 cells. In contrast, MnTmPyP only reduced clonal expansion of MCF-7 and MDA-MB-231 cells but had no effect on adhesion and cell cycle progression. Tumor necrosis factor-alpha-induced NF-κB activity was reduced by EUK 134, whereas MnTmPyP enhanced this activity. These data indicate that the SOD mimetic MnTmPyP and the SOD/catalase mimetic EUK 134 exert differential effects on breast cancer cell growth. Inhibition of H2O2 signaling using EUK 134-like compound might be a promising approach to breast cancer therapy.

  9. Superoxide Radical Lifetime on the Martian Surface

    NASA Astrophysics Data System (ADS)

    Zent, A. P.; Ichimura, A.; Quinn, R. C.

    2005-08-01

    We have examined the formation and stability of the superoxide radical O2-, which has been hypothesized as a potential Mars oxidant. Rutile (TiO2) was heated to ˜ 400 degrees C under vacuum. The samples were tipped off in ampules under 8-9 torr O2, photolyzed with a Hg lamp for 30 minutes; EPR spectra were immediately obtained at 77K. The signature of O2- was clearly observed in the rutile. The sealed ampules were stored at room temperature for up to 2 weeks without any decrease in the number of spins. The same process, applied to rutile that was not baked out yielded superoxide signals that could not be detected once the photolyzing flux was cut off. To examine the effects of partial dehydration, we carried out the same series of experiments on rutile that was baked out at 200 degrees C. This material showed decay of superoxide spins to zero in less than 10 minutes. This qualitative pattern is also observed in experiments on anatase (Attwood, et al., , 2003). We hypothesize that O2- can be stabilized against reaction with H2O and OH by crystalline surface defects. On hydrated surfaces, O2- must compete for stabilizing sites, and the population is quickly extinguished; in dehydrated samples, it can migrate to stabilizing defects. Once sorbed, the O2- radical is stable in the presence of H2O. OMEGA Mars Express data (Poullet et al, 2005) suggest one to several percent adsorbed H2O across the Martian surface, which will significantly decrease O2- lifetime. One possibility for subsurface stabilization of O2- can be postulated based on EPR spectra of anatase, exposed to H2O2 in our lab in 1996, and which in 2005 shows the signature of O2-. Evidently, H2O2 can convert to stable O2- on some surfaces. This hypothesis might allow subsurface diffusion of H2O2, followed by conversion to O2-.

  10. Subsarcolemmal and interfibrillar mitochondria display distinct superoxide production profiles.

    PubMed

    Crochemore, C; Mekki, M; Corbière, C; Karoui, A; Noël, R; Vendeville, C; Vaugeois, J-M; Monteil, C

    2015-03-01

    Cardiac subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) subpopulations display distinct biochemical, morphological, and functional characteristics. Moreover, they appear to be differently influenced during cardiac pathologies or toxic injuries. Although mitochondrial reactive oxygen species seem to play a critical role in cardiac function and diseases, limited information exists about the superoxide production characteristics of these mitochondrial subpopulations. In this work, using direct measurement of superoxide by electron paramagnetic resonance, we showed that differences in superoxide production profiles were present between cardiac IFM and SSM, in terms of intensity and major sites of superoxide generation. In SSM incubated with glutamate plus malate as substrates, the total observed superoxide levels were significantly higher than those observed with IFM, with an important contribution of the NADH-oxidizing site of complex I (site If) and the quinol-oxidizing site of complex III (site IIIQ0). In both IFM and SSM, succinate leads to similar rates of total superoxide levels with a substantial role for contribution of reverse electron transfer. Finally, using two spin probes with different membrane permeabilities, our data on complex III showed direct intra- and extra-mitochondrial superoxide release whereas complex I- and II-dependent superoxide were exclusively released inside the mitochondria, confirming previous studies. Feasibility of this approach to measure intra- and extra-mitochondrial superoxide levels and to characterize distinct superoxide production profiles of cardiac IFM and SSM has been demonstrated.

  11. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue

    DOE PAGES

    Teixeira, Miguel; Cabelli, Diane; Pinto, Ana F.; ...

    2014-12-05

    Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the –EKHVP– motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue ismore » substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (₋E₂₃T₂₄HVP₋), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.« less

  12. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue

    SciTech Connect

    Teixeira, Miguel; Cabelli, Diane; Pinto, Ana F.; Romao, Celia V.; Pinto, Liliana C.; Huber, Harald; Saraiva, Ligia M.; Todorovic, Smilja

    2014-12-05

    Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the –EKHVP– motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue is substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (₋E₂₃T₂₄HVP₋), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.

  13. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue.

    PubMed

    Pinto, Ana F; Romão, Célia V; Pinto, Liliana C; Huber, Harald; Saraiva, Lígia M; Todorovic, Smilja; Cabelli, Diane; Teixeira, Miguel

    2015-01-01

    Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the -EKHVP- motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue is substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic Crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (-E23T24HVP-), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild-type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.

  14. Superoxide production and decay in the subtropical North Pacific

    NASA Astrophysics Data System (ADS)

    Roe, K.; Voelker, B. M.; Hansel, C. M.

    2012-12-01

    Reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, can be generated through photochemical reactions or biological activity in seawater. The generation of ROS, especially superoxide, by photochemical or biological processes can influence trace metal speciation and cycling in the ocean since superoxide can react quickly with metals (Cu and Fe) and is capable of both oxidation and reduction of trace metals. In this study superoxide was detected and measured in the oligotrophic waters at station ALOHA by a MCLA chemiluminescence flow injection method. The superoxide concentrations ranged between 0.037-0.099 nM, had observed decay rates of 0.004-0.014 s-1, and production rates of 0.88-4.81 nM hr-1 during a 16 day period during July 2012. The influence of biological activity vs photochemical production on superoxide concentration, decay and production rates are discussed.

  15. Superoxide Free Radicals Are Produced in Glyoxysomes 1

    PubMed Central

    Sandalio, Luisa M.; Fernández, Victor M.; Rupérez, Francisco L.; Del Río, Luis A.

    1988-01-01

    The production of superoxide free radicals in pellet and supernatant fractions of glyoxysomes, specialized plant peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons, was investigated. Upon inhibition of the endogenous superoxide dismutase, xanthine, and hypoxanthine induced in glyoxysomal supernatants the generation of O2− radicals and this was inhibited by allopurinol. In glyoxysomal pellets, NADH stimulated the generation of superoxide radicals. Superoxide production by purines was due to xanthine oxidase, which was found predominantly in the matrix of glyoxysomes. The generation of O2− radicals in glyoxysomes by endogenous metabolites suggests new active oxygen-related roles for glyoxysomes, and for peroxisomes in general, in cellular metabolism. PMID:16666081

  16. Superoxide-dependent oxidation of melatonin by myeloperoxidase.

    PubMed

    Ximenes, Valdecir F; Silva, Sueli de O; Rodrigues, Maria R; Catalani, Luiz H; Maghzal, Ghassan J; Kettle, Anthony J; Campa, Ana

    2005-11-18

    Myeloperoxidase uses hydrogen peroxide to oxidize numerous substrates to hypohalous acids or reactive free radicals. Here we show that neutrophils oxidize melatonin to N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) in a reaction that is catalyzed by myeloperoxidase. Production of AFMK was highly dependent on superoxide but not hydrogen peroxide. It did not require hypochlorous acid, singlet oxygen, or hydroxyl radical. Purified myeloperoxidase and a superoxide-generating system oxidized melatonin to AFMK and a dimer. The dimer would result from coupling of melatonin radicals. Oxidation of melatonin was partially inhibited by catalase or superoxide dismutase. Formation of AFMK was almost completely eliminated by superoxide dismutase but weakly inhibited by catalase. In contrast, production of melatonin dimer was enhanced by superoxide dismutase and blocked by catalase. We propose that myeloperoxidase uses superoxide to oxidize melatonin by two distinct pathways. One pathway involves the classical peroxidation mechanism in which hydrogen peroxide is used to oxidize melatonin to radicals. Superoxide adds to these radicals to form an unstable peroxide that decays to AFMK. In the other pathway, myeloperoxidase uses superoxide to insert dioxygen into melatonin to form AFMK. This novel activity expands the types of oxidative reactions myeloperoxidase can catalyze. It should be relevant to the way neutrophils use superoxide to kill bacteria and how they metabolize xenobiotics.

  17. A mitochondrial superoxide theory for oxidative stress diseases and aging.

    PubMed

    Indo, Hiroko P; Yen, Hsiu-Chuan; Nakanishi, Ikuo; Matsumoto, Ken-Ichiro; Tamura, Masato; Nagano, Yumiko; Matsui, Hirofumi; Gusev, Oleg; Cornette, Richard; Okuda, Takashi; Minamiyama, Yukiko; Ichikawa, Hiroshi; Suenaga, Shigeaki; Oki, Misato; Sato, Tsuyoshi; Ozawa, Toshihiko; Clair, Daret K St; Majima, Hideyuki J

    2015-01-01

    Fridovich identified CuZnSOD in 1969 and manganese superoxide dismutase (MnSOD) in 1973, and proposed "the Superoxide Theory," which postulates that superoxide (O2 (•-)) is the origin of most reactive oxygen species (ROS) and that it undergoes a chain reaction in a cell, playing a central role in the ROS producing system. Increased oxidative stress on an organism causes damage to cells, the smallest constituent unit of an organism, which can lead to the onset of a variety of chronic diseases, such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis and other neurological diseases caused by abnormalities in biological defenses or increased intracellular reactive oxygen levels. Oxidative stress also plays a role in aging. Antioxidant systems, including non-enzyme low-molecular-weight antioxidants (such as, vitamins A, C and E, polyphenols, glutathione, and coenzyme Q10) and antioxidant enzymes, fight against oxidants in cells. Superoxide is considered to be a major factor in oxidant toxicity, and mitochondrial MnSOD enzymes constitute an essential defense against superoxide. Mitochondria are the major source of superoxide. The reaction of superoxide generated from mitochondria with nitric oxide is faster than SOD catalyzed reaction, and produces peroxynitrite. Thus, based on research conducted after Fridovich's seminal studies, we now propose a modified superoxide theory; i.e., superoxide is the origin of reactive oxygen and nitrogen species (RONS) and, as such, causes various redox related diseases and aging.

  18. Induction of superoxide dismutases in Photobacterium leiognathi.

    PubMed

    Kobayashi, H; Tonokawa, H; Fukasawa, S; Yamakura, F

    1991-01-01

    We investigated the induction of Cu,Zn-SOD (bacteriocuprein) and Fe-SOD in Photobacterium leiognathi DK-A1 which was isolated from the light organ of the squid, Droteuthis kensaki. The induction of superoxide dismutases depended on the addition of paraquat to the medium. Induction of SOD by paraquat was attributed mostly to the bacteriocuprein by measuring of the activities of both SODs by using densitometry of isoelectrofocusing gel. When paraquat was added to the culture at various times in the early log phase of growth, the most efficient induction of the SODs, which was measured at the time of harvesting the cells (17 hours after inoculation), was observed when paraquat was added at 60 min after the inoculation. Catalase was not significantly induced by the addition of paraquat or increasing of oxygen concentration. We developed an assay of SOD by modification of a cytochrome c-xanthine oxidase method using a computer equipped absorption spectrophotometer.

  19. Revisiting the reactions of superoxide with glutathione and other thiols.

    PubMed

    Winterbourn, Christine C

    2016-04-01

    The reaction between GSH and superoxide has long been of interest in the free radical biology. Early studies were confusing, as some reports suggested that the reaction could be a major pathway for superoxide removal whereas others questioned whether it happened at all. Further research by several investigators, including Helmut Sies, was required to clarify this complex reaction. We now know that superoxide does react with GSH, but the reaction is relatively slow and occurs mostly by a chain reaction that consumes oxygen and regenerates superoxide. Most of the GSH is converted to GSSG, with a small amount of sulfonic acid. As shown by Sies and colleagues, singlet oxygen is a by-product. Although removal of superoxide by GSH may be a minor pathway, GSH and superoxide have a strong physiological connection. GSH is an efficient free radical scavenger, and when it does so, thiyl radicals are generated. These further react to generate superoxide. Therefore, radical scavenging by GSH and other thiols is a source of superoxide and hydrogen peroxide, and to be an antioxidant pathway, there must be efficient removal of these species.

  20. Superoxide dismutase activity in thermally stressed Staphylococcus aureus.

    PubMed Central

    Bucker, E R; Martin, S E

    1981-01-01

    The effects of heat and NaCl on the activity of superoxide dismutase from Staphylococcus aureus were examined. A linear decrease in superoxide dismutase activity occurred when S. aureus MF-31 cells were thermally stressed for 90 min at 52% C in 100 mM potassium phosphate buffer (pH 7.2). After 20 min of heating, only 5% of the superoxide dismutase activity was lost. Heating for 60, 90 and 120 min resulted in decreases of approximately 10, 22, and 68%, respectively. The rates of thermal inactivation of superoxide dismutase from S. aureus strains 196E and 210 were similar and slightly greater than those of strains MF-31, S-6, and 181. The addition of NaCl before or after heating resulted in increased losses of superoxide dismutase activity. PMID:7235693

  1. Superoxide anion production by human neutrophils activated by Trichomonas vaginalis.

    PubMed

    Song, Hyun-Ouk; Ryu, Jae-Sook

    2013-08-01

    Neutrophils are the predominant inflammatory cells found in vaginal discharges of patients infected with Trichomonas vaginalis. In this study, we examined superoxide anion (O2 (.-)) production by neutrophils activated by T. vaginalis. Human neutrophils produced superoxide anions when stimulated with either a lysate of T. vaginalis, its membrane component (MC), or excretory-secretory product (ESP). To assess the role of trichomonad protease in production of superoxide anions by neutrophils, T. vaginalis lysate, ESP, and MC were each pretreated with a protease inhibitor cocktail before incubation with neutrophils. Superoxide anion production was significantly decreased by this treatment. Trichomonad growth was inhibited by preincubation with supernatants of neutrophils incubated for 3 hr with T. vaginalis lysate. Furthermore, myeloperoxidase (MPO) production by neutrophils was stimulated by live trichomonads. These results indicate that the production of superoxide anions and MPO by neutrophils stimulated with T. vaginalis may be a part of defense mechanisms of neutrophils in trichomoniasis.

  2. Manganese Superoxide Dismutase: Guardian of the Powerhouse

    PubMed Central

    Holley, Aaron K.; Bakthavatchalu, Vasudevan; Velez-Roman, Joyce M.; St. Clair, Daret K.

    2011-01-01

    The mitochondrion is vital for many metabolic pathways in the cell, contributing all or important constituent enzymes for diverse functions such as β-oxidation of fatty acids, the urea cycle, the citric acid cycle, and ATP synthesis. The mitochondrion is also a major site of reactive oxygen species (ROS) production in the cell. Aberrant production of mitochondrial ROS can have dramatic effects on cellular function, in part, due to oxidative modification of key metabolic proteins localized in the mitochondrion. The cell is equipped with myriad antioxidant enzyme systems to combat deleterious ROS production in mitochondria, with the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) acting as the chief ROS scavenging enzyme in the cell. Factors that affect the expression and/or the activity of MnSOD, resulting in diminished antioxidant capacity of the cell, can have extraordinary consequences on the overall health of the cell by altering mitochondrial metabolic function, leading to the development and progression of numerous diseases. A better understanding of the mechanisms by which MnSOD protects cells from the harmful effects of overproduction of ROS, in particular, the effects of ROS on mitochondrial metabolic enzymes, may contribute to the development of novel treatments for various diseases in which ROS are an important component. PMID:22072939

  3. Manganese Superoxide Dismutase in Cancer Prevention

    PubMed Central

    Robbins, Delira

    2014-01-01

    Abstract Significance: Cancer is the second leading cause of death in the United States. Considering the quality of life and treatment cost, the best way to fight against cancer is to prevent or suppress cancer development. Cancer is preventable as indicated by human papilloma virus (HPV) vaccination and tamoxifen/raloxifen treatment in breast cancer prevention. The activities of superoxide dismutases (SODs) are often lowered during early cancer development, making it a rational candidate for cancer prevention. Recent Advances: SOD liposome and mimetics have been shown to be effective in cancer prevention animal models. They've also passed safety tests during early phase clinical trials. Dietary supplement-based SOD cancer prevention provides another opportunity for antioxidant-based cancer prevention. New mechanistic studies have revealed that SOD inhibits not only oncogenic activity, but also subsequent metabolic shifts during early tumorigenesis. Critical Issues: Lack of sufficient animal model studies targeting specific cancers; and lack of clinical trials and support from pharmaceutical industries also hamper efforts in further advancing SOD-based cancer prevention. Future Directions: To educate and obtain support from our society that cancer is preventable. To combine SOD-based therapeutics with other cancer preventive agents to obtain synergistic effects. To formulate a dietary supplementation-based antioxidant approach for cancer prevention. Lastly, targeting specific populations who are prone to carcinogens, which can trigger oxidative stress as the mechanism of carcinogenesis. Antioxid. Redox Signal. 20, 1628–1645. PMID:23706068

  4. Manganese superoxide dismutase: beyond life and death

    PubMed Central

    Holley, Aaron K.; Dhar, Sanjit Kumar; Xu, Yong

    2010-01-01

    Manganese superoxide dismutase (MnSOD) is a nuclear-encoded antioxidant enzyme that localizes to the mitochondria. Expression of MnSOD is essential for the survival of aerobic life. Transgenic mice expressing a luciferase reporter gene under the control of the human MnSOD promoter demonstrate that the level of MnSOD is reduced prior to the formation of cancer. Overexpression of MnSOD in transgenic mice reduces the incidences and multiplicity of papillomas in a DMBA/TPA skin carcinogenesis model. However, MnSOD deficiency does not lead to enhanced tumorigenicity of skin tissue similarly treated because MnSOD can modulate both the p53-mediated apoptosis and AP-1-mediated cell proliferation pathways. Apoptosis is associated with an increase in mitochondrial levels of p53 suggesting a link between MnSOD deficiency and mitochondrial-mediated apoptosis. Activation of p53 is preventable by application of a SOD mimetic (MnTE-2-PyP5+). Thus, p53 translocation to mitochondria and subsequent inactivation of MnSOD explain the observed mitochondrial dysfunction that leads to transcription-dependent mechanisms of p53-induced apoptosis. Administration of MnTE-2-PyP5+ following apoptosis but prior to proliferation leads to suppression of protein carbonyls and reduces the activity of AP-1 and the level of the proliferating cellular nuclear antigen, without reducing the activity of p53 or DNA fragmentation following TPA treatment. Remarkably, the incidence and multiplicity of skin tumors are drastically reduced in mice that receive MnTE-2-PyP5+ prior to cell proliferation. The results demonstrate the role of MnSOD beyond its essential role for survival and suggest a novel strategy for an antioxidant approach to cancer intervention. PMID:20454814

  5. Magnetoreception through Cryptochrome May Involve Superoxide

    PubMed Central

    Solov'yov, Ilia A.; Schulten, Klaus

    2009-01-01

    Abstract In the last decades, it has been demonstrated that many animal species orient in the Earth magnetic field. One of the best-studied examples is the use of the geomagnetic field by migratory birds for orientation and navigation. However, the biophysical mechanism underlying animal magnetoreception is still not understood. One theory for magnetoreception in birds invokes the so-called radical-pair model. This mechanism involves a pair of reactive radicals, whose chemical fate can be influenced by the orientation with respect to the magnetic field of the Earth through Zeeman and hyperfine interactions. The fact that the geomagnetic field is weak, i.e., ∼0.5 G, puts a severe constraint on the radical pair that can establish the magnetic compass sense. For a noticeable change of the reaction yield in a redirected geomagnetic field, the hyperfine interaction has to be as weak as the Earth field Zeeman interaction, i.e., unusually weak for an organic compound. Such weak hyperfine interaction can be achieved if one of the radicals is completely devoid of this interaction as realized in a radical pair containing an oxygen molecule as one of the radicals. Accordingly, we investigate here a possible radical pair-based reaction in the photoreceptor cryptochrome that reduces the protein's flavin group from its signaling state FADH• to the inactive state FADH– (which reacts to the likewise inactive FAD) by means of the superoxide radical, O2•–. We argue that the spin dynamics in the suggested reaction can act as a geomagnetic compass and that the very low physiological concentration (nM-μM) of otherwise toxic O2•– is sufficient, even favorable, for the biological function. PMID:19527640

  6. Superoxide-dependent cerebrovascular effects of homocysteine.

    PubMed

    Zhang, F; Slungaard, A; Vercellotti, G M; Iadecola, C

    1998-06-01

    Recent evidence indicates that elevated plasma levels of homocysteine are a risk factor for ischemic cerebrovascular diseases. However, little is known about cerebrovascular effects of homocysteine. Homocysteine could impair cerebrovascular function by metal-catalyzed production of activated oxygen species. We studied whether homocysteine, in the presence of Cu2+, alters reactivity of cerebral circulation and, if so, whether this effect depends on O-2 generation. In halothane-anesthetized rats the parietal cortex was exposed and superfused with Ringer solution. Cerebrocortical blood flow (CBF) was monitored by a laser-Doppler probe. With Ringer solution superfusion, CBF increased with hypercapnia (+134 +/- 7%; PCO2 = 50-60 mmHg) and topical application of 10 microM ACh (+35 +/- 3%), the NO donor S-nitroso-N-acetylpenicillamine (SNAP, 500 microM; +66 +/- 6%), or 1 mM papaverine (+100 +/- 6%; n = 5). Superfusion with 40 microM Cu2+ alone did not perturb resting CBF or responses to hypercapnia, ACh, SNAP, or papaverine (P > 0.05, n = 5). However, superfusion of homocysteine-Cu2+ reduced resting CBF (-28 +/- 4%) and attenuated (P < 0.05) responses to hypercapnia (-31 +/- 9%), ACh (-73 +/- 6%), or SNAP (-48 +/- 4%), but not papaverine. The effect was observed only at 1 mM homocysteine. Cerebrovascular effects of homocysteine-Cu2+ were prevented by coadministration of superoxide dismutase (SOD; 1,000 U/ml; n = 5). SOD alone did not affect resting CBF or CBF reactivity (n = 5). The observation that homocysteine-Cu2+ attenuates the response to hypercapnia, ACh, and SNAP, but not the NO-independent vasodilator papaverine, suggests that homocysteine-Cu2+ selectively impairs NO-related cerebrovascular responses. The fact that SOD prevents such impairment indicates that the effect of homocysteine is O-2 dependent. The data support the conclusion that O-2, generated by the reaction of homocysteine with Cu2+, inhibits NO-related cerebrovascular responses by scavenging NO

  7. Suppressors of superoxide production from mitochondrial complex III

    PubMed Central

    Orr, Adam L.; Vargas, Leonardo; Turk, Carolina N.; Baaten, Janine E.; Matzen, Jason T.; Dardov, Victoria J.; Attle, Stephen J.; Li, Jing; Quackenbush, Douglas C.; Goncalves, Renata L. S.; Perevoshchikova, Irina V.; Petrassi, H. Michael; Meeusen, Shelly L.; Ainscow, Edward K.; Brand, Martin D.

    2015-01-01

    Mitochondrial electron transport drives ATP synthesis but also generates reactive oxygen species (ROS), which are both cellular signals and damaging oxidants. Superoxide production by respiratory complex III is implicated in diverse signaling events and pathologies but its role remains controversial. Using high-throughput screening we identified compounds that selectively eliminate superoxide production by complex III without altering oxidative phosphorylation; they modulate retrograde signaling including cellular responses to hypoxic and oxidative stress. PMID:26368590

  8. The crystal structure of superoxide dismutase from Plasmodium falciparum

    PubMed Central

    Boucher, Ian W; Brzozowski, Andrzej M; Brannigan, James A; Schnick, Claudia; Smith, Derek J; Kyes, Sue A; Wilkinson, Anthony J

    2006-01-01

    Background Superoxide dismutases (SODs) are important enzymes in defence against oxidative stress. In Plasmodium falciparum, they may be expected to have special significance since part of the parasite life cycle is spent in red blood cells where the formation of reactive oxygen species is likely to be promoted by the products of haemoglobin breakdown. Thus, inhibitors of P. falciparum SODs have potential as anti-malarial compounds. As a step towards their development we have determined the crystal structure of the parasite's cytosolic iron superoxide dismutase. Results The cytosolic iron superoxide dismutase from P. falciparum (PfFeSOD) has been overexpressed in E. coli in a catalytically active form. Its crystal structure has been solved by molecular replacement and refined against data extending to 2.5 Å resolution. The structure reveals a two-domain organisation and an iron centre in which the metal is coordinated by three histidines, an aspartate and a solvent molecule. Consistent with ultracentrifugation analysis the enzyme is a dimer in which a hydrogen bonding lattice links the two active centres. Conclusion The tertiary structure of PfFeSOD is very similar to those of a number of other iron-and manganese-dependent superoxide dismutases, moreover the active site residues are conserved suggesting a common mechanism of action. Comparison of the dimer interfaces of PfFeSOD with the human manganese-dependent superoxide dismutase reveals a number of differences, which may underpin the design of parasite-selective superoxide dismutase inhibitors. PMID:17020617

  9. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-09-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as rad OH and ONOO -. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  10. Production of superoxide and activity of superoxide dismutase in rabbit epididymal spermatozoa.

    PubMed

    Holland, M K; Alvarez, J G; Storey, B T

    1982-12-01

    Mature rabbit spermatozoa from the cauda epididymidis suspended in potassium Tris phosphate buffer at 24 degrees C produced O2.-, as measured by reduction of acetylated ferricytochrome c, with an intrinsic rate of 0.20 nmol/min per 10(8) cells. This rate increased to 1.80 nmol/min per 10(8) cells in the presence of 10 mM cyanide. These spermatozoa contain 2.8 units per 10(8) cells of superoxide dismutase activity, 95% of which is sensitive, and 5% of which is insensitive, to cyanide inhibition. These activities correspond to the cytosolic Cu-Zn form and the mitochondrial Mn form of the dismutase, respectively. Only the cyanide-sensitive form is released from the sperm on hypo-osmotic treatment or sonication. Hypo-osmotically treated rabbit epididymal spermatozoa produced O2.- with an intrinsic rate of 0.24 nmol/min per 10(8) cells, which increased to 0.58 nmol/min per 10(8) cells in the presence of 10 mM cyanide. Both intact and hypo-osmotically treated cells react with O2.- in a second order reaction as inferred from the hyperbolic dependence on cell concentration of O2.- production rate in both the absence and presence of cyanide. The second order rate constant for this reaction with intact cells, kS, was calculated to be 22.9 X 10(-8) (cells/ml)-1 min-1 in its absence. For hypo-osmotically treated cells, the values of kS were 10.8 X 10(-8) (cells/ml)-1 min-1 and 8.2 X 10(-8) (cells/ml) -1 min-1, respectively. Since hypo-osmotically treated cells have lost much of their plasma membrane, the lower value of kS for the treated cells implies that this membrane is one site of reaction of O2.- with the cells. The increase in kS in the presence of cyanide, which inhibits superoxide dismutase and so increases O2.- production, suggests that the cells become more reactive with O2.- as its production rate increase, as would be expected for the occurrence of radical chain oxidation. This in turn suggests that superoxide dismutase plays a major role in protecting rabbit sperm

  11. A flow-system comparison of the reactivities of calcium superoxide and potassium superoxide with carbon dioxide and water vapor

    NASA Technical Reports Server (NTRS)

    Wood, P. C.; Ballou, E. V.; Spitze, L. A.; Wydeven, T.

    1982-01-01

    A single pass flow system was used to test the reactivity of calcium superoxide with respiratory gases and the performance was compared to that of potassium superoxide. The KO2 system is used by coal miners as a self-contained unit in rescue operations. Particular attention was given to the reactivity with carbon dioxide and water vapor at different temperatures and partial pressures of oxygen, carbon dioxide, and water vapor. The calcium superoxide beds were found to absorb CO2 and H2O vapor, releasing O2. The KO2 bed, however, released O2 at twice the rate of CO2 absorption at 37 C. It is concluded that the calcium superoxide material is not a suitable replacement for the KO2 bed, although Ca(O2)2 may be added to the KO2 bed to enhance the CO2 absorption.

  12. Skeletal muscle contractions induce acute changes in cytosolic superoxide, but slower responses in mitochondrial superoxide and cellular hydrogen peroxide.

    PubMed

    Pearson, Timothy; Kabayo, Tabitha; Ng, Rainer; Chamberlain, Jeffrey; McArdle, Anne; Jackson, Malcolm J

    2014-01-01

    Skeletal muscle generation of reactive oxygen species (ROS) is increased following contractile activity and these species interact with multiple signaling pathways to mediate adaptations to contractions. The sources and time course of the increase in ROS during contractions remain undefined. Confocal microscopy with specific fluorescent probes was used to compare the activities of superoxide in mitochondria and cytosol and the hydrogen peroxide content of the cytosol in isolated single mature skeletal muscle (flexor digitorum brevis) fibers prior to, during, and after electrically stimulated contractions. Superoxide in mitochondria and cytoplasm were assessed using MitoSox red and dihydroethidium (DHE) respectively. The product of superoxide with DHE, 2-hydroxyethidium (2-HE) was acutely increased in the fiber cytosol by contractions, whereas hydroxy-MitoSox showed a slow cumulative increase. Inhibition of nitric oxide synthases increased the contraction-induced formation of hydroxy-MitoSox only with no effect on 2-HE formation. These data indicate that the acute increases in cytosolic superoxide induced by contractions are not derived from mitochondria. Data also indicate that, in muscle mitochondria, nitric oxide (NO) reduces the availability of superoxide, but no effect of NO on cytosolic superoxide availability was detected. To determine the relationship of changes in superoxide to hydrogen peroxide, an alternative specific approach was used where fibers were transduced using an adeno-associated viral vector to express the hydrogen peroxide probe, HyPer within the cytoplasmic compartment. HyPer fluorescence was significantly increased in fibers following contractions, but surprisingly followed a relatively slow time course that did not appear directly related to cytosolic superoxide. These data demonstrate for the first time temporal and site specific differences in specific ROS that occur in skeletal muscle fibers during and after contractile activity.

  13. Superoxide modulates myogenic contractions of mouse afferent arterioles.

    PubMed

    Lai, En Yin; Wellstein, Anton; Welch, William J; Wilcox, Christopher S

    2011-10-01

    Reactive oxygen species enhance or impair autoregulation. Because superoxide is a vasoconstrictor, we tested the hypothesis that stretch generates superoxide that mediates myogenic responses. Increasing perfusion pressure of mouse isolated perfused renal afferent arterioles from 40 to 80 mm Hg reduced their diameter by 13.3±1.8% (P<0.001) and increased reactive oxygen species (ethidium: dihydroethidium fluorescence) by 9.8±2.3% (P<0.05). Stretch-induced fluorescence was reduced significantly (P<0.05) by incubation with Tempol (3.7±0.8%), pegylated superoxide dismutase (3.2±1.0%), or apocynin (3.5±0.9%) but not by pegylated catalase, L-nitroarginine methylester, or Ca(2+)-free medium, relating it to Ca(2+)-independent vascular superoxide. Compared with vehicle, basal tone and myogenic contractions were reduced significantly (P<0.05) by pegylated superoxide dismutase (5.4±0.8), Tempol (4.1±1.0%), apocynin (1.0±1.3%), and diphenyleneiodinium (3.9±0.9%) but not by pegylated catalase (10.1±1.6%). L-Nitroarginine methylester enhanced basal tone, but neither it (15.8±3.3%) nor endothelial NO synthase knockout (10.2±1.8%) significantly changed myogenic contractions. Tempol had no further effect after superoxide dismutase but remained effective after catalase. H(2)O(2) >50 μmol/L caused contractions but at 25 μmol/L inhibited myogenic responses (7.4±0.8%; P<0.01). In conclusion, increasing the pressure within afferent arterioles led to Ca(2+)-independent increased vascular superoxide production from nicotinamide adenine dinucleotide phosphate oxidase, which enhanced myogenic contractions largely independent of NO, whereas H(2)O(2) impaired pressure-induced contractions but was not implicated in the normal myogenic response.

  14. Photodynamic production of superoxide in vitro by altertoxins in the presence of reducing agents.

    PubMed

    Hartman, P E; Suzuki, C K; Stack, M E

    1989-01-01

    Superoxide production by the three 4,9-dihydroxyperylene-3,10-quinone fungal toxins, altertoxins I, II, and III, was stimulated on illumination with broad-spectrum light. As determined previously for cercosporin, superoxide production by illuminated altertoxins was increased by the addition of the reducing substances ergothioneine or urate; ascorbate also effectively increased superoxide production. Illuminated urate alone engendered some superoxide production.

  15. Superoxide production in aprotic interior of chloroplast thylakoids.

    PubMed

    Takahashi, M; Asada, K

    1988-12-01

    The site of superoxide production in spinach thylakoids was found to be the aprotic interior of the thylakoid membranes near the P700 chlorophyll a protein at the reaction center of photosystem I complexes. This conclusion was drawn from the following findings. (i) Cytochrome c reduction by illuminated thylakoids, which was confirmed to be superoxide dependent by the failure of this reaction to occur in anaerobiosis, was completely inhibited by a dibutyl catechol, but partially inhibited by a hydrophilic disulfonated derivative. (ii) P700 chlorophyll a proteins were preferentially iodinated by lactoperoxidase by the use of hydrogen peroxide that was derived from the disproportionation of superoxides in illuminated thylakoids. (iii) Hydrogen peroxide production and oxygen uptake were induced by ammonium chloride, a proton conductor that can permeate through thylakoid membranes, but whole superoxide in the bulk solution was oxidized back to molecular oxygen by cytochrome c. The effective concentration of ammonium chloride decreased to one-sixtieth of the original, when an ammonium ion ionophore, nonactin, was added. Thus, the weak acid allowed superoxide to yield hydrogen peroxide disproportionately in the thylakoid membrane interior.

  16. The superoxide reductase from the early diverging eukaryote Giardia intestinalis.

    PubMed

    Testa, Fabrizio; Mastronicola, Daniela; Cabelli, Diane E; Bordi, Eugenio; Pucillo, Leopoldo P; Sarti, Paolo; Saraiva, Lígia M; Giuffrè, Alessandro; Teixeira, Miguel

    2011-10-15

    Unlike superoxide dismutases (SODs), superoxide reductases (SORs) eliminate superoxide anion (O(2)(•-)) not through its dismutation, but via reduction to hydrogen peroxide (H(2)O(2)) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR(Gi)) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T(final)) with Fe(3+) ligated to glutamate or hydroxide depending on pH (apparent pK(a)=8.7). Although showing negligible SOD activity, reduced SOR(Gi) reacts with O(2)(•-) with a pH-independent second-order rate constant k(1)=1.0×10(9) M(-1) s(-1) and yields the ferric-(hydro)peroxo intermediate T(1); this in turn rapidly decays to the T(final) state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR(Gi) is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  17. Characterization of superoxide production by isolated pea thylakoids

    SciTech Connect

    Grace, S.; Osmond, B. )

    1991-05-01

    During photosynthesis chloroplasts univalently reduce molecular oxygen to superoxide through autoxidations in the electron transport chain. Cytochrome c reduction was used to assay superoxide production in illuminate pea thylakoids under a variety of conditions. Superoxide dismutase was found to inhibit the reaction by 80%, indicating that cytochrome c reduction is primarily mediated by superoxide. This was further supported by the observation that the highest rates of cytochrome c reduction occurred in the presence of methyl viologen, an autoxidizable redox carrier that accepts electrons from photosystem I. The reaction was fully suppressed by DCMU, demonstrating a requirement for electron transport. In the presence of the plastoquinone antagonist DBMIB the rate of cytochrome c reduction increased substantially. This indicates that under conditions where electron transport to photosystem I is blocked, autoxidation reactions can occur on the reducing side of photosystem II to maintain Q{sub A} in the oxidized state. Superoxide production at sites other than the reducing side of photosystem I may thus represent an important pathway for dissipating excess excitation energy.

  18. Formation of manganese oxides by bacterially generated superoxide

    NASA Astrophysics Data System (ADS)

    Learman, D. R.; Voelker, B. M.; Vazquez-Rodriguez, A. I.; Hansel, C. M.

    2011-02-01

    Manganese oxide minerals are among the strongest sorbents and oxidants in the environment. The formation of these minerals controls the fate of contaminants, the degradation of recalcitrant carbon, the cycling of nutrients and the activity of anaerobic-based metabolisms. Oxidation of soluble manganese(II) ions to manganese(III/IV) oxides has been primarily attributed to direct enzymatic oxidation by microorganisms. However, the physiological reason for this process remains unknown. Here we assess the ability of a common species of marine bacteria-Roseobacter sp. AzwK-3b-to oxidize manganese(II) in the presence of chemical and biological inhibitors. We show that Roseobacter AzwK-3b oxidizes manganese(II) by producing the strong and versatile redox reactant superoxide. The oxidation of manganese(II), and concomitant production of manganese oxides, was inhibited in both the light and dark in the presence of enzymes and metals that scavenge superoxide. Oxidation was also inhibited by various proteases, enzymes that break down bacterial proteins, confirming that the superoxide was bacterially generated. We conclude that bacteria can oxidize manganese(II) indirectly, through the enzymatic generation of extracellular superoxide radicals. We suggest that dark bacterial production of superoxide may be a driving force in metal cycling and mineralization in the environment.

  19. Superoxide dismutase and O2 lethality in Bacteroides fragilis.

    PubMed Central

    Privalle, C T; Gregory, E M

    1979-01-01

    Exposure of midlog Bacteroides fragils (VPI 2393) to 2% O2-98% N2 caused a three- to fivefold increase in superoxide dismutase specific activity within the cells. The increase in specific activity was completed within 90 min after exposure to oxygen and was dependent upon protein synthesis. Cells containing the higher superoxide dismutase level were more resistant to the effects of 5 atm of oxygen tension than were cells containing the lower level of superoxide dismutase but were equally resistant to 5 atm of nitrogen tension. Similar results were observed upon comparing viability experiments with B. fragilis and B. vulgatus. Superoxide dismutase activity in sonic extracts of B. fragilis was rapidly inactivated by exposure to 5 mM H2O2 and was inhibited by 1 mM NaN3 but not 5 mM NaCN. The inhibition pattern is identical to the pattern demonstrated for the purified iron-containing enzyme from Escherichia coli B and suggests that the superoxide dismutase in B. fragilis is an iron enzyme. PMID:438129

  20. Induction of Cu,Zn-superoxide dismutase after cortical contusion injury during hypothermia.

    PubMed

    Fukuhara, T; Nishio, S; Ono, Y; Kawauchi, M; Asari, S; Ohmoto, T

    1994-09-19

    To determine the effect of hypothermia on superoxide injury after cerebral contusion, the induction of Cu,Zn-superoxide dismutase was examined 6 h after contusion in rats using Northern blotting. Cu,Zn-superoxide dismutase gene expression increased at the periphery of the contusion, which may indicate the severity of the superoxide stimulus. This increase was preserved after contusion under hypothermia, which may show that superoxide injury is still severe although brain edema is decreased.

  1. Bleaching of the red anthocyanin induced by superoxide radical.

    PubMed

    Yamasaki, H; Uefuji, H; Sakihama, Y

    1996-08-01

    Red anthocyanin prepared from petals of Hibiscus rosa-sinensis L. was photobleached in the EDTA-riboflavin system. The rate of bleaching monitored at 565 nm depended on the light intensity and EDTA concentrations. Anaerobic conditions and/or addition of superoxide dismutase prevented the bleaching of anthocyanin, whereas mannitol and catalase did not. A similar bleaching was observed under dark conditions in the xanthine-xanthine oxidase system. The results indicate that anthocyanin is bleached by the nonenzymatic reaction with the superoxide radical and suggest that the pigment can function as an antioxidant. The antioxidative efficiency of cyanidin to superoxide was 10-fold higher than that of cyanidin-3-sophoroside as a Hibiscus anthocyanin.

  2. The preparation of calcium superoxide from calcium peroxide diperoxyhydrate

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Wood, P. C.; Spitze, L. A.; Wydeven, T.

    1977-01-01

    There is interest in solid materials containing a high percentage of stored oxygen for use in emergency breathing apparatus for miners and as auxiliary oxygen sources for astronauts. In theory, the amount of available oxygen in calcium superoxide, Ca(O2)2 is higher than in potassium superoxide, KO2, and its availability during use should be unhindered by the formation of a low melting and hydrous coating. The decomposition of solid calcium peroxide diperoxyhydrate, CaO2.2H2O2 has been studied, using an apparatus which allows good control of the critical reaction parameters. Samples have been prepared showing apparent superoxide contents in excess of those previously reported and higher than the theoretical 58.4% expected from a disproportionation reaction.

  3. Ferric human neuroglobin scavenges superoxide to form oxy adduct.

    PubMed

    Yamashita, Taku; Hafsi, Leila; Masuda, Eri; Tsujino, Hirofumi; Uno, Tadayuki

    2014-01-01

    Neuroglobin (Ngb) is the third member of the vertebrate globin family, and the structure was solved as a typical globin fold with a b-type heme. Although it has been proposed that Ngb could be involved in neuroprotection against oxidative stress, the protective mechanism has not been fully identified yet. In order to clarify functions under hypoxic condition, in this study, we focused on the scavenger activity of human Ngb (hNgb) against superoxide. The activity of hNgb for superoxide was evaluated to be 7.4 µM for IC50, the half maximal inhibitory concentration. The result indicates that hNgb can be an anti-oxidant, and the value was almost the same as that of ascorbic acid. In addition, we characterized oxidation states of a heme iron in superoxide-treated hNgb with spectroscopic measurements. Superoxide-treated hNgb in the ferric form was readily converted to the oxygenated ferrous form, and the result suggested that ferric hNgb could scavenge superoxide by change of an oxidation state in a heme iron. Moreover, mutational experiments were performed, and the each variant mutated at 46 and 55 positions suggested a disulfide bond between Cys46 and Cys55 could be essential to be sensors for oxidative stress with the direct binding of superoxide. As a consequence, we concluded that redox changes of the heme iron and the disulfide bond could regulate neuroprotective functions of hNgb, and it suggests that hNgb can afford protection against hypoxic and ischemic stress in the brain.

  4. A novel murrel Channa striatus mitochondrial manganese superoxide dismutase: gene silencing, SOD activity, superoxide anion production and expression.

    PubMed

    Arockiaraj, Jesu; Palanisamy, Rajesh; Bhatt, Prasanth; Kumaresan, Venkatesh; Gnanam, Annie J; Pasupuleti, Mukesh; Kasi, Marimuthu

    2014-12-01

    We have reported the molecular characterization including gene silencing, superoxide activity, superoxide anion production, gene expression and molecular characterization of a mitochondrial manganese superoxide dismutase (mMnSOD) from striped murrel Channa striatus (named as CsmMnSOD). The CsmMnSOD polypeptide contains 225 amino acids with a molecular weight of 25 kDa and a theoretical isoelectric point of 8.3. In the N-terminal region, CsmMnSOD carries a mitochondrial targeting sequence and a superoxide dismutases (SOD) Fe domain (28-109), and in C-terminal region, it carries another SOD Fe domain (114-220). The CsmMnSOD protein sequence shared significant similarity with its homolog of MnSOD from rock bream Oplegnathus fasciatus (96%). The phylogenetic analysis showed that the CsmMnSOD fell in the clade of fish mMnSOD group. The monomeric structure of CsmMnSOD possesses 9 α-helices (52.4%), 3 β-sheets (8.8%) and 38.8% random coils. The highest gene expression was noticed in liver, and its expression was inducted with fungal (Aphanomyces invadans) and bacterial (Aeromonas hydrophila) infections. The gene silencing results show that the fish that received dsRNA exhibited significant (P < 0.05) changes in expression when compared to their non-injected and fish physiological saline-injected controls. The SOD activity shows that the activity increases with the spread of infection and decreases once the molecule controls the pathogen. The capacity of superoxide anion production was determined by calculating the granular blood cell count during infection in murrel. It shows that the infection influenced the superoxide radical production which plays a major role in killing the pathogens. Overall, this study indicated the defense potentiality of CsmMnSOD; however, further research is necessary to explore its capability at protein level.

  5. Studies with primaquine in vitro: superoxide radical formation and oxidation of haemoglobin.

    PubMed Central

    Summerfield, M; Tudhope, G R

    1978-01-01

    1. The production of superoxide radicals from primaquine diphosphate in aqueous solution has been demonstrated, using as indicator the reduction of cytochrome C with inhibition of the reaction by superoxide dismutase. 2. Primaquine-mediated oxidation of haemoglobin to methaemoglobin was reduced by the addition of catalase and increased by superoxide dismutase. Mannitol, a hydroxyl radical scavenger, abolished the increase in methaemoglobin observed in the presence of superoxide dismutase. EDTA reduced the oxidation of haemoglobin with and without superoxide dismutase. 3. Although the oxidation of haemoglobin in the presence of primaquine includes the effects of hydrogen peroxide, superoxide and hydroxyl radicals and metal ions, the results indicate that hydrogen peroxide, rather than the superoxide radical, is the main oxidizing species. The increase in haemoglobin oxidation occurring with superoxide dismutase may result from the augmented rate of hydrogen peroxide formation from superoxide radicals. PMID:212091

  6. Coelenterazine analogs as chemiluminescent probe for superoxide anion.

    PubMed

    Teranishi, K; Shimomura, O

    1997-06-15

    Eleven new coelenterazine analogs containing the 3,7-dihydroimidazo[1,2-alpha]pyrazin-3-one structure were synthesized. The superoxide-triggered chemiluminescence of these compounds was investigated using the hypoxanthine-xanthine oxidase system in comparison with four known compounds. The results showed that an alkyl substitution at the position 5 of the imidazopyrazinone ring causes a drastic decrease in the superoxide-dependent chemiluminescence intensity, whereas a dimethylene bridge added between the position 5 and the phenyl group bound to the position 6 dramatically increases the luminescence intensity, indicating the potential usefulness of this type of compound as a probe for superoxide anion. The luminescence intensity of the bridged analog was 33 times greater than that of MCLA [2-methyl-6-(4-methoxyphenyl)-3, 7-dihydroimidazo[1,2-alpha]pyrazin-3-one], the most sensitive superoxide probe of Cypridina luciferin-type. Two of the analogs synthesized, each with a covalently bound cyclodextrin, had a good solubility in water, an advantage in actual use. Moreover, one of them having a beta-cyclodextrin group showed a unique property; its luminescence was little affected by various substances in the environment.

  7. Role of nitric oxide and superoxide in Giardia lamblia killing.

    PubMed

    Fernandes, P D; Assreuy, J

    1997-01-01

    Giardia lamblia trophozoites were incubated for 2 h with activated murine macrophages, nitric oxide (NO) donors or a superoxide anion generator (20 mU/ml xanthine oxidase plus 1 mM xanthine). Activated macrophages were cytotoxic to Giardia trophozoites (approximately 60% dead trophozoites). The effect was inhibited (> 90%) by an NO synthase inhibitor (200 microM) and unaffected by superoxide dismutase (SOD, 300 U/ml). Giardia trophozoites were killed by the NO donors, S-nitroso-acetyl-penicillamine (SNAP) and sodium nitroprusside (SNP) in a dose-dependent manner (LD50 300 and 50 microM, respectively). A dual NO-superoxide anion donor, 3-morpholino-sydnonimine hydrochloride (SIN-1), did not have a killing effect in concentrations up to 1 mM. However, when SOD (300 U/ml) was added simultaneously with SIN-1 to Giardia, a significant trophozoite-killing effect was observed (approximately 35% dead trophozoites at 1 mM). The mixtures of SNAP or SNP with superoxide anion, which yields peroxynitrite, abolished the trophozoite killing induced by NO donors. Authentic peroxynitrite only killed trophozoites at very high concentrations (3 mM). These results indicate that NO accounts for Giardia trophozoites killing and this effect is not mediated by peroxynitrite.

  8. Cu/Zn superoxide dismutases in developing cotton fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrogen peroxide (H2O2) and other reactive oxygen species (ROS) are important signaling molecules in diverse physiological processes. Previously, we discovered superoxide dismutase (SOD) activity in extracellular protein preparations from fiber-bearing cotton (Gossypium hirsutum L.) seeds. We sho...

  9. Therapeutic effect of lecithinized superoxide dismutase on pulmonary emphysema.

    PubMed

    Tanaka, Ken-Ichiro; Tanaka, Yuta; Miyazaki, Yuri; Namba, Takushi; Sato, Keizo; Aoshiba, Kazutetsu; Azuma, Arata; Mizushima, Tohru

    2011-09-01

    No medication exists that clearly improves the mortality of chronic obstructive pulmonary disease (COPD). Oxidative molecules, in particular superoxide anions, play important roles in the COPD-associated abnormal inflammatory response and pulmonary emphysema, which arises because of an imbalance in proteases and antiproteases and increased apoptosis. Superoxide dismutase (SOD) catalyzes the dismutation of superoxide anions. Lecithinized human Cu/Zn- SOD (PC-SOD) has overcome a number of the clinical limitations of SOD, including low tissue affinity and low stability in plasma. In this study, we examine the effect of PC-SOD on elastase-induced pulmonary emphysema, an animal model of COPD. The severity of the pulmonary inflammatory response and emphysema in mice was assessed by various criteria, such as the number of leukocytes in the bronchoalveolar lavage fluid and the enlargement of airspace. Not only intravenous administration but also inhalation of PC-SOD suppressed elastase-induced pulmonary inflammation, emphysema, and dysfunction. Inhalation of PC-SOD suppressed the elastase-induced increase in the pulmonary level of superoxide anions and apoptosis. Inhalation of PC-SOD also suppressed elastase-induced activation of proteases and decreased in the level of antiproteases and expression of proinflammatory cytokines and chemokines. We also found that inhalation of PC-SOD suppressed cigarette smoke-induced pulmonary inflammation. The results suggest that PC-SOD protects against pulmonary emphysema by decreasing the pulmonary level of superoxide anions, resulting in the inhibition of inflammation and apoptosis and amelioration of the protease/antiprotease imbalance. We propose that inhalation of PC-SOD would be therapeutically beneficial for COPD.

  10. Extracellular superoxide anion production contributes to the virulence of Xanthomonas oryzae pv. oryzae.

    PubMed

    Li, Xin; Pang, Xinyue; Zhi, Dejuan; Wang, Jinsheng; Li, Minquan; Li, Hongyu

    2009-02-01

    Endogenous superoxide anion production was determined by electron spin resonance in wild-type strains and avrXa7 mutants of Xanthomonas oryzae pv. oryzae. The localization of superoxide anion was carried out in the intra- and extra-cellular fractions. Results showed the presence of superoxide anion in multi-locations of X. oryzae pv. oryzae cells. The extracellular fraction was the major location of superoxide anion production. Furthermore, a positive relationship was shown between the levels of endogenous superoxide anion and the virulence of strains. These indubitable results suggested that the superoxide anion contributes to the virulence of X. oryzae pv. oryzae.

  11. Novel mechanisms for superoxide-scavenging activity of human manganese superoxide dismutase determined by the K68 key acetylation site.

    PubMed

    Lu, Jiaqi; Cheng, Kuoyuan; Zhang, Bo; Xu, Huan; Cao, Yuanzhao; Guo, Fei; Feng, Xudong; Xia, Qing

    2015-08-01

    Superoxide is the primary reactive oxygen species generated in the mitochondria. Manganese superoxide dismutase (SOD2) is the major enzymatic superoxide scavenger present in the mitochondrial matrix and one of the most crucial reactive oxygen species-scavenging enzymes in the cell. SOD2 is activated by sirtuin 3 (SIRT3) through NAD(+)-dependent deacetylation. However, the exact acetylation sites of SOD2 are ambiguous and the mechanisms underlying the deacetylation-mediated SOD2 activation largely remain unknown. We are the first to characterize SOD2 mutants of the acetylation sites by investigating the relative enzymatic activity, structures, and electrostatic potential of SOD2 in this study. These SOD2 mutations affected the superoxide-scavenging activity in vitro and in HEK293T cells. The lysine 68 (K68) site is the most important acetylation site contributing to SOD2 activation and plays a role in cell survival after paraquat treatment. The molecular basis underlying the regulation of SOD2 activity by K68 was investigated in detail. Molecular dynamics simulations revealed that K68 mutations induced a conformational shift of residues located in the active center of SOD2 and altered the charge distribution on the SOD2 surface. Thus, the entry of the superoxide anion into the coordinated core of SOD2 was inhibited. Our results provide a novel mechanistic insight, whereby SOD2 acetylation affects the structure and charge distribution of SOD2, its tetramerization, and p53-SOD2 interactions of SOD2 in the mitochondria, which may play a role in nuclear-mitochondrial communication during aging.

  12. Preliminary crystallographic analysis of the Megavirus superoxide dismutase

    PubMed Central

    Lartigue, Audrey; Philippe, Nadège; Jeudy, Sandra; Abergel, Chantal

    2012-01-01

    Megavirus chilensis, a close relative of the Mimivirus giant virus, is able to replicate in Acanthamoeba castellanii. The first step of viral infection involves the internalization of the virions in host vacuoles. It has been experimentally demonstrated that Mimivirus particles contain many proteins capable of resisting oxidative stress, as encountered in the phagocytic process. These proteins are conserved in Megavirus, which has an additional gene (Mg277) encoding a putative superoxide dismutase. The Mg277 ORF product was overexpressed in Escherichia coli, purified and crystallized. A SAD data set was collected to 2.24 Å resolution at the selenium peak wavelength on the BM30 beamline at the ESRF from a single crystal of selenomethionine-substituted recombinant superoxide dismutase protein. PMID:23192047

  13. Cupric Yersiniabactin Is a Virulence-Associated Superoxide Dismutase Mimic

    PubMed Central

    2013-01-01

    Many Gram-negative bacteria interact with extracellular metal ions by expressing one or more siderophore types. Among these, the virulence-associated siderophore yersiniabactin (Ybt) is an avid copper chelator, forming stable cupric (Cu(II)-Ybt) complexes that are detectable in infected patients. Here we show that Ybt-expressing E. coli are protected from intracellular killing within copper-replete phagocytic cells. This survival advantage is highly dependent upon the phagocyte respiratory burst, during which superoxide is generated by the NADPH oxidase complex. Chemical fractionation links this phenotype to a previously unappreciated superoxide dismutase (SOD)-like activity of Cu(II)-Ybt. Unlike previously described synthetic copper-salicylate (Cu(II)-SA) SOD mimics, the salicylate-based natural product Cu(II)-Ybt retains catalytic activity at physiologically plausible protein concentrations. These results reveal a new virulence-associated adaptation based upon spontaneous assembly of a non-protein catalyst. PMID:24283977

  14. [Generation of superoxides during the interaction of melanins with oxygen].

    PubMed

    Lapina, V A; Dontsov, A E; Ostrovskiĭ, M A

    1984-10-01

    The rate of nitroblue tetrazolium (NBT) reduction by dihydroxyphenylalanine-melanin, pheomelanin and retinal pigment epithelium melanosomes under aerobic conditions (pH 7.4) is low both in the dark and upon illumination, but increases drastically in the presence of cetyltrimethylammonium bromide (CTAB). Under these conditions, the light insignificantly stimulates NBT reduction (1.3-fold). The reaction is effectively inhibited by superoxide dismutase. This suggests that superoxide anions (O2-. are formed as intermediate reaction products in the course of NBT reduction by melanins. At alkaline values of pH (greater than or equal to 9.0), the O2-.-dependent reduction of NBT can also take place in the absence of CTAB. In contrast with oxidation of photoreduced riboflavin, the melanin oxidation by O2 cannot induce lipid peroxidation. It is concluded that O2-. generation via melanin oxidation of melanosomes occurs only under non-physiological conditions and can hardly take place in vivo.

  15. Extracellular Superoxide Dismutase: Growth Promoter or Tumor Suppressor?

    PubMed Central

    Laukkanen, Mikko O.

    2016-01-01

    Extracellular superoxide dismutase (SOD3) gene transfer to tissue damage results in increased healing, increased cell proliferation, decreased apoptosis, and decreased inflammatory cell infiltration. At molecular level, in vivo SOD3 overexpression reduces superoxide anion (O2−) concentration and increases mitogen kinase activation suggesting that SOD3 could have life-supporting characteristics. The hypothesis is further strengthened by the observations showing significantly increased mortality in conditional knockout mice. However, in cancer SOD3 has been shown to either increase or decrease cell proliferation and survival depending on the model system used, indicating that SOD3-derived growth mechanisms are not completely understood. In this paper, the author reviews the main discoveries in SOD3-dependent growth regulation and signal transduction. PMID:27293512

  16. Calcineurin transgenic mice have mitochondrial dysfunction and elevated superoxide production.

    PubMed

    Sayen, M R; Gustafsson, Asa B; Sussman, Mark A; Molkentin, Jeffery D; Gottlieb, Roberta A

    2003-02-01

    Introduction of the constitutively active calcineurin gene into neonatal rat cardiomyocytes by adenovirus resulted in decreased mitochondrial membrane potential (P < 0.05). Infection of H9c2 cells with calcineurin adenovirus resulted in increased superoxide production (P < 0.001). Transgenic mice with cardiac-specific expression of a constitutively active calcineurin cDNA (CalTG mice) exhibit a two- to threefold increase in heart size that progresses to heart failure. We prepared mitochondria enriched for the subsarcolemmal population from the hearts of CalTG mice and transgene negative littermates (control). Intact, well-coupled mitochondria prepared from one to two mouse hearts at a time yielded sufficient material for functional studies. Mitochondrial oxygen consumption was measured with a Clark-type oxygen electrode with substrates for mitochondrial complex II (succinate) and complex IV [tetramethylpentadecane (TMPD)/ascorbate]. CalTG mice exhibited a maximal rate of electron transfer in heart mitochondria that was reduced by approximately 50% (P < 0.002) without a loss of respiratory control. Mitochondrial respiration was unaffected in tropomodulin-overexpressing transgenic mice, another model of cardiomyopathy. Western blotting for mitochondrial electron transfer subunits from mitochondria of CalTG mice revealed a 20-30% reduction in subunit 3 of complex I (ND3) and subunits I and IV of cytochrome oxidase (CO-I, CO-IV) when normalized to total mitochondrial protein or to the adenine nucleotide transporter (ANT) and compared with littermate controls (P < 0.002). Impaired mitochondrial electron transport was associated with high levels of superoxide production in the CalTG mice. Taken together, these data indicate that calcineurin signaling affects mitochondrial energetics and superoxide production. The excessive production of superoxide may contribute to the development of cardiac failure.

  17. The Superoxide Reductase from the Early Diverging Eukaryote Giardia Intestinalis

    SciTech Connect

    Cabelli, D.E.; Testa, F.; Mastronicola, D.; Bordi, E.; Pucillo, L.P.; Sarti, P.; Saraiva, L.M.; Giuffre, A.; Teixeira, M.

    2011-10-15

    Unlike superoxide dismutases (SODs), superoxidereductases (SORs) eliminate superoxide anion (O{sub 2}{sup {sm_bullet}-}) not through its dismutation, but via reduction to hydrogen peroxide (H{sub 2}O{sub 2}) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR{sub Gi}) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T{sub final}) with Fe{sup 3+} ligated to glutamate or hydroxide depending on pH (apparent pK{sub a} = 8.7). Although showing negligible SOD activity, reduced SOR{sub Gi} reacts with O{sub 2}{sup {sm_bullet}-} with a pH-independent second-order rate constant k{sub 1} = 1.0 x 10{sup 9} M{sup -1} s{sup -1} and yields the ferric-(hydro)peroxo intermediate T{sub 1}; this in turn rapidly decays to the T{sub final} state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR{sub Gi} is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  18. A new method to prevent degradation of lithium-oxygen batteries: reduction of superoxide by viologen.

    PubMed

    Yang, L; Frith, J T; Garcia-Araez, N; Owen, J R

    2015-01-31

    Lithium-oxygen battery development is hampered by degradation reactions initiated by superoxide, which is formed in the pathway of oxygen reduction to peroxide. This work demonstrates that the superoxide lifetime is drastically decreased upon addition of ethyl viologen, which catalyses the reduction of superoxide to peroxide.

  19. Superoxide generation and cytotactic response of irradiated neutrophils

    SciTech Connect

    Eastlund, D.T.; Charbonneau, T.T.

    1988-07-01

    Irradiation of blood components has been used to prevent transfusion-related graft-versus-host disease (GVHD) in immunocompromised patients. This study was designed to determine the effect of irradiation on neutrophil aggregation, chemotaxis, and superoxide generation. Purified neutrophils were irradiated with a Cesium source at four doses ranging from 0 to 17,500 rads. Formyl-methionyl-leucyl-phenylalanine (FMLP) and zymosan-treated serum (ZTS) cytotaxin-induced chemotaxis and migration were determined in the agarose assay. Neutrophil aggregation to FMLP was determined by aggregometry. Superoxide generation and random migration were not affected by irradiation at doses up to 17,500 rads. When compared to nonirradiated controls, the chemotactic response to ZTS remained normal, with an insignificant decline from 174 +/- 31.0 to 150 +/- 42.3 (mean +/- SD) units. The chemotactic response to FMLP declined insignificantly, from 228 +/- 31.3 at 0 rad to 207 +/- 26.4 at 17,500 rads. The aggregation response to FMLP remained within the normal range but declined from 0.78 +/- 0.11 to 0.61 +/- 0.18. At the radiation doses currently used to reduce the risk of transfusion-related GVHD, neutrophil superoxide generation and chemotactic response remain essentially normal.

  20. Production of superoxide during the metabolism of nitrazepam.

    PubMed

    Rosen, G M; Rauckman, E J; Wilson, R L; Tschanz, C

    1984-10-01

    Nitrazepam is metabolized in both humans and rats to 7-amino-nitrazepam OFFicating that this drug is reduced to a number of metabolic intermediates including several free radical species. When rat-hepatic microsomes are incubated with NADPH in the presence of nitrazepam, its nitro anion free radical was observed under anaerobic conditions. In the presence of oxygen, this free radical reduced oxygen giving nitrazepam and superoxide. 7-Nitroxyl-nitrazepam was produced by the chemical oxidation of 7-amino-nitrazepam using m-chloroperbenzoic acid. Reaction of this reactive free radical with hepatic microsomes led to the covalent spin labelling of microsomal protein. This phenomenon was also observed by the enzymic oxidation of 7-amino-nitrazepam with hepatic microsomes, obtained from a phenobarbital-induced rat, in the presence of a NADPH-generating system. With the generation of superoxide and hydrogen peroxide (arising from the dismutation of superoxide), it is not surprising that nitrazepam-enhanced lipid peroxidation was demonstrated by monitoring the production of lipid peroxyl radicals using spin-trapping techniques.

  1. Reactions of superoxide dismutases with HS(-)/H2S and superoxide radical anion: An in vitro EPR study.

    PubMed

    Bolić, Bojana; Mijušković, Ana; Popović-Bijelić, Ana; Nikolić-Kokić, Aleksandra; Spasić, Snežana; Blagojević, Duško; Spasić, Mihajlo B; Spasojević, Ivan

    2015-12-01

    Interactions of hydrogen sulfide (HS(-)/H2S), a reducing signaling species, with superoxide dimutases (SOD) are poorly understood. We applied low-T EPR spectroscopy to examine the effects of HS(-)/H2S and superoxide radical anion O2.- on metallocenters of FeSOD, MnSOD, and CuZnSOD. HS(-)/H2S did not affect FeSOD, whereas active centers of MnSOD and CuZnSOD were open to this agent. Cu(2+) was reduced to Cu(1+), while manganese appears to be released from MnSOD active center. Untreated and O2.- treated FeSOD and MnSOD predominantly show 5 d-electron systems, i.e. Fe(3+) and Mn(2+). Our study provides new details on the mechanisms of (patho)physiological effects of HS(-)/H2S.

  2. Cu,Zn Superoxide Dismutase is a Peroxisomal Enzyme in Human Fibroblast and Hepatoma Cells

    NASA Astrophysics Data System (ADS)

    Keller, Gilbert-Andre; Warner, Thomas G.; Steimer, Kathelyn S.; Hallewell, Robert A.

    1991-08-01

    The intracellular localization of Cu,Zn superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) has been examined by immunofluorescence using four monoclonal anti-Cu,Zn superoxide dismutase antibodies raised against a recombinant human Cu,Zn superoxide dismutase derivative produced and purified from Escherichia coli. Colocalization with catalase, a peroxisomal matrix enzyme, was used to demonstrate the peroxisomal localization of Cu,Zn superoxide dismutase in human fibroblasts and hepatoma cells. In the fibroblasts of Zellweger syndrome patients, the enzyme is not transported to the peroxisomal ghosts but, like catalase, remains in the cytoplasm. In addition, immunocryoelectron microscopy of yeast cells expressing human Cu,Zn superoxide dismutase showed that the enzyme is translocated to the peroxisomes.

  3. Superoxide Generation and Its Involvement in the Growth of Mycobacterium smegmatis

    PubMed Central

    Yeware, Amar M.; Shurpali, Ketaki D.; Athalye, Meghana C.; Sarkar, Dhiman

    2017-01-01

    Superoxide generation is inevitable in aerobic organisms, most of which have developed mechanisms to detoxify superoxides. However, its significance has not been clearly understood in mycobacteria. This study demonstrates that NADH oxidase is the major source of superoxide in Mycobacterium smegmatis and elucidates the involvement of superoxide in M. smegmatis growth. The maximum inhibition of superoxide generation was observed in the presence of diphenyleneiodonium chloride (DPI), an NADH oxidase inhibitor, compared to other standard inhibitors. After incubation for 24 h, the number of colony forming units (CFUs) was reduced by 6.8 log10 compared to the untreated culture. The inhibitory effect of DPI on M. smegmatis was reversed when the same culture was supplemented with menadione and pyrogallol, which are superoxide generators. Thus, this study reports the source of superoxide generation and its involvement in the growth of M. smegmatis. PMID:28194149

  4. Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration.

    PubMed

    Koike, Masato; Nojiri, Hidetoshi; Ozawa, Yusuke; Watanabe, Kenji; Muramatsu, Yuta; Kaneko, Haruka; Morikawa, Daichi; Kobayashi, Keiji; Saita, Yoshitomo; Sasho, Takahisa; Shirasawa, Takuji; Yokote, Koutaro; Kaneko, Kazuo; Shimizu, Takahiko

    2015-06-25

    Mechanical stress and aging are major risk factors of cartilage degeneration. Human studies have previously reported that oxidative damage increased, while SOD2 protein was reciprocally downregulated in osteoarthritic degenerated cartilage. However, it remains unclear whether mitochondrial superoxide imbalance in chondrocytes causes cartilage degeneration. We herein demonstrate that mechanical loading promoted mitochondrial superoxide generation and selective Sod2 downregulation in chondrocytes in vivo and that mitochondrial superoxide inducer also downregulated Sod2 expression in chondrocytes in vitro. A genetically manipulated model revealed that Sod2 deficiency in chondrocytes also resulted in mitochondrial superoxide overproduction and dysfunction, thus leading to cartilage degeneration. Intra-articular injection of a permeable antioxidant effectively suppressed the mechanical loading-induced mitochondrial superoxide generation and cartilage degeneration in mice. Our findings demonstrate that mitochondrial superoxide plays a pivotal role in the development and progression of osteoarthritis, and the mitochondrial superoxide balance may therefore be a promising target for the treatment of cartilage degeneration.

  5. Evaluation of five imidazopyrazinone-type chemiluminescent superoxide probes and their application to the measurement of superoxide anion generated by Listeria monocytogenes.

    PubMed

    Shimomura, O; Wu, C; Murai, A; Nakamura, H

    1998-05-01

    Superoxide-triggered chemiluminescence of five new imidazopyrazinone derivatives was investigated using the hypoxanthine-xanthine oxidase system as the source of superoxide anion. The results showed that they are highly sensitive and have favorable properties in measuring superoxide anion. With those new probes, the generation of superoxide anion from the bacteria Listeria monocytogenes was examined. The results confirmed the previous report that L. monocytogenes is an unusual organism that extracellularly and continuously generates a high level of superoxide anion in the presence of acetaldehyde. The data indicated that two of the probes, 3,7-dihydro-2-methyl-6-phenylethynylimidazo[1,2-a]pyrazin-3- one (4) and its methoxy derivative (5), are highly sensitive and useful in the measurements of superoxide anion and are clearly superior to 3,7-dihydro-2-methyl-6-(4-methoxyphenyl)imidazo[1,2-a]pyrazin-3-on e (MCLA), which-has been generally considered the most sensitive superoxide probe in the past. When tested at a probe concentration of 3.3 microM, the luminescence response and the signal-background ratio of compound 4 were 1.5 and 2.5 times those of MCLA, respectively, and the signal-background ratio of compound 5 was almost 15 times that of MCLA, though the luminescence response of this compound was slightly lower than that of MCLA. The low probe concentration used enhances the usefulness of probes in the measurements of superoxide in functioning biological systems.

  6. A superoxide dismutase of metacestodes of Taenia taeniaeformis.

    PubMed

    Leid, R W; Suquet, C M

    1986-03-01

    Superoxide dismutase was purified from Taenia taeniaeformis metacestodes by sequential ion exchange chromatography on quaternary-amino-ethyl-cellulose, gel filtration chromatography on ACA 44 and ion exchange chromatography on DEAE-cellulose, followed by chromatofocusing on polybuffer exchanger 94. This isolation procedure resulted in the detection of a single protein-staining band on alkaline gels, coincident with enzyme activity. We have, however, detected what appear to be two peaks of enzyme activity within this single protein-staining band. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis using gradient slab gels and analysis under reducing conditions, resulted in the detection of only one protein at an apparent Mr of 16,600, while analysis under non-reducing conditions, gave a single protein of an apparent Mr of 64,000. The isoelectric point of the purified protein is 6.6. Boiling for 3 min completely destroyed the enzyme, whereas incubation for 2 h at 37 degrees C resulted in the loss of 56% of the enzymic activity. Incubation with 10 mM KCN resulted in 83% inhibition of the enzyme. We have detected up to 168 U ml-1 of enzyme activity in the cyst fluid surrounding the parasite in situ. This is the first instance in which any parasite superoxide dismutase has been purified to apparent homogeneity. Parasite-mediated enzymic destruction of superoxide anion can not only protect against oxygen toxicity as a result of normal parasite respiratory processes but also may serve as yet another mechanism used by tissue-dwelling parasites to evade host immunologic attack.

  7. Purification and characterization of superoxide dismutase from chicken liver.

    PubMed

    Oztürk-Urek, R; Tarhan, L

    2001-02-01

    Superoxide dismutase (SOD; EC 1.15.1.1) is an enzyme that protects against oxidative stress from superoxide radicals in living cells. This enzyme has been isolated, purified and partially characterized from chicken liver. The following steps were carried out in order to purify chicken liver SOD. Initially, the liver was homogenized and hemoglobin was removed. Subsequently protein precipitation was effected with (NH(4))(2)SO(4), methanol, (NH(4))(2)SO(4)-methanol and polyethylene glycol methods. The product from polyethylene glycol-3350 precipitation was found to have the highest SOD activity. Polyethylene glycol was removed by chromatography using a PD-10 column. After passing through an ultrafilter, the superoxide dismutase was fractionated by DEAE-ion chromatography and then Sephadex G-75 gel filtration chromatography. During this purification procedure, a specific activity of 4818.2 IU/mg was reached, corresponding to 285.8-fold purification. The purified enzyme, which was characterized as cyanide-sensitive SOD, contained two subunits having Cu and Zn elements with a molecular weight of 16000+/-500 for each. The optimum pH of purified CuZnSOD was determined to be 8.9. The enzyme was found to have good pH stability in the pH range 6.0-7.5 at 25 degrees C over a 2-h incubation period and displayed good thermal stability up to 45 degrees C at pH 7.4 over a 1-h incubation period. The SOD enzyme was not inhibited by DTT and beta-mercaptoethanol, but inhibited by CN(-) and H(2)O(2). In the presence of 2 mM iodoacetamide, the enzyme showed an approximately 40% activity loss. Finally, the inhibitory effect of ionic strength on SOD was also investigated.

  8. Balance between Endogenous Superoxide Stress and Antioxidant Defenses

    PubMed Central

    Gort, Amy Strohmeier; Imlay, James A.

    1998-01-01

    Cells devoid of cytosolic superoxide dismutase (SOD) suffer enzyme inactivation, growth deficiencies, and DNA damage. It has been proposed that the scant superoxide (O2−) generated by aerobic metabolism harms even cells that contain abundant SOD. However, this idea has been difficult to test. To determine the amount of O2− that is needed to cause these defects, we modulated the O2− concentration inside Escherichia coli by controlling the expression of SOD. An increase in O2− of more than twofold above wild-type levels substantially diminished the activity of labile dehydratases, an increase in O2− of any more than fourfold measurably impaired growth, and a fivefold increase in O2− sensitized cells to DNA damage. These results indicate that E. coli constitutively synthesizes just enough SOD to defend biomolecules against endogenous O2− so that modest increases in O2− concentration diminish cell fitness. This conclusion is in excellent agreement with quantitative predictions based upon previously determined rates of intracellular O2− production, O2− dismutation, dehydratase inactivation, and enzyme repair. The vulnerability of bacteria to increased intracellular O2− explains the widespread use of superoxide-producing drugs as bactericidal weapons in nature. E. coli responds to such drugs by inducing the SoxRS regulon, which positively regulates synthesis of SOD and other defensive proteins. However, even toxic amounts of endogenous O2− did not activate SoxR, and SoxR activation by paraquat was not at all inhibited by excess SOD. Therefore, in responding to redox-cycling drugs, SoxR senses some signal other than O2−. PMID:9515906

  9. Autoxidation of ubiquinol-6 is independent of superoxide dismutase.

    PubMed

    Schultz, J R; Ellerby, L M; Gralla, E B; Valentine, J S; Clarke, C F

    1996-05-28

    Ubiquinone (Q) is an essential, lipid soluble, redox component of the mitochondrial respiratory chain. Much evidence suggests that ubiquinol (QH2) functions as an effective antioxidant in a number of membrane and biological systems by preventing peroxidative damage to lipids. It has been proposed that superoxide dismutase (SOD) may protect QH2 form autoxidation by acting either directly as a superoxide-semiquinone oxidoreductase or indirectly by scavenging superoxide. In this study, such an interaction between QH2 and SOD was tested by monitoring the fluorescence of cis-parinaric acid (cPN) incorporated phosphatidylcholine (PC) liposomes. Q6H2 was found to prevent both fluorescence decay and generation of lipid peroxides (LOOH) when peroxidation was initiated by the lipid-soluble azo initiator DAMP, dimethyl 2,2'-azobis (2-methylpropionate), while Q6 or SOD alone had no inhibitory effect. Addition of either SOD or catalase to Q6H2-containing liposomes had little effect on the rate of peroxidation even when incubated in 100% O2. Hence, the autoxidation of QH2 is a competing reaction that reduces the effectiveness of QH2 as an antioxidant and was not slowed by either SOD or catalase. The in vivo interaction of SOD and QH2 was also tested by employing yeast mutant strains harboring deletions in either CuZnSOD and/or MnSOD. The sod mutant yeast strains contained the same percent Q6H2 per cell as wild-type cells. These results indicate that the autoxidation of QH2 is independent of SOD.

  10. A lithium-oxygen battery based on lithium superoxide.

    PubMed

    Lu, Jun; Lee, Yun Jung; Luo, Xiangyi; Lau, Kah Chun; Asadi, Mohammad; Wang, Hsien-Hau; Brombosz, Scott; Wen, Jianguo; Zhai, Dengyun; Chen, Zonghai; Miller, Dean J; Jeong, Yo Sub; Park, Jin-Bum; Fang, Zhigang Zak; Kumar, Bijandra; Salehi-Khojin, Amin; Sun, Yang-Kook; Curtiss, Larry A; Amine, Khalil

    2016-01-21

    Batteries based on sodium superoxide and on potassium superoxide have recently been reported. However, there have been no reports of a battery based on lithium superoxide (LiO2), despite much research into the lithium-oxygen (Li-O2) battery because of its potential high energy density. Several studies of Li-O2 batteries have found evidence of LiO2 being formed as one component of the discharge product along with lithium peroxide (Li2O2). In addition, theoretical calculations have indicated that some forms of LiO2 may have a long lifetime. These studies also suggest that it might be possible to form LiO2 alone for use in a battery. However, solid LiO2 has been difficult to synthesize in pure form because it is thermodynamically unstable with respect to disproportionation, giving Li2O2 (refs 19, 20). Here we show that crystalline LiO2 can be stabilized in a Li-O2 battery by using a suitable graphene-based cathode. Various characterization techniques reveal no evidence for the presence of Li2O2. A novel templating growth mechanism involving the use of iridium nanoparticles on the cathode surface may be responsible for the growth of crystalline LiO2. Our results demonstrate that the LiO2 formed in the Li-O2 battery is stable enough for the battery to be repeatedly charged and discharged with a very low charge potential (about 3.2 volts). We anticipate that this discovery will lead to methods of synthesizing and stabilizing LiO2, which could open the way to high-energy-density batteries based on LiO2 as well as to other possible uses of this compound, such as oxygen storage.

