Science.gov

Sample records for high-level radioactive liquid

  1. Separation of aromatic precipitates from simulated high level radioactive waste by hydrolysis, evaporation and liquid-liquid extraction

    SciTech Connect

    Young, S.R.; Shah, H.B.; Carter, J.T.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the SRS will be the United States' first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation and liquid-liquid extraction will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Laboratory with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Reduction of nitrite by hydroxylamine nitrate and hydrolysis of the tetraphenylborate by formic acid is discussed. Gaseous production, which is primarily benzene, nitrous oxide and carbon dioxide, has been quantified. Production of high-boiling organic compounds and the accumulation of these organic compounds within the process are addressed.

  2. Separation of aromatic precipitates from simulated high level radioactive waste by hydrolysis, evaporation and liquid-liquid extraction

    SciTech Connect

    Young, S.R.; Shah, H.B.; Carter, J.T.

    1991-12-31

    The Defense Waste Processing Facility (DWPF) at the SRS will be the United States` first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation and liquid-liquid extraction will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Laboratory with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Reduction of nitrite by hydroxylamine nitrate and hydrolysis of the tetraphenylborate by formic acid is discussed. Gaseous production, which is primarily benzene, nitrous oxide and carbon dioxide, has been quantified. Production of high-boiling organic compounds and the accumulation of these organic compounds within the process are addressed.

  3. High-Level Radioactive Waste.

    ERIC Educational Resources Information Center

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  4. High-level radioactive wastes. Supplement 1

    SciTech Connect

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  5. Long-term management of liquid high-level radioactive wastes stored at the Western New York Nuclear Service Center, West Valley

    NASA Astrophysics Data System (ADS)

    1981-07-01

    Environmental implications of possible alternatives for long-term management of the liquid high-level radioactive wastes stored in underground tanks in West Valley, New York were assessed and compared. Four basic alternatives, as well as options within these alternatives, considered in the EIS: (1) onsite processing to a terminal waste form for shipment and disposal in a federa repository; (2) onsite conversion to a solid interim form for shipment to a federal waste facility for later processing to a terminal form and shipment and subsequent disposal in a federal repository; (3) mixing the liquid wastes with cement and other additives, pouring it back into the existing tanks, and leaving onsite; and (4) no action (continued storage of the wastes in liquid form in the underground tanks at West Valley). Mitigative measures for environmental impacts were be required.

  6. High level radioactive waste management facility design criteria

    SciTech Connect

    Sheikh, N.A.; Salaymeh, S.R.

    1993-10-01

    This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform the high level waste into a more stable, manageable substance. This paper discuss the structural design requirements for this unique one of a kind facility. A special emphasis will be concentrated on the design criteria pertaining to earthquake, wind and tornado, and flooding.

  7. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste...

  8. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste...

  9. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste...

  10. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste...

  11. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste...

  12. High level radioactive waste glass production and product description

    SciTech Connect

    Sproull, J.F.; Marra, S.L.; Jantzen, C.M.

    1993-12-01

    This report examines borosilicate glass as a means of immobilizing high-level radioactive wastes. Borosilicate glass will encapsulate most of the defense and some of the commercial HLW in the US. The resulting waste forms must meet the requirements of the WA-SRD and the WAPS, which include a short term PCT durability test. The waste form producer must report the composition(s) of the borosilicate waste glass(es) produced but can choose the composition(s) to meet site-specific requirements. Although the waste form composition is the primary determinant of durability, the redox state of the glass; the existence, content, and composition of crystals; and the presence of glass-in-glass phase separation can affect durability. The waste glass should be formulated to avoid phase separation regions. The ultimate result of this effort will be a waste form which is much more stable and potentially less mobile than the liquid high level radioactive waste is currently.

  13. Handbook of high-level radioactive waste transportation

    SciTech Connect

    Sattler, L.R.

    1992-10-01

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government`s system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government`s program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project.

  14. RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS

    SciTech Connect

    Fox, K.

    2010-09-07

    High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

  15. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect

    Not Available

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  16. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect

    Not Available

    1990-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  17. High level radioactive waste vitrification process equipment component testing

    SciTech Connect

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system.

  18. Midwestern High-Level Radioactive Waste Transportation Project

    SciTech Connect

    Dantoin, T.S.

    1990-12-01

    For more than half a century, the Council of State Governments has served as a common ground for the states of the nation. The Council is a nonprofit, state-supported and -directed service organization that provides research and resources, identifies trends, supplies answers and creates a network for legislative, executive and judicial branch representatives. This List of Available Resources was prepared with the support of the US Department of Energy, Cooperative Agreement No. DE-FC02-89CH10402. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of DOE. The purpose of the agreement, and reports issued pursuant to it, is to identify and analyze regional issues pertaining to the transportation of high-level radioactive waste and to inform Midwestern state officials with respect to technical issues and regulatory concerns related to waste transportation.

  19. Deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  20. Control of high level radioactive waste-glass melters

    SciTech Connect

    Bickford, D.F.; Choi, A.S.

    1991-01-01

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs.

  1. High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.

    ERIC Educational Resources Information Center

    Dukert, Joseph M.

    Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)

  2. Pretreatment of high-level radioactive waste at the West Valley Demonstration Project

    SciTech Connect

    Valenti, P.J.; Gessner, R.F.; Yeazel, J.A.

    1993-12-31

    The West Valley Demonstration Project (WVDP) is an environmental remediation effort focused on demonstrating technologies to solidify high-level radioactive waste (HLW). The HLW remains from reprocessing activities conducted between 1966 and 1972 at the Western New York Nuclear Services Center (WNYNSC) in West Valley, New York, where spent nuclear fuel was reprocessed using essentially the Plutonium Uranium Extraction (PUREX) process. The waste (approximately 2,518 m{sup 3}) is stored in an underground carbon steel tank and consists of an alkaline supernate (90%) and precipitated sludge (10%). To prepare for HLW solidification, the WVDP is actively pretreating the waste by removing liquid HLW from the underground tank, extracting radioactive cesium from the liquid by an ion-exchange process, and stabilizing the resulting low-level liquid waste (LLW) in cement. Sludge at the tank bottom is washed to remove undesirable sodium salts, and the resulting liquid is again treated by ion-exchange before stabilizing the LLW waste in cement. This paper describes the pretreatment processes used for both the liquid and sludge phases of the HLW tank and the cementation of the resulting LLW.

  3. What are Spent Nuclear Fuel and High-Level Radioactive Waste ?

    SciTech Connect

    DOE

    2002-12-01

    Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository.

  4. Review of Corrosion Inhibition in High Level Radioactive Waste Tanks in the DOE Complex

    SciTech Connect

    Subramanian, K.H.

    2004-03-08

    Radioactive waste is stored in underground storage tanks at the Department of Energy (DOE) Savannah River Site (SRS). The waste tanks store supernatant liquid salts, consisting primarily of sodium nitrate, sodium nitrite, sodium hydroxide, and sludge. An assessment of the potential degradation mechanisms of the high level waste (HLW) tanks determined that nitrate- induced pitting corrosion and stress corrosion cracking were the two most significant degradation mechanisms. Controls on the solution chemistry (minimum nitrite and hydroxide concentrations) are in place to prevent the initiation and propagation of pitting and stress corrosion cracking in the tanks. These controls are based upon a series of experiments performed using simulated solutions on materials used for construction of the tanks. The technical bases and evolution of these controls is presented.

  5. Stability of High-Level Radioactive Waste Forms

    SciTech Connect

    Besmann, T.M.

    2001-06-22

    High-level waste (HLW) glass compositions, processing schemes, limits on waste content, and corrosion/dissolution release models are dependent on an accurate knowledge of melting temperatures and thermochemical values. Unfortunately, existing models for predicting these temperatures are empirically-based, depending on extrapolations of experimental information. In addition, present models of leaching behavior of glass waste forms use simplistic assumptions or experimentally measured values obtained under non-realistic conditions. There is thus a critical need for both more accurate and more widely applicable models for HLW glass behavior, which this project addressed. Significant progress was made in this project on modeling HLW glass. Borosilicate glass was accurately represented along with the additional important components that contain iron, lithium, potassium, magnesium, and calcium. The formation of crystalline inclusions in the glass, an issue in Hanford HLW formulations, was modeled and shown to be predictive. Thus the results of this work have already demonstrated practical benefits with the ability to map compositional regions where crystalline material forms, and therefore avoid that detrimental effect. With regard to a fundamental understanding, added insights on the behavior of the components of glass have been obtained, including the potential formation of molecular clusters. The EMSP project had very significant effects beyond the confines of Environmental Management. The models developed for glass have been used to solve a very costly problem in the corrosion of refractories for glass production. The effort resulted in another laboratory, Sandia National Laboratories-Livermore, to become conversant in the techniques and to apply those through a DOE Office of Industrial Technologies project joint with PPG Industries. The glass industry as a whole is now cognizant of these capabilities, and there is a Glass Manufacturer's Research Institute proposal

  6. Steam stripping of polycyclic aromatics from simulated high-level radioactive waste

    SciTech Connect

    Lambert, D.P.; Shah, H.B.; Young, S.R.; Edwards, R.E.; Carter, J.T.

    1992-12-31

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will be the United States` first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation, liquid-liquid extraction and decantation will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Technology Center with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Aqueous washing or nitrite destruction is used to reduce nitrite. Formic acid with a copper catalyst is used to hydrolyze tetraphenylborate (TPB). The primary offgases are benzene, carbon dioxide, nitrous oxide, and nitric oxide. Hydrolysis of TPB in the presence of nitrite results in the production of polycyclic aromatics and aromatic amines (referred as high boiling organics) such as biphenyl, diphenylamine, terphenyls etc. The decanter separates the organic (benzene) and aqueous phase, but the high boiling organic separation is difficult. This paper focuses on the evaluation of the operating strategies, including steam stripping, to maximize the removal of the high boiling organics from the aqueous stream. Two areas were investigated, (1) a stream stripping comparison of the late wash flowsheet to the HAN flowsheet and (2) the extraction performance of the original decanter to the new decanter. The focus of both studies was to minimize the high boiling organic content of the Precipitate Hydrolysis Aqueous (PHA) product in order to minimize downstream impacts caused by organic deposition.

  7. High level radioactive waste processing experience in the US (an overview of the West Valley Demonstration Project)

    SciTech Connect

    Vance, R.F.; Borisch, R.R.

    1993-12-31

    The West Valley Nuclear Fuel Reprocessing Plant was constructed in 1966. Operations were stopped in 1972 after reprocessing 640 Mg (700 tons) of spent fuel. About 560,000 gallons of high-level radioactive liquid wastes from the Purex Process and 8,000 gallons of fuel containing thorium from the THOREX process were stored in underground steel tanks. The DOE contracted with West Valley Nuclear Services to operate the West Valley Demonstration Project for the processing of the radioactive wastes into a borosilicate waste form. This report provides a process overview and status report.

  8. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    PubMed

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-05

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  9. Separating and Stabilizing Phosphate from High-Level Radioactive Waste: Process Development and Spectroscopic Monitoring

    SciTech Connect

    Lumetta, Gregg J.; Braley, Jenifer C.; Peterson, James M.; Bryan, Samuel A.; Levitskaia, Tatiana G.

    2012-05-09

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  10. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent nuclear fuel and high-level radioactive waste stored under a specific license issued pursuant to part...

  11. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent nuclear fuel and high-level radioactive waste stored under a specific license issued pursuant to part...

  12. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent nuclear fuel and high-level radioactive waste stored under a specific license issued pursuant to part...

  13. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent nuclear fuel and high-level radioactive waste stored under a specific license issued pursuant to part...

  14. 10 CFR 73.51 - Requirements for the physical protection of stored spent nuclear fuel and high-level radioactive...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nuclear fuel and high-level radioactive waste. 73.51 Section 73.51 Energy NUCLEAR REGULATORY COMMISSION... radioactive waste pursuant to paragraphs (a)(1)(i), (ii), and (2) of this section. This includes— (1) Spent nuclear fuel and high-level radioactive waste stored under a specific license issued pursuant to part...

  15. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite.

    PubMed

    Kaufhold, Stephan; Hassel, Achim Walter; Sanders, Daniel; Dohrmann, Reiner

    2015-03-21

    Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na-bentonites compared to the Ca-bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe-silicate. Up to now it is not clear why and how the patina formed. It, however, may be relevant as a corrosion inhibitor.

  16. A proposed classification system for high-level and other radioactive wastes

    SciTech Connect

    Kocher, D. C.; Croff, A. G.

    1987-06-01

    This report presents a proposal for quantitative and generally applicable risk-based definitions of high-level and other radioactive wastes. On the basis of historical descriptions and definitions of high-level waste (HLW), in which HLW has been defined in terms of its source as waste from reprocessing of spent nuclear fuel, we propose a more general definition based on the concept that HLW has two distinct attributes: HLW is (1) highly radioactive and (2) requires permanent isolation. This concept leads to a two-dimensional waste classification system in which one axis, related to ''requires permanent isolation,'' is associated with long-term risks from waste disposal and the other axis, related to ''highly radioactive,'' is associated with shorter-term risks due to high levels of decay heat and external radiation. We define wastes that require permanent isolation as wastes with concentrations of radionuclides exceeding the Class-C limits that are generally acceptable for near-surface land disposal, as specified in the US Nuclear Regulatory Commission's rulemaking 10 CFR Part 61 and its supporting documentation. HLW then is waste requiring permanent isolation that also is highly radioactive, and we define ''highly radioactive'' as a decay heat (power density) in the waste greater than 50 W/m/sup 3/ or an external radiation dose rate at a distance of 1 m from the waste greater than 100 rem/h (1 Sv/h), whichever is the more restrictive. This proposal also results in a definition of Transuranic (TRU) Waste and Equivalent as waste that requires permanent isolation but is not highly radioactive and a definition of low-level waste (LLW) as waste that does not require permanent isolation without regard to whether or not it is highly radioactive.

  17. Southern routes for high-level radioactive waste: Agencies, contacts, and designations

    SciTech Connect

    Not Available

    1991-05-01

    The Southern Routes for High-Level Radioactive Waste: Agencies, Contacts and Designations is a compendium of sixteen southern states' routing programs for the transportation of high-level radioactive materials. The report identifies the state-designated routing agencies as defined under 49 Code of Federal Regulations (CFR) Part 171 and provides a reference to the source and scope of the agencies' rulemaking authority. Additionally, the state agency and contact designated by the state's governor to receive advance notification and shipment routing information under 10 CFR Parts 71 and 73 are also listed. This report also examines alternative route designations made by southern states and the lessons that were learned from the designation process.

  18. Southern routes for high-level radioactive waste: Agencies, contacts, and designations

    SciTech Connect

    Not Available

    1991-05-01

    The Southern Routes for High-Level Radioactive Waste: Agencies, Contacts and Designations is a compendium of sixteen southern states` routing programs for the transportation of high-level radioactive materials. The report identifies the state-designated routing agencies as defined under 49 Code of Federal Regulations (CFR) Part 171 and provides a reference to the source and scope of the agencies` rulemaking authority. Additionally, the state agency and contact designated by the state`s governor to receive advance notification and shipment routing information under 10 CFR Parts 71 and 73 are also listed. This report also examines alternative route designations made by southern states and the lessons that were learned from the designation process.

  19. SPONTANEOUS CATALYTIC WET AIR OXIDATION DURING PRE-TREATMENT OF HIGH-LEVEL RADIOACTIVE WASTE SLUDGE

    SciTech Connect

    Koopman, D.; Herman, C.; Pareizs, J.; Bannochie, C.; Best, D.; Bibler, N.; Fellinger, T.

    2009-10-01

    Savannah River Remediation, LLC (SRR) operates the Defense Waste Processing Facility for the U.S. Department of Energy at the Savannah River Site. This facility immobilizes high-level radioactive waste through vitrification following chemical pretreatment. Catalytic destruction of formate and oxalate ions to carbon dioxide has been observed during qualification testing of non-radioactive analog systems. Carbon dioxide production greatly exceeded hydrogen production, indicating the occurrence of a process other than the catalytic decomposition of formic acid. Statistical modeling was used to relate the new reaction chemistry to partial catalytic wet air oxidation of both formate and oxalate ions driven by the low concentrations of palladium, rhodium, and/or ruthenium in the waste. Variations in process conditions led to increases or decreases in the total oxidative destruction, as well as partially shifting the preferred species undergoing destruction from oxalate ion to formate ion.

  20. United States Program on Spent Nuclear Fuel and High-Level Radioactive Waste Management

    SciTech Connect

    Stewart, L.

    2004-10-03

    The President signed the Congressional Joint Resolution on July 23, 2002, that designated the Yucca Mountain site for a proposed geologic repository to dispose of the nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The United States (U.S.) Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is currently focusing its efforts on submitting a license application to the U.S. Nuclear Regulatory Commission (NRC) in December 2004 for construction of the proposed repository. The legislative framework underpinning the U.S. repository program is the basis for its continuity and success. The repository development program has significantly benefited from international collaborations with other nations in the Americas.

  1. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  2. Yucca Mountain, Nevada - A proposed geologic repository for high-level radioactive waste

    USGS Publications Warehouse

    Levich, R.A.; Stuckless, J.S.

    2006-01-01

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation. ?? 2007 Geological Society of America. All rights reserved.

  3. Performance assessment overview for subseabed disposal of high level radioactive waste

    SciTech Connect

    Klett, R.D.

    1997-06-01

    The Subseabed Disposal Project (SDP) was part of an international program that investigated the feasibility of high-level radioactive waste disposal in the deep ocean sediments. This report briefly describes the seven-step iterative performance assessment procedures used in this study and presents representative results of the last iteration. The results of the performance are compared to interim standards developed for the SDP, to other conceptual repositories, and to related metrics. The attributes, limitations, uncertainties, and remaining tasks in the SDP feasibility phase are discussed.

  4. An analysis of the technical status of high level radioactive waste and spent fuel management systems

    NASA Technical Reports Server (NTRS)

    English, T.; Miller, C.; Bullard, E.; Campbell, R.; Chockie, A.; Divita, E.; Douthitt, C.; Edelson, E.; Lees, L.

    1977-01-01

    The technical status of the old U.S. mailine program for high level radioactive nuclear waste management, and the newly-developing program for disposal of unreprocessed spent fuel was assessed. The method of long term containment for both of these waste forms is considered to be deep geologic isolation in bedded salt. Each major component of both waste management systems is analyzed in terms of its scientific feasibility, technical achievability and engineering achievability. The resulting matrix leads to a systematic identification of major unresolved technical or scientific questions and/or gaps in these programs.

  5. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    SciTech Connect

    R.A. Levich; J.S. Stuckless

    2006-09-25

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  6. Collaboration, Automation, and Information Management at Hanford High Level Radioactive Waste (HLW) Tank Farms

    SciTech Connect

    Aurah, Mirwaise Y.; Roberts, Mark A.

    2013-12-12

    Washington River Protection Solutions (WRPS), operator of High Level Radioactive Waste (HLW) Tank Farms at the Hanford Site, is taking an over 20-year leap in technology, replacing systems that were monitored with clipboards and obsolete computer systems, as well as solving major operations and maintenance hurdles in the area of process automation and information management. While WRPS is fully compliant with procedures and regulations, the current systems are not integrated and do not share data efficiently, hampering how information is obtained and managed.

  7. Corrosion models for predictions of performance of high-level radioactive-waste containers

    SciTech Connect

    Farmer, J.C.; McCright, R.D.; Gdowski, G.E.

    1991-11-01

    The present plan for disposal of high-level radioactive waste in the US is to seal it in containers before emplacement in a geologic repository. A proposed site at Yucca Mountain, Nevada, is being evaluated for its suitability as a geologic repository. The containers will probably be made of either an austenitic or a copper-based alloy. Models of alloy degradation are being used to predict the long-term performance of the containers under repository conditions. The models are of uniform oxidation and corrosion, localized corrosion, and stress corrosion cracking, and are applicable to worst-case scenarios of container degradation. This paper reviews several of the models.

  8. Human factors programs for high-level radioactive waste handling systems

    SciTech Connect

    Pond, D.J.

    1992-04-01

    Human Factors is the discipline concerned with the acquisition of knowledge about human capabilities and limitations, and the application of such knowledge to the design of systems. This paper discusses the range of human factors issues relevant to high-level radioactive waste (HLRW) management systems and, based on examples from other organizations, presents mechanisms through which to assure application of such expertise in the safe, efficient, and effective management and disposal of high-level waste. Additionally, specific attention is directed toward consideration of who might be classified as a human factors specialist, why human factors expertise is critical to the success of the HLRW management system, and determining when human factors specialists should become involved in the design and development process.

  9. Development of Concentration and Calcination Technology For High Level Liquid Waste

    SciTech Connect

    Pande, D.P.

    2006-07-01

    The concentrated medium and high-level liquid radio chemicals effluents contain nitric acid, water along with the dissolved chemicals including the nitrates of the radio nuclides. High level liquid waste contain mainly nitrates of cesium, strontium, cerium, zirconium, chromium, barium, calcium, cobalt, copper, pickle, iron etc. and other fission products. This concentrated solution requires further evaporation, dehydration, drying and decomposition in temperature range of 150 to 700 deg. C. The addition of the calcined solids in vitrification pot, instead of liquid feed, helps to avoid low temperature zone because the vaporization of the liquid and decomposition of nitrates do not take place inside the melter. In our work Differential and thermo gravimetric studies has been carried out in the various stages of thermal treatment including drying, dehydration and conversion to oxide forms. Experimental studies were done to characterize the chemicals present in high-level radioactive waste. A Rotary Ball Kiln Calciner was used for development of the process because this is amenable for continuous operation and moderately good heat transfer can be achieved inside the kiln. This also has minimum secondary waste and off gases generation. The Rotary Ball Kiln Calciner Demonstration facility system was designed and installed for the demonstration of calcination process. The Rotary Ball Kiln Calciner is a slowly rotating slightly inclined horizontal tube that is externally heated by means of electric resistance heating. The liquid feed is sprayed onto the moving bed of metal balls in a slowly rotating calciner by a peristaltic type-metering pump. The vaporization of the liquid occurs in the pre-calcination zone due to counter current flow of hot gases. The dehydration and denitration of the solids occurs in the calcination zone, which is externally heated by electrical furnace. The calcined powder is cooled in the post calcination portion. It has been demonstrated that the

  10. PHYSICAL AND CHEMICAL MEASUREMENTS NEEDED TO SUPPORT DISPOSITION OFSAVANNAH RIVER SITE RADIOACTIVE HIGH LEVEL WASTE SLUDGE

    SciTech Connect

    Hamm, B

    2007-05-17

    Radioactive high level waste (HLW) sludge generated as a result of decades of production and manufacturing of plutonium, tritium and other nuclear materials is being removed from storage tanks and processed into a glass waste-form for permanent disposition at the Federal Repository. Characterization of this HLW sludge is a prerequisite for effective planning and execution of sludge disposition activities. The radioactivity of HLW makes sampling and analysis of the sludge very challenging, as well as making opportunities to perform characterization rare. In order to maximize the benefit obtained from sampling and analysis, a recommended list of physical property and chemical measurements has been developed. This list includes distribution of solids (insoluble and soluble) and water; densities of insoluble solids, interstitial solution, and slurry rheology (yield stress and consistency); mineral forms of solids; and primary elemental and radioactive constituents. Sampling requirements (number, type, volume, etc.), sample preparation techniques, and analytical methods are discussed in the context of pros and cons relative to end use of the data. Generation of useful sample identification codes and entry of results into a centralized database are also discussed.

  11. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that...

  12. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that...

  13. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that...

  14. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that...

  15. 21 CFR 880.6885 - Liquid chemical sterilants/high level disinfectants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Liquid chemical sterilants/high level... and Personal Use Miscellaneous Devices § 880.6885 Liquid chemical sterilants/high level disinfectants. (a) Identification. A liquid chemical sterilant/high level disinfectant is a germicide that...

  16. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect

    Bullen, D.B.; Gdowski, G.E. ); Weiss, H. )

    1988-06-01

    Three copper-based alloys, CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni), are being considered along with three austenitic candidates as possible materials for fabrication of containers for disposal of high-level radioactive waste. The waste will include spent fuel assemblies from reactors as well as high-level reprocessing wastes in borosilicate glass and will be sent to the prospective repository at Yucca Mountain, Nevada, for disposal. The containers must maintain mechanical integrity for 50 yr after emplacement to allow for retrieval of waste during the preclosure phase of repository operation. Containment is required to be substantially complete for up to 300 to 1000 yr. During the early period, the containers will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. The final closure joint will be critical to the integrity of the containers. This volume surveys the available data on the metallurgy of the copper-based candidate alloys and the welding techniques employed to join these materials. The focus of this volume is on the methods applicable to remote-handling procedures in a hot-cell environment with limited possibility of postweld heat treatment. The three copper-based candidates are ranked on the basis of the various closure techniques. On the basis of considerations regarding welding, the following ranking is proposed for the copper-based alloys: CDA 715 (best) > CDA 102 > CDA 613 (worst). 49 refs., 15 figs., 1 tab.

  17. Specifying the Concept of Future Generations for Addressing Issues Related to High-Level Radioactive Waste.

    PubMed

    Kermisch, Celine

    2016-12-01

    The nuclear community frequently refers to the concept of "future generations" when discussing the management of high-level radioactive waste. However, this notion is generally not defined. In this context, we have to assume a wide definition of the concept of future generations, conceived as people who will live after the contemporary people are dead. This definition embraces thus each generation following ours, without any restriction in time. The aim of this paper is to show that, in the debate about nuclear waste, this broad notion should be further specified and to clarify the related implications for nuclear waste management policies. Therefore, we provide an ethical analysis of different management strategies for high-level waste in the light of two principles, protection of future generations-based on safety and security-and respect for their choice. This analysis shows that high-level waste management options have different ethical impacts across future generations, depending on whether the memory of the waste and its location is lost, or not. We suggest taking this distinction into account by introducing the notions of "close future generations" and "remote future generations", which has important implications on nuclear waste management policies insofar as it stresses that a retrievable disposal has fewer benefits than usually assumed.

  18. Modeling of Stress Corrosion Cracking for High Level Radioactive-Waste Packages

    SciTech Connect

    Lu, S C; Gordon, G M; Andresen, P L; Herrera, M L

    2003-06-20

    A stress corrosion cracking (SCC) model has been adapted for performance prediction of high level radioactive-waste packages to be emplaced in the proposed Yucca Mountain radioactive-waste repository. SCC is one form of environmentally assisted cracking due to three factors, which must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. For waste packages of the proposed Yucca Mountain repository, the outer barrier material is Alloy 22, a highly corrosion resistant alloy, the environment is represented by the water film present on the surface of the waste package from dripping or deliquescence of soluble salts present in any surface deposits, and the stress is principally the weld induced residual stress. SCC has historically been separated into ''initiation'' and ''propagation'' phases. Initiation of SCC will not occur on a smooth surface if the surface stress is below a threshold value defined as the threshold stress. Cracks can also initiate at and propagate from flaws (or defects) resulting from manufacturing processes (such as welding). To account for crack propagation, the slip dissolution/film rupture (SDFR) model is adopted to provide mathematical formulas for prediction of the crack growth rate. Once the crack growth rate at an initiated SCC is determined, the time to through-wall penetration for the waste package can be calculated. The SDFR model relates the advance (or propagation) of cracks, subsequent to the crack initiation from bare metal surface, to the metal oxidation transients that occur when the protective film at the crack tip is continually ruptured and repassivated. A crack, however, may reach the ''arrest'' state before it enters the ''propagation'' phase. There exists a threshold stress intensity factor, which provides a criterion for determining if an initiated crack or pre-existing manufacturing flaw will reach the ''arrest'' state. This paper presents the research

  19. Hydrothermal transformations in an aluminophosphate glass matrix containing simulators of high-level radioactive wastes

    NASA Astrophysics Data System (ADS)

    Yudintsev, S. V.; Mal'kovsky, V. I.; Mokhov, A. V.

    2016-05-01

    The interaction of aluminophosphate glass with water at 95°C for 35 days results in glass heterogenization and in the appearance of a gel layer and various phases. The leaching rate of elements is low owing to the formation of a protective layer on the glass surface. It is shown that over 80% of uranium leached from the glass matrix occurs as colloids below 450 nm in size characterized by high migration ability in the geological environment. To determine the composition of these colloids is a primary task for further studies. Water vapor is a crystallization factor for glasses. The conditions as such may appear even at early stages of glass storage because of the failure of seals on containers of high-level radioactive wastes. The examination of water resistance of crystallized matrices and determination of the fraction of radionuclide in colloids are also subjects for further studies.

  20. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    SciTech Connect

    Wyrwas, R. B.

    2016-09-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  1. Test methods for selection of materials of construction for high-level radioactive waste vitrification. Revision

    SciTech Connect

    Bickford, D F; Corbett, R A; Morrison, W S

    1986-01-01

    Candidate materials of construction were evaluated for a facility at the Department of Energy's Savannah River Plant to vitrify high-level radioactive waste. Limited operating experience was available under the corrosive conditions of the complex vitrification process. The objective of the testing program was to provide a high degree of assurance that equipment will meet or exceed design lifetimes. To meet this objective in reasonable time and minimum cost, a program was designed consisting of a combination of coupon immersion and electrochemical laboratory tests and pilot-scale tests. Stainless steels and nickel-based alloys were tested. Alloys that were most resistant to general and local attack contained nickel, molybdenum (>9%), and chromium (where Cr + Mo > 30%). Alloy C-276 was selected as the reference material for process equipment. Stellite 6 was selected for abrasive service in the presence of formic acid. Alloy 690 and ALLCORR were selected for specific applications.