  11. Methylglyoxal as a scavenger for superoxide anion-radical.

    PubMed

    Shumaev, K B; Lankin, V Z; Konovalova, G G; Grechnikova, M A; Tikhaze, A K

    2016-07-01

    Methylglyoxal at a concentration of 5 mM caused a significant inhibition of superoxide anion radical (O2 (·-)) comparable to the effect of Tirone. In the process of O2 (·-) generation in the system of egg phosphatidylcholine liposome peroxidation induced by the azo-initiator AIBN, a marked inhibition of chemiluminescence in the presence of 100 mM methylglyoxal was found. At the same time, methylglyoxal did not inhibit free radical peroxidation of low-density lipoprotein particles, which indicates the absence of interaction with methylglyoxal alkoxyl and peroxyl polyenoic lipid radicals. These findings deepen information about the role of methylglyoxal in the regulation of free radical processes.

  12. Water induced dismutation of superoxide anion generates singlet molecular oxygen.

    PubMed

    Corey, E J; Mehrotra, M M; Khan, A U

    1987-06-15

    Direct spectroscopic measurement of 1268 nm singlet oxygen emission from KO2 suspensions at room temperature in three non-protonic solvents--CCl4, Cl2FCCClF2, and C6F14 by the action of water is reported. The results clearly show that the singlet oxygen generation is due to a water induced reaction, and suggest that one role of the enzyme superoxide dismutase may be the protection of biological structures, for example, lipid membranes, from degradation by singlet oxygen.

  13. Theoretical determination of the alkali-metal superoxide bond energies

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Sodupe, Mariona; Langhoff, Stephen R.

    1992-01-01

    The bond dissociation energies for the alkali-metal superoxides have been computed using extensive Gaussian basis sets and treating electron correlation at the modified coupled-pair functional level. Our computed D0 values are 61.4, 37.2, 40.6, and 38.4 kcal/mol for LiO2, NaO2, KO2, and RbO2, respectively. These values, which are expected to be lower bounds and accurate to 2 kcal/mol, agree well with some of the older flame data, but rule out several recent experimental measurements.

  14. Production of superoxide dismutases from Proteus mirabilis and Proteus vulgaris.

    PubMed

    Dayton, T M; Diefenbach, K A; Fuller, M L; Valtos, J; Niederhoffer, E C

    1996-04-01

    Proteus mirabilis and Proteus vulgaris expressed a combination of superoxide dismutase (Sod) activities, which was assigned to FeSod1, FeSod2 and MnSod for P. mirabilis, and FeSod, MnSod and CuZnSod for P. vulgaris. Production of the Sod proteins was dependent on the availability of iron, whether cells were grown under anaerobiosis or aerobiosis and growth phase. Nalidixic acid and chloramphenicol inhibited cell growth and the iron- and dioxygen-dependent production of Sod. These results support the involvement of metal ions and redox status in the production of Proteus Sods.

  15. Superoxide anion-induced pain and inflammation depends on TNFα/TNFR1 signaling in mice.

    PubMed

    Yamacita-Borin, Fabiane Y; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Fattori, Victor; Alves-Filho, Jose C; Cunha, Fernando Q; Cunha, Thiago M; Casagrande, Rubia; Verri, Waldiceu A

    2015-09-25

    Inhibition of tumor necrosis factor-alpha (TNFα) and superoxide anion production reduces inflammation and pain. The present study investigated whether superoxide anion-induced pain depends on TNFα signaling and the role of superoxide anion in TNFα-induced hyperalgesia to clarify the interrelation between these two mediators in the context of pain. Intraplantar injection of a superoxide anion donor (potassium superoxide) induced mechanical hyperalgesia (0.5-5h after injection), neutrophil recruitment (myeloperoxidase activity), and overt pain-like behaviors (paw flinching, paw licking, and abdominal writhings) in wild-type mice. Tumor necrosis factor receptor 1 deficiency (TNFR1-/-) and treatment of wild-type mice with etanercept (a soluble TNFR2 receptor that inhibits TNFα actions) inhibited superoxide anion-induced pain-like behaviors. TNFR1(-/-) mice were also protected from superoxide anion donor-induced oxidative stress, suggesting the role of this pathway in the maintenance of oxidative stress. Finally, we demonstrated that Apocynin (an NADPH oxidase inhibitor) or Tempol (a superoxide dismutase mimetic) treatment inhibited TNFα-induced paw mechanical hyperalgesia and neutrophil recruitment (myeloperoxidase activity). These results demonstrate that TNFα/TNFR1 signaling is important in superoxide anion-triggered pain and that TNFα/TNFR1 signaling amplifies the oxidative stress triggered by superoxide anion, which contributes to sustaining pain and inflammation.

  16. Detoxification of superoxide without production of H2O2: Antioxidant activity of superoxide reductase complexed with ferrocyanide

    PubMed Central

    Molina-Heredia, Fernando P.; Houée-Levin, Chantal; Berthomieu, Catherine; Touati, Danièle; Tremey, Emilie; Favaudon, Vincent; Adam, Virgile; Nivière, Vincent

    2006-01-01

    The superoxide radical O2·̅ is a toxic by-product of oxygen metabolism. Two O2·̅ detoxifying enzymes have been described so far, superoxide dismutase and superoxide reductase (SOR), both forming H2O2 as a reaction product. Recently, the SOR active site, a ferrous iron in a [Fe2+ (N-His)4 (S-Cys)] pentacoordination, was shown to have the ability to form a complex with the organometallic compound ferrocyanide. Here, we have investigated in detail the reactivity of the SOR–ferrocyanide complex with O2·̅ by pulse and γ-ray radiolysis, infrared, and UV-visible spectroscopies. The complex reacts very efficiently with O2·̅. However, the presence of the ferrocyanide adduct markedly modifies the reaction mechanism of SOR, with the formation of transient intermediates different from those observed for SOR alone. A one-electron redox chemistry appears to be carried out by the ferrocyanide moiety of the complex, whereas the SOR iron site remains in the reduced state. Surprisingly, the toxic H2O2 species is no longer the reaction product. Accordingly, in vivoexperiments showed that formation of the SOR–ferrocyanide complex increased the antioxidant capabilities of SOR expressed in an Escherichia coli sodA sodB recA mutant strain. Altogether, these data describe an unprecedented O2·̅ detoxification activity, catalyzed by the SOR–ferrocyanide complex, which does not conduct to the production of the toxic H2O2 species. PMID:17001016

  17. Molecular characterization of two superoxide dismutases from Hydra vulgaris

    PubMed Central

    Dash, Bhagirathi; Metz, Richard; Huebner, Henry J.; Porter, Weston; Phillips, Timothy D.

    2007-01-01

    Apparent full-length cDNA sequences coding for manganese superoxide dismutase (HvMnSOD) and extracellular superoxide dismutase (HvEC-SOD) were isolated from Hydra vulgaris in order to understand their expression and 3D structures; and explore their possibility of being used as for biomarkers for environmental stress and toxicity. The deduced HvMnSOD protein consists of 219 amino acids of which first 21 amino acids constitute a presumed mitochondria-targeting signal peptide whereas HvEC-SOD protein consists of 189 amino acids of which first 19 amino acids constitute a presumed signal peptide. Molecular model generated for HvMnSOD displayed the N-terminal long alpha antiparallel hairpin and the C-terminal mixed alpha/beta fold characteristic of MnSODs and that for HvEC-SOD displayed the characteristic CuZnSOD beta-barrel fold. Hydrae subjected to thermal, starvation, metal and oxidative stress responded by regulating MnSOD and EC-SOD mRNA transcription. These results indicated that these genes are involved in the cellular stress response and (anti)oxidative processes triggered by stressor and contaminant exposure. Hence the expression of these SODs in hydra may have potential as molecular biomarkers for assessing stress, toxicity and pro-oxidant quality of chemicals and aquatic environmental quality. PMID:17150313

  18. Superoxide overproduction and kidney fibrosis: a new animal model

    PubMed Central

    Guimarães-Souza, Nadia Karina; Yamaleyeva, Liliya Marsovna; Lu, Baisong; Ramos, Ana Claudia Mallet de Souza; Bishop, Colin Edward; Andersson, Karl Erik

    2015-01-01

    Objective To establish whether the mutation in the Immp2L gene induces renal fibrosis and whether aging exacerbates renal morphology in mice. Methods Female mutant mice with mutation in the inner mitochondrial membrane peptidase 2-like protein at 3 and 18 months of age were used. Renal fibrosis was analyzed using classic fibrosis score, Masson’s trichrome staining, and analysis of profibrotic markers using real time polymerase chain reaction (superoxide dismutase 1, metalloproteinase-9, erythropoietin, transforming growth factor beta), and immunostaining (fibroblasts and Type IV collagen). Oxidative stress markers were determined by immunohistochemistry. The number of renal apoptotic cells was determined. Renal function was estimated by serum creatinine. Results Young mutant mice had significantly more glomerulosclerosis than age-matched mice (p=0.034). Mutant mice had more tubular casts (p=0.025), collagen deposition (p=0.019), and collagen type IV expression (p<0.001). Superoxide dismutase 1 expression was significantly higher in young mutants (p=0.038). Old mutants exhibited significantly higher expression of the fibroblast marker and macrophage marker (p=0.007 and p=0.012, respectively). The real time polymerase chain reaction of metalloproteinase-9 and erythropoietin were enhanced 2.5- and 6-fold, respectively, in old mutants. Serum creatinine was significantly higher in old mutants (p<0.001). Conclusion This mutation altered renal architecture by increasing the deposition of extracellular matrix, oxidative stress, and inflammation, suggesting a protective role of Immp2L against renal fibrosis. PMID:25993073

  19. The Cu, Zn Superoxide Dismutase: Not Only a Dismutase Enzyme

    PubMed Central

    Mondola, Paolo; Damiano, Simona; Sasso, Anna; Santillo, Mariarosaria

    2016-01-01

    The Cu,Zn superoxide dismutase (SOD1) is an ubiquitary cytosolic dimeric carbohydrate free molecule, belonging to a family of isoenzymes involved in the scavenger of superoxide anions. This effect certainly represents the main and well known function ascribed to this enzyme. Here we highlight new aspects of SOD1 physiology that point out some inedited effects of this enzyme in addition to the canonic role of oxygen radical enzymatic dismutation. In the last two decades our research group produced many data obtained in in vitro studies performed in many cellular lines, mainly neuroblastoma SK-N-BE cells, indicating that this enzyme is secreted either constitutively or after depolarization induced by high extracellular K+ concentration. In addition, we gave many experimental evidences showing that SOD1 is able to stimulate, through muscarinic M1 receptor, pathways involving ERK1/2, and AKT activation. These effects are accompanied with an intracellular calcium increase. In the last part of this review we describe researches that link deficient extracellular secretion of mutant SOD1G93A to its intracellular accumulation and toxicity in NSC-34 cells. Alternatively, SOD1G93A toxicity has been attributed to a decrease of Km for H2O2 with consequent OH radical formation. Interestingly, this last inedited effect of SOD1G93A could represent a gain of function that could be involved in the pathogenesis of familial Amyotrophic Lateral Sclerosis (fALS). PMID:27965593

  20. The Cu, Zn Superoxide Dismutase: Not Only a Dismutase Enzyme.

    PubMed

    Mondola, Paolo; Damiano, Simona; Sasso, Anna; Santillo, Mariarosaria

    2016-01-01

    The Cu,Zn superoxide dismutase (SOD1) is an ubiquitary cytosolic dimeric carbohydrate free molecule, belonging to a family of isoenzymes involved in the scavenger of superoxide anions. This effect certainly represents the main and well known function ascribed to this enzyme. Here we highlight new aspects of SOD1 physiology that point out some inedited effects of this enzyme in addition to the canonic role of oxygen radical enzymatic dismutation. In the last two decades our research group produced many data obtained in in vitro studies performed in many cellular lines, mainly neuroblastoma SK-N-BE cells, indicating that this enzyme is secreted either constitutively or after depolarization induced by high extracellular K(+) concentration. In addition, we gave many experimental evidences showing that SOD1 is able to stimulate, through muscarinic M1 receptor, pathways involving ERK1/2, and AKT activation. These effects are accompanied with an intracellular calcium increase. In the last part of this review we describe researches that link deficient extracellular secretion of mutant SOD1(G93A) to its intracellular accumulation and toxicity in NSC-34 cells. Alternatively, SOD1(G93A) toxicity has been attributed to a decrease of Km for H2O2 with consequent OH radical formation. Interestingly, this last inedited effect of SOD1(G93A) could represent a gain of function that could be involved in the pathogenesis of familial Amyotrophic Lateral Sclerosis (fALS).

  1. A lithium-oxygen battery based on lithium superoxide.

    SciTech Connect

    Lu, Jun; Lee, Yun Jung; Luo, Xiangyi; Lau, Kah Chun; Wen, Jianguo; Wang, Hsien-Hau; Zhai, Dengyun; Miller, Dean; Jeong, Yo-Sub; Park, Jin-Bum; Curtiss, Larry A.; Amine, Khalil

    2016-01-11

    Although the superoxide of lithium (LiO2) is believed to be a key intermediate in Li-O2 batteries leading to the formation of lithium peroxide, LiO2 has never been observed in its pure state. In this work, we provide evidence that use of a cathode based on a reduced graphene oxide with Ir nanoparticles in a Li-O2 battery results in a LiO2 discharge product formed by single electron transfer without further electron transfer or disproportionation to form Li2O2. High energy X-ray diffraction (HE-XRD) patterns indicates the presence of crystalline LiO2 with no evidence of Li2O2 or Li2O. The HEXRD studies as a function of time also show that LiO2 can be stable in its crystalline form after one week of aging in the presence of electrolyte. The results provide evidence that LiO2 is stable enough that it can be repeatedly charged and discharged with a very low charge potential (~3.2 V) and may open the avenue for a lithium superoxide-based battery.

  2. Superoxide Dismutase Mimics: Chemistry, Pharmacology, and Therapeutic Potential

    PubMed Central

    Rebouças, Júlio S.; Spasojević, Ivan

    2010-01-01

    Abstract Oxidative stress has become widely viewed as an underlying condition in a number of diseases, such as ischemia–reperfusion disorders, central nervous system disorders, cardiovascular conditions, cancer, and diabetes. Thus, natural and synthetic antioxidants have been actively sought. Superoxide dismutase is a first line of defense against oxidative stress under physiological and pathological conditions. Therefore, the development of therapeutics aimed at mimicking superoxide dismutase was a natural maneuver. Metalloporphyrins, as well as Mn cyclic polyamines, Mn salen derivatives and nitroxides were all originally developed as SOD mimics. The same thermodynamic and electrostatic properties that make them potent SOD mimics may allow them to reduce other reactive species such as peroxynitrite, peroxynitrite-derived CO3·−, peroxyl radical, and less efficiently H2O2. By doing so SOD mimics can decrease both primary and secondary oxidative events, the latter arising from the inhibition of cellular transcriptional activity. To better judge the therapeutic potential and the advantage of one over the other type of compound, comparative studies of different classes of drugs in the same cellular and/or animal models are needed. We here provide a comprehensive overview of the chemical properties and some in vivo effects observed with various classes of compounds with a special emphasis on porphyrin-based compounds. Antioxid. Redox Signal. 13, 877–918. PMID:20095865

  3. A superoxide sensor based on a multilayer cytochrome c electrode.

    PubMed

    Beissenhirtz, Moritz K; Scheller, Frieder W; Lisdat, Fred

    2004-08-15

    A novel multilayer cytochrome c electrode for the quantification of superoxide radical concentrations is introduced. The electrode consists of alternating layers of cytochrome c and poly(aniline(sulfonic acid)) on a gold wire electrode. The formation of multilayer structures was proven by SPR experiments. Assemblies with 2-15 protein layers showed electrochemical communication with the gold electrode. For every additional layer, a substantial increase in electrochemically active cytochrome c (cyt. c) was found. For electrodes of more than 10 layers, the increase was more than 1 order of magnitude as compared to monolayer electrode systems. Thermodynamic and kinetic parameters of the electrodes were characterized. The mechanism of electron transfer within the multilayer assembly was studied, with results suggesting a protein-protein electron-transfer model. Electrodes of 2-15 layers were applied to the in vitro quantification of enzymatically generated superoxide, showing superior sensitivity as compared to a monolayer-based sensor. An electrode with 6 cyt. c/PASA layers showed the highest sensitivity of the systems studied, giving an increase in sensitivity of half an order of magnitude versus the that of the monolayer electrode. The stability of the system was optimized using thermal treatment, resulting in no loss in sensor signal or protein loading after 10 successive measurements or 2 days of storage.

  4. Superoxide dismutase SOD-1 modulates C. elegans pathogen avoidance behavior

    PubMed Central

    Horspool, Alexander M.; Chang, Howard C.

    2017-01-01

    The C. elegans nervous system mediates protective physiological and behavioral responses amid infection. However, it remains largely unknown how the nervous system responds to reactive oxygen species (ROS) activated by pathogenic microbes during infection. Here, we show superoxide dismutase-1 (SOD-1), an enzyme that converts superoxide into less toxic hydrogen peroxide and oxygen, functions in the gustatory neuron ASER to mediate C. elegans pathogen avoidance response. When C. elegans first encounters pathogenic bacteria P. aeruginosa, SOD-1 is induced in the ASER neuron. After prolonged P. aeruginosa exposure, ASER-specific SOD-1 expression is diminished. In turn, C. elegans starts to vacate the pathogenic bacteria lawn. Genetic knockdown experiments reveal that pathogen-induced ROS activate sod-1 dependent behavioral response non cell-autonomously. We postulate that the delayed aversive response to detrimental microbes may provide survival benefits by allowing C. elegans to temporarily utilize food that is tainted with pathogens as an additional energy source. Our data offer a mechanistic insight into how the nervous system mediates food-seeking behavior amid oxidative stress and suggest that the internal state of redox homeostasis could underlie the behavioral response to harmful microbial species. PMID:28322326

  5. Mechanism of Action of Sulforaphane as a Superoxide Radical Anion and Hydrogen Peroxide Scavenger by Double Hydrogen Transfer: A Model for Iron Superoxide Dismutase.

    PubMed

    Prasad, Ajit Kumar; Mishra, P C

    2015-06-25

    The mechanism of action of sulforaphane as a scavenger of superoxide radical anion (O2(•-)) and hydrogen peroxide (H2O2) was investigated using density functional theory (DFT) in both gas phase and aqueous media. Iron superoxide dismutase (Fe-SOD) involved in scavenging superoxide radical anion from biological media was modeled by a complex consisting of the ferric ion (Fe(3+)) attached to three histidine rings. Reactions related to scavenging of superoxide radical anion by sulforaphane were studied using DFT in the presence and absence of Fe-SOD represented by this model in both gas phase and aqueous media. The scavenging action of sulforaphane toward both superoxide radical anion and hydrogen peroxide was found to involve the unusual mechanism of double hydrogen transfer. It was found that sulforaphane alone, without Fe-SOD, cannot scavenge superoxide radical anion in gas phase or aqueous media efficiently as the corresponding reaction barriers are very high. However, in the presence of Fe-SOD represented by the above-mentioned model, the scavenging reactions become barrierless, and so sulforaphane scavenges superoxide radical anion by converting it to hydrogen peroxide efficiently. Further, sulforaphane was found to scavenge hydrogen peroxide also very efficiently by converting it into water. Thus, the mechanism of action of sulforaphane as an excellent antioxidant has been unravelled.

  6. The Influence of Extracellular Superoxide on Iron Redox Chemistry and Bioavailability to Aquatic Microorganisms

    PubMed Central

    Rose, Andrew L.

    2012-01-01

    Superoxide, the one-electron reduced form of dioxygen, is produced in the extracellular milieu of aquatic microbes through a range of abiotic chemical processes and also by microbes themselves. Due to its ability to promote both oxidative and reductive reactions, superoxide may have a profound impact on the redox state of iron, potentially influencing iron solubility, complex speciation, and bioavailability. The interplay between iron, superoxide, and oxygen may also produce a cascade of other highly reactive transients in oxygenated natural waters. For microbes, the overall effect of reactions between superoxide and iron may be deleterious or beneficial, depending on the organism and its chemical environment. Here I critically discuss recent advances in understanding: (i) sources of extracellular superoxide in natural waters, with a particular emphasis on microbial generation; (ii) the chemistry of reactions between superoxide and iron; and (iii) the influence of these processes on iron bioavailability and microbial iron nutrition. PMID:22514548

  7. Superoxide Mediates the Toxicity of Paraquat for Chinese Hamster Ovary Cells

    NASA Astrophysics Data System (ADS)

    Bagley, Ann C.; Krall, Judith; Lynch, Robert E.

    1986-05-01

    The roles of superoxide and H2O2 in the cytotoxicity of paraquat were assessed in Chinese hamster ovary cells. Neither catalase nor superoxide dismutase inhibited the loss of ability to form colonies when added to the medium. When introduced into the cells, superoxide dismutase but not catalase inhibited the toxicity of paraquat. That superoxide dismutase acted by its known catalytic action is shown by the loss of inhibition when the enzyme was inactivated by H2O2 before being introduced into the cells. The lack of inhibition by catalase, by dimethyl sulfoxide, and by desferoxamine suggests that the toxicity is not mediated by a reaction between H2O2 and superoxide to engender the hydroxyl radical. Exposure of Chinese hamster ovary cells to paraquat may be a suitable means to determine the effects of superoxide anion in cultured cells and the ways in which cells can resist this toxic action.

  8. Superoxide Dismutase Activity in Needles of Norwegian Spruce Trees (Picea abies L.) 1

    PubMed Central

    Polle, Andrea; Krings, Brigitte; Rennenberg, Heinz

    1989-01-01

    The activity of superoxide dismutase was investigated in needles of spruce trees. To obtain maximum activity, needles were homogenized in the presence of Triton X-100 and polyvinylpyrrolidone. Superoxide dismutase activity was measured in dialyzed extracts with a modified epinephrine assay (HP Misra, I Fridovich [1972] J Biol Chem 247: 3170-3175) at pH 10.2. The extracts contained 70 to 120 units of superoxide dismutase per milligram protein. One unit of superoxide dismutase was completely inhibited in the presence of 20 micromolar NaCN. On native polyacrylamide gels three electromorphs were visualized after staining for activity. All three species were sensitive to CN− and H2O2 and were therefore assumed to be Cu/Zn-superoxide dismutases. Superoxide dismutase activity was dependent on the age of the needles and declined by approximately 25% within 3 to 4 years. Images Figure 4 PMID:16666928

  9. Some dinophycean red tide plankton species generate a superoxide scavenging substance.

    PubMed

    Sato, Emiko; Niwano, Yoshimi; Matsuyama, Yukihiko; Kim, Daekyung; Nakashima, Takuji; Oda, Tatsuya; Kohno, Masahiro

    2007-03-01

    Recent studies indicate that some raphidophycean red tide flagellates produce substances able to scavenge superoxide, whereas there have been no reports on superoxide scavenger production by dinophycean red tide flagellates. In this study, we examined the superoxide-scavenging activity of aqueous extracts from dinophycean red tide flagellates, Gymnodinium spp., Scrippsiella trochoidea, and Karenia sp., by a luminol analog L-012-dependent chemiluminescence (CL) method and an electron spin resonance (ESR)-spin trapping method, and compared the activity to that of raphidophycean red tide flagellates, Chattonella spp., Heterosigma akashiwo, and Fibrocapsa japonica. In the experiment applying the L-012-dependent CL method, only the aqueous extracts from raphidophycean red tide flagellates showed superoxide-scavenging activity. On the other hand, applying the ESR-spin trapping method, we found that the aqueous extracts from dinophycean red tide flagellates also showed superoxide-scavenging activity. This is the first report on the production of a superoxide-scavenger by dinophycean red tide flagellates.

  10. Superoxide dismutase abolishes the platelet-derived growth factor-induced release of prostaglandin E2 by blocking induction of nitric oxide synthase: role of superoxide.

    PubMed

    Kelner, M J; Uglik, S F

    1995-09-10

    The ability of platelet-derived growth factor (PDGF) to induce prostaglandin E2 (PGE2) release in fibroblasts is abolished when copper-zinc superoxide dismutase activity is increased by transfection of an expression vector. The effect is specific to copper-zinc superoxide dismutase as glutathione peroxidase-overexpressing NIH3T3 cells, again produced by transfection of an expression vector, retain the ability to release PGE2 in response to growth factor stimulation. The defect in PDGF-induced PGE2 release occurs prior to action of prostaglandin H synthase/cyclooxygenase as release of arachadonic acid (in response to PDGF) does not occur in the superoxide dismutase-overexpressing clones. The defect in PDGF-induced release of PGE2 in superoxide dismutase-overexpressing clones differs from the defect found in pEJ-ras-transformed clones. The parent cells, the glutathione peroxidase-expressing cells, and the superoxide dismutase-overexpressing cells all release PGE2 in response to exogenous nitric oxide, whereas the pEJ-ras-transformed cells do not. The glutathione peroxidase-expressing cells also retained the ability to release nitrite in response to PDGF, whereas the superoxide dismutase-expressing clones do not. PDGF stimulates nitric oxide synthase activity in NIH3T3 cells, but not in the superoxide dismutase-expressing clones. These results indicate that superoxide dismutase overexpression blocks the PDGF-induced release of PGE2 by blocking induction of nitric oxide synthase. This indicates that the increase of nitric oxide synthase induced by PDGF is mediated in part by production of superoxide. These findings link cellular oxygen radical homeostasis to three different classes of messenger molecules (growth factors, nitric oxide, and prostaglandins).

  11. Superoxide disproportionation driven by zinc complexes with various steric and electrostatic properties.

    PubMed

    Wada, Akira; Jitsukawa, Koichiro; Masuda, Hideki

    2013-11-18

    Attractive models: Synthetic Zn(II) complexes were investigated as models of copper-zinc superoxide dismutase. Superoxide underwent a unique disproportionation reaction in the electrostatic sphere of the complexes (see picture; bpy=2,2'-bipyridyl). The effectiveness of the Zn(II) complexes in inducing the disproportionation of superoxide depended on both the Lewis acidity and the coordination geometry of the Zn center.

  12. Superoxide Induces Neutrophil Extracellular Trap Formation in a TLR-4 and NOX-Dependent Mechanism

    PubMed Central

    Al-Khafaji, Ahmed B; Tohme, Samer; Yazdani, Hamza Obaid; Miller, David; Huang, Hai; Tsung, Allan

    2016-01-01

    Neutrophils constitute the early innate immune response to perceived infectious and sterile threats. Neutrophil extracellular traps (NETs) are a novel mechanism to counter pathogenic invasion and sequelae of ischemia, including cell death and oxidative stress. Superoxide is a radical intermediate of oxygen metabolism produced by parenchymal and nonparenchymal hepatic cells, and is a hallmark of oxidative stress after liver ischemia-reperfusion (I/R). While extracellular superoxide recruits neutrophils to the liver and initiates sterile inflammatory injury, it is unknown whether superoxide induces the formation of NETs. We hypothesize that superoxide induces NET formation through a signaling cascade involving Toll-like receptor 4 (TLR-4) and neutrophil NADPH oxidase (NOX). We treated neutrophils with extracellular superoxide and observed NET DNA release, histone H3 citrullination and increased levels of MPO-DNA complexes occurring in a TLR-4–dependent manner. Inhibition of superoxide generation by allopurinol and inhibition of NOX by diphenyleneiodonium prevented NET formation. When mice were subjected to warm liver I/R, we found significant NET formation associated with liver necrosis and increased serum ALT in TLR-4 WT but not TLR-4 KO mice. To reduce circulating superoxide, we pretreated mice undergoing I/R with allopurinol and N-acetylcysteine, which resulted in decreased NETs and ameliorated liver injury. Our study demonstrates a requirement for TLR-4 and NOX in superoxide-induced NETs, and suggests involvement of superoxide-induced NETs in pathophysiologic settings. PMID:27453505

  13. Production of superoxide ions by leukocytes of the American alligator (Alligator mississippiensis).

    PubMed

    Merchant, Mark; Williams, Stetson; Hardy, Ross

    2009-01-01

    This study was conducted to characterize the production of superoxide ions by leukocytes in whole blood of the American alligator (Alligator mississippiensis). We used WST-1, a tetrazolium salt which can be reduced to a water-soluble formazan compound with high molar absorptivity at 438 nm, to probe the production of superoxide by alligator leukocytes. Incubation of alligator whole blood with WST-1 resulted in a time- and concentration-dependent increase in absorbance of the plasma at 438 nm. The reduction of WST-1 was inhibited in a concentration-dependent manner by superoxide dismutase, an enzyme that catalyzes the reduction of superoxide to peroxide, confirming that the reduction of WST-1 was due to the presence of superoxide. Treatment of whole blood with nitrotetrazolium blue (NBT) resulted in the staining of heterophils and monocytes, enforcing the idea that that the production of superoxide is due to the presence of leukocytes, and not other blood cell components. It is interesting to note that the production of superoxide by the alligator leukocytes required no external stimulation while human leukocytes must be stimulated with an immunological challenge before producing superoxide. This is the first report of the production of superoxide as an innate immune mechanism in crocodilians.

  14. Singlet oxygen production in the reaction of superoxide with organic peroxides.

    PubMed

    MacManus-Spencer, Laura A; Edhlund, Betsy L; McNeill, Kristopher

    2006-01-20

    [reaction: see text] A selective chemiluminescent probe for singlet oxygen has been employed to detect and quantify singlet oxygen in the reactions of superoxide with organic peroxides. The production of singlet oxygen has been quantified in the reaction of superoxide with benzoyl peroxide (BP). No singlet oxygen was detected in the reactions of superoxide with cumyl peroxide, tert-butyl peroxide, or tert-butyl hydroperoxide. On the basis of these results and on the temperature dependence of the reaction, we proposed a mechanism for singlet oxygen formation in the reaction of superoxide with BP.

  15. Permeability transition pore-mediated mitochondrial superoxide flashes regulate cortical neural progenitor differentiation.

    PubMed

    Hou, Yan; Mattson, Mark P; Cheng, Aiwu

    2013-01-01

    In the process of neurogenesis, neural progenitor cells (NPCs) cease dividing and differentiate into postmitotic neurons that grow dendrites and an axon, become excitable, and establish synapses with other neurons. Mitochondrial biogenesis and aerobic metabolism provide energy substrates required to support the differentiation, growth and synaptic activity of neurons. Mitochondria may also serve signaling functions and, in this regard, it was recently reported that mitochondria can generate rapid bursts of superoxide (superoxide flashes), the frequency of which changes in response to environmental conditions and signals including oxygen levels and Ca(2+) fluxes. Here we show that the frequency of mitochondrial superoxide flashes increases as embryonic cerebral cortical neurons differentiate from NPCs, and provide evidence that the superoxide flashes serve a signaling function that is critical for the differentiation process. The superoxide flashes are mediated by mitochondrial permeability transition pore (mPTP) opening, and pharmacological inhibition of the mPTP suppresses neuronal differentiation. Moreover, superoxide flashes and neuronal differentiation are inhibited by scavenging of mitochondrial superoxide. Conversely, manipulations that increase superoxide flash frequency accelerate neuronal differentiation. Our findings reveal a regulatory role for mitochondrial superoxide flashes, mediated by mPTP opening, in neuronal differentiation.

  16. Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat.

    PubMed

    Robb, Ellen L; Gawel, Justyna M; Aksentijević, Dunja; Cochemé, Helena M; Stewart, Tessa S; Shchepinova, Maria M; Qiang, He; Prime, Tracy A; Bright, Thomas P; James, Andrew M; Shattock, Michael J; Senn, Hans M; Hartley, Richard C; Murphy, Michael P

    2015-12-01

    Superoxide is the proximal reactive oxygen species (ROS) produced by the mitochondrial respiratory chain and plays a major role in pathological oxidative stress and redox signaling. While there are tools to detect or decrease mitochondrial superoxide, none can rapidly and specifically increase superoxide production within the mitochondrial matrix. This lack impedes progress, making it challenging to assess accurately the roles of mitochondrial superoxide in cells and in vivo. To address this unmet need, we synthesized and characterized a mitochondria-targeted redox cycler, MitoParaquat (MitoPQ) that comprises a triphenylphosphonium lipophilic cation conjugated to the redox cycler paraquat. MitoPQ accumulates selectively in the mitochondrial matrix driven by the membrane potential. Within the matrix, MitoPQ produces superoxide by redox cycling at the flavin site of complex I, selectively increasing superoxide production within mitochondria. MitoPQ increased mitochondrial superoxide in isolated mitochondria and cells in culture ~a thousand-fold more effectively than untargeted paraquat. MitoPQ was also more toxic than paraquat in the isolated perfused heart and in Drosophila in vivo. MitoPQ enables the selective generation of superoxide within mitochondria and is a useful tool to investigate the many roles of mitochondrial superoxide in pathology and redox signaling in cells and in vivo.

  17. Superoxide dismutase amplifies organismal sensitivity to ionizing radiation

    SciTech Connect

    Scott, M.D.; Meshnick, S.R.; Eaton, J.W.

    1989-02-15

    Although increased superoxide dismutase (SOD) activity is often associated with enhanced resistance of cells and organisms to oxidant challenges, few direct tests of the antioxidant importance of this enzyme have been carried out. To assess the importance of SOD in defending against gamma-radiation, we employed Escherichia coli with deficient, normal, and super-normal enzyme activities. Surprisingly, the radiation sensitivity of E. coli actually increases as bacterial SOD activity increases. Elevated intracellular SOD activity sensitizes E. coli to radiation-induced mortality, whereas SOD-deficient bacteria show normal or decreased radiosensitivity. Toxic effects of activated oxygen species are involved in this phenomenon; bacterial SOD activity has no effect on radiation sensitivity under anaerobic conditions or on the lethality of other, non-oxygen-dependent, toxins such as ultraviolet radiation.

  18. Reduced superoxide dismutase activity in xeroderma pigmentosum fibroblasts

    SciTech Connect

    Nishigori, C.; Miyachi, Y.; Imamura, S.; Takebe, H. )

    1989-10-01

    This study was performed in order to assess the possible protective effect of superoxide dismutase (SOD) on ultraviolet (UV) damage in xeroderma pigmentosum (XP) fibroblasts. SOD activity in fibroblasts originating from seven xeroderma pigmentosum (XP) patients was significantly lower than that in normal cells (p less than 0.005). Average SOD activity in XP cells belonging to complementation group A was 3.68 +/- 0.54 (n = 7) and that in normal human cells was 5.79 +/- 1.59 (n = 6). Addition of SOD before and during UV irradiation (UVB and UVC) to the cells caused no change in the amount of unscheduled DNA synthesis and UV survival. A possible involvement of reduced SOD in XP and a possible protective effect by SOD on UV damage is discussed.

  19. Stability of ALS-related Superoxide Dismutase Protein variants

    NASA Astrophysics Data System (ADS)

    Lusebrink, Daniel; Plotkin, Steven

    Superoxide dismutase (SOD1) is a metal binding, homodimeric protein, whose misfolding is implicated in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Monomerization is believed to be a key step in the propagation of the disease. The dimer stability is often difficult to measure experimentally however, because it is entangled with protein unfolding and metal loss. We thus computationally investigate the dimer stability of mutants of SOD1 known to be associated with ALS. We report on systematic trends in dimer stability, as well as intriguing allosteric communication between mutations and the dimer interface. We study the dimer stabilities in molecular dynamics simulations and obtain the binding free energies of the dimers from pulling essays. Mutations are applied in silicoand we compare the differences of binding free energies compared to the wild type.

  20. Superoxide dismutase activity in radioresistant tissues of irradiated rabbits.

    PubMed

    Stoklasová, A; Kovárová, H; Ledvina, M

    1992-01-01

    The activities of Cu, Zn-containing superoxide dismutase were studied in radioresistant tissues (liver, brain, erythrocytes) of whole-body irradiated rabbits with 6.0 Gy and 24.0 Gy with local shielding. No significant changes were observed after irradiation with 6.0 Gy. Both the changes in Cu, Zn-SOD activity and the protein concentrations were more pronounced after exposure to 24.0 Gy with local shielding of the head and abdominal region. The dose on the shielded regions was about 6.0 Gy. Local shielding of rabbits irradiated with a lethal dose 24.0 Gy influenced positively the survival of animals. However, the decrease in SOD activity on 60th day after irradiation seems to be unfavourable for further survival of rabbits, if we accept that SOD content in tissue is maintained at a rather constant level.

  1. Basal superoxide as a sex-specific immune constraint

    PubMed Central

    Tobler, Michael; Healey, Mo; Wilson, Mark; Olsson, Mats

    2011-01-01

    There is increasing evidence that reactive oxygen species (ROS), a group of unstable and highly reactive chemical molecules, play a key role in regulating and maintaining life-history trade-offs. Upregulation of ROS in association with immune activation is costly because it may result in an imbalance between pro- and antioxidants and, hence, oxidative damage. Previous research aimed at quantifying this cost has mostly focused on changes in the pro-/antioxidant balance subsequent to an immune response. Here, we test the hypothesis that systemic ROS may constrain immune activation. We show that systemic, pre-challenge superoxide (SO) levels are negatively related to the strength of the subsequent immune response towards the mitogen phytohaemagglutinin in male, but not female painted dragon lizards (Ctenophorus pictus). We therefore suggest that systemic SO constrains immune activation in painted dragon males. We speculate that this may be due to sex-specific selection pressures on immune investment. PMID:21632618

  2. Strain variation in bacteriocuprein superoxide dismutase from symbiotic Photobacterium leiognathi.

    PubMed

    Dunlap, P V; Steinman, H M

    1986-02-01

    Photobacterium leiognathi ATCC 25521 (the type strain and light-organ symbiont of ponyfish) is one of the few bacteria that produces a copper-zinc superoxide dismutase, termed bacteriocuprein. We enzymologically and immunologically characterized the bacteriocuprein superoxide dismutases in sonicates from the type strain and nine additional strains of P. leiognathi, each isolated from the light organ of a separate ponyfish specimen, representing seven ponyfish species. The results indicate considerable strain variation. (i) The level of bacteriocuprein enzymatic activity varied greatly among strains from different species of ponyfish. In four of the nine strains, activity was low or undetectable, while in five strains it was comparable to that in the type strain. (ii) The bacteriocuprein in one strain had a specific activity much lower than that of the type strain, and in another strain, no bacteriocuprein activity and no cross-reactive polypeptide were detectable. (iii) A new electrophoretic variant, which migrated slower than that of strains from fish captured in Thailand and Japan, was identified in strains from fish captured in the Philippine Islands. (iv) Enzymological and immunological differences were observed in bacteriocupreins of strains from male and female specimens of the same ponyfish species, for the two species in which specimens of both sexes were examined. These observations raise the possibility that specific variations in the bacteriocupreins of P. leiognathi might be characteristic of the species, geographical source, or sex of the ponyfish host. Thus, the data indicate that the possibility of strain variation should be considered when other species are screened for bacteriocupreins.

  3. Superoxide and the production of oxidative DNA damage.

    PubMed Central

    Keyer, K; Gort, A S; Imlay, J A

    1995-01-01

    The conventional model of oxidative DNA damage posits a role for superoxide (O2-) as a reductant for iron, which subsequently generates a hydroxyl radical by transferring the electron to H2O2. The hydroxyl radical then attacks DNA. Indeed, mutants of Escherichia coli that lack superoxide dismutase (SOD) were 10-fold more vulnerable to DNA oxidation by H2O2 than were wild-type cells. Even the pace of DNA damage by endogenous oxidants was great enough that the SOD mutants could not tolerate air if enzymes that repair oxidative DNA lesions were inactive. However, DNA oxidation proceeds in SOD-proficient cells without the involvement of O2-, as evidenced by the failure of SOD overproduction or anaerobiosis to suppress damage by H2O2. Furthermore, the mechanism by which excess O2- causes damage was called into question when the hypersensitivity of SOD mutants to DNA damage persisted for at least 20 min after O2- had been dispelled through the imposition of anaerobiosis. That behavior contradicted the standard model, which requires that O2- be present to rereduce cellular iron during the period of exposure to H2O2. Evidently, DNA oxidation is driven by a reductant other than O2-, which leaves the mechanism of damage promotion by O2- unsettled. One possibility is that, through its well-established ability to leach iron from iron-sulfur clusters, O2- increases the amount of free iron that is available to catalyze hydroxyl radical production. Experiments with iron transport mutants confirmed that increases in free-iron concentration have the effect of accelerating DNA oxidation. Thus, O2- may be genotoxic only in doses that exceed those found in SOD-proficient cells, and in those limited circumstances it may promote DNA damage by increasing the amount of DNA-bound iron. PMID:7592468

  4. Effects of oxidative stress on expression of extracellular superoxide dismutase, CuZn-superoxide dismutase and Mn-superoxide dismutase in human dermal fibroblasts.

    PubMed

    Strålin, P; Marklund, S L

    1994-03-01

    To determine the effect of oxidative stress on expression of extracellular superoxide dismutase (EC-SOD), CuZn-SOD and Mn-SOD, two fibroblast lines were exposed for periods of up to 4 days to a wide concentration range of oxidizing agents: xanthine oxidase plus hypoxanthine, paraquat, pyrogallol, alpha-naphthoflavone, hydroquinone, catechol, Fe2+ ions, Cu2+ ions, buthionine sulphoximine, diethylmaleate, t-butyl hydroperoxide, cumene hydroperoxide, selenite, citiolone and high oxygen partial pressure. The cell lines were cultured both under serum starvation and at a serum concentration that permitted growth. Under no condition was there any evidence of EC-SOD induction. Instead, the agents uniformly, dose-dependently and continuously reduced EC-SOD expression. We interpret the effect to be due to toxicity. Enhancement of the protection against oxidative stress by addition of CuZn-SOD, catalase and low concentrations of selenite did not influence the expression of any of the SOD isoenzymes. Removal of EC-SOD from cell surfaces by heparin also did not influence SOD expression. Mn-SOD was moderately induced by high doses of the first 11 oxidants. Apart from reduction at high toxic doses, there were no significant effects on the CuZn-SOD activity by any of the treatments. Thus EC-SOD, previously shown to be profoundly influenced by inflammatory cytokines, was not induced by its substrate or other oxidants. In a similar fashion, Mn-SOD, previously shown to be greatly induced and depressed by cytokines, was only moderately influenced by oxidants. We suggest that the regulation of these SOD isoenzymes in mammalian tissues primarily occurs in a manner co-ordinated by cytokines, rather than as a response of individual cells to oxidants.

  5. Pluronic-Modified Superoxide Dismutase 1 (SOD1) Attenuates Angiotensin II-Induced Increase in Intracellular Superoxide in Neurons

    PubMed Central

    Yi, Xiang; Zimmerman, Matthew C.; Yang, Ruifang; Tong, Jing; Vinogradov, Serguei; Kabanov, Alexander V.

    2010-01-01

    Overexpressing superoxide dismutase 1 (SOD1; also called Cu/ZnSOD), an intracellular superoxide (O2•−) scavenging enzyme, in central neurons inhibits angiotensin II (AngII) intra-neuronal signaling and normalizes cardiovascular dysfunction in diseases associated with enhanced AngII signaling in the brain including hypertension and heart failure. However, the blood-brain barrier (BBB) and neuronal cell membranes impose tremendous impediment for the delivery of SOD1 to central neurons, which hinders the potential therapeutic impact of SOD1 treatment on these diseases. To address this, we developed conjugates of SOD1 with poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer (Pluronic) (SOD1-P85 and SOD1-L81), which retained significant SOD1 enzymatic activity. The modified SOD1 effectively scavenged xanthine oxidase/hypoxanthine-derived O2•−, as determined in HPLC and the measurement of 2-hydroxyethidium. Using catecholaminergic (CATH.a) neurons, we observed an increase in neuronal uptake of SOD1-Pluronic after 1, 6, or 24 hrs, compared to neurons treated with pure SOD1 or PEG-SOD1. Importantly, without inducing neuronal toxicity, SOD1-Pluronic conjugates significantly inhibited AngII-induced increases in intra-neuronal O2•−-levels. These data indicate that SOD1-Pluronic conjugates penetrate neuronal cell membranes, which results in elevated intracellular levels of functional SOD1. Pluronic conjugation may be a new delivery system for SOD1 into central neurons and therapeutically beneficial for AngII-related cardiovascular diseases. PMID:20493251

  6. Molecular characterization of a manganese superoxide dismutase and copper/zinc superoxide dismutase from the mussel Mytilus galloprovincialis.

    PubMed

    Wang, Qing; Yuan, Zeyi; Wu, Huifeng; Liu, Feng; Zhao, Jianmin

    2013-05-01

    The full-length cDNA sequences coding respectively for a manganese superoxide dismutase (Mg-MnSOD) and copper/zinc superoxide dismutase (Mg-CuZnSOD) were cloned from Mytilus galloprovincialis. Mg-MnSOD and Mg-CuZnSOD cDNAs encoded a polypeptide of 228 and 211 amino acids, respectively. Sequence analysis indicated Mg-MnSOD was a mitochondrial MnSOD and Mg-CuZnSOD was an intracellular CuZnSOD. Multiple alignment analysis showed that both Mg-MnSOD and Mg-CuZnSOD sequences had the common features conserved in MnSODs and CuZnSODs, respectively. Phylogenetic analysis revealed that Mg-MnSOD clustered together with MnSODs from other mollusks, whereas Mg-CuZnSOD clustered with other mollusk intracellular CuZnSODs with a wider phylogenetic distance. By quantitative real-time RT-PCR (qPCR) analysis, both Mg-MnSOD and Mg-CuZnSOD transcripts were detected in all tissues examined with the highest expression level in hepatopancreas. Following bacterial challenge, the expression level of Mg-MnSOD and Mg-CuZnSOD increased first and subsequently decreased to the original level in hemocytes. In hepatopancreas, Mg-CuZnSOD mRNA was up-regulated significantly at 72 h and 96 h post challenge, while the level of Mg-MnSOD transcript had no significant change. Therefore, Mg-MnSOD and Mg-CuZnSOD expressions were inducible and they were probably involved in the immune response against bacterial challenge. These results suggest that these SODs may play important roles in the immune defense system of M. galloprovincialis and perhaps contribute to the protective effects against oxidative stress in this mussel.

  7. Immobilization of superoxide dismutase on Pt-Pd/MWCNTs hybrid modified electrode surface for superoxide anion detection.

    PubMed

    Zhu, Xiang; Niu, Xiangheng; Zhao, Hongli; Tang, Jie; Lan, Minbo

    2015-05-15

    Monitoring of reactive oxygen species like superoxide anion (O2(∙-)) turns to be of increasing significance considering their potential damages to organism. In the present work, we fabricated a novel O2(∙-) electrochemical sensor through immobilizing superoxide dismutase (SOD) onto a Pt-Pd/MWCNTs hybrid modified electrode surface. The Pt-Pd/MWCNTs hybrid was synthesized via a facile one-step alcohol-reduction process, and well characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The immobilization of SOD was accomplished using a simple drop-casting method, and the performance of the assembled enzyme-based sensor for O2(∙-) detection was systematically investigated by several electrochemcial techniques. Thanks to the specific biocatalysis of SOD towards O2(∙-) and the Pt-Pd/MWCNTs - promoted fast electron transfer at the fabricated interface, the developed biosensor exhibits a fast, selective and linear amperometric response upon O2(∙-) in the concentration scope of 40-1550 μM (R(2)=0.9941), with a sensitivity of 0.601 mA cm(-2) mM(-1) and a detection limit of 0.71 μM (S/N=3). In addition, the favorable biocompatibility of this electrode interface endows the prepared biosensor with excellent long-term stability (a sensitivity loss of only 3% over a period of 30 days). It is promising that the proposed sensor will be utilized as an effective tool to quantitatively monitor the dynamic changes of O2(∙-) in biological systems.

  8. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties.

    PubMed

    Ali, Sameh S; Hardt, Joshua I; Quick, Kevin L; Kim-Han, Jeong Sook; Erlanger, Bernard F; Huang, Ting-Ting; Epstein, Charles J; Dugan, Laura L

    2004-10-15

    Superoxide, a potentially toxic by-product of cellular metabolism, may contribute to tissue injury in many types of human disease. Here we show that a tris-malonic acid derivative of the fullerene C60 molecule (C3) is capable of removing the biologically important superoxide radical with a rate constant (k(C3)) of 2 x 10(6) mol(-1) s(-1), approximately 100-fold slower than the superoxide dismutases (SOD), a family of enzymes responsible for endogenous dismutation of superoxide. This rate constant is within the range of values reported for several manganese-containing SOD mimetic compounds. The reaction between C3 and superoxide was not via stoichiometric "scavenging," as expected, but through catalytic dismutation of superoxide, indicated by lack of structural modifications to C3, regeneration of oxygen, production of hydrogen peroxide, and absence of EPR-active (paramagnetic) products, all consistent with a catalytic mechanism. A model is proposed in which electron-deficient regions on the C60 sphere work in concert with malonyl groups attached to C3 to electrostatically guide and stabilize superoxide, promoting dismutation. We also found that C3 treatment of Sod2(-/-) mice, which lack expression of mitochondrial manganese superoxide dismutase (MnSOD), increased their life span by 300%. These data, coupled with evidence that C3 localizes to mitochondria, suggest that C3 functionally replaces MnSOD, acting as a biologically effective SOD mimetic.

  9. Volume reduction of nonaqueous media contaminated with a highly halogenated model compound using superoxide.

    PubMed

    Furman, Olha S; Teel, Amy L; Watts, Richard J

    2010-02-10

    Highly halogenated organic compounds, which include polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins (PCDDs) formed during the synthesis of pentachlorophenol and chlorophenoxy herbicides, are often found as contaminants in less toxic nonaqueous media, such as waste oil, oily sludges, or biosolids. Superoxide is highly reactive with halogenated compounds when both are dissolved in nonaqueous media; however, superoxide is most economically generated in water, where it is unreactive with most organic compounds. Superoxide reactivity was investigated in organic solvent-water systems as a basis for treating halogenated contaminants in less toxic nonaqueous media. Such a process could potentially render a contaminated oil or sludge nonhazardous, providing a mechanism for waste volume reduction. Increasing amounts of water added to acetone and dimethyl sulfoxide systems decreased the activity of superoxide in the solvent, but enough activity remained for effective treatment. Superoxide was then generated in the aqueous phase of two-phase water-organic solvent systems, and significant superoxide activity was achieved in the organic media with the addition of phase transfer catalysts (PTCs) to transfer superoxide into the nonaqueous phase. The results of this research demonstrate that superoxide, which can be generated in water electrochemically or through the catalytic decomposition of peroxygens, has the potential to be transferred to oils, sludges, and other less toxic nonaqueous media to destroy highly refractory contaminants such as PCBs, PCDDs, and other halogenated contaminants.

  10. The French Paradox: Determining the Superoxide-Scavenging Capacity of Red Wine and Other Beverages

    ERIC Educational Resources Information Center

    Logan, Barry A.; Hammond, Matthew P.; Stormo, Benjamin M.

    2008-01-01

    Plant-derived phenolic compounds such as those found in red wine, tea, and certain fruit juices may protect against cardiovascular disease by detoxifying (scavenging) superoxide and other unstable reactive oxygen species. We present a laboratory exercise that can be used to assess the superoxide-scavenging capacity of beverages. Among the…

  11. On the selectivity of superoxide dismutase mimetics and its importance in pharmacological studies

    PubMed Central

    Muscoli, Carolina; Cuzzocrea, Salvatore; Riley, Dennis P; Zweier, Jay L; Thiemermann, Christoph; Wang, Zhi-Qiang; Salvemini, Daniela

    2003-01-01

    The list of pathophysiological conditions associated with the overproduction of superoxide expands every day. Much of the knowledge compiled on the role of this radical in disease has been gathered using the native superoxide dismutase enzyme and, more recently, by the use of superoxide dismutase knockout models or transgenic models that overexpress the various isoforms of the enzyme. Although the native enzyme has shown promising anti-inflammatory properties in both preclinical and clinical studies, there were drawbacks and issues associated with its use as a therapeutic agent and pharmacological tool. Based on the concept that removal of superoxide modulates the course of inflammation, synthetic, low-molecular-weight mimetics of the superoxide dismutase enzymes that could overcome some of the limitations associated with the use of the native enzyme have been designed. In this review, we will discuss the advances made using various superoxide dismutase mimetics that led to the proposal that superoxide (and/or the product of its interaction with nitric oxide, peroxynitrite) is an important mediator of inflammation, and to the conclusion that superoxide dismutase mimetics can be utilized as therapeutic agents in diseases of various etiologies. The importance of the selectivity of such compounds in pharmacological studies will be discussed. PMID:14522841

  12. ROLE OF COPPER,ZINC-SUPEROXIDE DISMUTASE IN CATALYZING NITROTYROSINE FORMATION IN MURINE LIVER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The solely known function of Cu,Zn-superoxide dismutase (SOD1) is to catalyze the dismutation of superoxide anion into hydrogen peroxide. Our objective was to determine if SOD1 catalyzed murine liver protein nitration induced by acetaminophen (APAP) and lipopolysaccharide (LPS). Liver and plasma ...

  13. Superoxide Dismutase Protects Cells from DNA Damage Induced by Trivalent Methylated Arsenicals

    EPA Science Inventory

    Superoxide dismutase (SOD) catalyzes the conversion of superoxide to hydrogen peroxide. Heterozygous mice of strain B6; 129S7-Sod1(tm1Leb)/J were obtained from Jackson Laboratories and bred to produce offspring that were heterozygous (+/Sod1(tm1Leb)), homozygous wild-type (+/+), ...

  14. Do Superoxide Dismutase (SOD) and Catalase (CAT) protect Cells from DNA Damage Induced by Active Arsenicals?

    EPA Science Inventory

    Superoxide dismutase (SOD) catalyzes the conversion of superoxide to hydrogen peroxide, which can be converted to water and oxygen through the action of catalase. Heterozygous mice of strain B6: 129S7-SodltmlLeb/J were obtained from Jackson Laboratories and bred to produce offspr...

  15. Light-induced production of singlet oxygen and superoxide by the fungal toxin, cercosporin.

    PubMed

    Daub, M E; Hangarter, R P

    1983-11-01

    Cercosporin, a toxin produced by members of the fungal genus Cercospora, is a photosensitizing compound which rapidly kills plant cells in the light. We have found that cercosporin, when activated by light in the presence of oxygen, is able to generate both singlet oxygen and superoxide ions. Cercosporin, when illuminated in the presence of O(2), reacted with cholesterol to form the 5alpha-hydroperoxide of cholesterol which is only produced by reaction with singlet oxygen. Cercosporin, in the presence of light, O(2), and a reducing substrate, was also able to reduce p-nitro blue tetrazolium chloride, a compound readily reduced by superoxide. Superoxide dismutase, a scavenger of superoxide, inhibited this reaction. Production of both singlet oxygen and superoxide by cercosporin must be considered when studying the possible mechanisms of resistance to cercosporin.

  16. Inhibitory effects of cardols and related compounds on superoxide anion generation by xanthine oxidase.

    PubMed

    Masuoka, Noriyoshi; Nihei, Ken-ichi; Maeta, Ayami; Yamagiwa, Yoshiro; Kubo, Isao

    2015-01-01

    5-Pentadecatrienylresorcinol, isolated from cashew nuts and commonly known as cardol (C₁₅:₃), prevented the generation of superoxide radicals catalysed by xanthine oxidase without the inhibition of uric acid formation. The inhibition kinetics did not follow the Michelis-Menten equation, but instead followed the Hill equation. Cardol (C₁₀:₀) also inhibited superoxide anion generation, but resorcinol and cardol (C₅:₀) did not inhibit superoxide anion generation. The related compounds 3,5-dihydroxyphenyl alkanoates and alkyl 2,4-dihydroxybenzoates, had more than a C9 chain, cooperatively inhibited but alkyl 3,5-dihydroxybenzoates, regardless of their alkyl chain length, did not inhibit the superoxide anion generation. These results suggested that specific inhibitors for superoxide anion generation catalysed by xanthine oxidase consisted of an electron-rich resorcinol group and an alkyl chain having longer than C9 chain.

  17. Increased production of superoxide anion contributes to dysfunction of the arteriovenous fistula

    PubMed Central

    Tsapenko, Mykola V.; d'Uscio, Livius V.; Grande, Joseph P.; Croatt, Anthony J.; Hernandez, Melissa C.; Ackerman, Allan W.; Katusic, Zvonimir S.

    2012-01-01

    Vascular access dysfunction causes morbidity in hemodialysis patients. This study examined the generation and pathobiological significance of superoxide anion in a rat femoral arteriovenous fistula (AVF). One week after AVF creation, there was increased production of superoxide anion accompanied by decreased total superoxide dismutase (SOD) and Cu/Zn SOD activities and induction of the redox-sensitive gene heme oxygenase-1. Immunohistochemical studies of nitrotyrosine formation demonstrated that peroxynitrite, a product of superoxide anion and nitric oxide, was present in increased amounts in endothelial and smooth muscle cells in the AVF. Because uncoupled NOS isoforms generate superoxide anion, and NOS coupling requires tetrahydrobiopterin (BH4) as a cofactor, we assessed NOS uncoupling by determining the ratio of BH4 to dihydrobiopterin (BH2); the BH4-to-BH2 ratio was markedly attenuated in the AVF. Because Src is a vasculopathic signaling species upstream and downstream of superoxide anion, such expression was evaluated; expression of Src and phosphorylated Src was both markedly increased in the AVF. Expression of NADPH oxidase (NOX) 1, NOX2, NOX4, cyclooxygenase (COX) 1, COX2, p47phox, and p67phox was all unchanged, as assessed by Western analyses, thereby suggesting that these proteins may not be involved in increased production of superoxide anion. Finally, administration of tempol, a superoxide anion scavenger, decreased neointima formation in the juxta-anastomotic venous segment and improved AVF blood flow. We conclude that the AVF exhibits increased superoxide anion generation that may reflect the combined effects of decreased scavenging by SOD and increased generation by uncoupled NOS, and that enhanced superoxide anion production promotes juxta-anastomotic stenosis and impairs AVF function. PMID:22993073

  18. Relationship of superoxide production to cytoplasmic free calcium in human monocytes.

    PubMed Central

    Scully, S P; Segel, G B; Lichtman, M A

    1986-01-01

    Calcium has been proposed as an intracellular second messenger for activation of secretion, phagocytosis, and the oxidative burst of neutrophils. We have examined the role of calcium in human monocyte activation. Concanavalin A (Con A)-stimulated monocytes displayed an increment in cytoplasmic ionized calcium at 31 +/- 6 s and the onset of superoxide production at 61 +/- 9 s. The increase in cytoplasmic calcium invariably preceded the onset of superoxide production. If the external calcium concentration was reduced to less than 28 nM by the addition of 10 mM EGTA, superoxide production was not diminished at 5 min; however, superoxide production decreased thereafter. The Con A-evoked increment in cytoplasmic ionized calcium was blunted upon the addition of EGTA and decreased further with time. Both the production of superoxide and the Con A-evoked increment in cytoplasmic ionized calcium displayed a 50% inhibition after 15 min of calcium depletion and were completely inhibited after 60 min. Total cell calcium fell from 0.7 to 0.5 fmol/cell, and the basal level of ionized calcium fell from 83 to 30 nM after 60 min. Histidine, a strong chelator of divalent cations other than calcium and magnesium, had no effect on monocyte superoxide production or on ionized calcium concentrations, indicating that EGTA inhibition was due to cell calcium depletion. In calcium-depleted cells, Con A did not evoke superoxide production until calcium was restored to the incubation medium. The restoration of calcium to Con A-treated, calcium-depleted monocytes permitted a rapid rise in the cytoplasmic ionized calcium, and the production of superoxide within 9 s. These data suggest that an increase in ionized cytoplasmic calcium is necessary for the activation of monocyte superoxide production by Con A. The rise in ionized calcium in response to Con A results, in part, from an internal redistribution of calcium, which is sufficient to permit superoxide generation. PMID:3007579

  19. Bosentan, a mixed endothelin receptor antagonist, inhibits superoxide anion-induced pain and inflammation in mice.

    PubMed

    Serafim, Karla G G; Navarro, Suelen A; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Fattori, Victor; Cunha, Thiago M; Alves-Filho, Jose C; Cunha, Fernando Q; Casagrande, Rubia; Verri, Waldiceu A

    2015-11-01

    Bosentan is a mixed endothelin receptor antagonist widely used to treat patients with pulmonary arterial hypertension, and the emerging literature suggests bosentan as a potent anti-inflammatory drug. Superoxide anion is produced in large amounts during inflammation, stimulates cytokine production, and thus contributes to inflammation and pain. However, it remains to be determined whether endothelin contributes to the inflammatory response triggered by the superoxide anion. The present study investigated the effects of bosentan in a mouse model of inflammation and pain induced by potassium superoxide, a superoxide anion donor. Male Swiss mice were treated with bosentan (10-100 mg/kg) by oral gavage, 1 h before potassium superoxide injection, and the inflammatory response was evaluated locally and at spinal cord (L4-L6) levels. Bosentan (100 mg/kg) inhibited superoxide anion-induced mechanical and thermal hyperalgesia, overt pain-like behavior (abdominal writhings, paw flinching, and licking), paw edema, myeloperoxidase activity (neutrophil marker) in the paw skin, and leukocyte recruitment in the peritoneal cavity. Bosentan also inhibited superoxide anion-induced interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) production, while it enhanced IL-10 production in the paw skin and spinal cord. Bosentan inhibited the reduction of antioxidant capacity (reduced glutathione, ferric reducing antioxidant power, and ABTS radical scavenging ability) induced by the superoxide anion. Finally, we demonstrated that intraplantar injection of potassium superoxide induces the mRNA expression of prepro-endothelin-1 in the paw skin and spinal cord. In conclusion, our results demonstrated that superoxide anion-induced inflammation, pain, cytokine production, and oxidative stress depend on endothelin; therefore, these responses are amenable to bosentan treatment.

  20. The superoxide anion donor, potassium superoxide, induces pain and inflammation in mice through production of reactive oxygen species and cyclooxygenase-2.

    PubMed

    Maioli, N A; Zarpelon, A C; Mizokami, S S; Calixto-Campos, C; Guazelli, C F S; Hohmann, M S N; Pinho-Ribeiro, F A; Carvalho, T T; Manchope, M F; Ferraz, C R; Casagrande, R; Verri, W A

    2015-04-01

    It is currently accepted that superoxide anion (O2•-) is an important mediator in pain and inflammation. The role of superoxide anion in pain and inflammation has been mainly determined indirectly by modulating its production and inactivation. Direct evidence using potassium superoxide (KO2), a superoxide anion donor, demonstrated that it induced thermal hyperalgesia, as assessed by the Hargreaves method. However, it remains to be determined whether KO2 is capable of inducing other inflammatory and nociceptive responses attributed to superoxide anion. Therefore, in the present study, we investigated the nociceptive and inflammatory effects of KO2. The KO2-induced inflammatory responses evaluated in mice were: mechanical hyperalgesia (electronic version of von Frey filaments), thermal hyperalgesia (hot plate), edema (caliper rule), myeloperoxidase activity (colorimetric assay), overt pain-like behaviors (flinches, time spent licking and writhing score), leukocyte recruitment, oxidative stress, and cyclooxygenase-2 mRNA expression (quantitative PCR). Administration of KO2 induced mechanical hyperalgesia, thermal hyperalgesia, paw edema, leukocyte recruitment, the writhing response, paw flinching, and paw licking in a dose-dependent manner. KO2 also induced time-dependent cyclooxygenase-2 mRNA expression in the paw skin. The nociceptive, inflammatory, and oxidative stress components of KO2-induced responses were responsive to morphine (analgesic opioid), quercetin (antioxidant flavonoid), and/or celecoxib (anti-inflammatory cyclooxygenase-2 inhibitor) treatment. In conclusion, the well-established superoxide anion donor KO2 is a valuable tool for studying the mechanisms and pharmacological susceptibilities of superoxide anion-triggered nociceptive and inflammatory responses ranging from mechanical and thermal hyperalgesia to overt pain-like behaviors, edema, and leukocyte recruitment.

  1. Superoxide Production by Digitonin-Stimulated Guinea Pig Granulocytes

    PubMed Central

    Cohen, Harvey J.; Chovaniec, Margaret E.

    1978-01-01

    N-ethylmaleimide, divalent cations, ethylene glycol bis (β aminoethyl ether) N,N,N′,N′,-tetraacetate, 2-deoxyglucose, cyanide, and dinitrophenol were examined for their effect on the ability of guinea pig granulocytes to generate superoxide (O2−) when stimulated by digitonin. N-ethylmaleimide (1 mM) inhibits only when added before complete activation of the O2− generating system, and at lower concentrations (0.05-0.2 mM) slows the activation process. Ca++ is required for maximum O2− generation, and Mg++ decreases the amount of Ca++ required. Ethylene glycol bis (β aminoethyl ether) N,N,N′,N′,-tetraacetate (10 mM) inhibits only if added before complete activation. Incubation of cells in 2-DOG causes a time- and concentration-dependent inhibition of O2− generation. It also increases the time required for activation of this system. Cyanide and dinitrophenol increase the rate of O2− production. However, when these compounds are added to cells whose O2− production is partially inhibited by incubation in 2-deoxyglucose, complete inhibition results. If cyanide or dinitrophenol is added after activation of 2-deoxyglucose-treated cells, no further inhibition occurs. On the basis of the above results, we conclude that the activation of the O2− generating system is N-ethylmaleimide sensitive, Ca++ dependent, and energy requiring, but that the activity of the enzyme system in the cell is not. PMID:207722

  2. Status of Superoxide Dismutase in Transfusion Dependent Thalassaemia

    PubMed Central

    Rujito, Lantip; Mulatsih, Sri; Sofro, Abdul Salam M.

    2015-01-01

    Background: Thalassemia is a collection of genetic impairments in beta and alpha genes causing various states of anemia. Severe types of the disease need lifelong transfusions, leading to oxidant-antioxidant disturbance due to massive iron deposits. Aims: The aim of this study was to assess the antioxidant enzyme Superoxide Dismutase (SOD) and ferritin levels of thalassemia major patients in a peripheral health facility. Materials and Methods: Two hundred and nine probands were recruited and performed laboratory experiments for SOD and Ferritin levels. Chelation administration and clinical score were taken from interviewing the family and from medical report data. Results: The study showed that SOD intensity was lower (162.41 u/ml) compared to the normal cutoff point (P = 0.001), while the mean of Ferritin levels was ten times over the normal value (4226,67 ng/dl). Observations also reported that chelation medicine was not administrated properly. Conclusions: The data indicates that thalassemic patients have oxidant-antioxidant uproar due to oxidative stress. Monitored chelating administration, selective antioxidant, and a well-balanced diet may prevent oxidative injury. PMID:26110130

  3. Superoxide dismutase activity of Cu-bound prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2009-03-01

    Misfolding of the prion protein, PrP, has been linked to a group of neurodegenerative diseases, including the mad cow disease in cattle and the Creutzfeldt-Jakob disease in humans. The normal function of PrP is still unknown, but it was found that the PrP can efficiently bind Cu(II) ions. Early experiments suggested that Cu-PrP complex possesses significant superoxide dismutase (SOD) activity, but later experiments failed to confirm it and at present this issue remains unresolved. Using a recently developed hybrid DFT/DFT method, which combines Kohn-Sham DFT for the solute and its first solvation shells with orbital-free DFT for the remainder of the solvent, we have investigated SOD activity of PrP. The PrP is capable of incorporating Cu(II) ions in several binding modes and our calculations find that each mode has a different SOD activity. The highest activity found is comparable to those of well-known SOD proteins, suggesting that the conflicting experimental results may be due to different bindings of Cu(II) in those experiments.

  4. Amelioration of hepatic reperfusion injury by superoxide dismutase and catalase

    SciTech Connect

    Clemens, M.G.; Burke, F.; Chaudry, I.H.

    1986-03-05

    Oxygen-derived free radicals have been implicated in reperfusion injury in various tissues. The present study determined if enzymatic scavenging of free radicals could improve recovery of hepatic function following ischemia. Livers from fasted rats were perfused with Krebs-HCO/sub 3/ buffer with substrates for gluconeogenesis for 30 min (control) followed by 60 min warm ischemia and 90 min reperfusion. At the beginning and end of ischemia the liver was flushed with buffered Ringer's with superoxide dismutase + catalase (150,000 U/L each)(SOD) or without additions (Untreated). Bile flow and glucose release were monitored during control and reperfusion periods and tissue sampled at the end of the experiment to determine tissue water and electrolytes. Bile flow and gluconeogenesis were markedly depressed after ischemia in both groups. At the end of 90 min reperfusion bile flow in Untreated and SOD were 23 +/- 6 and 46 +/- 8 ..mu..l/15 min (20% and 41% of control respectively, p < .01). Gluconeogenesis recovered to 83 +/- 4% of control in Untreated vs 103 +/- 6% with SOD (p < .05). Tissue water and electrolytes were not different. These results suggest that generation of oxygen-derived free radicals contributes to functional deficits in the liver following ischemia and that these defects can be attenuated by enzymatic scavenging.

  5. Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase and catalase enzymes.

    PubMed

    Singh, Sushant; Singh, Abhay Narayan; Verma, Anil; Dubey, Vikash Kumar

    2013-12-01

    Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase (SOD) and catalase (CAT) were successfully synthesized using double emulsion (w/o/w) solvent evaporation technique. Characterization of the nanosphere using dynamic light scattering, field emission scanning electron microscope, and Fourier transform infrared spectroscopy revealed a spherical-shaped nanosphere in a size range of 812 ± 64 nm with moderate protein encapsulation efficiency of 55.42 ± 3.7 % and high in vitro protein release. Human skin HaCat cells were used for analyzing antioxidative properties of SOD- and CAT-encapsulated PCL nanospheres. Oxidative stress condition in HaCat cells was optimized with exposure to hydrogen peroxide (H2O2; 1 mM) as external stress factor and verified through reactive oxygen species (ROS) analysis using H2DCFDA dye. PCL nanosphere encapsulating SOD and CAT together indicated better antioxidative defense against H2O2-induced oxidative stress in human skin HaCat cells in comparison to PCL encapsulating either SOD or CAT alone as well as against direct supplement of SOD and CAT protein solution. Increase in HaCat cells SOD and CAT activities after treatment hints toward uptake of PCL nanosphere into the human skin HaCat cells. The result signifies the role of PCL-encapsulating SOD and CAT nanosphere in alleviating oxidative stress.

  6. Copper, ceruloplasmin, superoxide dismutase and iron parameters in Parkinson's disease.

    PubMed

    Tórsdóttir, G; Kristinsson, J; Sveinbjörnsdóttir, S; Snaedal, J; Jóhannesson, T

    1999-11-01

    In a previous study we found copper dyshomeostasis in patients with Alzheimer's disease. In this study, levels of copper in plasma, of ceruloplasmin in serum and ceruloplasmin oxidative activity as well as superoxide dismutase (SOD) activity in erythrocytes were determined in 40 patients with Parkinson's disease and their healthy age- and gender-matched controls. Copper concentrations did not differ significantly in the two groups, whereas both ceruloplasmin concentrations and ceruloplasmin oxidative activity were significantly lower in the patients, also relative to ceruloplasmin mass. SOD activity was not significantly different in the two groups but decreased significantly with the duration of disease. The same was found for ceruloplasmin oxidative activity. Ceruloplasmin oxidative activity and SOD activity did not decrease with age. Levels of serum iron, serum ferritin and total iron binding capacity were determined in about 30 of the patients and an equal number of controls and were not found to differ. Transferrin levels were significantly lower in the patients than in their controls but, conversely, the transferrin saturation was significantly higher in the patients. The results indicate that patients with Alzheimer's disease and Parkinson's disease have defective ceruloplasmin and SOD activities in common and that these defects are not necessarily associated with major disturbances in iron homeostasis.

  7. Superoxide scavenging activity of pirfenidone-iron complex

    SciTech Connect

    Mitani, Yoshihiro; Sato, Keizo Muramoto, Yosuke; Karakawa, Tomohiro; Kitamado, Masataka; Iwanaga, Tatsuya; Nabeshima, Tetsuji; Maruyama, Kumiko; Nakagawa, Kazuko; Ishida, Kazuhiko; Sasamoto, Kazumi

    2008-07-18

    Pirfenidone (PFD) is focused on a new anti-fibrotic drug, which can minimize lung fibrosis etc. We evaluated the superoxide (O{sub 2}{sup {center_dot}}{sup -}) scavenging activities of PFD and the PFD-iron complex by electron spin resonance (ESR) spectroscopy, luminol-dependent chemiluminescence assay, and cytochrome c reduction assay. Firstly, we confirmed that the PFD-iron complex was formed by mixing iron chloride with threefold molar PFD, and the complex was stable in distillated water and ethanol. Secondary, the PFD-iron complex reduced the amount of O{sub 2}{sup {center_dot}}{sup -} produced by xanthine oxidase/hypoxanthine without inhibiting the enzyme activity. Thirdly, it also reduced the amount of O{sub 2}{sup {center_dot}}{sup -} released from phorbor ester-stimulated human neutrophils. PFD alone showed few such effects. These results suggest the possibility that the O{sub 2}{sup {center_dot}}{sup -} scavenging effect of the PFD-iron complex contributes to the anti-fibrotic action of PFD used for treating idiopathic pulmonary fibrosis.

  8. Superoxide Dismutase 1 Nanozyme for Treatment of Eye Inflammation

    PubMed Central

    Kost, Olga A.; Beznos, Olga V.; Davydova, Nina G.; Manickam, Devika S.; Nikolskaya, Irina I.; Guller, Anna E.; Binevski, Petr V.; Chesnokova, Natalia B.; Shekhter, Anatoly B.; Klyachko, Natalia L.; Kabanov, Alexander V.

    2016-01-01

    Use of antioxidants to mitigate oxidative stress during ocular inflammatory diseases has shown therapeutic potential. This work examines a nanoscale therapeutic modality for the eye on the base of antioxidant enzyme, superoxide dismutase 1 (SOD1), termed “nanozyme.” The nanozyme is produced by electrostatic coupling of the SOD1 with a cationic block copolymer, poly(L-lysine)-poly(ethyleneglycol), followed by covalent cross-linking of the complexes with 3,3′-dithiobis(sulfosuccinimidylpropionate) sodium salt. The ability of SOD1 nanozyme as well as the native SOD1 to reduce inflammatory processes in the eye was examined in vivo in rabbits with immunogenic uveitis. Results suggested that topical instillations of both enzyme forms demonstrated anti-inflammatory activity; however, the nanozyme was much more effective compared to the free enzyme in decreasing uveitis manifestations. In particular, we noted statistically significant differences in such inflammatory signs in the eye as the intensities of corneal and iris edema, hyperemia of conjunctiva, lens opacity, fibrin clots, and the protein content in aqueous humor. Clinical findings were confirmed by histological data. Thus, SOD1-containing nanozyme is potentially useful therapeutic agent for the treatment of ocular inflammatory disorders. PMID:26697135

  9. NADPH Oxidase-Dependent Superoxide Production in Plant Reproductive Tissues.

    PubMed

    Jiménez-Quesada, María J; Traverso, José Á; Alché, Juan de Dios

    2016-01-01

    In the life cycle of a flowering plant, the male gametophyte (pollen grain) produced in the anther reaches the stigmatic surface and initiates the pollen-pistil interaction, an important step in plant reproduction, which ultimately leads to the delivery of two sperm cells to the female gametophyte (embryo sac) inside the ovule. The pollen tube undergoes a strictly apical expansion characterized by a high growth rate, whose targeting should be tightly regulated. A continuous exchange of signals therefore takes place between the haploid pollen and diploid tissue of the pistil until fertilization. In compatible interactions, theses processes result in double fertilization to form a zygote (2n) and the triploid endosperm. Among the large number of signaling mechanisms involved, the redox network appears to be particularly important. Respiratory burst oxidase homologs (Rbohs) are superoxide-producing enzymes involved in a broad range of processes in plant physiology. In this study, we review the latest findings on understanding Rboh activity in sexual plant reproduction, with a particular focus on the male gametophyte from the anther development stages to the crowning point of fertilization. Rboh isoforms have been identified in both the male and female gametophyte and have proven to be tightly regulated. Their role at crucial points such as proper growth of pollen tube, self-incompatibility response and eventual fertilization is discussed.

  10. Reversible activation of the neutrophil superoxide generating system by hexachlorocyclohexane: correlation with effects on a subcellular superoxide-generating fraction.

    PubMed

    English, D; Schell, M; Siakotos, A; Gabig, T G

    1986-07-01

    gamma-Hexachlorocyclohexane was found to exert profound effects on the phosphatidylinositol cycle, cytosolic calcium level, and the respiratory burst of human neutrophils. Exposure of neutrophils prelabelled with 32P to 4 X 10(-4) M gamma-hexachlorocyclohexane almost tripled radioactivity in phosphatidic acid and correspondingly decreased radioactivity in phosphatidylinositol 4,5 bisphosphate. Under similar conditions, gamma-hexachlorocyclohexane evoked the generation of superoxide at a rate of over 11 nmol/min/10(6) cells and more than doubled cytosolic-free calcium concentration as monitored by Quin-2 fluorescence. Because intermediates of the phosphatidylinositol cycle, via increases in available calcium levels or activated protein kinase C, are considered potential second messengers for activation of the NADPH-dependent O-2-generating system, we compared neutrophil responses to gamma-hexachlorocyclohexane with responses to phorbol myristate acetate, an activator of protein kinase C with well known effects on neutrophils. Like phorbol myristate acetate, gamma-hexachlorocyclohexane induced neutrophil degranulation but was not an effective chemotactic stimulus. The ability of gamma-hexachlorocyclohexane to induce a pattern of oxidative activation in neutrophil cytoplasts similar to that in intact cells indicated that concurrent degranulation was not required for sustained O-2 generation in response to this agent. When neutrophils or neutrophil cytoplasts exposed to gamma-hexachlorocyclohexane were centrifuged and resuspended in stimulus-free medium, O-2 generation ceased entirely but could be reinitiated by addition of the same stimulus. This finding was in contrast to the continued O-2 production by phorbol myristate acetate-stimulated neutrophils similarly washed and resuspended in stimulus-free medium. Unlike subcellular fractions of phorbol myristate acetate-stimulated neutrophils, corresponding fractions prepared from gamma

  11. Manganese Superoxide Dismutase Protects against 6-Hydroxydopamine Injury in Mouse Brains*

    PubMed Central

    Callio, Jason; Oury, Tim D.; Chu, Charleen T.

    2007-01-01

    Dopaminergic neurons of the substantia nigra are susceptible to toxin-based insults. Intrastriatal injection of 6-hydroxydopamine results in selective toxicity to these neurons. A mechanistic role for reactive oxygen species is supported by observations that antioxidants confer protection from 6-hydroxydopamine. Although cell culture studies have suggested extracellular or nonmitochondrial mechanisms in 6-hydroxydopamine toxicity, the compartmentalization of oxidative injury mechanisms is incompletely defined in vivo. Transgenic mice overexpressing mitochondrial manganese superoxide dismutase or extracellular superoxide dismutase received unilateral intrastriatal injections of 6-hydroxydopamine. Mice that overexpress manganese superoxide dismutase showed significantly smaller striatal lesions than littermate controls. There were no differences in nonspecific striatal injury associated with contralateral vehicle injection. Manganese superoxide dismutase overexpression also protected against loss of neuronal cell bodies in the substantia nigra. In contrast, mice overexpressing extracellular superoxide dismutase showed no protection from 6-hydroxydopamine toxicity in either brain region. Protection of the nigrostriatal system by overexpression of manganese super-oxide dismutase supports a role for mitochondrially derived superoxide in 6-hydroxydopamine toxicity. Mitochondrial oxidative stress appears to be a common mechanism among diverse models of Parkinson disease, whether involving toxins, mutated genes, or cybrid cells containing patient mitochondria. Antioxidant therapies that target this subcellular compartment may prove promising. PMID:15755737

  12. Superoxide production after acute and chronic treatment with methylphenidate in young and adult rats.

    PubMed

    Gomes, Karin M; Inácio, Cecília G; Valvassori, Samira S; Réus, Gislaine Z; Boeck, Carina R; Dal-Pizzol, Felipe; Quevedo, João

    2009-11-06

    The prescription of methylphenidate (MPH) has dramatically increased in this decade for attention deficit hyperactivity disorder (ADHD) treatment. The action mechanism of MPH is not completely understood and studies have been demonstrated that MPH can lead to neurochemical adaptations. Superoxide radical anion is not very reactive per se. However, severe species derived from superoxide radical anion mediate most of its toxicity. In this study, the superoxide level in submitochondrial particles was evaluated in response to treatment with MPH in the age-dependent manner in rats. MPH was administrated acutely or chronically at doses of 1, 2 or 10 mg/kg i.p. The results showed that the acute administration of MPH in all doses in young rats increased the production of superoxide in the cerebellum and only in the high dose (10mg/kg) in the hippocampus, while chronic treatment had no effect. However, acute treatment in adult rats had no effect on production of superoxide, but chronic treatment decreased the production of superoxide in the cerebellum at the lower doses. Our data suggest that the MPH treatment can influence on production of superoxide in some brain areas, but this effect depends on age of animals and treatment regime with MPH.

  13. Effects of asbestos and silica on superoxide anion production in the guinea pig alveolar macrophage

    SciTech Connect

    Roney, P.L.

    1988-01-01

    This study examined the effect of asbestos and silica on the activation pathway of the guinea pig alveolar macrophage. Activation of macrophages by physiological agents results in stimulation of phospholipase C causing phosphatidyl inositol turnover and intracellular calcium mobilization. Phosphatidyl inositol turnover produces diacylglycerol which activates protein kinase C causing superoxide anion production. Chrysotile stimulated alveolar macrophages to produce superoxide anion. This stimulation proceeded via phospholipase C, since chrysotile stimulated phosphatidyl inositol turnover and intracellular calcium mobilization. The possible involvement of a coupling protein was evaluated by pretreating cells with pertussis toxin. Potential binding sites for chrysotile stimulation were examined using a series of nine lectins. Chrysotile-stimulated superoxide anion production was blocked by pretreatment with lectins which bound to mannose, fucose, or N-acetylgalactosamine. In addition, incubation with the N-acetylglucosamine, but not by lectins which bound to mannose, fucose, or N-acetylgalactosamine. In addition, incubation with the N-acetylglucosamine polymer, chitin, inhibited chrysotile-stimulated superoxide anion production, suggesting that chrysotile stimulated superoxide anion production by binding to N-acetylglucosamine residues. On the other hand, silica did not stimulate superoxide anion production. The effect of silica on agonist stimulation of this pathway was examined using two stimulants of superoxide anion production, N-formyl-nle-leu-phe (FNLP, which stimulates through phospholipase C) and phorbol-12,13-dibutyrate (which directly activates protein kinase C).

  14. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function.

    PubMed

    Dugan, Laura L; You, Young-Hyun; Ali, Sameh S; Diamond-Stanic, Maggie; Miyamoto, Satoshi; DeCleves, Anne-Emilie; Andreyev, Aleksander; Quach, Tammy; Ly, San; Shekhtman, Grigory; Nguyen, William; Chepetan, Andre; Le, Thuy P; Wang, Lin; Xu, Ming; Paik, Kacie P; Fogo, Agnes; Viollet, Benoit; Murphy, Anne; Brosius, Frank; Naviaux, Robert K; Sharma, Kumar

    2013-11-01

    Diabetic microvascular complications have been considered to be mediated by a glucose-driven increase in mitochondrial superoxide anion production. Here, we report that superoxide production was reduced in the kidneys of a steptozotocin-induced mouse model of type 1 diabetes, as assessed by in vivo real-time transcutaneous fluorescence, confocal microscopy, and electron paramagnetic resonance analysis. Reduction of mitochondrial biogenesis and phosphorylation of pyruvate dehydrogenase (PDH) were observed in kidneys from diabetic mice. These observations were consistent with an overall reduction of mitochondrial glucose oxidation. Activity of AMPK, the major energy-sensing enzyme, was reduced in kidneys from both diabetic mice and humans. Mitochondrial biogenesis, PDH activity, and mitochondrial complex activity were rescued by treatment with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). AICAR treatment induced superoxide production and was linked with glomerular matrix and albuminuria reduction in the diabetic kidney. Furthermore, diabetic heterozygous superoxide dismutase 2 (Sod2(+/-)) mice had no evidence of increased renal disease, and Ampka2(-/-) mice had increased albuminuria that was not reduced with AICAR treatment. Reduction of mitochondrial superoxide production with rotenone was sufficient to reduce AMPK phosphorylation in mouse kidneys. Taken together, these results demonstrate that diabetic kidneys have reduced superoxide and mitochondrial biogenesis and activation of AMPK enhances superoxide production and mitochondrial function while reducing disease activity.

  15. Biologically Relevant Mechanism For Catalytic Removal of Superoxide by Simple Manganese Compounds

    SciTech Connect

    Barnese K.; Cabelli D.; Gralla, E.B.; Valentine, J.S.

    2012-05-01

    Nonenzymatic manganese was first shown to provide protection against superoxide toxicity in vivo in 1981, but the chemical mechanism responsible for this protection subsequently became controversial due to conflicting reports concerning the ability of Mn to catalyze superoxide disproportionation in vitro. In a recent communication, we reported that low concentrations of a simple Mn phosphate salt under physiologically relevant conditions will indeed catalyze superoxide disproportionation in vitro. We report now that two of the four Mn complexes that are expected to be most abundant in vivo, Mn phosphate and Mn carbonate, can catalyze superoxide disproportionation at physiologically relevant concentrations and pH, whereas Mn pyrophosphate and citrate complexes cannot. Additionally, the chemical mechanisms of these reactions have been studied in detail, and the rates of reactions of the catalytic removal of superoxide by Mn phosphate and carbonate have been modeled. Physiologically relevant concentrations of these compounds were found to be sufficient to mimic an effective concentration of enzymatic superoxide dismutase found in vivo. This mechanism provides a likely explanation as to how Mn combats superoxide stress in cellular systems.

  16. Chaperonin 20 might be an iron chaperone for superoxide dismutase in activating iron superoxide dismutase (FeSOD)

    PubMed Central

    Kuo, Wen-Yu; Huang, Chien-Hsun; Jinn, Tsung-Luo

    2013-01-01

    Activation of Cu/Zn superoxide dismutases (CuZnSODs) is aided by Cu incorporation and disulfide isomerization by Cu chaperone of SOD (CCS). As well, an Fe-S cluster scaffold protein, ISU, might alter the incorporation of Fe or Mn into yeast MnSOD (ySOD2), thus leading to active or inactive ySOD2. However, metallochaperones involved in the activation of FeSODs are unknown. Recently, we found that a chloroplastic chaperonin cofactor, CPN20, could mediate FeSOD activity. To investigate whether Fe incorporation in FeSOD is affected by CPN20, we used inductively coupled plasma mass spectrometry to analyze the ability of CPN20 to bind Fe. CPN20 could bind Fe, and the Fe binding to FeSOD was increased with CPN20 incubation. Thus, CPN20 might be an Fe chaperone for FeSOD activation, a role independent of its well-known co-chaperonin activity. PMID:23299425

  17. Ceruloplasmin copper induces oxidant damage by a redox process utilizing cell-derived superoxide as reductant

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Fox, P. L.

    1998-01-01

    Oxidative damage by transition metals bound to proteins may be an important pathogenic mechanism. Ceruloplasmin (Cp) is a Cu-containing plasma protein thought to be involved in oxidative modification of lipoproteins. We have previously shown that Cp increased cell-mediated low-density lipoprotein (LDL) oxidation by a process requiring cell-derived superoxide, but the underlying chemical mechanism(s) is (are) unknown. We now show that superoxide reduction of Cp Cu is a critical reaction in cellular LDL oxidation. By bathocuproine disulfonate (BCS) binding and by superoxide utilization, we showed that exogenous superoxide reduces a single Cp Cu atom, the same Cu required for LDL oxidation. The Cu atom remained bound to Cp during the redox cycle. Three avenues of evidence showed that vascular cells reduce Cp Cu by a superoxide-dependent process. The 2-fold higher rate of Cp Cu reduction by smooth muscle cells (SMC) compared to endothelial cells (EC) was consistent with their relative rates of superoxide release. Furthermore, Cp Cu reduction by cells was blocked by Cu,Zn superoxide dismutase (SOD1). Finally, the level of superoxide produced by EC and SMC was sufficient to cause the amount of Cu reduction observed. An important role of Cp Cu reduction in LDL oxidation was suggested by results showing that SOD1 inhibited Cp Cu reduction and LDL oxidation by SMC with equal potency, while tumor necrosis factor-alpha stimulated both processes. In summary, these results show that superoxide is a critical cellular reductant of divalent transition metals involved in oxidation, and that protein-bound Cu is a substrate for this reaction. The role of these mechanisms in oxidative processes in vivo has yet to be defined.

  18. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction

    SciTech Connect

    Hansel, C. M.; Zeiner, C. A.; Santelli, C. M.; Webb, S. M.

    2012-07-16

    Manganese (Mn) oxides are among the most reactive minerals within the environment, where they control the bioavailability of carbon, nutrients, and numerous metals. Although the ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides is scattered throughout the bacterial and fungal domains of life, the mechanism and physiological basis for Mn(II) oxidation remains an enigma. Here, we use a combination of compound-specific chemical assays, microspectroscopy, and electron microscopy to show that a common Ascomycete filamentous fungus, Stilbella aciculosa, oxidizes Mn(II) to Mn oxides by producing extracellular superoxide during cell differentiation. The reactive Mn oxide phase birnessite and the reactive oxygen species superoxide and hydrogen peroxide are colocalized at the base of asexual reproductive structures. Mn oxide formation is not observed in the presence of superoxide scavengers (e.g., Cu) and inhibitors of NADPH oxidases (e.g., diphenylene iodonium chloride), enzymes responsible for superoxide production and cell differentiation in fungi. Considering the recent identification of Mn(II) oxidation by NADH oxidase-based superoxide production by a common marine bacterium (Roseobacter sp.), these results introduce a surprising homology between some prokaryotic and eukaryotic organisms in the mechanisms responsible for Mn(II) oxidation, where oxidation appears to be a side reaction of extracellular superoxide production. Finally, given the versatility of superoxide as a redox reactant and the widespread ability of fungi to produce superoxide, this microbial extracellular superoxide production may play a central role in the cycling and bioavailability of metals (e.g., Hg, Fe, Mn) and carbon in natural systems.

  19. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction.

    PubMed

    Hansel, Colleen M; Zeiner, Carolyn A; Santelli, Cara M; Webb, Samuel M

    2012-07-31

    Manganese (Mn) oxides are among the most reactive minerals within the environment, where they control the bioavailability of carbon, nutrients, and numerous metals. Although the ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides is scattered throughout the bacterial and fungal domains of life, the mechanism and physiological basis for Mn(II) oxidation remains an enigma. Here, we use a combination of compound-specific chemical assays, microspectroscopy, and electron microscopy to show that a common Ascomycete filamentous fungus, Stilbella aciculosa, oxidizes Mn(II) to Mn oxides by producing extracellular superoxide during cell differentiation. The reactive Mn oxide phase birnessite and the reactive oxygen species superoxide and hydrogen peroxide are colocalized at the base of asexual reproductive structures. Mn oxide formation is not observed in the presence of superoxide scavengers (e.g., Cu) and inhibitors of NADPH oxidases (e.g., diphenylene iodonium chloride), enzymes responsible for superoxide production and cell differentiation in fungi. Considering the recent identification of Mn(II) oxidation by NADH oxidase-based superoxide production by a common marine bacterium (Roseobacter sp.), these results introduce a surprising homology between some prokaryotic and eukaryotic organisms in the mechanisms responsible for Mn(II) oxidation, where oxidation appears to be a side reaction of extracellular superoxide production. Given the versatility of superoxide as a redox reactant and the widespread ability of fungi to produce superoxide, this microbial extracellular superoxide production may play a central role in the cycling and bioavailability of metals (e.g., Hg, Fe, Mn) and carbon in natural systems.

  20. How the location of superoxide generation influences the β-cell response to nitric oxide.

    PubMed

    Broniowska, Katarzyna A; Oleson, Bryndon J; McGraw, Jennifer; Naatz, Aaron; Mathews, Clayton E; Corbett, John A

    2015-03-20

    Cytokines impair the function and decrease the viability of insulin-producing β-cells by a pathway that requires the expression of inducible nitric oxide synthase (iNOS) and generation of high levels of nitric oxide. In addition to nitric oxide, excessive formation of reactive oxygen species, such as superoxide and hydrogen peroxide, has been shown to cause β-cell damage. Although the reaction of nitric oxide with superoxide results in the formation of peroxynitrite, we have shown that β-cells do not have the capacity to produce this powerful oxidant in response to cytokines. When β-cells are forced to generate peroxynitrite using nitric oxide donors and superoxide-generating redox cycling agents, superoxide scavenges nitric oxide and prevents the inhibitory and destructive actions of nitric oxide on mitochondrial oxidative metabolism and β-cell viability. In this study, we show that the β-cell response to nitric oxide is regulated by the location of superoxide generation. Nitric oxide freely diffuses through cell membranes, and it reacts with superoxide produced within cells and in the extracellular space, generating peroxynitrite. However, only when it is produced within cells does superoxide attenuate nitric oxide-induced mitochondrial dysfunction, gene expression, and toxicity. These findings suggest that the location of radical generation and the site of radical reactions are key determinants in the functional response of β-cells to reactive oxygen species and reactive nitrogen species. Although nitric oxide is freely diffusible, its biological function can be controlled by the local generation of superoxide, such that when this reaction occurs within β-cells, superoxide protects β-cells by scavenging nitric oxide.

  1. Complex I generated, mitochondrial matrix-directed superoxide is released from the mitochondria through voltage dependent anion channels.

    PubMed

    Lustgarten, Michael S; Bhattacharya, Arunabh; Muller, Florian L; Jang, Youngmok C; Shimizu, Takahiko; Shirasawa, Takuji; Richardson, Arlan; Van Remmen, Holly

    2012-06-08

    Mitochondrial complex I has previously been shown to release superoxide exclusively towards the mitochondrial matrix, whereas complex III releases superoxide to both the matrix and the cytosol. Superoxide produced at complex III has been shown to exit the mitochondria through voltage dependent anion channels (VDAC). To test whether complex I-derived, mitochondrial matrix-directed superoxide can be released to the cytosol, we measured superoxide generation in mitochondria isolated from wild type and from mice genetically altered to be deficient in MnSOD activity (TnIFastCreSod2(fl/fl)). Under experimental conditions that produce superoxide primarily by complex I (glutamate/malate plus rotenone, GM+R), MnSOD-deficient mitochondria release ∼4-fold more superoxide than mitochondria isolated from wild type mice. Exogenous CuZnSOD completely abolished the EPR-derived GM+R signal in mitochondria isolated from both genotypes, evidence that confirms mitochondrial superoxide release. Addition of the VDAC inhibitor DIDS significantly reduced mitochondrial superoxide release (∼75%) in mitochondria from either genotype respiring on GM+R. Conversely, inhibition of potential inner membrane sites of superoxide exit, including the matrix face of the mitochondrial permeability transition pore and the inner membrane anion channel did not reduce mitochondrial superoxide release in the presence of GM+R in mitochondria isolated from either genotype. These data support the concept that complex I-derived mitochondrial superoxide release does indeed occur and that the majority of this release occurs through VDACs.

  2. The Interaction of Mitochondrial Iron with Manganese Superoxide Dismutase*

    PubMed Central

    Naranuntarat, Amornrat; Jensen, Laran T.; Pazicni, Samuel; Penner-Hahn, James E.; Culotta, Valeria C.

    2009-01-01

    Superoxide dismutase 2 (SOD2) is one of the rare mitochondrial enzymes evolved to use manganese as a cofactor over the more abundant element iron. Although mitochondrial iron does not normally bind SOD2, iron will misincorporate into Saccharomyces cerevisiae Sod2p when cells are starved for manganese or when mitochondrial iron homeostasis is disrupted by mutations in yeast grx5, ssq1, and mtm1. We report here that such changes in mitochondrial manganese and iron similarly affect cofactor selection in a heterologously expressed Escherichia coli Mn-SOD, but not a highly homologous Fe-SOD. By x-ray absorption near edge structure and extended x-ray absorption fine structure analyses of isolated mitochondria, we find that misincorporation of iron into yeast Sod2p does not correlate with significant changes in the average oxidation state or coordination chemistry of bulk mitochondrial iron. Instead, small changes in mitochondrial iron are likely to promote iron-SOD2 interactions. Iron binds Sod2p in yeast mutants blocking late stages of iron-sulfur cluster biogenesis (grx5, ssq1, and atm1), but not in mutants defective in the upstream Isu proteins that serve as scaffolds for iron-sulfur biosynthesis. In fact, we observed a requirement for the Isu proteins in iron inactivation of yeast Sod2p. Sod2p activity was restored in mtm1 and grx5 mutants by depleting cells of Isu proteins or using a dominant negative Isu1p predicted to stabilize iron binding to Isu1p. In all cases where disruptions in iron homeostasis inactivated Sod2p, we observed an increase in mitochondrial Isu proteins. These studies indicate that the Isu proteins and the iron-sulfur pathway can donate iron to Sod2p. PMID:19561359

  3. Superoxide dismutase and oxygen toxicity defenses in the genus Neisseria.

    PubMed Central

    Archibald, F S; Duong, M N

    1986-01-01

    Among aerotolerant cells, Neisseria gonorrhoeae is very unusual because despite its obligately aerobic lifestyle and frequent isolation from purulent exudates containing polymorphonuclear leukocytes vigorously evolving O2- and H2O2, it contains no superoxide dismutase (SOD). Strains (14) of N. gonorrhoeae were compared with each other and with strains of Neisseria meningitidis, Neisseria mucosa, and Neisseria subflava under identical growth conditions for their contents of the oxy-protective enzymes catalase, peroxidase, and SOD, as well as respiratory chain proteins and activity. The absence of SOD from N. gonorrhoeae strains was demonstrated under a variety of oxygen-stress conditions. The neisserial species showed very different SOD, catalase, and peroxidase profiles. These profiles correlated well with the tolerance of the species to various intra- and extracellular oxygen insults. The high tolerance of N. gonorrhoeae for extracellular O2- and H2O2 appeared to be due to very high constitutive levels of peroxidase and catalase activity combined with a cell envelope impervious to O2-. Nevertheless, N. gonorrhoeae 19424 was much more sensitive to an intracellular flux of O2- than were the other (SOD-containing) neisserial species. The responses of N. gonorrhoeae and N. meningitidis respiratory and oxy-protective enzymes to growth under high and low oxygen tensions were followed, and a novel response, the apparent repression of the respiratory chain intermediates, respiration, and SOD, peroxidase, and catalase activity, was observed. The gonococcal catalase was partially purified and characterized. The results suggest that the very active terminal oxidase, low pO2 natural habitat, O2-stable catalase, and possibly the high glutathione content of the organism explain its aerobic survival in the absence of SOD. PMID:3943903

  4. Characterization of the Single Superoxide Dismutase of Staphylococcus xylosus

    PubMed Central

    Barrière, Charlotte; Brückner, Reinhold; Talon, Régine

    2001-01-01

    Staphylococcus xylosus is a facultative anaerobic bacterium used as a starter culture for fermented meat products. In an attempt to analyze the antioxidant capacities of this organism, the superoxide dismutase (SOD) was characterized. S. xylosus contains a single cytoplasmic SOD, which was not inhibited by H2O2. The SOD activity in crude extracts was completely lost upon metal depletion, but it could be recovered by manganese and very weakly by iron. It is therefore suggested that the S. xylosus SOD is a manganese-preferring enzyme. The corresponding gene, sod, was isolated from a genomic library of S. xylosus DNA and complemented the growth defect of an Escherichia coli SOD-deficient mutant. As deduced from the nucleotide sequence, sod encodes a protein of 199 amino acids with a molecular mass of 22.5 kDa. Two transcriptional start sites 25 and 120 bp upstream of the sod start codon were identified. A terminator-like structure downstream of the gene suggested a monocistronic sod mRNA. Regulation of sod expression was studied using fusions of the sod promoters to a genomic promoterless β-galactosidase gene. The sod expression was not affected by manganese and increased slightly with paraquat. It was induced during stationary phase in a complex medium but not in a chemically defined medium. To investigate the physiological role of SOD, a mutant devoid of SOD activity was constructed. Growth experiments showed that sod is not essential for aerobic growth in complex medium. However, in chemically defined medium without leucine, isoleucine, and valine, the sod mutant hardly grew, in contrast to the wild-type strain. In addition, the mutant was sensitive to hyperbaric oxygen and to paraquat. Therefore, sod plays an important role in the protection of S. xylosus from oxidative stress. PMID:11526011

  5. [The superoxide theory of pathogenesis and therapy of immune disorders].

    PubMed

    Lebedev, V V

    2004-01-01

    On the basis of the understanding that there are common development mechanisms for the inflammatory and immune reactions it was established that the activity of the oxidant-antioxidant system (OAS) correlates not only with a severity of the inflammatory reaction but also with a degree of immune disorders. Such disorders were studied in patients with endogenous uveitis and with cancer of the esophagus or uterine cervix, i.e. those nosological forms, which are normally accompanied by OAS decompensation, which comprised a lower activity of primary antioxidants (superoxides of dismutase, catalase, lactoferrin, ceruloplasmin etc.) in patients with pronounced immune disorders. Moreover, a lower content of secondary antioxidants, like vitamin A, ascorbic acid and tocopherol, was registered in the blood of patients with immune disorders. The suppression of the antioxidant system was concomitant with an essentially increased level of lipid peroxidation in all patients. Besides, it was noted that there were intensifying signs of immune disorders primarily observed during irradiation chemotherapy. In this context, a clear-cut correlation was established, in monitoring the body immune status, between degrees of free-radical formation and lipid peroxidation, on the one hand, and an activity of detoxication-system antioxidants, on the other hand,. The OAS correction by direct or indirect-action antioxidants normally improves the clinical course of immune impairments. The indirect-action antioxidants, e.g. synthetic regulatory peptide "Imunofan", induce the increasing activity of primary endogenous antioxidants. An activation of the detoxication antioxidant system, brings about, in such cases, a lower content of inflammation mediators, a recovery of cell-immunity indices and lower parameters of body auto-sensitization. Finally, the antioxidant system in patients with chronic inflammatory or oncological disorders, when recovered, ensures the correction of cell immunity and cuts

  6. Endomorphins 1 and 2 modulate chemotaxis, phagocytosis and superoxide anion production by microglia.

    PubMed

    Azuma, Y; Ohura, K; Wang, P L; Shinohara, M

    2001-09-03

    We evaluate the role of endomorphins 1 and 2 on microglial functions. Endomorphins 1 and 2 blocked phagocytosis of Escherichia coli. In addition, both markedly inhibited chemotaxis toward zymosan-activated serum. In contrast, when microglia was preincubated with these endomorphins, followed by incubation with LPS before stimulation with phorbol 12-myristate 13-acetate (PMA) at 200 nM, they potentiated superoxide anion production. Furthermore, when microglia was preincubated with these endomorphins together with PMA at 20 nM, followed by stimulation with PMA at 200 nM, superoxide anion production was potentiated. These results suggest that endomorphins 1 and 2 modulate phagocytosis, chemotaxis and superoxide anion production by microglia.

  7. Radiation resistance and the CuZn superoxide dismutase, Mn superoxide dismutase, catalase, and glutathione peroxidase activities of seven human cell lines.

    PubMed

    Marklund, S L; Westman, N G; Roos, G; Carlsson, J

    1984-10-01

    CuZn superoxide dismutase, Mn superoxide dismutase, catalase, and glutathione peroxidase form the primary enzymic defense against toxic oxygen reduction metabolites in cells. To test the importance of these protective enzymes in the cellular radiation response, the enzymic activities of seven different human cell lines were determined in parallel with their clonogenic survival characteristics. A positive correlation between the content of glutathione peroxidase in cell lines and their extrapolation numbers (n) and quasithreshold doses (Dq) was detected. Between the cellular contents of the other enzymes and D0, n, and Dq no positive correlations could be established. An interesting finding was a very high Mn superoxide dismutase content in a malignant mesothelioma cell line P7, which had an extremely high D0, 5.0 Gy.

  8. A novel carboxymethylcellulose-gelatin-titanium dioxide-superoxide dismutase biosensor; electrochemical properties of carboxymethylcellulose-gelatin-titanium dioxide-superoxide dismutase.

    PubMed

    Emregul, Emel; Kocabay, Ozge; Derkus, Burak; Yumak, Tugrul; Emregul, Kaan Cebesoy; Sınag, Ali; Polat, Kamran

    2013-04-01

    A novel highly sensitive electrochemical carboxymethylcellulose-gelatin-TiO(2)-superoxide dismutase biosensor for the determination of O(2)(•-) was developed. The biosensor exhibits high analytical performance with a wide linear range (1.5 nM to 2 mM), low detection limit (1.5 nM), high sensitivity and low response time (1.8s). The electron transfer of superoxide dismutase was first accomplished at the carboxymethylcellulose-gelatin-Pt and carboxymethylcellulose-gelatin-TiO(2)-Pt surface. The electron transfer between superoxide dismutase and the carboxymethylcellulose-gelatin-Pt wihout Fe(CN)(6)(4-/3-) and carboxymethylcellulose-gelatin-Pt, carboxymethylcellulose-gelatin-TiO(2)-Pt with Fe(CN)(6)(4-/3-) is quasireversible with a formal potential of 200 mV, 207 mV, and 200 mV vs Ag|AgCl respectively. The anodic (ks(a)) and cathodic (ks(c)) electron transfer rate constants and the anodic (α(a)) and cathodic (α(c)) transfer coefficients were evaluated: ks(a)=6.15 s(-1), α(a)=0.79, and ks(c)=1.48 s(-1) α(c)=0.19 for carboxymethylcellulose-superoxide dismutase without Fe(CN)(6)(4-/3-), ks(a)=6.77 s(-1), α(a)=0.87, and ks(c)=1 s(-1) α(c)=0.13 for carboxymethylcellulose-superoxide dismutase with Fe(CN)(6)(4-/3-), ks(a)=6.85 s(-1), α(a)=0.88, and ks(c)=0.76 s(-1) α(c)=0.1 carboxymethylcellulose-gelatin-TiO(2)-superoxide dismutase. The electron transfer rate between superoxide dismutase and the Pt electrode is remarkably enhanced due to immobilizing superoxide dismutase in carboxymethylcellulose-gelatin and TiO(2) nanoparticles tend to act like nanoscale electrodes.

  9. Structures of two superoxide dismutases from Bacillus anthracis reveal a novel active centre

    SciTech Connect

    Boucher, Ian W.; Kalliomaa, Anne K.; Levdikov, Vladimir M.; Blagova, Elena V.; Fogg, Mark J.; Brannigan, James A. Wilson, Keith S.; Wilkinson, Anthony J.

    2005-07-01

    The crystal structures of two manganese superoxide dismutases from B. anthracis were solved by X-ray crystallography using molecular replacement. The BA4499 and BA5696 genes of Bacillus anthracis encode proteins homologous to manganese superoxide dismutase, suggesting that this organism has an expanded repertoire of antioxidant proteins. Differences in metal specificity and quaternary structure between the dismutases of prokaryotes and higher eukaryotes may be exploited in the development of therapeutic antibacterial compounds. Here, the crystal structure of two Mn superoxide dismutases from B. anthracis solved to high resolution are reported. Comparison of their structures reveals that a highly conserved residue near the active centre is substituted in one of the proteins and that this is a characteristic feature of superoxide dismutases from the B. cereus/B. anthracis/B. thuringiensis group of organisms.

  10. Cryo-Trapping the Distorted Octahedral Reaction Intermediate of Manganese Superoxide Dismutase

    NASA Technical Reports Server (NTRS)

    Borgstahl, Gloria; Snell, Edward H.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Superoxide dismutase protects organisms from potentially damaging oxygen radicals by catalyzing the disproportion of superoxide to oxygen and hydrogen peroxide. We report the use of cryogenic temperatures to kinetically trap the 6th ligand bound to the active site of manganese superoxide dismutase. Using cryocrystallography and synchrotron radiation, we describe at 1.55A resolution the six-coordinate, distorted octahedral geometry assumed by the active site during catalysis and compare it to the room temperature, five-coordinate trigonal-bipyramidal active site. Gateway residues Tyr34, His30 and a tightly bound water molecule are implicated in closing off the active site and blocking the escape route of superoxide during dismutation.

  11. Purification of human copper, zinc superoxide dismutase by copper chelate affinity chromatography

    SciTech Connect

    Weslake, R.J.; Chesney, S.L.; Petkau, A.; Friesen, A.D.

    1986-05-15

    Copper, zinc superoxide dismutase was isolated from human red blood cell hemolysate by DEAE-Sepharose and copper chelate affinity chromatography. Enzyme preparations had specific activities ranging from 3400 to 3800 U/mg and recoveries were approximately 60% of the enzyme activity in the lysate. Copper chelate affinity chromatography resulted in a purification factor of about 60-fold. The homogeneity of the superoxide dismutase preparation was analyzed by sodium dodecyl sulfate-gel electrophoresis, analytical gel filtration chromatography, and isoelectric focusing.

  12. Ras modulation of superoxide activates ERK-dependent fibronectin expression in diabetes-induced renal injuries.

    PubMed

    Lin, C-L; Wang, F-S; Kuo, Y-R; Huang, Y-T; Huang, H-C; Sun, Y-C; Kuo, Y-H

    2006-05-01

    Although previous studies have demonstrated that diabetic nephropathy is attributable to early extracellular matrix accumulation in glomerular mesangial cells, the molecular mechanism by which high glucose induces matrix protein deposition remains not fully elucidated. Rat mesangial cells pretreated with or without inhibitors were cultured in high-glucose or advanced glycation end product (AGE) conditions. Streptozotocin-induced diabetic rats were given superoxide dismutase (SOD)-conjugated propylene glycol to scavenge superoxide. Transforming growth factor (TGF)-beta1, fibronectin expression, Ras, ERK, p38, and c-Jun activation of glomerular mesangial cells or urinary albumin secretion were assessed. Superoxide, not nitric oxide or hydrogen peroxide, mediated high glucose- and AGE-induced TGF-beta1 and fibronectin expression. Pretreatment with diphenyliodonium, not allopurinol or rotenone, reduced high-glucose and AGE augmentation of superoxide synthesis and fibronection expression. High glucose and AGEs rapidly enhanced Ras activation and progressively increased cytosolic ERK and nuclear c-Jun activation. Inhibiting Ras by manumycin A reduced the stimulatory effects of high glucose and AGEs on superoxide and fibronectin expression. SOD or PD98059 pretreatment reduced high-glucose and AGE promotion of ERK and c-Jun activation. Exogenous SOD treatment in diabetic rats significantly attenuated diabetes induction of superoxide, urinary albumin excretion, 8-hydroxy-2'-deoxyguanosine, TGF-beta1, and fibronectin immunoreactivities in renal glomerular mesangial cells. Ras induction of superoxide activated ERK-dependent fibrosis-stimulatory factor and extracellular matrix gene transcription of mesangial cells. Reduction of oxidative stress by scavenging superoxide may provide an alternative strategy for controlling diabetes-induced early renal injury.

  13. Angiotensin-(1-7) blocks the angiotensin II-stimulated superoxide production.

    PubMed

    Polizio, Ariel Héctor; Gironacci, Mariela Mercedes; Tomaro, Maria Luján; Peña, Clara

    2007-07-01

    Angiotensin (Ang)-(1-7), a bioactive compound of the renin-angiotensin system, exerts effects leading to blood pressure reduction which counterbalance Ang II pressor actions. The present study was conducted to examine Ang-(1-7) and Ang II effects on superoxide anion production in rat aorta using the lucigenin chemiluminescence method. Ang II dose-dependently increased superoxide anion formation when compared to control levels; a maximal increase (2.5-fold) was observed with 1 x 10(-10)M peptide concentration. The Ang II-stimulated superoxide formation was blocked by 1 x 10(-10)M losartan, the specific AT(1) receptor antagonist, but not by 1 x 10(-10)M PD 123319, the AT(2) receptor antagonist, suggesting that the increased superoxide levels caused by Ang II are mediated through AT(1) receptors activation. The Ang II-stimulated superoxide production was not modified by 2 x 10(-8)M allopurinol or 1 x 10(-7)M indomethacin, but was completely abolished by NAD(P)H oxidase inhibitors: 1 x 10(-8)M diphenylene iodonium, or 2 x 10(-8)M apocynin, demonstrating that NAD(P)H oxidase participates in such response. In contrast to Ang II, Ang-(1-7) concentrations ranging 1 x 10(-12) to 1 x 10(-6)M did not modify superoxide anion levels, but prevented the Ang II-enhanced superoxide production. In conclusion, we demonstrated that Ang-(1-7) blocks the pro-oxidant effects of Ang II, thus reducing the superoxide anion production and delaying the hypertension development.

  14. Photosensitization with alpha-terthienyl: the formation of superoxide ion in aqueous media.

    PubMed

    Kagan, J; Bazin, M; Santus, R

    1989-04-01

    It is well known that alpha-terthienyl generates singlet oxygen in organic solvents with high quantum yields. In an aqueous medium, the production of superoxide radical-anion is readily detected by comparing the reduction of ferricytochrome c or nitro blue tetrazolium in the presence and in the absence of superoxide dismutase. Electron transfer reactions from the electronically excited sensitizer are also detected in an argon atmosphere.

  15. Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production: a correction using glutathione depletion

    PubMed Central

    TREBERG, Jason R.; QUINLAN, Casey L.; BRAND, Martin D.

    2010-01-01

    Summary The production of H2O2 by isolated mitochondria is frequently used as a measure of mitochondrial superoxide formation. Matrix superoxide dismutase quantitatively converts matrix superoxide to H2O2. However, matrix enzymes such as the glutathione peroxidases can consume H2O2 and compete with efflux of H2O2, causing an underestimate of superoxide production. To assess this underestimate we depleted matrix glutathione in rat skeletal muscle mitochondria by more than 90% by pretreatment with 1-chloro-2,4-dintrobenzene (CDNB). The pretreatment protocol strongly diminished the mitochondrial capacity to consume exogenous H2O2, consistent with decreased peroxidase capacity, but avoided direct stimulation of superoxide production from complex I. It elevated the observed rates of H2O2 formation from matrix-directed superoxide up to two-fold from several sites of production, defined by substrates and electron transport inhibitors, over a wide range of control rates, from 0.2 to 2.5 nmol H2O2 • min−1 • mg protein−1. Similar results were obtained when glutathione was depleted using monochlorobimane or when soluble matrix peroxidase activity was removed by preparation of submitochondrial particles. The data indicate that the increased H2O2 efflux observed with CDNB pretreatment was a result of glutathione depletion and compromised peroxidase activity. A hyperbolic correction curve was constructed, making H2O2 efflux a more quantitative measure of matrix superoxide production. For rat muscle mitochondria, the correction equation was: [CDNB pretreated rate = control rate + (1.43*(control rate))/(0.55+control rate)]. These results have significant ramifications for the rates and topology of superoxide production by isolated mitochondria. PMID:20491900

  16. Superoxide enhances Ca2+ entry through L-type channels in the renal afferent arteriole.

    PubMed

    Vogel, Paul A; Yang, Xi; Moss, Nicholas G; Arendshorst, William J

    2015-08-01

    Reactive oxygen species regulate cardiovascular and renal function in health and disease. Superoxide participates in acute calcium signaling in afferent arterioles and renal vasoconstriction produced by angiotensin II, endothelin, thromboxane, and pressure-induced myogenic tone. Known mechanisms by which superoxide acts include quenching of nitric oxide and increased ADP ribosyl cyclase/ryanodine-mediated calcium mobilization. The effect(s) of superoxide on other calcium signaling pathways in the renal microcirculation is poorly understood. The present experiments examined the acute effect of superoxide generated by paraquat on calcium entry pathways in isolated rat afferent arterioles. The peak increase in cytosolic calcium concentration caused by KCl (40 mmol/L) was 99±14 nmol/L. The response to this membrane depolarization was mediated exclusively by L-type channels because it was abolished by nifedipine but was unaffected by the T-type channel blocker mibefradil. Paraquat increased superoxide production (dihydroethidium fluorescence), tripled the peak response to KCl to 314±68 nmol/L (P<0.001) and doubled the plateau response. These effects were abolished by tempol and nitroblue tetrazolium, but not by catalase, confirming actions of superoxide and not of hydrogen peroxide. Unaffected by paraquat and superoxide was calcium entry through store-operated calcium channels activated by thapsigargin-induced calcium depletion of sarcoplasmic reticular stores. Also unresponsive to paraquat was ryanodine receptor-mediated calcium-induced calcium release from the sarcoplasmic reticulum. Our results provide new evidence that superoxide enhances calcium entry through L-type channels activated by membrane depolarization in rat cortical afferent arterioles, without affecting calcium entry through store-operated entry or ryanodine receptor-mediated calcium mobilization.

  17. Cu(II)-disulfide complexes display simultaneous superoxide dismutase- and catalase-like activities.

    PubMed

    Aliaga, Margarita E; Andrade-Acuña, Daniela; López-Alarcón, Camilo; Sandoval-Acuña, Cristián; Speisky, Hernán

    2013-12-01

    Superoxide is a potentially toxic by-product of cellular metabolism. We have addressed here the in vitro ability of complexes formed between copper(II) ions and various biologically-occurring disulfides (RSSR: oxidized glutathione, cystine, homocystine and α-lipoic acid) to react with superoxide. The studied complexes were found to react with superoxide (generated by a xanthine/xanthine oxidase system) at rate constants (kCu(II)-RSSR) close to 10(6)M(-1)s(-1), which are three orders of magnitude lower than that reported for superoxide dismutase (SOD) but comparable to that of several other copper-containing complexes reported as SOD mimetics. The interaction between the tested Cu(II)-RSSR and superoxide, led to the generation and recovery of concentrations of hydrogen peroxide and oxygen that were, respectively, below and above those theoretically-expected from a sole SOD mimetic action. Interestingly, oxygen was generated when the Cu(II)-RSSR complexes were directly incubated with hydrogen peroxide. Taken together, these results reveal that the Cu(II)-RSSR complexes not only have the capacity to dismutate superoxide but also to simultaneously act like catalase mimetic molecules. When added to superoxide-overproducing mitochondria (condition attained by its exposure to diclofenac), three of the tested complexes were able (2-4μM), not only to totally restore, but also to lower below the basal level the mitochondrial production of superoxide. The present study is first in reporting on the potential of Cu(II)-disulfide complexes to act as SOD and catalase like molecules, suggesting a potential for these types of molecules to act as such under physiological and/or oxidative-stress conditions.

  18. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide.

    PubMed Central

    Beckman, J S; Beckman, T W; Chen, J; Marshall, P A; Freeman, B A

    1990-01-01

    Superoxide dismutase reduces injury in many disease processes, implicating superoxide anion radical (O2-.) as a toxic species in vivo. A critical target of superoxide may be nitric oxide (NO.) produced by endothelium, macrophages, neutrophils, and brain synaptosomes. Superoxide and NO. are known to rapidly react to form the stable peroxynitrite anion (ONOO-). We have shown that peroxynitrite has a pKa of 7.49 +/- 0.06 at 37 degrees C and rapidly decomposes once protonated with a half-life of 1.9 sec at pH 7.4. Peroxynitrite decomposition generates a strong oxidant with reactivity similar to hydroxyl radical, as assessed by the oxidation of deoxyribose or dimethyl sulfoxide. Product yields indicative of hydroxyl radical were 5.1 +/- 0.1% and 24.3 +/- 1.0%, respectively, of added peroxynitrite. Product formation was not affected by the metal chelator diethyltriaminepentaacetic acid, suggesting that iron was not required to catalyze oxidation. In contrast, desferrioxamine was a potent, competitive inhibitor of peroxynitrite-initiated oxidation because of a direct reaction between desferrioxamine and peroxynitrite rather than by iron chelation. We propose that superoxide dismutase may protect vascular tissue stimulated to produce superoxide and NO. under pathological conditions by preventing the formation of peroxynitrite. PMID:2154753

  19. Osmotic stress stimulates generation of superoxide anion by spermatozoa in horses.

    PubMed

    Burnaugh, L; Ball, B A; Sabeur, K; Thomas, A D; Meyers, S A

    2010-02-01

    The objective of this study was to examine the interplay between osmotic and oxidative stress as well as to determine mechanisms by which osmotic stress increases superoxide generation in spermatozoa of horses. Superoxide production, as measured by dihydroethidium (DHE), increased when spermatozoa of horses were incubated under either hyperosmotic or hyposmotic conditions. This increase in superoxide production was inhibited by the MAP kinase p38 inhibitor, SB203580, and by the superoxide scavenger, tiron. Incubation of spermatozoa under hyperosmotic conditions increased overall protein tyrosine phosphorylation as measured by western blotting techniques; however, a similar increase was not detected when spermatozoa were incubated under hyposmotic conditions. The general protein kinase C (PKC) and protein tyrosine kinase (PTK) inhibitor staurosporine inhibited (P<0.05) tyrosine phosphorylation in samples from cells under hyperosmotic conditions. In addition, the NADPH oxidase inhibitor diphenyleneiodonium (DPI) also inhibited (P<0.05) protein tyrosine phosphorylation in cells under hyperosmotic conditions. In summary, these data indicate that incubation of equine spermatozoa under both hyposmotic and hyperosmotic conditions can increase superoxide anion generation. Under hyperosmotic conditions, this increased generation of superoxide anion was accompanied by increased protein tyrosine phosphorylation.

  20. Chemiluminescence Imaging of Superoxide Anion Detects Beta-Cell Function and Mass

    PubMed Central

    Bronsart, Laura L.; Stokes, Christian; Contag, Christopher H.

    2016-01-01

    Superoxide anion is produced during normal cellular respiration and plays key roles in cellular physiology with its dysregulation being associated with a variety of diseases. Superoxide anion is a short-lived molecule and, therefore, its homeostatic regulation and role in biology and disease requires dynamic quantification with fine temporal resolution. Here we validated coelenterazine as a reporter of intracellular superoxide anion concentration and used it as a dynamic measure both in vitro and in vivo. Chemiluminescence was dependent upon superoxide anion levels, including those produced during cellular respiration, and concentrations varied both kinetically and temporally in response to physiologically relevant fluctuations in glucose levels. In vivo imaging with coelenterazine revealed that beta cells of the pancreas have increased levels of superoxide anion, which acted as a measure of beta-cell function and mass and could predict the susceptibility of mice to diabetes mellitus. Glucose response and regulation are key elements of cellular physiology and organismal biology, and superoxide anion appears to play a fundamental and dynamic role in both of these processes. PMID:26752052

  1. Neonatal developmental pattern of superoxide dismutase and aniline hydroxylase in rat lung

    SciTech Connect

    Kakkar, P.; Jaffery, F.N.; Viswanathan, P.N.

    1986-10-01

    The developmental biology of superoxide dismutase and aniline hydroxylase was followed in rat lungs from prenatal stage to 3 months old. Total superoxide dismutase activity as determined by spectrophotometry as well as electrophoresis was high in the prenatal rat lung, decreased in the first 24 hr postpartum, increased within 7 days, and then decreased gradually to adult levels. On polyacrylamide gel electrophoresis only two isozymic forms of superoxide dismutase were located as achromatic zones in the fetal lung. In the adult rat lung, there were three molecular forms of superoxide dismutase, two in the postmitochondrial supernatant and one in the mitochondrial fraction. Unlike superoxide dismutase, aniline hydroxylase was detectable only after 5 days of age and the activity exhibited a gradual increase afterward up to 1 month of age. The developmental pattern of superoxide dismutase and aniline hydroxylase activities in lung may be significant in understanding the mechanism of body defenses and their regulatory modulations in response to toxic air pollutants and environmental stress.

  2. Chemiluminescence Imaging of Superoxide Anion Detects Beta-Cell Function and Mass.

    PubMed

    Bronsart, Laura L; Stokes, Christian; Contag, Christopher H

    2016-01-01

    Superoxide anion is produced during normal cellular respiration and plays key roles in cellular physiology with its dysregulation being associated with a variety of diseases. Superoxide anion is a short-lived molecule and, therefore, its homeostatic regulation and role in biology and disease requires dynamic quantification with fine temporal resolution. Here we validated coelenterazine as a reporter of intracellular superoxide anion concentration and used it as a dynamic measure both in vitro and in vivo. Chemiluminescence was dependent upon superoxide anion levels, including those produced during cellular respiration, and concentrations varied both kinetically and temporally in response to physiologically relevant fluctuations in glucose levels. In vivo imaging with coelenterazine revealed that beta cells of the pancreas have increased levels of superoxide anion, which acted as a measure of beta-cell function and mass and could predict the susceptibility of mice to diabetes mellitus. Glucose response and regulation are key elements of cellular physiology and organismal biology, and superoxide anion appears to play a fundamental and dynamic role in both of these processes.

  3. Macroporous mesh of nanoporous gold in electrochemical monitoring of superoxide release from skeletal muscle cells.

    PubMed

    Banan Sadeghian, Ramin; Han, Jiuhui; Ostrovidov, Serge; Salehi, Sahar; Bahraminejad, Behzad; Ahadian, Samad; Chen, Mingwei; Khademhosseini, Ali

    2017-02-15

    Real-time monitoring of metabolically relevant biochemicals released in minuscule amounts is of utmost diagnostic importance. Superoxide anion as a primary member of reactive oxygen species, has physiological and pathological effects that depend on its concentration and release rate. Here we present fabrication and successfully testing of a highly sensitive electrochemical biosensor featuring a three-dimensional macroporous mesh of nanoporous gold tailored to measure the dynamics of extracellular superoxide concentration. Wide and accessible surface of the mesh combined with high porosity of the thin nanoporous gold coating enables capturing the analyte in pico- to nano-molar ranges. The mesh is functionalized with cytochrome-c (cyt-c) and incorporated as a working electrode to measure the release rate of drug-induced superoxides from C2C12 cells through a porous membrane. The device displays a considerably improved superoxide sensitivity of 7.29nAnM(-)(1)cm(-)(2) and a low level of detection of 70pM. Such sensitivity is orders of magnitude higher than any similar enzyme-based electrochemical superoxide sensor and is attributed to the facile diffusion of the analyte through the well-spread nanofeatured gold skin. Superoxide generation rates captured from monolayer myoblast cultures containing about 4×10(4) cells, varied from 1.0 to 9.0nMmin(-)(1) in a quasi-linear fashion as a function of drug concentration. This work provides a platform for the development of highly sensitive molecular electrochemical biosensors.

  4. The primary structure of Cu-Zn superoxide dismutase from Photobacterium leiognathi: evidence for a separate evolution of Cu-Zn superoxide dismutase in bacteria.

    PubMed

    Steffens, G J; Bannister, J V; Bannister, W H; Flohé, L; Günzler, W A; Kim, S M; Otting, F

    1983-06-01

    The complete amino-acid sequence of the copper-zinc superoxide dismutase of the Photobacterium leiognathi was determined. The fragmentation strategy employed included cyanogen bromide cleavage at its methionine residues and the only tryptophan residue. The S-carboxymethylated chain was further cleaved by means of trypsin, in order to obtain overlapping fragments. For sequence determination automated solid or liquid-phase techniques of Edman degradation were used. C-Terminal amino acids of the entire chain were determined after treatment with carboxypeptidase A. Comparison of the primary structure of this bacterial Cu-Zn superoxide dismutase with the established amino-acid sequences of the other eukaryotic Cu-Zn superoxide dismutases revealed clear homologies. Correspondingly, the Cu-Zn-binding amino-acid residues of the active centre were localized: His45, His47, His70, His79, His125 and Asp91. The two cysteine residues in position 52 and 147 were homologous to the cysteine residues, modelling the essential intrachain disulfide bridge of the corresponding bovine enzyme. As only 25-30% of aligned sequence positions were found to be identical, the enzyme of P. leiognathi shows only a remote phylogenetic relationship towards eukaryotic Cu-Zn superoxide dismutases. When compared to the established phylogenetic tree of the cytochrome c family, this indicates a separate evolution of Cu-Zn superoxide dismutase in Photobacterium. Therefore, a natural gene transfer from the eukaryotic host (ponyfish) to the prokaryotic photobacterium, which Martin and Fridovich postulated 1981 (J. Biol. Chem. 256, 6080-6089) on the basis of amino-acid compositions, can be excluded.

  5. NFAT is required for spontaneous pulmonary hypertension in superoxide dismutase 1 knockout mice

    PubMed Central

    Ramiro-Diaz, Juan Manuel; Nitta, Carlos H.; Maston, Levi D.; Codianni, Simon; Giermakowska, Wieslawa; Resta, Thomas C.

    2013-01-01

    Elevated reactive oxygen species are implicated in pulmonary hypertension (PH). Superoxide dismutase (SOD) limits superoxide bioavailability, and decreased SOD activity is associated with PH. A decrease in SOD activity is expected to increase superoxide and reduce hydrogen peroxide levels. Such an imbalance of superoxide/hydrogen peroxide has been implicated as a mediator of nuclear factor of activated T cells (NFAT) activation in epidermal cells. We have shown that NFATc3 is required for chronic hypoxia-induced PH. However, it is unknown whether NFATc3 is activated in the pulmonary circulation in a mouse model of decreased SOD1 activity and whether this leads to PH. Therefore, we hypothesized that an elevated pulmonary arterial superoxide/hydrogen peroxide ratio activates NFATc3, leading to PH. We found that SOD1 knockout (KO) mice have elevated pulmonary arterial wall superoxide and decreased hydrogen peroxide levels compared with wild-type (WT) littermates. Right ventricular systolic pressure (RVSP) was elevated in SOD1 KO and was associated with pulmonary arterial remodeling. Vasoreactivity to endothelin-1 was also greater in SOD1 KO vs. WT mice. NFAT activity and NFATc3 nuclear localization were increased in pulmonary arteries from SOD1 KO vs. WT mice. Administration of A-285222 (selective NFAT inhibitor) decreased RVSP, arterial wall thickness, vasoreactivity, and NFAT activity in SOD1 KO mice to WT levels. The SOD mimetic, tempol, also reduced NFAT activity, NFATc3 nuclear localization, and RVSP to WT levels. These findings suggest that an elevated superoxide/hydrogen peroxide ratio activates NFAT in pulmonary arteries, which induces vascular remodeling and increases vascular reactivity leading to PH. PMID:23475768

  6. HIV-1 Nef regulates the release of superoxide anions from human macrophages

    PubMed Central

    2005-01-01

    The NADPH oxidase enzymatic complex participates in the oxidative burst by producing ROS (reactive oxygen species). Altered levels of ROS production may have pathogenetic implications due to the loss of some innate immune functions such as oxidative burst and phagocytosis. Considering that HIV-1 Nef protein plays a primary role in AIDS pathogenesis, by affecting the immune system, we sought to dissect possible effects of Nef on the release of superoxide anions. We show here that the inducible expression of Nef in human phagocytic cells modulates the superoxide release in a biphasic manner. In particular, an early Nef-induced increase of the superoxide release was followed by a dramatic decrease starting from 10 h after the Nef induction. This was observed whatever the presence of cell activators such as GM-CSF (granulocyte/macrophage colony-stimulating factor) or fMLP (N-formyl-L-methionyl-L-leucyl-L-phenylalanine). Whereas the early increase in superoxide release is probably the result of the already described Nef-dependent activation of PAK-2 (p21-activated kinase 2)–Rac2, we were interested in investigating the mechanisms underlying the late inhibition of superoxide release observed originally. In this regard, we individuated at least three independent requirements for the Nef-induced blockade of superoxide release: (i) the active protein synthesis; (ii) both the membrane localization and the interaction with endocytotic machinery of Nef; and (iii) the release of soluble factor(s). Moreover, we observed that IL-10 (interleukin-10) inhibits superoxide release, whereas its depletion restored NADPH oxidase activity. We propose that the cell membrane-to-lysosome Nef transit leads to the synthesis and release of soluble factor(s) and, among them, IL-10 might significantly contribute to the inhibition of NAPDH oxidase activity. PMID:15847608

  7. Magnetic Resonance Imaging of Mitochondrial Dysfunction and Metabolic Activity, Accompanied by Overproduction of Superoxide.

    PubMed

    Bakalova, Rumiana; Georgieva, Ekaterina; Ivanova, Donika; Zhelev, Zhivko; Aoki, Ichio; Saga, Tsuneo

    2015-12-16

    This study shows that a mitochondria-penetrating nitroxide probe (mito-TEMPO) allows detection of superoxide and visualization of mitochondrial dysfunction in living cells due to the effect of T1 shortening in MRI. Mitochondrial dysfunction was induced by treatment of cells with rotenone and 2-methoxyestradiol (2-ME/Rot). The MRI measurements were performed on 7T MRI. The 2-ME/Rot-treated cells were characterized by overproduction of superoxide, which was confirmed by a conventional dihydroethidium test. In the presence of mito-TEMPO, the intensity of MRI signal in 2-ME/Rot-treated cells was ∼30-40% higher, in comparison with that in untreated cells or culture media. In model (cell-free) systems, we observed that superoxide, but not hydrogen peroxide, increased the intensity of T1-weighted MRI signal of mito-TEMPO. Moreover, the superoxide restores the T1-weighted MRI contrast of mito-TEMPOH, a noncontrast (diamagnetic) analogue of mito-TEMPO. This was also confirmed by using EPR spectroscopy. The results demonstrate that superoxide radical is involved in the enhancement of T1-weighted MRI contrast in living cells, in the absence and presence of mito-TEMPO. This report gives a direction for discovering new opportunities for functional MRI, for detection of metabolic activity, accompanied by overproduction of superoxide, as well as by disturbance of the balance between superoxide and hydrogen peroxide, a very important approach to clarify the fine molecular mechanisms in the regulation of many pathologies. The visualization of mitochondrial activity in real-time can be crucial to clarify the molecular mechanism of the functional MRI in its commonly accepted definition, as a method for detection of neurovascular coupling.

  8. Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event

    NASA Astrophysics Data System (ADS)

    Diaz, Julia M.; Hansel, Colleen M.; Apprill, Amy; Brighi, Caterina; Zhang, Tong; Weber, Laura; McNally, Sean; Xun, Liping

    2016-12-01

    The reactive oxygen species superoxide (O2.-) is both beneficial and detrimental to life. Within corals, superoxide may contribute to pathogen resistance but also bleaching, the loss of essential algal symbionts. Yet, the role of superoxide in coral health and physiology is not completely understood owing to a lack of direct in situ observations. By conducting field measurements of superoxide produced by corals during a bleaching event, we show substantial species-specific variation in external superoxide levels, which reflect the balance of production and degradation processes. Extracellular superoxide concentrations are independent of light, algal symbiont abundance and bleaching status, but depend on coral species and bacterial community composition. Furthermore, coral-derived superoxide concentrations ranged from levels below bulk seawater up to ~120 nM, some of the highest superoxide concentrations observed in marine systems. Overall, these results unveil the ability of corals and/or their microbiomes to regulate superoxide in their immediate surroundings, which suggests species-specific roles of superoxide in coral health and physiology.

  9. Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event

    PubMed Central

    Diaz, Julia M.; Hansel, Colleen M.; Apprill, Amy; Brighi, Caterina; Zhang, Tong; Weber, Laura; McNally, Sean; Xun, Liping

    2016-01-01

    The reactive oxygen species superoxide (O2·−) is both beneficial and detrimental to life. Within corals, superoxide may contribute to pathogen resistance but also bleaching, the loss of essential algal symbionts. Yet, the role of superoxide in coral health and physiology is not completely understood owing to a lack of direct in situ observations. By conducting field measurements of superoxide produced by corals during a bleaching event, we show substantial species-specific variation in external superoxide levels, which reflect the balance of production and degradation processes. Extracellular superoxide concentrations are independent of light, algal symbiont abundance and bleaching status, but depend on coral species and bacterial community composition. Furthermore, coral-derived superoxide concentrations ranged from levels below bulk seawater up to ∼120 nM, some of the highest superoxide concentrations observed in marine systems. Overall, these results unveil the ability of corals and/or their microbiomes to regulate superoxide in their immediate surroundings, which suggests species-specific roles of superoxide in coral health and physiology. PMID:27924868

  10. Carboxymethylcellulose-gelatin-superoxidase dismutase electrode for amperometric superoxide radical sensing.

    PubMed

    Kocabay, Ozge; Emregul, Emel; Aras, Sümer; Emregul, Kaan Cebesoy

    2012-08-01

    A novel, highly sensitive superoxide dismutase biosensor for the direct and simultaneous determination of superoxide radicals was developed by immobilization of superoxide dismutase within carboxymethylcellulose-gelatin on a Pt electrode surface. The parameters affecting the performance of the biosensor were investigated. The response of the CMC-G-SOD biosensor was proportional to O (2) (·-) concentration and the detection limit was 1.25 × 10(-3) mM with a correlation coefficient of 0.9994. The developed biosensor exhibited high analytical performance with wider linear range, high sensitivity and low response time. The biosensor retained 89.8% of its sensitivity after use for 80 days. The support system enhanced the immobilization of superoxide dismutase and promoted the electron transfer of superoxide dismutase minimizing its fouling effect. The biosensor was quite effective not only in detecting O (2) (·-) , but also in determining the antioxidant properties of acetylsalicylic acid-based drugs and the anti-radical activity of healthy and cancerous human brain tissues.

  11. Extensive screening for edible herbal extracts with potent scavenging activity against superoxide anions.

    PubMed

    Saito, Keita; Kohno, Masahiro; Yoshizaki, Fumihiko; Niwano, Yoshimi

    2008-06-01

    To search for edible herbal extracts with potent antioxidant activity, we conducted a large scale screening based on the superoxide scavenging activity. That is, scavenging activity against superoxide anions were extensively screened from ethanol extracts of approximately 1,000 kinds of herbs by applying an electron spin resonance (ESR)-spin trapping method. Among them we chose four edible herbal extracts with prominently potent ability to reduce the signal intensity of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO)-OOH, a spin adduct formed by DMPO and superoxide anion. They are the extracts from Punica granatum (Peel), Syzygium aromaticum (Bud), Mangifera indica (Kernel), and Phyllanthus emblica (Fruit), and are allowed to be used as foodstuffs according to the Japanese legal regulation. The ESR-spin trapping method coupled with steady state kinetic analysis showed that all of the four extracts directly scavenge superoxide anions, and that the superoxide scavenging potential of any of the extracts was comparable to that of L-ascorbic acid. Furthermore, polyphenol determination indicates that the activity is at least in part attributable to polyphenols. These results with such large scale screening might give useful information when choosing a potent antioxidant as a foodstuff.

  12. Detection of drug-induced, superoxide-mediated cell damage and its prevention by antioxidants.

    PubMed

    Horáková, K; Sovcíková, A; Seemannová, Z; Syrová, D; Busányová, K; Drobná, Z; Ferencík, M

    2001-03-15

    The mode of the cytotoxic activity of three benzo(c)fluorene derivatives was characterized. The observed morphological changes of lysosomes or variations of mitochondrial activity are assumed to be the consequence of cell protection against oxidative damage and/or the part of the damage process. To establish the relationship between the quantity of superoxide (O2*-) generated and the degree of damage resulting from O2*-, a simple system based on measurement of 3-(4-iodophenyl)-2-(4-nitrophenyl)-5-phenyltetrazolium chloride (INT) reductase activity in the presence of superoxide dismutase (SOD) was used. The functionality of the chosen battery of in vitro tests was proved using several known superoxide inducers: cyclosporin A (CsA) and benzo(a)pyrene (BP), as well as noninducers: citrinin (CT) and cycloheximide (CH). From the results followed that the cell growth tests are much better indices of toxicity than the other tests. The model system for the evaluation of the protective capacity of antioxidants against superoxide-induced cytotoxicity included simultaneous exposure of HeLa cells to cytotoxic drugs and to quercetin (Qe), an antioxidant of plant origin. The complete abolishment of the inhibition of cell proliferation and clonogenic survival was concluded to be due to the protective effect of the antioxidant. These observations correlated with the decrease of superoxide content as estimated by the INT-reductase assay in the presence of SOD using the same model system, as well as with the increase of intracellular SOD content and its activity.

  13. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance

    SciTech Connect

    Beckman, J.S.; Minor, R.L. Jr.; White, C.W.; Repine, J.E.; Rosen, G.M.; Freeman, B.A.

    1988-05-15

    Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from <10 min to 40 h, reduced immunogenicity, and decreases sensitivity to proteolysis. Because PEG has surface active properties and can induce cell fusion, the authors hypothesized that PEG conjugation could enhance cell binding and association of normally membrane-impermeable enzymes. Incubation of cultured porcine aortic endothelial cells with /sup 125/I-PEG-catalase or /sup 125/I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species.

  14. [Involvement of carbonate/bicarbonate ions in the superoxide-generating reaction of adrenaline autoxidation].

    PubMed

    Sirota, T V

    2015-01-01

    An important role of carbonate/bicarbonate ions has been recognized in the superoxide generating reaction of adrenaline autooxidation in an alkaline buffer (a model of quinoid adrenaline oxidation in the body). It is suggested that these ions are directly involved not only in formation of superoxide anion radical (О(2)(-)) but also other radicals derived from the carbonate/bicarbonate buffer. Using various buffers it was shown that the rate of accumulation of adrenochrome, the end product of adrenaline oxidation, and the rate of О(2)(-)· formation depend on concentration of carbonate/bicarbonate ions in the buffer and that these ions significantly accelerate adrenaline autooxidation thus demonstrating prooxidant properties. The detectable amount of diformazan, the product of nitro blue tetrazolium (NBT) reduction, was significantly higher than the amount of adrenochrome formed; taking into consideration the literature data on О(2)(-)· detection by NBT it is suggested that adrenaline autooxidation is accompanied by one-electron reduction not only of oxygen dissolved in the buffer and responsible for superoxide formation but possible carbon dioxide also dissolved in the buffer as well as carbonate/bicarbonate buffer components leading to formation of corresponding radicals. The plots of the dependence of the inhibition of adrenochrome and diformazan formation on the superoxide dismutase concentration have shown that not only superoxide radicals are formed during adrenaline autooxidation. Since carbonate/bicarbonate ions are known to be universally present in the living nature, their involvement in free radical processes proceeding in the organism is discussed.

  15. Discriminative protection against hydroxyl and superoxide anion radicals by quercetin in human leucocytes in vitro.

    PubMed

    Wilms, Lonneke C; Kleinjans, Jos C S; Moonen, Edwin J C; Briedé, Jacob J

    2008-03-01

    Antioxidants play a vital role in the cellular protection against oxidative damage. Quercetin is a well-investigated antioxidant and known to be able to protect against cellular oxidative DNA damage. In this study, we tried to relate the protection by quercetin pre-treatment against oxidative DNA damage in human leucocytes in vitro to the interaction of quercetin in solution with hydroxyl and superoxide anion radicals as measured by electron spin resonance (ESR) spectrometry, using DMPO as a spin trap. Further, scavenging capacity of quercetin-treated leucocytes in vitro was evaluated by ESR spectrometry. Quercetin appears capable of protecting human leucocytes against oxidative DNA damage caused by hydrogen peroxide in a dose-dependent manner. The protection of leucocytes against superoxides is ambiguous. Incubation concentrations of quercetin (1, 10, and 50 microM) reduced levels of superoxide-induced oxidative DNA damage, while at 100 microM the amount of damage was increased. These results are supported by ESR-findings on quercetin in solution, also showing a prooxidant effect at 100 microM. ESR spectroscopy showed rate constant values for the reaction kinetics of quercetin in lowering iron-dependent hydroxyl radical formation and NADH-dependent superoxide anion formation of respectively 3.2 x 10(12)M(-1)s(-1) and 1.1 x 10(4)M(-1)s(-1). This shows that quercetin is a more potent inhibitor of hydroxyl radical formation than a scavenger of superoxide anions.

  16. Ab initio molecular dynamics of the reaction of quercetin with superoxide radical

    NASA Astrophysics Data System (ADS)

    Lespade, Laure

    2016-08-01

    Superoxide plays an important role in biology but in unregulated concentrations it is implicated in a lot of diseases such as cancer or atherosclerosis. Antioxidants like flavonoids are abundant in plant and are good scavengers of superoxide radical. The modeling of superoxide scavenging by flavonoids from the diet still remains a challenge. In this study, ab initio molecular dynamics of the reaction of the flavonoid quercetin toward superoxide radical has been carried out using Car-Parrinello density functional theory. The study has proven different reactant solvation by modifying the number of water molecules surrounding superoxide. The reaction consists in the gift of a hydrogen atom of one of the hydroxyl groups of quercetin to the radical. When it occurs, it is relatively fast, lower than 100 fs. Calculations show that it depends largely on the environment of the hydroxyl group giving its hydrogen atom, the geometry of the first water layer and the presence of a certain number of water molecules in the second layer, indicating a great influence of the solvent on the reactivity.

  17. Superoxide scavenging by thiol/copper complex of captopril--an EPR spectroscopy study.

    PubMed

    Reguli, J; Misík, V

    1995-02-01

    Scavenging of superoxide radical by angiotensin converting enzyme (ACE) inhibitor captopril (CAP), a thiol compound, was studied by several investigators and the results were contradictory; while some reported a high superoxide scavenging activity of CAP others found that CAP removed superoxide inefficiently. In this work we show that in the presence of copper ions the apparent rate of superoxide removal by CAP (molar ratio CAP:CuSO4 4:1) was two orders of magnitude higher (approximately 1.5 x 10(5) M-1s-1 at pH 7.4) than the literature value for superoxide scavenging by CAP alone (< 10(3) M-1s-1 at pH 7.4). We presume that in the presence of copper ions a CAP/copper complex with a SOD-mimicking activity is being formed. Similar results were also obtained with another thiol glutathione (GSH). The possible role of the CAP/copper complexes in the anti-inflammatory effect of CAP is discussed.

  18. Nitration and Inactivation of Manganese Superoxide Dismutase in Chronic Rejection of Human Renal Allografts

    NASA Astrophysics Data System (ADS)

    MacMillan-Crow, L. A.; Crow, John P.; Kerby, Jeffrey D.; Beckman, Joseph S.; Thompson, John A.

    1996-10-01

    Inflammatory processes in chronic rejection remain a serious clinical problem in organ transplantation. Activated cellular infiltrate produces high levels of both superoxide and nitric oxide. These reactive oxygen species interact to form peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. We identified enhanced immunostaining for nitrotyrosine localized to tubular epithelium of chronically rejected human renal allografts. Western blot analysis of rejected tissue demonstrated that tyrosine nitration was restricted to a few specific polypeptides. Immunoprecipitation and amino acid sequencing techniques identified manganese superoxide dismutase, the major antioxidant enzyme in mitochondria, as one of the targets of tyrosine nitration. Total manganese superoxide dismutase protein was increased in rejected kidney, particularly in the tubular epithelium; however, enzymatic activity was significantly decreased. Exposure of recombinant human manganese superoxide dismutase to peroxynitrite resulted in a dose-dependent (IC50 = 10 μ M) decrease in enzymatic activity and concomitant increase in tyrosine nitration. Collectively, these observations suggest a role for peroxynitrite during development and progression of chronic rejection in human renal allografts. In addition, inactivation of manganese superoxide dismutase by peroxynitrite may represent a general mechanism that progressively increases the production of peroxynitrite, leading to irreversible oxidative injury to mitochondria.

  19. Yeast and Mammalian Metallothioneins Functionally Substitute for Yeast Copper-Zinc Superoxide Dismutase

    NASA Astrophysics Data System (ADS)

    Tamai, Katherine T.; Gralla, Edith B.; Ellerby, Lisa M.; Valentine, Joan S.; Thiele, Dennis J.

    1993-09-01

    Copper-zinc superoxide dismutase catalyzes the disproportionation of superoxide anion to hydrogen peroxide and dioxygen and is thought to play an important role in protecting cells from oxygen toxicity. Saccharomyces cerevisiae strains lacking copper-zinc superoxide dismutase, which is encoded by the SOD1 gene, are sensitive to oxidative stress and exhibit a variety of growth defects including hypersensitivity to dioxygen and to superoxide-generating drugs such as paraquat. We have found that in addition to these known phenotypes, SOD1-deletion strains fail to grow on agar containing the respiratory carbon source lactate. We demonstrate here that expression of the yeast or monkey metallothionein proteins in the presence of copper suppresses the lactate growth defect and some other phenotypes associated with SOD1-deletion strains, indicating that copper metallothioneins substitute for copper-zinc superoxide dismutase in vivo to protect cells from oxygen toxicity. Consistent with these results, we show that yeast metallothionein mRNA levels are dramatically elevated under conditions of oxidative stress. Furthermore, in vitro assays demonstrate that yeast metallothionein, purified or from whole-cell extracts, exhibits copper-dependent antioxidant activity. Taken together, these data suggest that both yeast and mammalian metallothioneins may play a direct role in the cellular defense against oxidative stress by functioning as antioxidants.

  20. Metabolic stability of superoxide adducts derived from newly developed cyclic nitrone spin traps.

    PubMed

    Bézière, Nicolas; Hardy, Micael; Poulhès, Florent; Karoui, Hakim; Tordo, Paul; Ouari, Olivier; Frapart, Yves-Michel; Rockenbauer, Antal; Boucher, Jean-Luc; Mansuy, Daniel; Peyrot, Fabienne

    2014-02-01

    Reactive oxygen species are by-products of aerobic metabolism involved in the onset and evolution of various pathological conditions. Among them, the superoxide radical is of special interest as the origin of several damaging species such as H2O2, hydroxyl radical, or peroxynitrite (ONOO(-)). Spin trapping coupled with ESR is a method of choice to characterize these species in chemical and biological systems and the metabolic stability of the spin adducts derived from reaction of superoxide and hydroxyl radicals with nitrones is the main limit to the in vivo application of the method. Recently, new cyclic nitrones bearing a triphenylphosphonium or permethylated β-cyclodextrin moiety have been synthesized and their spin adducts demonstrated increased stability in buffer. In this article, we studied the stability of the superoxide adducts of four new cyclic nitrones in the presence of liver subcellular fractions and biologically relevant reductants using an original setup combining a stopped-flow device and an ESR spectrometer. The kinetics of disappearance of the spin adducts were analyzed using an appropriate simulation program. Our results highlight the interest of the new spin trapping agents CD-DEPMPO and CD-DIPPMPO for specific detection of superoxide with high stability of the superoxide adducts in the presence of liver microsomes.

  1. Endothelin-1 critically influences cardiac function via superoxide-MMP9 cascade.

    PubMed

    Hathaway, Catherine K; Grant, Ruriko; Hagaman, John R; Hiller, Sylvia; Li, Feng; Xu, Longquan; Chang, Albert S; Madden, Victoria J; Bagnell, C Robert; Rojas, Mauricio; Kim, Hyung-Suk; Wu, Bingruo; Zhou, Bin; Smithies, Oliver; Kakoki, Masao

    2015-04-21

    We have generated low-expressing and high-expressing endothelin-1 genes (L and H) and have bred mice with four levels of expression: L/L, ∼20%; L/+, ∼65%; +/+ (wild type), 100%; and H/+, ∼350%. The hypomorphic L allele can be spatiotemporally switched to the hypermorphic H allele by Cre-loxP recombination. Young adult L/L and L/+ mice have dilated cardiomyopathy, hypertension, and increased plasma volumes, together with increased ventricular superoxide levels, increased matrix metalloproteinase 9 (Mmp9) expression, and reduced ventricular stiffness. H/+ mice have decreased plasma volumes and significantly heavy stiff hearts. Global or cardiomyocyte-specific switching expression from L to H normalized the abnormalities already present in young adult L/L mice. An epithelial sodium channel antagonist normalized plasma volume and blood pressure, but only partially corrected the cardiomyopathy. A superoxide dismutase mimetic made superoxide levels subnormal, reduced Mmp9 overexpression, and substantially improved cardiac function. Genetic absence of Mmp9 also improved cardiac function, but increased superoxide remained. We conclude that endothelin-1 is critical for maintaining normal contractile function, for controlling superoxide and Mmp9 levels, and for ensuring that the myocardium has sufficient collagen to prevent overstretching. Even a modest (∼35%) decrease in endothelin-1 gene (Edn1) expression is sufficient to cause cardiac dysfunction.