  2. Characterization and Delivery of Hanford High-Level Radioactive Waste Slurry

    SciTech Connect

    Thien, Michael G.; Denslow, Kayte M.; Lee, K. P.

    2014-11-15

    Two primary challenges to characterizing Hanford’s high-level radioactive waste slurry prior to transfer to a treatment facility are the ability to representatively sample million-gallon tanks and to estimate the critical velocity of the complex slurry. Washington River Protection Solutions has successfully demonstrated a sampling concept that minimizes sample errors by collecting multiple sample increments from a sample loop where the mixed tank contents are recirculated. Pacific Northwest National Laboratory has developed and demonstrated an ultrasonic-based Pulse-Echo detection device that is capable of detecting a stationary settled bed of solids in a pipe with flowing slurry. These two concepts are essential elements of a feed delivery strategy that drives the Hanford clean-up mission.

  3. Development and testing of SYNROC for high level radioactive waste fixation

    SciTech Connect

    Reeve, K.D.; Levins, D.M.; Ramm, E.J.; Woolfrey, J.L.; Buykx, W.J.; Ryan, R.K.; Chapman, J.F.

    1981-01-01

    Research and development on the SYNROC concept for high level radioactive waste fixation commenced at the Australian Atomic Energy Commission Research Establishment, Lucas Heights, in March 1979, in collaboration with a complementary program at The Australian National University (ANU). The present paper reports progress in the project's second year and reviews its current status. An inactive 30 kg-scale SYNROC fabrication line incorporating in-can hot pressing as the fabrication step has been built for operation in mid-1981. Atmospheric pressure and hydrothermal leach tests are demonstrating the excellent leach resistance of SYNROC. Accelerated radiation damage tests using fast neutrons are simulating damage in SYNROC for periods of close to 10/sup 6/ years. In supporting research, mineral phase development, impact friability and thermophysical properties of SYNROC are being studied. 21 refs.

  4. Aspects of possible magmatic disruption of a high-level radioactive waste repository in southern Nevada

    SciTech Connect

    Crowe, B.; Amos, R.; Perry, F.; Self, S.; Vaniman, D.

    1982-10-01

    The Nevada Test Site (NTS) region is located within the central section of a north-northeast-trending basaltic volcanic belt of late Cenozoic age, a part of the Quaternary volcanic province of the Great Basin. Future volcanism within the belt represents a potential hazard to storage of high-level radioactive waste within a buried repository located in the southwestern NTS. The hazards of future volcanism in the region are being characterized through a combination of volcanic hazards studies, probability determinations, and consequence analyses. Basaltic activity within the NTS regions is divided into two age groups consisting of relatively large-volume silicic cycle basalts (8 to 10 Myr) and rift basalts (< 8 to 0.3 Myr). This paper describes the processes of basaltic magmatism ranging from derivation of basalt melts at depth, through ascent through the upper mantle and crust, to surface eruption. Each stage in the evolution and dispersal of basaltic magma is described, and the disruption and potential dispersal of stored radioactive waste is evaluated. These data document areas of knowns and unknowns in the processes of basaltic volcanisms and provide background data necessary to assist calculations of radiation release levels due to disruption of a repository. 9 figures, 11 tables.

  5. Progress in site selection for China`s high-level radioactive waste repository

    SciTech Connect

    Xu, G.; Wang, J.; Jin, Y.; Chen, W.

    1995-12-31

    In 1985, the China National Nuclear Corporation (CNNC) worked out an R and D program called DG program for the deep geological disposal of high-level radioactive waste in China. The site selection process for China`s HLW repository has been carried out since then according to this program. Granite is considered as the candidate host rock for the repository. The general siting criteria are based on the principle that, under the effect of natural and human activities, the long term (100,000 years) safety of the repository can be reasonably obtained and the disposed radioactive waste can be avoided from entering the biosphere and harming human beings. During siting, two types of factors are considered: (1) social factors, including the nuclear industry distribution population, economic potential and environmental protection etc.; (2) natural factors, including geographic, meteorological and geological (crustal stability, host rocks, hydrogeology, engineering geology). The site selection process is divided into 4 stages: (1) nationwide screening, (2) regional screening; (3) district screening; and (4) site screening. During the first stage (1985--1986) the following were considered as potential regions: (1) southwest China, (2) Guangdong area, (3) Inner Mongolia, (4) east China and (5) northwest China. During the second stage (1986--1988), 21 districts were selected for further investigation. Since 1989 most efforts have been focused on the Beishan area, Gansu province, northwest China, which is considered as the most potential district for the repository.

  6. Type A radioactive liquid sample packaging family

    SciTech Connect

    Edwards, W.S.

    1995-11-01

    Westinghouse Hanford Company (WHC) has developed two packagings that can be used to ship Type A quantities of radioactive liquids. WHC designed these packagings to take advantage of commercially available items where feasible to reduce the overall packaging cost. The Hedgehog packaging can ship up to one liter of Type A radioactive liquid with no shielding and 15 cm of distance between the liquid and the package exterior, or 30 ml of liquid with 3.8 cm of stainless steel shielding and 19 cm of distance between the liquid and the package exterior. The One Liter Shipper can ship up to one liter of Type A radioactive liquid that does not require shielding.

  7. SIMULATION OF FLUID FLOW AND ENERGY TRANSPORT PROCESSES ASSOCIATED WITH HIGH-LEVEL RADIOACTIVE WASTE DISPOSAL IN UNSATURATED ALLUVIUM.

    USGS Publications Warehouse

    Pollock, David W.

    1986-01-01

    Many parts of the Great Basin have thick zones of unsaturated alluvium which might be suitable for disposing of high-level radioactive wastes. A mathematical model accounting for the coupled transport of energy, water (vapor and liquid), and dry air was used to analyze one-dimensional, vertical transport above and below an areally extensive repository. Numerical simulations were conducted for a hypothetical repository containing spent nuclear fuel and located 100 m below land surface. Initial steady state downward water fluxes of zero (hydrostatic) and 0. 0003 m yr** minus **1 were considered in an attempt to bracket the likely range in natural water flux. Predicted temperatures within the repository peaked after approximately 50 years and declined slowly thereafter in response to the decreasing intensity of the radioactive heat source. The extent of the dry zone was strongly controlled by the mobility of liquid water near the repository under natural conditions. In the case of initial hydrostatic conditions, the dry zone extended approximately 10 m above and 15 m below the repository. For the case of a natural flux of 0. 0003 m yr** minus **1 the relative permeability of water near the repository was initially more than 30 times the value under hydrostatic conditions, consequently the dry zone extended only about 2 m above and 5 m below the repository. In both cases a significant perturbation in liquid saturation levels persisted for several hundred years. This analysis illustrates the extreme sensitivity of model predictions to initial conditions and parameters, such as relative permeability and moisture characteristic curves.

  8. Vapor Corrosion Response of Low Carbon Steel Exposed to Simulated High Level Radioactive Waste

    SciTech Connect

    Wiersma, B

    2006-01-26

    A program to resolve the issues associated with potential vapor space corrosion and liquid/air interface corrosion in the Type III high level waste tanks is in place. The objective of the program is to develop understanding of vapor space (VSC) and liquid/air interface (LAIC) corrosion to ensure a defensible technical basis to provide accurate corrosion evaluations with regard to vapor space and liquid/air interface corrosion. The results of the FY05 experiments are presented here. The experiments are an extension of the previous research on the corrosion of tank steel exposed to simple solutions to corrosion of the steel when exposed to complex high level waste simulants. The testing suggested that decanting and the consequent residual species on the tank wall is the predominant source of surface chemistry on the tank wall. The laboratory testing has shown that at the boundary conditions of the chemistry control program for solutions greater than 1M NaNO{sub 3}{sup -}. Minor and isolated pitting is possible within crevices in the vapor space of the tanks that contain stagnant dilute solution for an extended period of time, specifically when residues are left on the tank wall during decanting. Liquid/air interfacial corrosion is possible in dilute stagnant solutions, particularly with high concentrations of chloride. The experimental results indicate that Tank 50 would be most susceptible to the potential for liquid/air interfacial corrosion or vapor space corrosion, with Tank 49 and 41 following, since these tanks are nearest to the chemistry control boundary conditions. The testing continues to show that the combination of well-inhibited solutions and mill-scale sufficiently protect against pitting in the Type III tanks.

  9. Cost estimate of high-level radioactive waste containers for the Yucca Mountain Site Characterization Project

    SciTech Connect

    Russell, E.W.; Clarke, W.; Domian, H.A.; Madson, A.A.

    1991-08-01

    This report summarizes the bottoms-up cost estimates for fabrication of high-level radioactive waste disposal containers based on the Site Characterization Plan Conceptual Design (SCP-CD). These estimates were acquired by Babcock and Wilcox (B&S) under sub-contract to Lawrence Livermore National Laboratory (LLNL) for the Yucca Mountain Site Characterization Project (YMP). The estimates were obtained for two leading container candidate materials (Alloy 825 and CDA 715), and from other three vendors who were selected from a list of twenty solicited. Three types of container designs were analyzed that represent containers for spent fuel, and for vitrified high-level waste (HLW). The container internal structures were assumed to be AISI-304 stainless steel in all cases, with an annual production rate of 750 containers. Subjective techniques were used for estimating QA/QC costs based on vendor experience and the specifications derived for the LLNL-YMP Quality Assurance program. In addition, an independent QA/QC analysis is reported which was prepared by Kasier Engineering. Based on the cost estimates developed, LLNL recommends that values of $825K and $62K be used for the 1991 TSLCC for the spent fuel and HLW containers, respectively. These numbers represent the most conservative among the three vendors, and are for the high-nickel anstenitic steel (Alloy 825). 6 refs., 7 figs.

  10. Increasing Safety and Reducing Environmental Damage Risk from Aging High-Level Radioactive Waste Tanks

    SciTech Connect

    Steffler, Eric D.; McClintock, Frank A.; Lloyd, W. Randolph; Rashid, Mark M.; Williamson, Richard L.

    2005-06-01

    Cracks of various shapes and sizes exist in large high-level waste (HLW) tanks at several DOE sites. There is justifiable concern that these cracks could grow to become unstable causing a substantial release of liquid contaminants to the environment. Accurate prediction of crack growth behavior in the tanks, especially during accident scenarios, is not possible with existing analysis methodologies. This research project responds to this problem by developing an improved ability to predict crack growth in material structure combinations that are ductile (Fig. 1). This new model not only addresses the problem for these tanks, but also has applicability to any crack in any ductile structure.

  11. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect

    Gdowski, G.E.; Bullen, D.B. )

    1988-08-01

    Three copper-based alloys and three iron- to nickel-based austenitic alloys are being considered as possible materials for fabrication of containers for disposal of high-level radioactive waste. This waste will include spent fuel assemblies from reactors as well as high-level waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr. During the first 50 yr after emplacement, they must be retrievable from the disposal site. Shortly after the containers are emplaced in the repository, they will be exposed to high temperatures and high gamma radiation fields from the decay of the high-level waste. This volume surveys the available data on oxidation and corrosion of the iron- to nickel-based austenitic materials (Types 304L and 316L stainless steels and Alloy 825) and the copper-based alloy materials (CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni)), which are the present candidates for fabrication of the containers. Studies that provided a large amount of data are highlighted, and those areas in which little data exists are identified. Examples of successful applications of these materials are given. On the basis of resistance to oxidation and general corrosion, the austenitic materials are ranked as follows: Alloy 825 (best), Type 316L stainless steel, and then Type 304L stainless steel (worst). For the copper-based materials, the ranking is as follows: CDA 715 and CDA 613 (both best), and CDA 102 (worst). 110 refs., 30 figs., 13 tabs.

  12. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect

    Bullen, D.B.; Gdowski, G.E. )

    1988-08-01

    Three copper-based alloys and three iron- to nickel-based austenitic alloys are being considered as possible materials for fabrication of high-level radioactive-waste disposal containers. The waste will include spent fuel assemblies from reactors as well as high-level waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The copper-based alloy materials are CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). The austenitic materials are Types 304L and 316L stainless steels and Alloy 825. The waste-package containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr, and they must be retrievable from the disposal site during the first 50 yr after emplacement. The containers will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. This volume surveys the available data on the phase stability of both groups of candidate alloys. The austenitic alloys are reviewed in terms of the physical metallurgy of the iron-chromium-nickel system, martensite transformations, carbide formation, and intermetallic-phase precipitation. The copper-based alloys are reviewed in terms of their phase equilibria and the possibility of precipitation of the minor alloying constituents. For the austenitic materials, the ranking based on phase stability is: Alloy 825 (best), Type 316L stainless steel, and then Type 304L stainless steel (worst). For the copper-based materials, the ranking is: CDA 102 (oxygen-free copper) (best), and then both CDA 715 and CDA 613. 75 refs., 24 figs., 6 tabs.

  13. Liquid level measurement in high level nuclear waste slurries

    SciTech Connect

    Weeks, G.E.; Heckendorn, F.M.; Postles, R.L.

    1990-01-01

    Accurate liquid level measurement has been a difficult problem to solve for the Defense Waste Processing Facility (DWPF). The nuclear waste sludge tends to plug or degrade most commercially available liquid-level measurement sensors. A liquid-level measurement system that meets demanding accuracy requirements for the DWPF has been developed. The system uses a pneumatic 1:1 pressure repeater as a sensor and a computerized error correction system. 2 figs.

  14. Decontamination and treatment of high level liquid mixed waste to meet regulatory compliance issues outlined in Federal Facilities Agreements

    SciTech Connect

    Gaughan, T.P.; Taylor, G.A.

    1994-03-01

    High-Level Radioactive Liquid waste is stored in underground storage tanks at the US Department of Energy`s Savannah River Site (SRS) located south of Aiken, SC. Treatment and disposal of this liquid Hazardous and Radioactive (Mixed) Waste required the negotiation and approval of a Federal Facility Agreement (FFA) between the DOE, EPA and the South Carolina state regulatory agency. This agreement which also addresses many other waste sites at SRS was approved in January 1993. Included in this FFA were schedule information, operating parameters and secondary containment requirements that the DOE committed to as part of an ongoing Environmental Restoration mission at the site. Obtaining compliance with this FFA and other environmental regulations at such a unique facility provided a challenging obstacle for treatment of this liquid waste.