  2. Endothelin-1 critically influences cardiac function via superoxide-MMP9 cascade

    PubMed Central

    Hathaway, Catherine K.; Grant, Ruriko; Hagaman, John R.; Hiller, Sylvia; Li, Feng; Xu, Longquan; Chang, Albert S.; Madden, Victoria J.; Bagnell, C. Robert; Rojas, Mauricio; Kim, Hyung-Suk; Wu, Bingruo; Zhou, Bin; Smithies, Oliver; Kakoki, Masao

    2015-01-01

    We have generated low-expressing and high-expressing endothelin-1 genes (L and H) and have bred mice with four levels of expression: L/L, ∼20%; L/+, ∼65%; +/+ (wild type), 100%; and H/+, ∼350%. The hypomorphic L allele can be spatiotemporally switched to the hypermorphic H allele by Cre-loxP recombination. Young adult L/L and L/+ mice have dilated cardiomyopathy, hypertension, and increased plasma volumes, together with increased ventricular superoxide levels, increased matrix metalloproteinase 9 (Mmp9) expression, and reduced ventricular stiffness. H/+ mice have decreased plasma volumes and significantly heavy stiff hearts. Global or cardiomyocyte-specific switching expression from L to H normalized the abnormalities already present in young adult L/L mice. An epithelial sodium channel antagonist normalized plasma volume and blood pressure, but only partially corrected the cardiomyopathy. A superoxide dismutase mimetic made superoxide levels subnormal, reduced Mmp9 overexpression, and substantially improved cardiac function. Genetic absence of Mmp9 also improved cardiac function, but increased superoxide remained. We conclude that endothelin-1 is critical for maintaining normal contractile function, for controlling superoxide and Mmp9 levels, and for ensuring that the myocardium has sufficient collagen to prevent overstretching. Even a modest (∼35%) decrease in endothelin-1 gene (Edn1) expression is sufficient to cause cardiac dysfunction. PMID:25848038

  3. Bz-423 superoxide signals B cell apoptosis via Mcl-1, Bak, and Bax.

    PubMed

    Blatt, Neal B; Boitano, Anthony E; Lyssiotis, Costas A; Opipari, Anthony W; Glick, Gary D

    2009-10-15

    Bz-423 is a pro-apoptotic 1,4-benzodiazepine with therapeutic properties in murine models of lupus demonstrating selectivity for autoreactive lymphocytes. Bz-423 modulates the F(1)F(0)-ATPase, inducing the formation of superoxide within the mitochondrial respiratory chain, which then functions as a second messenger initiating apoptosis. In order to understand some of the features that contribute to the increased sensitivity of lymphocytes, we report the signaling pathway engaged by Bz-423 in a Burkitt lymphoma cell line (Ramos). Following the generation of superoxide, Bz-423-induced apoptosis requires the activation of Bax and Bak to induce mitochondrial outer membrane permeabilization and cytochrome c release. Knockdown of the BH3-only proteins Bad, Bim, Bik, and Puma inhibits Bz-423 apoptosis, suggesting that these proteins serve as upstream sensors of the oxidant stress induced by Bz-423. Treatment with Bz-423 results in superoxide-dependent Mcl-1 degradation, implicating this protein as the link between Bz-423-induced superoxide and Bax and Bak activation. In contrast to fibroblasts, B cell death induced by Bz-423 is independent of c-Jun N-terminal kinase. These results demonstrate that superoxide generated from the mitochondrial respiratory chain as a consequence of a respiratory transition can signal a specific apoptotic response that differs across cell types.

  4. Multiconfigurational and DFT analyses of the electromeric formulation and UV-vis absorption spectra of the superoxide adduct of ferrous superoxide reductase.

    PubMed

    Attia, Amr A A; Cioloboc, Daniela; Lupan, Alexandru; Silaghi-Dumitrescu, Radu

    2016-12-01

    The putative initial adduct of ferrous superoxide reductase (SOR) with superoxide has been alternatively formulated as ferric-peroxo or ferrous-superoxo. The ~600-nm UV-vis absorption band proposed to be assigned to this adduct (either as sole intermediate in the SOR catalytic cycle, or as one of the two intermediates) has recently been interpreted as due to a ligand-to-metal charge transfer, involving thiolate and superoxide in a ferrous complex, contrary to an alternative assignment as a predominantly cysteine thiolate-to-ferric charge transfer in a ferric-peroxo electromer. In an attempt to clarify the electromeric formulation of this adduct, we report a computational study using a multiconfigurational complete active space self-consistent field (MC-CASSCF) wave function approach as well as modelling the UV-vis absorption spectra with time-dependent density functional theory (TD-DFT). The MC-CASSCF calculations disclose a weak interaction between iron and the dioxygenic ligand and a dominant configuration with an essentially ferrous-superoxo character. The computed UV-vis absorption spectra reveal a marked dependence on the choice of density functional - both in terms of location of bands and in terms of orbital contributors. For the main band in the visible region, besides the recently reported thiolate-to-superoxide charge transfer, a more salient, and less functional-dependent, feature is a thiolate-to-ferric iron charge transfer, consistent with a ferric-peroxo electromer. By contrast, the computed UV-vis spectra of a ferric-hydroperoxo SOR model match distinctly better (and with no qualitative dependence on the DFT methodology) the 600-nm band as due to a mainly thiolate-to-ferric character - supporting the assignment of the SOR "600-nm intermediate" as a S=5/2 ferric-hydroperoxo species.

  5. Copper, Zinc Superoxide Dismutase is Primarily a Cytosolic Protein in Human Cells

    NASA Astrophysics Data System (ADS)

    Crapo, James D.; Oury, Tim; Rabouille, Catherine; Slot, Jan W.; Chang, Ling-Yi

    1992-11-01

    The intracellular localization of human copper, zinc superoxide dismutase (Cu,Zn-SOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1) was evaluated by using EM immunocytochemistry and both isolated human cell lines and human tissues. Eight monoclonal antibodies raised against either native or recombinant human Cu,Zn-SOD and two polyclonal antibodies raised against either native or recombinant human Cu,Zn-SOD were used. Fixation with 2% paraformaldehyde/0.2% glutaraldehyde was found necessary to preserve normal distribution of the protein. Monoclonal antibodies were less effective than polyclonal antibodies in recognizing the antigen after adequate fixation of tissue. Cu,Zn-SOD was found widely distributed in the cell cytosol and in the cell nucleus, consistent with it being a soluble cytosolic protein. Mitochondria and secretory compartments did not label for this protein. In human cells, peroxisomes showed a labeling density slightly less than that of cytoplasm.

  6. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance

    PubMed Central

    Tsang, Chi Kwan; Liu, Yuan; Thomas, Janice; Zhang, Yanjie; Zheng, X. F. Steven

    2015-01-01

    Summary Superoxide dismutase 1 (Sod1) has been known for nearly half a century for catalysis of superoxide to hydrogen peroxide. Here we report a new Sod1 function in oxidative signaling: in response to elevated endogenous and exogenous reactive oxygen species (ROS), Sod1 rapidly relocates into the nucleus, which is important for maintaining genomic stability. Interestingly, H2O2 is sufficient to promote Sod1 nuclear localization, indicating that it is responding to general ROS rather than Sod1 substrate superoxide. ROS signaling is mediated by Mec1/ATM and its effector Dun1/Cds1 kinase, through Dun1 interaction with Sod1 and regulation of Sod1 by phosphorylation at S60, 99. In the nucleus, Sod1 binds to the promoters and regulates the expression of oxidative resistance and repair genes. Altogether, our study unravels an unorthodox function of Sod1 as a transcription factor and elucidates the regulatory mechanism for its localization. PMID:24647101

  7. Superoxide metabolism is correlated to the post-anoxic injury of soybean (Glycine max) roots

    SciTech Connect

    Bolles, C.S.; Van Toai, T.T. )

    1990-05-01

    Post-anoxic injury of root tips of soybean seedlings is more severe following a very short (1 hour) period of anoxia than a longer (3-5 hour) period. Anaerobic incubation of root tips in the presence of 100 mM ascorbate, an antioxidant and free-radical-scavenging compound, alleviates the detrimental post-anoxia effects of a very short anoxic treatment. Extracts of root tips which have been treated anoxically for 1 hour have an elevated capacity to produce superoxide anions when subsequently exposed to air, than extracts from seedlings treated anoxically for longer time. Changes in superoxide dismutase (SOD) enzyme activity and SOD-specific RNA sequences will be presented. The results support that post-anoxic injury occurs in soybean roots and that SOD plays a role in the detoxification of superoxide anions.

  8. Endogenous antioxidant defense induction by melon superoxide dismutase reduces cardiac hypertrophy in spontaneously hypertensive rats.

    PubMed

    Carillon, Julie; Rugale, Caroline; Rouanet, Jean-Max; Cristol, Jean-Paul; Lacan, Dominique; Jover, Bernard

    2014-08-01

    We assessed the influence of SODB, a melon superoxide dismutase (SOD), on left ventricular (LV) hypertrophy in SHR. SODB (4 or 40U SOD) was given orally for 4 or 28 days to SHR. For each treatment period, LV weight index (LVWI) and cardiomyocytes size were measured. SOD, glutathione peroxidase (GPx) and catalase expressions, and LV production and presence of superoxide anion were determined. Pro-inflammatory markers were also measured. SODB reduced LVWI and cardiomyocytes size after 4 or 28 days. Cardiac SOD and GPx increased by 30-40% with SODB. The presence but not production of superoxide anion was significantly reduced by SODB. No effect of SODB was detected on inflammatory status in any group. The beneficial effect of SODB on cardiac hypertrophy seems to be related to the stimulation of endogenous antioxidant defense, suggesting that SODB may be of interest as a dietary supplementation during conventional antihypertensive therapy.

  9. Dehydroepiandrosterone inhibits the spontaneous release of superoxide radical by alveolar macrophages in vitro in asbestosis

    SciTech Connect

    Rom, W.N.; Harkin, T. )

    1991-08-01

    Asbestosis is characterized by an alveolar macrophage alveolitis with injury and fibrosis of the lower respiratory tract. Alveolar macrophages recovered by bronchoalveolar lavage spontaneously release exaggerated amounts of oxidants including superoxide anion and hydrogen peroxide that may mediate alveolar epithelial cell injury. Dehydroepiandrosterone (DHEA) is a normally occurring adrenal androgen that inhibits glucose-6-phosphate dehydrogenase, the initial enzyme in the pentose phosphate shunt necessary for NADPH generation and superoxide anion formation. In this regard, the authors hypothesized that DHEA may reduce asbestos-induced oxidant release. DHEA added in vitro to alveolar macrophages lavaged from 11 nonsmoking asbestos workers significantly reduced superoxide anion release. DHEA is an antioxidant and potential anticarcinogenic agent that may have a therapeutic role in reducing the increased oxidant burden in asbestos-induced alveolitis of the lower respiratory tract.

  10. Characterization of the Bacillus stearothermophilus manganese superoxide dismutase gene and its ability to complement copper/zinc superoxide dismutase deficiency in Saccharomyces cerevisiae.

    PubMed Central

    Bowler, C; Van Kaer, L; Van Camp, W; Van Montagu, M; Inzé, D; Dhaese, P

    1990-01-01

    Recombinant clones containing the manganese superoxide dismutase (MnSOD) gene of Bacillus stearothermophilus were isolated with an oligonucleotide probe designed to match a part of the previously determined amino acid sequence. Complementation analyses, performed by introducing each plasmid into a superoxide dismutase-deficient mutant of Escherichia coli, allowed us to define the region of DNA which encodes the MnSOD structural gene and to identify a promoter region immediately upstream from the gene. These data were subsequently confirmed by DNA sequencing. Since MnSOD is normally restricted to the mitochondria in eucaryotes, we were interested (i) in determining whether B. stearothermophilus MnSOD could function in eucaryotic cytosol and (ii) in determining whether MnSOD could replace the structurally unrelated copper/zinc superoxide dismutase (Cu/ZnSOD) which is normally found there. To test this, the sequence encoding bacterial MnSOD was cloned into a yeast expression vector and subsequently introduced into a Cu/ZnSOD-deficient mutant of the yeast Saccharomyces cerevisiae. Functional expression of the protein was demonstrated, and complementation tests revealed that the protein was able to provide tolerance at wild-type levels to conditions which are normally restrictive for this mutant. Thus, in spite of the evolutionary unrelatedness of these two enzymes, Cu/ZnSOD can be functionally replaced by MnSOD in yeast cytosol. Images FIG. 2 FIG. 4 FIG. 5 PMID:2407726

  11. Manganese superoxide dismutase, but not CuZn superoxide dismutase, is highly expressed in the granulomas of pulmonary sarcoidosis and extrinsic allergic alveolitis.

    PubMed

    Lakari, E; Pääkkö, P; Kinnula, V L

    1998-08-01

    The role of antioxidant defense mechanisms in the pathogenesis of granulomatous human lung diseases remains open to investigation. In this study we investigated the immunoreactivity of two important superoxide radical scavenging intracellular antioxidant enzymes, manganese superoxide dismutase (MnSOD) and copperzinc superoxide dismutase (CuZnSOD), in pulmonary sarcoidosis and extrinsic allergic alveolitis. In histologically normal lung MnSOD was variable but mostly positive in the cells of bronchial epithelium, alveolar epithelium especially in type II pneumocytes, and alveolar macrophages. Copperzinc SOD showed positive immunoreactivity most markedly in the bronchial epithelium. The biopsies of 22 patients with pulmonary sarcoidosis and 10 with extrinsic allergic alveolitis indicated that MnSOD was highly stained in the granulomas of both diseases, with 60 to 100% of the granulomas showing intensive immunoreactivity. Western blots conducted on the cell samples of bronchoalveolar lavage (BAL) fluid revealed significantly higher amounts of MnSOD in sarcoidosis and extrinsic allergic alveolitis than in the controls. Immunohistochemistry on the cells obtained from BAL fluid showed positive immunoreactivity of MnSOD in the macrophages but not in the lymphocytes. In contrast, copperzinc SOD was not induced in either of these diseases. We conclude that MnSOD is highly expressed in the granulomas of pulmonary sarcoidosis and extrinsic allergic alveolitis, and variable but mostly positive in alveolar macrophages, possibly owing to cytokine mediated induction during the granuloma formation.

  12. Hyperglycemic switch from mitochondrial nitric oxide to superoxide production in endothelial cells.

    PubMed

    Brodsky, Sergey V; Gao, Shujuan; Li, Hong; Goligorsky, Michael S

    2002-11-01

    The accumulated ultrastructural and biochemical evidence is highly suggestive of the existence of mitochondrial nitric oxide (NO) synthase (mtNOS), where local production of NO regulates the electron transport along the respiratory chain. Here, the functional competence of mtNOS in situ in a living cell was examined using an intravital fluorescent NO indicator, 4,5-diaminofluorescein, employing a new procedure for loading it into the mitochondria to demonstrate local NO generation in undisrupted endothelial cells and in isolated mitochondria as well as in human embryonic kidney cells stably expressing endothelial NOS. With the use of this approach, we showed that endothelial cells incubated in the presence of high concentration of D-glucose (but not L-glucose) are characterized by the reduced NO synthetic function of mitochondria despite the unaltered abundance of the enzyme. In parallel, mitochondrial generation of superoxide was augmented in endothelial cells incubated in the presence of a high concentration of D-glucose. Both the NO generation and superoxide production in hyperglycemic environment could be restored to control levels by treating cells with a cell-permeable superoxide dismutase mimetic. In addition, enhanced mitochondrial superoxide production could be suppressed with an inhibitor of NOS in stimulated endothelial cells. In conclusion, the data 1) provide direct evidence of mitochondrial NO production in endothelial cells, 2) demonstrate its suppression and enhanced superoxide generation in hyperglycemic environment, and 3) provide evidence that "uncoupled" mtNOS represents an important source of superoxide anions in endothelial cells incubated in high glucose-containing medium.

  13. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling.

    PubMed

    Brand, Martin D

    2016-11-01

    This review examines the generation of reactive oxygen species by mammalian mitochondria, and the status of different sites of production in redox signaling and pathology. Eleven distinct mitochondrial sites associated with substrate oxidation and oxidative phosphorylation leak electrons to oxygen to produce superoxide or hydrogen peroxide: oxoacid dehydrogenase complexes that feed electrons to NAD(+); respiratory complexes I and III, and dehydrogenases, including complex II, that use ubiquinone as acceptor. The topologies, capacities, and substrate dependences of each site have recently clarified. Complex III and mitochondrial glycerol 3-phosphate dehydrogenase generate superoxide to the external side of the mitochondrial inner membrane as well as the matrix, the other sites generate superoxide and/or hydrogen peroxide exclusively in the matrix. These different site-specific topologies are important for redox signaling. The net rate of superoxide or hydrogen peroxide generation depends on the substrates present and the antioxidant systems active in the matrix and cytosol. The rate at each site can now be measured in complex substrate mixtures. In skeletal muscle mitochondria in media mimicking muscle cytosol at rest, four sites dominate, two in complex I and one each in complexes II and III. Specific suppressors of two sites have been identified, the outer ubiquinone-binding site in complex III (site IIIQo) and the site in complex I active during reverse electron transport (site IQ). These suppressors prevent superoxide/hydrogen peroxide production from a specific site without affecting oxidative phosphorylation, making them excellent tools to investigate the status of the sites in redox signaling, and to suppress the sites to prevent pathologies. They allow the cellular roles of mitochondrial superoxide/hydrogen peroxide production to be investigated without catastrophic confounding bioenergetic effects. They show that sites IIIQo and IQ are active in cells and

  14. Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria.

    PubMed

    Hey-Mogensen, Martin; Goncalves, Renata L S; Orr, Adam L; Brand, Martin D

    2014-07-01

    Dehydrogenases that use ubiquinone as an electron acceptor, including complex I of the respiratory chain, complex II, and glycerol-3-phosphate dehydrogenase, are known to be direct generators of superoxide and/or H2O2. Dihydroorotate dehydrogenase oxidizes dihydroorotate to orotate and reduces ubiquinone to ubiquinol during pyrimidine metabolism, but it is unclear whether it produces superoxide and/or H2O2 directly or does so only indirectly from other sites in the electron transport chain. Using mitochondria isolated from rat skeletal muscle we establish that dihydroorotate oxidation leads to superoxide/H2O2 production at a fairly high rate of about 300pmol H2O2·min(-1)·mg protein(-1) when oxidation of ubiquinol is prevented and complex II is uninhibited. This H2O2 production is abolished by brequinar or leflunomide, known inhibitors of dihydroorotate dehydrogenase. Eighty percent of this rate is indirect, originating from site IIF of complex II, because it can be prevented by malonate or atpenin A5, inhibitors of complex II. In the presence of inhibitors of all known sites of superoxide/H2O2 production (rotenone to inhibit sites in complex I (site IQ and, indirectly, site IF), myxothiazol to inhibit site IIIQo in complex III, and malonate plus atpenin A5 to inhibit site IIF in complex II), dihydroorotate dehydrogenase generates superoxide/H2O2, at a small but significant rate (23pmol H2O2·min(-1)·mg protein(-1)), from the ubiquinone-binding site. We conclude that dihydroorotate dehydrogenase can generate superoxide and/or H2O2 directly at low rates and is also capable of indirect production at higher rates from other sites through its ability to reduce the ubiquinone pool.

  15. Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex.

    PubMed

    Goncalves, Renata L S; Bunik, Victoria I; Brand, Martin D

    2016-02-01

    In humans, mutations in dehydrogenase E1 and transketolase domain containing 1 (DHTKD1) are associated with neurological abnormalities and accumulation of 2-oxoadipate, 2-aminoadipate, and reactive oxygen species. The protein encoded by DHTKD1 has sequence and structural similarities to 2-oxoglutarate dehydrogenase, and the 2-oxoglutarate dehydrogenase complex can produce superoxide/H2O2 at high rates. The DHTKD1 enzyme is hypothesized to catalyze the oxidative decarboxylation of 2-oxoadipate, a shared intermediate of the degradative pathways for tryptophan, lysine and hydroxylysine. Here, we show that rat skeletal muscle mitochondria can produce superoxide/H2O2 at high rates when given 2-oxoadipate. We identify the putative mitochondrial 2-oxoadipate dehydrogenase complex as one of the sources and characterize the conditions that favor its superoxide/H2O2 production. Rates increased at higher NAD(P)H/NAD(P)(+) ratios and were higher at each NAD(P)H/NAD(P)(+) ratio when 2-oxoadipate was present, showing that superoxide/H2O2 was produced during the forward reaction from 2-oxoadipate, but not in the reverse reaction from NADH in the absence of 2-oxoadipate. The maximum capacity of the 2-oxoadipate dehydrogenase complex for production of superoxide/H2O2 is comparable to that of site IF of complex I, and seven, four and almost two-fold lower than the capacities of the 2-oxoglutarate, pyruvate and branched-chain 2-oxoacid dehydrogenase complexes, respectively. Regulation by ADP and ATP of H2O2 production driven by 2-oxoadipate was very different from that driven by 2-oxoglutarate, suggesting that site AF of the 2-oxoadipate dehydrogenase complex is a new source of superoxide/H2O2 associated with the NADH isopotential pool in mitochondria.

  16. Elevated peripheral blood mononuclear cell-derived superoxide production in healthy young black men.

    PubMed

    Deo, Shekhar H; Holwerda, Seth W; Keller, David M; Fadel, Paul J

    2015-03-01

    Several studies have demonstrated that blacks exhibit elevations in systemic oxidative stress. However, the source(s) and mechanism(s) contributing to the elevation in oxidative stress remain unclear. Given that peripheral blood mononuclear cells (PBMCs) can be a major source of NADPH oxidase-derived superoxide production, we tested the hypothesis that young black men demonstrate greater superoxide production and NADPH oxidase expression in PBMCs compared with whites. PBMCs were freshly isolated from whole blood in young normotensive black (n = 18) and white (n = 16) men. Intracellular superoxide production in PBMCs was measured using dihydroethidium fluorescence, protein expression of NADPH oxidase subunits, gp91(phox) (membranous) and p47(phox) (cytosolic) in PBMCs were assessed using Western blot analysis, and plasma protein carbonyls were measured as a marker of systemic oxidative stress. Black men showed elevated intracellular superoxide production (4.3 ± 0.5 vs. 2.0 ± 0.6 relative fluorescence units; black men vs. white men, P < 0.05), increased protein expression for gp91(phox) and p47(phox) (e.g., p47(phox): 1.1 ± 0.2, black men vs. 0.4 ± 0.1, white men, P < 0.05) in PBMCs and higher circulating protein carbonyl levels (22 ± 4 vs. 14 ± 2 nmol/ml; black men vs. white men, P < 0.05). Interestingly, a positive family history of hypertension in black men did not further enhance PBMC-derived intracellular superoxide production or NADPH oxidase subunit protein expression. These findings indicate that black men exhibit greater resting PBMC-derived superoxide production and an upregulation of the NADPH oxidase pathway with a possible contribution to increases in systemic oxidative stress.

  17. The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide

    PubMed Central

    Gu, Mianzhi; Imlay, James A.

    2011-01-01

    When Escherichia coli is exposed to redox-cycling drugs, its SoxR transcription factor is activated by oxidation of its [2Fe–2S] cluster. In aerobic cells these drugs generate superoxide, and because superoxide dismutase (SOD) is a member of the SoxRS regulon, superoxide was initially thought to be the activator of SoxR. Its many-gene regulon was therefore believed to comprise a defense against superoxide stress. However, we found that abundant superoxide did not effectively activate SoxR in an SOD− mutant, that overproduced SOD could not suppress activation by redox-cycling drugs, and that redox-cycling drugs were able to activate SoxR in anaerobic cells as long as alternative respiratory acceptors were provided. Thus superoxide is not the signal that SoxR senses. Indeed, redox-cycling drugs directly oxidized the cluster of purified SoxR in vitro, while superoxide did not. Redox-cycling drugs are excreted by both bacteria and plants. Their toxicity does not require superoxide, as they poisoned E. coli under anaerobic conditions, in part by oxidizing dehydratase iron-sulfur clusters. Under these conditions SoxRS induction was protective. Thus it is physiologically appropriate that the SoxR protein directly senses redox-cycling drugs rather than superoxide. PMID:21226770

  18. Evidence that the reactivity of the martian soil is due to superoxide ions.

    PubMed

    Yen, A S; Kim, S S; Hecht, M H; Frant, M S; Murray, B

    2000-09-15

    The Viking Landers were unable to detect evidence of life on Mars but, instead, found a chemically reactive soil capable of decomposing organic molecules. This reactivity was attributed to the presence of one or more as-yet-unidentified inorganic superoxides or peroxides in the martian soil. Using electron paramagnetic resonance spectroscopy, we show that superoxide radical ions (O2-) form directly on Mars-analog mineral surfaces exposed to ultraviolet radiation under a simulated martian atmosphere. These oxygen radicals can explain the reactive nature of the soil and the apparent absence of organic material at the martian surface.

  19. Construction of a Fusion Enzyme Exhibiting Superoxide Dismutase and Peroxidase Activity.

    PubMed

    Sharapov, M G; Novoselov, V I; Ravin, V K

    2016-04-01

    A chimeric gene construct encoding human peroxiredoxin 6 and Mn-superoxide dismutase from Escherichia coli was developed. Conditions for expression of the fusion protein in E. coli cell were optimized. Fusing of the enzymes into a single polypeptide chain with peroxiredoxin 6 at the N-terminus (PSH) did not affect their activities. On the contrary, the chimeric protein with reverse order of enzymes (SPH) was not obtained in a water-soluble active form. The active chimeric protein (PSH) exhibiting both peroxidase and superoxide dismutase activities was prepared and its physicochemical properties were characterized.

  20. Extraction of erythrocyte enzymes for the preparation of polyhemoglobin-catalase-superoxide dismutase.

    PubMed

    Gu, Jingsong; Chang, Thomas Ming Swi

    2009-01-01

    In sustained severe ischemia, reperfusion with oxygen carriers may result in ischemia-reperfusion injuries because of the release of damaging oxygen radicals. A nanobiotechnology-based polyhemogloin-calatase-superoxide dismutase can prevent this because the oxygen carrier, polyhemoglobin, is linked to antioxidant enzymes, catalase and superoxide dismutase. However, these antioxidant enzymes come from nonhuman sources and recombinant human enzymes are expensive. This paper describes our study on extracting these enzymes from red blood cells and analyzing the amount of enzymes needed for adequate protection from ischemia-reperfusion.

  1. Superoxide dismutase transgenes in sugarbeets confer resistance to oxidative agents and the fungus C. beticola.

    PubMed

    Tertivanidis, Konstantinos; Goudoula, Catherine; Vasilikiotis, Christos; Hassiotou, Efthymia; Perl-Treves, Rafael; Tsaftaris, Athanasios

    2004-06-01

    Sugarbeets carrying superoxide dismutase transgenes were developed in order to investigate the possibility of enhancing their resistance to oxidative stress. Binary T-DNA vectors carrying the chloroplastic and cytosolic superoxide dismutase genes from tomato, were used for Agrobacterium-mediated transformation of sugarbeet petioles. The transgenic plants were subjected to treatments known to cause oxidative stress, such as the herbicide methyl viologen and a natural photosensitizer toxin produced by the fungus Cercospora beticola, namely cercosporin. The transgenic plants exhibited increased tolerance to methyl viologen, to pure cercosporin, as well as to leaf infection with the fungus C. beticola.

  2. Distribution of Iron-Containing Superoxide Dismutase in Vascular Plants 12

    PubMed Central

    Bridges, Susan M.; Salin, Marvin L.

    1981-01-01

    Superoxide dismutases (EC 1.15.1.1) in vascular plants representing different evolutionary levels were characterized using polyacrylamide gel electrophoresis. The three forms of the enzyme were distinguished from each other based on the following criteria: a) the Cu-Zn enzyme is sensitive to cyanide wherease the Fe and Mn enzymes are not; and b) the Cu-Zn and Fe enzymes are inhibited by H2O2 whereas the Mn enzyme is H2O2-resistant. Of the 43 plant families investigated, the Fe-containing superoxide dismutase was found in three families: Gingkoaceae, Nymphaceae, and Cruciferae. PMID:16661901

  3. Serine 1179 Phosphorylation of Endothelial Nitric Oxide Synthase Increases Superoxide Generation and Alters Cofactor Regulation.

    PubMed

    Peng, Hu; Zhuang, Yugang; Harbeck, Mark C; He, Donghong; Xie, Lishi; Chen, Weiguo

    2015-01-01

    Endothelial nitric oxide synthase (eNOS) is responsible for maintaining systemic blood pressure, vascular remodeling and angiogenesis. In addition to producing NO, eNOS can also generate superoxide (O2-.) in the absence of the cofactor tetrahydrobiopterin (BH4). Previous studies have shown that bovine eNOS serine 1179 (Serine 1177/human) phosphorylation critically modulates NO synthesis. However, the effect of serine 1179 phosphorylation on eNOS superoxide generation is unknown. Here, we used the phosphomimetic form of eNOS (S1179D) to determine the effect of S1179 phosphorylation on superoxide generating activity, and its sensitivity to regulation by BH4, Ca2+, and calmodulin (CAM). S1179D eNOS exhibited significantly increased superoxide generating activity and NADPH consumption compared to wild-type eNOS (WT eNOS). The superoxide generating activities of S1179D eNOS and WT eNOS did not differ significantly in their sensitivity to regulation by either Ca2+ or CaM. The sensitivity of the superoxide generating activity of S1179D eNOS to inhibition by BH4 was significantly reduced compared to WT eNOS. In eNOS-overexpressing 293 cells, BH4 depletion with 10mM DAHP for 48 hours followed by 50ng/ml VEGF for 30 min to phosphorylate eNOS S1179 increased ROS accumulation compared to DAHP-only treated cells. Meanwhile, MTT assay indicated that overexpression of eNOS in HEK293 cells decreased cellular viability compared to control cells at BH4 depletion condition (P<0.01). VEGF-mediated Serine 1179 phosphorylation further decreased the cellular viability in eNOS-overexpressing 293 cells (P<0.01). Our data demonstrate that eNOS serine 1179 phosphorylation, in addition to enhancing NO production, also profoundly affects superoxide generation: S1179 phosphorylation increases superoxide production while decreasing sensitivity to the inhibitory effect of BH4 on this activity.

  4. Effect of superoxide anion scavenger on rat hearts with chronic intermittent hypoxia.

    PubMed

    Pai, Peiying; Lai, Ching Jung; Lin, Ching-Yuang; Liou, Yi-Fan; Huang, Chih-Yang; Lee, Shin-Da

    2016-04-15

    Only very limited information regarding the protective effects of the superoxide anion scavenger on chronic intermittent hypoxia-induced cardiac apoptosis is available. The purpose of this study is to evaluate the effects of the superoxide anion scavenger on cardiac apoptotic and prosurvival pathways in rats with sleep apnea. Forty-two Sprague-Dawley rats were divided into three groups, rats with normoxic exposure (Control, 21% O2, 1 mo), rats with chronic intermittent hypoxia exposure (Hypoxia, 3-7% O2vs. 21% O2per 40 s cycle, 8 h per day, 1 mo), and rats with pretreatment of the superoxide anion scavenger and chronic intermittent hypoxia exposure (Hypoxia-O2 (-)-Scavenger, MnTMPyP pentachloride, 1 mg/kg ip per day; 3-7% O2vs. 21% O2per 40 s cycle, 8 h per day, 1 mo) at 5-6 mo of age. After 1 mo, the protein levels and apoptotic cells of excised hearts from three groups were measured by Western blotting and terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assay. The superoxide anion scavenger decreased hypoxia-induced myocardial architecture abnormalities, left ventricular hypertrophy, and TUNEL-positive apoptosis. The superoxide anion scavenger decreased hypoxia-induced Fas ligand, Fas death receptors, Fas-associated death domain (FADD), activated caspase-8, and activated caspase-3 (Fas-dependent apoptotic pathway) as well as Bad, activated caspase-9 and activated caspase-3 (mitochondria-dependent apoptotic pathway), endonuclease G (EndoG), apoptosis-inducing factor (AIF), and TUNEL-positive apoptosis. The superoxide anion scavenger increased IGF-1, IGF-1R, p-PI3k, p-Akt, p-Bad, Bcl-2, and Bcl-xL (survival pathway). Our findings imply that the superoxide anion scavenger might prevent cardiac Fas-mediated and mitochondrial-mediated apoptosis and enhance the IGF-1-related survival pathway in chronic intermittent hypoxia. The superoxide anion scavenger may prevent chronic sleep apnea-enhanced cardiac apoptotic pathways and enhances

  5. Evidence that the reactivity of the martian soil is due to superoxide ions

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Kim, S. S.; Hecht, M. H.; Frant, M. S.; Murray, B.

    2000-01-01

    The Viking Landers were unable to detect evidence of life on Mars but, instead, found a chemically reactive soil capable of decomposing organic molecules. This reactivity was attributed to the presence of one or more as-yet-unidentified inorganic superoxides or peroxides in the martian soil. Using electron paramagnetic resonance spectroscopy, we show that superoxide radical ions (O2-) form directly on Mars-analog mineral surfaces exposed to ultraviolet radiation under a simulated martian atmosphere. These oxygen radicals can explain the reactive nature of the soil and the apparent absence of organic material at the martian surface.

  6. Exogenous superoxide dismutase may lose its antidotal ability on rice leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf diffusates of the resistant rice cultivars suppressed spore germination of blast fungus (Magnaporthe grisea). Bovine Cu-Zn superoxide dismutase (SOD) added to the diffusate abolished its toxicity. However, the enzyme added to the inoculum did not affect the toxicity of the diffusate. Even the s...

  7. Effect of stilbene derivative on superoxide generation and enzyme release from human neutrophils in vitro

    PubMed Central

    Pečivová, Jana; Harmatha, Juraj; Sviteková, Klára; Nosáľ, Radomír

    2012-01-01

    Neutrophils represent the body′s primary line of defense against invading pathogens. They most rapidly reach the site of injury or infection, liberate antimicrobial proteins, proteases and produce reactive oxygen species. Prolonged or excessive liberation of these very effective and toxic substances could intensify the inflammatory process and enhance tissue damage in many diseases, such as allergies, infections and rheumatoid arthritis. Pterostilbene belongs to stilbenoids, structural analogues of resveratrol, which act as natural protective agents in defending the plant against viral and microbial attack. It possesses anticancerous, antidiabetic and anti-inflammatory properties. The study provides new information on the effect of pterostilbene [0.01–100 µmol/l] on superoxide generation in and myeloperoxidase (MPO) release from azurophil granules of isolated human neutrophils. PMA [1µmol/l], which activates NADPH-oxidase via protein kinase C, was used for stimulation of neutrophils Unstimulated cells showed neither superoxide generation nor myelopereoxidase release after preincubation with the drug studied. Pterostilbene dose dependently decreased superoxide generation in and MPO release from stimulated human neutrophils, however a significant decrease was recorded only in the concentration 100 µmol/l. The effect of pterostilbene was more pronounced on superoxide generation in comparison to MPO release. Our results suggest that the effect of pterostilbene may prove beneficial in controlling inflammation. PMID:23118590

  8. Reduced expression of citrate synthase leads to excessive superoxide formation and cell apoptosis.

    PubMed

    Cai, Quanxiang; Zhao, Mengmeng; Liu, Xiang; Wang, Xiaochun; Nie, Yao; Li, Ping; Liu, Tingyan; Ge, Ruli; Han, Fengchan

    2017-02-16

    A/J mice are a mouse model of age-related hearing loss. It has been demonstrated that a mutation in gene of citrate synthase (CS) contributes to the early onset of hearing loss occurring at about one month of age. To understand the effects of a decreased CS activity that results from the mutation in Cs gene on hearing loss in A/J mice, human kidney cell line (293T) was transiently transfected with short hairpin RNA for Cs (shRNA-Cs) to reduce expression of CS. In comparison with those of cells transfected with a scrambled sequence (shRNA-NC), the oxygen consumption rate and adenosine trisphosphate (ATP) production level were decreased in 293T cells transfected with shRNA-Cs. Meanwhile, excessive superoxide production was induced as determined by mitochondrial superoxide formation assay (MitoSOX) and superoxide dismutase 2 (SOD2) detection. Moreover, the expression levels of BIP (binding immunoglobulin protein) and CHOP (CCAAT/enhancer-binding protein-homologous protein), markers of endoplasmic reticulum stress, were upregulated. Furthermore, apoptosis related molecule caspase-3 and the mitochondrial membrane potential were reduced. It is therefore concluded that downregulation of Cs expression in 293T cells leads to low level of ATP production, excessive superoxide formation and cell apoptosis, which implies a possible mechanism for hearing loss in A/J mice.

  9. NADH Induces the Generation of Superoxide Radicals in Leaf Peroxisomes 1

    PubMed Central

    del Río, Luis A.; Fernández, Víctor M.; Rupérez, Francisco L.; Sandalio, Luisa M.; Palma, José M.

    1989-01-01

    In peroxisomes isolated from pea leaves (Pisum sativum L.) the production of superoxide free radicals (O2−) by xanthine and NADH was investigated. In peroxisomal membranes, 100 micromolar NADH induced the production of O2− radicals. In the soluble fractions of peroxisomes, no generation of O2− radicals was observed by incubation with either NADH or xanthine, although xanthine oxidase was found located predominantly in the matrix of peroxisomes. The failure of xanthine to induce superoxide generation was probably due to the inability to fully suppress the endogenous Mn-superoxide dismutase activity by inhibitors which were inactive against xanthine oxidase. The generation of superoxide radicals in leaf peroxisomes together with the recently described production of these oxygen radicals in glyoxysomes (LM Sandalio, VM Fernández, FL Rupérez, LA del Río [1988] Plant Physiol 87: 1-4) suggests that O2− generation could be a common metabolic property of peroxisomes and further supports the existence of active oxygen-related rôles for peroxisomes in cellular metabolism. PMID:16666612

  10. Parasitization by Scleroderma guani influences expression of superoxide dismutase genes in Tenebrio molitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Superoxide dismutase (SOD) is an antioxidant enzyme involved in detoxifying reactive oxygen species. In this study, we identified genes encoding the extracellular and intracellular copper-zinc SODs (ecCuZnSOD and icCuZnSOD) and a manganese SOD (MnSOD) in the yellow mealworm beetle, Tenebrio molitor....

  11. Copper-Zinc Superoxide Dismutase: A Unique Biological "Ligand" for Bioinorganic Studies.

    ERIC Educational Resources Information Center

    Valentine, Joan Selverstone; de Freitas, Duarte Mota

    1985-01-01

    Discusses superoxide dismutase (SOD) research and the properties of copper, zinc (Cu, Zn)-SOD. Emphasizes the controversy concerning the role of Cu,Zn-SOD and other SOD enzymes as protective agents in reactions involving dioxygen metabolism, and the properties of Cu, Zn-SOD that make it an interesting biological ligand for physical studies of…

  12. Novel reversible and selective nerve agent simulant detection in conjunction with superoxide "turn-on" probing.

    PubMed

    Jang, Yoon Jeong; Murale, Dhiraj P; Churchill, David G

    2014-04-07

    Herein, we present fluorescein as a reversible fluorescent sensor for nerve agent simulants diethylchlorophosphate (DCP), diethyl methylphosphonate (DEMP), and diethyl cyanophosphonate (DECP). The superoxide allows for an "off-on" mechanism to regenerate fluorescein. The order of decrease in fluorescence intensity for nerve agent simulants is DCP > DEMP ≫ DECP.

  13. Contribution of human manganese superoxide dismutase tyrosine 34 to structure and catalysis.

    PubMed

    Perry, J Jefferson P; Hearn, Amy S; Cabelli, Diane E; Nick, Harry S; Tainer, John A; Silverman, David N

    2009-04-21

    Superoxide dismutase (SOD) enzymes are critical in controlling levels of reactive oxygen species (ROS) that are linked to aging, cancer, and neurodegenerative disease. Superoxide (O(2)(*-)) produced during respiration is removed by the product of the SOD2 gene, the homotetrameric manganese superoxide dismutase (MnSOD). Here, we examine the structural and catalytic roles of the highly conserved active-site residue Tyr34, based upon structure-function studies of MnSOD enzymes with mutations at this site. Substitution of Tyr34 with five different amino acids retained the active-site protein structure and assembly but caused a substantial decrease in the catalytic rate constant for the reduction of superoxide. The rate constant for formation of the product inhibition complex also decreases but to a much lesser extent, resulting in a net increase in the level of product inhibited form of the mutant enzymes. Comparisons of crystal structures and catalytic rates also suggest that one mutation, Y34V, interrupts the hydrogen-bonded network, which is associated with a rapid dissociation of the product-inhibited complex. Notably, with three of the Tyr34 mutants, we also observe an intermediate in catalysis, which has not been reported previously. Thus, these mutants establish a means of trapping a catalytic intermediate that promises to help elucidate the mechanism of catalysis.

  14. NADH induces the generation of superoxide radicals in leaf peroxisomes. [Pisum sativum L

    SciTech Connect

    del Rio, L.A.; Sandalio, L.M.; Palma, J.M. ); Fernandez, V.M.; Ruperez, F.L. )

    1989-03-01

    In peroxisomes isolated from pea leaves (Pisum sativum L.) the production of superoxide free radicals (O{sub 2}{sup {minus}}) by xanthine and NADH was investigated. In peroxisomal membranes, 100 micromolar NADH induced the production of O{sub 2}{sup {minus}} radicals. In the soluble fractions of peroxisomes, no generation of O{sub 2}{sup {minus}} radicals was observed by incubation with either NADH or xanthine, although xanthine oxidase was found located predominantly in the matrix of peroxisomes. The failure of xanthine to induce superoxide generation was probably due to the inability to fully suppress the endogenous Mn-superoxide dismutase activity by inhibitors which were inactive against xanthine oxidase. The generation of superoxide radicals in leaf peroxisomes together with the recently described production of these oxygen radicals in glyoxysomes suggests that O{sub 2}{sup {minus}} generation could be a common metabolic property of peroxisomes and further supports the existence of active oxygen-related roles for peroxisomes in cellular metabolism.

  15. Copper complexes of 1,10-phenanthroline and related compounds as superoxide dismutase mimetics.

    PubMed

    Bijloo, G J; van der Goot, H; Bast, A; Timmerman, H

    1990-11-01

    In a preliminary study we tested CuSO4.5H2O, (Cu(II]2[3,5-diisopropylsalicylate]4.2H2O and a number of copper complexes of substituted 1,10-phenanthrolines for superoxide anion dismutase activity. It appeared that this activity depends on the ligands involved and might be governed by the redox potential of the Cu(I) complex/Cu(II) complex couple. The strong superoxide anion dismutase activity of Cu(II)[DMP]2 complex can be expected considering its high redox potential. Rather surprisingly is the superoxide anion dismutase activity of the Cu(I)[DMP]2 complex since it involves oxidation to Cu(II)[DMP]2 complex. From regression analysis it was established that steric and field effects of the substituents of the investigated phenanthrolines play an important role in SOD activity and therefore it is concluded that complex formation is important for the superoxide dismutase-like activity.

  16. Titanium Dioxide Nanoparticles Increase Superoxide Anion Production by Acting on NADPH Oxidase.

    PubMed

    Masoud, Rawand; Bizouarn, Tania; Trepout, Sylvain; Wien, Frank; Baciou, Laura; Marco, Sergio; Houée Levin, Chantal

    2015-01-01

    Titanium dioxide (TiO2) anatase nanoparticles (NPs) are metal oxide NPs commercialized for several uses of everyday life. However their toxicity has been poorly investigated. Cellular internalization of NPs has been shown to activate macrophages and neutrophils that contribute to superoxide anion production by the NADPH oxidase complex. Transmission electron micrososcopy images showed that the membrane fractions were close to the NPs while fluorescence indicated an interaction between NPs and cytosolic proteins. Using a cell-free system, we have investigated the influence of TiO2 NPs on the behavior of the NADPH oxidase. In the absence of the classical activator molecules of the enzyme (arachidonic acid) but in the presence of TiO2 NPs, no production of superoxide ions could be detected indicating that TiO2 NPs were unable to activate by themselves the complex. However once the NADPH oxidase was activated (i.e., by arachidonic acid), the rate of superoxide anion production went up to 140% of its value without NPs, this effect being dependent on their concentration. In the presence of TiO2 nanoparticles, the NADPH oxidase produces more superoxide ions, hence induces higher oxidative stress. This hyper-activation and the subsequent increase in ROS production by TiO2 NPs could participate to the oxidative stress development.

  17. Differential response of maize catalases and superoxide dismutases to the photoactivated fungal toxin cercosporin.

    PubMed

    Williamson, J D; Scandalios, J G

    1992-05-01

    Many fungi of the genus Cercospora produce a light-induced, photoactivated polyketide toxin called cercosporin. In the presence of light an excited form (triplet state) of the toxin molecule is produced which, depending on the reducing potential of the environment, reacts with molecular oxygen to produce singlet oxygen and/or superoxide radicals. In this paper a system is presented for analysis of antioxidant defense gene response using purified cercosporin under conditions demonstrated to favor superoxide formation. Under the assay conditions employed, changes in total catalase activity, as well as individual isozyme protein levels generally mirrored the changes observed in corresponding steady-state RNA levels in response to applied cercosporin. In contrast, while transcript accumulation for most maize superoxide dismutases increased dramatically, both total superoxide dismutase activity and individual isozyme protein levels remained constant in all toxin treatments. In one case, the analyses indicated that there are two distinct transcripts that hybridize with a gene-specific probe for Sod3. These two transcripts responded differentially to applied toxin (levels of the larger transcript increased while the smaller decreased), whereas corresponding steady-state levels for the SOD-3 isozyme proteins remained constant. This suggests that protein turnover might play a role in the response of these SODs to activated oxygen species.

  18. SUPEROXIDE-DEPENDENT IRON UPTAKE: A NEW ROLE FOR ANION EXCHANGE PROTEIN 2

    EPA Science Inventory

    Lung cells import iron across the plasma membrane as ferrous (Fe2+) ion by incompletely understood mechanisms. We tested the hypothesis that human bronchial epithelial (HBE) cells import non-transferrin-bound iron (NTBI) using superoxide-dependent ferri-reductase activity involvi...

  19. Curcumin Rescues Diabetic Renal Fibrosis by Targeting Superoxide-Mediated Wnt Signaling Pathways.

    PubMed

    Ho, Cheng; Hsu, Yung-Chien; Lei, Chen-Chou; Mau, Shu-Ching; Shih, Ya-Hsueh; Lin, Chun-Liang

    2016-03-01

    The purposes of this study were to investigate whether curcumin can weaken diabetic nephropathy by modulating both oxidative stress and renal injury from Wnt signaling mediation. Wnt5a/β-catenin depression and induction of superoxide synthesis are associated with high glucose (HG) induced transforming growth factor (TGF)-β1 and fibronectin expression in mesangial cells. Curcumin resumes HG depression of Wnt/β-catenin signaling and alleviates HG induction of superoxide, TGF-β1 and fibronectin expression in renal mesangial cell. Exogenous curcumin alleviated urinary total proteinuria and serum superoxide level in diabetic rats. Based on laser-captured microdissection for quantitative real-time polymerase chain reaction, it was found that diabetes significantly increased TGF-β1 and fibronectin expression in line with depressed Wnt5a expression. Curcumin treatment reduced the TGF-β1 and fibronectin activation and the inhibiting effect of diabetes on Wnt5a/β-catenin expression in renal glomeruli. Immunohistochemistry showed that curcumin treatment significantly reduced 8-hydroxy-2'-deoxyguanosine, TGF-β1 and fibronectin, and was in line with the restoration of the suppressed Wnt5a expression immunoreactivities in glomeruli of diabetic rats. Curcumin alleviated extracellular matrix accumulation in diabetic nephropathy by not only preventing the diabetes-mediated superoxide synthesis but also resuming downregulation of Wnt/β-catenin signaling. These findings suggest that regulation of Wnt activity by curcumin is a feasible alternative strategy to rescue diabetic renal injury.

  20. Induction of peroxidases and superoxide dismutases in transformed embryogenic calli of alfalfa (Medicago sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Activities of peroxidase (POD) and superoxide dismutase (SOD) enzymes were analyzed in non-regenerative transformed embryogenic lines of alfalfa (Medicago sativa L.) carrying wound-inducible oryzacystatin I (OC-I), wound-inducible oryzacystatin I antisense (OC-Ias) or hygromycin phosphotransferase (...

  1. Molecular Cloning and Expression of Sequence Variants of Manganese Superoxide Dismutase Genes from Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reactive oxygen species (ROS) are very harmful to living organisms due to the potential oxidation of membrane lipids, DNA, proteins, and carbohydrates. Transformed E.coli strain QC 871, superoxide dismutase (SOD) double-mutant, with three sequence variant MnSOD1, MnSOD2, and MnSOD3 manganese supero...

  2. Superoxide dismutase activity in mesocarp tissue from divergent Cucumis melo L. genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Muskmelon (Cucumis melo L.) fruit matrix is unique among plant foods in being able to provide a protective medium in which the antioxidant activity of the enzyme superoxide dismutase (SOD) is preserved during the digestive process, and therefore, being able to elicit in vivo pharmacological effects ...

  3. The preparation of calcium superoxide for air breathing and scrubbing applications

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Wood, P. C.; Spitze, L. A.; Wydeven, T.

    1976-01-01

    There is interest in the preparation of high-purity calcium superoxide as an oxygen source for breathing apparatus because both the available oxygen and the capacity for carbon dioxide removal, per unit weight of superoxide, are higher than that of a number of other chemical oxygen sources. A review of earlier findings shows that the general method used by Vol'nov and coworkers for the decomposition of calcium peroxide diperoxyhydrate can yield preparations containing more than 58.4% calcium superoxide maximum predicted for an equimolar disproportionation reaction. The decomposition of solid calcium peroxide diperoxyhydrate is studied using an apparatus that allows good control of the critical reaction parameters. The removal of water from decomposing calcium peroxide diperoxyhydrate, before the same water has an opportunity to back react with the calcium superoxide formed in the reaction, constitutes the rationale of the experiments. Even with allowance for the anomalies observed in the analytical results, the yields appear to be in the 65+ percent range, and optimization of the experimental variables is still being pursued.

  4. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the failing heart, NADPH oxidase and uncoupled NO synthase utilize cytosolic NADPH to form superoxide. NADPH is supplied principally by the pentose phosphate pathway, whose rate-limiting enzyme is glucose 6-phosphate dehydrogenase (G6PD). Therefore, we hypothesized that cardiac G6PD activation dr...

  5. Mitochondrial superoxide in osteocytes perturbs canalicular networks in the setting of age-related osteoporosis.

    PubMed

    Kobayashi, Keiji; Nojiri, Hidetoshi; Saita, Yoshitomo; Morikawa, Daichi; Ozawa, Yusuke; Watanabe, Kenji; Koike, Masato; Asou, Yoshinori; Shirasawa, Takuji; Yokote, Koutaro; Kaneko, Kazuo; Shimizu, Takahiko

    2015-03-16

    Osteocytes are major bone cells that play a crucial role in maintaining the quality of and healing damage to bone tissue. The number of living osteocytes and canalicular networks declines in an age-dependent manner. However, the pathological effects of mitochondrial redox imbalances on osteocytes and bone metabolism have not been fully elucidated. We generated mice lacking mitochondrial superoxide dismutase 2 (Sod2) in osteocytes. Like an aged bone, Sod2 depletion in the osteocytes positively enhanced the production of cellular superoxide in vivo. A bone morphological analysis demonstrated that the Sod2-deficient femurs showed remarkable bone loss in an age-dependent manner. Interestingly, Sod2 loss induced markedly disorganized osteocytic canalicular networks and decreased the number of live osteocytes. Furthermore, Sod2 deficiency significantly suppressed bone formation and increased bone resorption concomitant with the upregulation of sclerostin and receptor activator of NF-κB ligand (RANKL). In vitro experiments also revealed that treatment with paraquat, a superoxide inducer in mitochondria, promoted the RANKL expression via, in part, ERK phosphorylation. These findings demonstrate that the mitochondrial superoxide induced in osteocytes by Sod2 ablation causes age-related bone loss due to the impairment of canalicular networks and bone metabolism via the deregulation of the sclerostin and RANKL expression.

  6. Role of superoxide in the photochemical reduction of iron in seawater

    NASA Astrophysics Data System (ADS)

    Rose, Andrew L.; Waite, T. David

    2006-08-01

    We have conducted a series of laboratory studies to investigate the generation of ferrous iron and reactive oxygen species when solutions of seawater containing natural organic matter (NOM) and ferric iron are exposed to simulated sunlight. Total ferrous iron and hydrogen peroxide were measured at nanomolar concentrations with high temporal resolution using chemiluminescence-based methods. In all cases, ferrous iron concentrations rapidly peaked at several nanomoles per litre after a few minutes, and then declined over time, while hydrogen peroxide concentrations increased in a non-linear manner. Although concentrations of both species depended on the concentration of NOM, hydrogen peroxide concentrations were only minimally affected by the presence of iron. Increasing the NOM concentration while the total iron concentration was maintained constant led to an increase in the maximum ferrous iron concentration, suggesting that superoxide-mediated reduction of iron may be a major pathway for ferrous iron formation. This was supported by measurements of superoxide production from irradiation of NOM in the absence of iron and kinetic calculations, as well as an experiment in which superoxide dismutase was added. Further analysis of the data suggested that dissolved oxygen and photo-produced hydrogen peroxide were the primary oxidants of the Fe(II) formed. Thus we propose that superoxide and ferrous iron may be intricately coupled in the system, and that their generation is determined by the supply of NOM available to harvest light and donate electrons.

  7. Mitochondrial superoxide in osteocytes perturbs canalicular networks in the setting of age-related osteoporosis

    PubMed Central

    Kobayashi, Keiji; Nojiri, Hidetoshi; Saita, Yoshitomo; Morikawa, Daichi; Ozawa, Yusuke; Watanabe, Kenji; Koike, Masato; Asou, Yoshinori; Shirasawa, Takuji; Yokote, Koutaro; Kaneko, Kazuo; Shimizu, Takahiko

    2015-01-01

    Osteocytes are major bone cells that play a crucial role in maintaining the quality of and healing damage to bone tissue. The number of living osteocytes and canalicular networks declines in an age-dependent manner. However, the pathological effects of mitochondrial redox imbalances on osteocytes and bone metabolism have not been fully elucidated. We generated mice lacking mitochondrial superoxide dismutase 2 (Sod2) in osteocytes. Like an aged bone, Sod2 depletion in the osteocytes positively enhanced the production of cellular superoxide in vivo. A bone morphological analysis demonstrated that the Sod2-deficient femurs showed remarkable bone loss in an age-dependent manner. Interestingly, Sod2 loss induced markedly disorganized osteocytic canalicular networks and decreased the number of live osteocytes. Furthermore, Sod2 deficiency significantly suppressed bone formation and increased bone resorption concomitant with the upregulation of sclerostin and receptor activator of NF-κB ligand (RANKL). In vitro experiments also revealed that treatment with paraquat, a superoxide inducer in mitochondria, promoted the RANKL expression via, in part, ERK phosphorylation. These findings demonstrate that the mitochondrial superoxide induced in osteocytes by Sod2 ablation causes age-related bone loss due to the impairment of canalicular networks and bone metabolism via the deregulation of the sclerostin and RANKL expression. PMID:25779629

  8. Molecular cloning and biochemical characterization of iron superoxide dismutase from the rodent malaria parasite Plasmodium vinckei.

    PubMed

    Prakash, Kirtika; Goyal, Manish; Soni, Awakash; Siddiqui, Arif Jamal; Bhardwaj, Jyoti; Puri, Sunil K

    2014-12-01

    Plasmodium parasite utilizes superoxide dismutase family proteins to limit the toxicity of reactive oxygen species, such as produced through hemoglobin degradation. These proteins play an important role in parasite survival during intra-erythrocytic phase. We have identified, and biochemically characterized a putative iron dependent superoxide dismutase from rodent malaria parasite Plasmodium vinckei (PvSOD1). The recombinant PvSOD1 protein was purified to homogeneity through a combination of affinity and gel filtration chromatography. Crosslinking, Native-PAGE and FPLC gel filtration analyses documented that PvSOD1 exists as a dimer in solution, a common feature shared by other Fe-SODs. PvSOD1 is cytosolic in localization and its expression is comparatively higher during trophozoite as compared to that of ring and schizont stages. Enzymatic activity of recombinant PvSOD1 was validated using conventional zymogram analyses and xanthine-xanthine oxidase system. Under optimal conditions, PvSOD1 was highly active and catalyzed the dismutation of superoxide radicals. Furthermore, PvSOD1 showed activity over a broad range of pH and temperature. Inhibition studies suggested that PvSOD1 was inactivated by hydrogen peroxide, and peroxynitrite, but not by cyanide and azide. Since, PvSOD1 plays a central role in oxidative defense mechanism, therefore, characterization of PvSOD1 will be exploited in the screening of new superoxide dismutase inhibitors for their antimalarial activity.

  9. Superoxide anion generation and oxidative stress in methylmercury-induced endothelial toxicity in vitro.

    PubMed

    Ghizoni, Heloisa; de Souza, Viviane; Straliotto, Marcos Raniel; de Bem, Andreza Fabro; Farina, Marcelo; Hort, Mariana Appel

    2017-02-01

    Emerging evidence has pointed to mercury exposure as a risk factor for hypertension, atherosclerosis, myocardial infarction and coronary heart disease. However, the underlying mechanisms are not well understood. This study investigated potential toxic effects of low concentrations of methylmercury (MeHg) in cultured bovine aortic endothelial cells (BAECs) and the possible involvement of reactive species, particularly superoxide anion, in mediating such toxicity. MeHg treatment increased the oxidation of 2',7'-dichlorodihydrofluorescein diacetate (a general probe for reactive species) and dihydroethidium, a specific probe for superoxide anion. MeHg-induced 2',7'-dichlorodihydrofluorescein diacetate and dihydroethidium oxidations were significantly decreased by apocynin, an inhibitor of the enzyme NADPH oxidase, which represents a main source of superoxide anion in endothelial cells. MeHg treatment significantly disrupted mitochondrial membrane potential and this event was also reversed by apocynin. MeHg treatment also decreased glutathione levels and this event preceded glutathione peroxidase inhibition, which was observed only at 24h after treatment. These results indicate that MeHg induces oxidative stress in cultured BAECs and that this event is related to the production of superoxide anion. Moreover, the observed protective effects of apocynin in BAECs suggest the potential involvement of NADPH-oxidase in MeHg-induced endothelial dysfunction, which represents a pivotal event in most cardiovascular diseases.

  10. Bz-423 superoxide signals apoptosis via selective activation of JNK, Bak, and Bax.

    PubMed

    Blatt, Neal B; Boitano, Anthony E; Lyssiotis, Costas A; Opipari, Anthony W; Glick, Gary D

    2008-11-01

    Bz-423 is a proapoptotic 1,4-benzodiazepine with potent therapeutic properties in murine models of lupus and psoriasis. Bz-423 modulates the F(1)F(0)-ATPase, inducing the formation of superoxide within the mitochondrial respiratory chain, which then functions as a second messenger initiating apoptosis. Herein, we report the signaling pathway activated by Bz-423 in mouse embryonic fibroblasts containing knockouts of key apoptotic proteins. Bz-423-induced superoxide activates cytosolic ASK1 and its release from thioredoxin. A mitogen-activated protein kinase cascade follows, leading to the specific phosphorylation of JNK. JNK signals activation of Bax and Bak which then induces mitochondrial outer membrane permeabilization to cause the release of cytochrome c and a commitment to apoptosis. The response of these cells to Bz-423 is critically dependent on both superoxide and JNK activation as antioxidants and the JNK inhibitor SP600125 prevents Bax translocation, cytochrome c release, and cell death. These results demonstrate that superoxide generated from the mitochondrial respiratory chain as a consequence of a respiratory transition can signal a sequential and specific apoptotic response. Collectively, these data suggest that the selectivity of Bz-423 observed in vivo results from cell-type specific differences in redox balance and signaling by ASK1 and Bcl-2 proteins.

  11. Involvement of Extracellular Cu/Zn Superoxide Dismutase in Cotton Fiber Primary and Secondary Cell Wall Biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extracellular Cu/Zn superoxide dismutases (CSDs) that catalyze the conversion of superoxide to hydrogen peroxide have been suggested to be involved in lignification of secondary walls in spinach, pine and aspen. In cotton fibers, hydrogen peroxide was proposed to be involved in the induction of seco...

  12. NADPH oxidase (NOX) 1 mediates cigarette smoke-induced superoxide generation in rat vascular smooth muscle cells.

    PubMed

    Chang, Kyung-Hwa; Park, Jung-Min; Lee, Chang Hoon; Kim, Bumseok; Choi, Kyung-Chul; Choi, Seong-Jin; Lee, Kyuhong; Lee, Moo-Yeol

    2017-02-01

    Smoking is a well-established risk factor for cardiovascular diseases. Oxidative stress is one of the common etiological factors, and NADPH oxidase (NOX) has been suggested as a potential mediator of oxidative stress. In this study, cigarette smoke (CS)-induced superoxide production was characterized in vascular smooth muscle cells (VSMC). CS was prepared in forms of cigarette smoke extract (CSE) and total particulate matter (TPM). Several molecular probes for reactive oxygen species were trialed, and dihydroethidium (DHE) and WST-1 were chosen for superoxide detection considering the autofluorescence, light absorbance, and peroxidase inhibitory activity of CS. Both CSE and TPM generated superoxide in a VSMC culture system by stimulating cells to produce superoxide and by directly producing superoxide in the aqueous solution. NOX, specifically NOX1 was found to be an important cellular source of superoxide through experiments with the NOX inhibitors diphenyleneiodonium (DPI) and VAS2870 as well as isoform-specific NOX knockdown. NOX inhibitors and the superoxide dismutase mimetic TEMPOL reduced the cytotoxicity of CSE, thus suggesting the contribution of NOX1-derived superoxide to cytotoxicity. Since NOX1 is known to mediate diverse pathological processes in the vascular system, NOX1 may be a critical effector of cardiovascular toxicity caused by smoking.

  13. Superoxide microsensor integrated into a Sensing Cell Culture Flask microsystem using direct oxidation for cell culture application.

    PubMed

    Flamm, H; Kieninger, J; Weltin, A; Urban, G A

    2015-03-15

    A new electrochemical sensor system for reliable and continuous detection of superoxide radical release from cell culture was developed utilizing direct oxidation of superoxide on polymer covered gold microelectrodes. Direct superoxide oxidation was demonstrated to provide robust measurement principle for sensitive and selective reactive oxygen species (ROS) quantification without the need for biocomponent supported conversion. Sensor performance was investigated by using artificial enzymatic superoxide production revealing a sensitivity of 2235AM(-1)m(-2). An electrode protection layer with molecular weight cut-off property from adsorbed linear branched polyethylenimine was successfully introduced for long term and selectivity improvement. Thin-film based sensor chip fabrication with implemented three-electrode setup and full integration into the technological platform Sensing Cell Culture Flask was described. Cell culturing directly on-chip and free radical release by phorbol-12-myristate-13-acetate (PMA) stimulation was demonstrated using T-47D human breast cancer carcinoma cell model. Transient extracellular superoxide production upon stimulation was successfully observed from amperometric monitoring. Signal inhibition from scavenging of extracellular superoxide by specific superoxide dismutase (SOD) showed the applicability for selective in vitro ROS determination. The results confirm the possibility of direct superoxide oxidation, with exclusion of the main interfering substances uric acid and hydrogen peroxide. This offers new insights into the development of reliable and robust ROS sensors.

  14. Superoxide dismutase reduces the impairment of endothelium-dependent relaxation in the spontaneously hypertensive rat aorta.

    PubMed

    Sekiguchi, Fumiko; Yanamoto, Aiko; Sunano, Satoru

    2004-04-01

    The involvement of the superoxide anion in endothelium-dependent relaxation (EDR) was examined in noradrenaline-contracted aortic smooth muscle preparations isolated from normotensive Wistar Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). Acetylcholine (ACh, 10(-9)-10(-5) M) induced EDR in both WKY and SHRSP preparations in a concentration-dependent manner, but with a significantly smaller amplitude in those from SHRSP than in those from WKY. The ACh-induced EDR was inhibited by N(omega)-nitro-L-arginine (L-NOARG), in a concentration-dependent manner, both in WKY and SHRSP. The EDR produced in WKY in the presence of 3 x 10(-6) M L-NOARG was similar in magnitude to that produced in SHRSP in the absence of L-NOARG. Superoxide dismutase (SOD, 300 units/ml) increased the amplitude of EDR in SHRSP but not in WKY, with no alteration of the threshold or of the maximal amplitude. The maximal amplitude of EDR produced in SHRSP in the presence of SOD was still smaller than that in WKY. In WKY, a possible involvement of superoxide in the EDR was examined in aortae whose EDR was partially inhibited by treatment with a subthreshold concentration (3 x 10 (-6) M) of L-NOARG. In the L-NOARG-conditioned aorta, the reduced EDR was partially but significantly recovered by SOD. These results suggest that the impaired EDR in aortae of SHRSP may be causally related to a higher production of superoxide. The L-NOARG-induced inhibition of EDR in WKY may be produced, in part, by the reduction of effective NO due to its destruction by superoxide.

  15. Unraveling the role of animal heme peroxidases in superoxide mediated Mn oxide formation

    NASA Astrophysics Data System (ADS)

    Learman, D. R.; Hansel, C. M.

    2013-12-01

    Manganese(III,IV) oxides are important in the environment as they can impact the fate of a broad range of nutrients (e.g. carbon and phosphate) and contaminates (e.g. lead and chromium). Bacteria play a valuable role in the production of Mn oxides, yet the mechanisms and physiological reasons remain unclear. Roseobacter sp. AzwK-3b, an organism within the abundant and ubiquitous Roseobacter clade, has recently been shown to oxidize Mn(II) via a novel pathway that involves enzymatic extracellular superoxide production. However, in reactions with only Mn(II) and abiotically generated superoxide, we find superoxide alone is not enough to produce Mn(III,IV) oxides. Scavenging of the byproduct hydrogen peroxide (via the addition of catalase) is required to generate Mn oxides via abiotic reaction of Mn(II) with superoxide. Thus, R. AzwK-3b must produce superoxide and also scavenge hydrogen peroxide to form Mn oxides. Further, in-gel Mn(II) oxidation assay revealed a protein band that could generate Mn oxides in the presence of soluble Mn(II). This Mn(II)-oxidizing protein band was excised from the gel and the peptides identified via mass spectrometry. An animal heme peroxidase (AHP) was the predominant protein found in this band. This protein is homologous to the AHPs previously implicated as a Mn(II)-oxidizing enzyme within the Alphaproteobacteria, Erythrobacter SD-21 and Aurantimonas manganoxydans strain SI85-9A1. Currently, protein expression of the AHPs in R. AzwK-3b is being examined to determine if expression is correlated with Mn(II) concentration or oxidative stress. Our data suggests that AHPs do not directly oxidize Mn(II) but rather plays a role in scavenging hydrogen peroxide and/or producing an organic Mn(III) ligand that complexes Mn(III) and likely aids in Mn oxide precipitation.

  16. Diosgenin inhibits superoxide generation in FMLP-activated mouse neutrophils via multiple pathways.

    PubMed

    Lin, Y; Jia, R; Liu, Y; Gao, Y; Zeng, X; Kou, J; Yu, B

    2014-12-01

    Diosgenin possesses anti-inflammatory and anticancer properties. Activated neutrophils produce high concentrations of the superoxide anion which is involved in the pathophysiology of inflammation-related diseases and cancer. In the present study, the inhibitory effect and possible mechanisms of diosgenin on superoxide generation were investigated in mouse bone marrow neutrophils. Diosgenin potently and concentration-dependently inhibited the extracellular and intracellular superoxide anion generation in Formyl-Met-Leu-Phe (FMLP)- activated neutrophils, with IC50 values of 0.50 ± 0.08 μM and 0.66 ± 0.13 μM, respectively. Such inhibition was not mediated by scavenging the superoxide anion or by a cytotoxic effect. Diosgenin inhibited the phosphorylation of p47phox and membrane translocation of p47phox and p67phox, and thus blocking the assembly of nicotinamide adenine dinucleotide phosphate oxidase. Moreover, cellular cyclic adenosine monophosphate (cAMP) levels and protein kinase A (PKA) expression were also effectively increased by diosgenin. It attenuated FMLP-induced increase of phosphorylation of cytosolic phospholipase A (cPLA2), p21-activated kinase (PAK), Akt, p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase (ERK1/2), and c-Jun N-terminal kinase (JNK). Our data indicate that diosgenin exhibits inhibitory effects on superoxide anion production through the blockade of cAMP, PKA, cPLA2, PAK, Akt and MAPKs signaling pathways. The results may explain the clinical implications of diosgenin in the treatment of inflammation-related disorders.

  17. Sources of superoxide/H2O2 during mitochondrial proline oxidation.

    PubMed

    Goncalves, Renata L S; Rothschild, Daniel E; Quinlan, Casey L; Scott, Gary K; Benz, Christopher C; Brand, Martin D

    2014-01-01

    p53 Inducible gene 6 (PIG6) encodes mitochondrial proline dehydrogenase (PRODH) and is up-regulated several fold upon p53 activation. Proline dehydrogenase is proposed to generate radicals that contribute to cancer cell apoptosis. However, there are at least 10 mitochondrial sites that can produce superoxide and/or H2O2, and it is unclear whether proline dehydrogenase generates these species directly, or instead drives production by other sites. Amongst six cancer cell lines, ZR75-30 human breast cancer cells had the highest basal proline dehydrogenase levels, and mitochondria isolated from ZR75-30 cells consumed oxygen and produced H2O2 with proline as sole substrate. Insects use proline oxidation to fuel flight, and mitochondria isolated from Drosophila melanogaster were even more active with proline as sole substrate than ZR75-30 mitochondria. Using mitochondria from these two models we identified the sites involved in formation of superoxide/H2O2 during proline oxidation. In mitochondria from Drosophila the main sites were respiratory complexes I and II. In mitochondria from ZR75-30 breast cancer cells the main sites were complex I and the oxoglutarate dehydrogenase complex. Even with combinations of substrates and respiratory chain inhibitors designed to minimize the contributions of other sites and maximize any superoxide/H2O2 production from proline dehydrogenase itself, there was no significant direct contribution of proline dehydrogenase to the observed H2O2 production. Thus proline oxidation by proline dehydrogenase drives superoxide/H2O2 production, but it does so mainly or exclusively by providing anaplerotic carbon for other mitochondrial dehydrogenases and not by producing superoxide/H2O2 directly.

  18. Detection of superoxide production in stimulated and unstimulated living cells using new cyclic nitrone spin traps.

    PubMed

    Abbas, Kahina; Hardy, Micael; Poulhès, Florent; Karoui, Hakim; Tordo, Paul; Ouari, Olivier; Peyrot, Fabienne

    2014-06-01

    Reactive oxygen species (ROS), including superoxide anion and hydrogen peroxide (H2O2), have a diverse array of physiological and pathological effects within living cells depending on the extent, timing, and location of their production. For measuring ROS production in cells, the ESR spin trapping technique using cyclic nitrones distinguishes itself from other methods by its specificity for superoxide and hydroxyl radical. However, several drawbacks, such as the low spin trapping rate and the spontaneous and cell-enhanced decomposition of the spin adducts to ESR-silent products, limit the application of this method to biological systems. Recently, new cyclic nitrones bearing a triphenylphosphonium (Mito-DIPPMPO) or a permethylated β-cyclodextrin moiety (CD-DIPPMPO) have been synthesized and their spin adducts demonstrated increased stability in buffer. In this study, a comparison of the spin trapping efficiency of these new compounds with commonly used cyclic nitrone spin traps, i.e., 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and analogs BMPO, DEPMPO, and DIPPMPO, was performed on RAW 264.7 macrophages stimulated with phorbol 12-myristate 13-acetate. Our results show that Mito-DIPPMPO and CD-DIPPMPO enable a higher detection of superoxide adduct, with a low (if any) amount of hydroxyl adduct. CD-DIPPMPO, especially, appears to be a superior spin trap for extracellular superoxide detection in living macrophages, allowing measurement of superoxide production in unstimulated cells for the first time. The main rationale put forward for this extreme sensitivity is that the extracellular localization of the spin trap prevents the reduction of the spin adducts by ascorbic acid and glutathione within cells.

  19. Superoxide flashes: illuminating new insights into cardiac ischemia/reperfusion injury.

    PubMed

    Sheu, Shey-Shing; Wang, Wang; Cheng, Heping; Dirksen, Robert T

    2008-11-01

    Although the mitochondrial permeability transition pore (mPTP) was first discovered almost 30 years ago [1], it did not attract significant research attention until the 1990's when several studies implicated mPTP in apoptosis [2]. Today, the dogma suggests that opening of mPTP is detrimental to the cell and mPTP activation is widely thought to contribute to disease in cancer, neurodegenerative diseases, stroke, muscular dystrophy, and cardiac reperfusion injury [3]. Multiple factors including Ca(2+), OH(-), P(i), cyclophilin D, reactive oxygen and nitrogen species (ROS and RNS) trigger mPTP opening [4]. However, whether mPTP activation feeds back to alter mitochondrial ROS generation remains unclear. We recently demonstrated that under normal conditions, individual mitochondria undergo spontaneous transient bursts of quantal superoxide generation, termed "superoxide flashes" [5]. Superoxide flashes are observed in all cell types investigated to date and are triggered by a surprising functional coupling between mPTP activation and electron transport chain (ETC) dependent superoxide production. Additionally, reoxgenation following anoxia leads to uncontrolled superoxide flash genesis in cardiomyocytes. This positive feedback mechanism for mPTP/ETC-dependent ROS generation may drive localized redox signaling in individual mitochondria under physiological conditions, and when left unchecked, contribute to global cellular oxidative stress under pathological conditions in cardiac disease. The mPTP activity-dependent cell life and death determination imposes new challenges and opportunities in the pursuit of therapeutic agents for treating diseases in which oxidative stress has been implicated such as cardiac ischemia-reperfusion injury.

  20. Detection of superoxide radicals in tomato plants exposed to salinity, drought, cold and heavy metal stress using CMC-G-SOD biosensor.

    PubMed

    Kocabay, Ozge; Emregul, Emel; Aydın, Semra Soydan; Aras, Sumer

    2013-10-01

    A novel highly sensitive electrochemical carboxymethylcellulose-gelatin-superoxide dismutase biosensor was used for the determination of superoxide radicals enhancement in tomato plants exposed to salinity, drought, cold and heavy metal stress. The variations in superoxide radicals depending on abiotic stress was determined using biosensor. The superoxide radical production with regard to control rapidly was increased in tomato plants exposed to salinity, drought, cold and heavy metal stress. The superoxide radical enhancement in tomato plants exposed to salinity, drought, cold and heavy metal stress was successfully determined using carboxymethylcellulose-gelatin-superoxide dismutase biosensor.

  1. Over-expressed copper/zinc superoxide dismutase localizes to mitochondria in neurons inhibiting the angiotensin II-mediated increase in mitochondrial superoxide.

    PubMed

    Li, Shumin; Case, Adam J; Yang, Rui-Fang; Schultz, Harold D; Zimmerman, Matthew C

    2013-01-01

    Angiotensin II (AngII) is the main effector peptide of the renin-angiotensin system (RAS), and contributes to the pathogenesis of cardiovascular disease by exerting its effects on an array of different cell types, including central neurons. AngII intra-neuronal signaling is mediated, at least in part, by reactive oxygen species, particularly superoxide (O2 (•-)). Recently, it has been discovered that mitochondria are a major subcellular source of AngII-induced O2 (•-). We have previously reported that over-expression of manganese superoxide dismutase (MnSOD), a mitochondrial matrix-localized O2 (•-) scavenging enzyme, inhibits AngII intra-neuronal signaling. Interestingly, over-expression of copper/zinc superoxide dismutase (CuZnSOD), which is believed to be primarily localized to the cytoplasm, similarly inhibits AngII intra-neuronal signaling and provides protection against AngII-mediated neurogenic hypertension. Herein, we tested the hypothesis that CuZnSOD over-expression in central neurons localizes to mitochondria and inhibits AngII intra-neuronal signaling by scavenging mitochondrial O2 (•-). Using a neuronal cell culture model (CATH.a neurons), we demonstrate that both endogenous and adenovirus-mediated over-expressed CuZnSOD (AdCuZnSOD) are present in mitochondria. Furthermore, we show that over-expression of CuZnSOD attenuates the AngII-mediated increase in mitochondrial O2 (•-) levels and the AngII-induced inhibition of neuronal potassium current. Taken together, these data clearly show that over-expressed CuZnSOD in neurons localizes in mitochondria, scavenges AngII-induced mitochondrial O2 (•-), and inhibits AngII intra-neuronal signaling.

  2. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli.

    PubMed Central

    Greenberg, J T; Monach, P; Chou, J H; Josephy, P D; Demple, B

    1990-01-01

    Escherichia coli responds to superoxide-generating agents by inducing approximately 40 proteins. We have identified a genetic locus, soxR (superoxide response), that positively regulates 9 of these proteins during superoxide stress. Induction under soxR control is at the transcriptional level, as shown with lac fusions to five paraquat-inducible promoters. Members of the soxR regulon include at least three proteins with demonstrable antioxidant roles: Mn-containing superoxide dismutase (which destroys superoxide radicals), endonuclease IV (which repairs radical-induced damages in DNA), and glucose-6-phosphate dehydrogenase (which produces NADPH). Induction of the soxR regulon also leads to diminished levels of the major outer membrane protein OmpF and alteration of the small-subunit ribosomal protein S6. These latter changes confer resistance to a variety of antibiotics. The soxR regulon may thus operate as an inducible defense against xenobiotics in general. Images PMID:1696718

  3. Kinetic investigation of catalytic disproportionation of superoxide ions in the non-aqueous electrolyte used in Li–air batteries

    DOE PAGES

    Wang, Qiang; Zheng, Dong; McKinnon, Meaghan E.; ...

    2014-10-28

    Superoxide reacts with carbonate solvents in Li–air batteries. Tris(pentafluorophenyl)borane is found to catalyze a more rapid superoxide (O2-) disproportionation reaction than the reaction between superoxide and propylene carbonate (PC). With this catalysis, the negative impact of the reaction between the electrolyte and O2-produced by the O2 reduction can be minimized. A simple kinetic study using ESR spectroscopy was reported to determine reaction orders and rate constants for the reaction between PC and superoxide, and the disproportionation of superoxide catalyzed by Tris(pentafluorophenyl)borane and Li ions. As a result, the reactions are found to be first order and the rate constants aremore » 0.033 s-1 M-1, 0.020 s-1 M-1and 0.67 s-1M-1 for reactions with PC, Li ion and Tris(pentafluorophenyl)borane, respectively.« less

  4. Dynamics of Superoxide Production and Decay in Natural Trichodesmium Colonies from the Sargasso Sea: Implications for Cell Signaling

    NASA Astrophysics Data System (ADS)

    Hansel, C. M.; Buchwald, C.; Diaz, J. M.; Dyhrman, S.; Van Mooy, B. A. S.

    2014-12-01

    Reactive oxygen species (ROS) are key players in the biogeochemistry of the ocean, where they serve a critical role in the cycling of carbon and metals. Research in the past decade has introduced phytoplankton and, most recently, heterotrophic bacteria as significant sources of ROS, including superoxide, within both photic and aphotic regions of the ocean. ROS are both beneficial and detrimental to life. For instance, superoxide is a vital inter- and intra-cellular signaling molecule, yet at high concentrations it induces lipid peroxidation and initiates programmed cell death (PCD). In fact, superoxide has been implicated in PCD in the nitrogen-fixing diazotroph Trichodesmium, presumably leading to the demise of blooms within oligotrophic marine systems. Here, we explore the rates of superoxide production and decay by natural Trichodesmium populations obtained from various surface waters in the Sargasso Sea. We investigate also the role of light and colony density and morphology (puff v. raft) on superoxide fluxes. We find that Trichodesmium colonies produce extracellular superoxide at extremely high rates in the dark that are on par with those of the toxic raphidophyte Chattonella. The rates of superoxide production, however, rapidly decline with increasing cell density pointing to a role for superoxide in cell signaling in these organisms. We also find extremely rapid extracellular superoxide degradation by Trichodesmium. Together, this likely reflects a need for these organisms to maintain ROS at levels that will support signaling but below the threshold level that triggers PCD or oxidative damage. We also show differences in the effect of light on superoxide fluxes as a function of Trichodesmium colony morphology, suggesting differences in either colony physiology or associated bacterial symbionts. These findings point to complex physiological, ecological, and physical influences on ROS dynamics in phytoplankton that require further exploration.

  5. Superoxide radicals increase transforming growth factor-{beta}1 and collagen release from human lung fibroblasts via cellular influx through chloride channels

    SciTech Connect

    Qi Shufan Hartog, Gertjan J.M. den; Bast, Aalt

    2009-05-15

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of fibrosis. However, it remains unclear which ROS is the major cause. We hypothesize that superoxide elicits specific toxicity to human lung fibroblasts and plays an important role in the development of pulmonary fibrosis. In this study, superoxide generated from xanthine and xanthine oxidase activated lung fibroblasts by increasing the release of TGF-{beta}1 and collagen. This was associated with increased levels of intracellular superoxide. SOD and tempol, by scavenging respectively extracellular and intracellular superoxide, prevented the activation of fibroblasts induced by exposure to exogenous superoxide, whereas catalase did not. Moreover, hydrogen peroxide did not activate fibroblasts. Apparently, superoxide rather than hydrogen peroxide is involved in the regulation of TGF-{beta}1 and collagen release in lung fibroblasts. The chloride channel blocker, DIDS, inhibited the increase of intracellular superoxide levels induced by exogenous superoxide and consequently prevented the activation of fibroblasts. This suggests that the cellular influx of superoxide through chloride channels is essential for superoxide-induced activation of fibroblasts. ERK1/2 and p38 MAPKs are involved in the intracellular pathway leading to superoxide-induced fibroblasts activation. Superoxide possesses until now undiscovered specific pro-fibrotic properties in human lung fibroblasts. This takes place via the cellular influx of superoxide through chloride channels rather than via the formation of hydrogen peroxide.

  6. Superoxide release by confluent endothelial cells, an electron spin resonance (ESR) study

    NASA Astrophysics Data System (ADS)

    Barbacanne, M.-A.; Margeat, E.; Arnal, J.-F.; Nepveu, F.; Souchard, J.-P.

    1999-01-01

    In the present study we used ESR to detect the release of oxygen radicals by endothelial cells stimulated with calcium ionophore A23187. Dimethyl-1-pyrroline-N-oxide (DMPO) was used as a spin trap. Although the observed adduct (DMPO-OH) suggested the presence of the hydroxyl radical, the use of superoxide dismutase and catalase revealed that superoxide anion was released in the medium. Superoxide production was more efficient when the cells were post-confluent for a few days. The release of superoxide was 3-fold greater in growth arrested cells (D6-D9) than in proliferating cells (D0). Although two inhibitors of the mitochondrial respiratory chain carbanyl cyanide m-chlorophenylhydrazone (CCCP), antimycine decreased the ESR signal by 35%, the use of superoxide dismutase (SOD) and tumor necrosis factor (TNF) suggested that the release of O2- occurred in the cell membrane. The physiological significance of this extracellular superoxide release by post-confluent cells deserves further study. Ce travail présente une étude par RSE de la libération des radicaux oxygénés par les cellules endothéliales bovines (BAEC) sous l'effet de l'ionophore calcique A23187. Le diméthyl-1-pyrroline-N-oxyde (DMPO) est utilisé comme piégeur de spin. Bien que l'adduit formé (DMPO-OH) semble traduire la présence du radical hydroxyle .OH, l'utilisation de superoxyde dismutase et de catalase a révélé que les cellules endothéliales libéraient l'anion superoxyde. La production du radical superoxyde est plus abondante lorsque les cellules sont à confluence depuis plusieurs jours. Lorsque les cellules sont entre J6 et J9, la production de superoxyde est trois fois supérieure à celle observée lorsque les cellules sont en prolifération (J0). Bien que deux inhibiteurs de la chaîne mitochondriale 1-carbonyldinitrile-m-chlorophenylhydrazone (CCCP), antimycineinhibent de 35 % le signal RPE, l'utilisation de superoxyde dismutase (SOD) et du tumor necrosis factor (TNF) sugg

  7. Ethylene Improves Root System Development under Cadmium Stress by Modulating Superoxide Anion Concentration in Arabidopsis thaliana

    PubMed Central

    Abozeid, Ann; Ying, Zuojia; Lin, Yingchao; Liu, Jia; Zhang, Zhonghua; Tang, Zhonghua

    2017-01-01

    This work aims at identifying the effects of ethylene on the response of Arabidopsis thaliana root system to cadmium chloride (CdCl2) stress. Two ethylene-insensitive mutants, ein2-5 and ein3-1eil1-1, were subjected to (25, 50, 75, and 100 μM) CdCl2 concentrations, from which 75 μM concentration decreased root growth by 40% compared with wild type Col-0 as a control. Ethylene biosynthesis increased in response to CdCl2 treatment. The length of primary root and root tip in ein2-5 and ein3-1eil1-1 decreased compared with wild type after CdCl2 treatment, suggesting that ethylene play a role in root system response to Cd stress. The superoxide concentration in roots of ein2-5 and ein3-1eil1-1 was greater than in wild type seedlings under Cd stress. Application of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC) (a precursor of ethylene biosynthesis) in different concentrations (0.01, 0.05 and 0.5 μM) decreased superoxide accumulation in Col-0 root tips and increased the activities of superoxide dismutase (SOD) isoenzymes under Cd stress. This result was reversed with 5 μM of aminoisobutyric acid AIB (an inhibitor of ethylene biosynthesis). Moreover, it was accompanied by increase in lateral roots number and root hairs length, indicating the essential role of ethylene in modulating root system development by controlling superoxide accumulation through SOD isoenzymes activities. The suppressed Cd-induced superoxide accumulation in wild type plants decreased the occurrence of cells death while programmed cell death (PCD) was initiated in the root tip zone, altering root morphogenesis (decreased primary root length, more lateral roots and root hairs) to minimize the damage caused by Cd stress, whereas this response was absent in the ein2-5 and ein3-1eil1-1 seedlings. Hence, ethylene has a role in modulating root morphogenesis during CdCl2 stress in A. thaliana by increasing the activity of SOD isoenzymes to control superoxide accumulation. PMID:28286514

  8. Alteration of cellular phenotype and responses to oxidative stress by manganese superoxide dismutase and a superoxide dismutase mimic in RWPE-2 human prostate adenocarcinoma cells.

    PubMed

    Zhong, Weixiong; Yan, Tao; Webber, Mukta M; Oberley, Terry D

    2004-06-01

    To study biologic effects of increased manganese superoxide dismutase (MnSOD) on cell behavior, we overexpressed MnSOD in a human prostate cancer cell line RWPE-2 by cDNA transfection. Stable transfectants of MnSOD showed a two- to threefold increase in MnSOD protein and enzymatic activity and a decrease in growth rate with prolonged cell population doubling times. Western blot analysis showed a 1.5- to twofold increase in the cyclin-dependent kinase inhibitor p21(Waf1) in MnSOD transfectants. Overexpression of MnSOD resulted in a seven- to eightfold increase in reduced glutathione (GSH), 18- to 26-fold increase in oxidized glutathione (GSSG), and a two- to threefold decrease in the ratio of GSH to GSSG. MnSOD-overexpressing cells showed an increase in sensitivity to the cytotoxicity of buthionine sulfoximine, a glutathione-depleting agent, and vitamin C, but a decrease in sensitivity to sodium selenite. Treatment with a superoxide dismutase (SOD) mimic MnTMPyP resulted in similar effects of MnSOD overexpression on cell responses to vitamin C and selenium. These data demonstrate that overexpression of MnSOD or treatment with SOD mimics can result in antioxidant or prooxidant effects in cells, depending on the presence of other antioxidants and prooxidants. MnSOD also has redox regulatory effects on cell growth and gene expression. These findings suggest that MnSOD and SOD mimics have the potential for cancer prevention or treatment.

  9. The effects of superoxide dismutase knockout on the oxidative stress parameters and survival of mouse erythrocytes.

    PubMed

    Grzelak, Agnieszka; Kruszewski, Marcin; Macierzyńska, Ewa; Piotrowski, Łukasz; Pułaski, Łukasz; Rychlik, Błazej; Bartosz, Grzegorz

    2009-01-01

    The erythrocytes of 12-month old Sod1 (-/-) mice showed an increased level of reactive oxygen species (ROS), as estimated by the degree of dihydroethidine and dihydrorhodamine oxidation, and the increased level of Heinz bodies. No indices of severe oxidative stress were found in the red blood cells and blood plasma of Sod1 (-/-) mice as judged from the lack of significant changes in the levels of erythrocyte and plasma glutathione, plasma protein thiol and carbonyl groups and thiobarbituric-acid reactive substances in the blood plasma. However, a decreased erythrocyte lifespan, increased reticulocyte count and splenomegaly were noted, indicating the importance of superoxide dismutase for maintaining erythrocyte viability. The levels of erythrocyte ROS and Heinz bodies and the reticulocyte count were indistinguishable in Sod1 (+/+) and Sod1 (+/-) mice, suggesting that a superoxide dismutase activity decrease to half of its normal value may be sufficient to secure the protective effects of the enzyme.

  10. Intracellular localization of the superoxide dismutases of Escherichia coli: a reevaluation.

    PubMed Central

    Britton, L; Fridovich, I

    1977-01-01

    All of the superoxide dismutase isozymes of Escherichia coli have been shown to occur in the cell matrix, and none have been found in the periplasm. This was the case with both E. coli B and E. coli K-12, whether grown on a low phosphate medium or on a Trypticase soy-yeast extract medium. Alkaline phosphatase was used as a marker of the periplasm; adenosine deaminase and glucose 6-phosphate dehydrogenase were used as matrix markers, and consistent results were obtained by osmotic shock, spheroplast formation, and use of a diazonium salt that penetrates the periplasm but cannot cross the plasma membrane. A previous report that the iron-containing superoxide dismutase of E. coli is a periplasmic enzyme is now seen to have been in error. PMID:330499

  11. Correlation of Electronic and Geometric Structure in Mononuclear Copper(II) Superoxide Complexes

    PubMed Central

    Ginsbach, Jake W.; Peterson, Ryan L.; Cowley, Ryan E.; Karlin, Kenneth D.; Solomon, Edward I.

    2013-01-01

    The geometry of mononuclear copper(II) superoxide complexes has been shown to determine their ground state where side-on bonding leads to a singlet ground state and end-on complexes have triplet ground states. In apparent contrast to this trend, the recently synthesized (HIPT3tren)CuII–O2•− (1) was proposed to have an end-on geometry and a singlet ground state. However, re-examination of 1 with resonance Raman (rR), magnetic circular dichroism (MCD), and 2H NMR spectroscopy indicates that 1 is in fact an end-on superoxide species with a triplet ground state that results from the single CuII–O2•− bonding interaction being weaker than the spin pairing energy. PMID:24164429

  12. Preliminary neutron diffraction analysis of challenging human manganese superoxide dismutase crystals.

    PubMed

    Azadmanesh, Jahaun; Trickel, Scott R; Weiss, Kevin L; Coates, Leighton; Borgstahl, Gloria E O

    2017-04-01

    Superoxide dismutases (SODs) are enzymes that protect against oxidative stress by dismutation of superoxide into oxygen and hydrogen peroxide through cyclic reduction and oxidation of the active-site metal. The complete enzymatic mechanisms of SODs are unknown since data on the positions of hydrogen are limited. Here, methods are presented for large crystal growth and neutron data collection of human manganese SOD (MnSOD) using perdeuteration and the MaNDi beamline at Oak Ridge National Laboratory. The crystal from which the human MnSOD data set was obtained is the crystal with the largest unit-cell edge (240 Å) from which data have been collected via neutron diffraction to sufficient resolution (2.30 Å) where hydrogen positions can be observed.

  13. N-Glycosylation is essential for the secretion of extracellular superoxide dismutase.

    PubMed

    Ota, Fumi; Kizuka, Yasuhiko; Kitazume, Shinobu; Adachi, Tetsuo; Taniguchi, Naoyuki

    2016-10-01

    Extracellular superoxide dismutase (EC-SOD or SOD3) protects against various oxidative stress-related diseases by scavenging reactive superoxides in the extracellular space. It is the only SOD isozyme that is secreted and glycosylated (at asparagine 89). However, the physiological roles of its glycosylation are poorly understood. In this study, we found that the glycosylation site on EC-SOD is well conserved and that a glycosylation-deficient EC-SOD mutant retains its enzymatic activity, but is not secreted. This impairment in secretion may, in part, be due to the ability of the mutants to form unusual higher order oligomers. Our findings reveal that the glycan modification is a key regulator of EC-SOD secretion and contributes to the understanding of the roles of glycans in EC-SOD-related diseases.

  14. Quenching of superoxide ions by curcumin. A mechanistic study in acetonitrile.

    PubMed

    Toniolo, Rosanna; Di Narda, Francesca; Susmel, Sabina; Martelli, Mario; Martelli, Laura; Bontempelli, Gino

    2002-03-01

    The quenching of superoxide ions, O2.-, by curcumin has been studied by electrogenerating this anion radical from oxygen dissolved in acetonitrile solvent (that is, at best, a mimic of the lipofilic layer of biological membranes), containing known amounts of curcumin. Voltammetric tests, combined with coulometric and spectrophotometric measurements, pointed out that each mol of curcumin is able to react with six mols of such anion radical, through a process initiated by an acid-base step, which provides the perhydroxyl radical, HO2.; that disproportionates rapidly to the anionic form of hydrogen peroxide, HO2-, and oxygen, which is thus partially regenerated. At the same time, curcumin is converted to the corresponding three-charged anion. The strict resemblance existing between the mechanism of the rapid superoxide radical decay caused by curcumin and that involved in the presence of the superoxodismutase enzyme (SOD) is also underlined.

  15. Observation of Superoxide Production During Catalysis of Bacillus subtilis Oxalate Decarboxylase at pH4

    PubMed Central

    Twahir, Umar T.; Stedwell, Corey N.; Lee, Cory T.; Richards, Nigel G. J.; Polfer, Nicolas C.; Angerhofer, Alexander

    2015-01-01

    This contribution describes the trapping of the hydroperoxyl radical at a pH of 4 during turnover of wild-type oxalate decarboxylase and its T165V mutant using the spin trap BMPO. Radicals were detected and identified by a combination of EPR and mass spectrometry. Superoxide, or its conjugate acid, the hydroperoxyl radical, is expected as an intermediate in the decarboxylation and oxidation reactions of the oxalate monoanion both of which are promoted by oxalate decarboxylase. Another intermediate, the carbon dioxide radical anion was also observed. The quantitative yields of superoxide trapping is similar in the wild type and the mutant while it is significantly different for the trapping of the carbon dioxide radical anion. This suggests that the two radicals are released from different sites of the protein. PMID:25526893

  16. The preparation of calcium superoxide in a flowing gas stream and fluidized bed

    NASA Technical Reports Server (NTRS)

    Wood, P. C.; Ballou, E. V.; Spitze, L. A.; Wydeven, T.

    1980-01-01

    Superoxides can be used as sources of chemically stored oxygen in emergency breathing apparatus. The work reported here describes the use of a low-pressure nitrogen gas sweep through the reactant bed, for temperature control and water vapor removal. For a given set of gas temperature, bed thickness, and reaction time values, the highest purity calcium superoxide, Ca(O2)2, was obtained at the highest space velocity of the nitrogen gas sweep. The purity of the product was further increased by flow conditions that resulted in the fluidization of the reactant bed. However, scale-up of the low-pressure fluidized bed process was limited to the formation of agglomerates of reactant particles, which hindered thermal control by the flowing gas stream. A radiofrequency flow discharge inside the reaction chamber prevented agglomeration, presumably by dissipation of the static charges on the fluidized particles.

  17. Indirect detection of superoxide in RAW 264.7 macrophage cells using microchip electrophoresis coupled to laser-induced fluorescence.

    PubMed

    de Campos, Richard P S; Siegel, Joseph M; Fresta, Claudia G; Caruso, Giuseppe; da Silva, José A F; Lunte, Susan M

    2015-09-01

    Superoxide, a naturally produced reactive oxygen species (ROS) in the human body, is involved in many pathological and physiological signaling processes. However, if superoxide formation is left unregulated, overproduction can lead to oxidative damage to important biomolecules, such as DNA, lipids, and proteins. Superoxide can also lead to the formation of peroxynitrite, an extremely hazardous substance, through its reaction with endogenously produced nitric oxide. Despite its importance, quantitative information regarding superoxide production is difficult to obtain due to its high reactivity and low concentrations in vivo. MitoHE, a fluorescent probe that specifically reacts with superoxide, was used in conjunction with microchip electrophoresis (ME) and laser-induced fluorescence (LIF) detection to investigate changes in superoxide production by RAW 264.7 macrophage cells following stimulation with phorbol 12-myristate 13-acetate (PMA). Stimulation was performed in the presence and absence of the superoxide dismutase (SOD) inhibitors, diethyldithiocarbamate (DDC) and 2-metoxyestradiol (2-ME). The addition of these inhibitors resulted in an increase in the amount of superoxide specific product (2-OH-MitoE(+)) from 0.08 ± 0.01 fmol (0.17 ± 0.03 mM) in native cells to 1.26 ± 0.06 fmol (2.5 ± 0.1 mM) after PMA treatment. This corresponds to an approximately 15-fold increase in intracellular concentration per cell. Furthermore, the addition of 3-morpholino-sydnonimine (SIN-1) to the cells during incubation resulted in the production of 0.061 ± 0.006 fmol (0.12 ± 0.01 mM) of 2-OH-MitoE(+) per cell on average. These results demonstrate that indirect superoxide detection coupled with the use of SOD inhibitors and a separation method is a viable method to discriminate the 2-OH-MitoE(+) signal from possible interferences.

  18. Deletion of Aldose Reductase from Mice Inhibits Diabetes-Induced Retinal Capillary Degeneration and Superoxide Generation

    PubMed Central

    Tang, Jie; Du, Yunpeng; Petrash, J. Mark; Sheibani, Nader; Kern, Timothy S.

    2013-01-01

    Purpose Pharmacologic inhibition of aldose reductase (AR) previously has been studied with respect to diabetic retinopathy with mixed results. Since drugs can have off-target effects, we studied the effects of AR deletion on the development and molecular abnormalities that contribute to diabetic retinopathy. Since recent data suggests an important role for leukocytes in the development of the retinopathy, we determined also if AR in leukocytes contributes to leukocyte-mediated death of retinal endothelial cells in diabetes. Methods Wild-type (WT; C57BL/6J) and AR deficient (AR−/−) mice were made diabetic with streptozotocin. Mice were sacrificed at 2 and 10 months of diabetes to evaluate retinal vascular histopathology, to quantify retinal superoxide production and biochemical and physiological abnormalities in the retina, and to assess the number of retinal endothelial cells killed by blood leukocytes in a co-culture system. Results Diabetes in WT mice developed the expected degeneration of retinal capillaries, and increased generation of superoxide by the retina. Leukocytes from diabetic WT mice also killed more retinal endothelial cells than did leukocytes from nondiabetic animals (p<0.0001). Deletion of AR largely (P<0.05) inhibited the diabetes-induced degeneration of retinal capillaries, as well as the increase in superoxide production by retina. AR-deficiency significantly inhibited the diabetes-induced increase in expression of inducible nitric oxide synthase (iNOS) in retina, but had no significant effect on expression of intercellular adhesion molecule-1 (ICAM-1), phosphorylated p38 MAPK, or killing of retinal endothelial cells by leukocytes. Conclusions AR contributes to the degeneration of retinal capillaries in diabetic mice. Deletion of the enzyme inhibits the diabetes-induced increase in expression of iNOS and of superoxide production, but does not correct a variety of other pro-inflammatory abnormalities associated with the development of

  19. Behavioral and Neurotransmitter Abnormalities in Mice Deficient for Parkin, DJ-1 and Superoxide Dismutase

    PubMed Central

    Hennis, Meghan R.; Seamans, Katherine W.; Marvin, Marian A.; Casey, Bradford H.; Goldberg, Matthew S.

    2013-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by loss of neurons in the substantia nigra that project to the striatum and release dopamine. The cause of PD remains uncertain, however, evidence implicates mitochondrial dysfunction and oxidative stress. Although most cases of PD are sporadic, 5-10% of cases are caused by inherited mutations. Loss-of-function mutations in Parkin and DJ-1 were the first to be linked to recessively inherited Parkinsonism. Surprisingly, mice bearing similar loss-of-function mutations in Parkin and DJ-1 do not show age-dependent loss of nigral dopaminergic neurons or depletion of dopamine in the striatum. Although the normal cellular functions of Parkin and DJ-1 are not fully understood, we hypothesized that loss-of-function mutations in Parkin and DJ-1 render cells more sensitive to mitochondrial dysfunction and oxidative stress. To test this hypothesis, we crossed mice deficient for Parkin and DJ-1 with mice deficient for the mitochondrial antioxidant protein Mn-superoxide dismutase (SOD2) or the cytosolic antioxidant protein Cu-Zn-superoxide dismutase (SOD1). Aged Parkin-/-DJ-1-/- and Mn-superoxide dismutase triple deficient mice have enhanced performance on the rotorod behavior test. Cu/Zn-superoxide dismutase triple deficient mice have elevated levels of dopamine in the striatum in the absence of nigral cell loss. Our studies demonstrate that on a Parkin/DJ-1 null background, mice that are also deficient for major antioxidant proteins do not have progressive loss of dopaminergic neurons but have behavioral and striatal dopamine abnormalities. PMID:24386432

  20. Nox4-generated superoxide drives angiotensin II-induced neural stem cell proliferation.

    PubMed

    Topchiy, Elena; Panzhinskiy, Evgeniy; Griffin, W Sue T; Barger, Steven W; Das, Mita; Zawada, W Michael

    2013-01-01

    Reactive oxygen species (ROS) have been reported to affect neural stem cell self-renewal and therefore may be important for normal development and may influence neurodegenerative processes when ROS activity is elevated. To determine if increasing production of superoxide, via activation of NADPH oxidase (Nox), increases neural stem cell proliferation, 100 nM angiotensin II (Ang II) - a strong stimulator of Nox - was applied to cultures of a murine neural stem cell line, C17.2. Twelve hours following a single treatment with Ang II, there was a doubling of the number of neural stem cells. This increase in neural stem cell numbers was preceded by a gradual elevation of superoxide levels (detected by dihydroethidium fluorescence) from the steady state at 0, 5, and 30 min and gradually increasing from 1 h to the maximum at 12 h, and returning to baseline at 24 h. Ang II-dependent proliferation was blocked by the antioxidant N-acetyl-L-cysteine. Confocal microscopy revealed the presence of two sources of intracellular ROS in C17.2 cells: (i) mitochondrial and (ii) extramitochondrial; the latter indicative of the involvement of one or more specific isoforms of Nox. Of the Nox family, mRNA expression for one member, Nox4, is abundant in neural stem cell cultures, and Ang II treatment resulted in elevation of the relative levels of Nox4 protein. SiRNA targeting of Nox4 mRNA reduced both the constitutive and Ang II-induced Nox4 protein levels and attenuated Ang II-driven increases in superoxide levels and stem cell proliferation. Our findings are consistent with our hypothesis that Ang II-induced proliferation of neural stem cells occurs via Nox4-generated superoxide, suggesting that an Ang II/Nox4 axis is an important regulator of neural stem cell self-renewal and as such may fine-tune normal, stress- or disease-modifying neurogenesis.

  1. Nox4-generated superoxide drives angiotensin II-induced neural stem cell proliferation

    PubMed Central

    Topchiy, Elena; Panzhinskiy, Evgeniy; Griffin, W. Sue T.; Barger, Steven W.; Das, Mita; Zawada, W. Michael

    2013-01-01

    Reactive oxygen species (ROS) have been reported to affect neural stem cell self-renewal and therefore may be important for normal development and may influence neurodegenerative processes when ROS activity is elevated. To determine if increasing production of superoxide, via activation of NADPH oxidase (Nox), increases neural stem cell proliferation, 100nM angiotensin II (Ang II) – a strong stimulator of Nox – was applied to cultures of a murine neural stem cell line C17.2. Twelve hours following a single treatment with Ang II there was a doubling of the number of neural stem cells. This increase in neural stem cell numbers was preceded by a gradual elevation of superoxide levels (detected by dihydroethidium, DHE, fluorescence) from the steady state at 0, 5, and 30 minutes and gradually increasing from one hour to the maximum at 12 h, and returning to baseline at 24 h. Ang II-dependent proliferation was blocked by the antioxidant N-acetyl-L-cysteine (NAC). Confocal microscopy revealed the presence of two sources of intracellular ROS in C17.2 cells: i) mitochondrial and ii) extramitochondrial; the latter indicative of involvement of one or more specific isoforms of Nox. Of the Nox family, mRNA expression for one member, Nox4, is abundant in neural stem cell cultures, and Ang II treatment resulted in elevation of the relative levels of Nox4 protein. SiRNA targeting of Nox4 mRNA reduced both the constitutive and Ang II-induced Nox4 protein levels and attenuated Ang II-driven increases in superoxide levels and stem cell proliferation. Our findings are consistent with our hypothesis that Ang II-induced proliferation of neural stem cells occurs via Nox4-generated superoxide, suggesting that an Ang II/Nox4 axis is an important regulator of neural stem cell self-renewal and as such may fine-tune normal or stress- or disease-modifying neurogenesis. PMID:23751520

  2. Superoxide production by a manganese-oxidizing bacterium facilitates iodide oxidation.

    PubMed

    Li, Hsiu-Ping; Daniel, Benjamin; Creeley, Danielle; Grandbois, Russell; Zhang, Saijin; Xu, Chen; Ho, Yi-Fang; Schwehr, Kathy A; Kaplan, Daniel I; Santschi, Peter H; Hansel, Colleen M; Yeager, Chris M

    2014-05-01

    The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I(-)), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2(-)). In the absence of Mn(2+), Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 μM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments.

  3. Superoxide Production by a Manganese-Oxidizing Bacterium Facilitates Iodide Oxidation

    PubMed Central

    Li, Hsiu-Ping; Daniel, Benjamin; Creeley, Danielle; Grandbois, Russell; Zhang, Saijin; Xu, Chen; Ho, Yi-Fang; Schwehr, Kathy A.; Kaplan, Daniel I.; Santschi, Peter H.; Hansel, Colleen M.

    2014-01-01

    The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I−), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2−). In the absence of Mn2+, Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 μM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments. PMID:24561582

  4. Methamphetamine toxicity is attenuated in mice that overexpress human manganese superoxide dismutase.

    PubMed

    Maragos, W F; Jakel, R; Chesnut, D; Pocernich, C B; Butterfield, D A; St Clair, D; Cass, W A

    2000-09-29

    We have investigated methamphetamine (MA) toxicity in transgenic mice that overexpress the human form of mitochondrial manganese superoxide dismutase (MnSOD). Our results reveal a significant reduction in the long-term depletion of striatal dopamine and protein oxidation following repeated administration of MA in transgenic vs. non-transgenic littermates. These findings support the notion that ROS contribute to MA-induced brain damage and suggest that mitochondria may play an important role in this form of neurodegeneration.

  5. [Role of superoxide anion radicals in the bacterial corrosion of metals].

    PubMed

    Belov, D V; Kalinina, A A; Sokolova, T N; Smirnov, V F; Chelnokova, M V; Kartashov, V R

    2012-01-01

    It was found that seven strains of bacteria can cause corrosion damage to aluminum, its alloys, and zinc. With respect to the studied metals, the most active bacteria were Proteus vulgaris 1212 and Pseudomonas aeruginosa 969. Superoxide anion radicals were demonstrated to play a role in the initiation of corrosive damage to aluminum and zinc, while bacterial exometabolites participate in the later stages of this process.

  6. Antibacterial Efficacy of Super-Oxidized Water on Enterococcus faecalis Biofilms in Root Canal

    PubMed Central

    Zan, Recai; Alacam, Tayfun; Hubbezoglu, Ihsan; Tunc, Tutku; Sumer, Zeynep; Alici, Oguzhan

    2016-01-01

    Background The success of endodontic treatment depends on a few crucial factors. One of these factors is the complete chemomechanic preparation of root canal against various bacteria. In particular, the effect of resistant bacteria may cause intense pain with flare-up and formation of periapical lesions. Therefore, the strong effect of irrigants plays an important role in terms of the complete elimination of these bacteria to achieve long-term successful treatment. Objectives The aim of this study was to investigate the antibacterial effects of super-oxidized water (SPO) in root canals infected with Enterococcus faecalis biofilms. Methods One hundred twenty single-root, premolar teeth were selected. Initially, the teeth were prepared and then disinfected. E. faecalis were inoculated and kept at 37°C for 24 hours in the root canals. The re-inoculation procedure was repeated on the first, fourth, seventh, and tenth days. The infected root canals were divided into one negative (saline) and one positive (sodium hypochlorite) control group and four experimental groups (super-oxidized water: 1, 2, 3, or 5 minutes) (n = 20). Paper points were placed in the root canals to control and evaluate the biofilm formation. Biofilms were counted on blood agar plates, and data was evaluated and statistically analyzed using one-way ANOVA and Tukey’s test. Results Although sodium hypochlorite (NaOCl) showed no statistically significant difference when compared with three and five minutes of SPO irrigation (P > 0.05), NaOCl showed statistically significant differences among all other groups (P < 0.05). Conclusions Super-oxidized water indicated a remarkable and similar bactericidal effect to that of traditional NaOCl against E. faecalis biofilms. In terms of successful endodontic treatment approaches, super-oxidized water may be used as an effective irrigation solution in clinics. PMID:27800142

  7. Mitochondrial superoxide flashes: metabolic biomarkers of skeletal muscle activity and disease

    PubMed Central

    Wei, Lan; Salahura, Gheorghe; Boncompagni, Simona; Kasischke, Karl A.; Protasi, Feliciano; Sheu, Shey-Shing; Dirksen, Robert T.

    2011-01-01

    Mitochondrial superoxide flashes (mSOFs) are stochastic events of quantal mitochondrial superoxide generation. Here, we used flexor digitorum brevis muscle fibers from transgenic mice with muscle-specific expression of a novel mitochondrial-targeted superoxide biosensor (mt-cpYFP) to characterize mSOF activity in skeletal muscle at rest, following intense activity, and under pathological conditions. Results demonstrate that mSOF activity in muscle depended on electron transport chain and adenine nucleotide translocase functionality, but it was independent of cyclophilin-D-mediated mitochondrial permeability transition pore activity. The diverse spatial dimensions of individual mSOF events were found to reflect a complex underlying morphology of the mitochondrial network, as examined by electron microscopy. Muscle activity regulated mSOF activity in a biphasic manner. Specifically, mSOF frequency was significantly increased following brief tetanic stimulation (18.1±1.6 to 22.3±2.0 flashes/1000 μm2·100 s before and after 5 tetani) and markedly decreased (to 7.7±1.6 flashes/1000 μm2·100 s) following prolonged tetanic stimulation (40 tetani). A significant temperature-dependent increase in mSOF frequency (11.9±0.8 and 19.8±2.6 flashes/1000 μm2·100 s at 23°C and 37°C) was observed in fibers from RYR1Y522S/WT mice, a mouse model of malignant hyperthermia and heat-induced hypermetabolism. Together, these results demonstrate that mSOF activity is a highly sensitive biomarker of mitochondrial respiration and the cellular metabolic state of muscle during physiological activity and pathological oxidative stress.—Wei, L., Salahura, G., Boncompagni, S., Kasischke, K. A., Protasi, F., Sheu, S.-S., Dirksen, R. T. Mitochondrial superoxide flashes: metabolic biomarkers of skeletal muscle activity and disease. PMID:21646399

  8. New water-soluble Mn-porphyrin with catalytic activity for superoxide dismutation and peroxynitrite decomposition.

    PubMed

    Asayama, Shoichiro; Nakajima, Takumi; Kawakami, Hiroyoshi

    2011-07-01

    We have synthesized a new water-soluble cationic Mn-porphyrin with catalytic activity for both superoxide dismutation and peroxynitrite decomposition. The resulting Mn-porphyrin also showed higher stability for reactive oxygen species such as hydrogen peroxide and lower cytotoxicity, when compared with a control normal Mn-porphyrin. Furthermore, the new porphyrin recovered the viability of lipopolysaccharide-stimulated macrophage RAW 264.7 cells but the control Mn-porphyrin did not.

  9. Superoxide and respiratory coupling in mitochondria of insulin-deficient diabetic rats.

    PubMed

    Herlein, Judith A; Fink, Brian D; O'Malley, Yunxia; Sivitz, William I

    2009-01-01

    Mitochondrial reactive oxygen species have been implicated in both diabetic complications and the progression of the underlying diabetic state. However, it is not clear whether mitochondria of diabetic origin are intrinsically altered to generate excess reactive oxygen species independent of the surrounding diabetic milieu. Mitochondria were isolated from gastrocnemius, heart, and liver of 2-wk and 2-month streptozotocin diabetic rats and controls. We rigidly quantified mitochondrial superoxide, respiration and ATP production, respiratory coupling, the expression of several proteins with antioxidant properties, and the redox state of glutathione. Both fluorescent assessment and electron paramagnetic spectroscopy revealed that superoxide production was unchanged or reduced in the 2-month diabetic mitochondria compared with controls. Kinetic analysis of the proton leak showed that diabetic heart and muscle mitochondria were actually more coupled compared with control despite an approximate 2- to 4-fold increase in uncoupling protein-3 content. Adenine nucleotide translocator type 1 expression was reduced by approximately 50% in diabetic muscle mitochondria. Catalase was significantly up-regulated in muscle and heart tissue and in heart mitochondria, whereas glutathione peroxidase expression was increased in liver mitochondria of diabetic rats. We conclude that gastrocnemius, heart, and liver mitochondria of streptozotocin diabetic rats are not irrevocably altered toward excess superoxide production either by complex I or complex III. Moreover, gastrocnemius and heart mitochondria demonstrate increased, not decreased, respiratory coupling. Mitochondria of insulin-deficient diabetic rats do show signs of adaptation to antecedent oxidative stress manifested as tissue-specific enzyme and uncoupling protein expression but remain remarkably robust with respect to superoxide production.

  10. Functional and Immunological Analyses of Superoxide Dismutases and Other Spore-Associated Proteins of Bacillus anthracis

    DTIC Science & Technology

    2008-08-20

    strains demonstrate not only a loss of toxin production but a reduction in capsule expression (100). The genes reponsible for capsule synthesis and... Production of reactive oxygen and reactive nitrogen species Superoxide anion (O2 ·- ) is generated both as an accidental by- product of aerobic...L. Warren, and A. S. Cross. 1994. Anthrax edema toxin differentially regulates lipopolysaccharide- induced monocyte production of tumor necrosis

  11. Equine digital veins are more sensitive to superoxide anions than digital arteries.

    PubMed

    Lapo, Rock Allister; Gogny, Marc; Chatagnon, Gérard; Lalanne, Valérie; Harfoush, Khaled; Assane, Moussa; Desfontis, Jean-Claude; Mallem, Mohamed Yassine

    2014-10-05

    This work was designed to investigate (i) the effect of superoxide dismutase (SOD) inhibition on endothelial function and (ii) the free radical-induced endothelial dysfunction in equine digital veins (EDVs) and equine digital arteries (EDAs) isolated from healthy horses. EDV and EDA rings were suspended in a 5 ml organ bath containing Krebs solution. After a 60 min equilibration period, EDV and EDA rings were contracted with phenylephrine. Then, cumulative concentration-response curves (CCRCs) to acetylcholine were performed. In both EDVs and EDAs, acetylcholine (1 nM to 10 µM) produced concentration-dependent relaxation. We investigated the influence of SOD inhibition by diethyldithiocarbamate (DETC; 100 µM), a CuZnSOD inhibitor, on EDAs and EDVs relaxant responses to acetylcholine. Acetylcholine -mediated relaxation was impaired by DETC only in EDVs. SOD activity assayed by a xanthine-xanthine oxidase method was higher in EDAs compared with EDVs (P<0.05). CCRCs to acetylcholine established in the presence of pyrogallol (30 µM) or homocysteine (20 µM), two superoxide anions generating systems showed that in both EDVs and EDAs, the acetylcholine-mediated relaxation was significantly impaired by pyrogallol and homocysteine. This impairment was more pronounced in EDVs than in EDAs. Moreover, the pyrogallol-induced impairment of acetylcholine-mediated relaxation was potentiated by DETC to a greater extent in EDVs. We concluded that due to the lower activity of SOD, EDVs are more sensitive to superoxide anions than EDAs. So, any alteration of superoxide anions metabolism is likely to have a more important impact on venous rather than arterial relaxation.

  12. Superoxide and its metabolism during germination and axis growth of Vigna radiata (L.) Wilczek seeds.

    PubMed

    Singh, Khangembam Lenin; Chaudhuri, Abira; Kar, Rup Kumar

    2014-01-01

    Involvement of reactive oxygen species in regulation of plant growth and development is recently being demonstrated with various results depending on the experimental system and plant species. Role of superoxide and its metabolism in germination and axis growth was investigated in case of Vigna radiata seeds, a non-endospermous leguminous species having epigeal germination, by studying the effect of different reactive oxygen species (ROS) inhibitors, distribution of O2(•)- and H2O2 and ROS enzyme profile in axes. Germination percentage and axis growth were determined under treatment with ROS inhibitors and scavengers. Localization of O2(•)- and H2O2 was done using nitroblue tetrazolium (NBT) and 3,3',5,5'-tetramethyl benzidine dihydrochloride hydrate (TMB), respectively. Apoplastic level of O2(•)- was monitored by spectrophotometric analysis of bathing medium of axes. Profiles of NADPH oxidase and superoxide dismutase (SOD) were studied by in-gel assay. Germination was retarded by treatments affecting ROS level except H2O2 scavengers, while axis growth was retarded by all. Superoxide synthesis inhibitor and scavenger prevented H2O2 accumulation in axes in later phase as revealed from TMB staining. Activity of Cu/Zn SOD1 was initially high and declined thereafter. Superoxide being produced in apoplast possibly by NADPH oxidase activity is further metabolized to (•)OH via H2O2. Germination process depends possibly on (•)OH production in the axes. Post-germinative axis growth requires O2(•)- while the differentiating zone of axis (radicle) requires H2O2 for cell wall stiffening.

  13. Absence of superoxide dismutase activity causes nuclear DNA fragmentation during the aging process

    SciTech Connect

    Muid, Khandaker Ashfaqul; Karakaya, Hüseyin Çaglar; Koc, Ahmet

    2014-02-07

    Highlights: • Aging process increases ROS accumulation. • Aging process increases DNA damage levels. • Absence of SOD activity does not cause DNA damage in young cells. • Absence of SOD activity accelerate aging and increase oxidative DNA damages during the aging process. - Abstract: Superoxide dismutases (SOD) serve as an important antioxidant defense mechanism in aerobic organisms, and deletion of these genes shortens the replicative life span in the budding yeast Saccharomyces cerevisiae. Even though involvement of superoxide dismutase enzymes in ROS scavenging and the aging process has been studied extensively in different organisms, analyses of DNA damages has not been performed for replicatively old superoxide dismutase deficient cells. In this study, we investigated the roles of SOD1, SOD2 and CCS1 genes in preserving genomic integrity in replicatively old yeast cells using the single cell comet assay. We observed that extend of DNA damage was not significantly different among the young cells of wild type, sod1Δ and sod2Δ strains. However, ccs1Δ mutants showed a 60% higher amount of DNA damage in the young stage compared to that of the wild type cells. The aging process increased the DNA damage rates 3-fold in the wild type and more than 5-fold in sod1Δ, sod2Δ, and ccs1Δ mutant cells. Furthermore, ROS levels of these strains showed a similar pattern to their DNA damage contents. Thus, our results confirm that cells accumulate DNA damages during the aging process and reveal that superoxide dismutase enzymes play a substantial role in preserving the genomic integrity in this process.

  14. Superoxide dismutase, catalase, and. alpha. -tocopherol content of stored potato tubers. [Solanum tuberosum L

    SciTech Connect

    Spychalla, J.P.; Desborough, S.L. )

    1990-11-01

    Activated oxygen or oxygen free radical mediated damage to plants has been established or implicated in many plant stress situations. The extent of activated oxygen damage to potato (Solanum tuberosum L.) tubers during low temperature storage and long-term storage is not known. Quantitation of oxygen free radical mediated damage in plant tissues is difficult. However, it is comparatively easy to quantitate endogenous antioxidants, which detoxify potentially damaging forms of activated oxygen. Three tuber antioxidants, superoxide dismutase, catalase, and {alpha}-tocopherol were assayed from four potato cultivars stored at 3{degree}C and 9{degree}C for 40 weeks. Tubers stored at 3{degree}C demonstrated increased superoxide dismutase activities (up to 72%) compared to tubers stored at 9{degree}C. Time dependent increases in the levels of superoxide dismutase, catalase, and {alpha}-tocopherol occurred during the course of the 40 week storage. The possible relationship between these increases in antioxidants and the rate of activated oxygen production in the tubers is discussed.

  15. Topical Application of TAT-Superoxide Dismutase in Acupoints LI 20 on Allergic Rhinitis

    PubMed Central

    Zheng, Mei-Feng; Zhou, Jian-Wu; Ke, Li-Jing

    2016-01-01

    Reactive oxygen species are products of cellular metabolism and assigned important roles in biomedical science as deleterious factors in pathologies. In fact, some studies have shown that the therapeutic benefits of taking antioxidants were limited and the potential for therapeutic intervention remains unclear. New evidences showed that ROS have some ability of intercellular transportation. For treating allergic rhinitis, as a novel intracellular superoxide quencher, TAT-SOD applied to acupoints LI 20 instead of directly to nasal cavity can be used to test that. TTA group apply TAT-SOD cream prepared by adding purified TAT-SOD to the vehicle cream to acupoints LI 20, while placebo group used the vehicle cream instead. TTN group applied the same TAT-SOD cream directly to nasal cavity three times daily. Symptom scores were recorded at baseline and days 8 and 15. For the overall efficacy rate, TTA group was 81.0%, while placebo group was 5.9% and TTN was 0%. Malondialdehyde levels decreased observably in TTA group, and superoxide dismutase, catalase, and glutathione peroxidase levels remained basically unaffected. Enzymatic scavenging of the intracellular superoxide at acupoints LI 20 proved to be effective in treating allergic rhinitis, while no improvement was observed with the placebo group and TTN group. PMID:28119757

  16. Feijoa sellowiana Berg fruit juice: anti-inflammatory effect and activity on superoxide anion generation.

    PubMed

    Monforte, Maria T; Fimiani, Vincenzo; Lanuzza, Francesco; Naccari, Clara; Restuccia, Salvatore; Galati, Enza M

    2014-04-01

    Feijoa sellowiana Berg var. coolidge fruit juice was studied in vivo for the anti-inflammatory activity by carrageenin-induced paw edema test and in vitro for the effects on superoxide anion release from neutrophils in human whole blood. The fruit juice was analyzed by the high-performance liquid chromatography method, and quercetin, ellagic acid, catechin, rutin, eriodictyol, gallic acid, pyrocatechol, syringic acid, and eriocitrin were identified. The results showed a significant anti-inflammatory activity of F. sellowiana fruit juice, sustained also by an effective antioxidant activity observed in preliminary studies on 1,1-diphenyl-2-picrylhydrazyl (DPPH) test. In particular, the anti-inflammatory activity edema inhibition is significant since the first hour (44.11%) and persists until the fifth hour (44.12%) of the treatment. The effect on superoxide anion release was studied in human whole blood, in the presence of activators affecting neutrophils by different mechanisms. The juice showed an inhibiting response on neutrophils basal activity in all experimental conditions. In stimulated neutrophils, the higher inhibition of superoxide anion generation was observed at concentration of 10(-4) and 10(-2) mg/mL in whole blood stimulate with phorbol-myristate-13-acetate (PMA; 20% and 40%) and with N-formyl-methionyl-leucyl-phenylalanine (FMLP; 15% and 48%). The significant reduction of edema and the inhibition of O2(-) production, occurring mainly through interaction with protein-kinase C pathway, confirm the anti-inflammatory effect of F. sellowiana fruit juice.

  17. The Basic Understanding of Lithium Superoxide in Li-O2 Battery

    NASA Astrophysics Data System (ADS)

    Lau, Kah Chun; Zhai, Dengyun; Wang, Hsien-Hau; Luo, Xiangyi; Wen, Jianguo; Miller, Dean; Redfern, Paul; Lu, Jun; Curtiss, Larry; Amine, Khalil

    The electrochemical and chemical processes that involved in Li-O2 battery are complex, and depend heavily on electrode materials, electrolytes, interfaces, and cell operating conditions. In non-aqueous Li-O2 battery, the main discharge products are commonly known to be lithium peroxide (Li2O2) , and possibly some other parasitic components (i.e. Li2CO3, LiOH, Li2O). However, the superoxide intermediates and lithium superoxide (O2-, LiO2) which are commonly known to be metastable can also be found as reported. Relative to these compounds (i.e. Li2CO3, Li2O,LiOH,Li2O2) in discharge products, little is known about LiO2. To have a basic understanding of lithium superoxide, both theoretical studies and experimental characterizations are important. In this presentation, the recent developments, studies and findings of this exotic species will be discussed. This work was primarily supported by the U.S. Department of Energy under Contract DE-AC02-06CH11357 from the Vehicle Technologies Office, Department of Energy, Office of Energy Efficiency and Renewable Energy.

  18. Structure of glycosylated Cu/Zn-superoxide dismutase from Kluyveromyces yeast NBIMCC 1984

    NASA Astrophysics Data System (ADS)

    Dolashka-Angelova, Pavlina; Moshtanska, Vesela; Kujumdzieva, Anna; Atanasov, Boris; Petrova, Vencislava; Voelter, Wolfgang; Beeumen, Jozef Van

    2010-09-01

    The primary structure of Cu/Zn-superoxide dismutase from Kluyveromyces marxianus NBIMCC 1984 was elucidated by N-terminal sequence analysis of the intact protein and by determination of the amino acid sequences of tryptic peptides by MALDI-TOF-TOF tandem mass spectrometry. The molecular mass of one subunit of the homodimer SOD, containing 152 amino acid residues, was calculated to be 15858.3 Da while a value of 17096.63 Da was obtained by MALDI-TOF MS. This difference is explained by the presence of N-glycosylation of one linkage site, -Asn-Ile/Leu-Thr-, and a glycan chain with the structure Hex 5 GlcNAc 2. Glycosylation of K.marxianus superoxide dismutase is a post-translational modification. Recent developments in mass spectrometry have enabled detailed structural analyses of covalent modifications of proteins. Therefore, in this paper, we introduce a covalent modification of Cu/Zn-SOD from K. marxianus NBIMCC 1984, by analysis of the enzymatic liberated N-glycan from the enzyme using MALDI-TOF and tandem mass spectrometry on a Q-Trap mass spectrometer. This is the first report of the structure of the oligosaccharide of a naturally-glycosylated superoxide dismutase, determined by mass spectrometry.

  19. Synergistic triggering of superoxide flashes by mitochondrial Ca2+ uniport and basal reactive oxygen species elevation.

    PubMed

    Hou, Tingting; Zhang, Xing; Xu, Jiejia; Jian, Chongshu; Huang, Zhanglong; Ye, Tao; Hu, Keping; Zheng, Ming; Gao, Feng; Wang, Xianhua; Cheng, Heping

    2013-02-15

    Mitochondrial superoxide flashes reflect a quantal, bursting mode of reactive oxygen species (ROS) production that arises from stochastic, transient opening of the mitochondrial permeability transition pore (mPTP) in many types of cells and in living animals. However, the regulatory mechanisms and the exact nature of the flash-coupled mPTP remain poorly understood. Here we demonstrate a profound synergistic effect between mitochondrial Ca(2+) uniport and elevated basal ROS production in triggering superoxide flashes in intact cells. Hyperosmotic stress potently augmented the flash activity while simultaneously elevating mitochondrial Ca(2+) and ROS. Blocking mitochondrial Ca(2+) transport by knockdown of MICU1 or MCU, newly identified components of the mitochondrial Ca(2+) uniporter, or scavenging mitochondrial basal ROS markedly diminished the flash response. More importantly, whereas elevating Ca(2+) or ROS production alone was inefficacious in triggering the flashes, concurrent physiological Ca(2+) and ROS elevation served as the most powerful flash activator, increasing the flash incidence by an order of magnitude. Functionally, superoxide flashes in response to hyperosmotic stress participated in the activation of JNK and p38. Thus, physiological levels of mitochondrial Ca(2+) and ROS synergistically regulate stochastic mPTP opening and quantal ROS production in intact cells, marking the flash as a coincidence detector of mitochondrial Ca(2+) and ROS signals.

  20. Structure and gene expression of the E. coli Mn-superoxide dismutase gene.

    PubMed Central

    Takeda, Y; Avila, H

    1986-01-01

    Superoxide dismutase is an enzyme which converts superoxide O2- to hydrogen peroxide. Using a single synthetic oligonucleotide 33mer, we screened the E. coli DNA library and isolated a clone containing the E. coli manganese-superoxide dismutase gene. We determined the DNA sequence. The analysis of the DNA sequence and in vivo as well as in vitro transcription has shown the following. The DNA sequence suggests two possible promoters. However, only one of them seems active during normal aerobic growth. Purified RNA polymerase initiates in vitro transcription from the same promoter. It is not clear whether the second promoter is functional. It is possible that this promoter could be activated under different growth conditions. There is an inverted repeat sequence which could form a stem-loop structure downstream of the translation stop codon TAA of the Mn-SOD gene. The results of the analysis of in vivo and in vitro RNA have shown that this is the transcription termination signal. Thus, the Mn-SOD gene constitutes a single gene operon. There is an almost perfect 19 base palindrome at the -35 region. The position and the size of the palindrome suggest that this could be a regulatory site. Images PMID:3520487

  1. Induction and inactivation of catalase and superoxide dismutase of Escherichia coli by ozone

    SciTech Connect

    Whiteside, C.; Hassan, H.M.

    1987-09-01

    Oxyradicals have been implicated in ozone (O/sub 3/) toxicity and in other oxidant stress. In this study, we investigated the effects of O/sub 3/ on the biosynthesis of the antioxidant enzymes catalase and superoxide dismutase in Escherichia coli to determine their role in the defense against ozone toxicity. Inhibition of growth and loss of viability were observed in cultures exposed to ozone. Results also showed an increase in the activities of catalase and superoxide dismutase in cultures exposed to ozone, which was shown to be due to true induction rather than activation of preexisting apoproteins. Cessation of O/sub 3/ exposure resulted in 30 min of continual high rate of catalase biosynthesis followed by a gradual decrease in the level of the enzyme approaching that of control cultures. This decrease was attributed to a concomitant cessation of de novo enzyme synthesis and dilution of preexisting enzyme by cellular growth. Ozonation of cell-free extracts showed that superoxide dismutase and catalase are subject to oxidative inactivation by ozone. In vivo induction of these enzymes may represent an adaptive response evolved to protect cells against ozone toxicity.

  2. Stimulation of superoxide production increases fungicidal action of miconazole against Candida albicans biofilms

    PubMed Central

    De Cremer, Kaat; De Brucker, Katrijn; Staes, Ines; Peeters, Annelies; Van den Driessche, Freija; Coenye, Tom; Cammue, Bruno P. A.; Thevissen, Karin

    2016-01-01

    We performed a whole-transcriptome analysis of miconazole-treated Candida albicans biofilms, using RNA-sequencing. Our aim was to identify molecular pathways employed by biofilm cells of this pathogen to resist action of the commonly used antifungal miconazole. As expected, genes involved in sterol biosynthesis and genes encoding drug efflux pumps were highly induced in biofilm cells upon miconazole treatment. Other processes were affected as well, including the electron transport chain (ETC), of which eight components were transcriptionally downregulated. Within a diverse set of 17 inhibitors/inducers of the transcriptionally affected pathways, the ETC inhibitors acted most synergistically with miconazole against C. albicans biofilm cells. Synergy was not observed for planktonically growing C. albicans cultures or when biofilms were treated in oxygen-deprived conditions, pointing to a biofilm-specific oxygen-dependent tolerance mechanism. In line, a correlation between miconazole’s fungicidal action against C. albicans biofilm cells and the levels of superoxide radicals was observed, and confirmed both genetically and pharmacologically using a triple superoxide dismutase mutant and a superoxide dismutase inhibitor N-N′-diethyldithiocarbamate, respectively. Consequently, ETC inhibitors that result in mitochondrial dysfunction and affect production of reactive oxygen species can increase miconazole’s fungicidal activity against C. albicans biofilm cells. PMID:27272719

  3. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes.

    PubMed

    Heyno, Eiri; Mary, Véronique; Schopfer, Peter; Krieger-Liszkay, Anja

    2011-07-01

    Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.

  4. Superoxide-hydrogen peroxide imbalance interferes with colorectal cancer cells viability, proliferation and oxaliplatin response.

    PubMed

    Azzolin, Verônica Farina; Cadoná, Francine Carla; Machado, Alencar Kolinski; Berto, Maiquidieli Dal; Barbisan, Fernanda; Dornelles, Eduardo Bortoluzzi; Glanzner, Werner Giehl; Gonçalves, Paulo Bayard; Bica, Claudia Giugliano; da Cruz, Ivana Beatrice Mânica

    2016-04-01

    The role of superoxide dismutase manganese dependent enzyme (SOD2) in colorectal cancer is presently insufficiently understood. Some studies suggest that high SOD2 levels found in cancer tissues are associated with cancer progression. However, thus far, the role of colorectal cancer superoxide-hydrogen peroxide imbalance has not yet been studied. Thus, in order to address this gap in extant literature, we performed an in vitro analysis using HT-29 colorectal cell line exposed to paraquat, which generates high superoxide levels, and porphyrin, a SOD2 mimic molecule. The effect of these drugs on colorectal cancer cell response to oxaliplatin was evaluated. At 0.1 μM concentration, both drugs exhibited cytotoxic and antiproliferative effect on colorectal cancer cells. However, this effect was more pronounced in cells exposed to paraquat. Paraquat also augmented the oxaliplatin cytotoxic and antiproliferative effects by increasing the number of apoptosis events, thus causing the cell cycle arrest in the S and M/G2 phases. The treatments were also able to differentially modulate genes related to apoptosis, cell proliferation and antioxidant enzyme system. However, the effects were highly variable and the results obtained were inconclusive. Nonetheless, our findings support the hypothesis that imbalance caused by increased hydrogen peroxide levels could be beneficial to cancer cell biology. Therefore, the use of therapeutic strategies to decrease hydrogen peroxide levels mainly during oxaliplatin chemotherapy could be clinically important to the outcomes of colorectal cancer treatment.

  5. Cloning, Purification, and Characterization of Recombinant Human Extracellular Superoxide Dismutase in SF9 Insect Cells.

    PubMed

    Shrestha, Pravesh; Yun, Ji-Hye; Kim, Woo Taek; Kim, Tae-Yoon; Lee, Weontae

    2016-03-01

    A balance between production and degradation of reactive oxygen species (ROS) is critical for maintaining cellular homeostasis. Increased levels of ROS during oxidative stress are associated with disease conditions. Antioxidant enzymes, such as extracellular superoxide dismutase (EC-SOD), in the extracellular matrix (ECM) neutralize the toxicity of superoxide. Recent studies have emphasized the importance of EC-SOD in protecting the brain, lungs, and other tissues from oxidative stress. Therefore, EC-SOD would be an excellent therapeutic drug for treatment of diseases caused by oxidative stress. We cloned both the full length (residues 1-240) and truncated (residues 19-240) forms of human EC-SOD (hEC-SOD) into the donor plasmid pFastBacHTb. After transposition, the bacmid was transfected into the Sf9-baculovirus expression system and the expressed hEC-SOD purified using FLAG-tag. Western blot analysis revealed that hEC-SOD is present both as a monomer (33 kDa) and a dimer (66 kDa), as detected by the FLAG antibody. A water-soluble tetrazolium (WST-1) assay showed that both full length and truncated hEC-SOD proteins were enzymatically active. We showed that a potent superoxide dismutase inhibitor, diethyldithiocarbamate (DDC), inhibits hEC-SOD activity.

  6. A Zostera marina manganese superoxide dismutase gene involved in the responses to temperature stress.

    PubMed

    Liu, Jiao; Tang, Xuexi; Wang, You; Zang, Yu; Zhou, Bin

    2016-01-10

    Superoxide dismutase (SOD) is an essential enzyme playing a pivotal role in the protection mechanism against oxidative stress by reducing superoxide radicals. In the present study, the full-length cDNA sequence of manganese superoxide dismutase was identified from Zostera marina (ZmMnSOD) via raid amplification of cDNA ends (RACE) technique and expressed sequence tags (ESTs) analysis. The open reading frame (ORF) encoded a polypeptide of 254 amino acid residues, which shared 69%-77% similarity with previous identified SODs. Analysis of the deduced amino acid revealed conserved features, including functional domains, signature motifs and metal binding sites. Phylogenetic analysis revealed that ZmMnSOD was closer to the SODs from angiosperm than those from other organisms. The mRNA expression level of ZmMnSOD at different temperatures was investigated using real-time PCR and it was significantly up-regulated from 5°C to 15°C, and then dramatically down-regulated. The recombinant ZmMnSOD protein was purified and exhibited Mn(2+) ions dependency specific enzymatic activity and strong antioxidant activity over a wide temperature range. All these results indicate that ZmMnSOD is an authentic member of the plant SOD family and may play important roles in minimizing the effect of oxidative damage in Z. marina against temperature stress and affect the adaptability of Z. marina to global warming.

  7. Nitric Oxide and Superoxide Anion Balance in Rats Exposed to Chronic and Long Term Intermittent Hypoxia

    PubMed Central

    Siques, Patricia; López de Pablo, Ángel Luis; Brito, Julio; Arribas, Silvia M.; Naveas, Nelson; González, M. Carmen; León-Velarde, Fabiola; López, M. Rosario

    2014-01-01

    Work at high altitude in shifts exposes humans to a new form of chronic intermittent hypoxia, with still unknown health consequences. We have established a rat model resembling this situation, which develops a milder form of right ventricular hypertrophy and pulmonary artery remodelling compared to continuous chronic exposure. We aimed to compare the alterations in pulmonary artery nitric oxide (NO) availability induced by these forms of hypoxia and the mechanisms implicated. Rats were exposed for 46 days to normoxia or hypobaric hypoxia, either continuous (CH) or intermittent (2 day shifts, CIH2x2), and assessed: NO and superoxide anion availability (fluorescent indicators and confocal microscopy); expression of phosphorylated endothelial NO synthase (eNOS), NADPH-oxidase (p22phox), and 3-nitrotyrosine (western blotting); and NADPH-oxidase location (immunohistochemistry). Compared to normoxia, (1) NO availability was reduced and superoxide anion was increased in both hypoxic groups, with a larger effect in CH, (2) eNOS expression was only reduced in CH, (3) NADPH-oxidase was similarly increased in both hypoxic groups, and (4) 3-nitrotyrosine was increased to a larger extent in CH. In conclusion, intermittent hypoxia reduces NO availability through superoxide anion destruction, without reducing its synthesis, while continuous hypoxia affects both, producing larger nitrosative damage which could be related to the more severe cardiovascular alterations. PMID:24719876

  8. Desacetyluvaricin induces S phase arrest in SW480 colorectal cancer cells through superoxide overproduction.

    PubMed

    Xue, Jun-Yi; Zhou, Guang-Xiong; Chen, Tianfeng; Gao, Si; Choi, Mei-Yuk; Wong, Yum-Shing

    2014-03-01

    Annonaceous acetogenins (ACGs) are a group of fatty acid-derivatives with potent anticancer effects. In the present study, we found desacetyluvaricin (Dau) exhibited notable in vitro antiproliferative effect on SW480 human colorectal carcinoma cells with IC50 value of 14 nM. The studies on the underlying mechanisms revealed that Dau inhibited the cancer cell growth through induction of S phase cell cycle arrest from 11.3% (control) to 33.2% (160 nM Dau), which was evidenced by the decreased protein expression of cyclin A Overproduction of superoxide, intracellular DNA damage, and inhibition of MEK/ERK signaling pathway, were also found involved in cells exposed to Dau. Moreover, pre-treatment of the cells with ascorbic acid significantly prevented the Dau-induced overproduction of superoxide, DNA damage and cell cycle arrest. Taken together, our results suggest that Dau induces S phase arrest in cancer cells by firstly superoxide overproduction and subsequently the involvement of various signaling pathways.

  9. Nanostructured cobalt phosphates as excellent biomimetic enzymes to sensitively detect superoxide anions released from living cells.

    PubMed

    Wang, Min-Qiang; Ye, Cui; Bao, Shu-Juan; Xu, Mao-Wen; Zhang, Yan; Wang, Ling; Ma, Xiao-Qing; Guo, Jun; Li, Chang-Ming

    2017-01-15

    Monitoring superoxide anion radicals in living cells has been attracting much academic and industrial interest due to the dual roles of the radicals. Herein, we synthesized a novel nanostructured cobalt phosphate nanorods (Co3(PO4)2 NRs) with tunable pore structure using a simple and effective micro-emulsion method and explored their potential utilization in the electrochemical sensing of superoxide anions. As an analytical and sensing platform, the nanoscale biomimetic enzymes Co3(PO4)2 NRs exhibited excellent selectivity and sensitivity towards superoxide anion (O2(•-)) with a low detection limit (2.25nM), wide linear range (5.76-5396nM), and long-term stability. Further, the nanoscale biomimetic enzyme could be efficiently applied in situ to electrochemically detect O2(•-) released from human malignant melanoma cells and normal keratinocyte, showing excellent real time quantitative detection capability. This material open up exciting opportunities for implementing biomimetic enzymes in nanoscale transition metal phosphates and designing enzyme-free biosensors with much higher sensitivity and durability in health and disease analysis than those of natural one.

  10. Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells.

    PubMed

    Ben Sghaier, Mohamed; Pagano, Alessandra; Mousslim, Mohamed; Ammari, Youssef; Kovacic, Hervé; Luis, José

    2016-12-01

    Lung and colorectal cancer are the principal causes of death in the world. Rutin, an active flavonoid compound, is known for possessing a wide range of biological activities. In this study, we examined the effect of rutin on the viability, superoxide anion production, adhesion and migration of human lung (A549) and colon (HT29 and Caco-2) cancer cell lines. In order to control the harmlessness of the tested concentrations of rutin, the viability of cancer cell lines was assessed using a 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. ROS generation was measured by lucigenin chemiluminescence detecting superoxide ions. To investigate the effect of rutin on the behavior of human lung and colon cancer cell lines, we performed adhesion assays, using various purified extracellular matrix (ECM) proteins. Finally, in vitro cell migration assays were explored using modified Boyden chambers. The viability of cancerous cells was inhibited by rutin. It also significantly attenuated the superoxide production in HT29 cells. In addition, rutin affected adhesion and migration of A549 and HT29 cell. These findings indicate that rutin, a natural molecule, might have potential as anticancer agent against lung and colorectal carcinogenesis.

  11. Purification and characterization of iron-cofactored superoxide dismutase from Enteromorpha linza

    NASA Astrophysics Data System (ADS)

    Lü, Mingsheng; Cai, Ruanhong; Wang, Shujun; Liu, Zhaopu; Jiao, Yuliang; Fang, Yaowei; Zhang, Xiaoxin

    2013-11-01

    A superoxide dismutase was purified from Enteromorpha linza using a simple and safe procedure, which comprised phosphate buffer extraction, ammonium sulphate precipitation, ion exchange chromatography on Q-sepharose column, and gel filtration chromatography on Superdex 200 10/300GL. The E. linza superoxide dismutase ( ElSOD) was purified 103.6-fold, and a yield of 19.1% and a specific activity of 1 750 U/mg protein were obtained. The SDS-PAGE exhibited ElSOD a single band near 23 kDa and the gel filtration study showed ElSOD's molecular weight is near 46 kDa in nondenatured condition, indicating it's a homodimeric protein. El SOD is an iron-cofactored superoxide dismutase (Fe-SOD) because it was inhibited by hydrogen peroxide, insensitive to potassium cyanide. The optimal temperature for its maximal enzyme activity was 35°C, and it still had 29.8% relative activity at 0°C, then ElSOD can be classified as a cold-adapted enzyme. ElSOD was stable when temperature was below 40°C or the pH was within the range of 5-10. The first 11 N-terminal amino acids of ElSOD were ALELKAPPYEL, comparison of its N-terminal sequence with other Fe-SOD N-terminal sequences at the same position suggests it is possibly a chloroplastic Fe-SOD.

  12. Chlorovirus PBCV-1 Encodes an Active Copper-Zinc Superoxide Dismutase

    PubMed Central

    Kang, Ming; Duncan, Garry A.; Kuszynski, Charles; Oyler, George; Zheng, Jiayin; Becker, Donald F.

    2014-01-01

    ABSTRACT Superoxide dismutases (SODs) are metalloproteins that protect organisms from toxic reactive oxygen species by catalyzing the conversion of superoxide anion to hydrogen peroxide and molecular oxygen. Chlorovirus PBCV-1 encodes a 187-amino-acid protein that resembles a Cu-Zn SOD with all of the conserved amino acid residues for binding copper and zinc (named cvSOD). cvSOD has an internal Met that results in a 165-amino-acid protein (named tcvSOD). Both cvSOD and tcvSOD recombinant proteins inhibited nitroblue tetrazolium reduction of superoxide anion generated in a xanthine-xanthine oxidase system in solution. tcvSOD was chosen for further characterization because it was easier to produce. Recombinant tcvSOD also inhibited a riboflavin photochemical reduction system in a polyacrylamide gel assay, which was blocked by the Cu-Zn SOD inhibitor cyanide but not by azide, which inhibits Fe and Mn SODs. A kcat/Km value for cvSOD was determined by stop-flow spectrophotometry as 1.28 × 108 M−1 s−1, suggesting that cvSOD-catalyzed O2− dismutation was not a diffusion controlled encounter. The cvsod gene was expressed as a late gene, and cvSOD activity was detected in purified virions. Superoxide accumulated rapidly during virus infection, and circumstantial evidence indicates that cvSOD aids its decomposition to benefit virus replication. Cu-Zn SOD homologs have been described to occur in 3 other families of large DNA viruses, poxviruses, baculoviruses, and mimiviruses, which group as a clade. Interestingly, cvSOD does not group in the same clade as the other virus SODs but instead groups in an expanded clade that includes Cu-Zn SODs from many cellular organisms. IMPORTANCE Virus infection often leads to an increase in toxic reactive oxygen species in the host, which can be detrimental to virus replication. Viruses have developed various ways to overcome this barrier. As reported in this article, the chloroviruses often encode and package a functional Cu

  13. Compartmentalized oxidative stress in dopaminergic cell death induced by pesticides and complex I inhibitors: Distinct roles of superoxide anion and superoxide dismutases

    PubMed Central

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Pickett, Chillian; Sumin, Li; Jones, Jocelyn; Chen, Han; Webb, Brian; Choi, Jae; Zhou, You; Zimmerman, Matthew C.; Franco, Rodrigo

    2013-01-01

    The loss of dopaminergic neurons induced by the parkinsonian toxins paraquat, rotenone and 1-methyl-4-phenylpyridinium (MPP+) is associated with oxidative stress. However, controversial reports exist regarding the source/compartmentalization of reactive oxygen species (ROS) generation and its exact role in cell death. We aimed to determine in detail the role of superoxide anion (O2•−), oxidative stress and their subcellular compartmentalization in dopaminergic cell death induced by parkinsonian toxins. Oxidative stress and ROS formation was determined in the cytosol, intermembrane (IMS) and mitochondrial matrix compartments, using dihydroethidine derivatives, the redox sensor roGFP, as well as electron paramagnetic resonance spectroscopy. Paraquat induced an increase in ROS and oxidative stress in both the cytosol and mitochondrial matrix prior to cell death. MPP+ and rotenone primarily induced an increase in ROS and oxidative stress in the mitochondrial matrix. No oxidative stress was detected at the level of the IMS. In contrast to previous studies, overexpression of manganese superoxide dismutase (MnSOD) or copper/zinc SOD (CuZnSOD) had no effect on ROS steady state levels, lipid peroxidation, loss of mitochondrial membrane potential (ΔΨm) and dopaminergic cell death induced by MPP+ or rotenone. In contrast, paraquat-induced oxidative stress and cell death were selectively reduced by MnSOD overexpression, but not by CuZnSOD or manganese-porphyrins. However, MnSOD also failed to prevent ΔΨm loss. Finally, paraquat, but not MPP+ or rotenone, induced the transcriptional activation the redox-sensitive antioxidant response elements (ARE) and nuclear factor kappa-B (NF-κB). These results demonstrate a selective role of mitochondrial O2•− in dopaminergic cell death induced by paraquat, and show that toxicity induced by the complex I inhibitors rotenone and MPP+ does not depend directly on mitochondrial O2•− formation. PMID:23602909

  14. [Superoxide dismutase and catalase activities in carotenoid-synthesizing fungi Blakeslea trispora and Neurospora crassa under the oxidative stress].

    PubMed

    Gessler, N N; Sokolov, A V; Bykhovskiĭ, V Ia; Belozerskaia, T A

    2002-01-01

    The addition of menadione into the medium during cultivation of Neurospora crassa in the dark activated its constitutive superoxide dismutase. Exposure to light not only activated superoxide dismutase and catalase, but also increased the content of neurosporaxanthin. Superoxide dismutase activity in the mixed (+/-) mycelium of Blakeslea trispora synthesizing beta-carotene in the dark was much lower than that in Neurospora crassa. The superoxide dismutase activity further decreased in oxidative stress. The catalase activity decreased with an increase in the content of beta-carotene. Our results indicate that neurosporaxanthin possesses photoprotective properties in Neurospora crassa. In Blakeslea trispora (+/-) fungi, this compound acts as a major antioxidant during inactivation of enzymes that detoxify reactive oxygen species.

  15. Functional Activities and Immunohistochemical Distribution of Superoxide Dismutase in Normal, Dysplastic and Squamous Cell Carcinoma Oral Tissues

    DTIC Science & Technology

    2001-07-26

    Support Flight, Tyndall AFB, FL 1998 - present ......................... Orthodontic Residency, The Ohio State University FIELDS OF STUDY Major Field...Taniguchi N. Manganese superoxide dismutase expression correlates with p53 status and local recurrence of cervical carcinoma treated with radiation therapy

  16. The involvement of superoxide and iron ions in the NADPH-dependent lipid peroxidation in human placental mitochondria.

    PubMed

    Klimek, J

    1988-01-19

    Incubation of human term placental mitochondria with Fe2+ and a NADPH-generating system initiated high levels of lipid peroxidation, as measured by the production of malondialdehyde. Malondialdehyde formation was accompanied by a corresponding decrease of the unsaturated fatty acid content. This NADPH-dependent lipid peroxidation was strongly inhibited by superoxide dismutase and singlet oxygen scavengers, markedly stimulated by paraquat, but was not affected by hydroxyl radical scavengers. Catalase enhanced the production of malondialdehyde by placental mitochondria. The effects of catalase and hydroxyl radical scavengers suggest that the initiation of NADPH-dependent lipid peroxidation is not dependent upon the hydroxyl radical produced via an iron-catalyzed Fenton reaction. These studies provide evidence that hydrogen peroxide strongly inhibits NADPH-dependent mitochondrial lipid peroxidation. The inhibitory effect of superoxide dismutase and stimulatory effect of paraquat, which was abolished by the addition of superoxide dismutase, suggests that superoxide may promote NADPH-dependent lipid peroxidation in human placental mitochondria.