  15. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect

    Farmer, J.C.; Van Konynenburg, R.A.; McCright, R.D. ); Bullen, D.B. )

    1988-04-01

    Three iron- to nickel-based austenitic alloys (Types 304L and 316L stainless steels and Alloy 825) are being considered as candidate materials for the fabrication of high-level radioactive-waste containers. Waste will include fuel assemblies from reactors as well as high-level waste in borosilicate glass forms, and will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides in the repository will result in the generation of substantial heat and in fluences of gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including atmospheric oxidation; uniform aqueous phase corrosion; pitting; crevice corrosion; sensitization and intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This report is an analysis of data relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of the three austenitic candidate alloys. The candidates are compared in terms of their susceptibilities to these forms of corrosion. Although all three candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these types of localized corrosion (LC); such resistance is important because pits can penetrate the metal and serve as crack initiation sites. Both Types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented in Alloy 825 under comparable conditions. Gamma radiation has been found to enhance SCC in Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while the effects of microbiologically induced corrosion have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. 211 refs., 49 figs., 10 tabs.

  16. International program to study subseabed disposal of high-level radioactive wastes

    SciTech Connect

    Carlin, E.M.; Hinga, K.R.; Knauss, J.A.

    1984-01-01

    This report provides an overview of the international program to study seabed disposal of nuclear wastes. Its purpose is to inform legislators, other policy makers, and the general public as to the history of the program, technological requirements necessary for feasibility assessment, legal questions involved, international coordination of research, national policies, and research and development activities. Each of these major aspects of the program is presented in a separate section. The objective of seabed burial, similar to its continental counterparts, is to contain and to isolate the wastes. The subseabed option should not be confuesed with past practices of ocean dumping which have introduced wastes into ocean waters. Seabed disposal refers to the emplacement of solidified high-level radioactive waste (with or without reprocessing) in certain geologically stable sediments of the deep ocean floor. Specially designed surface ships would transport waste canisters from a port facility to the disposal site. Canisters would be buried from a few tens to a few hundreds of meters below the surface of ocean bottom sediments, and hence would not be in contact with the overlying ocean water. The concept is a multi-barrier approach for disposal. Barriers, including waste form, canister, ad deep ocean sediments, will separate wastes from the ocean environment. High-level wastes (HLW) would be stabilized by conversion into a leach-resistant solid form such as glass. This solid would be placed inside a metallic canister or other type of package which represents a second barrier. The deep ocean sediments, a third barrier, are discussed in the Feasibility Assessment section. The waste form and canister would provide a barrier for several hundred years, and the sediments would be relied upon as a barrier for thousands of years. 62 references, 3 figures, 2 tables.

  17. Control of high level radioactive waste-glass melters. Part 5, Modelling of complex redox effects

    SciTech Connect

    Bickford, D.F.; Choi, A.S.

    1991-12-31

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs.

  18. A structural model analysis of public opposition to a high-level radioactive waste facility

    SciTech Connect

    Flynn, J.; Mertz, C.K.; Slovic, P.; Burns, W.

    1991-09-01

    Studies show that most Nevada residents and almost all state officials oppose the proposed high-level radioactive waste repository project at Yucca Mountain. Surveys of the public show that individual citizens view the Yucca Mountain repository as having high risk; nuclear experts, in contrast, believe the risks are very low. Policy analysts have suggested that public risk perceptions may be reduced by better program management, increased trust in the federal government, and increased economic benefits for accepting a repository. The model developed in this study is designed to examine the relationship between public perceptions of risk, trust in risk management, and potential economic impacts of the current repository program using a confirmatory multivariate method known as covariance structure analysis. The results indicate that perceptions of potential economic gains have little relationship to opposition to the repository. On the other hand, risk perceptions and the level of trust in repository management are closely related to each other and to opposition. The impacts of risk perception and trust in management on opposition to the repository result from a combination of their direct influences as well as their indirect influences operating through perceptions that the repository would have serious negative impacts on the state`s economy due to stigmatization and reduced tourism.

  19. PERFORMANCE OF A BURIED RADIOACTIVE HIGH LEVEL WASTE GLASS AFTER 24 YEARS

    SciTech Connect

    Jantzen, C; Daniel Kaplan, D; Ned Bibler, N; David Peeler, D; John Plodinec, J

    2008-05-05

    A radioactive high level waste glass was made in 1980 with Savannah River Site (SRS) Tank 15 waste. This glass was buried in the SRS burial ground for 24 years but lysimeter data was only available for the first 8 years. The glass was exhumed and analyzed in 2004. The glass was predicted to be very durable and laboratory tests confirmed the durability response. The laboratory results indicated that the glass was very durable as did analysis of the lysimeter data. Scanning electron microscopy of the glass burial surface showed no significant glass alteration consistent with the results of the laboratory and field tests. No detectable Pu, Am, Cm, Np, or Ru leached from the glass into the surrounding sediment. Leaching of {beta}/{delta} from {sup 90}Sr and {sup 137}Cs in the glass was diffusion controlled. Less than 0.5% of the Cs and Sr in the glass leached into the surrounding sediment, with >99% of the leached radionuclides remaining within 8 centimeters of the glass pellet.

  20. Immobilization of simulated high-level radioactive waste in borosilicate glass: Pilot scale demonstrations

    SciTech Connect

    Ritter, J.A.; Hutson, N.D.; Zamecnik, J.R.; Carter, J.T.

    1991-01-01

    The Integrated DWPF Melter System (IDMS), operated by the Savannah River Laboratory, is a pilot scale facility used in support of the start-up and operation of the Department of Energy's Defense Waste Processing Facility. The IDMS has successfully demonstrated, on an engineering scale (one-fifth), that simulated high level radioactive waste (HLW) sludge can be chemically treated with formic acid to adjust both its chemical and physical properties, and then blended with simulated precipitate hydrolysis aqueous (PHA) product and borosilicate glass frit to produce a melter feed which can be processed into a durable glass product. The simulated sludge, PHA and frit were blended, based on a product composition program, to optimize the loading of the waste glass as well as to minimize those components which can cause melter processing and/or glass durability problems. During all the IDMS demonstrations completed thus far, the melter feed and the resulting glass that has been produced met all the required specifications, which is very encouraging to future DWPF operations. The IDMS operations also demonstrated that the volatile components of the melter feed (e.g., mercury, nitrogen and carbon, and, to a lesser extent, chlorine, fluorine and sulfur) did not adversely affect the melter performance or the glass product.

  1. Immobilization of simulated high-level radioactive waste in borosilicate glass: Pilot scale demonstrations

    SciTech Connect

    Ritter, J.A.; Hutson, N.D.; Zamecnik, J.R.; Carter, J.T.

    1991-12-31

    The Integrated DWPF Melter System (IDMS), operated by the Savannah River Laboratory, is a pilot scale facility used in support of the start-up and operation of the Department of Energy`s Defense Waste Processing Facility. The IDMS has successfully demonstrated, on an engineering scale (one-fifth), that simulated high level radioactive waste (HLW) sludge can be chemically treated with formic acid to adjust both its chemical and physical properties, and then blended with simulated precipitate hydrolysis aqueous (PHA) product and borosilicate glass frit to produce a melter feed which can be processed into a durable glass product. The simulated sludge, PHA and frit were blended, based on a product composition program, to optimize the loading of the waste glass as well as to minimize those components which can cause melter processing and/or glass durability problems. During all the IDMS demonstrations completed thus far, the melter feed and the resulting glass that has been produced met all the required specifications, which is very encouraging to future DWPF operations. The IDMS operations also demonstrated that the volatile components of the melter feed (e.g., mercury, nitrogen and carbon, and, to a lesser extent, chlorine, fluorine and sulfur) did not adversely affect the melter performance or the glass product.

  2. ICPP radioactive liquid and calcine waste technologies evaluation. Interim report

    SciTech Connect

    Murphy, J.A.; Pincock, L.F.; Christiansen, I.N.

    1994-06-01

    The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until recently, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, changing world events have raised questions concerning the need to recover and recycle this material. In April 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the management and disposition of radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste) and 3,800 cubic meters (m{sup 3}) of calcine waste are in inventory at the ICPP. Legal drivers and agreements exist obligating the INEL to develop, demonstrate, and implement technologies for safe and environmentally sound treatment and interim storage of radioactive liquid and calcine waste. Candidate treatment processes and waste forms are being evaluated using the Technology Evaluation and Analysis Methodology (TEAM) Model. This process allows decision makers to (1) identify optimum radioactive waste treatment and disposal form alternatives; (2) assess tradeoffs between various optimization criteria; (3) identify uncertainties in performance parameters; and (4) focus development efforts on options that best satisfy stakeholder concerns. The Systems Analysis technology evaluation presented in this document supports the DOE in selecting the most effective radioactive liquid and calcine waste management plan to implement in compliance with established regulations, court orders, and agreements.

  3. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  4. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation....

  5. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation....

  6. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  7. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation....

  8. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  9. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation....

  10. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste,...

  11. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation....

  12. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste,...

  13. Shale disposal of U.S. high-level radioactive waste.

    SciTech Connect

    Sassani, David Carl; Stone, Charles Michael; Hansen, Francis D.; Hardin, Ernest L.; Dewers, Thomas A.; Martinez, Mario J.; Rechard, Robert Paul; Sobolik, Steven Ronald; Freeze, Geoffrey A.; Cygan, Randall Timothy; Gaither, Katherine N.; Holland, John Francis; Brady, Patrick Vane

    2010-05-01

    This report evaluates the feasibility of high-level radioactive waste disposal in shale within the United States. The U.S. has many possible clay/shale/argillite basins with positive attributes for permanent disposal. Similar geologic formations have been extensively studied by international programs with largely positive results, over significant ranges of the most important material characteristics including permeability, rheology, and sorptive potential. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in shale media. We develop scoping performance analyses, based on the applicable features, events, and processes identified by international investigators, to support a generic conclusion regarding post-closure safety. Requisite assumptions for these analyses include waste characteristics, disposal concepts, and important properties of the geologic formation. We then apply lessons learned from Sandia experience on the Waste Isolation Pilot Project and the Yucca Mountain Project to develop a disposal strategy should a shale repository be considered as an alternative disposal pathway in the U.S. Disposal of high-level radioactive waste in suitable shale formations is attractive because the material is essentially impermeable and self-sealing, conditions are chemically reducing, and sorption tends to prevent radionuclide transport. Vertically and laterally extensive shale and clay formations exist in multiple locations in the contiguous 48 states. Thermal-hydrologic-mechanical calculations indicate that temperatures near emplaced waste packages can be maintained below boiling and will decay to within a few degrees of the ambient temperature within a few decades (or longer depending on the waste form). Construction effects, ventilation, and the thermal pulse will lead to clay dehydration and deformation, confined to an excavation disturbed zone within

  14. Granite disposal of U.S. high-level radioactive waste.

    SciTech Connect

    Freeze, Geoffrey A.; Mariner, Paul E.; Lee, Joon H.; Hardin, Ernest L.; Goldstein, Barry; Hansen, Francis D.; Price, Ronald H.; Lord, Anna Snider

    2011-08-01

    This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, based on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to inform site

  15. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect

    Farmer, J.C.; Van Konynenburg, R.A.; McCright, R.D. ); Gdowski, G.E. )

    1988-06-01

    Three copper-based alloys, CDA 102 (oxygen-free, high-purity copper), CDA 613 (aluminum bronze), and CDA 715 (Cu-30Ni), are candidates for the fabrication of high-level radioactive-waste disposal containers. Waste will include spent fuel assemblies from reactors as well as borosilicate glass, and will be sent to the prospective repository site at Yucca Mountain in Nye County, Nevada. The decay of radionuclides will result in the generation of substantial heat and in fluxes of gamma radiation outside the containers. In this environment, container materials might degrade by atmospheric oxidation, general aqueous phase corrosion, localized corrosion (LC), and stress corrosion cracking (SCC). This volume is a critical survey of available data on pitting and crevice corrosion of the copper-based candidates. Pitting and crevice corrosion are two of the most common forms of LC of these materials. Data on the SCC of these alloys is surveyed in Volume 4. Pitting usually occurs in water that contains low concentrations of bicarbonate and chloride anions, such as water from Well J-13 at the Nevada Test Site. Consequently, this mode of degradation might occur in the repository environment. Though few quantitative data on LC were found, a tentative ranking based on pitting corrosion, local dealloying, crevice corrosion, and biofouling is presented. CDA 102 performs well in the categories of pitting corrosion, local dealloying, and biofouling, but susceptibility to crevice corrosion diminishes its attractiveness as a candidate. The cupronickel alloy, CDA 715, probably has the best overall resistance to such localized forms of attack. 123 refs., 11 figs., 3 tabs.

  16. Source term evaluation model for high-level radioactive waste repository with decay chain build-up.

    PubMed

    Chopra, Manish; Sunny, Faby; Oza, R B

    2016-09-18

    A source term model based on two-component leach flux concept is developed for a high-level radioactive waste repository. The long-lived radionuclides associated with high-level waste may give rise to the build-up of activity because of radioactive decay chains. The ingrowths of progeny are incorporated in the model using Bateman decay chain build-up equations. The model is applied to different radionuclides present in the high-level radioactive waste, which form a part of decay chains (4n to 4n + 3 series), and the activity of the parent and daughter radionuclides leaching out of the waste matrix is estimated. Two cases are considered: one when only parent is present initially in the waste and another where daughters are also initially present in the waste matrix. The incorporation of in situ production of daughter radionuclides in the source is important to carry out realistic estimates. It is shown that the inclusion of decay chain build-up is essential to avoid underestimation of the radiological impact assessment of the repository. The model can be a useful tool for evaluating the source term of the radionuclide transport models used for the radiological impact assessment of high-level radioactive waste repositories.

  17. Small-scale demonstration of high-level radioactive waste processing and solidification using actual SRP waste

    SciTech Connect

    Okeson, J K; Galloway, R M; Wilhite, E L; Woolsey, G B; B, Ferguson R

    1980-01-01

    A small-scale demonstration of the high-level radioactive waste solidification process by vitrification in borosilicate glass is being conducted using 5-6 liter batches of actual waste. Equipment performance and processing characteristics of the various unit operations in the process are reported and, where appropriate, are compared to large-scale results obtained with synthetic waste.

  18. Role of Congress in the High Level Radioactive Waste Odyssey: The Wisdom and Will of the Congress - 13096

    SciTech Connect

    Vieth, Donald L.