  17. A two-photon fluorescent probe for exogenous and endogenous superoxide anion imaging in vitro and in vivo.

    PubMed

    Li, Run-Qing; Mao, Zhi-Qiang; Rong, Lei; Wu, Nian; Lei, Qi; Zhu, Jing-Yi; Zhuang, Lin; Zhang, Xian-Zheng; Liu, Zhi-Hong

    2017-01-15

    Herein, we report a novel quinoline derivative-based two-photon fluorescent probe 6-(dimethylamino)quinoline-2-benzothiazoline (HQ), which is capable of tracking superoxide anion in organisms with specific "turn-on" fluorescence response based on extension of π-conjugations and moderate ICT process. The probe exhibited favorable photophysical properties, a broad linear range and high photostability. It can specifically detect superoxide anion with a significant fluorescence enhancement and great linearity from 0 to 500μM in PBS buffer. Furthermore, HQ shows low cytotoxicity and excellent photostability toward living cells and organisms, which was able to monitor endogenous superoxide anion fluxes in living cells and in vivo. For the first time, endogenous superoxide anion in lung inflammation was visualized successfully by using HQ through two-photon microscopy, and the probe HQ shows great potential for fast in-situ detecting of inflammatory response in live organisms.

  18. Roles of superoxide and myeloperoxidase in ascorbate oxidation in stimulated neutrophils and H2O2-treated HL60 cells.

    PubMed

    Parker, Amber; Cuddihy, Sarah L; Son, Tae G; Vissers, Margreet C M; Winterbourn, Christine C

    2011-10-01

    Ascorbate is present at high concentrations in neutrophils and becomes oxidized when the cells are stimulated. We have investigated the mechanism of oxidation by studying cultured HL60 cells and isolated neutrophils. Addition of H(2)O(2) to ascorbate-loaded HL60 cells resulted in substantial oxidation of intracellular ascorbate. Oxidation was myeloperoxidase-dependent, but not attributable to hypochlorous acid, and can be explained by myeloperoxidase (MPO) exhibiting direct ascorbate peroxidase activity. When neutrophils were stimulated with phorbol myristate acetate, about 40% of their intracellular ascorbate was oxidized over 20 min. Ascorbate loss required NADPH oxidase activity but in contrast to the HL60 cells did not involve myeloperoxidase. It did not occur when exogenous H(2)O(2) was added, was not inhibited by myeloperoxidase inhibitors, and was the same for normal and myeloperoxidase-deficient cells. Neutrophil ascorbate loss was enhanced when endogenous superoxide dismutase was inhibited by cyanide or diethyldithiocarbamate and appears to be due to oxidation by superoxide. We propose that in HL60 cells, MPO-dependent ascorbate oxidation occurs because cellular ascorbate can access newly synthesized MPO before it becomes packaged in granules: a mechanism not possible in neutrophils. In neutrophils, we estimate that ascorbate is capable of competing with superoxide dismutase for a small fraction of the superoxide they generate and propose that the superoxide responsible is likely to come from previously identified sites of intracellular NADPH oxidase activity. We speculate that ascorbate might protect the neutrophil against intracellular effects of superoxide generated at these sites.

  19. Production of superoxide radical in reductive metabolism of a synthetic food-coloring agent, indigocarmine, and related compounds.

    PubMed

    Kohno, Yoichi; Kitamura, Shigeyuki; Yamada, Tsuyoshi; Sugihara, Kazumi; Ohta, Shigeru

    2005-06-24

    Indigocarmine, which is widely used as a synthetic colouring agent for foods and cosmetics in many countries, was reduced to its leuco form and decolorized by rat liver microsomes with NADPH under anaerobic conditions. The reductase activity was enhanced in liver microsomes of phenobarbital-treated rats, and inhibited by diphenyliodonium chloride, a NADPH-cytochrome P450 reductase (P450 reductase) inhibitor, but was not inhibited by SKF 525-A or carbon monoxide. Indigocarmine reductase activity was exhibited by purified rat P450 reductase. In contrast, when indigocarmine was incubated with rat liver microsomes and NADPH under aerobic conditions, superoxide radical was produced and its production was inhibited by superoxide dismutase and diphenyliodonium chloride. When indigocarmine was incubated with purified rat P450 reductase in the presence of NADPH, superoxide radical production was enhanced 17.7-fold (similar to the enhancement of indigocarmine-reducing ability) as compared with that of rat liver microsomes. A decrease of one molecule of NADPH was accompanied with formation of about two molecules of superoxide radical. P450 reductase exhibited little reductase activity towards indigo and tetrabromoindigo, which also afforded little superoxide radical under aerobic conditions. These results indicate that indigocarmine is reduced by P450 reductase to its leuco form, and superoxide radical is produced by autoxidation of the leuco form, through a mechanism known as futile redox cycling.

  20. Hydroethidine- and Mito-SOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: Another inconvenient truth

    PubMed Central

    Zielonka, Jacek; Kalyanaraman, B.

    2010-01-01

    Hydroethidine (or dihydroethidium) (HE) is the most popular fluorogenic probe used for detecting intracellular superoxide radical anion. The reaction between superoxide and HE generates a highly specific red fluorescent product, 2-hydroxyethidium (2-OH-E+). In biological systems, another red fluorescent product, ethidium (E+), is also formed, usually at a much higher concentration than 2-OH-E+. In this article, we have reviewed the methods to selectively detect the superoxide-specific product (2-OH-E+) and the factors affecting its levels in cellular and biological systems. The most important conclusion of the present review is that it is nearly impossible to assess the intracellular levels of the superoxide specific product, 2-OH-E+, using the confocal microscopy or other fluorescence-based microscopic assays and that it is essential to measure by HPLC the intracellular HE and other oxidation products of HE, in addition to 2-OH-E+, in order to fully understand the origin of red fluorescence. The chemical reactivity of mitochondria-targeted hydroethidine (Mito-HE, MitoSOX Red ®) with superoxide is similar to the reactivity of HE with superoxide and therefore, all of the limitations attributed to the HE assay are applicable to Mito-HE (or Mito-SOX) as well. PMID:20116425

  1. Rapid reaction of superoxide with insulin-tyrosyl radicals to generate a hydroperoxide with subsequent glutathione addition.

    PubMed

    Das, Andrew B; Nauser, Thomas; Koppenol, Willem H; Kettle, Anthony J; Winterbourn, Christine C; Nagy, Péter

    2014-05-01

    Tyrosine (Tyr) residues are major sites of radical generation during protein oxidation. We used insulin as a model to study the kinetics, mechanisms, and products of the reactions of radiation-induced or enzyme-generated protein-tyrosyl radicals with superoxide to demonstrate the feasibility of these reactions under oxidative stress conditions. We found that insulin-tyrosyl radicals combined to form dimers, mostly via the tyrosine at position 14 on the α chain (Tyr14). However, in the presence of superoxide, dimerization was largely outcompeted by the reaction of superoxide with insulin-tyrosyl radicals. Using pulse radiolysis, we measured a second-order rate constant for the latter reaction of (6±1) × 10(8) M(-1) s(-1) at pH 7.3, representing the first measured rate constant for a protein-tyrosyl radical with superoxide. Mass-spectrometry-based product analyses revealed the addition of superoxide to the insulin-Tyr14 radical to form the hydroperoxide. Glutathione efficiently reduced the hydroperoxide to the corresponding monoxide and also subsequently underwent Michael addition to the monoxide to give a diglutathionylated protein adduct. Although much slower, conjugation of the backbone amide group can form a bicyclic Tyr-monoxide derivative, allowing the addition of only one glutathione molecule. These findings suggest that Tyr-hydroperoxides should readily form on proteins under oxidative stress conditions where protein radicals and superoxide are both generated and that these should form addition products with thiol compounds such as glutathione.

  2. High-Content Imaging Assays for Identifying Compounds that Generate Superoxide and Impair Mitochondrial Membrane Potential in Adherent Eukaryotic Cells.

    PubMed

    Billis, Puja; Will, Yvonne; Nadanaciva, Sashi

    2014-02-19

    Reactive oxygen species (ROS) are constantly produced in cells as a result of aerobic metabolism. When there is an excessive production of ROS and the cell's antioxidant defenses are overwhelmed, oxidative stress occurs. The superoxide anion is a type of ROS that is produced primarily in mitochondria but is also generated in other regions of the cell including peroxisomes, endoplasmic reticulum, plasma membrane, and cytosol. Here, a high-content imaging assay using the dye dihydroethidium is described for identifying compounds that generate superoxide in eukaryotic cells. A high-content imaging assay using the fluorescent dye tetramethylrhodamine methyl ester is also described to identify compounds that impair mitochondrial membrane potential in eukaryotic cells. The purpose of performing both assays is to identify compounds that (1) generate superoxide at lower concentrations than they impair mitochondrial membrane potential, (2) impair mitochondrial membrane potential at lower concentrations than they generate superoxide, (3) generate superoxide and impair mitochondrial function at similar concentrations, and (4) do not generate superoxide or impair mitochondrial membrane potential during the duration of the assays.

  3. The effect of superoxide dismutase mimetic and catalase on the quality of postthawed goat semen.

    PubMed

    Shafiei, Mojtaba; Forouzanfar, Mohsen; Hosseini, Sayyed Morteza; Esfahani, Mohammad Hossein Nasr

    2015-05-01

    Manganese(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin chloride (MnTE) is a cell-permeable superoxide dismutase mimetic agent which can convert superoxide to hydrogen peroxide (H2O2). Supplementation of MnTE to a commercial semen extender can protect sperm from superoxide but not H2O2. Therefore, we proposed that addition of catalase (0.0, 200, or 400 IU/mL) in combination with MnTE (0.1 μM) may further improve the cryopreservation efficiency of goat semen in commercially optimized freezing media such as Andromed. Therefore, ejaculates were obtained from three adult bucks twice a week during the breeding season and diluted with Andromed supplemented with or without MnTE and catalase and were frozen in liquid nitrogen. Sperm parameters and reactive oxygen species contents were evaluated 2 hours after dilution (before freezing) and after freezing/thawing. The results revealed that all the treatments significantly (P ≤ 0.05) improved sperm motility, viability, and membrane integrity after freezing and reduced reactive oxygen species content compared with the control group, but maximum improvement was obtained in MnTE + 400 IU/mL catalase. In addition, supplementation with these antioxidants significantly (P ≤ 0.05) increases the cleavage rate after IVF. In conclusion, the results of present study suggest that addition of antioxidant MnTE or catalase to commercial optimized media, such as Andromed, improves total motility, membrane integrity, and viability of goat semen samples after thawing. But the degree of improvement for these parameters significantly (P ≤ 0.05) higher when MnTE and catalase were simultaneously added to the cryopreservation media.

  4. Ergothioneine products derived by superoxide oxidation in endothelial cells exposed to high-glucose.

    PubMed

    Servillo, Luigi; D'Onofrio, Nunzia; Casale, Rosario; Cautela, Domenico; Giovane, Alfonso; Castaldo, Domenico; Balestrieri, Maria Luisa

    2017-03-12

    Ergothioneine (Egt), 2-mercapto-L-histidine betaine (ESH), is a dietary component acting as antioxidant and cytoprotectant. In vitro studies demonstrated that Egt, a powerful scavenger of hydroxyl radicals, superoxide anion, hypochlorous acid and peroxynitrite, protects vascular function against oxidative damages, thus preventing endothelial dysfunction. In order to delve the peculiar oxidative behavior of Egt, firstly identified in cell free-systems, experiments were designed to identify the Egt oxidation products when endothelial cells (EC) benefit of its protection against high-glucose (hGluc). HPLC-ESI-MS/MS analyses revealed a decrease in the intracellular GSH levels and an increase in the ophthalmic acid (OPH) levels during hGluc treatment. Interestingly, in the presence of Egt, the decrease of the GSH levels was lower than in cells treated with hGluc alone, and this effect was paralleled by lower OPH levels. Egt was also effective in reducing the cytotoxicity of H2O2 and paraquat (PQT), an inducer of superoxide anion production, showing a similar time-dependent pattern of GSH and OPH levels, although with peaks occurring at different times. Importantly, Egt oxidation generated not only hercynine (EH) but also the sulfonic acid derivative (ESO3H) whose amounts were dependent on the oxidative stress employed. Furthermore, cell-free experiments confirmed the formation of both EH and ESO3H when Egt was reacted with superoxide anion. In summary, these data, by identifying the EH and ESO3H formation in EC exposed to hGluc, highlight the cellular antioxidant properties of Egt, whose peculiar redox behavior makes it an attractive candidate for the prevention of oxidative stress-associated endothelial dysfunction during hyperglycemia.

  5. Macrophage Stimulating Protein (MSP) evokes superoxide anion production by human macrophages of different origin

    PubMed Central

    Brunelleschi, Sandra; Penengo, Lorenza; Lavagno, Luisa; Santoro, Claudio; Colangelo, Donato; Viano, Ilario; Gaudino, Giovanni

    2001-01-01

    Macrophage Stimulating Protein (MSP), a serum factor related to Hepatocyte Growth Factor, was originally discovered to stimulate chemotaxis of murine resident peritoneal macrophages. MSP is the ligand for Ron, a member of the Met subfamily of tyrosine kinase receptors. The effects of MSP on human macrophages and the role played in human pathophysiology have long been elusive.We show here that human recombinant MSP (hrMSP) evokes a dose-dependent superoxide anion production in human alveolar and peritoneal macrophages as well as in monocyte-derived macrophages, but not in circulating human monocytes. Consistently, the mature Ron protein is expressed by the MSP responsive cells but not by the unresponsive monocytes. The respiratory burst evoked by hrMSP is quantitatively higher than the one induced by N-formylmethionyl-leucyl-phenylalanine and similar to phorbol myristate acetate-evoked one.To investigate the mechanisms involved in NADPH oxidase activation, leading to superoxide anion production, different signal transduction inhibitors were used. By using the non selective tyrosine kinase inhibitor genistein, the selective c-Src inhibitor PP1, the tyrosine phosphatase inhibitor sodium orthovanadate, the phosphatidylinositol 3-kinase inhibitor wortmannin, the p38 inhibitor SB203580, the MEK inhibitor PD098059, we demonstrate that hrMSP-evoked superoxide production is mediated by tyrosine kinase activity, requires the activation of Src but not of PI 3-kinase. We also show that MAP kinase and p38 signalling pathways are involved.These results clearly indicate that hrMSP induces the respiratory burst in human macrophages but not in monocytes, suggesting for the MSP/Ron complex a role of activator as well as of possible marker for human mature macrophages. PMID:11704649

  6. Expression of bovine superoxide dismutase in Drosophila melanogaster augments resistance of oxidative stress.

    PubMed Central

    Reveillaud, I; Niedzwiecki, A; Bensch, K G; Fleming, J E

    1991-01-01

    Superoxide dismutases (SOD) play a major role in the intracellular defense against oxygen radical damage to aerobic cells. In eucaryotes, the cytoplasmic form of the enzyme is a 32-kDa dimer containing two copper and two zinc atoms (CuZn SOD) that catalyzes the dismutation of the superoxide anion (O2-) to H2O2 and O2. Superoxide-mediated damage has been implicated in a number of biological processes, including aging and cancer; however, it is not certain whether endogenously elevated levels of SOD will reduce the pathological events resulting from such damage. To understand the in vivo relationship between an efficient dismutation of O2- and oxidative injury to biological structures, we generated transgenic strains of Drosophila melanogaster overproducing CuZn SOD. This was achieved by microinjecting Drosophila embryos with P-elements containing bovine CuZn SOD cDNA under the control of the Drosophila actin 5c gene promoter. Adult flies of the resulting transformed lines which expressed both mammalian and Drosophila CuZn SOD were then used as a novel model for evaluating the role of oxygen radicals in aging. Our data show that expression of enzymatically active bovine SOD in Drosophila flies confers resistance to paraquat, an O2(-)-generating compound. This is consistent with data on adult mortality, because there was a slight but significant increase in the mean lifespan of several of the transgenic lines. The highest level of expression of the active enzyme in adults was 1.60 times the normal value. Higher levels may have led to the formation of toxic levels of H2O2 during development, since flies that died during the process of eclosion showed an unusual accumulation of lipofuscin (age pigment) in some of their cells. In conclusion, our data show that free-radical detoxification has a minor by positive effect on mean longevity for several strains. Images PMID:1899285

  7. The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases

    DOE PAGES

    Peterson, Ryan L.; Galaleldeen, Ahmad; Villarreal, Johanna; ...

    2016-08-17

    In eukaryotes the bimetallic Cu/Zn superoxide dismutase (SOD) enzymes play important roles in the biology of reactive oxygen species by disproportionating superoxide anion. We reported that the fungal pathogen Candida albicans expresses a novel copper-only SOD, known as SOD5, that lacks the zinc cofactor and electrostatic loop (ESL) domain of Cu/Zn-SODs for substrate guidance. In spite of these abnormalities, C. albicans SOD5 can disproportionate superoxide at rates limited only by diffusion. Here we demonstrate that this curious copper-only SOD occurs throughout the fungal kingdom as well as in phylogenetically distant oomycetes or “pseudofungi” species. It is the only form ofmore » extracellular SOD in fungi and oomycetes, in stark contrast to the extracellular Cu/Zn-SODs of plants and animals. Through structural biology and biochemical approaches we demonstrate that these copper-only SODs have evolved with a specialized active site consisting of two highly conserved residues equivalent to SOD5 Glu-110 and Asp-113. The equivalent positions are zinc binding ligands in Cu/Zn-SODs and have evolved in copper-only SODs to control catalysis and copper binding in lieu of zinc and the ESL. Similar to the zinc ion in Cu/Zn-SODs, SOD5 Glu-110 helps orient a key copper-coordinating histidine and extends the pH range of enzyme catalysis. Furthermore, SOD5 Asp-113 connects to the active site in a manner similar to that of the ESL in Cu/Zn-SODs and assists in copper cofactor binding. Copper-only SODs are virulence factors for certain fungal pathogens; thus this unique active site may be a target for future anti-fungal strategies.« less

  8. Changes in superoxide dismutase mRNA expression by streptozotocin-induced diabetes.

    PubMed Central

    Kamata, K.; Kobayashi, T.

    1996-01-01

    1. Experiments were designed to investigate the involvement of superoxide anions in the attenuated endothelium-dependent relaxation of the rat aorta from streptozotocin (STZ)-induced diabetic rats. 2. The endothelium-dependent relaxation responses to acetylcholine (ACh, 10(-7) M) in helical strips of the aorta precontracted with noradrenaline (NA, 5 x 10(-3) approximately 3 x 10(-7) M) were significantly decreased in STZ-induced diabetic rats. The recovery phase of the relaxation after single administration of ACh in the STZ-induced diabetic rats was more rapid than those in control vessels. 3. Preincubation of aortic strips with superoxide dismutase (SOD, 60 u ml-1) normalized the recovery phase of the relaxation of diabetic aorta after single administration of ACh, whereas catalase (150 u ml-1) or indomethacin (10(-5) M) had no effects on the relaxation. 4. SOD (180 u ml-1) caused relaxation in NA precontracted aortic strips and the degree of the SOD-induced relaxation was significantly greater in diabetic aorta as compared with age-matched control vessels. 5. When the changes in mRNA expressions of Mn-SOD or Cu-Zn-SOD were observed, Mn-SOD mRNA expression was markedly decreased, and Cu-Zn-SOD was slightly decreased in diabetic aorta. 6. These results suggest that the rapid destruction of NO by superoxide anions may occur in the STZ-induced diabetic rats, and this may be due to a decrease in mRNA expression of Mn-SOD or Cu-Zn-SOD. Images Figure 4 PMID:8894182

  9. Cu,Zn superoxide dismutase from Photobacterium leiognathi is an hyperefficient enzyme.

    PubMed

    Stroppolo, M E; Sette, M; O'Neill, P; Polizio, F; Cambria, M T; Desideri, A

    1998-09-01

    The catalytic rate constant of recombinant Photobacterium leiognathi Cu,Zn superoxide dismutase has been determined as a function of pH by pulse radiolysis. At pH 7 and low ionic strength (I = 0.02 M) the catalytic rate constant is 8.5 x 10(9) M-1 s-1, more than two times the value found for all the native eukaryotic Cu,Zn superoxide dismutases investigated to date. Similarly, Brownian dynamics simulations indicate an enzyme-substrate association rate more than two times higher than that found for bovine Cu,Zn superoxide dismutase. Titration of the paramagnetic contribution to the water proton relaxation rate of the P. leiognathi with increasing concentration of halide ions with different radii indicates that the proteic channel delimiting the active site is wider than 4.4 A. This is at variance with that found on the eukariotic enzymes, and provides a rationale for the high catalytic rate of the bacterial enzyme. Evidence for solvent exposure of the active site different from that observed in the eukaryotic enzyme is suggested from the pH dependence of the water proton relaxation rate and of the EPR spectrum line shape, which indicate the occurrence of a prototropic equilibrium at pH 9.1 and 9.0, respectively. The pH dependence of the P. leiognathi catalytic rate has a trend different from that observed in the bovine enzyme, indicating that groups differently exposed to the solvent are involved in the modulation of the enzyme-substrate encounter.

  10. Mitochondrial superoxide flashes: metabolic biomarkers of skeletal muscle activity and disease.

    PubMed

    Wei, Lan; Salahura, Gheorghe; Boncompagni, Simona; Kasischke, Karl A; Protasi, Feliciano; Sheu, Shey-Shing; Dirksen, Robert T

    2011-09-01

    Mitochondrial superoxide flashes (mSOFs) are stochastic events of quantal mitochondrial superoxide generation. Here, we used flexor digitorum brevis muscle fibers from transgenic mice with muscle-specific expression of a novel mitochondrial-targeted superoxide biosensor (mt-cpYFP) to characterize mSOF activity in skeletal muscle at rest, following intense activity, and under pathological conditions. Results demonstrate that mSOF activity in muscle depended on electron transport chain and adenine nucleotide translocase functionality, but it was independent of cyclophilin-D-mediated mitochondrial permeability transition pore activity. The diverse spatial dimensions of individual mSOF events were found to reflect a complex underlying morphology of the mitochondrial network, as examined by electron microscopy. Muscle activity regulated mSOF activity in a biphasic manner. Specifically, mSOF frequency was significantly increased following brief tetanic stimulation (18.1 ± 1.6 to 22.3 ± 2.0 flashes/1000 μm²·100 s before and after 5 tetani) and markedly decreased (to 7.7 ± 1.6 flashes/1000 μm²·100 s) following prolonged tetanic stimulation (40 tetani). A significant temperature-dependent increase in mSOF frequency (11.9 ± 0.8 and 19.8 ± 2.6 flashes/1000 μm²·100 s at 23°C and 37°C) was observed in fibers from RYR1(Y522S/WT) mice, a mouse model of malignant hyperthermia and heat-induced hypermetabolism. Together, these results demonstrate that mSOF activity is a highly sensitive biomarker of mitochondrial respiration and the cellular metabolic state of muscle during physiological activity and pathological oxidative stress

  11. Predicted effects of nitric oxide and superoxide on the vasoactivity of the afferent arteriole.

    PubMed

    Layton, Anita T; Edwards, Aurélie

    2015-10-15

    We expanded a published mathematical model of an afferent arteriole smooth muscle cell in rat kidney (Edwards A, Layton, AT. Am J Physiol Renal Physiol 306: F34-F48, 2014) to understand how nitric oxide (NO) and superoxide (O(2)(-)) modulate the arteriolar diameter and its myogenic response. The present model includes the kinetics of NO and O(2)(-) formation, diffusion, and reaction. Also included are the effects of NO and its second messenger cGMP on cellular Ca²⁺ uptake and efflux, Ca²⁺-activated K⁺ currents, and myosin light chain phosphatase activity. The model considers as well pressure-induced increases in O(2)(-) production, O(2)(-)-mediated regulation of L-type Ca²⁺ channel conductance, and increased O(2)(-) production in spontaneous hypertensive rats (SHR). Our results indicate that elevated O(2)(-) production in SHR is sufficient to account for observed differences between normotensive and hypertensive rats in the response of the afferent arteriole to NO synthase inhibition, Tempol, and angiotensin II at baseline perfusion pressures. In vitro, whether the myogenic response is stronger in SHR remains uncertain. Our model predicts that if mechanosensitive cation channels are not modulated by O(2)(-), then fractional changes in diameter induced by pressure elevations should be smaller in SHR than in normotensive rats. Our results also suggest that most NO diffuses out of the smooth muscle cell without being consumed, whereas most O(2)(-) is scavenged, by NO and superoxide dismutase. Moreover, the predicted effects of superoxide on arteriolar constriction are not predominantly due to its scavenging of NO.

  12. The Phylogeny and Active Site Design of Eukaryotic Copper-only Superoxide Dismutases

    SciTech Connect

    Peterson, Ryan L.; Galaleldeen, Ahmad; Villarreal, Johanna; Taylor, Alexander B.; Cabelli, Diane E.; Hart, P. John; Culotta, Valeria C.

    2016-08-17

    In eukaryotes the bimetallic Cu/Zn superoxide dismutase (SOD) enzymes play important roles in the biology of reactive oxygen species by disproportionating superoxide anion. We reported that the fungal pathogen Candida albicans expresses a novel copper-only SOD, known as SOD5, that lacks the zinc cofactor and electrostatic loop (ESL) domain of Cu/Zn-SODs for substrate guidance. In spite of these abnormalities, C. albicans SOD5 can disproportionate superoxide at rates limited only by diffusion. Here we demonstrate that this curious copper-only SOD occurs throughout the fungal kingdom as well as in phylogenetically distant oomycetes or “pseudofungi” species. It is the only form of extracellular SOD in fungi and oomycetes, in stark contrast to the extracellular Cu/Zn-SODs of plants and animals. Through structural biology and biochemical approaches we demonstrate that these copper-only SODs have evolved with a specialized active site consisting of two highly conserved residues equivalent to SOD5 Glu-110 and Asp-113. The equivalent positions are zinc binding ligands in Cu/Zn-SODs and have evolved in copper-only SODs to control catalysis and copper binding in lieu of zinc and the ESL. Similar to the zinc ion in Cu/Zn-SODs, SOD5 Glu-110 helps orient a key copper-coordinating histidine and extends the pH range of enzyme catalysis. Furthermore, SOD5 Asp-113 connects to the active site in a manner similar to that of the ESL in Cu/Zn-SODs and assists in copper cofactor binding. Copper-only SODs are virulence factors for certain fungal pathogens; thus this unique active site may be a target for future anti-fungal strategies.

  13. Superoxide-dependent consumption of nitric oxide in biological media may confound in vitro experiments.

    PubMed

    Keynes, Robert G; Griffiths, Charmaine; Garthwaite, John

    2003-01-15

    NO functions ubiquitously as a biological messenger but has also been implicated in various pathologies, a role supported by many reports that exogenous or endogenous NO can kill cells in tissue culture. In the course of experiments aimed at examining the toxicity of exogenous NO towards cultured cells, we found that most of the NO delivered using a NONOate (diazeniumdiolate) donor was removed by reaction with the tissue-culture medium. Two NO-consuming ingredients were identified: Hepes buffer and, under laboratory lighting, the vitamin riboflavin. In each case, the loss of NO was reversed by the addition of superoxide dismutase. The effect of Hepes was observed over a range of NONOate concentrations (producing up to 1 microM NO). Furthermore, from measurements of soluble guanylate cyclase activity, Hepes-dependent NO consumption remained significant at the low nanomolar NO concentrations relevant to physiological NO signalling. The combination of Hepes and riboflavin (in the light) acted synergistically to the extent that, instead of a steady-state concentration of about 1 microM being generated, NO was undetectable (<10 nM). Again, the consumption could be inhibited by superoxide dismutase. A scheme is proposed whereby a "vicious cycle" of superoxide radical (O(2)(.-)) formation occurs as a result of oxidation of Hepes to its radical species, fuelled by the subsequent reaction of O(2)(.-) with NO to form peroxynitrite (ONOO(-)). The inadvertent production of ONOO(-) and other reactive species in biological media, or the associated loss of NO, may contribute to the adverse effects, or otherwise, of NO in vitro.

  14. Six-coordinate manganese(3+) in catalysis by yeast manganese superoxide dismutase

    SciTech Connect

    Sheng, Yuewei; Gralla, Edith Butler; Schumacher, Mikhail; Cascio, Duilio; Cabelli, Diane E.; Valentine, Joan Selverstone

    2012-10-10

    Reduction of superoxide (O{sub 2}{sup -}) by manganese-containing superoxide dismutase occurs through either a 'prompt protonation' pathway, or an 'inner-sphere' pathway, with the latter leading to formation of an observable Mn-peroxo complex. We recently reported that wild-type (WT) manganese superoxide dismutases (MnSODs) from Saccharomyces cerevisiae and Candida albicans are more gated toward the 'prompt protonation' pathway than human and bacterial MnSODs and suggested that this could result from small structural changes in the second coordination sphere of manganese. We report here that substitution of a second-sphere residue, Tyr34, by phenylalanine (Y34F) causes the MnSOD from S. cerevisiae to react exclusively through the 'inner-sphere' pathway. At neutral pH, we have a surprising observation that protonation of the Mn-peroxo complex in the mutant yeast enzyme occurs through a fast pathway, leading to a putative six-coordinate Mn3+ species, which actively oxidizes O{sub 2}{sup -} in the catalytic cycle. Upon increasing pH, the fast pathway is gradually replaced by a slow proton-transfer pathway, leading to the well-characterized five-coordinate Mn{sup 3+}. We here propose and compare two hypothetical mechanisms for the mutant yeast enzyme, diffeeing in the structure of the Mn-peroxo complex yet both involving formation of the active six-coordinate Mn{sup 3+} and proton transfer from a second-sphere water molecule, which has substituted for the -OH of Tyr34, to the Mn-peroxo complex. Because WT and the mutant yeast MnSOD both rest in the 2+ state and become six-coordinate when oxidized up from Mn{sup 2+}, six-coordinate Mn{sup 3+} species could also actively function in the mechanism of WT yeast MnSODs.

  15. Lung macrophages "digest" carbon nanotubes using a superoxide/peroxynitrite oxidative pathway.

    PubMed

    Kagan, Valerian E; Kapralov, Alexandr A; St Croix, Claudette M; Watkins, Simon C; Kisin, Elena R; Kotchey, Gregg P; Balasubramanian, Krishnakumar; Vlasova, Irina I; Yu, Jaesok; Kim, Kang; Seo, Wanji; Mallampalli, Rama K; Star, Alexander; Shvedova, Anna A

    2014-06-24

    In contrast to short-lived neutrophils, macrophages display persistent presence in the lung of animals after pulmonary exposure to carbon nanotubes. While effective in the clearance of bacterial pathogens and injured host cells, the ability of macrophages to "digest" carbonaceous nanoparticles has not been documented. Here, we used chemical, biochemical, and cell and animal models and demonstrated oxidative biodegradation of oxidatively functionalized single-walled carbon nanotubes via superoxide/NO* → peroxynitrite-driven oxidative pathways of activated macrophages facilitating clearance of nanoparticles from the lung.

  16. Infrared spectra and normal coordinate analysis of a model compound for superoxide dismutase

    NASA Astrophysics Data System (ADS)

    Yin, Jun; Li, Chongde; Chen, Xianyang; Luo, Qinhui

    1997-10-01

    Infrared spectra have been measured and vibrational assignment are given for a new model compound of superoxide dismutase (SOD): [(tren)CuimZn(tren)](ClO 4) 3·CH 3OH (where tren = tris(2-aminoethyl)amine, im = imidazolate). In order to check the empirical assignment, we have performed a detailed normal coordinate analysis (NCA) based on a Urey-Bradley force field. Due to introducing an appropriate set of internal coordinates and force constants in the course of calculation, the agreement between the experimental and calculated frequencies is satisfactory.

  17. Photochemical method for generating superoxide radicals (O.sub.2.sup.-) in aqueous solutions

    DOEpatents

    Holroyd, Richard A.; Bielski, Benon H. J.

    1980-01-01

    A photochemical method and apparatus for generating superoxide radicals (ub.2.sup.-) in an aqueous solution by means of a vacuum-ultraviolet lamp of simple design. The lamp is a microwave powered rare gas device that emits far-ultraviolet light. The lamp includes an inner loop of high purity quartz tubing through which flows an oxygen-saturated sodium formate solution. The inner loop is designed so that the solution is subjected to an intense flux of far-ultraviolet light. This causes the solution to photodecompose and form the product radical (O.sub.2.sup.-).

  18. Super-oxidation of silicon nanoclusters: magnetism and reactive oxygen species at the surface

    SciTech Connect

    Lepeshkin, Sergey; Baturin, Vladimir; Tikhonov, Evgeny; Matsko, Nikita; Uspenskii, Yurii; Naumova, Anastasia; Feya, Oleg; Schoonen, Martin A.; Oganov, Artem R.

    2016-01-01

    Oxidation of silicon nanoclusters depending on the temperature and oxygen pressure is explored from first principles using the evolutionary algorithm, and structural and thermodynamic analysis. From our calculations of 90 SinOm clusters we found that under normal conditions oxidation does not stop at the stoichiometric SiO2 composition, as it does in bulk silicon, but goes further placing extra oxygen atoms on the cluster surface. These extra atoms are responsible for light emission, relevant to reactive oxygen species and many of them are magnetic. We argue that the super-oxidation effect is size-independent and discuss its relevance to nanotechnology and miscellaneous applications, including biomedical ones.

  19. The preparation of calcium superoxide at subambient temperatures and pressures. [oxygen source for breathing apparatus

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Wood, P. C.; Spitze, L. A.; Wydeven, T.; Stein, R.

    1977-01-01

    The effects of disproportionations at lower temperatures and also of a range of reaction chamber pressures on the preparation of calcium superoxide, Ca(O2)2, from calcium peroxide diperoxyhydrate were studied. About 60% purity of product was obtained by a disproportionation procedure. The significance of features of this procedure for a prospective scale-up of the mass prepared in a single experiment is considered. The optimum pressure for product purity was determined, and the use of a molecular sieve desiccant is described.

  20. Identification, sequencing, and expression of Mycobacterium leprae superoxide dismutase, a major antigen.

    PubMed Central

    Thangaraj, H S; Lamb, F I; Davis, E O; Jenner, P J; Jeyakumar, L H; Colston, M J

    1990-01-01

    The gene encoding a major 28-kilodalton antigen of Mycobacterium leprae has now been sequenced and identified as the enzyme superoxide dismutase (SOD) on the basis of the high degree of homology with known SOD sequences. The deduced amino acid sequence shows 67% homology with a human manganese-utilizing SOD and 55% homology with the Escherichia coli manganese-utilizing enzyme. The gene is not expressed from its own promoter in E. coli but is expressed from its own promoter in Mycobacterium smegmatis. The amino acid sequences of epitopes recognized by monoclonal antibodies against the 28-kilodalton antigen have been determined. Images PMID:1692812

  1. Potentiation of Antibiofilm Activity of Amphotericin B by Superoxide Dismutase Inhibition

    PubMed Central

    De Brucker, Katrijn; Bink, Anna; Meert, Els; Cammue, Bruno P. A.; Thevissen, Karin

    2013-01-01

    This study demonstrates a role for superoxide dismutases (Sods) in governing tolerance of Candida albicans biofilms to amphotericin B (AmB). Coincubation of C. albicans biofilms with AmB and the Sod inhibitors N,N′-diethyldithiocarbamate (DDC) or ammonium tetrathiomolybdate (ATM) resulted in reduced viable biofilm cells and increased intracellular reactive oxygen species levels as compared to incubation of biofilm cells with AmB, DDC, or ATM alone. Hence, Sod inhibitors can be used to potentiate the activity of AmB against C. albicans biofilms. PMID:24078861

  2. Formation and disappearance of superoxide radicals in aqueous solutions. [79 references

    SciTech Connect

    Allen, A O; Bielski, B H.J.

    1980-01-01

    A literature review of superoxide radicals in aqueous solutions is presented covering the following: history; methods of formation of aqueous HO/sub 2//HO/sub 2//sup -/ by radiolysis and photolysis, electrolysis, mixing nonaqueous solutions into water, chemical reactions, enzymatic generation of O/sub 2//sup -/, and photosensitization; and properties of HO/sub 2//O/sub 2//sup -/ in aqueous solution, which cover spontaneous dismutation rates, pk and absorption spectra, catalyzed dismutation, thermodynamics and the so-called Haber-Weiss Reaction.

  3. Protection against hyperoxia by serum from endotoxin treated rats: absence of superoxide dismutase induction

    SciTech Connect

    Berg, J.T.; Smith, R.M.

    1988-01-01

    Endotoxin greatly reduces lung injury and pleural effusions in adult rats exposed to normobaric hyperoxia (> 98% oxygen for 60 hours). This study reports that serum from endotoxin treated donor rats protects serum recipients against hyperoxic lung injury without altering lung superoxide dismutase (SOD) activity. Rats pretreated with endotoxin alone were protected and exhibited an increase in lung SOD activity as previously reported by others. Protection by serum was not due to the transfer of residual endotoxin or SOD. These results show, that protection from oxygen toxicity can occur in rats without an increase in lung SOD and suggest that a serum factor may be involved.

  4. Theoretical study of the 2A2-2B2 separation of the alkali superoxides

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Sodupe, Mariona; Partridge, Harry; Langhoff, Stephen R.

    1992-01-01

    The computed 2A2-2B2 separations of the alkali superoxides are in good agreement with those deduced from electron-spin resonance spectra. The calculations definitively show that the ground state of CsO2 is 2A2. The larger than expected separation for CsO2, based on the trend from LiO2 to RbO2, is attributed primarily to the differential effects of core relaxation. The CsO2 dissociation energy is computed to be 42.7 kcal/mol, with an uncertainty conservatively estimated as +/- 4 kcal/mol.

  5. The 2-Oxoacid Dehydrogenase Complexes in Mitochondria Can Produce Superoxide/Hydrogen Peroxide at Much Higher Rates Than Complex I*

    PubMed Central

    Quinlan, Casey L.; Goncalves, Renata L. S.; Hey-Mogensen, Martin; Yadava, Nagendra; Bunik, Victoria I.; Brand, Martin D.

    2014-01-01

    Several flavin-dependent enzymes of the mitochondrial matrix utilize NAD+ or NADH at about the same operating redox potential as the NADH/NAD+ pool and comprise the NADH/NAD+ isopotential enzyme group. Complex I (specifically the flavin, site IF) is often regarded as the major source of matrix superoxide/H2O2 production at this redox potential. However, the 2-oxoglutarate dehydrogenase (OGDH), branched-chain 2-oxoacid dehydrogenase (BCKDH), and pyruvate dehydrogenase (PDH) complexes are also capable of considerable superoxide/H2O2 production. To differentiate the superoxide/H2O2-producing capacities of these different mitochondrial sites in situ, we compared the observed rates of H2O2 production over a range of different NAD(P)H reduction levels in isolated skeletal muscle mitochondria under conditions that favored superoxide/H2O2 production from complex I, the OGDH complex, the BCKDH complex, or the PDH complex. The rates from all four complexes increased at higher NAD(P)H/NAD(P)+ ratios, although the 2-oxoacid dehydrogenase complexes produced superoxide/H2O2 at high rates only when oxidizing their specific 2-oxoacid substrates and not in the reverse reaction from NADH. At optimal conditions for each system, superoxide/H2O2 was produced by the OGDH complex at about twice the rate from the PDH complex, four times the rate from the BCKDH complex, and eight times the rate from site IF of complex I. Depending on the substrates present, the dominant sites of superoxide/H2O2 production at the level of NADH may be the OGDH and PDH complexes, but these activities may often be misattributed to complex I. PMID:24515115

  6. Loss of NOX-Derived Superoxide Exacerbates Diabetogenic CD4 T-Cell Effector Responses in Type 1 Diabetes.

    PubMed

    Padgett, Lindsey E; Anderson, Brian; Liu, Chao; Ganini, Douglas; Mason, Ronald P; Piganelli, Jon D; Mathews, Clayton E; Tse, Hubert M

    2015-12-01

    Reactive oxygen species (ROS) play prominent roles in numerous biological systems. While classically expressed by neutrophils and macrophages, CD4 T cells also express NADPH oxidase (NOX), the superoxide-generating multisubunit enzyme. Our laboratory recently demonstrated that superoxide-deficient nonobese diabetic (NOD.Ncf1(m1J)) mice exhibited a delay in type 1 diabetes (T1D) partially due to blunted IFN-γ synthesis by CD4 T cells. For further investigation of the roles of superoxide on CD4 T-cell diabetogenicity, the NOD.BDC-2.5.Ncf1(m1J) (BDC-2.5.Ncf1(m1J)) mouse strain was generated, possessing autoreactive CD4 T cells deficient in NOX-derived superoxide. Unlike NOD.Ncf1(m1J), stimulated BDC-2.5.Ncf1(m1J) CD4 T cells and splenocytes displayed elevated synthesis of Th1 cytokines and chemokines. Superoxide-deficient BDC-2.5 mice developed spontaneous T1D, and CD4 T cells were more diabetogenic upon adoptive transfer into NOD.Rag recipients due to a skewing toward impaired Treg suppression. Exogenous superoxide blunted exacerbated Th1 cytokines and proinflammatory chemokines to approximately wild-type levels, concomitant with reduced IL-12Rβ2 signaling and P-STAT4 (Y693) activation. These results highlight the importance of NOX-derived superoxide in curbing autoreactivity due, in part, to control of Treg function and as a redox-dependent checkpoint of effector T-cell responses. Ultimately, our studies reveal the complexities of free radicals in CD4 T-cell responses.

  7. Nox2-dependent glutathionylation of endothelial NOS leads to uncoupled superoxide production and endothelial barrier dysfunction in acute lung injury.

    PubMed

    Wu, Feng; Szczepaniak, William S; Shiva, Sruti; Liu, Huanbo; Wang, Yinna; Wang, Ling; Wang, Ying; Kelley, Eric E; Chen, Alex F; Gladwin, Mark T; McVerry, Bryan J

    2014-12-15

    Microvascular barrier integrity is dependent on bioavailable nitric oxide (NO) produced locally by endothelial NO synthase (eNOS). Under conditions of limited substrate or cofactor availability or by enzymatic modification, eNOS may become uncoupled, producing superoxide in lieu of NO. This study was designed to investigate how eNOS-dependent superoxide production contributes to endothelial barrier dysfunction in inflammatory lung injury and its regulation. C57BL/6J mice were challenged with intratracheal LPS. Bronchoalveolar lavage fluid was analyzed for protein accumulation, and lung tissue homogenate was assayed for endothelial NOS content and function. Human lung microvascular endothelial cell (HLMVEC) monolayers were exposed to LPS in vitro, and barrier integrity and superoxide production were measured. Biopterin species were quantified, and coimmunoprecipitation (Co-IP) assays were performed to identify protein interactions with eNOS that putatively drive uncoupling. Mice exposed to LPS demonstrated eNOS-dependent increased alveolar permeability without evidence for altered canonical NO signaling. LPS-induced superoxide production and permeability in HLMVEC were inhibited by the NOS inhibitor nitro-l-arginine methyl ester, eNOS-targeted siRNA, the eNOS cofactor tetrahydrobiopterin, and superoxide dismutase. Co-IP indicated that LPS stimulated the association of eNOS with NADPH oxidase 2 (Nox2), which correlated with augmented eNOS S-glutathionylation both in vitro and in vivo. In vitro, Nox2-specific inhibition prevented LPS-induced eNOS modification and increases in both superoxide production and permeability. These data indicate that eNOS uncoupling contributes to superoxide production and barrier dysfunction in the lung microvasculature after exposure to LPS. Furthermore, the results implicate Nox2-mediated eNOS-S-glutathionylation as a mechanism underlying LPS-induced eNOS uncoupling in the lung microvasculature.

  8. Iron sucrose accelerates early atherogenesis by increasing superoxide production and upregulating adhesion molecules in CKD.

    PubMed

    Kuo, Ko-Lin; Hung, Szu-Chun; Lee, Tzong-Shyuan; Tarng, Der-Cherng

    2014-11-01

    High-dose intravenous iron supplementation is associated with adverse cardiovascular outcomes in patients with CKD, but the underlying mechanism is unknown. Our study investigated the causative role of iron sucrose in leukocyte-endothelium interactions, an index of early atherogenesis, and subsequent atherosclerosis in the mouse remnant kidney model. We found that expression levels of intracellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and adhesion of U937 cells increased in iron-treated human aortic endothelial cells through upregulated NADPH oxidase (NOx) and NF-κB signaling. We then measured mononuclear-endothelial adhesion and atherosclerotic lesions of the proximal aorta in male C57BL/6 mice with subtotal nephrectomy, male apolipoprotein E-deficient (ApoE(-/-)) mice with uninephrectomy, and sham-operated mice subjected to saline or parenteral iron loading. Iron sucrose significantly increased tissue superoxide production, expression of tissue cell adhesion molecules, and endothelial adhesiveness in mice with subtotal nephrectomy. Moreover, iron sucrose exacerbated atherosclerosis in the aorta of ApoE(-/-) mice with uninephrectomy. In patients with CKD, intravenous iron sucrose increased circulating mononuclear superoxide production, expression of soluble adhesion molecules, and mononuclear-endothelial adhesion compared with healthy subjects or untreated patients. In summary, iron sucrose aggravated endothelial dysfunction through NOx/NF-κB/CAM signaling, increased mononuclear-endothelial adhesion, and exacerbated atherosclerosis in mice with remnant kidneys. These results suggest a novel causative role for therapeutic iron in cardiovascular complications in patients with CKD.

  9. An iron-based cytosolic catalase and superoxide dismutase mimic complex.

    PubMed

    Horn, Adolfo; Parrilha, Gabrieli L; Melo, Karen V; Fernandes, Christiane; Horner, Manfredo; Visentin, Lorenzo do C; Santos, Jullyane A S; Santos, Monique S; Eleutherio, Elis C A; Pereira, Marcos D

    2010-02-15

    The development of metallodrugs with antioxidant activities is of importance as a way to protect organisms exposed to stressful conditions. Although iron chemistry in the presence of H(2)O(2) is usually associated with pro-oxidant activity, mainly via the Fenton reaction, we found that the mononuclear compound [Fe(HPClNOL)Cl(2)]NO(3) (1; C(15)H(18)Cl(3)FeN(4)O(4), a = 8.7751(3) A, b = 9.0778(4) A, c = 24.3869(10) A, beta = 93.370(2) degrees , monoclinic, P2(1)/c, Z = 4), containing the tripodal ligand 1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol, decomposes hydrogen peroxide and superoxide anion in vitro as well as shows in vivo protection because it prevents the harmful effects promoted by H(2)O(2) on Saccharomyces cerevisiae cells, decreasing the level of lipid peroxidation. This protective effect was observed for wild-type cells, as well as for mutant cells, which do not present the antioxidant metalloenzymes catalase (Ctt1) or copper/zinc superoxide dismutase (Sod1).

  10. Rapid reaction of nanomolar Mn(II) with superoxide radical in seawater and simulated freshwater

    USGS Publications Warehouse

    Hansard, S.P.; Easter, H.D.; Voelker, B.M.

    2011-01-01

    Superoxide radical (O2-) has been proposed to be an important participant in oxidation-reduction reactions of metal ions in natural waters. Here, we studied the reaction of nanomolar Mn(II) with O 2- in seawater and simulated freshwater, using chemiluminescence detection of O2- to quantify the effect of Mn(II) on the decay kinetics of O2-. With 3-24 nM added [Mn(II)] and <0.7 nM [O2-], we observed effective second-order rate constants for the reaction of Mn(II) with O2- of 6 ?? 106 to 1 ?? 107 M -1???s-1 in various seawater samples. In simulated freshwater (pH 8.6), the effective rate constant of Mn(II) reaction with O 2- was somewhat lower, 1.6 ?? 106 M -1???s-1. With higher initial [O2-], in excess of added [Mn(II)], catalytic decay of O 2- by Mn was observed, implying that a Mn(II/III) redox cycle occurred. Our results show that reactions with nanomolar Mn(II) could be an important sink of O2- in natural waters. In addition, reaction of Mn(II) with superoxide could maintain a significant fraction of dissolved Mn in the +III oxidation state. ?? 2011 American Chemical Society.

  11. Recombinant Mitochondrial Manganese Containing Superoxide Dismutase Protects Against Ochratoxin A-Induced Nephrotoxicity.

    PubMed

    Ciarcia, Roberto; Damiano, Sara; Squillacioti, Caterina; Mirabella, Nicola; Pagnini, Ugo; Florio, Alessia; Severino, Lorella; Capasso, Giovambattista; Borrelli, Antonella; Mancini, Aldo; Boffo, Silvia; Romano, Gaetano; Giordano, Antonio; Florio, Salvatore

    2016-06-01

    Ochratoxin A (OTA) is a natural mycotoxin, involved in the development of important human and animal diseases. In this work we have studied the role of oxidative stress in the development of OTA nephrotoxicity and the effect of a new recombinant mitochondrial manganese containing superoxide dismutase (rMnSOD) to prevent kidney damage induced by OTA. Blood pressure, glomerular filtration rate and renal histology were analyzed in control rats and in OTA treated rats. In addition, lipid peroxidation, catalase and superoxide dismutase productions were measured. Our data showed that animals treated with OTA presented hypertension and reduction of glomerular filtration rate (GFR). These effects are most probably related to an increase in the reactive oxygen species (ROS) productions. In fact, we have shown that treatment with rMnSOD restored the levels of blood pressure and GFR simultaneously. Moreover, we have noted that OTA induced alteration on glomerular and tubular degeneration and interstitial infiltrates and that use of rMnSOD combined with OTA prevent this renal histological damage confirming the potential therapeutic role in the treatment of rMnSOD OTA nephrotoxicity.

  12. Spectroscopic and molecular modeling studies on the interactions of N-Methylformamide with superoxide dismutase.

    PubMed

    Kalyani, Durai; Jyothi, Kanagaraj; Sivaprakasam, Chinnarasu; Nachiappan, Vasanthi

    2014-04-24

    N-Methylformamide, a polar solvent has a wide industrial applications and it is well-known for hepatotoxicity. The interaction between NMF with superoxide dismutase, an antioxidant defense enzyme has been studied for the first time using spectroscopic methods including Fourier transform infrared (FT-IR) spectroscopy, Circular dichroism (CD) spectroscopy and UV-visible spectroscopy under simulative physiological conditions and also by molecular modelling. Fourier Transform Infra Red analysis showed that the change in peak positions and shapes revealed that the secondary structure of SOD had been changed by the interaction with NMF. The data of CD spectra also confirmed that NMF decreased the degree of secondary structure of SOD, which directly resulted in destabilization of enzyme. We studied the inhibitory effect of NMF on enzyme kinetics by pyrogallol autoxidation revealed that protein-ligand complex caused structural unfolding which resulted in enzymatic inhibition. Thus the spectral behaviour of superoxide dismutase provides data concerning its conformational changes in the presence of NMF. Furthermore, molecular docking was applied to explore the binding mode between the protein-ligand complex. This suggested that Asn54 and Val302 residues of dimeric protein were predicted to interact with NMF. The present study provides direct evidence at a molecular level to show that exposure to NMF cause perturbation in its structure and function.

  13. Cell metabolic changes of porphyrins and superoxide anions by anthracene and benzo(a)pyrene.

    PubMed

    Uribe-Hernández, Raúl; Pérez-Zapata, Aura J; Vega-Barrita, María L; Ramón-Gallegos, Eva; Amezcua-Allieri, Myriam A

    2008-09-01

    The aim of this work was to evaluate the induction of protoporphyrins IX (PpIX) activity and superoxide anions (SO) in human leukocytes exposed to anthracene (ANT) and benzo(a)pyrene (B(a)P). The leukocyte LC(50)s for both hydrocarbons and the PpIX accumulation and SO overproduction were measured. The LC(50)s were 0.35 and 3.23μM for ANT and B(a)P, respectively. A linear relationship (r=0.97, p<0.01) between PpIX and ANT concentration was obtained. The induced accumulation of PpIX was proportional (r=0.63, p<0.01) to B(a)P concentration. SO overproduction showed a linear relationship (r=0.83, p<0.05) with ANT concentrations. The linear regression analysis of the effect of B(a)P on the superoxide anion overproduction showed a good coefficient (r=0.97, p<0.01), showed that ANT and B(a)P exposure induces PpIX accumulation, probably by disruption of the haem biosynthesis. ANT and B(a)P induce SO overproduction, perhaps through a process of redox cycling.

  14. Metal bacteriochlorins which act as dual singlet oxygen and superoxide generators.

    PubMed

    Fukuzumi, Shunichi; Ohkubo, Kei; Zheng, Xiang; Chen, Yihui; Pandey, Ravindra K; Zhan, Riqiang; Kadish, Karl M

    2008-03-06

    A series of stable free-base, Zn(II) and Pd(II) bacteriochlorins containing a fused six- or five-member diketo- or imide ring have been synthesized as good candidates for photodynamic therapy sensitizers, and their electrochemical, photophysical, and photochemical properties were examined. Photoexcitation of the palladium bacteriochlorin affords the triplet excited state without fluorescence emission, resulting in formation of singlet oxygen with a high quantum yield due to the heavy atom effect of palladium. Electrochemical studies revealed that the zinc bacteriochlorin has the smallest HOMO-LUMO gap of the investigated compounds, and this value is significantly lower than the triplet excited-state energy of the compound in benzonitrile. Such a small HOMO-LUMO gap of the zinc bacteriochlorin enables intermolecular photoinduced electron transfer from the triplet excited state to the ground state to produce both the radical cation and the radical anion. The radical anion thus produced can transfer an electron to molecular oxygen to produce superoxide anion which was detected by electron spin resonance. The same photosensitizer can also act as an efficient singlet oxygen generator. Thus, the same zinc bacteriochlorin can function as a sensitizer with a dual role in that it produces both singlet oxygen and superoxide anion in an aprotic solvent (benzonitrile).

  15. Dissolution and ionization of sodium superoxide in sodium–oxygen batteries

    PubMed Central

    Kim, Jinsoo; Park, Hyeokjun; Lee, Byungju; Seong, Won Mo; Lim, Hee-Dae; Bae, Youngjoon; Kim, Haegyeom; Kim, Won Keun; Ryu, Kyoung Han; Kang, Kisuk

    2016-01-01

    With the demand for high-energy-storage devices, the rechargeable metal–oxygen battery has attracted attention recently. Sodium–oxygen batteries have been regarded as the most promising candidates because of their lower-charge overpotential compared with that of lithium–oxygen system. However, conflicting observations with different discharge products have inhibited the understanding of precise reactions in the battery. Here we demonstrate that the competition between the electrochemical and chemical reactions in sodium–oxygen batteries leads to the dissolution and ionization of sodium superoxide, liberating superoxide anion and triggering the formation of sodium peroxide dihydrate (Na2O2·2H2O). On the formation of Na2O2·2H2O, the charge overpotential of sodium–oxygen cells significantly increases. This verification addresses the origin of conflicting discharge products and overpotentials observed in sodium–oxygen systems. Our proposed model provides guidelines to help direct the reactions in sodium–oxygen batteries to achieve high efficiency and rechargeability. PMID:26892931

  16. Featured Article: Effect of copper on nuclear translocation of copper chaperone for superoxide dismutase-1

    PubMed Central

    Wang, Lin; Ge, Yan

    2016-01-01

    Copper chaperone for superoxide dismutase-1 (CCS-1), facilitating copper insertion into superoxide dismutase 1 (SOD-1), is present in the nucleus. However, it is unknown how CCS-1 is translocated to the nucleus. The present study was undertaken to determine the effect of copper on nuclear translocation of CCS-1. Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia, causing an increase in both copper and CCS-1 in the nucleus. Treatment with tetraethylenepentamine (TEPA) not only decreased the total cellular concentration and the nuclear translocation of copper, but also completely suppressed the entry of CCS-1 to the nucleus. On the other hand, siRNA targeting CCS-1 neither inhibited the increase in total concentrations nor blocked the nuclear translocation of copper. This study thus demonstrates that under hypoxia condition, both copper and CCS-1 are transported to the nucleus. The nuclear translocation of CCS-1 is copper dependent, but the nuclear translocation of copper could take place alternatively in a CCS-1-independent pathway. PMID:27190267

  17. Featured Article: Effect of copper on nuclear translocation of copper chaperone for superoxide dismutase-1.

    PubMed

    Wang, Lin; Ge, Yan; Kang, Y James

    2016-08-01

    Copper chaperone for superoxide dismutase-1 (CCS-1), facilitating copper insertion into superoxide dismutase 1 (SOD-1), is present in the nucleus. However, it is unknown how CCS-1 is translocated to the nucleus. The present study was undertaken to determine the effect of copper on nuclear translocation of CCS-1. Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia, causing an increase in both copper and CCS-1 in the nucleus. Treatment with tetraethylenepentamine (TEPA) not only decreased the total cellular concentration and the nuclear translocation of copper, but also completely suppressed the entry of CCS-1 to the nucleus. On the other hand, siRNA targeting CCS-1 neither inhibited the increase in total concentrations nor blocked the nuclear translocation of copper. This study thus demonstrates that under hypoxia condition, both copper and CCS-1 are transported to the nucleus. The nuclear translocation of CCS-1 is copper dependent, but the nuclear translocation of copper could take place alternatively in a CCS-1-independent pathway.

  18. Manganese Phosphate Self-assembled Nanoparticle Surface and Its application for Superoxide Anion Detection

    PubMed Central

    Shen, Xiaohui; Wang, Qi; Liu, Yuhong; Xue, Wenxiao; Ma, Lie; Feng, Shuaihui; Wan, Mimi; Wang, Fenghe; Mao, Chun

    2016-01-01

    Quantitative analysis of superoxide anion (O2·−) has increasing importance considering its potential damages to organism. Herein, a novel Mn-superoxide dismutase (MnSOD) mimics, silica-manganous phosphate (SiO2-Mn3(PO4)2) nanoparticles, were designed and synthesized by surface self-assembly processes that occur on the surface of silica-phytic acid (SiO2-PA) nanoparticles. The composite nanoparticles were characterized by fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electronic microscopy (SEM), electron diffraction pattern, energy dispersive spectroscopy (EDS) and elemental mapping. Then the electrochemical measurements of O2·− based on the incorporation of SiO2-Mn3(PO4)2 onto the surface of electrodes were performed, and some satisfactory results were obtained. This is the first report that manganous phosphate (Mn3(PO4)2) nanoparticles with shape-controlled, but not multilayer sheets, were utilized for O2·− detection. The surface self-assembly technology we proposed will offer the ideal material to construct more types biosensor and catalytic system for its nanosized effect. PMID:27357008

  19. Tri-iodothyronine alters superoxide dismutase expression in a teleost Anabas testudineus.

    PubMed

    Sreejith, P; Oommen, O V

    2008-12-01

    The effect of tri-iodothyronine (T3) on superoxide dismutase (SOD) expression was evaluated in a teleost Anabas testudineus (cuthyroid fish) by native gel eletrophoresis and Western blot analysis. SOD is an essential enzyme for the survival of oxygen-utilizing organisms. Its expression is altered by the stress, presumably due to the increase in concentration of superoxide radical in cells. Variations of thyroid honnone levels are the major physiological modulators of cellular oxidative stress. T3 administration generates an oxidative stress, which to some extent is neutralized by the changed activity of enzymes like SOD. T3 treatment decreased CuZn SOD density in liver and brain of A. testudineus. The activity of CuZn SOD in liver and brain was confirmed by native gel analysis. The different physiological states of thyroid influenced the CuZn SOD activity. Western blot analysis further confirmed that liver and brain CuZn SOD decreased after T3 treatment. From these findings, it was clear that T3 treatment in euthyroid fish created an oxidative stress condition and thyroid hormone effectively maintained antioxidant status to overcome this situation in teleosts.

  20. cap alpha. -Naphthylisothiocyanate (ANIT) stimulates the release of superoxide by rat neutrophils in vitro

    SciTech Connect

    Roth, R.A.; Hewett, J.

    1986-03-01

    ..cap alpha..-Naphthylisothiocyanate (ANIT) is an hepatotoxicant that produces cholestasis and hyperbilirubinemia in rats. Its mechanism of action is unknown. The observation that polymorphonuclear leukocytes (PMNs) accumulate in the bile ductular region of the liver following ANIT administration prompted us to examine the ability of ANIT to stimulate these cells. PMNs elicited from rat peritoneum were treated with ANIT in vitro to test for the release of superoxide anion (O/sub 2//sup -/). ANIT stimulated O/sub 2//sup -/ release from PMNs in a concentration-dependent manner. Maximal O/sub 2//sup -/ release was achieved by an ANIT concentration of 110 ..mu.. M. O/sub 2//sup -/ release was rapid after the first few minutes of ANIT addition and ceased entirely between 10 and 15 minutes. An increase in the extracellular activity of lactate dehydrogenase also occurred after a 5-10 minute lag phase following ANIT addition. PMNs exposed to ANIT also failed to exclude trypan blue dye, either in the presence or in the absence of superoxide dismutase and catalase, suggesting a direct, oxygen radical-independent, cytotoxic effect of ANIT on PMNs. Release of the lysosomal enzyme, ..beta..-glucuronidase, also occurred within 5 min following exposure of PMNs to ANIT. These results indicate that ANIT stimulates the release of cytotoxic agents from rat PMNs in vitro and suggests that the direct stimulation of PMNs in vivo may contribute to ANIT-induced hepatotoxicity in rats.

  1. HPLC study of oxidation products of hydroethidine in chemical and biological systems: Ramifications in superoxide measurements

    PubMed Central

    Zielonka, Jacek; Hardy, Micael; Kalyanaraman, B.

    2012-01-01

    Methods for detection and quantitation of hydroethidine (HE) and its oxidation products by HPLC analysis are described. Synthetic methods for preparations of authentic standards (2-hydroxyethidium and diethidium) are provided. Potential applications of the HPLC methods to chemical and biological systems are discussed. Specific examples of chromatograms obtained using UV-Vis absorption, fluorescence, electrochemical and mass spectrometry detectors are provided. The development of a dual electrochemical and fluorescence detection methodology and its applications are described. The HPLC-based method enables analyses of HE and its oxidation products such as ethidium and the dimeric products of HE. Ramifications of HPLC measurements of HE and its oxidation products in the detection and quantitation of 2-hydroxyethidium, the diagnostic marker product of superoxide and HE, in the intracellular milieu are discussed. Similarly, mitochondria-targeted HE conjugated to a triphenylphosphonium group (Mito-HE or Mito-SOX) also forms oxidation products (dimers of Mito-HE and Mito-E+) that can affect the detection and quantitation of 2-hydroxy-mito-ethidium, the diagnostic marker product of Mito-HE and superoxide in mitochondria. PMID:19026738

  2. Peroxynitrite-induced nitration of tyrosine-34 does not inhibit Escherichia coli iron superoxide dismutase.

    PubMed Central

    Soulère, L; Claparols, C; Périé, J; Hoffmann, P

    2001-01-01

    The peroxynitrite anion is a potent oxidizing agent, formed by the diffusion-limited combination of nitric oxide and superoxide, and its production under physiological conditions is associated with the pathologies of a number of inflammatory and neurodegenerative diseases. Nitration of Escherichia coli iron superoxide dismutase (Fe-SOD) by peroxynitrite was investigated, and demonstrated by spectral changes and electrospray mass spectroscopic analysis. HPLC and mass studies of the tryptic digests of the mono-nitrated Fe-SOD indicated that tyrosine-34 was the residue most susceptible to nitration by peroxynitrite. Exclusive nitration of this residue occurred when Fe-SOD was exposed to a cumulative dose of 0.4 mM peroxynitrite. Unlike with human Mn-SOD, this single modification did not inactivate E. coli Fe-SOD at pH 7.4. When Fe-SOD was exposed to higher concentrations of peroxynitrite (7 mM), eight tyrosine residues per subunit of the protein, of the nine available, were nitrated without loss of catalytic activity of the enzyme. The pK(a) of nitrated tyrosine-34 was determined to be 7.95+/-0.15, indicating that the peroxynitrite-modified enzyme appreciably maintains its protonation state under physiological conditions. PMID:11736645

  3. Investigation of the Highly Active Manganese Superoxide Dismutase from Saccharomyces cerevisiae

    SciTech Connect

    Cabelli, D.E.; Barnese, K.; Sheng, Y.; Stich, T.A.; Gralla, E.B.; Britt, R.D.; Valentine, J.S.

    2010-09-15

    Manganese superoxide dismutase (MnSOD) from different species differs in its efficiency in removing high concentrations of superoxide (O{sub 2}{sup -}), due to different levels of product inhibition. Human MnSOD exhibits a substantially higher level of product inhibition than the MnSODs from bacteria. In order to investigate the mechanism of product inhibition and whether it is a feature common to eukaryotic MnSODs, we purified MnSOD from Saccharomyces cerevisiae (ScMnSOD). It was a tetramer with 0.6 equiv of Mn per monomer. The catalytic activity of ScMnSOD was investigated by pulse radiolysis and compared with human and two bacterial (Escherichia coli and Deinococcus radiodurans) MnSODs. To our surprise, ScMnSOD most efficiently facilitates removal of high concentrations of O{sub 2}{sup -} among these MnSODs. The gating value k{sub 2}/k{sub 3} that characterizes the level of product inhibition scales as ScMnSOD > D. radiodurans MnSOD > E. coli MnSOD > human MnSOD. While most MnSODs rest as the oxidized form, ScMnSOD was isolated in the Mn{sup 2+} oxidation state as revealed by its optical and electron paramagnetic resonance spectra. This finding poses the possibility of elucidating the origin of product inhibition by comparing human MnSOD with ScMnSOD.

  4. Superoxide generation in extracts from isolated plant cell walls is regulated by fungal signal molecules.

    PubMed

    Kiba, A; Miyake, C; Toyoda, K; Ichinose, Y; Yamada, T; Shiraishi, T

    1997-08-01

    ABSTRACT Fractions solubilized with NaCl from cell walls of pea and cowpea plants catalyzed the formation of blue formazan from nitroblue tetrazolium. Because superoxide dismutase decreased formazan production by over 90%, superoxide anion (O(2) ) may participate in the formation of formazan in the solubilized cell wall fractions. The formazan formation in the fractions solubilized from pea and cowpea cell walls was markedly reduced by exclusion of NAD(P)H, manganese ion, or p-coumaric acid from the reaction mixture. The formazan formation was severely inhibited by salicylhydroxamic acid and catalase, but not by imidazole, pyridine, quinacrine, and diphenyleneiodonium. An elicitor preparation from the pea pathogen Mycosphaerella pinodes enhanced the activities of formazan formation nonspecifically in both pea and cowpea fractions. The suppressor preparation from M. pinodes inhibited the activity in the pea fraction in the presence or absence of the elicitor. In the cowpea fraction, however, the suppressor did not inhibit the elicitor-enhanced activity, and the suppressor alone stimulated formazan formation. These results indicated that O(2) generation in the fractions solubilized from pea and cowpea cell walls seems to be catalyzed by cell wall-bound peroxidase(s) and that the plant cell walls alone are able to respond to the elicitor non-specifically and to the suppressor in a species-specific manner, suggesting the plant cell walls may play an important role in determination of plant-fungal pathogen specificity.

  5. Crystal structure of nitrated human manganese superoxide dismutase: mechanism of inactivation.

    PubMed

    Quint, Patrick; Reutzel, Robbie; Mikulski, Rose; McKenna, Robert; Silverman, David N

    2006-02-01

    A cellular consequence of the reaction of superoxide and nitric oxide is enhanced peroxynitrite levels. Reaction of peroxynitrite with manganese superoxide dismutase (MnSOD) causes nitration of the active-site residue Tyr34 and nearly complete inhibition of catalysis. We report the crystal structures at 2.4 A resolution of human MnSOD nitrated by peroxynitrite and the unmodified MnSOD. A comparison of these structures showed no significant conformational changes of active-site residues or solvent displacement. The side chain of 3-nitrotyrosine 34 had a single conformation that extended toward the manganese with O1 of the nitro group within hydrogen-bonding distance (3.1 A) of Nepsilon2 of the second-shell ligand Gln143. Also, nitration of Tyr34 caused a weakening, as evidenced by the lengthening, of a hydrogen bond between its phenolic OH and Gln143, part of an extensive hydrogen-bond network in the active site. Inhibition of catalysis can be attributed to a steric effect of 3-nitrotyrosine 34 that impedes substrate access and binding, and alteration of the hydrogen-bond network that supports proton transfer in catalysis. It is also possible that an electrostatic effect of the nitro group has altered the finely tuned redox potential necessary for efficient catalysis, although the redox potential of nitrated MnSOD has not been measured.

  6. Developing a high performance superoxide dismutase based electrochemical biosensor for radiation dosimetry of thallium 201

    NASA Astrophysics Data System (ADS)

    Salem, Fatemeh; Tavakoli, Hassan; Sadeghi, Mahdi; Riazi, Abbas

    2014-09-01

    To develop a new biosensor for measurement of superoxide free radical generated in radiolysis reaction, three combinations of SOD-based biosensors including Au/Cys/SOD, Au/GNP/Cys/SOD and Au/GNP/Cys/SOD/Chit were fabricated. In these biosensors Au, GNP, Cys, SOD and Chit represent gold electrode, gold nano-particles, cysteine, superoxide dismutase and chitosan, respectively. For biosensors fabrication, SOD, GNP, Cys and Chit were immobilized at the surface of gold electrode. Cyclic voltametry and chronoamperometry were utilized for evaluation of biosensors performances. The results showed that Au/GNP/Cys/SOD/Chit has significantly better responses compared to Au/Cys/SOD and Au/GNP/Cys/SOD. As a result, this biosensor was selected for dosimetry of ionizing radiation. For this purpose, thallium 201 at different volumes was added to buffer phosphate solution in electrochemical cell. To obtain analytical parameters of Au/GNP/Cys/SOD/Chit, calibration curve was sketched. The results showed that this biosensor has a linear response in the range from 0.5 to 4 Gy, detection limit 0.03 μM. It also has a proper sensitivity (0.6038 nA/Gy), suitable long term stability and cost effective as well as high function for radiation dosimetry.

  7. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria.

    PubMed

    Turrens, J F; Alexandre, A; Lehninger, A L

    1985-03-01

    Much evidence indicates that superoxide is generated from O2 in a cyanide-sensitive reaction involving a reduced component of complex III of the mitochondrial respiratory chain, particularly when antimycin A is present. Although it is generally believed that ubisemiquinone is the electron donor to O2, little experimental evidence supporting this view has been reported. Experiments with succinate as electron donor in the presence of antimycin A in intact rat heart mitochondria, which contain much superoxide dismutase but little catalase, showed that myxothiazol, which inhibits reduction of the Rieske iron-sulfur center, prevented formation of hydrogen peroxide, determined spectrophotometrically as the H2O2-peroxidase complex. Similarly, depletion of the mitochondria of their cytochrome c also inhibited formation of H2O2, which was restored by addition of cytochrome c. These observations indicate that factors preventing the formation of ubisemiquinone also prevent H2O2 formation. They also exclude ubiquinol, which remains reduced under these conditions, as the reductant of O2. Since cytochrome b also remains fully reduced when myxothiazol is added to succinate- and antimycin A-supplemented mitochondria, reduced cytochrome b may also be excluded as the reductant of O2. These observations, which are consistent with the Q-cycle reactions, by exclusion of other possibilities leave ubisemiquinone as the only reduced electron carrier in complex III capable of reducing O2 to O2-.

  8. Dissolution and ionization of sodium superoxide in sodium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Kim, Jinsoo; Park, Hyeokjun; Lee, Byungju; Seong, Won Mo; Lim, Hee-Dae; Bae, Youngjoon; Kim, Haegyeom; Kim, Won Keun; Ryu, Kyoung Han; Kang, Kisuk

    2016-02-01

    With the demand for high-energy-storage devices, the rechargeable metal-oxygen battery has attracted attention recently. Sodium-oxygen batteries have been regarded as the most promising candidates because of their lower-charge overpotential compared with that of lithium-oxygen system. However, conflicting observations with different discharge products have inhibited the understanding of precise reactions in the battery. Here we demonstrate that the competition between the electrochemical and chemical reactions in sodium-oxygen batteries leads to the dissolution and ionization of sodium superoxide, liberating superoxide anion and triggering the formation of sodium peroxide dihydrate (Na2O2.2H2O). On the formation of Na2O2.2H2O, the charge overpotential of sodium-oxygen cells significantly increases. This verification addresses the origin of conflicting discharge products and overpotentials observed in sodium-oxygen systems. Our proposed model provides guidelines to help direct the reactions in sodium-oxygen batteries to achieve high efficiency and rechargeability.

  9. Superoxide Dismutase in Arabidopsis: An Eclectic Enzyme Family with Disparate Regulation and Protein Localization1

    PubMed Central

    Kliebenstein, Daniel J.; Monde, Rita-Ann; Last, Robert L.

    1998-01-01

    A number of environmental stresses can lead to enhanced production of superoxide within plant tissues, and plants are believed to rely on the enzyme superoxide dismutase (SOD) to detoxify this reactive oxygen species. We have identified seven cDNAs and genes for SOD in Arabidopsis. These consist of three CuZnSODs (CSD1, CSD2, and CSD3), three FeSODs (FSD1, FSD2, and FSD3), and one MnSOD (MSD1). The chromosomal location of these seven SOD genes has been established. To study this enzyme family, antibodies were generated against five proteins: CSD1, CSD2, CSD3, FSD1, and MSD1. Using these antisera and nondenaturing-polyacrylamide gel electrophoresis enzyme assays, we identified protein and activity for two CuZnSODs and for FeSOD and MnSOD in Arabidopsis rosette tissue. Additionally, subcellular fractionation studies revealed the presence of CSD2 and FeSOD protein within Arabidopsis chloroplasts. The seven SOD mRNAs and the four proteins identified were differentially regulated in response to various light regimes, ozone fumigation, and ultraviolet-B irradiation. To our knowledge, this is the first report of a large-scale analysis of the regulation of multiple SOD proteins in a plant species. PMID:9765550

  10. Unique Characteristics of Recombinant Hybrid Manganese Superoxide Dismutase from Staphylococcus equorum and S. saprophyticus.

    PubMed

    Retnoningrum, Debbie S; Rahayu, Anis Puji; Mulyanti, Dina; Dita, Astrid; Valerius, Oliver; Ismaya, Wangsa T

    2016-04-01

    A recombinant hybrid of manganese dependent-superoxide dismutase of Staphylococcus equorum and S. saprophyticus has successfully been overexpressed in Escherichia coli BL21(DE3), purified, and characterized. The recombinant enzyme suffered from degradation and aggregation upon storage at -20 °C, but not at room temperature nor in cold. Chromatographic analysis in a size exclusion column suggested the occurrence of dimeric form, which has been reported to contribute in maintaining the stability of the enzyme. Effect of monovalent (Na(+), K(+)), divalent (Ca(2+), Mg(2+)), multivalent (Mn(2+/4+), Zn(2+/4+)) cations and anions (Cl(-), SO4 (2-)) to the enzyme stability or dimeric state depended on type of cation or anion, its concentration, and pH. However, tremendous effect was observed with 50 mM ZnSO4, in which thermostability of both the dimer and monomer was increased. Similar situation was not observed with MnSO4, and its presence was detrimental at 200 mM. Finally, chelating agent appeared to destabilize the dimer around neutral pH and dissociate it at basic pH. The monomer remained stable upon addition of ethylene diamine tetraacetic acid. Here we reported unique characteristics and stability of manganese dependent-superoxide dismutase from S. equorum/saprophyticus.

  11. Mitochondrial Fragmentation Due to Inhibition of Fusion Increases Cyclin B through Mitochondrial Superoxide Radicals

    PubMed Central

    Gupte, Tejas M.