    2013-07-01

    Congress has had a dual role with regard to high level radioactive waste, being involved in both its creation and its disposal. A significant amount of time has passed between the creation of the nation's first high level radioactive waste and the present day. The pace of addressing its remediation has been highly irregular. Congress has had to consider the technical, regulatory, and political issues and all have had specific difficulties. It is a true odyssey framed by an imperative and accountability, by a sense of urgency, by an ability or inability to finish the job and by consequences. Congress had set a politically acceptable course by 1982. However, President Obama intervened in the process after he took office in January 2009. Through the efforts of his Administration, by the end of 2012, the US government has no program to dispose of high level radioactive waste and no reasonable prospect of a repository for high level radioactive waste. It is not obvious how the US government program will be reestablished or who will assume responsibility for leadership. The ultimate criteria for judging the consequences are 1) the outcome of the ongoing NRC's Nuclear Waste Confidence Rulemaking and 2) the concomitant permissibility of nuclear energy supplying electricity from operating reactors in the US. (authors)

  19. Integrated Corrosion Facility for long-term testing of candidate materials for high-level radioactive waste containment

    SciTech Connect

    Estill, J.C.; Dalder, E.N.C.; Gdowski, G.E.; McCright, R.D.

    1994-10-01

    A long-term-testing facility, the Integrated Corrosion Facility (I.C.F.), is being developed to investigate the corrosion behavior of candidate construction materials for high-level-radioactive waste packages for the potential repository at Yucca Mountain, Nevada. Corrosion phenomena will be characterized in environments considered possible under various scenarios of water contact with the waste packages. The testing of the materials will be conducted both in the liquid and high humidity vapor phases at 60 and 90{degrees}C. Three classes of materials with different degrees of corrosion resistance will be investigated in order to encompass the various design configurations of waste packages. The facility is expected to be in operation for a minimum of five years, and operation could be extended to longer times if warranted. A sufficient number of specimens will be emplaced in the test environments so that some can be removed and characterized periodically. The corrosion phenomena to be characterized are general, localized, galvanic, and stress corrosion cracking. The long-term data obtained from this study will be used in corrosion mechanism modeling, performance assessment, and waste package design. Three classes of materials are under consideration. The corrosion resistant materials are high-nickel alloys and titanium alloys; the corrosion allowance materials are low-alloy and carbon steels; and the intermediate corrosion resistant materials are copper-nickel alloys.

  20. Method for solidifying liquid radioactive wastes

    DOEpatents

    Berreth, Julius R.

    1976-01-01

    The quantity of nitrous oxides produced during the solidification of liquid radioactive wastes containing nitrates and nitrites can be substantially reduced by the addition to the wastes of a stoichiometric amount of urea which, upon heating, destroys the nitrates and nitrites, liberating nontoxic N.sub.2, CO.sub.2 and NH.sub.3.

  1. Thermal-Mechanical Modeling of Deep Borehole Disposal of High-Level Radioactive Waste

    NASA Astrophysics Data System (ADS)

    Arnold, B. W.; Clayton, D. J.; Herrick, C. G.; Hadgu, T.

    2010-12-01

    Disposal of high-level radioactive waste, including spent nuclear fuel, in deep (3 to 5 km) boreholes is a potential option for safely isolating these wastes from the surface and near-surface environment. Existing drilling technology permits reliable and cost-effective construction of such deep boreholes. Conditions favorable for deep borehole disposal in crystalline basement rocks, including low permeability, high salinity, and geochemically reducing conditions, exist at depth in many locations, particularly in geologically stable continental regions. Isolation of waste depends, in part, on the effectiveness of borehole seals and potential alteration of permeability in the disturbed host rock surrounding the borehole. Coupled thermal-mechanical-hydrologic processes induced by heat from the radioactive waste may impact the disturbed zone near the borehole and borehole wall stability. Numerical simulations of the coupled thermal-mechanical response in the host rock surrounding the borehole were conducted with three software codes or combinations of software codes. Software codes used in the simulations were FEHM, JAS3D, Aria, and Adagio. Simulations were conducted for disposal of spent nuclear fuel assemblies and for the higher heat output of vitrified waste from the reprocessing of fuel. Simulations were also conducted for both isotropic and anisotropic ambient horizontal stress in the host rock. Physical, thermal, and mechanical properties representative of granite host rock at a depth of 4 km were used in the models. Simulation results indicate peak temperature increases at the borehole wall of about 30 °C and 180 °C for disposal of fuel assemblies and vitrified waste, respectively. Peak temperatures near the borehole occur within about 10 years and decline rapidly within a few hundred years and with distance. The host rock near the borehole is placed under additional compression. Peak mechanical stress is increased by about 15 MPa (above the assumed ambient

  2. Thermal-mechanical modeling of deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Arnold, Bill Walter; Hadgu, Teklu

    2010-12-01

    Disposal of high-level radioactive waste, including spent nuclear fuel, in deep (3 to 5 km) boreholes is a potential option for safely isolating these wastes from the surface and near-surface environment. Existing drilling technology permits reliable and cost-effective construction of such deep boreholes. Conditions favorable for deep borehole disposal in crystalline basement rocks, including low permeability, high salinity, and geochemically reducing conditions, exist at depth in many locations, particularly in geologically stable continental regions. Isolation of waste depends, in part, on the effectiveness of borehole seals and potential alteration of permeability in the disturbed host rock surrounding the borehole. Coupled thermal-mechanical-hydrologic processes induced by heat from the radioactive waste may impact the disturbed zone near the borehole and borehole wall stability. Numerical simulations of the coupled thermal-mechanical response in the host rock surrounding the borehole were conducted with three software codes or combinations of software codes. Software codes used in the simulations were FEHM, JAS3D, Aria, and Adagio. Simulations were conducted for disposal of spent nuclear fuel assemblies and for the higher heat output of vitrified waste from the reprocessing of fuel. Simulations were also conducted for both isotropic and anisotropic ambient horizontal stress in the host rock. Physical, thermal, and mechanical properties representative of granite host rock at a depth of 4 km were used in the models. Simulation results indicate peak temperature increases at the borehole wall of about 30 C and 180 C for disposal of fuel assemblies and vitrified waste, respectively. Peak temperatures near the borehole occur within about 10 years and decline rapidly within a few hundred years and with distance. The host rock near the borehole is placed under additional compression. Peak mechanical stress is increased by about 15 MPa (above the assumed ambient

  3. Caustic leaching of high-level radioactive tank sludge: A critical literature review

    SciTech Connect

    McGinnis, C.P.; Welch, T.D.; Hunt, R.D.

    1998-08-01

    The Department of Energy (DOE) must treat and safely dispose of its radioactive tank contents, which can be separated into high-level waste (HLW) and low-level waste (LLW) fractions. Since the unit costs of treatment and disposal are much higher for HLW than for LLW, technologies to reduce the amount of HLW are being developed. A key process currently being studied to reduce the volume of HLW sludges is called enhanced sludge washing (ESW). This process removes, by water washes, soluble constituents such as sodium salts, and the washed sludge is then leached with 2--3 M NaOH at 60--100 C to remove nonradioactive metals such as aluminum. The remaining solids are considered to be HLW while the solutions are LLW after radionuclides such as {sup 137}Cs have been removed. Results of bench-scale tests have shown that the ESW will probably remove the required amounts of inert constituents. While both experimental and theoretical results have shown that leaching efficiency increases as the time and temperature of the leach are increased, increases in the caustic concentration above 2--3 M will only marginally improve the leach factors. However, these tests were not designed to validate the assumption that the caustic used in the ESW process will generate only a small increase (10 Mkg) in the amount of LLW; instead the test conditions were selected to maximize leaching in a short period and used more water and caustic than is planned during full-scale operations. Even though calculations indicate that the estimate for the amount of LLW generated by the ESW process appears to be reasonable, a detailed study of the amount of LLW from the ESW process is still required. If the LLW analysis indicates that sodium management is critical, then a more comprehensive evaluation of the clean salt process or caustic recycle would be needed. Finally, experimental and theoretical studies have clearly demonstrated the need for the control of solids formation during and after leaching.

  4. Caustic leaching of high-level radioactive tank sludge: A critical literature review

    SciTech Connect

    McGinnis, C.P.; Welch, T.D.; Hunt, R.D.

    1997-12-31

    The Department of Energy (DOE) must treat and safely dispose of its radioactive tank contents, which can be separated into high-level waste (HLW) and low-level waste (LLW) fractions. Since the unit costs of treatment and disposal are much higher for HLW than for LLW, technologies to reduce the amount of HLW are being developed. A key process currently being studied to reduce the volume of HLW sludges is called enhanced sludge washing (ESW). This process removes, by water washes, soluble constituents such as sodium salts, and the washed sludge is then leached with 2--3 M NaOH at 60--100 C to remove nonradioactive metals such as aluminum. The remaining solids are considered to be HLW while the solutions are LLW after radionuclides such as {sup 137}Cs have been removed. Results of bench-scale tests have shown that the ESW will probably remove the required amounts of inert constituents. While both experimental and theoretical results have shown that leaching efficiency increases as the time and temperature of the leach are increased, increases in the caustic concentration above 2--3 M will only marginally improve the leach factors. However, these tests were not designed to validate the assumption that the caustic used in the ESW process will generate only a small increase (10 Mkg) in the amount of LLW; instead, the test conditions were selected to maximize leaching in a short period and used more water and caustic than is planned during full-scale operations. Even though calculations indicate that the estimate for the amount of LLW generated by the ESW process appears to be reasonable, a detailed study of the amount of LLW from the ESW process is still required. If the LLW analysis indicates that sodium management is critical, then a more comprehensive evaluation of the clean salt process or caustic recycle would be needed. Finally, experimental and theoretical studies have clearly demonstrated the need for the control of solids formation during and after leaching.

  5. Integrated Numerical Simulation of Thermo-Hydro-Chemical Phenomena Associated with Geologic Disposal of High-Level Radioactive Waste

    NASA Astrophysics Data System (ADS)

    Park, Sang-Uk; Kim, Jun-Mo; Kihm, Jung-Hwi

    2014-05-01

    A series of numerical simulations was performed using a multiphase thermo-hydro-chemical numerical model to predict integratedly and evaluate quantitatively thermo-hydro-chemical phenomena due to heat generation associated with geologic disposal of high-level radioactive waste. The average mineralogical composition of the fifteen unweathered igneous rock bodies, which were classified as granite, in Republic of Korea was adopted as an initial (primary) mineralogical composition of the host rock of the repository of high-level radioactive waste in the numerical simulations. The numerical simulation results show that temperature rises and thus convective groundwater flow occurs near the repository due to heat generation associated with geologic disposal of high-level radioactive waste. Under these circumstances, a series of water-rock interactions take place. As a result, among the primary minerals, quartz, plagioclase (albite), biotite (annite), and muscovite are dissolved. However, orthoclase is initially precipitated and is then dissolved, whereas microcline is initially dissolved and is then precipitated. On the other hand, the secondary minerals such as kaolinite, Na-smectite, chlorite, and hematite are precipitated and are then partly dissolved. In addition, such dissolution and precipitation of the primary and secondary minerals change groundwater chemistry (quality) and induce reactive chemical transport. As a result, in groundwater, Na+, Fe2+, and HCO3- concentrations initially decrease, whereas K+, AlO2-, and aqueous SiO2 concentrations initially increase. On the other hand, H+ concentration initially increases and thus pH initially decreases due to dissociation of groundwater in order to provide OH-, which is essential in precipitation of Na-smectite and chlorite. Thus, the above-mentioned numerical simulation results suggest that thermo-hydro-chemical numerical simulation can provide a better understanding of heat transport, groundwater flow, and reactive

  6. Geological Repository Layout for Radioactive High Level Long Lived Waste in Argilite

    SciTech Connect

    Gaussen, J.L.

    2006-07-01

    In the framework of the 1991 French radioactive waste act, ANDRA has studied the feasibility of a geological repository in the argillite layer of the Bure site for high-level long-lived waste. This presentation is focused on the underground facilities that constitute the specific component of this project. The preliminary underground layout, which has been elaborated, is based on four categories of data: - the waste characteristics and inventory; - the geological properties of the host argillite; - the long term performance objectives of the repository; - the specifications in term of operation and reversibility. The underground facilities consist of two types of works: the access works (shafts and drifts) and the disposal cells. The function of the access works is to permit the implementation of two concurrent activities: the nuclear operations (transfer and emplacement of the disposal packages into the disposal cells) and the construction of the next disposal cells. The design of the drifts network which matches up to this function is also influenced by two other specifications: the minimisation of the drift dimensions in order to limit their influence on the integrity of the geological formation and the necessity of a safe ventilation in case of fire. The resulting layout is a network of 4 parallel drifts (2 of them being dedicated to the operation, the other two being dedicated to the construction activities). The average diameter of these access drifts is 7 meters. 4 shafts ensure the link between the surface and the underground. The most important function of the disposal cells is to contribute to the long-term performance of the repository. In this regard, the thermal and geotechnical considerations play an important role. The B wastes (intermediate level wastes) are not (or not very) exothermic. Consequently, the design of their disposal cells result mainly from geotechnical considerations. The disposal packages (made of concrete) are piled up in big

  7. Membrane technologies for liquid radioactive waste treatment

    NASA Astrophysics Data System (ADS)

    Chmielewski, A. G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.

    1999-01-01

    The paper deals with some problems concerning reduction of radioactivity of liquid low-level nuclear waste streams (LLLW). The membrane processes as ultrafiltration (UF), seeded ultrafiltration (SUF), reverse osmosis (RO) and membrane distillation (MD) were examined. Ultrafiltration enables the removal of particles with molecular weight above cut-off of UF membranes and can be only used as a pre-treatment stage. The improvement of removal is achieved by SUF, employing macromolecular ligands binding radioactive ions. The reduction of radioactivity in LLLW to very low level were achieved with RO membranes. The results of experiments led the authors to the design and construction of UF+2RO pilot plant. The development of membrane distillation improve the selectivity of membrane process in some cases. The possibility of utilisation of waste heat from cooling system of nuclear reactors as a preferable energy source can significantly reduce the cost of operation.

  8. Conflicting Expertise and Uncertainty: Quality Assurance in High-Level Radioactive Waste Management.

    ERIC Educational Resources Information Center

    Fitzgerald, Michael R.; McCabe, Amy Snyder

    1991-01-01

    Dynamics of a large, expensive, and controversial surface and underground evaluation of a radioactive waste management program at the Yucca Mountain power plant are reviewed. The use of private contractors in the quality assurance study complicates the evaluation. This case study illustrates high stakes evaluation problems. (SLD)

  9. Midwestern High-Level Radioactive Waste Transportation Project. Highway infrastructure report

    SciTech Connect

    Sattler, L.R.

    1992-02-01

    In addition to arranging for storage and disposal of radioactive waste, the US Department of Energy (DOE) must develop a safe and efficient transportation system in order to deliver the material that has accumulated at various sites throughout the country. The ability to transport radioactive waste safely has been demonstrated during the past 20 years: DOE has made over 2,000 shipments of spent fuel and other wastes without any fatalities or environmental damage related to the radioactive nature of the cargo. To guarantee the efficiency of the transportation system, DOE must determine the optimal combination of rail transport (which allows greater payloads but requires special facilities) and truck transport Utilizing trucks, in turn, calls for decisions as to when to use legal weight trucks or, if feasible, overweight trucks for fewer but larger shipments. As part of the transportation system, the Facility Interface Capability Assessment (FICA) study contributes to DOE`s development of transportation plans for specific facilities. This study evaluates the ability of different facilities to receive, load and ship the special casks in which radioactive materials will be housed during transport In addition, the DOE`s Near-Site Transportation Infrastructure (NSTI) study (forthcoming) will evaluate the rail, road and barge access to 76 reactor sites from which DOE is obligated to begin accepting spent fuel in 1998. The NSTI study will also assess the existing capabilities of each transportation mode and route, including the potential for upgrade.