    2015-01-01

    During the cell cycle, mitochondria undergo regulated changes in morphology. Two particularly interesting events are first, mitochondrial hyperfusion during the G1-S transition and second, fragmentation during entry into mitosis. The mitochondria remain fragmented between late G2- and mitotic exit. This mitotic mitochondrial fragmentation constitutes a checkpoint in some cell types, of which little is known. We bypass the ‘mitotic mitochondrial fragmentation’ checkpoint by inducing fragmented mitochondrial morphology and then measure the effect on cell cycle progression. Using Drosophila larval hemocytes, Drosophila S2R+ cell and cells in the pouch region of wing imaginal disc of Drosophila larvae we show that inhibiting mitochondrial fusion, thereby increasing fragmentation, causes cellular hyperproliferation and an increase in mitotic index. However, mitochondrial fragmentation due to over-expression of the mitochondrial fission machinery does not cause these changes. Our experiments suggest that the inhibition of mitochondrial fusion increases superoxide radical content and leads to the upregulation of cyclin B that culminates in the observed changes in the cell cycle. We provide evidence for the importance of mitochondrial superoxide in this process. Our results provide an insight into the need for mitofusin-degradation during mitosis and also help in understanding the mechanism by which mitofusins may function as tumor suppressors. PMID:26000631

  12. High-sensitivity imaging method of singlet oxygen and superoxide anion in photodynamic and sonodynamic actions

    NASA Astrophysics Data System (ADS)

    Xing, Da; He, Yonghong; Hao, Min; Chen, Qun

    2004-07-01

    A novel method of photodynamic diagnosis (PDD) of cancer mediated by chemiluminescence (CL) probe is presented. The mechanism for photodynamic therapy (PDT) involves reactive oxygen species (ROS), such as singlet oxygen (1O2) and superoxide (O2-), generated by during the photochemical process. Both 1O2 and O2- can react with Cypridina luciferin analogue (FCLA), a highly selective CL probe for detecting the ROS. Chemiluminescence from the reaction of FCLA with the ROS, at about 530 nm, was detected by a highly sensitive ICCD system. The CL was markedly inhibited by the addition of 10 mmol/L sodium azide (NaN3) in a sample solution. Similar phenomena, with lesser extents of changes, were observed at the additions of 10 μmol/L superoxide dismutase (SOD), 10 mmol/L mannitol, and 100 μg/mL catalase, respectively. This indicates that the detected CL signals were mainly from ROS generated during the photosensitization reactions. Also, the chemiluminescence method was used to detect the ROS during sonodynamic action, both in vitro and in vivo. ROS formation during sonosensitizations of HpD and ATX-70 were detected using our newly-developed imaging technique, in real time, on tumor bearing animals. This method can provide a new means in clinics for tumor diagnosis.

  13. Superoxide dismutase activity and gene expression levels in Saudi women with recurrent miscarriage

    PubMed Central

    GHNEIM, HAZEM K.; AL-SHEIKH, YAZEED A.; ALSHEBLY, MASHAEL M.; ABOUL-SOUD, MOURAD A. M.

    2016-01-01

    The antioxidant activities of superoxide dismutase 1 (SOD1) and SOD2, as well as the levels of the oxidant superoxide anion (SOA) and the micronutrients zinc (Zn), copper (Cu) and manganese (Mn), were assayed in plasma, whole blood and placental tissue of non-pregnant (NP), healthy pregnant (HP) women and recurrent miscarriage (RM) patients. The results showed that SOD1 and SOD2 activities and the levels of Zn, Cu and Mn in plasma and whole blood of HP women were slightly, but significantly lower, and even more significantly decreased in RM patients compared to those observed in NP women (P<0.05 and P<0.0001, respectively). Additionally, whereas plasma SOD1 and SOD2 activities and Zn, Cu and Mn levels were significantly lower in RM patients, those of whole blood and placental tissue were significantly lower when compared to HP women (P<0.001 and P<0.0001, respectively). Concurrently, there were consistent increases of equal magnitude and statistical significance in SOA levels in all the assayed samples as identified by a comparison between the subjects. The findings thus supported oxidative metabolism and excessive reactive oxygen species generation. The resultant oxidative stress, identified in whole blood and placental tissues of RM patients, may have been a primary cause of RM. Dietary supplementation of Zn, Cu and Mn may be beneficial to these patients pre- and post-conception. PMID:26821085

  14. L-arginine regulates neuronal nitric oxide synthase production of superoxide and hydrogen peroxide.

    PubMed

    Tsai, Pei; Weaver, John; Cao, Guan Liang; Pou, Sovitj; Roman, Linda J; Starkov, Anatoly A; Rosen, Gerald M

    2005-03-15

    Tetrahydrobiopterin (H(4)B) in the absence of L-arginine has been shown to be an important factor in promoting the direct formation of hydrogen peroxide (H(2)O(2)) at the expense of superoxide (O(2)(*-)) by neuronal nitric oxide synthase (NOS1) [Rosen GM, Tsai P, Weaver J, Porasuphatana S, Roman LJ, Starkov AA, et al. Role of tetrahydrobiopterin in the regulation of neuronal nitric-oxide synthase-generated superoxide. J Biol Chem 2002;277:40275-80]. Based on these findings, it is hypothesized that L-arginine also shifts the equilibrium between O(2)(*-) and H(2)O(2). Experiments were designed to test this theory. As the concentration of L-arginine and N(omega)-hydroxyl-L-arginine increases, the rate of NADPH consumption for H(4)B-bound NOS1 decreased resulting in lower rates of both O(2)(*-) and H(2)O(2) generation, while increasing the rate of nitric oxide (*NO) production. At saturating concentrations of L-arginine or N(omega)-hydroxyl-L-arginine (50microM), NOS1 still produced O(2)(*-) and H(2)O(2). Both L-arginine and N(omega)-hydroxyl-L-arginine have greater impact on the rate of generation of O(2)(*-) than on H(2)O(2).

  15. Extracellular superoxide dismutase is present in secretory vesicles of human neutrophils and released upon stimulation.

    PubMed

    Iversen, Marie B; Gottfredsen, Randi H; Larsen, Ulrike G; Enghild, Jan J; Praetorius, Jeppe; Borregaard, Niels; Petersen, Steen V

    2016-08-01

    Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme present in the extracellular matrix (ECM), where it provides protection against oxidative degradation of matrix constituents including type I collagen and hyaluronan. The enzyme is known to associate with macrophages and polymorphonuclear leukocytes (neutrophils) and increasing evidence supports a role for EC-SOD in the development of an inflammatory response. Here we show that human EC-SOD is present at the cell surface of isolated neutrophils as well as stored within secretory vesicles. Interestingly, we find that EC-SOD mRNA is absent throughout neutrophil maturation indicating that the protein is synthesized by other cells and subsequently endocytosed by the neutrophil. When secretory vesicles were mobilized by neutrophil stimulation using formyl-methionyl-leucyl-phenylalanine (fMLF) or phorbol 12-myristate 13-acetate (PMA), the protein was released into the extracellular space and found to associate with DNA released from stimulated cells. The functional consequences were evaluated by the use of neutrophils isolated from wild-type and EC-SOD KO mice, and showed that EC-SOD release significantly reduce the level of superoxide in the extracellular space, but does not affect the capacity to generate neutrophil extracellular traps (NETs). Consequently, our data signifies that EC-SOD released from activated neutrophils affects the redox conditions of the extracellular space and may offer protection against highly reactive oxygen species such as hydroxyl radicals otherwise generated as a result of respiratory burst activity of activated neutrophils.

  16. Diversity, Function and Evolution of Genes Coding for Putative Ni-Containing Superoxide Dismutases

    SciTech Connect

    Dupont,C.; Neupane, K.; Shearer, J.; Palenik, B.

    2008-01-01

    We examined the phylogenetic distribution, functionality and evolution of the sodN gene family, which has been shown to code for a unique Ni-containing isoform of superoxide dismutase (Ni-SOD) in Streptomyces. Many of the putative sodN sequences retrieved from public domain genomic and metagenomic databases are quite divergent from structurally and functionally characterized Ni-SOD. Structural bioinformatics studies verified that the divergent members of the sodN protein family code for similar three-dimensional structures and identified evolutionarily conserved amino acid residues. Structural and biochemical studies of the N-terminus 'Ni-hook' motif coded for by the putative sodN sequences confirmed both Ni (II) ligating and superoxide dismutase activity. Both environmental and organismal genomes expanded the previously noted phylogenetic distribution of sodN, and the sequences form four well-separated clusters, with multiple subclusters. The phylogenetic distribution of sodN suggests that the gene has been acquired via horizontal gene transfer by numerous organisms of diverse phylogenetic background, including both Eukaryotes and Prokaryotes. The presence of sodN correlates with the genomic absence of the gene coding for Fe-SOD, a structurally and evolutionarily distinct isoform of SOD. Given the low levels of Fe found in the marine environment from where many sequences were attained, we suggest that the replacement of Fe-SOD with Ni-SOD may be an evolutionary adaptation to reduce iron requirements.

  17. Effects of salinity change on two superoxide dismutases (SODs) in juvenile marbled eel Anguilla marmorata

    PubMed Central

    2016-01-01

    Salinity is one of the most important factors that affect the fish growth and survival. Superoxide dismutases (SODs), as the primary antioxidant enzymes, play a first role in the process of preventing oxidative stress caused by excessive superoxide anion (O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{2}^{-}$\\end{document}2−) in living organisms. In the present study, we investigated the effects of salinity on the gene expressions as well as enzymatic activities of MnSOD and Cu/ZnSOD in gill, intestine, kidney, liver and muscle tissues of the marbled eel Anguilla marmorata. We found that the liver might possess stronger redox capacity compared with other tissues. Furthermore, the gene expressions and enzymatic activities of SODs in juvenile marbled eels could be effectively enhanced by low salinity but inhibited when the salinity was higher than the body tolerance. Our findings indicated that MnSOD and Cu/ZnSOD played vital roles in the adaptation of marbled eels to salinity variation, which contributed to the elucidation of physiological adaptation and regulatory mechanism of SODs in eels. PMID:27547518

  18. Blood cell superoxide dismutase and enolase activities as markers of alcoholic and nonalcoholic liver diseases.

    PubMed

    Ledig, M; Doffoel, M; Doffoel, S; Kopp, P; Bockel, R; Mandel, P

    1988-01-01

    Monitoring of chronic alcoholism would be facilitated by using sensitive biochemical markers in blood cells, mainly to detect differences between alcoholic subjects with or without liver injury. We propose two types of markers: the first one is superoxide dismutase (SOD) activity involved in the conversion of superoxide radicals (O2-.) formed during acetaldehyde oxidation by xanthine oxidase after chronic alcohol consumption; the second one is enolase activity with both isoenzyme forms: nonneuronal enolase (NNE) and neuron specific enolase (NSE) which has been shown to be modified in many injuries related to the glycolytic pathways. For SOD activity we found a significant increase in alcoholic patients with liver injury and mainly in cirrhotic patients with ascitis. Both enolase activities were also found to be significantly increased in alcoholic patients with liver injury but NNE activity was also increased in alcoholics without apparent liver disease. Our results suggest that increased activity of SOD and NSE in blood cells may be related to liver injury mainly in alcoholism while increased NNE activity may also be a marker of alcohol abuse without liver injury.

  19. Ras Oncogene-Mediated Progressive Silencing of Extracellular Superoxide Dismutase in Tumorigenesis

    PubMed Central

    Cammarota, Francesca; de Vita, Gabriella; Salvatore, Marco; Laukkanen, Mikko O.

    2015-01-01

    Extracellular superoxide dismutase (SOD3) is a secreted enzyme that uses superoxide anion as a substrate in a dismutase reaction that results in the formation of hydrogen peroxide. Both of these reactive oxygen species affect growth signaling in cells. Although SOD3 has growth-supporting characteristics, the expression of SOD3 is downregulated in epithelial cancer cells. In the current work, we studied the mechanisms regulating SOD3 expression in vitro using thyroid cell models representing different stages of thyroid cancer. We demonstrate that a low level of RAS activation increases SOD3 mRNA synthesis that then gradually decreases with increasing levels of RAS activation and the decreasing degree of differentiation of the cancer cells. Our data indicate that SOD3 regulation can be divided into two classes. The first class involves RAS–driven reversible regulation of SOD3 expression that can be mediated by the following mechanisms: RAS GTPase regulatory genes that are responsible for SOD3 self-regulation; RAS-stimulated p38 MAPK activation; and RAS-activated increased expression of the mir21 microRNA, which inversely correlates with sod3 mRNA expression. The second class involves permanent silencing of SOD3 mediated by epigenetic DNA methylation in cells that represent more advanced cancers. Therefore, the work suggests that SOD3 belongs to the group of ras oncogene-silenced genes. PMID:26550576

  20. Cytoplasmic superoxide dismutase and catalase activity and resistance to radiation lethality in murine tumor cells

    SciTech Connect

    Davy, C.A.; Tesfay, Z.; Jones, J.; Rosenberg, R.C.; McCarthy, C.; Rosenberg, S.O.

    1986-05-01

    Reduced species of molecular oxygen are produced by the interaction of ionizing radiation with aqueous solutions containing molecular oxygen. The enzymes catalase and superoxide dismutase (SOD) are thought to function in vivo as scavengers of metabolically produced peroxide and superoxide respectively. SOD has been shown to protect against the lethal effects of ionizing radiation in vitro and in vivo. The authors have investigated the relationship between the cytosolic SOD catalase content and the sensitivity to radiation lethality of a number of murine cell lines (402AX, EL-4, MB-2T3, MB-4, MEL, P-815, SAI, SP-2, and SV-3T3). K/sub i/(CN/sup -/) for murine Cu-Zn-SOD was determined to be 6.8 x 10/sup -6/ M. No cytosolic Mn-SOD activity was found in any of the cell lines studied. No correlation was found between the cytosolic Cu-Zn-SOD or cytosolic catalase activity and the resistance to radiation lethality or the murine cell lines studied.

  1. Anamperometric superoxide anion radicalbiosensor based on SOD/PtPd-PDARGO modified electrode.

    PubMed

    Tang, Jie; Zhu, Xiang; Niu, Xiangheng; Liu, Tingting; Zhao, Hongli; Lan, Minbo

    2015-05-01

    In the present work, a high-performance enzyme-based electrochemical sensor for the detection of superoxide anion radical (O2(●-)) is reported. Firstly, we employed a facile approach to synthesize PtPd nanoparticles (PtPd NPs) on chemically reduced graphene oxide (RGO) coated with polydopamine (PDA). The prepared PtPd-PDARGO composite was well characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectra, X-ray diffraction, X-ray photoelectron spectroscopy and electrochemical methods. Then the assembled composite was used as a desired electrochemcial interface for superoxide dismutase (SOD) immobilization. Owing to the PDA layer as well as the synergistic effect of PtPd NPs, the fabricated SOD/PtPd-PDARGO sensor exhibited an outstanding sensitivity of 909.7 μA mM(-1) cm(-2) upon O2(●-) in a linear range from 0.016 mM to 0.24 mM (R(2)=0.992), with a low detection limit of 2 μM (S/N=3) and excellent selectivity, good reproducibility as well as favorable long-term stability.

  2. Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters.

    PubMed

    Samuel, Errol L G; Marcano, Daniela C; Berka, Vladimir; Bitner, Brittany R; Wu, Gang; Potter, Austin; Fabian, Roderic H; Pautler, Robia G; Kent, Thomas A; Tsai, Ah-Lim; Tour, James M

    2015-02-24

    Many diseases are associated with oxidative stress, which occurs when the production of reactive oxygen species (ROS) overwhelms the scavenging ability of an organism. Here, we evaluated the carbon nanoparticle antioxidant properties of poly(ethylene glycolated) hydrophilic carbon clusters (PEG-HCCs) by electron paramagnetic resonance (EPR) spectroscopy, oxygen electrode, and spectrophotometric assays. These carbon nanoparticles have 1 equivalent of stable radical and showed superoxide (O2 (•-)) dismutase-like properties yet were inert to nitric oxide (NO(•)) as well as peroxynitrite (ONOO(-)). Thus, PEG-HCCs can act as selective antioxidants that do not require regeneration by enzymes. Our steady-state kinetic assay using KO2 and direct freeze-trap EPR to follow its decay removed the rate-limiting substrate provision, thus enabling determination of the remarkable intrinsic turnover numbers of O2 (•-) to O2 by PEG-HCCs at >20,000 s(-1). The major products of this catalytic turnover are O2 and H2O2, making the PEG-HCCs a biomimetic superoxide dismutase.

  3. Mitochondrial superoxide dismutase deficiency accelerates chronological aging in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Ogata, Toshiya; Senoo, Takanori; Kawano, Shinji; Ikeda, Shogo

    2016-01-01

    A mitochondrial superoxide dismutase (SOD2) is the first line of antioxidant defense against mitochondrial superoxide. Even though the involvement of SOD2 in lifespan has been studied extensively in several organisms, characterization of the aging process has not been performed for the sod2 mutant (sod2Δ) of a prominent model Schizosaccharomyces pombe. In this study, we measured the chronological lifespan of sod2Δ cells by their ability to survive in long-term culture. SOD2 deficiency drastically decreased cell viability in the stationary phase. The mutation frequency of nuclear DNA in sod2Δ was elevated in the stationary phase, and cellular proteins and nuclear DNA were extensively degraded, concurrent with cell death. The sod2 gene in wild-type cells could be induced by an increase in endogenous oxidative stresses, after which, SOD2 activity was substantially elevated during the stationary phase. Culture in a lower glucose concentration (calorie restriction) prominently extended the sod2Δ lifespan. Therefore, S. pombe SOD2 plays a critical role in longevity through its upregulation in the non-dividing phase.

  4. Localization and distribution of superoxide dismutase-1 in the neural tube morphogenesis of chick embryo.

    PubMed

    Dhage, Prajakta A; Kamble, Lekha K; Bhargava, Shobha Y

    2017-02-01

    Superoxide dismutase 1 (SOD- 1) is an antioxidant enzyme that regulates the levels of Reactive oxygen species (ROS) by catalyzing the conversion of superoxide radical into hydrogen peroxide (H2O2) and oxygen. ROS are known to play a significant role in various cellular processes, via redox modification of a variety of molecules that participate in signaling pathways involved in this processes. As the levels of ROS in cells are controlled by the levels of antioxidant enzymes, thus SOD-1 may be indirectly involved in regulating different cellular processes by maintaining the required levels of H2O2. Therefore, in the present study we have investigated the possible involvement of SOD- 1 in the neurulation during the development of chick embryo. During gastrulation, SOD- 1 immunoreactivity was observed throughout the ectoderm and cauda mesoderm areas, however, its presence during neurulation was restricted to certain areas of neural tube particularly in the dorsal neural tube where neural tube closure takes place. Assaying enzyme activity revealed a significant increase in the SOD activity during neurulation. Further, inhibition of SOD- 1 by Diethyldithiocarbamate (DDC) induced abnormalities in the development of the neural tube. SOD- 1 inhibition specifically affected the closure of neural tube in the anterior region. Thus, here we report the presence of SOD- 1 mainly in the ectoderm and tissues of ectodermal origin during gastrulation to neurulation which suggests that it may be involved in the regulating the cellular processes during neural tube morphogenesis.

  5. Extracellular haem peroxidases mediate Mn(II) oxidation in a marine Roseobacter bacterium via superoxide production.

    PubMed

    Andeer, Peter F; Learman, Deric R; McIlvin, Matt; Dunn, James A; Hansel, Colleen M

    2015-10-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants in environmental systems. A number of biotic and abiotic pathways induce the oxidation of Mn(II) to Mn oxides. Here, we use a combination of proteomic analyses and activity assays, to identify the enzyme(s) responsible for extracellular superoxide-mediated Mn oxide formation by a bacterium within the ubiquitous Roseobacter clade. We show that animal haem peroxidases (AHPs) located on the outer membrane and within the secretome are responsible for Mn(II) oxidation. These novel peroxidases have previously been implicated in direct Mn(II) oxidation by phylogenetically diverse bacteria. Yet, we show that in this Roseobacter species, AHPs mediate Mn(II) oxidation not through a direct reaction but by producing superoxide and likely also by degrading hydrogen peroxide. These findings point to a eukaryotic-like oscillatory oxidative-peroxidative enzymatic cycle by these AHPs that leads to Mn oxide formation by this organism. AHP expression appears unaffected by Mn(II), yet the large energetic investment required to produce and secrete these enzymes points to an as yet unknown physiological function. These findings are further evidence that bacterial peroxidases and secreted enzymes, in general, are unappreciated controls on the cycling of metals and reactive oxygen species (ROS), and by extension carbon, in natural systems.

  6. Identification of a developmentally regulated iron superoxide dismutase of Trypanosoma brucei.

    PubMed Central

    Kabiri, M; Steverding, D

    2001-01-01

    An iron superoxide dismutase (FeSOD) gene of the protozoan parasite Trypanosoma brucei has been cloned and its gene product functionally characterized. The gene encodes a protein of 198 residues which shows 80% identity with FeSODs from other trypanosomatids. Inhibitor studies with purified recombinant FeSOD expressed in Escherichia coli confirmed that the enzyme is an iron-containing SOD. The FeSOD is developmentally regulated in the parasite, expression being lowest in the cell-cycle-arrested, short stumpy bloodstream forms. Differential expression of the FeSOD protein contrasts with only minor quantitative changes in the FeSOD mRNA, indicating post-transcriptional regulation of the enzyme. As the level of FeSOD increases during differentiation of cell-cycle-arrested short stumpy into dividing procyclic forms, it is suggested that the enzyme is only required in proliferating stages of the parasite for the elimination of superoxide radicals which are released during the generation of the iron-tyrosyl free-radical centre in the small subunit of ribonucleotide reductase. PMID:11696005

  7. In vivo real-time measurement of superoxide anion radical with a novel electrochemical sensor.

    PubMed

    Fujita, Motoki; Tsuruta, Ryosuke; Kasaoka, Shunji; Fujimoto, Kenji; Tanaka, Ryo; Oda, Yasutaka; Nanba, Masahiro; Igarashi, Masatsugu; Yuasa, Makoto; Yoshikawa, Toshikazu; Maekawa, Tsuyoshi

    2009-10-01

    The dynamics of superoxide anion (O(2)(-)) in vivo remain to be clarified because no appropriate method exists to directly and continuously monitor and evaluate O(2)(-) in vivo. Here, we establish an in vivo method using a novel electrochemical O(2)(-) sensor. O(2)(-) generated is measured as a current and evaluated as a quantified partial value of electricity (Q(part)), which is calculated by integration of the difference between the baseline and the actual reacted current. The accuracy and efficacy of this method were confirmed by dose-dependent O(2)(-) generation in xanthine-xanthine oxidase in vitro in phosphate-buffered saline and human blood. It was then applied to endotoxemic rats in vivo. O(2)(-) current began to increase 1 h after lipopolysaccharide, and Q(part) increased significantly for 6 h in endotoxemic rats, in comparison to sham-treated rats. These values were attenuated by superoxide dismutase. The generation and attenuation of O(2)(-) were indirectly confirmed by plasma lipid peroxidation with malondialdehyde, endothelial injury with soluble intercellular adhesion molecule-1, and microcirculatory dysfunction. This is a novel method for measuring O(2)(-) in vivo and could be used to monitor and treat the pathophysiology caused by excessive O(2)(-) generation in animals and humans.

  8. Superoxide dismutase: A possible protective agent against sunscald in tomatoes (lycopersicon esculentum mill.).

    PubMed

    Rabinowitch, H D; Sklan, D

    1980-03-01

    Superoxide dismutase (SOD, EC 1.15.1.1) was concentrated from mature-green tomato fruits by gel chromatography. The enzyme was inhibited by cyanide but not by chloroform-ethanol, and appears to contain zinc and lesser amounts of copper. SOD-activity levels were high in immature green fruits, declined to a minimum in the mature-green and breaker stages known to be most susceptible to sunscald damage, increased again until the fruits were pink, and finally decreased through the red-ripe and overripe stages to the level of the mature-green fruit. When tolerance to sunscald damage was induced in mature-green fruits by controlled temperature treatment and samples of the fruits were challenged at various times during this process with a combined heat-and-light treatment known to cause sunscald, SOD activity was found to be inversely related to the susceptibility of the fruit to sunscald damage. It is suggested that superoxide is involved in sunscald injury to tomatoes and that tolerance is acquired through increases in SOD activity. Possibly SOD acts as a general protective agent against photodynamic damage to green tissues in plants that have become conditioned as the result of normal diurnal temperature fluctuations.

  9. Arsenic-stimulated liver sinusoidal capillarization in mice requires NADPH oxidase–generated superoxide

    PubMed Central

    Straub, Adam C.; Clark, Katherine A.; Ross, Mark A.; Chandra, Ashwin G.; Li, Song; Gao, Xiang; Pagano, Patrick J.; Stolz, Donna B.; Barchowsky, Aaron

    2008-01-01

    Environmental arsenic exposure, through drinking contaminated water, is a significant risk factor for developing vascular diseases and is associated with liver portal hypertension, vascular shunting, and portal fibrosis through unknown mechanisms. We found that the addition of low doses of arsenite to the drinking water of mice resulted in marked pathologic remodeling in liver sinusoidal endothelial cells (SECs), including SEC defenestration, capillarization, increased junctional PECAM-1 expression, protein nitration, and decreased liver clearance of modified albumin. Furthermore, the pathologic changes observed after in vivo exposure were recapitulated in isolated mouse SECs exposed to arsenic in culture. To investigate the role of NADPH oxidase–generated ROS in this remodeling, we examined the effect of arsenite in the drinking water of mice deficient for the p47 subunit of the NADPH oxidase and found that knockout mice were protected from arsenite-induced capillarization and protein nitration. Furthermore, ex vivo arsenic exposure increased SEC superoxide generation, and this effect was inhibited by addition of a Nox2 inhibitor and quenched by the cell-permeant superoxide scavenger. In addition, inhibiting either oxidant generation or Rac1-GTPase blocked ex vivo arsenic-stimulated SEC differentiation and dysfunction. Our data indicate that a Nox2-based oxidase is required for SEC capillarization and that it may play a central role in vessel remodeling following environmentally relevant arsenic exposures. PMID:19033667

  10. Impaired fertilizing ability of superoxide dismutase 1-deficient mouse sperm during in vitro fertilization.

    PubMed

    Tsunoda, Satoshi; Kawano, Natsuko; Miyado, Kenji; Kimura, Naoko; Fujii, Junichi

    2012-11-01

    The oxidative modification of gametes by a reactive oxygen species is a major deleterious factor that decreases the successful rate of in vitro fertilization. Superoxide dismutase 1 (SOD1) plays a pivotal role in antioxidation by scavenging the superoxide anion, and its deficiency causes infertility in female mice, but the significance of the enzyme in male mice remains unclear. In the present study, we characterized Sod1(-/-) (Sod1-KO) male reproductive organs and compiled the first report of the impaired fertilizing ability of Sod1-KO sperm in in vitro fertilization. Insemination of wild-type oocytes with Sod1-KO sperm exhibited lower rates of fertility compared with insemination by wild-type sperm. The low fertilizing ability found for Sod1-KO sperm was partially rescued by reductant 2-mercaptoethanol, which suggested the oxidative modification of sperm components. The numbers of motile and progressive sperm decreased during the in vitro fertilization process, and a decline in ATP content and elevation in lipid peroxidation occurred in the Sod1-KO sperm in an incubation time-dependent manner. Tyrosine phosphorylation, which is a hallmark for sperm capacitation, was also impaired in the Sod1-KO sperm. These results collectively suggest that machinery involved in sperm capacitation and motility are vulnerable to oxidative damage during the in vitro fertilization process, which could increase the rate of inefficient fertilization.

  11. Cu, Zn Superoxide Dismutase and NADP(H) Homeostasis Are Required for Tolerance of Endoplasmic Reticulum Stress in Saccharomyces cerevisiae

    PubMed Central

    Tan, Shi-Xiong; Teo, Mariati; Lam, Yuen T.; Perrone, Gabriel G.

    2009-01-01

    Genome-wide screening for sensitivity to chronic endoplasmic reticulum (ER) stress induced by dithiothreitol and tunicamycin (TM) identified mutants deleted for Cu, Zn superoxide dismutase (SOD) function (SOD1, CCS1) or affected in NADPH generation via the pentose phosphate pathway (TKL1, RPE1). TM-induced ER stress led to an increase in cellular superoxide accumulation and an increase in SOD1 expression and Sod1p activity. Prior adaptation of the hac1 mutant deficient in the unfolded protein response (UPR) to the superoxide-generating agent paraquat reduced cell death under ER stress. Overexpression of the ER oxidoreductase Ero1p known to generate hydrogen peroxide in vitro, did not lead to increased superoxide levels in cells subjected to ER stress. The mutants lacking SOD1, TKL1, or RPE1 exhibited decreased UPR induction under ER stress. Sensitivity of the sod1 mutant to ER stress and decreased UPR induction was partially rescued by overexpression of TKL1 encoding transketolase. These data indicate an important role for SOD and cellular NADP(H) in cell survival during ER stress, and it is proposed that accumulation of superoxide affects NADP(H) homeostasis, leading to reduced UPR induction during ER stress. PMID:19129474

  12. Kinetic investigation of catalytic disproportionation of superoxide ions in the non-aqueous electrolyte used in Li–air batteries

    SciTech Connect

    Wang, Qiang; Zheng, Dong; McKinnon, Meaghan E.; Yang, Xiao -Qing; Qu, Deyang

    2014-10-28

    Superoxide reacts with carbonate solvents in Li–air batteries. Tris(pentafluorophenyl)borane is found to catalyze a more rapid superoxide (O2-) disproportionation reaction than the reaction between superoxide and propylene carbonate (PC). With this catalysis, the negative impact of the reaction between the electrolyte and O2-produced by the O2 reduction can be minimized. A simple kinetic study using ESR spectroscopy was reported to determine reaction orders and rate constants for the reaction between PC and superoxide, and the disproportionation of superoxide catalyzed by Tris(pentafluorophenyl)borane and Li ions. As a result, the reactions are found to be first order and the rate constants are 0.033 s-1 M-1, 0.020 s-1 M-1and 0.67 s-1M-1 for reactions with PC, Li ion and Tris(pentafluorophenyl)borane, respectively.

  13. Mitochondrial complex II-derived superoxide is the primary source of mercury toxicity in barley root tip.

    PubMed

    Tamás, Ladislav; Zelinová, Veronika

    2017-02-01

    Enhanced superoxide generation and significant inhibition of succinate dehydrogenase (SDH) activity followed by a strong reduction of root growth were detected in barley seedlings exposed to a 5μM Hg concentration for 30min, which increased further in an Hg dose-dependent manner. While at a 25μM Hg concentration no cell death was detectable, a 50μM Hg treatment triggered cell death in the root meristematic zone, which was markedly intensified after the treatment of roots with 100μM Hg and was detectable in the whole root tips. Generation of superoxide and H2O2 was a very rapid response of root tips occurring even after 5min of exposure to Hg. Application of an NADPH oxidase inhibitor or the inhibition of electron flow in mitochondria by the inhibition of complex I did not influence the Hg-induced H2O2 production. Treatment of roots with thenoyltrifluoroacetone, a non-competitive inhibitor of SDH, markedly reduced root growth and induced both superoxide and H2O2 production in a dose dependent manner. Similar to results obtained in intact roots, Hg strongly inhibited SDH activity in the crude mitochondrial fraction and caused a considerable increase of superoxide production, which was markedly reduced by the competitive inhibitors of SDH. These results indicate that the mitochondrial complex II-derived superoxide is the primary source of Hg toxicity in the barley root tip.

  14. Effects of leptin and tumor necrosis factor-alpha on degranulation and superoxide production of polymorphonuclear neutrophils from Holstein cows.

    PubMed

    Ahmed, Mohamed; Kimura, Kazuhiro; Soliman, Mohamed; Yamaji, Daisuke; Okamatsu-Ogura, Yuko; Makondo, Kennedy; Inanami, Osamu; Saito, Masayuki

    2007-02-01

    Leptin, a pleiotropic hormone regulating food intake and energy expenditure, has been shown to directly modulate human polymorphonuclear neutrophil (PMN) functions or indirectly through the action of tumor necrosis factor-alpha (TNF-alpha). Bovine PMN have considerable different characteristics from human PMN. For example, it does not respond to N-formyl-Methionyl-Leucyl-phenylalanine, a well known human PMN activator. In the present study, we tested the effects of leptin and TNF-alpha on superoxide production and degranulation of bovine peripheral PMN, in which both long isoform of leptin receptor (Ob-Rb) and TNF receptor 1 were expressed. Human leptin, human TNF-alpha, phorbol myristate acetate (PMA) and opsonized zymosan particles (OZP) did not stimulate degranulation responses, while zymosan-activated serum (ZAS) did. Neither leptin nor TNF-alpha enhanced the ZAS-induced degranulation responses. TNF-alpha, PMA, OZP and ZAS increased superoxide production in different magnitudes, whereas leptin did not. TNF-alpha, but not leptin, enhanced OZP- and ZAS-induced superoxide production, possibly, in part due to facilitating translocation of p47(phox), a component of NADPH oxidase. These results indicate that, unlike in human PMN, leptin does not have any direct effect on degranulation and superoxide production in bovine PMN, although TNF-alpha influences superoxide production.

  15. Functional and crystallographic characterization of Salmonella typhimurium Cu,Zn superoxide dismutase coded by the sodCI virulence gene.

    PubMed

    Pesce, A; Battistoni, A; Stroppolo, M E; Polizio, F; Nardini, M; Kroll, J S; Langford, P R; O'Neill, P; Sette, M; Desideri, A; Bolognesi, M

    2000-09-15

    The functional and three-dimensional structural features of Cu,Zn superoxide dismutase coded by the Salmonella typhimurium sodCI gene, have been characterized. Measurements of the catalytic rate indicate that this enzyme is the most efficient superoxide dismutase analyzed so far, a feature that may be related to the exclusive association of the sodCI gene with the most pathogenic Salmonella serotypes. The enzyme active-site copper ion is highly accessible to external probes, as indicated by quenching of the water proton relaxation rate upon addition of iodide. The shape of the electron paramagnetic resonance spectrum is dependent on the frozen or liquid state of the enzyme solution, suggesting relative flexibility of the copper ion environment. The crystal structure (R-factor 22.6%, at 2.3 A resolution) indicates that the dimeric enzyme adopts the quaternary assembly typical of prokaryotic Cu,Zn superoxide dismutases. However, when compared to the structures of the homologous enzymes from Photobacterium leiognathi and Actinobacillus pleuropneumoniae, the subunit interface of Salmonella Cu,Zn superoxide dismutase shows substitution of 11 out of 19 interface residues. As a consequence, the network of structural water molecules that fill the dimer interface cavity is structured differently from the other dimeric bacterial enzymes. The crystallographic and functional characterization of this Salmonella Cu,Zn superoxide dismutase indicates that structural variability and catalytic efficiency are higher in prokaryotic than in the eukaryotic homologous enzymes.

  16. Effect of academic psychological stress in post-graduate students: the modulatory role of cortisol on superoxide release by neutrophils.

    PubMed

    Ignacchiti, M D C; Sesti-Costa, R; Marchi, L F; Chedraoui-Silva, S; Mantovani, B

    2011-05-01

    Experimental and clinical evidence shows that neutrophils play an important role in the mechanism of tissue injury in immune complex diseases through the generation of reactive oxygen species. In this study, we examined the influence of academic psychological stress in post-graduate students on the capacity of their blood neutrophils to release superoxide when stimulated by immune complexes bound to nonphagocytosable surfaces and investigated the modulatory effect of cortisol on this immune function. The tests were performed on the day before the final examination. The state-trait anxiety inventory questionnaire was used to examine whether this stressful event caused emotional distress. In our study, the psychological stress not only increased plasma cortisol concentration, but it also provoked a reduction in superoxide release by neutrophils. This decrease in superoxide release was accompanied by diminished mRNA expression for subunit p47(phox) of the phagocyte superoxide-generating nicotinamide adenine dinucleotide phosphate-oxidase. These inhibitory effects were also observed by in vitro exposure of neutrophils from control volunteers to 10(- 7) M hydrocortisone, and could be prevented by the glucocorticoid receptor antagonist RU-486. These results show that in a situation of psychological stress, the increased levels of cortisol could inhibit superoxide release by neutrophils stimulated by IgG immune complexes bound to nonphagocytosable surfaces, which could attenuate the inflammatory state.

  17. Superoxide Triggers an Acid Burst in Saccharomyces cerevisiae to Condition the Environment of Glucose-starved Cells*

    PubMed Central

    Baron, J. Allen; Laws, Kaitlin M.; Chen, Janice S.; Culotta, Valeria C.

    2013-01-01

    Although yeast cells grown in abundant glucose tend to acidify their extracellular environment, they raise the pH of the environment when starved for glucose or when grown strictly with non-fermentable carbon sources. Following prolonged periods in this alkaline phase, Saccharomyces cerevisiae cells will switch to producing acid. The mechanisms and rationale for this “acid burst” were unknown. Herein we provide strong evidence for the role of mitochondrial superoxide in initiating the acid burst. Yeast mutants lacking the mitochondrial matrix superoxide dismutase (SOD2) enzyme, but not the cytosolic Cu,Zn-SOD1 enzyme, exhibited marked acceleration in production of acid on non-fermentable carbon sources. Acid production is also dramatically enhanced by the superoxide-producing agent, paraquat. Conversely, the acid burst is eliminated by boosting cellular levels of Mn-antioxidant mimics of SOD. We demonstrate that the acid burst is dependent on the mitochondrial aldehyde dehydrogenase Ald4p. Our data are consistent with a model in which mitochondrial superoxide damage to Fe-S enzymes in the tricarboxylic acid (TCA) cycle leads to acetate buildup by Ald4p. The resultant expulsion of acetate into the extracellular environment can provide a new carbon source to glucose-starved cells and enhance growth of yeast. By triggering production of organic acids, mitochondrial superoxide has the potential to promote cell population growth under nutrient depravation stress. PMID:23281478

  18. Superoxide generated from the glutathione-mediated reduction of selenite damages the iron-sulfur cluster of chloroplastic ferredoxin.

    PubMed

    Fisher, Brian; Yarmolinsky, Dmitry; Abdel-Ghany, Salah; Pilon, Marinus; Pilon-Smits, Elizabeth A; Sagi, Moshe; Van Hoewyk, Doug

    2016-09-01

    Selenium assimilation in plants is facilitated by several enzymes that participate in the transport and assimilation of sulfate. Manipulation of genes that function in sulfur metabolism dramatically affects selenium toxicity and accumulation. However, it has been proposed that selenite is not reduced by sulfite reductase. Instead, selenite can be non-enzymatically reduced by glutathione, generating selenodiglutathione and superoxide. The damaging effects of superoxide on iron-sulfur clusters in cytosolic and mitochondrial proteins are well known. However, it is unknown if superoxide damages chloroplastic iron-sulfur proteins. The goals of this study were twofold: to determine whether decreased activity of sulfite reductase impacts selenium tolerance in Arabidopsis, and to determine if superoxide generated from the glutathione-mediated reduction of selenite damages the iron-sulfur cluster of ferredoxin. Our data demonstrate that knockdown of sulfite reductase in Arabidopsis does not affect selenite tolerance or selenium accumulation. Additionally, we provide in vitro evidence that the non-enzymatic reduction of selenite damages the iron-sulfur cluster of ferredoxin, a plastidial protein that is an essential component of the photosynthetic light reactions. Damage to ferredoxin's iron-sulfur cluster was associated with formation of apo-ferredoxin and impaired activity. We conclude that if superoxide damages iron-sulfur clusters of ferredoxin in planta, then it might contribute to photosynthetic impairment often associated with abiotic stress, including toxic levels of selenium.

  19. Autoxidation of soluble trypsin-cleaved microsomal ferrocytochrome b5 and formation of superoxide radicals.

    PubMed Central

    Berman, M C; Adnams, C M; Ivanetich, K M; Kench, J E

    1976-01-01

    The rate and mechanism of autoxidation of soluble ferrocytochrome b5, prepared from liver microsomal suspensions, appear to reflect an intrinsic property of membrane-bound cytochrome b5. The first-order rate constant for autoxidation of trypsin-cleaved ferrocytochrome b5, prepared by reduction with dithionite, was 2.00 X 10(-3) +/- 0.19 X 10(-3) S-1 (mean +/- S.E.M., n =8) when measured at 30 degrees C in 10 mM-phosphate buffer, pH 7.4. At 37 degrees C in aerated 10 mM-phosphate buffer (pH 7.4)/0.15 M-KCl, the rate constant was 5.6 X 10(-3) S-1. The autoxidation reaction was faster at lower pH values and at high ionic strengths. Unlike ferromyoglobin, the autoxidation reaction of which is maximal at low O2 concentrations, autoxidation of ferrocytochrome b5 showed a simple O2-dependence with an apparent Km for O2 of 2.28 X 10(-4) M (approx. 20kPa or 150mmHg)9 During autoxidation, 0.25 mol of O2 was consumed per mol of cytochrome oxidized. Cyanide, nucleophilic anions, EDTA and catalase each had little or no effect on autoxidation rates. Adrenaline significantly enhanced autoxidation rates, causing a tenfold increase at 0.6 mM. Ferrocytochrome b5 reduced an excess of cytochrome c in a biphasic manner. An initial rapid phase, independent of O2 concentration, was unaffected by superoxide dismutase. A subsequent slower phase, which continued for up to 60 min, was retarded at low O2 concentrations and inhibited by 65% by superoxide dismutase at a concentration of 3 mug/ml. It is concluded that autoxidation is responsible for a significant proportion of electron flow between cytochrome b5 and O2 in liver endoplasmic membranes, this reaction being capable of generating superoxide anions. A biological role for the reaction is discussed. PMID:183743

  20. Oxidative stress, superoxide production, and apoptosis of neutrophils in dogs with chronic kidney disease.

    PubMed

    Silva, Adriana Carolina Rodrigues Almeida; de Almeida, Breno Fernando Martins; Soeiro, Carolina Soares; Ferreira, Wagner Luis; de Lima, Valéria Marçal Félix; Ciarlini, Paulo César

    2013-04-01

    Oxidative stress is a key component in the immunosuppression of chronic kidney disease (CKD), and neutrophil function may be impaired by oxidative stress. To test the hypothesis that in uremic dogs with CKD, oxidative stress is increased and neutrophils become less viable and functional, 18 adult dogs with CKD were compared with 15 healthy adult dogs. Blood count and urinalysis were done, and the serum biochemical profile and plasma lipid peroxidation (measurement of thiobarbituric acid reactive substances) were determined with the use of commercial reagents. Plasma total antioxidant capacity (TAC) was measured with a spectrophotometer and commercial reagents, superoxide production with a hydroethidine probe, and the viability and apoptosis of neutrophils with capillary flow cytometry and the annexin V-PE system. The plasma concentrations of cholesterol (P = 0.0415), creatinine (P < 0.0001), and urea (P < 0.0001) were significantly greater in the uremic dogs than in the control dogs. The hematocrit (P = 0.0004), urine specific gravity (P = 0.015), and plasma lipid peroxidation (P < 0.0001) were significantly lower in the dogs that were in late stages of CKD than in the control group. Compared with those isolated from the control group, neutrophils isolated from the CKD group showed a higher rate of spontaneous (0.10 ± 0.05 versus 0.49 ± 0.09; P = 0.0033; median ± standard error of mean) and camptothecin-induced (18.53 ± 4.06 versus 44.67 ± 4.85; P = 0.0066) apoptosis and lower levels of superoxide production in the presence (1278.8 ± 372.8 versus 75.65 ± 86.6; P = 0.0022) and absence (135.29 ± 51.74 versus 41.29 ± 8.38; P = 0.0138) of phorbol-12-myristate-13-acetate stimulation. Thus, oxidative stress and acceleration of apoptosis occurs in dogs with CKD, the apoptosis diminishing the number of viable neutrophils and neutrophil superoxide production.

  1. Oxidative stress, superoxide production, and apoptosis of neutrophils in dogs with chronic kidney disease

    PubMed Central

    Silva, Adriana Carolina Rodrigues Almeida; de Almeida, Breno Fernando Martins; Soeiro, Carolina Soares; Ferreira, Wagner Luis; de Lima, Valéria Marçal Félix; Ciarlini, Paulo César

    2013-01-01

    Oxidative stress is a key component in the immunosuppression of chronic kidney disease (CKD), and neutrophil function may be impaired by oxidative stress. To test the hypothesis that in uremic dogs with CKD, oxidative stress is increased and neutrophils become less viable and functional, 18 adult dogs with CKD were compared with 15 healthy adult dogs. Blood count and urinalysis were done, and the serum biochemical profile and plasma lipid peroxidation (measurement of thiobarbituric acid reactive substances) were determined with the use of commercial reagents. Plasma total antioxidant capacity (TAC) was measured with a spectrophotometer and commercial reagents, superoxide production with a hydroethidine probe, and the viability and apoptosis of neutrophils with capillary flow cytometry and the annexin V-PE system. The plasma concentrations of cholesterol (P = 0.0415), creatinine (P < 0.0001), and urea (P < 0.0001) were significantly greater in the uremic dogs than in the control dogs. The hematocrit (P = 0.0004), urine specific gravity (P = 0.015), and plasma lipid peroxidation (P < 0.0001) were significantly lower in the dogs that were in late stages of CKD than in the control group. Compared with those isolated from the control group, neutrophils isolated from the CKD group showed a higher rate of spontaneous (0.10 ± 0.05 versus 0.49 ± 0.09; P = 0.0033; median ± standard error of mean) and camptothecin-induced (18.53 ± 4.06 versus 44.67 ± 4.85; P = 0.0066) apoptosis and lower levels of superoxide production in the presence (1278.8 ± 372.8 versus 75.65 ± 86.6; P = 0.0022) and absence (135.29 ± 51.74 versus 41.29 ± 8.38; P = 0.0138) of phorbol-12-myristate-13-acetate stimulation. Thus, oxidative stress and acceleration of apoptosis occurs in dogs with CKD, the apoptosis diminishing the number of viable neutrophils and neutrophil superoxide production. PMID:24082406

  2. Centrally Mediated Erectile Dysfunction in Rats with Type 1 Diabetes: Role of Angiotensin II and Superoxide

    PubMed Central

    Zheng, Hong; Liu, Xuefei; Patel, Kaushik P.

    2015-01-01

    Introduction Erectile dysfunction is a serious complication of diabetes mellitus. Apart from the peripheral actions, central mechanisms are also responsible for penile erection. Aim To determine the contribution of angiotensin (ANG) II in the dysfunction of central N-methyl-D-aspartic acid (NMDA)-nitric oxide (NO)-induced erectile responses in streptozotocin-induced type 1 diabetic (T1D) rats. Methods Three weeks after streptozotocin injections, rats were randomly treated with the angiotensin-converting enzyme inhibitor-enalapril, or the ANG II type 1 receptor blocker, losartan, or the superoxide dismutase mimetic, tempol or vehicle via chronic intracerebroventricular infusion by osmotic mini-pump for 2 weeks. Main Outcome Measure Central NMDA receptor stimulation or the administration of the NO donor, sodium nitroprusside (SNP)-induced penile erectile responses and concurrent behavioral responses were monitored in conscious rats. Results Two weeks of enalapril, losartan or tempol treatment significantly improved the erectile responses to central microinjection of both NMDA and SNP in the paraventricular nucleus (PVN) of conscious T1D rats (NMDA responses – T1D+enalapril: 1.7 ± 0.6, T1D+losartan: 2.0 ± 0.3, T1D+tempol: 2.0 ± 0.6 vs. T1D+vehicle: 0.6 ± 0.3 penile erections/rat in the first 20 min, P < 0.05; SNP responses – T1D+enalapril: 0.9 ± 0.3, T1D+losartan: 1.3 ± 0.3, T1D+tempol: 1.4 ± 0.4 vs. T1D+vehicle: 0.4 ± 0.2 penile erections/rat in the first 20 min, P < 0.05). Concurrent behavioral responses including yawning and stretching, induced by central NMDA and SNP microinjections were also significantly increased in T1D rats after enalapril, losartan or tempol treatments. Neuronal NO synthase expression within the PVN was also significantly increased and superoxide production was reduced in T1D rats after these treatments. Conclusions These data strongly support the contention that enhanced ANG II mechanism/s within the PVN of T1D rats contributes

  3. Effect of Calcium on Superoxide Production by Phagocytic Vesicles from Rabbit Alveolar Macrophages

    PubMed Central

    Lew, P. Daniel; Stossel, Thomas P.

    1981-01-01

    Phagocytic vesicles from rabbit lung macrophages produced superoxide in the presence of NADH or NADPH. At 37°C, these vesicles generated 51±7.8 nmol O2−/min per mg protein in the presence of 0.5 mM NADPH. The apparent Km for NADPH and NADH (66 and 266 μM, respectively), the pH optimum for the reaction (6.9), and the cyanide insensitivity were similar to properties of plasma membrane-rich fractions of stimulated polymorphonuclear leukocytes studied by others. The activity of the phagocytic vesicles was trypsin sensitive. The specific superoxide-generating activity of macrophage phagocytic vesicles isolated from cells incubated up to 90 min with phagocytic particles remained constant. Calcium in micromolar concentrations inhibited the NADPH-dependent O2−-generating activity of phagocytic vesicles. In a physiological ionic medium (100 mM KCl, 2.5 mM MgCl2, 30 mM imidazole-HCl, pH 6.9), a maximal inhibition of O2− generation by phagocytic vesicles of 80% was observed at 40 μM free Ca2+. The half maximum inhibitory effect was at 0.7 μM Ca2+. Variations of the calcium concentration resulted in rapid and reversible alterations in O2−-forming activity. Preincubation of phagocytic vesicles in the presence of EGTA rendered their O2− generation rate in the presence of NADPH insensitive to alterations in the free calcium concentration. This desensitization by low EGTA concentrations (≤100 μM) was reversible by the addition of excess calcium, but desensitization by high EGTA concentrations (>1 mM) was not reversible by the addition of calcium either in the presence or absence of purified rabbit lung macrophage or bovine brain calmodulins. Furthermore, trifluoperazine, a drug that inhibits calmodulin-stimulated reactions, did not alter the activity or the calcium sensitivity of the superoxide-generating system of sensitive phagocytic vesicles. Peripheral plasma membrane vesicles (podosomes) prepared by gentle sonication of macrophages possessed on O2

  4. Temperature and Light Effects on Extracellular Superoxide Production by Algal and Bacterial Symbionts in Corals: Implications for Coral Bleaching

    NASA Astrophysics Data System (ADS)

    Brighi, C.; Diaz, J. M.; Apprill, A.; Hansel, C. M.

    2014-12-01

    Increased surface seawater temperature due to global warming is one of the main causes of coral bleaching, a phenomenon in which corals lose their photosynthetic algae. Light and temperature induced production of superoxide and other reactive oxygen species (ROS) by these symbiotic algae has been implicated in the breakdown of their symbiotic association with the coral host and subsequent coral bleaching. Nevertheless, a direct link between Symbiodinium ROS production and coral bleaching has not been demonstrated. In fact, given the abundance and diversity of microorganisms within the coral holobiont, the concentration and fluxes of ROS within corals may involve several microbial sources and sinks. Here, we explore the role of increased light and temperature on superoxide production by coral-derived cultures of Symbiodinium algae and Oceanospirillales bacteria of the genus Endozoicomonas, which are globally common and abundant associates of corals. Using a high sensitivity chemiluminescent technique, we find that heat stress (exposure to 34°C vs. 23°C for 2hr or 24hr) has no significant effect on extracellular superoxide production by Symbiodinium isolates within clades B and C, regardless of the level of light exposure. Exposure to high light, however, increased superoxide production by these organisms at both 34°C and 23°C. On the other hand, extracellular superoxide production by Endozoicomonas bacteria tested under the same conditions was stimulated by the combined effects of thermal and light stress. The results of this research suggest that the sources and physical triggers for biological superoxide production within corals are more complex than currently assumed. Thus, further investigations into the biological processes controlling ROS dynamics within corals are required to improve our understanding of the mechanisms underpinning coral bleaching and to aid in the development of mitigation strategies.

  5. Adrenergic and serotonin receptors affect retinal superoxide generation in diabetic mice: relationship to capillary degeneration and permeability

    PubMed Central

    Du, Yunpeng; Cramer, Megan; Lee, Chieh Allen; Tang, Jie; Muthusamy, Arivalagan; Antonetti, David A.; Jin, Hui; Palczewski, Krzysztof; Kern, Timothy S.

    2015-01-01

    Reactive oxygen species play an important role in the pathogenesis of diabetic retinopathy. We studied the role of adrenergic and serotonin receptors in the generation of superoxide by retina and 661W retinal cells in high glucose and of the α1-adrenergic receptor (AR) on vascular lesions of the retinopathy in experimentally diabetic C57Bl/6J mice (and controls) after 2 and 8 months. Compared with 5 mM glucose, incubating cells or retinal explants in 30 mM glucose induced superoxide generation. This response was reduced or ablated by pharmacologic inhibition of the α1-AR (a Gq-coupled receptor) or Gs-coupled serotonin (5-HT2, 5-HT4, 5-HT6, and 5-HT7) receptors or by activation of the Gi-coupled α2-AR. In elevated glucose, the α1-AR produced superoxide via phospholipase C, inositol triphosphate-induced Ca2+ release, and NADPH oxidase, and pharmacologic inhibition of these reactions prevented the superoxide increase. Generation of retinal superoxide, expression of proinflammatory proteins, and degeneration of retinal capillaries in diabetes all were significantly inhibited with daily doxazosin or apocynin (inhibitors of α1-AR and NADPH oxidase, respectively), but increased vascular permeability was not significantly affected. Adrenergic receptors, and perhaps other GPCRs, represent novel targets for inhibiting the development of important features of diabetic retinopathy.—Du, Y., Cramer, M., Lee, C. A., Tang, J., Muthusamy, A., Antonetti, D. A., Jin, H., Palczewski, K., Kern, T. S. Adrenergic and serotonin receptors affect retinal superoxide generation in diabetic mice: relationship to capillary degeneration and permeability. PMID:25667222

  6. Acute Retinal Ischemia Inhibits Endothelium-Dependent Nitric Oxide–Mediated Dilation of Retinal Arterioles via Enhanced Superoxide Production

    PubMed Central

    Ren, Yi; Potts, Luke B.; Yuan, Zhaoxu; Kuo, Enoch; Rosa, Robert H.; Kuo, Lih

    2012-01-01

    Purpose. Because retinal vascular disease is associated with ischemia and increased oxidative stress, the vasodilator function of retinal arterioles was examined after retinal ischemia induced by elevated intraocular pressure (IOP). The role of superoxide anions in the development of vascular dysfunction was assessed. Methods. IOP was increased and maintained at 80 to 90 mm Hg for 30, 60, or 90 minutes by infusing saline into the anterior chamber of a porcine eye. The fellow eye with normal IOP (10–20 mm Hg) served as control. In some pigs, superoxide dismutase mimetic TEMPOL (1 mM) or vehicle (saline) was injected intravitreally before IOP elevation. After enucleation, retinal arterioles were isolated and pressurized without flow for functional analysis by recording diameter changes using videomicroscopic techniques. Dihydroethidium (DHE) was used to detect superoxide production in isolated retinal arterioles. Results. Isolated retinal arterioles developed stable basal tone and the vasodilations to endothelium-dependent nitric oxide (NO)-mediated agonists bradykinin and L-lactate were significantly reduced only by 90 minutes of ischemia. However, vasodilation to endothelium-independent NO donor sodium nitroprusside was unaffected after all time periods of ischemia. DHE staining showed that 90 minutes of ischemia significantly increased superoxide levels in retinal arterioles. Intravitreal injection of membrane-permeable radical scavenger but not vehicle before ischemia prevented elevation of vascular superoxide and preserved bradykinin-induced dilation. Conclusions. Endothelium-dependent NO-mediated dilation of retinal arterioles is impaired by 90 minutes of ischemia induced by elevated IOP. The inhibitory effect appears to be mediated by the alteration of NO signaling via vascular superoxide. PMID:22110081

  7. Inhibition of biliverdin reductase increases ANG II-dependent superoxide levels in cultured renal tubular epithelial cells

    PubMed Central

    Young, Shelby C.; Storm, Megan V.; Speed, Joshua S.; Kelsen, Silvia; Tiller, Chelsea V.; Vera, Trinity; Drummond, Heather A.

    2009-01-01

    Induction of heme oxygenase-1 (HO-1) in the renal medulla increases carbon monoxide and bilirubin production and decreases ANG II-mediated superoxide production. The goal of this study was to determine the importance of increases in bilirubin to the antioxidant effects of HO-1 induction in cultured mouse thick ascending loop of Henle (TALH) and inner medullary collecting duct (IMCD3) cells. Bilirubin levels were decreased by using small interfering RNAs (siRNAs) targeted to biliverdin reductase (BVR), which is the cellular enzyme responsible for the conversion of biliverdin to bilirubin. Treatment of cultured TALH or IMCD-3 cells with BVR siRNA (50 or 100 nM) resulted in an 80% decrease in the level of BVR protein and decreased cellular bilirubin levels from 46 ± 5 to 23 ± 4 nM (n = 4). We then determined the effects of inhibition of BVR on ANG II-mediated superoxide production. Superoxide production induced by ANG II (10−9 M) significantly increased in both TALH and IMCD-3 cells. Treatment of TALH cells with BVR siRNA resulted in a significant increase in ouabain-sensitive rubidium uptake from 95 ± 6 to 122 ± 5% control (n = 4, P < 0.05). Lastly, inhibition of BVR with siRNA did not prevent the decrease in superoxide levels observed in cells pretreated with the HO-1 inducer, hemin. We conclude that decreased levels of cellular bilirubin increase ANG II-mediated superoxide production and sodium transport; however, increases in bilirubin are not necessary for HO-1 induction to attenuate ANG II-mediated superoxide production. PMID:19759334

  8. A pulse-radiolysis study of the catalytic mechanism of the iron-containing superoxide dismutase from Photobacterium leiognathi.

    PubMed

    Lavelle, F; McAdam, M E; Fielden, E M; Roberts, P B

    1977-01-01

    The mechanism of the enzymic reaction of an iron-containing superoxide dismutase purified from the marine bacterium Photobacterium leiognathi was studied by using pulse radiolysis. Measurements of activity were done with two different preparations of enzyme containing either 1.6 or 1.15 g-atom of iron/mol. In both cases, identical values of the second-order rate constant for reaction between superoxide dismutase and the superoxide ion in the pH range 6.2-9.0 (k=5.5 X 10(8) M-1-S-1 at pH 8.0) were found. As with the bovine erythrocuprein, there was no evidence for substrate saturation. The effects of reducing agents (H2O2, sodium ascorbate or CO2 radicals) on the visible and the electron-paramagnetic-resonance spectra of the superoxide dismutase containing 1.6 g-atom of ferric iron/mol indicate that this enzyme contains two different types of iron. Turnover experiments demonstrate that only that fraction of the ferric iron that is reduced by H2O2 is involved in the catalysis, being alternately oxidized and reduced by O2; both the oxidation and the reduction steps have a rate constant equal to that measured under turnover conditions. These results are interpreted by assuming that the superoxide dismutase isolated from the organism contains 1 g-atom of catalytic iron/mol and a variable amount of non-catalytic iron. This interpretation is discused in relation to the stoicheiometry reported for iron-containing superoxide dismutases prepared from several other organisms.

  9. Nitric oxide availability is increased in contracting skeletal muscle from aged mice, but does not differentially decrease muscle superoxide.

    PubMed

    Pearson, T; McArdle, A; Jackson, M J

    2015-01-01

    Reactive oxygen and nitrogen species have been implicated in the loss of skeletal muscle mass and function that occurs during aging. Nitric oxide (NO) and superoxide are generated by skeletal muscle and where these are generated in proximity their chemical reaction to form peroxynitrite can compete with the superoxide dismutation to hydrogen peroxide. Changes in NO availability may therefore theoretically modify superoxide and peroxynitrite activities in tissues, but published data are contradictory regarding aging effects on muscle NO availability. We hypothesised that an age-related increase in NO generation might increase peroxynitrite generation in muscles from old mice, leading to an increased nitration of muscle proteins and decreased superoxide availability. This was examined using fluorescent probes and an isolated fiber preparation to examine NO content and superoxide in the cytosol and mitochondria of muscle fibers from adult and old mice both at rest and following contractile activity. We also examined the 3-nitrotyrosine (3-NT) and peroxiredoxin 5 (Prx5) content of muscles from mice as markers of peroxynitrite activity. Data indicate that a substantial age-related increase in NO levels occurred in muscle fibers during contractile activity and this was associated with an increase in muscle eNOS. Muscle proteins from old mice also showed an increased 3-NT content. Inhibition of NOS indicated that NO decreased superoxide bioavailability in muscle mitochondria, although this effect was not age related. Thus increased NO in muscles of old mice was associated with an increased 3-NT content that may potentially contribute to age-related degenerative changes in skeletal muscle.

  10. Copper-zinc alloy nanoparticle based enzyme-free superoxide radical sensing on a screen-printed electrode.

    PubMed

    Derkus, Burak; Emregul, Emel; Emregul, Kaan C

    2015-03-01

    In this paper, amperometric enzyme-free sensors using superoxide dismutase (SOD) enzyme as a catalyst for the dismutation reaction of superoxides into oxygen and hydrogen peroxide, enabling superoxide radical detection have been described. For this purpose, the surfaces of screen-printed platinum electrodes have been modified with gelatin composites of CuO, ZnO and CuZn nanoparticles with the expectation of an increase in catalytic effect toward the dismutation reaction. SOD containing electrodes were also prepared for comparative studies in which glutaraldehyde was used as a cross-linker for the immobilization of SOD to the nanocomposite materials. Electrochemical measurements were carried out using a screen-printed electrochemical system that included potassiumferrocyanide (K4[Fe(CN)6]) and potassiumferricyanide (K3[Fe(CN)6]) as the redox probes. The results revealed that the enzyme-free detection method using CuZn nanoparticles can determine superoxide radicals with high performance compared to other detection methods prepared with different nanoparticles by mimicking the active region of superoxide dismutase enzyme. The anodic (ks(a)) and cathodic (ks(c)) electron transfer rate constants and the anodic (α(a)) and cathodic (α(c)) transfer coefficients were evaluated and found to be ks(a)=6.31 s(-1) and α(a)=0.81, ks(c)=1.48 s(-1) and α(c)=0.19 for the gelatin-CuZn-SOD electrode; ks(a)=6.15 s(-1) and α(a)=0.79, ks(c)=1,63 s(-1) and α(c)=0.21 for the enzyme-free gelatin-CuZn electrode. The enzyme-free electrode showed nearly 80% amperometric performance with respect to the enzyme containing electrode indicating the superior functionality of enzyme-free electrode for the detection of superoxide radicals.

  11. Studies on superoxide dismutase activities in virulent and avirulent strains of Agrobacterium tumefaciens and also in normal and crown gall tumor cells of Bryophyllum calycinum.

    PubMed

    Banerjee, D; Basu, M; Choudhury, I; Chatterjee, G C

    1982-01-01

    Superoxide dismutase activity in virulent strains of Agrobacterium tumefaciens was found to be higher than that in avirulent strains. Polyacrylamide gel electrophoresis revealed two isoenzymes in both these strains. These isoenzymes are suggested to be iron and manganese containing superoxide dismutases. Crown gall tumor cells of the plant Bryophyllum calycinum were found to have higher superoxide dismutase activity than the normal plant cells. Polyacrylamide gel electrophoresis revealed two isoenzymes in both normal and crown gall tumor cells. Advantages of the higher superoxide dismutase activities in respect of the survival of virulent strains of A. tumefaciens and crown gall tumor growth have been discussed.

  12. Progress in Understanding Algal Bloom-Mediated Fish Kills: The Role of Superoxide Radicals, Phycotoxins and Fatty Acids

    PubMed Central

    Dorantes-Aranda, Juan José; Seger, Andreas; Mardones, Jorge I.; Nichols, Peter D.; Hallegraeff, Gustaaf M.

    2015-01-01

    Quantification of the role of reactive oxygen species, phycotoxins and fatty acids in fish toxicity by harmful marine microalgae remains inconclusive. An in vitro fish gill (from rainbow trout Oncorhynchus mykiss) assay was used to simultaneously assess the effect in superoxide dismutase, catalase and lactate dehydrogenase enzymatic activities caused by seven species of ichthyotoxic microalgae (Chattonella marina, Fibrocapsa japonica, Heterosigma akashiwo, Karenia mikimotoi, Alexandrium catenella, Karlodinium veneficum, Prymnesium parvum). Quantification of superoxide production by these algae was also performed. The effect of purified phycotoxins and crude extracts was compared, and the effect of fatty acids is discussed. The raphidophyte Chattonella was the most ichthyotoxic (gill cell viability down to 35%) and also the major producer of superoxide radicals (14 pmol cell-1 hr-1) especially after cell lysis. The raphidophyte Heterosigma and dinoflagellate Alexandrium were the least toxic and had low superoxide production, except when A. catenella was lysed (5.6 pmol cell-1 hr-1). Catalase showed no changes in activity in all the treatments. Superoxide dismutase (SOD) and lactate dehydrogenase exhibited significant activity increases of ≤23% and 51.2% TCC (total cellular content), respectively, after exposure to C. marina, but SOD showed insignificant changes with remaining algal species. A strong relationship between gill cell viability and superoxide production or superoxide dismutase was not observed. Purified brevetoxins PbTx-2 and -3 (from Karenia brevis, LC50 of 22.1 versus 35.2 μg mL-1) and karlotoxin KmTx-2 (from Karlodinium; LC50 = 380 ng mL-1) could almost entirely account for the fish killing activity by those two dinoflagellates. However, the paralytic shellfish toxins (PST) GTX1&4, C1&C2, and STX did not account for Alexandrium ichthyotoxicity. Only aqueous extracts of Alexandrium were cytotoxic (≤65% decrease of viability), whereas crude

  13. Progress in Understanding Algal Bloom-Mediated Fish Kills: The Role of Superoxide Radicals, Phycotoxins and Fatty Acids.

    PubMed

    Dorantes-Aranda, Juan José; Seger, Andreas; Mardones, Jorge I; Nichols, Peter D; Hallegraeff, Gustaaf M

    2015-01-01

    Quantification of the role of reactive oxygen species, phycotoxins and fatty acids in fish toxicity by harmful marine microalgae remains inconclusive. An in vitro fish gill (from rainbow trout Oncorhynchus mykiss) assay was used to simultaneously assess the effect in superoxide dismutase, catalase and lactate dehydrogenase enzymatic activities caused by seven species of ichthyotoxic microalgae (Chattonella marina, Fibrocapsa japonica, Heterosigma akashiwo, Karenia mikimotoi, Alexandrium catenella, Karlodinium veneficum, Prymnesium parvum). Quantification of superoxide production by these algae was also performed. The effect of purified phycotoxins and crude extracts was compared, and the effect of fatty acids is discussed. The raphidophyte Chattonella was the most ichthyotoxic (gill cell viability down to 35%) and also the major producer of superoxide radicals (14 pmol cell-1 hr-1) especially after cell lysis. The raphidophyte Heterosigma and dinoflagellate Alexandrium were the least toxic and had low superoxide production, except when A. catenella was lysed (5.6 pmol cell-1 hr-1). Catalase showed no changes in activity in all the treatments. Superoxide dismutase (SOD) and lactate dehydrogenase exhibited significant activity increases of ≤23% and 51.2% TCC (total cellular content), respectively, after exposure to C. marina, but SOD showed insignificant changes with remaining algal species. A strong relationship between gill cell viability and superoxide production or superoxide dismutase was not observed. Purified brevetoxins PbTx-2 and -3 (from Karenia brevis, LC50 of 22.1 versus 35.2 μg mL-1) and karlotoxin KmTx-2 (from Karlodinium; LC50 = 380 ng mL-1) could almost entirely account for the fish killing activity by those two dinoflagellates. However, the paralytic shellfish toxins (PST) GTX1&4, C1&C2, and STX did not account for Alexandrium ichthyotoxicity. Only aqueous extracts of Alexandrium were cytotoxic (≤65% decrease of viability), whereas crude

  14. ENVIRONMENTAL EFFECTS ON SUPEROXIDE DISMUTASE AND CATALASE ACTIVITY AND EXPRESSION IN HONEY BEE.

    PubMed

    Nikolić, Tatjana V; Purać, Jelena; Orčić, Snežana; Kojić, Danijela; Vujanović, Dragana; Stanimirović, Zoran; Gržetić, Ivan; Ilijević, Konstantin; Šikoparija, Branko; Blagojević, Duško P

    2015-12-01

    Understanding the cellular stress response in honey bees will significantly contribute to their conservation. The aim of this study was to analyze the response of the antioxidative enzymes superoxide dismutase and catalase in honey bees related to the presence of toxic metals in different habitats. Three locations were selected: (i) Tunovo on the mountain Golija, as control area, without industry and large human impact, (ii) Belgrade as urban area, and (iii) Zajača, as mining and industrial zone. Our results showed that the concentrations of lead (Pb) in whole body of bees vary according to habitat, but there was very significant increase of Pb in bees from investigated industrial area. Bees from urban and industrial area had increased expression of both Sod1 and Cat genes, suggesting adaptation to increased oxidative stress. However, in spite increased gene expression, the enzyme activity of catalase was lower in bees from industrial area suggesting inhibitory effect of Pb on catalase.

  15. Mitochondria Superoxide Anion Production Contributes to Geranylgeraniol-Induced Death in Leishmania amazonensis.

    PubMed

    Lopes, Milene Valéria; Desoti, Vânia Cristina; Caleare, Angelo de Oliveira; Ueda-Nakamura, Tânia; Silva, Sueli Oliveira; Nakamura, Celso Vataru

    2012-01-01

    Here we demonstrate the activity of geranylgeraniol, the major bioactive constituent from seeds of Bixa orellana, against Leishmania amazonensis. Geranylgeraniol was identified through (1)H and (13)C nuclear magnetic resonance imaging and DEPT. The compound inhibited the promastigote and intracellular amastigote forms, with IC(50) of 11 ± 1.0 and 17.5 ± 0.7 μg/mL, respectively. This compound was also more toxic to parasites than to macrophages and did not cause lysis in human blood cells. Morphological and ultrastructural changes induced by geranylgeraniol were observed in the protozoan by electronic microscopy and included mainly mitochondria alterations and an abnormal chromatin condensation in the nucleus. These alterations were confirmed by Rh 123 and TUNEL assays. Additionally, geranylgeraniol induces an increase in superoxide anion production. Collectively, our in vitro studies indicate geranylgeraniol as a selective antileishmanial that appears to be mediated by apoptosis-like cell death.

  16. Mitochondria Superoxide Anion Production Contributes to Geranylgeraniol-Induced Death in Leishmania amazonensis

    PubMed Central

    Lopes, Milene Valéria; Desoti, Vânia Cristina; Caleare, Angelo de Oliveira; Ueda-Nakamura, Tânia; Silva, Sueli Oliveira

    2012-01-01

    Here we demonstrate the activity of geranylgeraniol, the major bioactive constituent from seeds of Bixa orellana, against Leishmania amazonensis. Geranylgeraniol was identified through 1H and 13C nuclear magnetic resonance imaging and DEPT. The compound inhibited the promastigote and intracellular amastigote forms, with IC50 of 11 ± 1.0 and 17.5 ± 0.7 μg/mL, respectively. This compound was also more toxic to parasites than to macrophages and did not cause lysis in human blood cells. Morphological and ultrastructural changes induced by geranylgeraniol were observed in the protozoan by electronic microscopy and included mainly mitochondria alterations and an abnormal chromatin condensation in the nucleus. These alterations were confirmed by Rh 123 and TUNEL assays. Additionally, geranylgeraniol induces an increase in superoxide anion production. Collectively, our in vitro studies indicate geranylgeraniol as a selective antileishmanial that appears to be mediated by apoptosis-like cell death. PMID:23304195

  17. Asbestos-catalyzed oxidation of benzo(a)pyrene by superoxide-peroxidized microsomes

    SciTech Connect

    Byczkowski, J.Z.; Gessner, T.

    1987-08-01

    Asbestos and benzo(a)pyrene (B(a)P) are ubiquitous in our environment and both are recognized as causal factors for cancer in man and animals. In vitro studies showed a synergism in morphological transformation of mammalian cells treated with asbestos and B(a)P. It has been shown that asbestos can mediate lipid peroxidation and that iron cations might be involved in the catalytic activity of asbestos fibers. A previous study of B(a)P metabolism by microsomes showed that peroxidative conditions change the balance between activation and deactivation of B(a)P and demonstrated that catalytically active iron can play a role in this process. The present investigation examines the effect of asbestos on oxidation of B(a)P by superoxide - peroxidized microsomes in vitro.

  18. Molecular mechanism on cadmium-induced activity changes of catalase and superoxide dismutase.

    PubMed

    Wang, Jing; Zhang, Hao; Zhang, Tong; Zhang, Rui; Liu, Rutao; Chen, Yadong

    2015-01-01

    Cadmium contributes to adverse effects of organisms probably because of its ability to induce oxidative stress via alterations in activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), but their molecular mechanisms remain unclear. We investigated the molecular mechanism of CAT and SOD response under Cd-induced oxidative stress in the liver of zebrafish. The enzyme activity changes observed in vitro were consistent with those seen in vivo, indicating the direct interaction of CAT and SOD with Cd contributes to their activity change in vivo. Further experiments utilizing multiple spectroscopic methods, isothermal titration calorimetry and a molecular docking study were performed to explore the mechanism of molecular interaction of CAT and SOD with Cd. Different interaction patterns were found that resulted in misfolding and changed the enzyme activities. Taken together, we suggest the misfolding of CAT and SOD contributes to their activity change under Cd-induced oxidative stress in vivo.

  19. Anti-superoxide and anti-peroxynitrite strategies in pain suppression

    PubMed Central

    Janes, Kali; Neumann, William L.; Salvemini, Daniela

    2012-01-01

    Superoxide (SO, O2·−) and its reaction product peroxynitrite (PN, ONOO−) have been shown to be important in the development of pain of several etiologies. While significant progress has been made in teasing out the relative contribution of SO and PN peripherally, spinally, and supraspinally during the development and maintenance of central sensitization and pain, there is still a considerable void in our understanding. Further research is required in order to develop improved therapeutic strategies for selectively eliminating SO and/or PN. Furthermore, it may be that PN is a more attractive target, in that unlike SO it has no currently known beneficial role. Our group has been at the forefront of research concerning the role of SO and PN in pain, and our current findings have led to the development of two new classes of orally active catalysts which are selective for PN decomposition while sparing SO. PMID:22200449

  20. Genetics of superoxide dismutase in the forest tent caterpillar and other organisms.

    PubMed

    Lorimer, N

    1979-01-01

    The electrophoretic assay of superoxide dismutase (SOD) in Malacosoma disstria revealed a total of 13 bands arranged in 9 patterns. One locus, composed of bands 28, 32, 36 was polymorphic in some locations. Band frequencies varied by location, but not by generation or by time in the laboratory. Significant interactions between sibling groups and SOD types for development time suggest that selective advantage is a function of genetic background. SOD, an important enzyme protecting diverse organisms against the toxic radicals of oxygen, has been extensively analyzed by biochemists. Geneticists have assayed individuals and populations for the smae enzyme, calling it tetrazolium oxidase (TO). The biochemistry and genetics literatures were reviewed and results from the two disciplines were discussed.

  1. Molecular cloning of an Onchocerca volvulus extracellular Cu-Zn superoxide dismutase.

    PubMed Central

    James, E R; McLean, D C; Perler, F

    1994-01-01

    Onchocerca volvulus, a human parasitic nematode, is the third leading cause of preventable blindness worldwide. This study describes the molecular cloning of a novel superoxide dismutase (SOD) from the parasite. This putative O. volvulus extracellular SOD (OvEcSOD) is 628 nucleotides (nt) long, including a 22-nt 5' spliced leader (SL1) and a portion encoding an N-terminal hydrophobic 42-amino-acid signal peptide. The remainder of the cDNA shares 71% identity with an O. volvulus cytosolic SOD sequence and is 3 nt longer. All residues involved in metal ion binding, active site formation, folding, and dimer formation in SODs are conserved. Data indicate the OvEcSOD and O. volvulus cytosolic SOD are separate gene products and that the OvEcSOD appears to possess the characteristics of a membrane-bound or secreted enzyme which may be involved in the parasite defense against phagocyte-generated reactive oxygen species. Images PMID:8300230

  2. Novel inhibitors to Taenia solium Cu/Zn superoxide dismutase identified by virtual screening.

    PubMed

    García-Gutiérrez, P; Landa-Piedra, A; Rodríguez-Romero, A; Parra-Unda, R; Rojo-Domínguez, A

    2011-12-01

    We describe in this work a successful virtual screening and experimental testing aimed to the identification of novel inhibitors of superoxide dismutase of the worm Taenia solium (TsCu/Zn-SOD), a human parasite. Conformers from LeadQuest(®) database of drug-like compounds were selected and then docked on the surface of TsCu/Zn-SOD. Results were screened looking for ligand contacts with receptor side-chains not conserved in the human homologue, with a subsequent development of a score optimization by a set of energy minimization steps, aimed to identify lead compounds for in vitro experiments. Six out of fifty experimentally tested compounds showed μM inhibitory activity toward TsCu/Zn-SOD. Two of them showed species selectivity since did not inhibit the homologous human enzyme when assayed in vitro.