  10. A Low-Tech, Low-Budget Storage Solution for High Level Radioactive Sources

    SciTech Connect

    Brett Carlsen; Ted Reed; Todd Johnson; John Weathersby; Joe Alexander; Dave Griffith; Douglas Hamelin

    2014-07-01

    The need for safe, secure, and economical storage of radioactive material becomes increasingly important as beneficial uses of radioactive material expand (increases inventory), as political instability rises (increases threat), and as final disposal and treatment facilities are delayed (increases inventory and storage duration). Several vendor-produced storage casks are available for this purpose but are often costly — due to the required design, analyses, and licensing costs. Thus the relatively high costs of currently accepted storage solutions may inhibit substantial improvements in safety and security that might otherwise be achieved. This is particularly true in areas of the world where the economic and/or the regulatory infrastructure may not provide the means and/or the justification for such an expense. This paper considers a relatively low-cost, low-technology radioactive material storage solution. The basic concept consists of a simple shielded storage container that can be fabricated locally using a steel pipe and a corrugated steel culvert as forms enclosing a concrete annulus. Benefits of such a system include 1) a low-tech solution that utilizes materials and skills available virtually anywhere in the world, 2) a readily scalable design that easily adapts to specific needs such as the geometry and radioactivity of the source term material), 3) flexible placement allows for free-standing above-ground or in-ground (i.e., below grade or bermed) installation, 4) the ability for future relocation without direct handling of sources, and 5) a long operational lifetime . ‘Le mieux est l’ennemi du bien’ (translated: The best is the enemy of good) applies to the management of radioactive materials – particularly where the economic and/or regulatory justification for additional investment is lacking. Development of a low-cost alternative that considerably enhances safety and security may lead to a greater overall risk reduction than insisting on

  11. Treatment and disposal of high-level radioactive waste at the Hanford Site: The technical challenge

    SciTech Connect

    Wodrich, D.D.; Honeyman, J.O.; Wojtasek, R.D.

    1994-07-01

    The US Department of Energy`s (DOE) Hanford Site, located in southeastern Washington State, has the most diverse and largest amount of radioactive tank waste in the US. A Tank Waste Remediation System (TWRS) Program was established in 1991 to safely store, treat, and dispose of those wastes. This paper describes the technical challenge in conducting the TWRS Program that will take more than 30 years and cost tens of billions of dollars to complete.

  12. Future radioactive liquid waste streams study

    SciTech Connect

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

  13. Vitrification of radioactive high-level waste by spray calcination and in-can melting

    SciTech Connect

    Hanson, M.S.; Bjorklund, W.J.

    1980-07-01

    After several nonradioactive test runs, radioactive waste from the processing of 1.5 t of spent, light-water-reactor fuel was successfully concentrated, dried and converted to a vitreous product. A total of 97 L of waste glass (in two stainless steel canisters) was produced. The spray calcination process coupled to the in-can melting process, as developed at Pacific Northwest Laboratory, was used to vitrify the waste. An effluent system consisting of a variety of condensation of scrubbing steps more than adequately decontaminated the process off gas before it was released to the atmosphere.

  14. Building the institutional capacity for managing commercial high-level radioactive waste

    SciTech Connect

    1982-05-01

    In July 1981, the Office of Nuclear Waste Management of the Department of Energy contracted with the National Academy of Public Administration for a study of institutional issues associated with the commercial radioactive waste management program. The two major sets of issues which the Academy was asked to investigate were (1) intergovernmental relationships, how federal, state, local and Indian tribal council governments relate to each other in the planning and implementation of a waste management program, and (2) interagency relationships, how the federal agencies with major responsibilities in this public policy arena interact with each other. The objective of the study was to apply the perspectives of public administration to a difficult and controversial question - how to devise and execute an effective waste management program workable within the constraints of the federal system. To carry out this task, the Academy appointed a panel composed of individuals whose background and experience would provide the several types of knowledge essential to the effort. The findings of this panel are presented along with the executive summary. The report consists of a discussion of the search for a radioactive waste management strategy, and an analysis of the two major groups of institutional issues: (1) intergovernmental, the relationship between the three major levels of government; and (2) interagency, the relationships between the major federal agencies having responsibility for the waste management program.

  15. Analogues to features and processes of a high-level radioactive waste repository proposed for Yucca Mountain, Nevada

    USGS Publications Warehouse

    Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy

    2010-01-01

    Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.

  16. Comments on a paper tilted `The sea transport of vitrified high-level radioactive wastes: Unresolved safety issues`

    SciTech Connect

    Sprung, J.L.; McConnell, P.E.; Nigrey, P.J.; Ammerman, D.J.

    1997-05-01

    The cited paper estimates the consequences that might occur should a purpose-built ship transporting Vitrified High Level Waste (VHLW) be involved in a severe collision that causes the VHLW canisters in one Type-B package to spill onto the floor of a major ocean fishing region. Release of radioactivity from VHLW glass logs, failure of elastomer cask seals, failure of VHLW canisters due to stress corrosion cracking (SCC), and the probabilities of the hypothesized accident scenario, of catastrophic cask failure, and of cask recovery from the sea are all discussed.

  17. Solvent extraction in the treatment of acidic high-level liquid waste : where do we stand?

    SciTech Connect

    Horwitz, E. P.; Schulz, W. W.

    1998-06-18

    During the last 15 years, a number of solvent extraction/recovery processes have been developed for the removal of the transuranic elements, {sup 90}Sr and {sup 137}Cs from acidic high-level liquid waste. These processes are based on the use of a variety of both acidic and neutral extractants. This chapter will present an overview and analysis of the various extractants and flowsheets developed to treat acidic high-level liquid waste streams. The advantages and disadvantages of each extractant along with comparisons of the individual systems are discussed.

  18. RADIOACTIVE HIGH LEVEL WASTE TANK PITTING PREDICTIONS: AN INVESTIGATION INTO CRITICAL SOLUTION CONCENTRATIONS

    SciTech Connect

    Hoffman, E.

    2012-11-08

    A series of cyclic potentiodynamic polarization tests was performed on samples of ASTM A537 carbon steel in support of a probability-based approach to evaluate the effect of chloride and sulfate on corrosion the steel's susceptibility to pitting corrosion. Testing solutions were chosen to systemically evaluate the influence of the secondary aggressive species, chloride, and sulfate, in the nitrate based, high-level wastes. The results suggest that evaluating the combined effect of all aggressive species, nitrate, chloride, and sulfate, provides a consistent response for determining corrosion susceptibility. The results of this work emphasize the importance for not only nitrate concentration limits, but also chloride and sulfate concentration limits.

  19. Pilot scale processing of simulated Savannah River Site high level radioactive waste

    SciTech Connect

    Hutson, N.D.; Zamecnik, J.R.; Ritter, J.A.; Carter, J.T.

    1991-01-01

    The Savannah River Laboratory operates the Integrated DWPF Melter System (IDMS), which is a pilot-scale test facility used in support of the start-up and operation of the US Department of Energy's Defense Waste Processing Facility (DWPF). Specifically, the IDMS is used in the evaluation of the DWPF melter and its associated feed preparation and offgass treatment systems. This article provides a general overview of some of the test work which has been conducted in the IDMS facility. The chemistry associated with the chemical treatment of the sludge (via formic acid adjustment) is discussed. Operating experiences with simulated sludge containing high levels of nitrite, mercury, and noble metals are summarized.

  20. Disposing of High-Level Radioactive Waste in Germany - A Note from the Licensing Authority - 12530

    SciTech Connect

    Pick, Thomas Stefan; Bluth, Joachim; Lauenstein, Christof; Markhoefer, Joerg

    2012-07-01

    Following the national German consensus on the termination of utilisation of nuclear energy in the summer of 2011, the Federal and Laender Governments have declared their intention to work together on a national consensus on the disposal of radioactive waste as well. Projected in the early 1970's the Federal Government had started exploring the possibility to establish a repository for HLW at the Gorleben site in 1977. However, there is still no repository available in Germany today. The delay results mainly from the national conflict over the suitability of the designated Gorleben site, considerably disrupting German society along the crevice that runs between supporters and opponents of nuclear energy. The Gorleben salt dome is situated in Lower Saxony, the German state that also hosts the infamous Asse mine repository for LLW and ILW and the Konrad repository project designated to receive LLW and ILW as well. With the fourth German project, the Morsleben L/ILW repository only 20 km away across the state border, the state of Lower Saxony carries the main load for the disposal of radioactive waste in Germany. After more than 25 years of exploration and a 10 year moratorium the Gorleben project has now reached a cross-road. Current plans for setting up a new site selection procedure in Germany call for the selection and exploration of up to four alternative sites, depending only on suitable geology. In the meantime the discussion is still open on whether the Gorleben project should be terminated in order to pacify the societal conflict or being kept in the selection process on account of its promising geology. The Lower Saxony Ministry for Environment and Climate Protection proposes to follow a twelve-step-program for finding the appropriate site, including the Gorleben site in the process. With its long history of exploration the site is the benchmark that alternative sites will have to compare with. Following the national consensus of 2011 on the termination of

  1. Analysis of high-level radioactive slurries as a method to reduce DWPF turnaround times

    SciTech Connect

    Coleman, C.J.; Bibler, N.E.; Ferrara, D.M.; Hay, M.S.

    1996-06-01

    Analysis of Defense Waste Processing Facility (DWPF) samples as slurries rather than as dried or vitrified samples is an effective way to reduce sample turnaround times. Slurries can be dissolved with a mixture of concentrated acids to yield solutions for elemental analysis by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Slurry analyses can be performed in eight hours, whereas analyses of vitrified samples require up to 40 hours to complete. Analyses of melter feed samples consisting of the DWPF borosilicate frit and either simulated or actual DWPF radioactive sludge were typically within a range of 3--5% of the predicted value based on the relative amounts of sludge and frit added to the slurry. The results indicate that the slurry analysis approach yields analytical accuracy and precision competitive with those obtained from analyses of vitrified samples. Slurry analyses offer a viable alternative to analyses of solid samples as a simple way to reduce analytical turnaround times.

  2. Evaluation of alternatives for high-level and transuranic radioactive- waste disposal standards

    SciTech Connect

    Klett, R.D.; Gruebel, M.M.

    1992-12-01

    The remand of the US Environmental Protection Agency`s long-term performance standards for radioactive-waste disposal provides an opportunity to suggest modifications that would make the regulation more defensible and remove inconsistencies yet retain the basic structure of the original rule. Proposed modifications are in three specific areas: release and dose limits, probabilistic containment requirements, and transuranic-waste disposal criteria. Examination of the modifications includes discussion of the alternatives, demonstration of methods of development and implementation, comparison of the characteristics, attributes, and deficiencies of possible options within each area, and analysis of the implications for performance assessments. An additional consideration is the impact on the entire regulation when developing or modifying the individual components of the radiological standards.

  3. Phase chemistry and radionuclide retention of high level radioactive waste tank sludges

    SciTech Connect

    KRUMHANSL,JAMES L.; BRADY,PATRICK V.; ZHANG,PENGCHU; ARTHUR,SARA E.; HUTCHERSON,SHEILA K.; LIU,J.; QIAN,M.; ANDERSON,HOWARD L.

    2000-05-19

    The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to the interior tank surfaces that may contaminate groundwaters with radionuclides and RCRA metals. Experimentation on such sludges is both dangerous and prohibitively expensive so there is a great advantage to developing artificial sludges. The US DOE Environmental Management Science Program (EMSP) has funded a program to investigate the feasibility of developing such materials. The following text reports on the success of this program, and suggests that much of the radioisotope inventory left in a tank will not move out into the surrounding environment. Ultimately, such studies may play a significant role in developing safe and cost effective tank closure strategies.

  4. Legality of seabed disposal of high-level radioactive wastes under the London Dumping Convention

    SciTech Connect

    Curtis, C.E.

    1985-01-01

    Disposal of high-level wastes in seabed sediments is the subject of ongoing technical, environmental, and engineering feasibility studies by several countries. In the London Dumping Convention (LDC's) definition of dumping, the phrase disposal at sea could be interpreted narrowly to mean the final resting place of wastes with seabed disposal excluded from coverage because those wastes are not in direct contact with marine waters. Given the LDC's object and purpose, though, the only harmonious and reasonable interpretation is that which defines disposal at sea to mean the place where the dumping activities occur. Other international agreements also support this object and purpose-based interpretation which concludes that seabed disposal is covered and prohibited. In addition, this approach is preferred because it contributes to the continued effectiveness of the LDC. 1 figure, 2 tables.

  5. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    SciTech Connect

    Strum, M.J.; Weiss, H.; Farmer, J.C. ); Bullen, D.B. )

    1988-06-01

    This volume surveys the effects of welding on the degradation modes of three austenitic alloys: Types 304L and 316L stainless steels and Alloy 825. These materials are candidates for the fabrication of containers for the long-term storage of high-level nuclear waste. The metallurgical characteristics of fusion welds are reviewed here and related to potential degradation modes of the containers. Three specific areas are discussed in depth: (1) decreased resistance to corrosion in the forms of preferential corrosion, sensitization, and susceptibility to stress corrosion cracking, (2) hot cracking in the heat-affected zone and the weld zone, and (3) formation of intermetallic phases. The austenitic alloys are ranked as follows in terms of overall weldability: Alloy 825 (best) > Type 316L stainless steel > Type 304L stainless steel (worst). 108 refs., 31 figs., 7 tabs.

  6. Pilot scale processing of simulated Savannah River Site high level radioactive waste

    SciTech Connect

    Hutson, N.D.; Zamecnik, J.R.; Ritter, J.A.; Carter, J.T.

    1991-12-31

    The Savannah River Laboratory operates the Integrated DWPF Melter System (IDMS), which is a pilot-scale test facility used in support of the start-up and operation of the US Department of Energy`s Defense Waste Processing Facility (DWPF). Specifically, the IDMS is used in the evaluation of the DWPF melter and its associated feed preparation and offgass treatment systems. This article provides a general overview of some of the test work which has been conducted in the IDMS facility. The chemistry associated with the chemical treatment of the sludge (via formic acid adjustment) is discussed. Operating experiences with simulated sludge containing high levels of nitrite, mercury, and noble metals are summarized.