  3. Catalase and superoxide dismutase activities after heat injury of listeria monocytogenes

    SciTech Connect

    Dallmier, A.W.; Martin, S.E.

    1988-02-01

    Four strains of Listeria monocytogenes were examined for catalase (CA) and superoxide dismutase (SOD) activities. The two strains having the highest CA activities (LCDC and Scott A) also possessed the highest SOD activities. The CA activity of heated cell extracts of all four strains examined decreased sharply between 55 and 60/sup 0/C. SOD was more heat labile than CA. Two L. monocytogenes strains demonstrated a decline in SOD activity after heat treatment at 45/sup 0/C, whereas the other two strains demonstrated a decline at 50/sup 0/C. Sublethal heating of the cells at 55/sup 0/C resulted in increased sensitivity to 5.5% NaCl. Exogenous hydrogen peroxide was added to suspensions of L. monocytogenes; strains producing the highest CA levels showed the greatest H/sub 2/O/sub 2/ resistance.

  4. Production and removal of superoxide anion radical by artificial metalloenzymes and redox-active metals

    PubMed Central

    Kawano, Tomonori; Kagenishi, Tomoko; Kadono, Takashi; Bouteau, François; Hiramatsu, Takuya; Lin, Cun; Tanaka, Kenichiro; Tanaka, Licca; Mancuso, Stefano; Uezu, Kazuya; Okobira, Tadashi; Furukawa, Hiroka; Iwase, Junichiro; Inokuchi, Reina; Baluška, Frantisek; Yokawa, Ken

    2015-01-01

    Generation of reactive oxygen species is useful for various medical, engineering and agricultural purposes. These include clinical modulation of immunological mechanism, enhanced degradation of organic compounds released to the environments, removal of microorganisms for the hygienic purpose, and agricultural pest control; both directly acting against pathogenic microorganisms and indirectly via stimulation of plant defense mechanism represented by systemic acquired resistance and hypersensitive response. By aiming to develop a novel classes of artificial redox-active biocatalysts involved in production and/or removal of superoxide anion radicals, recent attempts for understanding and modification of natural catalytic proteins and functional DNA sequences of mammalian and plant origins are covered in this review article. PMID:27066179

  5. Superoxide dismutase levels in various radioresistant and radiosensitive tissues of irradiated rats.

    PubMed

    Krízala, J; Kovárová, H; Stoklasová, A; Ledvina, M

    1982-01-01

    The activity of superoxide dismutase (E.C. 1.15.1.1; SOD) was determined in male Wistar rats in order to evaluate the possible relationship between both the enzyme content in tissue and the resistance of this tissue to ionizing radiation (8,0 Gy, 60Co). Our results showed that some non-irradiated radioresistant organs (liver) had a high SOD activity and on the contrary, in some radiosensitive tissue (bone marrow) the SOD content was low. In spite of this observation it is not possible to generalize the statement that the radiosensitivity is directly conditioned by the SOD level without any exception. The SOD content in the spleen was higher than in the brain, but the spleen is remarkably radiosensitive, whereas the brain is not. The radiosensitivity of individual tissues probably reflected the changes of SOD activity after the irradiation.

  6. Superoxide dismutase and the resistance of Escherichia coli to phagocytic killing by human neutrophils.

    PubMed Central

    Papp-Szabò, E; Sutherland, C L; Josephy, P D

    1993-01-01

    Transformation of Escherichia coli K-12-derived strains with a plasmid carrying the genetic determinants for synthesis of lipopolysaccharide O antigen by Shigella dysenteriae allows the construction of phenotypically smooth derivatives. We show that such E. coli K-12 derivatives are highly resistant to killing by human serum. Isogenic wild-type and sodB mutant (Fe superoxide dismutase-deficient) strains were constructed. The results of experiments on phagocytic killing of these strains by human neutrophils are reported. We observed no difference between the sensitivities of wild-type and sodB mutant strains to phagocytic killing, in contrast to the results reported by other researchers who used species other than E. coli or strains other than K-12. Images PMID:8454348

  7. Impaired tolerance to repetitive hypoxia in hippocampal slices of Cu,Zn superoxide dismutase transgenic mice.

    PubMed

    Büchner, M; Li, H; Huber, R; Timmler, M; Sehrsam, I; Kasischke, K; Völkel, H; Ludolph, A C; Riepe, M W

    1999-12-03

    Energy metabolism is impaired in the Cu,Zn superoxide dismutase transgenic mouse model of amyotrophic lateral sclerosis. The goal was to investigate tolerance against single and repetitive hypoxia in C57B6SJL-TgN(SOD1-G93A)1GUR mice (G93A mice). Posthypoxic recovery (15 min hypoxia, 45 min recovery) of population spike amplitude in hippocampal region CA1 was 38 +/- 29% (mean +/- SD) in controls and 67 +/- 41% (ns) in G93A mice at day 40. Upon in vivo pretreatment with 20 mg/kg 3-nitropropionate posthypoxic recovery increased to 82 +/- 32% (P < 0.01) in controls and decreased to 35 +/- 33% in G93A mice (P < 0.05 to pretreated controls). Results at day 80 and 110 were similar. We conclude that G93A mice show a long-lasting impairment to sustain repetitive hypoxic episodes whereas tolerance to a single hypoxic episode is comparable to controls.

  8. Evaluation of Malondialdehyde, Superoxide Dismutase and Catalase Activity in Fetal Cord Blood of Depressed Mothers

    PubMed Central

    Camkurt, Mehmet Akif; Fındıklı, Ebru; Bakacak, Murat; Tolun, Fatma İnanç; Karaaslan, Mehmet Fatih

    2017-01-01

    Objective The umbilical cord consists of two arteries and one vein and it functions in the transport between the maternal and fetal circulation. Biochemical analysis of fetal cord blood (FCB) during delivery could be beneficial in terms of understanding the fetal environment. In this study, we aimed to investigate oxidative parameters like malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) levels in FCB during delivery. Methods We collected FCB samples during caesarean section. Our study included 33 depressed mothers and 37 healthy controls. We investigated MDA, SOD, and CAT levels in FCB samples. Results We found no significant difference between groups in terms of MDA (p=0.625), SOD (p=0.940), and CAT (p=0.413) levels. Conclusion Our study reveals probable protective effects of the placenta from oxidative stress. Future studies should include larger samples. PMID:28138108

  9. Novel inhibitors to Taenia solium Cu/Zn superoxide dismutase identified by virtual screening

    NASA Astrophysics Data System (ADS)

    García-Gutiérrez, P.; Landa-Piedra, A.; Rodríguez-Romero, A.; Parra-Unda, R.; Rojo-Domínguez, A.

    2011-12-01

    We describe in this work a successful virtual screening and experimental testing aimed to the identification of novel inhibitors of superoxide dismutase of the worm Taenia solium ( TsCu/Zn-SOD), a human parasite. Conformers from LeadQuest® database of drug-like compounds were selected and then docked on the surface of TsCu/Zn-SOD. Results were screened looking for ligand contacts with receptor side-chains not conserved in the human homologue, with a subsequent development of a score optimization by a set of energy minimization steps, aimed to identify lead compounds for in vitro experiments. Six out of fifty experimentally tested compounds showed μM inhibitory activity toward TsCu/Zn-SOD. Two of them showed species selectivity since did not inhibit the homologous human enzyme when assayed in vitro.

  10. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging.

    PubMed

    He, Weiwei; Zhou, Yu-Ting; Wamer, Wayne G; Hu, Xiaona; Wu, Xiaochun; Zheng, Zhi; Boudreau, Mary D; Yin, Jun-Jie

    2013-01-01

    Gold nanoparticles have received a great deal of interest due to their unique optical and catalytic properties and biomedical applications. Developing applications as well as assessing associated risks requires an understanding of the interactions between Au nanoparticles (NPs) and biologically active substances. In this paper, electron spin resonance spectroscopy (ESR) was used to investigate the catalytic activity of Au NPs in biologically relevant reactions. We report here that Au NPs can catalyze the rapid decomposition of hydrogen peroxide. Decomposition of hydrogen peroxide is accompanied by the formation of hydroxyl radicals at lower pH and oxygen at higher pH. In addition, we found that, mimicking SOD, Au NPs efficiently catalyze the decomposition of superoxide. These results demonstrate that Au NPs can act as SOD and catalase mimetics. Since reactive oxygen species are biologically relevant products being continuously generated in cells, these results obtained under conditions resembling different biological microenvironments may provide insights for evaluating risks associated with Au NPs.

  11. Extracellular superoxide production associated with secondary root growth following desiccation of Pisum sativum seedlings.

    PubMed

    Roach, Thomas; Kranner, Ilse

    2011-10-15

    The seedling stage is arguably the most vulnerable phase in the plant life cycle, where the young establishing plant is extremely sensitive to environmental stresses such as drought. Here, the production of superoxide (O(2)(-)), a molecule involved in stress signaling, was measured in response to desiccation of Pisum sativum L. seedlings. Following desiccation that was sufficient to kill the radicle meristem, viability could be retained by seedlings that grew secondary roots. Upon rehydration, secondary roots formed in a region that had displayed intense extracellular O(2)(-)production on desiccation. Treating partially desiccated seedlings with hydrogen peroxide (H(2)O(2)) prevented viability loss. In summary, reactive oxygen species (ROS) appear to participate in the signaling required for secondary root formation following desiccation stress of P. sativum seedlings.

  12. Thrombolysis at a controlled pressure prolongs the survival of skin flaps treated with superoxide dismutase.

    PubMed

    Hirigoyen, M B; Prabhat, A; Zhang, W X; Urken, M L; Weinberg, H

    1996-04-01

    The role of thrombolysis in reestablishing patency in the microcirculation following ischemia, and thereby improving the efficacy of agents attenuating reperfusion injury, such as the oxygen free radical scavenger, superoxide dismutase (SOD), was investigated in a rat model. Abdominal skin flaps were subjected to normothermic ischemia induced by complete occlusion of the pedicle for periods of 12, 13, 14, 16, 18, 20, 22, and 24 hr. In Group 1 (n = 64), all animals received flap washout using 100,000U urokinase (manual injection) followed by 7,500 IU SOD given intra-arterially immediately prior to reperfusion. Animals in Group 2 received flap washout consisting of 100,000U urokinase given via a pressurized delivery system, followed by 7,500 IU SOD. Results demonstrated a statistically significant improvement in flap survival in Group 2. The authors concluded that thrombolytic therapy may be useful in improving the delivery of agents, such as SOD, which attenuate reperfusion injury in skin flaps.

  13. Superoxide anion is a natural inhibitor of FAS-mediated cell death.

    PubMed Central

    Clément, M V; Stamenkovic, I

    1996-01-01

    The cell surface receptor Fas is a major trigger of apoptosis. However, expression of the Fas receptor in many tumor cell types does not correlate with sensitivity to Fas-mediated cell death. Because a prooxidant state is a common feature of tumor cells, we examined the role of intracellular reactive oxygen intermediates in the regulation of Fas-mediated cytotoxicity. Our results show that an oxidative stress induced by increasing the intracellular superoxide anion (O2-) concentration can abrogate Fas-mediated apoptosis in cells which are constitutively sensitive to Fas. Conversely, an O2- concentration decrease is observed to sensitize cells which are naturally resistant to Fas signals. These observations suggest that intracellular O2- may play a key role in regulating cell sensitivity to a potentially lethal signal and provide tumor cells with a natural, inducible mechanism of resistance to Fas-mediated apoptosis. Images PMID:8617197

  14. The role of a cytosolic superoxide dismutase in barley-pathogen interactions.

    PubMed

    Lightfoot, Damien J; Mcgrann, Graham R D; Able, Amanda J

    2017-04-01

    Reactive oxygen species (ROS), including superoxide ( O2·-/ HO2·) and hydrogen peroxide (H2 O2 ), are differentially produced during resistance responses to biotrophic pathogens and during susceptible responses to necrotrophic and hemi-biotrophic pathogens. Superoxide dismutase (SOD) is responsible for the catalysis of the dismutation of O2·-/ HO2· to H2 O2 , regulating the redox status of plant cells. Increased SOD activity has been correlated previously with resistance in barley to the hemi-biotrophic pathogen Pyrenophora teres f. teres (Ptt, the causal agent of the net form of net blotch disease), but the role of individual isoforms of SOD has not been studied. A cytosolic CuZnSOD, HvCSD1, was isolated from barley and characterized as being expressed in tissue from different developmental stages. HvCSD1 was up-regulated during the interaction with Ptt and to a greater extent during the resistance response. Net blotch disease symptoms and fungal growth were not as pronounced in transgenic HvCSD1 knockdown lines in a susceptible background (cv. Golden Promise), when compared with wild-type plants, suggesting that cytosolic O2·-/ HO2· contributes to the signalling required to induce a defence response to Ptt. There was no effect of HvCSD1 knockdown on infection by the hemi-biotrophic rice blast pathogen Magnaporthe oryzae or the biotrophic powdery mildew pathogen Blumeria graminis f. sp. hordei, but HvCSD1 also played a role in the regulation of lesion development by methyl viologen. Together, these results suggest that HvCSD1 could be important in the maintenance of the cytosolic redox status and in the differential regulation of responses to pathogens with different lifestyles.

  15. Corroborative models of the cobalt(II) inhibited Fe/Mn superoxide dismutases.

    PubMed

    Scarpellini, Marciela; Wu, Amy J; Kampf, Jeff W; Pecoraro, Vincent L

    2005-07-11

    Attempting to model superoxide dismutase (SOD) enzymes, we designed two new N3O-donor ligands to provide the same set of donor atoms observed in the active site of these enzymes: K(i)Pr2TCMA (potassium 1,4-diisopropyl-1,4,7-triazacyclononane-N-acetate) and KBPZG (potassium N,N-bis(3,5-dimethylpyrazolylmethyl) glycinate). Five new Co(II) complexes (1-5) were obtained and characterized by X-ray crystallography, mass spectrometry, electrochemistry, magnetochemistry, UV-vis, and electron paramagnetic resonance (EPR) spectroscopies. The crystal structures of 1 and 3-5 revealed five-coordinate complexes, whereas complex 2 is six-coordinate. The EPR data of complexes 3 and 4 agree with those of the Co(II)-substituted SOD, which strongly support the proposition that the active site of the enzyme structurally resembles these models. The redox behavior of complexes 1-5 clearly demonstrates the stabilization of the Co(II) state in the ligand field provided by these ligands. The irreversibility displayed by all of the complexes is probably related to an electron-transfer process followed by a rearrangement of the geometry around the metal center for complexes 1 and 3-5 that probably changes from a trigonal bipyramidal (high spin, d7) to octahedral (low spin, d6) as Co(II) is oxidized to Co(III), which is also expected to be accompanied by a spin-state conversion. As the redox potentials to convert the Co(II) to Co(III) are high, it can be inferred that the redox potential of the Co(II)-substituted SOD may be outside the range required to convert the superoxide radical (O2*-) to hydrogen peroxide, and this is sufficient to explain the inactivity of the enzyme. Finally, the complexes reported here are the first corroborative structural models of the Co(II)-substituted SOD.

  16. Antioxidative capacity and enzyme activity in Haematococcus pluvialis cells exposed to superoxide free radicals

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Zhang, Xiaoli; Sun, Yanhong; Lin, Wei

    2010-01-01

    The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O{2/-}). The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H. pluvialis during exposure to reactive oxygen species (ROS) such as O{2/-}. Astaxanthin reacted with ROS much faster than did the protective enzymes, and had the strongest antioxidative capacity to protect against lipid peroxidation. The defensive mechanisms varied significantly between the three cell types and were related to the level of astaxanthin that had accumulated in those cells. Astaxanthin-enriched red cells had the strongest antioxidative capacity, followed by brown cells, and astaxanthin-deficient green cells. Although there was no significant increase in expression of protective enzymes, the malondialdehyde (MDA) content in red cells was sustained at a low level because of the antioxidative effect of astaxanthin, which quenched O{2/-} before the protective enzymes could act. In green cells, astaxanthin is very low or absent; therefore, scavenging of ROS is inevitably reliant on antioxidative enzymes. Accordingly, in green cells, these enzymes play the leading role in scavenging ROS, and the expression of these enzymes is rapidly increased to reduce excessive ROS. However, because ROS were constantly increased in this study, the enhance enzyme activity in the green cells was not able to repair the ROS damage, leading to elevated MDA content. Of the four defensive enzymes measured in astaxanthin-deficient green cells, SOD eliminates O{2/-}, POD eliminates H2O2, which is a by-product of SOD activity, and APX and CAT are then initiated to scavenge excessive ROS.

  17. Involvement of superoxide in ozone-induced airway hyperresponsiveness in anesthetized cats

    SciTech Connect

    Takahashi, T.; Miura, M.; Katsumata, U.; Ichinose, M.; Kimura, K.; Inoue, H.; Takishima, T.; Shirato, K. )

    1993-07-01

    To determine whether oxygen radical scavengers inhibit ozone-induced airway hyperresponsiveness, we examined the protective effect of polyethylene glycol-superoxide dismutase (PEG-SOD) and PEG-catalase (PEG-CAT) on ozone-induced airway hyperresponsiveness in cat airways. Twenty-five cats divided into five groups were anesthetized and mechanically ventilated. There was no difference between the groups in baseline airway responsiveness to inhaled acetylcholine (ACh). In the control group, AChPC, the concentration required to produce a doubling increase in baseline pulmonary resistance, was significantly reduced by ozone exposure (2.0 ppm for 2 h); the ratios of AChPC before ozone exposure to after ozone exposure (AChPC ratio) were 14.8 +/- 5.7 (p < 0.001) and 4.80 +/- 1.6 (p < 0.01) 30 and 120 min after exposure, respectively. Local administration of PEG-SOD (2,000 U/kg) into airways partially but significantly prevented ozone-induced airway hyperresponsiveness. The AChPC ratios were 6.2 +/- 1.4 and 1.5 +/- 0.2 30 and 120 min after exposure, respectively, which were significantly different from those of the control group (p < 0.05), whereas PEG-CAT pretreatment (6,000 U/kg) was without effect. Combined pretreatment with PEG-SOD and PEG-CAT had no additional protective effect compared with PEG-SOD alone. PEG-SOD had no direct effect on airway responsiveness to ACh. These results suggest that superoxide may be involved in ozone-induced airway hyperresponsiveness.

  18. Cu,Zn-Superoxide Dismutase without Zn is Folded but Catalytically Inactive

    PubMed Central

    Nedd, Sean; Redler, Rachel L.; Proctor, Elizabeth A.; Dokholyan, Nikolay V.; Alexandrova, Anastassia N.

    2014-01-01

    Amyotrophic Lateral Sclerosis has been linked to the gain of aberrant function of superoxide dismutase, Cu,Zn-SOD1 upon protein misfolding. The mechanism of SOD1 misfolding is thought to involve mutations leading to the loss of Zn, followed by protein unfolding, and aggregation. We show that the removal of Zn from SOD1 may not lead to an immediate unfolding, but immediately deactivates the enzyme through a combination of subtle structural and electronic effects. Using Quantum Mechanics/Discrete Molecular Dynamics, we showed that Zn-less wild type SOD1 and its D124N mutant that does not bind Zn both have at least metastable folded states. In those states, the reduction potential of Cu increases, leading to the presence of detectable amounts of Cu(I) instead of Cu(II) in the active site, as confirmed experimentally. The Cu(I) protein cannot participate in the catalytic Cu(I) – Cu(II) cycle. However, even without the full reduction to Cu(I), the Cu site in the Zn-less variants of SOD1 is shown to be catalytically incompetent: unable to bind superoxide in a way comparable to the wild type SOD1. The changes are more radical and different in the D124N Zn-less mutant than in the Zn-less wild type SOD1, suggesting D124N being perhaps not the most adequate model for Zn-less SOD1. Overall, Zn in SOD1 appears to be influencing the Cu site directly by adjusting its reduction potential and geometry. Thus, the role of Zn in SOD1 is not just structural, as was previously thought; it is a vital part of the catalytic machinery. PMID:25083917

  19. Rapid determination of seed vigor based on the level of superoxide generation during early imbibition.

    PubMed

    Liu, Xuejun; Xing, Da; Li, Lingling; Zhang, Lingrui

    2007-07-01

    It has been reported that a large amount of reactive oxygen species (ROS) is produced during seed imbibition and this ROS is related to seed vigor. To make this physiological mechanism clear, we have used 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo(1,2-alpha)pyrazin-3-one (MCLA) as a sensitive and physiologically compatible probe for the determination of superoxide anion (O(2)(*-)) production in vivo. Our results showed that dry rice (Oryzae sativa L.) seed embryo cells possessed the capacity to generate O(2)(*-). Conversely, the O(2)(*-) production of seed embryo cells was inhibited by quinacrine (QA) and diphenylene iodonium (DPI), two specific inhibitors of NADPH oxidase, and O(2)(*-) induced MCLA-mediated chemiluminescence was also blocked by superoxide dismutase (SOD). Additionally, O(2)(*-) -production ability increased dramatically in a NADPH-dependent way in the plasma membrane protein abstract from rice seed embryo cells, whereas SOD and the inhibitors mentioned above suppressed O(2)(*-) production. These preliminary results suggested that rice seeds contained intrinsic NADPH oxidase activity. To validate this conclusion, dichlorofluorescein (DCF) fluorescence staining was used (observed under a laser scanning microscope, LSM) to reflect the in situ assessment of O(2)(*-) -generation. The position of O(2)(*-) production located at the plasma membrane. Additionally the ability to synthesize O(2)(*-) was activated directly by calcium ions. These observations are in accord with the character of NADPH oxidase catalyzed O(2)(*-) -generation. All these results indicated that NADPH oxidase contribute to O(2)(*-) production and release to the outside. We concluded that NADPH oxidase plays an intrinsic role as an NADPH sensor, so, measuring the O(2)(*-) one can monitor the NADPH concentration, which is an index of seed vigor. Therefore the O(2)(*-) generation during early imbibition can serve as a rapid measurement of seed vigor.

  20. Superoxide Mediates Acute Liver Injury in Irradiated Mice Lacking Sirtuin 3

    PubMed Central

    Coleman, Mitchell C.; Olivier, Alicia K.; Jacobus, James A.; Mapuskar, Kranti A.; Mao, Gaowei; Martin, Sean M.; Riley, Dennis P.; Gius, David

    2014-01-01

    Abstract Aims: This study determined whether acute radiation-induced liver injury seen in Sirtuin3−/− mice after exposure to Cs-137 γ-rays was mediated by superoxide anion (O2•−). Results: Male wild-type (WT) and SIRT3−/− mice were given 2×2 Gy whole-body radiation doses separated by 24 h and livers were harvested 20 h after the second dose. Ex vivo measurements in fresh frozen liver sections demonstrated 50% increases in dihydroethidium oxidation from SIRT3−/− animals, relative to WT animals, before irradiation, but this increase was not detected 20 h after radiation exposure. In addition, irradiated livers from SIRT3−/− animals showed significant hydropic degeneration, loss of MitoTracker Green FM staining, increased immunohistochemical staining for 3-nitrotyrosine, loss of Ki67 staining, and increased mitochondrial localization of p53. These parameters of radiation-induced injury were significantly attenuated by an intraperitoneal injection of 2 mg/kg of the highly specific superoxide dismutase mimic, GC4401, 30 min before each fraction. Innovation: Sirtuin 3 (SIRT3) is believed to regulate mitochondrial oxidative metabolism and antioxidant defenses in response to acute radiation-induced liver injury. This work provides strong evidence for the causal role of O2•− in the liver injury process initiated by whole-body irradiation in SIRT3−/− mice. Conclusion: These results support the hypothesis that O2•− mediates acute liver injury in SIRT3−/− animals exposed to whole-body γ-radiation and suggest that GC4401 could be used as a radio-protective compound in vivo. Antioxid. Redox Signal. 20, 1423–1435. PMID:23919724

  1. Bax Regulates Production of Superoxide in Both Apoptotic and Nonapoptotic Neurons: Role of Caspases

    PubMed Central

    Kirkland, Rebecca A.; Saavedra, Geraldine M.; Cummings, Brian S.; Franklin, James L.

    2010-01-01

    A Bax- and, apparently, mitochondria-dependent increase in superoxide (O2.−) and other reactive oxygen species (ROS) occurs in apoptotic superior cervical ganglion (SCG) and cerebellar granule (CG) neurons. Here we show that Bax also lies upstream of ROS produced in nonapoptotic neurons and present evidence that caspases partially mediate the pro-oxidant effect of Bax. We used the O2.−-sensitive dye MitoSOX to monitor O2.− in neurons expressing different levels of Bax and mitochondrial superoxide dismutase (SOD2). Basal and apoptotic O2.− levels in both SCG and CG neurons were reduced in SOD2 wild-type (wt) cells having lower Bax concentrations. Apoptotic and nonapoptotic neurons from Bax-wt/SOD2-null but not Bax-null/SOD2-null mice had increased O2.− levels. A caspase inhibitor inhibited O2.− in both apoptotic and nonapoptotic SCG neurons. O2.− production increased when wt, but not Bax-null SCG neurons were permeabilized and treated with active caspase 3. There was no apoptosis and little increase in O2.− in SCG neurons from caspase 3-null mice exposed to an apoptotic stimulus. O2.− levels in nonapoptotic caspase 3-null SCG neurons were lower than in wt cells but not as low as in caspase inhibitor-treated cells. These data indicate that Bax lies upstream of most O2.− produced in neurons, that caspase 3 is required for increased O2.− production during neuronal apoptosis, that caspase 3 is partially involved in O2.− production in nonapoptotic neurons, and that other caspases may also be involved in Bax-dependent O2.− production in nonapoptotic cells. PMID:21123558

  2. Enhanced mitochondrial superoxide in hyperglycemic endothelial cells: direct measurements and formation of hydrogen peroxide and peroxynitrite.

    PubMed

    Quijano, Celia; Castro, Laura; Peluffo, Gonzalo; Valez, Valeria; Radi, Rafael

    2007-12-01

    Hyperglycemic challenge to bovine aortic endothelial cells (BAECs) increases oxidant formation and cell damage that are abolished by MnSOD overexpression, implying mitochondrial superoxide (O(2)(.-)) as a central mediator. However, mitochondrial O(2)(.-) and its steady-state concentrations have not been measured directly yet. Therefore, we aimed to detect and quantify O(2)(.-) through different techniques, along with the oxidants derived from it. Mitochondrial aconitase, a sensitive target of O(2)(.-), was inactivated 60% in BAECs incubated in 30 mM glucose (hyperglycemic condition) with respect to cells incubated in 5 mM glucose (normoglycemic condition). Under hyperglycemic conditions, increased oxidation of the mitochondrially targeted hydroethidine derivative (MitoSOX) to hydroxyethidium, the product of the reaction with O(2)(.-), could be specifically detected. An 8.8-fold increase in mitochondrial O(2)(.-) steady-state concentration (to 250 pM) and formation rate (to 6 microM/s) was estimated. Superoxide formation increased the intracellular concentration of both hydrogen peroxide, measured as 3-amino-2,4,5-triazole-mediated inactivation of catalase, and nitric oxide-derived oxidants (i.e., peroxynitrite), evidenced by immunochemical detection of 3-nitrotyrosine. Oxidant formation was further evaluated by chloromethyl dichlorodihydrofluorescein (CM-H(2)DCF) oxidation. Exposure to hyperglycemic conditions triggered the oxidation of CM-H(2)DCF and was significantly reduced by pharmacological agents that lower the mitochondrial membrane potential, inhibit electron transport (i.e., myxothiazol), and scavenge mitochondrial oxidants (i.e., MitoQ). In BAECs devoid of mitochondria (rho(0) cells), hyperglycemic conditions did not increase CM-H(2)DCF oxidation. Mitochondrial O(2)(.-) formation in hyperglycemic conditions was associated with increased glucose metabolization in the Krebs cycle and hyperpolarization of the mitochondrial membrane.

  3. Macrocyclic nickel(II) complexes: Synthesis, characterization, superoxide scavenging activity and DNA-binding

    NASA Astrophysics Data System (ADS)

    Ramadan, Abd El-Motaleb M.

    2012-05-01

    A new series of nickel(II) complexes with the tetraaza macrocyclic ligand have been synthesized as possible functional models for nickel-superoxide dismutase enzyme. The reaction of 5-amino-3-methyl-1-phenylpyrazole-4-carbaldehyde (AMPC) with itself in the presence of nickel(II) ion yields, the new macrocyclic cationic complex, [NiL(NO3)2], containing a ligand composed of the self-condensed AMPC (4 mol) bound to a single nickel(II) ion. A series of metathetical reactions have led to the isolation of a number of newly complexes of the types [NiL]X2; X = ClO4 and BF4, [NiLX2], X = Cl and Br (Scheme 1). Structures and characterizations of these complexes were achieved by several physicochemical methods namely, elemental analysis, magnetic moment, conductivity, and spectral (IR and UV-Vis) measurements. The electrochemical properties and thermal behaviors of these chelates were investigated by using cyclic voltammetry and thermogravimetric analysis (TGA and DTG) techniques. A distorted octahedral stereochemistry has been proposed for the six-coordinate nitrato, and halogeno complexes. For the four-coordinate, perchlorate and fluoroborate, complex species a square-planar geometry is proposed. The measured superoxide dismutase mimetic activities of the complexes indicated that they are potent NiSOD mimics and their activities are compared with those obtained previously for nickel(II) complexes. The probable mechanistic implications of the catalytic dismutation of O2rad - by the synthesized nickel(II) complexes are discussed. The DNA-binding properties of representative complexes [NiLCl2] and [NiL](PF4)2 have been investigated by the electronic absorption and fluorescence measurements. The results obtained suggest that these complexes bind to DNA via an intercalation binding mode and the binding affinity for DNA follows the order: [NiLCl2] □ [NiL](PF4)2.

  4. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.).

    PubMed Central

    McKersie, B D; Chen, Y; de Beus, M; Bowley, S R; Bowler, C; Inzé, D; D'Halluin, K; Botterman, J

    1993-01-01

    Activated oxygen or oxygen free radicals have been implicated in a number of physiological disorders in plants including freezing injury. Superoxide dismutase (SOD) catalyzes the dismutation of superoxide into O2 and H2O2 and thereby reduces the titer of activated oxygen molecules in the cell. To further examine the relationship between oxidative and freezing stresses, the expression of SOD was modified in transgenic alfalfa (Medicago sativa L.). The Mn-SOD cDNA from Nicotiana plumbaginifolia under the control of the cauliflower mosaic virus 35S promoter was introduced into alfalfa using Agrobacterium tumefaciens-mediated transformation. Two plasmid vectors, pMitSOD and pChlSOD, contained a chimeric Mn-SOD construct with a transit peptide for targeting to the mitochondria or one for targeting to the chloroplast, respectively. The putatively transgenic plants were selected for resistance to kanamycin and screened for neomycin phosphotransferase activity and the presence of an additional Mn-SOD isozyme. Detailed analysis of a set of four selected transformants indicated that some had enhanced SOD activity, increased tolerance to the diphenyl ether herbicide, acifluorfen, and increased regrowth after freezing stress. The F1 progeny of one line, RA3-ChlSOD-30, were analyzed by SOD isozyme activity, by polymerase chain reaction for the Mn-SOD gene, and by polymerase chain reaction for the neo gene. RA3-ChlSOD-30 had three sites of insertion of pChlSOD, but only one gave a functional Mn-SOD isozyme; the other two were apparently partial insertions. The progeny with a functional Mn-SOD transgene had more rapid regrowth following freezing stress than those progeny lacking the functional Mn-SOD transgene, suggesting that Mn-SOD serves a protective role by minimizing oxygen free radical production after freezing stress. PMID:8290627

  5. Role of superoxide anion on basal and stimulated nitric oxide activity in neonatal piglet pulmonary vessels.

    PubMed

    Villamor, Eduardo; Kessels, Carolina G A; Fischer, Marc A J; Bast, Aalt; de Mey, Jo G R; Blanco, Carlos E

    2003-09-01

    The superoxide anion (O2*-) appears to be an important modulator of nitric oxide bioavailability. Enzymatic scavenging of O2*- is carried out by superoxide dismutase (SOD). The present study was designed to characterize the developmental changes on pulmonary vascular reactivity induced by 1) exogenous Cu/Zn SOD, 2) several putative SOD mimetics, and 3) endogenous SOD inhibition. We also analyzed age-related changes on pulmonary SOD activity and vascular O2*- levels. SOD (1-300 U/mL) produced endothelium-dependent relaxation of U46619-contracted intrapulmonary arteries (fourth branch) and veins from 12- to 24-h-old and 2-wk-old piglets. SOD-induced relaxation was greater in pulmonary arteries and was abolished by the nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester. SOD induced a greater pulmonary artery relaxation in the 2-wk-old than in the 12- to 24-h-old piglet. SOD (100 U/mL) did not modify acetylcholine-induced relaxation in pulmonary arteries. In contrast, endogenous SOD inhibition by diethyldithiocarbamate (3 mM) impaired acetylcholine-induced relaxation in pulmonary arteries from newborn but not from 2-wk-old piglets. Total SOD activity in lung tissue did not change with postnatal age. With the use of dihydroethidium, an oxidant-sensitive fluorescent probe, we did not find significant age- or vessel-related differences in O2*- presence. From the putative SOD mimetics tested, only the metal salts MnCl2 and CuSO4 reproduced the vascular effects of SOD. In summary, SOD produces endothelium-dependent pulmonary vascular relaxation by protecting nitric oxide from destruction by O2*-. This effect was less marked in newborns than in 2-wk-old piglets. In contrast, pulmonary arteries from newborn piglets are more sensitive to the inhibition of endogenous SOD.

  6. LC-MS/MS Analysis Unravels Deep Oxidation of Manganese Superoxide Dismutase in Kidney Cancer

    PubMed Central

    Zhao, Zuohui; Azadzoi, Kazem M.; Choi, Han-Pil; Jing, Ruirui; Lu, Xin; Li, Cuiling; Wang, Fengqin; Lu, Jiaju; Yang, Jing-Hua

    2017-01-01

    Manganese superoxide dismutase (MNSOD) is one of the major scavengers of reactive oxygen species (ROS) in mitochondria with pivotal regulatory role in ischemic disorders, inflammation and cancer. Here we report oxidative modification of MNSOD in human renal cell carcinoma (RCC) by the shotgun method using data-dependent liquid chromatography tandem mass spectrometry (LC-MS/MS). While 5816 and 5571 proteins were identified in cancer and adjacent tissues, respectively, 208 proteins were found to be up- or down-regulated (p < 0.05). Ontological category, interaction network and Western blotting suggested a close correlation between RCC-mediated proteins and oxidoreductases such as MNSOD. Markedly, oxidative modifications of MNSOD were identified at histidine (H54 and H55), tyrosine (Y58), tryptophan (W147, W149, W205 and W210) and asparagine (N206 and N209) residues additional to methionine. These oxidative insults were located at three hotspots near the hydrophobic pocket of the manganese binding site, of which the oxidation of Y58, W147 and W149 was up-regulated around three folds and the oxidation of H54 and H55 was detected in the cancer tissues only (p < 0.05). When normalized to MNSOD expression levels, relative MNSOD enzymatic activity was decreased in cancer tissues, suggesting impairment of MNSOD enzymatic activity in kidney cancer due to modifications. Thus, LC-MS/MS analysis revealed multiple oxidative modifications of MNSOD at different amino acid residues that might mediate the regulation of the superoxide radicals, mitochondrial ROS scavenging and MNSOD activity in kidney cancer. PMID:28165386

  7. Identification and Analysis of the Role of Superoxide Dismutases Isoforms in the Pathogenesis of Paracoccidioides spp.

    PubMed

    Tamayo, Diana; Muñoz, José F; Lopez, Ángela; Urán, Martha; Herrera, Juan; Borges, Clayton L; Restrepo, Ángela; Soares, Celia M; Taborda, Carlos P; Almeida, Agostinho J; McEwen, Juan G; Hernández, Orville

    2016-03-01

    The ability of Paracoccidioides to defend itself against reactive oxygen species (ROS) produced by host effector cells is a prerequisite to survive. To counteract these radicals, Paracoccidioides expresses, among different antioxidant enzymes, superoxide dismutases (SODs). In this study, we identified six SODs isoforms encoded by the Paracoccidioides genome. We determined gene expression levels of representative isolates of the phylogenetic lineages of Paracoccidioides spp. (S1, PS2, PS3 and Pb01-like) using quantitative RT-PCR. Assays were carried out to analyze SOD gene expression of yeast cells, mycelia cells, the mycelia-to-yeast transition and the yeast-to-mycelia germination, as well as under treatment with oxidative agents and during interaction with phagocytic cells. We observed an increased expression of PbSOD1 and PbSOD3 during the transition process, exposure to oxidative agents and interaction with phagocytic cells, suggesting that these proteins could assist in combating the superoxide radicals generated during the host-pathogen interaction. Using PbSOD1 and PbSOD3 knockdown strains we showed these genes are involved in the response of the fungus against host effector cells, particularly the oxidative stress response, and in a mouse model of infection. Protein sequence analysis together with functional analysis of knockdown strains seem to suggest that PbSOD3 expression is linked with a pronounced extracellular activity while PbSOD1 seems more related to intracellular requirements of the fungus. Altogether, our data suggests that P. brasiliensis actively responds to the radicals generated endogenously during metabolism and counteracts the oxidative burst of immune cells by inducing the expression of SOD isoforms.

  8. Identification and Analysis of the Role of Superoxide Dismutases Isoforms in the Pathogenesis of Paracoccidioides spp.

    PubMed Central

    Tamayo, Diana; Muñoz, José F.; Lopez, Ángela; Urán, Martha; Herrera, Juan; Borges, Clayton L.; Restrepo, Ángela; Soares, Celia M.; Taborda, Carlos P.; Almeida, Agostinho J.; McEwen, Juan G.; Hernández, Orville

    2016-01-01

    The ability of Paracoccidioides to defend itself against reactive oxygen species (ROS) produced by host effector cells is a prerequisite to survive. To counteract these radicals, Paracoccidioides expresses, among different antioxidant enzymes, superoxide dismutases (SODs). In this study, we identified six SODs isoforms encoded by the Paracoccidioides genome. We determined gene expression levels of representative isolates of the phylogenetic lineages of Paracoccidioides spp. (S1, PS2, PS3 and Pb01-like) using quantitative RT-PCR. Assays were carried out to analyze SOD gene expression of yeast cells, mycelia cells, the mycelia-to-yeast transition and the yeast-to-mycelia germination, as well as under treatment with oxidative agents and during interaction with phagocytic cells. We observed an increased expression of PbSOD1 and PbSOD3 during the transition process, exposure to oxidative agents and interaction with phagocytic cells, suggesting that these proteins could assist in combating the superoxide radicals generated during the host-pathogen interaction. Using PbSOD1 and PbSOD3 knockdown strains we showed these genes are involved in the response of the fungus against host effector cells, particularly the oxidative stress response, and in a mouse model of infection. Protein sequence analysis together with functional analysis of knockdown strains seem to suggest that PbSOD3 expression is linked with a pronounced extracellular activity while PbSOD1 seems more related to intracellular requirements of the fungus. Altogether, our data suggests that P. brasiliensis actively responds to the radicals generated endogenously during metabolism and counteracts the oxidative burst of immune cells by inducing the expression of SOD isoforms. PMID:26963091

  9. Immunohistochemical assessment of mitochondrial superoxide dismutase (MnSOD) in colorectal premalignant and malignant lesions

    PubMed Central

    Piecuch, Adam; Dziewit, Bartosz; Segiet, Oliwia; Kurek, Józef; Kowalczyk-Ziomek, Grażyna; Wojnicz, Romuald; Helewski, Krzysztof

    2016-01-01

    Introduction It is generally accepted that mitochondria are a primary source of intracellular reactive oxygen species (ROS). Under physiological circumstances they are permanently formed as by-products of aerobic metabolism in the mitochondria. To counter the harmful effect of ROS, cells possess an antioxidant defence system to detoxify ROS and avert them from accumulation at high concentrations. Mitochondria-located manganese superoxide dismutase (MnSOD, SOD2) successfully converts superoxide to the less reactive hydrogen peroxide (H2O2). To the best of our knowledge, there are no available data regarding immunohistochemical expression of MnSOD in colorectal neoplastic tissues. Aim To investigate the immunohistochemical expression status of MnSOD in colorectal premalignant and malignant lesions. Material and methods This study was performed on resected specimens obtained from 126 patients who had undergone surgical resection for primary sporadic colorectal cancer, and from 114 patients who had undergone colonoscopy at the Municipal Hospital in Jaworzno (Poland). Paraffin-embedded, 4-µm-thick tissue sections were stained for rabbit polyclonal anti SOD2 antibody obtained from GeneTex (clone TF9-10-H10 from America Diagnostica). Results Results of our study demonstrated that the development of colorectal cancer is connected with increased expression of MnSOD both in adenoma and adenocarcinoma stages. Samples of adenocarcinoma with G2 and G3 grade showed significantly higher levels of immunohistochemical expression of this antioxidant enzyme. Moreover, patients with the presence of lymphovascular invasion and higher degree of regional lymph node status have been also characterised by higher levels of MnSOD expression. The samples of adenoma have been characterised by higher levels of MnSOD expression in comparison to normal mucosa as well. Interestingly, there was no significant correlation between expression and histological type of adenoma. Conclusions Development

  10. Molecular characterization of a cytosolic manganese superoxide dismutase from the Chinese mitten crab, Eriocheir sinensis.

    PubMed

    Zhao, D X; Chen, L Q; Qin, J G; Qin, C J; Zhang, H; Wu, P; Li, E C

    2014-11-11

    A cytosolic manganese superoxide dismutase gene (Es-cMnSOD) was cloned from the Chinese mitten crab Eriocheir sinensis, using reverse transcription-polymerase chain reaction and the rapid amplification of cDNA ends. The open reading frame of Es-cMnSOD is 867 bp in length and encodes a 288-amino acid protein without a signal peptide. The calculated molecular mass of the translated protein of Es-cMnSOD is 31.43 kDa, with an estimated isoelectric point of 6.30. The deduced amino acid sequence of Es-cMnSOD has similarities of 90, 89, 84, 87, and 81% to those of white shrimp Litopenaeus vannamei MnSOD, black tiger shrimp Penaeus monodon MnSOD, giant freshwater prawn Macrobrachium rosenbergii MnSOD, blue crab Callinectes sapidus MnSOD, and red swamp crayfish Procambarus clarkii MnSOD, respectively. Es-cMnSOD contains a manganese superoxide dismutase domain (DVWEHAYY) and 4 conserved amino acids responsible for binding manganese. Es-cMnSOD was expressed in the hemocytes, eyestalk, muscle, intestine, gill, and hepatopancreas. Es-cMnSOD transcripts in hemocytes of E. sinensis increased at 1.5 and 48 h after injection of Aeromonas hydrophila, indicating that the induction of the SOD system response occurred within a short period of time. This study suggests that MnSOD may play a critical role in crab immunity, allowing efficient activation of an early innate immune response in the crab.

  11. Replacement of a cytosolic copper/zinc superoxide dismutase by a novel cytosolic manganese superoxide dismutase in crustaceans that use copper (haemocyanin) for oxygen transport.

    PubMed Central

    Brouwer, Marius; Hoexum Brouwer, Thea; Grater, Walter; Brown-Peterson, Nancy

    2003-01-01

    The blue crab, Callinectes sapidus, which uses the copper-dependent protein haemocyanin for oxygen transport, lacks the ubiquitous cytosolic copper-dependent enzyme copper/zinc superoxide dismutase (Cu,ZnSOD) as evidenced by undetectable levels of Cu,ZnSOD activity, protein and mRNA in the hepatopancreas (the site of haemocyanin synthesis) and gills. Instead, the crab has an unusual cytosolic manganese SOD (cytMnSOD), which is retained in the cytosol, because it lacks a mitochondrial transit peptide. A second familiar MnSOD is present in the mitochondria (mtMnSOD). This unique phenomenon occurs in all Crustacea that use haemocyanin for oxygen transport. Molecular phylogeny analysis suggests the MnSOD gene duplication is as old as the origin of the arthropod phylum. cytMnSOD activity in the hepatopancreas changes during the moulting cycle of the crab. Activity is high in intermoult crabs and non-detectable in postmoult papershell crabs. mtMnSOD is present in all stages of the moulting cycle. Despite the lack of cytCu,ZnSOD, crabs have an extracellular Cu,ZnSOD (ecCu,ZnSOD) that is produced by haemocytes, and is part of a large, approx. 160 kDa, covalently-linked protein complex. ecCu,ZnSOD is absent from the hepatopancreas of intermoult crabs, but appears in this tissue at premoult. However, no ecCu,ZnSOD mRNA can be detected, suggesting that the protein is recruited from the haemolymph. Screening of different taxa of the arthropod phylum for Cu,ZnSOD activity shows that those crustaceans that use haemoglobin for oxygen transport have retained cytCu,ZnSOD. It appears, therefore, that the replacement of cytCu,ZnSOD with cytMnSOD is part of an adaptive response to the dynamic, haemocyanin-linked, fluctuations in copper metabolism that occur during the moulting cycle of the crab. PMID:12769817

  12. Characterization of iron superoxide dismutase cDNAs from plants obtained by genetic complementation in Escherichia coli.

    PubMed Central

    Van Camp, W; Bowler, C; Villarroel, R; Tsang, E W; Van Montagu, M; Inzé, D

    1990-01-01

    The inability of superoxide dismutase (SOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1)-deficient mutants of Escherichia coli to grow aerobically on minimal medium can be restored by functional complementation with a heterologous SOD-encoding sequence. Based upon this property, a phenotypic selection system has been developed for the isolation of clones containing eukaryotic SOD cDNAs. cDNA expression libraries from both Nicotiana plumbaginifolia and Arabidopsis thaliana were transformed into a SOD-deficient E. coli strain by electroporation, and clones containing functional SODs were selected by growth on minimal medium. Analysis of these clones revealed the identity of cDNAs encoding the iron form of superoxide dismutase (FeSOD)--the first SODs of this type to be cloned from eukaryotes. The presence of this enzyme in these two divergent plant species challenges previous ideas that FeSOD is found in only a few plant families. In addition, these results show the potential for shotgun cloning of eukaryotic genes by complementation of bacterial mutants, particularly when it is combined with a highly efficient transformation method, such as electroporation. Images PMID:2263641

  13. Use of high-performance liquid chromatography to detect hydroxyl and superoxide radicals generated from mitomycin C.

    PubMed

    Pritsos, C A; Constantinides, P P; Tritton, T R; Heimbrook, D C; Sartorelli, A C

    1985-11-01

    Distinguishing between short-lived reactive oxygen species like hydroxyl and superoxide radicals is difficult; the most successful approaches employ electron spin resonance (ESR) spin-trapping techniques. Using the spin trap 5,5-dimethyl-l-pyrroline N-oxide (DMPO) to selectively trap various radicals in the presence and absence of ethanol, an HPLC system which is capable of separating the hydroxyl- and superoxide-generated DMPO adduct species has been developed. The radical-generated DMPO adducts were measured with an electrochemical detector attached to the HPLC system and confirmed by spin-trapping techniques. The HPLC separation was carried out on an ODS reverse-phase column with a pH 5.1 buffered 8.5% acetonitrile mobile phase. The advantage of the HPLC system described is that it permits the separation and detection of hydroxyl and superoxide radicals without requiring ESR instrumentation. The antineoplastic bioreductive alkylating agent mitomycin C, when activated by NADPH-cytochrome c reductase, was shown to generate both hydroxyl and superoxide radicals.

  14. Low-dose gamma irradiation enhances superoxide anion production by nonirradiated cells through TGF-β1-dependent bystander signaling.

    PubMed

    Temme, Jennifer; Bauer, Georg

    2013-04-01

    We show here that low-dose gamma irradiation substantially increase in extracellular superoxide anion production in oncogenically transformed cells and tumor cells but not by nontransformed cells. The transfer of only a few cells from an irradiated culture to nonirradiated control cells was sufficient for the transmission of a signal to induce superoxide anion production in the nonirradiated cells. The number of irradiated cells that was necessary for the successful induction of superoxide anion production in the nonirradiated cells depended on radiation dose. When irradiated cells were allowed to incubate for 1 h before transmission to the nonirradiated cultures, nearly all of the cells from the irradiated cell population were able to communicate the inducing signal to nonirradiated cells. siRNA-dependent knockdown and reconstitution experiments showed that TGF-β1 was sufficient to mediate the bystander effect triggered by low-dose radiation in this experimental system. A kinetic analysis demonstrated that the enhanced superoxide anion production was substantially reduced before the release of the bystander signal by activated TGF-β.

  15. Moderate superoxide production is an early promoter of mitochondrial biogenesis in differentiating N2a neuroblastoma cells.

    PubMed

    Valero, T; Moschopoulou, G; Mayor-Lopez, L; Kintzios, S

    2012-12-01

    Reactive oxygen species (ROS) have been widely considered as harmful for cell development and as promoters of cell aging by increasing oxidative stress. However, ROS have an important role in cell signaling and they have been demonstrated to be beneficial by triggering hormetic signals, which could protect the organism from later insults. In the present study, N2a murine neuroblastoma cells were used as a paradigm of cell-specific (neural) differentiation partly mediated by ROS. Differentiation was triggered by the established treatments of serum starvation, forskolin or dibutyryl cyclic AMP. A marked differentiation, expressed as the development of neurites, was detected by fixation and staining with coomassie brilliant blue after 48 h treatment. This was accompanied by an increase in mitochondrial mass detected by mitotracker green staining, an increased expression of the peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1-alpha (PGC-1α) and succinate dehydrogenase activity as detected by MTT. In line with these results, an increase in free radicals, specifically superoxide anion, was detected in differentiating cells by flow cytometry. Superoxide scavenging by MnTBAP and MAPK inhibition by PD98059 partially reversed differentiation and mitochondrial biogenesis. In this way, we demonstrated that mitochondrial biogenesis and differentiation are mediated by superoxide and MAPK cues. Our data suggest that differentiation and mitochondrial biogenesis in N2a cells are part of a hormetic response which is triggered by a modest increase of superoxide anion concentration within the mitochondria.

  16. Effect of xenobiotics on the respiratory activity of rat heart mitochondria and the concomitant formation of superoxide radicals

    SciTech Connect

    Stolze, K.; Nohl, H. . Inst. of Pharmacology and Toxicology)

    1994-03-01

    The effects of the xenobiotics atrazine, benzene, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lindane, toluene, and xylenol on the respiration of isolated rate heart mitochondria were studied. Bioenergetic parameters such as respiratory control (RC) and ATP/oxygen (P/O) values decreased considerably in the presence of these substances, and a concomitant increase of superoxide radical (O[sub 2][sup [minus

  17. Intracellular implantation of enzymes in hollow silica nanospheres for protein therapy: cascade system of superoxide dismutase and catalase.

    PubMed

    Chang, Feng-Peng; Chen, Yi-Ping; Mou, Chung-Yuan

    2014-11-01

    An approach for enzyme therapeutics is elaborated with cell-implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol-gel templating of water-in-oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI-grafted superoxide dismutase (PEI-SOD) and catalase (PEI-CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI-SOD@HSN are found and transformation of H2 O2 to water by PEI-CAT@HSN. When PEI-SOD and PEI-CAT are co-encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX-2/p-p38 expression show that co-encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N,N'-dimethyl-4,4'-bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT-encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions.

  18. Bacteriocuprein superoxide dismutase of Photobacterium leiognathi. Isolation and sequence of the gene and evidence for a precursor form.

    PubMed

    Steinman, H M

    1987-02-05

    The gene encoding the bacteriocuprein superoxide dismutase from Photobacterium leiognathi, American Type Culture Collection strain 25521, was cloned in a pUC12 vector and sequenced. The nucleotide sequence predicted a 22-residue leader peptide amino-terminal to the known bacteriocuprein sequence. The expected precursor bacteriocuprein was directly identified in the in vitro translation products of the cloned gene by polyacrylamide gel electrophoresis and automated Edman degradation. Enzymatically active bacteriocuprein that lacked the leader peptide was identified in sonic extracts of Escherichia coli hosts containing the cloned gene. A single transcript of 580 nucleotides was observed in blots of total P. leiognathi RNA, and a unique site of transcriptional initiation was identified by primer extension analysis. P. leiognathi bacteriocuprein is the first bacteriocuprein whose gene has been isolated and sequenced and the first copper-zinc superoxide dismutase in which a leader peptide has been found. The presence of a leader peptide suggests that the bacteriocuprein is localized in the membrane or periplasm, in contrast to the eukaryotic copper-zinc superoxide dismutases, which are cytoplasmic enzymes. Such a difference in intracellular location could be important for understanding the presence and function of the uncommon, bacteriocuprein superoxide dismutase in P. leiognathi.

  19. Fluoride Increases Superoxide Production and Impairs the Respiratory Chain in ROS 17/2.8 Osteoblastic Cells

    PubMed Central

    Fina, Brenda Lorena; Lombarte, Mercedes; Rigalli, Juan Pablo; Rigalli, Alfredo

    2014-01-01

    It is known that fluoride produces oxidative stress. Inflammation in bone tissue and an impairment of the respiratory chain of liver have been described in treatments with fluoride. Whether the impairment of the respiratory chain and oxidative stress are related is not known. The aim of this work was to study the effects of fluoride on the production of superoxide radical, the function of the respiratory chain and the increase in oxidative stress in ROS 17/2.8 osteoblastic cells. We measured the effect of fluoride (100 µM) on superoxide production, oxygen consumption, lipid peroxidation and antioxidant enzymes activities of cultured cells following the treatment with fluoride. Fluoride decreased oxygen consumption and increased superoxide production immediately after its addition. Furthermore, chronic treatment with fluoride increased oxidative stress status in osteoblastic cells. These results indicate that fluoride could damage bone tissue by inhibiting the respiratory chain, increasing the production of superoxide radicals and thus of the others reactive oxygen species. PMID:24964137

  20. Crystal structure of Cu / Zn superoxide dismutase from Taenia solium reveals metal-mediated self-assembly.

    PubMed

    Hernández-Santoyo, Alejandra; Landa, Abraham; González-Mondragón, Edith; Pedraza-Escalona, Martha; Parra-Unda, Ricardo; Rodríguez-Romero, Adela

    2011-09-01

    Taenia solium is the cestode responsible for porcine and human cysticercosis. The ability of this parasite to establish itself in the host is related to its evasion of the immune response and its antioxidant defence system. The latter includes enzymes such as cytosolic Cu/Zn superoxide dismutase. In this article, we describe the crystal structure of a recombinant T. solium Cu/Zn superoxide dismutase, representing the first structure of a protein from this organism. This enzyme shows a different charge distribution at the entrance of the active channel when compared with human Cu/Zn superoxide dismutase, giving it interesting properties that may allow the design of specific inhibitors against this cestode. The overall topology is similar to other superoxide dismutase structures; however, there are several His and Glu residues on the surface of the protein that coordinate metal ions both intra- and intermolecularly. Interestingly, one of these ions, located on the β2 strand, establishes a metal-mediated intermolecular β-β interaction, including a symmetry-related molecule. The factors responsible for the abnormal protein-protein interactions that lead to oligomerization are still unknown; however, high metal levels have been implicated in these phenomena, but exactly how they are involved remains unclear. The present results suggest that this structure could be useful as a model to explain an alternative mechanism of protein aggregation commonly observed in insoluble fibrillar deposits.

  1. Curcumin supplementation could improve diabetes-induced endothelial dysfunction associated with decreased vascular superoxide production and PKC inhibition

    PubMed Central

    2010-01-01

    Background Curcumin, an Asian spice and food-coloring agent, is known for its anti-oxidant properties. We propose that curcumin can improve diabetes-induced endothelial dysfunction through superoxide reduction. Methods Diabetes (DM) was induced in rats by streptozotocin (STZ). Daily curcumin oral feeding was started six weeks after the STZ injection. Twelve weeks after STZ injection, mesenteric arteriolar responses were recorded in real time using intravital fluorescence videomicroscopy. Superoxide and vascular protein kinase C (PKC-βII) were examined by hydroethidine and immunofluorescence, respectively. Results The dilatory response to acetylcholine (ACh) significantly decreased in DM arterioles as compared to control arterioles. There was no difference among groups when sodium nitroprusside (SNP) was used. ACh responses were significantly improved by both low and high doses (30 and 300 mg/kg, respectively) of curcumin supplementation. An oxygen radical-sensitive fluorescent probe, hydroethidine, was used to detect intracellular superoxide anion (O2●-) production. O2●- production was markedly increased in DM arterioles, but it was significantly reduced by supplementation of either low or high doses of curcumin. In addition, with a high dose of curcumin, diabetes-induced vascular PKC-βII expression was diminished. Conclusion Therefore, it is suggested that curcumin supplementation could improve diabetes-induced endothelial dysfunction significantly in relation to its potential to decrease superoxide production and PKC inhibition. PMID:20946622

  2. Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndrome.

    PubMed Central

    Epstein, C J; Avraham, K B; Lovett, M; Smith, S; Elroy-Stein, O; Rotman, G; Bry, C; Groner, Y

    1987-01-01

    Down syndrome, the phenotypic expression of human trisomy 21, is presumed to result from a 1.5-fold increase in the expression of the genes on human chromosome 21. As an approach to the development of an animal model for Down syndrome, several strains of transgenic mice that carry the human Cu/Zn-superoxide dismutase gene have been prepared. These animals express the transgene in a manner similar to that of humans, with 0.9- and 0.7-kilobase transcripts in a 1:4 ratio, and synthesize the human enzyme in an active form capable of forming human-mouse enzyme heterodimers. Cu/Zn-superoxide superoxide dismutase activity is increased from 1.6- to 6.0-fold in the brains of four transgenic strains and to an equal or lesser extent in several other tissues. These animals provide a unique system for studying the consequences of increased dosage of the Cu/Zn-superoxide dismutase gene in Down syndrome and the role of this enzyme in a variety of other pathological processes. Images PMID:2960971

  3. Crystal Structure of Cu/Zn Superoxide Dismutase from Taenia Solium Reveals Metal-mediated Self-assembly

    SciTech Connect

    A Hernandez-Santoyo; A Landa; E Gonzalez-Mondragon; M Pedraza-Escalona; R Parra-Unda; A Rodriguez-Romero

    2011-12-31

    Taenia solium is the cestode responsible for porcine and human cysticercosis. The ability of this parasite to establish itself in the host is related to its evasion of the immune response and its antioxidant defence system. The latter includes enzymes such as cytosolic Cu/Zn superoxide dismutase. In this article, we describe the crystal structure of a recombinant T. solium Cu/Zn superoxide dismutase, representing the first structure of a protein from this organism. This enzyme shows a different charge distribution at the entrance of the active channel when compared with human Cu/Zn superoxide dismutase, giving it interesting properties that may allow the design of specific inhibitors against this cestode. The overall topology is similar to other superoxide dismutase structures; however, there are several His and Glu residues on the surface of the protein that coordinate metal ions both intra- and intermolecularly. Interestingly, one of these ions, located on the {beta}2 strand, establishes a metal-mediated intermolecular {beta}-{beta} interaction, including a symmetry-related molecule. The factors responsible for the abnormal protein-protein interactions that lead to oligomerization are still unknown; however, high metal levels have been implicated in these phenomena, but exactly how they are involved remains unclear. The present results suggest that this structure could be useful as a model to explain an alternative mechanism of protein aggregation commonly observed in insoluble fibrillar deposits.

  4. Evidence for the involvement of GPR40 and NADPH oxidase in palmitic acid-induced superoxide production and insulin secretion.

    PubMed

    Graciano, Maria Fernanda; Valle, Maíra Mello; Curi, Rui; Carpinelli, Angelo Rafael

    2013-01-01

    G protein coupled receptor 40 (GPR40) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex have been shown to be involved in the fatty acid amplification of glucose-stimulated insulin secretion (GSIS). The effect of palmitic acid on superoxide production and insulin secretion by INS-1E cells and the possible involvement of GPR40 and NADPH oxidase in these processes were examined in this study. Cells were incubated during 1 h with palmitic acid in low and high glucose concentrations, a GPR40 agonist (GW9508) and inhibitors of NADPH oxidase (diphenyleneiodonium, DPI) and PKC (calphostin C). GW9508 induced superoxide production at 2.8 and 5.6 mM glucose concentrations and stimulated insulin secretion at 16.7 mM glucose concentration involving both PKC and NADPH oxidase activation. Palmitic acid induced superoxide production through NADPH oxidase and GPR40-dependent pathways and the stimulation of insulin secretion in the presence of a high glucose concentration was reduced by knockdown of GPR40 using siRNA. Our results suggest that palmitic acid induces superoxide production and potentiates GSIS through NADPH oxidase and GPR40 pathways in pancreatic ? cells.

  5. Modifications in nitric oxide and superoxide anion metabolism induced by fructose overload in rat heart are prevented by (-)-epicatechin.

    PubMed

    Calabró, Valeria; Piotrkowski, Barbara; Fischerman, Laura; Vazquez Prieto, Marcela A; Galleano, Monica; Fraga, Cesar G

    2016-04-01

    Fructose overload promotes functional and metabolic derangements in humans and in animal experimental models. Evidence suggests that dietary flavonoids have the ability to prevent/attenuate the development of metabolic diseases. In this work we investigated the effects of (-)-epicatechin on the modifications induced by fructose overload in the rat heart in terms of nitric oxide and superoxide metabolism. Male Sprague Dawley rats received 10% (w/v) fructose in the drinking water for 8 weeks, with or without (-)-epicatechin (20 mg per kg body weight per day) in the rat chow diet. These conditions of fructose overload did not lead to overt manifestations of heart hypertrophy or tissue remodeling. However, biochemical and molecular changes were observed and could represent the onset of functional alterations. (-)-Epicatechin prevented a compromised NO bioavailability and the development of oxidative stress produced by fructose overload essentially acting on superoxide anion metabolism. In this line, the increase in superoxide anion production, the overexpression of NOX2 subunit p47phox and of NOX4, the decrease in superoxide dismutase activity, and the higher oxidized/reduced glutathione ratio installed by fructose overload were absent in the rats receiving (-)-epicatechin. These results support the hypothesis that diets rich in (-)-epicatechin could prevent the onset and progression of heart dysfunctions associated with metabolic alterations.

  6. β-eudesmol, a sesquiterpene from Teucrium ramosissimum, inhibits superoxide production, proliferation, adhesion and migration of human tumor cell.

    PubMed

    Ben Sghaier, Mohamed; Mousslim, Mohamed; Pagano, Alessandra; Ammari, Youssef; Luis, José; Kovacic, Hervé

    2016-09-01

    Reactive oxygen species are well-known mediators of various biological responses. Recently, new homologues of the catalytic subunit of NADPH oxidase have been discovered in non phagocytic cells. These new homologues (Nox1-Nox5) produce low levels of superoxides compared to the phagocytic homologue Nox2/gp91phox. In this study we examined the effect of β-eudesmol, a sesquiterpenoid alcohol isolated from Teucrium ramosissimum leaves, on proliferation, superoxide anion production, adhesion and migration of human lung (A549) and colon (HT29 and Caco-2) cancer cell lines. Proliferation of tumor cells was inhibited by β-eudesmol. It also significantly inhibited superoxide production in A549 cells. Furthermore, β-eudesmol inhibited adhesion and migration of A549 and HT29 cell. These results demonstrate that β-eudesmol may be a novel anticancer agent for the treatment of lung and colon cancer by different ways: by inhibition of superoxide production or by blocking proliferation, adhesion and migration.

  7. Combination reactions of superoxide with 8-Oxo-7,8-dihydroguanine radicals in DNA: kinetics and end products.

    PubMed

    Misiaszek, Richard; Uvaydov, Yuriy; Crean, Conor; Geacintov, Nicholas E; Shafirovich, Vladimir

    2005-02-25

    One of the major biomarkers of oxidative stress and oxidative damage of cellular DNA is 8-oxo-7,8-dihydroguanine (8-oxoGua), which is more easily oxidized than guanine to diverse oxidative products. In this work, we have investigated further oxidative transformations of 8-oxoGua in single- and double-stranded oligonucleotides to the dehydroguanidinohydantoin, oxaluric acid, and diastereomeric spiroiminodihydantoin lesions. The relative distributions of these end products were explored by a combined kinetic laser spectroscopy and mass spectrometry approach and are shown to depend markedly on the presence of superoxide radical anions. The 8-oxaGua radicals were produced by one-electron oxidation of 8-oxoGua by 2-aminopurine radicals generated by the two-photon ionization of 2-aminopurine residues site specifically positioned in 5'-d(CC[2-aminopurine]TC[8-oxoGua]CTACC). The hydrated electrons also formed in the photoionization process were trapped by dissolved molecular oxygen thus producing superoxide. A combination reaction between the 8-oxoGua and superoxide radicals occurs with the rate constant of (1.3 +/- 0.2) x 10(8) m(-1) s(-1) and (1.0 +/- 0.5) x 10(8) m(-1) s(-1) in single- and double-stranded DNA, respectively. The major end products of this reaction are the dehydroguanidinohydantoin lesions that slowly hydrolyze to oxaluric acid residues. In the presence of Cu,Zn-superoxide dismutase, an enzyme that induces the rapid catalytic dismutation of superoxide to the less reactive H(2)O(2) and O(2), the yields of the dehydroguanidinohydantion lesions become negligible. Under these conditions, the 8-oxoGua radicals do not exhibit any observable reactivities with oxygen (k < 10(2) m(-1) s(-1)), decay on the time interval of several seconds, and the major reaction products are the spiroiminodihydantoin lesions. The possible biological implications of the 8-oxoGua oxidation are discussed.

  8. 1,1-Diphenyl-2-picrylhydrazyl radical and superoxide anion scavenging activity of Rhizophora mangle (L.) bark

    PubMed Central

    Sánchez, Janet Calero; García, Roberto Faure; Cors, Ma. Teresa Mitjavila

    2010-01-01

    Background: Rhizophora mangle (L.) produce a variety of substances that possesses pharmacological actions. Although it shown antioxidant properties in some assays, there is no available information about its effect on some free radical species. So the objective of the present research is to evaluate the DPPH radical and superoxide anion scavenging properties of R. mangle extract and its polyphenol fraction. Methods: Rhizophora mangle (L.) bark aqueous extract and its major constituent, polyphenols fraction, were investigated for their antioxidant activities employing 2 in vitro assay systems: 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion radicals scavenging. Results: IC50 for DPPH radical-scavenging activity was 6.7 µg tannins/mL for extract and 7.6 µg tannins/mL for polyphenolic fraction. The extract showed better activity than its fraction (P < 0.05) in the DPPH radicals reducing power. Polyphenolic fraction exhibited better superoxide anion scavenging ability (IC50 = 21.6 µg tannins/mL) than the extract (IC50 = 31.9 µg tannins/mL). Antioxidant activities of both samples increased with the rise of tannins concentration. The comparison of regression lines showed significant differences (P < 0.05) between extract and its polyphenolic fraction in both assays, indicating that extract was more effective in DPPH radical scavenging than its fraction at tannin concentrations below the crossing point of both lines, while that fraction was more effective than extract inhibiting the superoxide anions generation. Conclusions: R. mangle aqueous extract showed a potent antioxidant activity, achieved by the scavenging ability observed against DPPH radicals and superoxide anions. Regarding its polyphenolic composition, the antioxidant effects observed in this study are due, most probably, to the presence of polyphenolic compounds. PMID:21589751

  9. Ghrelin-related peptides do not modulate vasodilator nitric oxide production or superoxide levels in mouse systemic arteries.

    PubMed

    Ku, Jacqueline M; Sleeman, Mark W; Sobey, Christopher G; Andrews, Zane B; Miller, Alyson A

    2016-04-01

    The ghrelin gene is expressed in the stomach where it ultimately encodes up to three peptides, namely, acylated ghrelin, des-acylated ghrelin and obestatin, which all have neuroendocrine roles. Recently, the authors' reported that these peptides have important physiological roles in positively regulating vasodilator nitric oxide (NO) production in the cerebral circulation, and may normally suppress superoxide production by the pro-oxidant enzyme, Nox2-NADPH oxidase. To date, the majority of studies using exogenous peptides infer that they may have similar roles in the systemic circulation. Therefore, this study examined whether exogenous and endogenous ghrelin-related peptides modulate NO production and superoxide levels in mouse mesenteric arteries and/or thoracic aorta. Using wire myography, it was found that application of exogenous acylated ghrelin, des-acylated ghrelin or obestatin to mouse thoracic aorta or mesenteric arteries failed to elicit a vasorelaxation response, whereas all three peptides elicited vasorelaxation responses of rat thoracic aorta. Also, none of the peptides modulated mouse aortic superoxide levels as measured by L-012-enhanced chemiluminescence. Next, it was found that NO bioactivity and superoxide levels were unaffected in the thoracic aorta from ghrelin-deficient mice when compared with wild-type mice. Lastly, using novel GHSR-eGFP reporter mice in combination with double-labelled immunofluorescence, no evidence was found for the growth hormone secretagogue receptor (GHSR1a) in the throracic aorta, which is the only functional ghrelin receptor identified to date. Collectively these findings demonstrate that, in contrast to systemic vessels of other species (e.g. rat and human) and mouse cerebral vessels, ghrelin-related peptides do not modulate vasodilator NO production or superoxide levels in mouse systemic arteries.

  10. Nickel superoxide dismutase: structural and functional roles of His1 and its H-bonding network

    SciTech Connect

    Maroney, Michael J.; Cabelli, Diane E.; Ryan, Kelly C.; Guce, Abigail I.; Johnson, Olivia E.; Brunold, Thomas C.; Garman, Scott C.

    2015-01-21

    Crystal structures of nickel-dependent superoxide dismutases (NiSODs) reveal the presence of a H-bonding network formed between the NH group of the apical imidazole ligand from His1 and the Glu17 carboxylate from a neighboring subunit in the hexameric enzyme. This interaction is supported by another intrasubunit H-bond between Glu17 and Arg47. In this study, four mutant NiSOD proteins were produced to experimentally evaluate the roles of this H-bonding network and compare the results with prior predictions from density functional theory calculations. The X-ray crystal structure of H1A-NiSOD, which lacks the apical ligand entirely, reveals that in the absence of the Glu17-His1 H-bond, the active site is disordered. Characterization of this variant using X-ray absorption spectroscopy (XAS) shows that Ni(II) is bound in the expected N₂S₂ planar coordination site. Despite these structural perturbations, the H1A-NiSOD variant retains 4% of wild-type (WT) NiSOD activity. Three other mutations were designed to preserve the apical imidazole ligand but perturb the H-bonding network: R47A-NiSOD, which lacks the intramolecular H-bonding interaction; E17R/R47A-NiSOD, which retains the intramolecular H-bond but lacks the intermolecular Glu17-His1 H-bond; and E17A/R47ANiSOD, which lacks both H-bonding interactions. These variants were characterized by a combination of techniques, including XAS to probe the nickel site structure, kinetic studies employing pulse-radiolytic production of superoxide, and electron paramagnetic resonance to assess the Ni redox activity. The results indicate that in addition to the roles in redox tuning suggested on the basis of previous computational studies, the Glu17-His1 H-bond plays an important structural role in the proper folding of the “Ni-hook” motif that is a critical feature of the active site.

  11. Impact of Superoxide Dismutase Mimetic AEOL 10150 on the Endothelin System of Fischer 344 Rats

    PubMed Central

    Ganesh, Devi; Kumarathasan, Prem; Thomson, Errol M.; St-Germain, Carly; Blais, Erica; Crapo, James; Vincent, Renaud

    2016-01-01

    Endothelin-1 is a potent vasoconstrictor and mitogenic peptide involved in the regulation of vasomotor tone and maintenance of blood pressure. Oxidative stress activates the endothelin system, and is implicated in pulmonary and cardiovascular diseases including hypertension, congestive heart failure, and atherosclerosis. Superoxide dismutase mimetics designed with the aim of treating diseases that involve reactive oxygen species in their pathophysiology may exert a hypotensive effect, but effects on the endothelin system are unknown. Our objective was to determine the effect of the superoxide dismutase mimetic AEOL 10150 on the basal endothelin system in vivo. Male Fischer-344 rats were injected subcutaneously with 0, 2 or 5 mg/kg body weight of AEOL 10150 in saline. Plasma oxidative stress markers and endothelins (bigET-1, ET-1, ET-2, ET-3) as well as lung and heart endothelin/nitric oxide system gene expressions were measured using HPLC-Coularray, HPLC-Fluorescence and RT-PCR respectively. AEOL 10150 reduced (p<0.05) the circulating levels of isoprostane (-25%) and 3-nitrotyrosine (-50%) measured in plasma 2h and 24h after treatment, confirming delivery of a physiologically-relevant dose and the potent antioxidant activity of the drug. The reduction in markers of oxidative stress coincided with sustained 24h decrease (p<0.05) of plasma levels of ET-1 (-50%) and ET-3 (-10%). Expression of preproET-1 and endothelin converting enzyme-1 mRNA were not altered significantly in the lungs. However preproET-1 (not significant) and ECE-1 mRNA (p<0.05) were increased (10–25%) in the heart. Changes in the lungs included decrease (p<0.05) of mRNA for the ET-1 clearance receptor ETB and the vasoconstriction-signaling ETA receptor (-30%), and an early surge of inducible nitric oxide synthase expression followed by sustained decrease (-40% after 24 hours). The results indicate that interception of the endogenous physiological flux of reactive nitrogen species and reactive

  12. Nickel superoxide dismutase: structural and functional roles of His1 and its H-bonding network

    DOE PAGES

    Maroney, Michael J.; Cabelli, Diane E.; Ryan, Kelly C.; ...

    2015-01-21

    Crystal structures of nickel-dependent superoxide dismutases (NiSODs) reveal the presence of a H-bonding network formed between the NH group of the apical imidazole ligand from His1 and the Glu17 carboxylate from a neighboring subunit in the hexameric enzyme. This interaction is supported by another intrasubunit H-bond between Glu17 and Arg47. In this study, four mutant NiSOD proteins were produced to experimentally evaluate the roles of this H-bonding network and compare the results with prior predictions from density functional theory calculations. The X-ray crystal structure of H1A-NiSOD, which lacks the apical ligand entirely, reveals that in the absence of the Glu17-His1more » H-bond, the active site is disordered. Characterization of this variant using X-ray absorption spectroscopy (XAS) shows that Ni(II) is bound in the expected N₂S₂ planar coordination site. Despite these structural perturbations, the H1A-NiSOD variant retains 4% of wild-type (WT) NiSOD activity. Three other mutations were designed to preserve the apical imidazole ligand but perturb the H-bonding network: R47A-NiSOD, which lacks the intramolecular H-bonding interaction; E17R/R47A-NiSOD, which retains the intramolecular H-bond but lacks the intermolecular Glu17-His1 H-bond; and E17A/R47ANiSOD, which lacks both H-bonding interactions. These variants were characterized by a combination of techniques, including XAS to probe the nickel site structure, kinetic studies employing pulse-radiolytic production of superoxide, and electron paramagnetic resonance to assess the Ni redox activity. The results indicate that in addition to the roles in redox tuning suggested on the basis of previous computational studies, the Glu17-His1 H-bond plays an important structural role in the proper folding of the “Ni-hook” motif that is a critical feature of the active site.« less

  13. Inhibition of nitric oxide synthase enhances superoxide activity in canine kidney.

    PubMed

    Majid, Dewan S A; Nishiyama, Akira; Jackson, Keith E; Castillo, Alexander

    2004-07-01

    To evaluate the role of a potential interaction between superoxide anion (O(2)(-)) and nitric oxide (NO) in regulating kidney function, we examined the renal responses to intra-arterial infusion of a superoxide dismutase mimetic, tempol (0.5 mg.kg(-1)