  7. Increasing Safety and Reducing Environmental Damage Risk from Aging High-Level Radioactive Waste Tanks

    SciTech Connect

    Steffler, Eric D.; McClintock, Frank A.; Lam, Poh-Sang; Williamson, Richard L.; Lloyd, W. R.; Rashid, Mark M.

    2003-06-01

    There exists a paramount need for improved understanding the behavior of high-level nuclear waste containers and the impact on structural integrity in terms of leak tightness and mechanical stability. The current program aims to develop and verify models of crack growth in high level waste tanks under accidental overloads such as ground settlement, earthquakes and airplane crashes based on extending current fracture mechanics methods. While studies in fracture have advanced, the mechanics have not included extensive crack growth. For problems at the INEEL, Savannah River Site and Hanford there are serious limitations to current theories regarding growth of surface cracks through the thickness and the extension of through-thickness cracks. We propose to further develop and extend slip line fracture mechanics (SLFM, a ductile fracture modeling methodology) and, if need be, other ductile fracture characterizing approaches with the goal of predicting growth of surface cracks to the point o f penetration of the opposing surface. Ultimately we aim to also quantify the stress and displacement fields surrounding a growing crack front (slanted and tunneled) using generalized plane stress and fully plastic, three-dimensional finite element analyses. Finally, we will investigate the fracture processes associated with the previously observed transition of stable ductile crack growth to unstable cleavage fracture to include estimates of event probability. These objectives will build the groundwork for a reliable predictive model of fracture in the HLW storage tanks that will also be applicable to standardized spent nuclear fuel storage canisters. This predictive capability will not only reduce the potential for severe environmental damage, but will also serve to guide safe retrieval of waste. This program was initiated in November of 2001.

  8. Increasing Safety and Reducing Environmental Damage Risk from Aging High-Level Radioactive Waste Tanks

    SciTech Connect

    Steffler, Eric D.; McClintock, Frank A.; Lam, Poh-Sang; Lloyd, W. R.

    2002-06-01

    There exists a paramount need for improved understanding the behavior of high-level nuclear waste containers and the impact on structural integrity in terms of leak tightness and mechanical stability. The current program, which at the time of this writing is in its early stages, aims to develop and verify models of crack growth in high level waste tanks under accidental overloads such as ground settlement, earthquakes and airplane crashes based on extending current fracture mechanics methods. While studies in fracture have advanced, the mechanics have not included extensive crack growth. For problems at the INEEL, Savannah River Site and Hanford there are serious limitations to current theories regarding growth of surface cracks through the thickness and the extension of through-thickness cracks. We propose to further develop and extend slip line fracture mechanics (SLFM, a ductile fracture modeling methodology) and, if need be, other ductile fracture characterizing approaches with the goal of predicting growth of surface cracks to the point of penetration of the opposing surface. We also aim to quantify the stress and displacement fields surrounding a growing crack front (slanted and tunneled) using generalized plane stress and fully plastic, three-dimensional finite element analyses. Finally, we will quantify the fracture processes associated with the previously observed transition of stable ductile crack growth to unstable cleavage fracture to include estimates of event probability. These objectives will build the groundwork for a reliable predictive model of fracture in the HLW storage tanks that will also be applicable to standardized spent nuclear fuel storage canisters. This predictive capability will not only reduce the potential for severe environmental damage, but will also serve to justify life extension through retrieval of waste. This program was initiated in November of 2001.

  9. Radioactivity levels in the mostly local foodstuff consumed by residents of the high level natural radiation areas of Ramsar, Iran.

    PubMed

    Fathabadi, Nasrin; Salehi, Ali Akbar; Naddafi, Kazem; Kardan, Mohammad Reza; Yunesian, Masud; Nodehi, Ramin Nabizadeh; Deevband, Mohammad Reza; Shooshtari, Molood Gooniband; Hosseini, Saeedeh Sadat; Karimi, Mahtab

    2017-04-01

    Among High Level Natural Radiation Areas (HLNRAs) all over the world, the northern coastal city of Ramsar has been considered enormously important. Many studies have measured environmental radioactivity in Ramsar, however, no survey has been undertaken to measure concentrations in the diets of residents. This study determined the (226)Ra activity concentration in the daily diet of people of Ramsar. The samples were chosen from both normal and high level natural radiation areas and based on the daily consumption patterns of residents. About 150 different samples, which all are local and have the highest consumption, were collected during the four seasons. In these samples, after washing and drying and pretreatment, the radionuclide was determined by α-spectrometry. The mean radioactivity concentration of (226)Ra ranged between 5 ± 1 mBq kg(-1) wet weight (chino and meat) to 725 ± 480 mBq kg(-1) for tea dry leaves. The (226)Ra activity concentrations compared with the reference values of UNSCEAR appear to be higher in leafy vegetables, milk and meat product. Of the total daily dietary (226)Ra exposure for adults in Ramsar, the largest percentage was from eggs. The residents consuming eggs from household chickens may receive an elevated dose in the diet.

  10. Materials performance in a high-level radioactive waste vitrification system

    SciTech Connect

    Imrich, K.J.; Chandler, G.T.

    1996-06-17

    The Defense Waste Processing Facility (DWPF) is a Department of Energy Facility designed to vitrify highly radioactive waste. An extensive materials evaluation program has been completed on key components in the DWPF after twelve months of operation using nonradioactive simulated wastes. Results of the visual inspections of the feed preparation system indicate that the system components, which were fabricated from Hastelloy C-276, should achieve their design lives. Significant erosion was observed on agitator blades that process glass frit slurries; however, design modifications should mitigate the erosion. Visual inspections of the DWPF melter top head and off gas components, which were fabricated from Inconel 690, indicated that varying degrees of degradation occurred. Most of the components will perform satisfactorily for their two year design life. The components that suffered significant attack were the borescopes, primary film cooler brush, and feed tubes. Changes in the operation of the film cooler brush and design modifications to the feed tubes and borescopes is expected to extend their service lives to two years. A program to investigate new high temperature engineered materials and alloys with improved oxidation and high temperature corrosion resistance will be initiated.

  11. A performance assessment methodology for high-level radioactive waste disposal in unsaturated, fractured tuff

    SciTech Connect

    Gallegos, D.P.

    1991-07-01

    Sandia National Laboratories, has developed a methodology for performance assessment of deep geologic disposal of high-level nuclear waste. The applicability of this performance assessment methodology has been demonstrated for disposal in bedded salt and basalt; it has since been modified for assessment of repositories in unsaturated, fractured tuff. Changes to the methodology are primarily in the form of new or modified ground water flow and radionuclide transport codes. A new computer code, DCM3D, has been developed to model three-dimensional ground-water flow in unsaturated, fractured rock using a dual-continuum approach. The NEFTRAN 2 code has been developed to efficiently model radionuclide transport in time-dependent velocity fields, has the ability to use externally calculated pore velocities and saturations, and includes the effect of saturation dependent retardation factors. In order to use these codes together in performance-assessment-type analyses, code-coupler programs were developed to translate DCM3D output into NEFTRAN 2 input. Other portions of the performance assessment methodology were evaluated as part of modifying the methodology for tuff. The scenario methodology developed under the bedded salt program has been applied to tuff. An investigation of the applicability of uncertainty and sensitivity analysis techniques to non-linear models indicate that Monte Carlo simulation remains the most robust technique for these analyses. No changes have been recommended for the dose and health effects models, nor the biosphere transport models. 52 refs., 1 fig.

  12. Reduction of INTEC Analytical Radioactive Liquid Waste

    SciTech Connect

    Johnson, Virgil James; Hu, Jian Sheng; Chambers, Andrea

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn of methods used and if any new technologies had emerged. A waste generation database was made from the current methods in use in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  13. Reduction of INTEC Analytical Radioactive Liquid Wastes

    SciTech Connect

    V. J. Johnson; J. S. Hu; A. G. Chambers

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn the methods used and if any new technologies had emerged. A waste generation database was made from the current methods in used in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  14. The application of Quadtree algorithm to information integration for geological disposal of high-level radioactive waste

    NASA Astrophysics Data System (ADS)

    Gao, Min; Huang, Shutao; Zhong, Xia

    2009-09-01

    The establishment of multi-source database was designed to promote the informatics process of the geological disposal of High-level Radioactive Waste, the integration of multi-dimensional and multi-source information and its application are related to computer software and hardware. Based on the analysis of data resources in Beishan area, Gansu Province, and combined with GIS technologies and methods. This paper discusses the technical ideas of how to manage, fully share and rapidly retrieval the information resources in this area by using open source code GDAL and Quadtree algorithm, especially in terms of the characteristics of existing data resources, spatial data retrieval algorithm theory, programming design and implementation of the ideas.

  15. The application of Quadtree algorithm to information integration for geological disposal of high-level radioactive waste

    NASA Astrophysics Data System (ADS)

    Gao, Min; Huang, Shutao; Zhong, Xia

    2010-11-01

    The establishment of multi-source database was designed to promote the informatics process of the geological disposal of High-level Radioactive Waste, the integration of multi-dimensional and multi-source information and its application are related to computer software and hardware. Based on the analysis of data resources in Beishan area, Gansu Province, and combined with GIS technologies and methods. This paper discusses the technical ideas of how to manage, fully share and rapidly retrieval the information resources in this area by using open source code GDAL and Quadtree algorithm, especially in terms of the characteristics of existing data resources, spatial data retrieval algorithm theory, programming design and implementation of the ideas.

  16. Conceptual aspects of fiscal interactions between local governments and federally-owned, high-level radioactive waste-isolation facilities

    SciTech Connect

    Bjornstad, D.J.; Johnson, K.E.

    1981-01-01

    This paper examines a number of ways to transfer revenues between a federally-owned high level radioactive waste isolation facility (hereafter simply, facility) and local governments. Such payments could be used to lessen fiscal disincentives or to provide fiscal incentives for communities to host waste isolation facilities. Two facility characteristics which necessitate these actions are singled out for attention. First, because the facility is federally owned, it is not liable for state and local taxes and may be viewed by communities as a fiscal liability. Several types of payment plans to correct this deficiency are examined. The major conclusion is that while removal of disincentives or creation of incentives is possible, plans based on cost compensation that fail to consider opportunity costs cannot create incentives and are likely to create disincentives. Second, communities other than that in which the facility is sited may experience costs due to the siting and may, therefore, oppose it. These costs (which also accrue to the host community) arise due to the element of risk which the public generally associates with proximity to the transport and storage of radioactive materials. It is concluded that under certain circumstances compensatory payments are possible, but that measuring these costs will pose difficulty.

  17. Disposal of high-level radioactive wastes in the unsaturated zone: Technical considerations and response to comments

    NASA Astrophysics Data System (ADS)

    Hackbarth, C. J.; Nicholson, T. J.; Evans, D. D.

    1985-10-01

    On July 22, 1985, the U. S. Nuclear Regulatory Commission (NRC) promulgated amendments to 10 CFR Part 60 concerning disposal of high level radioactive waste (HLW) in geologic repositories in the unsaturated zone (50 FR 29641). The principal technical issues considered by the NRC staff during the development of these amendments was discussed. Certain technical discussions originally presented in draft NUREG-1046 were revised based on public comment letters and an increasing understanding of the physical, geochemical, and hydrological processes operative in unsaturated geologic media. The following issues related to disposal of HLW within the unsaturated zone were discussed: hydrogeologic properties and conditions, heat dissipation and temperature, geochemistry, retrievability, potential for exhumation of the radioactive waste by natural causes and by human intrusion, the effects of future climatic changes on the level of the regional water table, and transport of radionuclides in the gaseous state. On July 22, 1985, the U. S. Nuclear Regulatory Commission (NRC) promulgated amendments to 10 CFR meter depth for waste emplacement, limitations on exploratory boreholes, backfill requirements, waste package design criteria, and provisions for ventilation.

  18. Natural diatomite process for removal of radioactivity from liquid waste.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2007-01-01

    Diatomite has a number of unique physical properties and has found diversified industrial utilization. The filtration characteristics are particularly significant in the purification of liquids. The purpose of this study was to test natural diatomaceous earth (diatomite) as an alternative material that could be used for removal of radioactivity from liquid waste. A pilot-scale column-type device was designed. Natural diatomite samples were ground, sieved and prepared to use as sorption media. In this study, real waste liquid was used as radioactive liquid having special conditions. The liquid waste contained three radionuclides (Cs-137, Cs-134 and Co-60). Following the treatment by diatomite, the radioactivity of liquid waste was reduced from the initial 2.60 Bq/ml to less than 0.40 Bq/ml. The results of this study show that most of the radioactivity was removed from the solution by processing with diatomite.

  19. Separation and Purification and Beta Liquid Scintillation Analysis of Sm-151 in Savannah River Site and Hanford Site DOE High Level Waste

    SciTech Connect

    Dewberry, R.A.

    2001-02-13

    This paper describes development work to obtain a product phase of Sm-151 pure of any other radioactive species so that it can be determined in US Department of Energy high level liquid waste and low level solid waste by liquid scintillation {beta}-spectroscopy. The technique provides separation from {mu}Ci/ml levels of Cs-137, Pu alpha and Pu-241 {beta}-decay activity, and Sr-90/Y-90 activity. The separation technique is also demonstrated to be useful for the determination of Pm-147.

  20. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    USGS Publications Warehouse

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  1. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    USGS Publications Warehouse

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  2. Characteristics of spent fuel, high-level waste, and other radioactive wastes which may require long-term isolation

    SciTech Connect

    1987-12-01

    The purpose of this report, and the information contained in the associated computerized data bases, is to establish the DOE/OCRWM reference characteristics of the radioactive waste materials that may be accepted by DOE for emplacement in the mined geologic disposal system. This report provides relevant technical data for use by DOE and its supporting contractors and is not intended to be a policy document. This document is backed up by five PC-compatible data bases, written in a user-oriented, menu-driven format, which were developed for this purpose. The data bases are the LWR Assemblies Data Base; the LWR Radiological Data Base; the LWR Quantities Data Base; the LWR NFA Hardware Data Base; and the High-Level Waste Data Base. The above data bases may be ordered using the included form. An introductory information diskette can be found inside the back cover of this report. It provides a brief introduction to each of these five PC data bases. 116 refs., 18 figs., 67 tabs.

  3. Analysis of colloids erosion from the bentonite barrier of a high level radioactive waste repository and implications in safety assessment

    NASA Astrophysics Data System (ADS)

    Missana, Tiziana; Alonso, Ursula; Albarran, Nairoby; García-Gutiérrez, Miguel; Cormenzana, José-Luís

    To investigate the dominant mechanisms of colloid formation from compacted and confined bentonite innovative experiments were conducted. Chemical or physical processes that can affect the erosion of the bentonite surface were analyzed (ionic strength of the water, Ca in the water and in the exchange complex of the clay, dry density of the clay and presence of a water flow rate at the bentonite surface). Hydration, swelling and extrusion of clay into pores or fractures are primary steps for the formation of free colloidal particles in the aqueous phase, and the chemistry of the clay/water system is the most important parameter controlling the generation and stability of colloids. Ca-bentonite formed colloids quantities below the detection limit of our techniques, even in deionised water, but a percentage of Na approximately 20-30% in the clay exchange complex, as that present in the FEBEX bentonite, is enough to allow the formation of colloidal particles in quantities very similar to those produced by the Na-bentonite. The results for bentonite colloid generation obtained at a laboratory scale allowed the estimation of a range of colloid generation rates under different chemical conditions. Results were compared with in situ experimental investigations carried out at the FEBEX gallery emplaced in a granite massif at the Grimsel Test Site (Switzerland). The quantitative analysis of laboratory and in situ data can be used as input for models and performance assessment (PA) of high level radioactive waste (HLRW) repositories.

  4. National survey of crystalline rocks and recommendations of regions to be explored for high-level radioactive waste repository sites

    SciTech Connect

    Smedes, H.W.

    1983-04-01

    A reconnaissance of the geological literature on large regions of exposed crystalline rocks in the United States provides the basis for evaluating if any of those regions warrant further exploration toward identifying potential sites for development of a high-level radioactive waste repository. The reconnaissance does not serve as a detailed evaluation of regions or of any smaller subunits within the regions. Site performance criteria were selected and applied insofar as a national data base exists, and guidelines were adopted that relate the data to those criteria. The criteria include consideration of size, vertical movements, faulting, earthquakes, seismically induced ground motion, Quaternary volcanic rocks, mineral deposits, high-temperature convective ground-water systems, hydraulic gradients, and erosion. Brief summaries of each major region of exposed crystalline rock, and national maps of relevant data provided the means for applying the guidelines and for recommending regions for further study. It is concluded that there is a reasonable likelihood that geologically suitable repository sites exist in each of the major regions of crystalline rocks. The recommendation is made that further studies first be conducted of the Lake Superior, Northern Appalachian and Adirondack, and the Southern Appalachian Regions. It is believed that those regions could be explored more effectively and suitable sites probably could be found, characterized, verified, and licensed more readily there than in the other regions.

  5. Modeling pitting corrosion damage of high-level radioactive-waste containers, with emphasis on the stochastic approach

    SciTech Connect

    Henshall, G.A.; Halsey, W.G.; Clarke, W.L.; McCright, R.D.

    1993-01-01

    Recent efforts to identify methods of modeling pitting corrosion damage of high-level radioactive-waste containers are described. The need to develop models that can provide information useful to higher level system performance assessment models is emphasized, and examples of how this could be accomplished are described. Work to date has focused upon physically-based phenomenological stochastic models of pit initiation and growth. These models may provide a way to distill information from mechanistic theories in a way that provides the necessary information to the less detailed performance assessment models. Monte Carlo implementations of the stochastic theory have resulted in simulations that are, at least qualitatively, consistent with a wide variety of experimental data. The effects of environment on pitting corrosion have been included in the model using a set of simple phenomenological equations relating the parameters of the stochastic model to key environmental variables. The results suggest that stochastic models might be useful for extrapolating accelerated test data and for predicting the effects of changes in the environment on pit initiation and growth. Preliminary ideas for integrating pitting models with performance assessment models are discussed. These ideas include improving the concept of container ``failure``, and the use of ``rules-of-thumb`` to take information from the detailed process models and provide it to the higher level system and subsystem models. Finally, directions for future work are described, with emphasis on additional experimental work since it is an integral part of the modeling process.

  6. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers; Overview

    SciTech Connect

    Farmer, J.C.; McCright, R.D.; Kass, J.N.

    1988-06-01

    Three iron- to nickel-based austenitic alloys and three copper-based alloys are being considered as candidate materials for the fabrication of high-level radioactive-waste disposal containers. The austenitic alloys are Types 304L and 316L stainless steels and the high-nickel material Alloy 825. The copper-based alloys are CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). Waste in the forms of both spent fuel assemblies from reactors and borosilicate glass will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides will result in the generation of substantial heat and gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including undesirable phase transformations due to a lack of phase stability; atmospheric oxidation; general aqueous corrosion; pitting; crevice corrosion; intergranular stress corrosion cracking; and transgranular stress corrosion cracking. Problems specific to welds, such as hot cracking, may also occur. A survey of the literature has been prepared as part of the process of selecting, from among the candidates, a material that is adequate for repository conditions. The modes of degradation are discussed in detail in the survey to determine which apply to the candidate alloys and the extent to which they may actually occur. The eight volumes of the survey are summarized in Sections 1 through 8 of this overview. The conclusions drawn from the survey are also given in this overview.

  7. In situ corrosion studies on candidate container materials for the underground disposal of high level radioactive waste in Boom Clay

    SciTech Connect

    Kursten, B.; Iseghem, P. Van

    1999-07-01

    SCK{center{underscore}dot}CEN has developed in the early 1980's, with the support of NIRAS/ONDRAF and EC, an extensive in situ corrosion program to evaluate the long-term corrosion behavior of various candidate container materials for the disposal of conditioned high-level radioactive waste and spent fuel. The in situ corrosion experiments were performed in the underground research facility, HADES, situated in the Boom Clay formation at a depth of 225 meters below ground level. These experiments place the samples either in direct contact with clay (type I), in a humid clay atmosphere (type 2), or in a concrete saturated clay atmosphere (type 3). During the period 1985--1994, twelve in situ corrosion experiments were installed in the underground laboratory. The exploitation of these experiments ended in 1996. All samples were recuperated and analyzed. The purpose of this paper is to summarize and discuss the results from the type 1 corrosion experiments (samples in direct contact with Boom Clay). Surface analyses tend to indicate that the so-called corrosion-resistant materials, e.g. stainless steels, Ni- and Ti-alloys, remain intact after exposure to Boom Clay between 16 and 170 C, whereas carbon steel presents significant pitting corrosion. Carbon steel seems to be unsuitable for the Belgian repository concept (pits up to 240{micro}m deep are detected after direct exposure to the argillaceous environment for 2 years at 90 C). The stainless steels look very promising candidate container materials.

  8. Trust as a determinant of opposition to a high-level radioactive waste repository: Analysis of a structural model

    SciTech Connect

    Flynn, J.; Burns, W.; Mertz, C.K.; Slovic, P.

    1992-09-01

    Residents in the State of Nevada hold strong opinions about the federal government`s proposal to site the nation`s first high-level radioactive waste repository at Yucca Mountain. The model developed in this study is designed to examine the relationship between public perceptions of risk, trust in risk management, and potential economic impacts of the current repository program using a confirmatory multivariate method known as covariance structure analysis. The data used to test the model was collected in a 1989 statewide survey of Nevada residents. The results indicate that, for a statewide sample, perceptions of potential economic benefits do not have a significant role in predicting support or opposition to the repository program. On the other hand, risk perceptions and the level of trust in repository management are closely related to each other and to positions on Yucca Mountain. Trust directly influences risk perceptions which, in turn, have a direct effect on the attitude toward the repository, and an indirect effect through perceived stigma effects. 45 refs., 2 figs., 5 tabs.

  9. Characteristics of spent fuel, high-level waste, and other radioactive wastes which may require long-term isolation

    SciTech Connect

    1988-06-01

    The purpose of this report, and the information contained in the associated computerized data bases, is to establish the DOE/OCRWM reference characteristics of the radioactive waste materials that may be accepted by DOE for emplacement in the mined geologic disposal system. This report provides relevant technical data for use by DOE and its supporting contractors and is not intended to be a policy document. This document is backed up by five PC-compatible data bases, written in a user-oriented, menu-driven format, which were developed for this purpose. The data bases are the LWR Assemblies Data Base; the LWR Radiological Data Base; the LWR Quantities Data Base; the LWR NEA Hardware Data Base; and the High-Level Waste Data Base. The above data bases may be ordered using the included form. An introductory information diskette can be found inside the back cover of this report. It provides a brief introduction to each of these five PC data bases. Volume 8 contains 4 appendices. 14 refs., 20 figs., 20 tabs.

  10. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    SciTech Connect

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  11. Research on Geo-information Data Model for Preselected Areas of Geological Disposal of High-level Radioactive Waste

    NASA Astrophysics Data System (ADS)

    Gao, M.; Huang, S. T.; Wang, P.; Zhao, Y. A.; Wang, H. B.

    2016-11-01

    The geological disposal of high-level radioactive waste (hereinafter referred to "geological disposal") is a long-term, complex, and systematic scientific project, whose data and information resources in the research and development ((hereinafter referred to ”R&D”) process provide the significant support for R&D of geological disposal system, and lay a foundation for the long-term stability and safety assessment of repository site. However, the data related to the research and engineering in the sitting of the geological disposal repositories is more complicated (including multi-source, multi-dimension and changeable), the requirements for the data accuracy and comprehensive application has become much higher than before, which lead to the fact that the data model design of geo-information database for the disposal repository are facing more serious challenges. In the essay, data resources of the pre-selected areas of the repository has been comprehensive controlled and systematic analyzed. According to deeply understanding of the application requirements, the research work has made a solution for the key technical problems including reasonable classification system of multi-source data entity, complex logic relations and effective physical storage structures. The new solution has broken through data classification and conventional spatial data the organization model applied in the traditional industry, realized the data organization and integration with the unit of data entities and spatial relationship, which were independent, holonomic and with application significant features in HLW geological disposal. The reasonable, feasible and flexible data conceptual models, logical models and physical models have been established so as to ensure the effective integration and facilitate application development of multi-source data in pre-selected areas for geological disposal.

  12. The Geologic Basis for Volcanic Hazard Assessment for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada

    SciTech Connect

    F. Perry

    2002-10-15

    Studies of volcanic risk to the proposed high-level radioactive waste repository at Yucca Mountain have been ongoing for 25 years. These studies are required because three episodes of small-volume, alkalic basaltic volcanism have occurred within 50 km of Yucca Mountain during the Quaternary. Probabilistic hazard estimates for the proposed repository depend on the recurrence rate and spatial distribution of past episodes of volcanism in the region. Several independent research groups have published estimates of the annual probability of a future volcanic disruption of the proposed repository, most of which fall in the range of 10{sup -7} to 10{sup -9} per year; similar conclusions were reached. through an extensive expert elicitation sponsored by the Department of Energy in 1995-1996. The estimated probability values are dominated by a regional recurrence rate of 10{sup -5} to 10{sup -6} volcanic events per year (equating to recurrence intervals of several hundred thousand years). The recurrence rate, as well as the spatial density of volcanoes, is low compared to most other basaltic volcanic fields in the western United States, factors that may be related to both the tectonic history of the region and a lithospheric mantle source that is relatively cold and not prone to melting. The link between volcanism and tectonism in the Yucca Mountain region is not well understood beyond a general association between volcanism and regional extension, although areas of locally high extension within the region may control the location of some volcanoes. Recently, new geologic data or hypotheses have emerged that could potentially increase past estimates of the recurrence rate, and thus the probability of repository disruption. These are (1) hypothesized episodes of anomalously high strain rate, (2) hypothesized presence of a regional mantle hotspot, and (3) new aeromagnetic data suggesting as many as twelve previously unrecognized volcanoes buried in alluvial-filled basins near

  13. Adsorption of Ruthenium, Rhodium and Palladium from Simulated High-Level Liquid Waste by Highly Functional Xerogel - 13286

    SciTech Connect

    Onishi, Takashi; Koyama, Shin-ichi; Mimura, Hitoshi

    2013-07-01

    Fission products are generated by fission reactions in nuclear fuel. Platinum group (Pt-G) elements, such as palladium (Pd), rhodium (Rh) and ruthenium (Ru), are also produced. Generally, Pt-G elements play important roles in chemical and electrical industries. Highly functional xerogels have been developed for recovery of these useful Pt-G elements from high - level radioactive liquid waste (HLLW). An adsorption experiment from simulated HLLW was done by the column method to study the selective adsorption of Pt-G elements, and it was found that not only Pd, Rh and Ru, but also nickel, zirconium and tellurium were adsorbed. All other elements were not adsorbed. Adsorbed Pd was recovered by washing the xerogel-packed column with thiourea solution and thiourea - nitric acid mixed solution in an elution experiment. Thiourea can be a poison for automotive exhaust emission system catalysts, so it is necessary to consider its removal. Thermal decomposition and an acid digestion treatment were conducted to remove sulfur in the recovered Pd fraction. The relative content of sulfur to Pd was decreased from 858 to 0.02 after the treatment. These results will contribute to design of the Pt-G element separation system. (authors)

  14. Design and Testing of a Solid-Liquid Interface Monitor for High-Level Waste Tanks

    SciTech Connect

    McDaniel, D.; Awwad, A.; Roelant, D.; Srivastava, R.

    2008-07-01

    A high-level waste (HLW) monitor has been designed, fabricated and tested at full-scale for deployment inside a Hanford tank. The Solid-Liquid Interface Monitor (SLIM) integrates a commercial sonar system with a mechanical deployment system for deploying into an underground waste tank. The system has undergone several design modifications based upon changing requirements at Hanford. We will present the various designs of the monitor from first to last and will present performance data from the various prototype systems. We will also present modeling of stresses in the enclosure under 85 mph wind loading. The system must be able to function at winds up to 15 mph and must withstand a maximum loading of 85 mph. There will be several examples presented of engineering tradeoffs made as FIU analyzed new requirements and modified the design to accommodate. We will present our current plans for installing into the Cold Test Facility at Hanford and into a double-shelled tank at Hanford. Finally, we will present our vision for how this technology can be used at Hanford and Savannah River Site to improve the filling and emptying of high-level waste tanks. In conclusion: 1. The manually operated first-generation SLIM is a viable option on tanks where personnel are allowed to work on top of the tank. 2. The remote controlled second-generation SLIM can be utilized on tanks where personnel access is limited. 3. The totally enclosed fourth-generation SLIM, when the design is finalized, can be used when the possibility exists for wind dispersion of any HLW that maybe on the system. 4. The profiling sonar can be used effectively for real-time monitoring of the solid-liquid interface over a large area. (authors)

  15. Process for decontaminating radioactive liquids using a calcium cyanamide-containing composition. [Patent application

    DOEpatents

    Silver, G.L.

    1980-09-24

    The present invention provides a process for decontaminating a radioactive liquid containing a radioactive element capable of forming a hydroxide. This process includes the steps of contacting the radioactive liquid with a decontaminating composition and separating the resulting radioactive sludge from the resulting liquid. The decontaminating composition contains calcium cyanamide.

  16. Structural geology of the proposed site area for a high-level radioactive waste repository, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Potter, C.J.; Day, W.C.; Sweetkind, D.S.; Dickerson, R.P.

    2004-01-01

    Geologic mapping and fracture studies have documented the fundamental patterns of joints and faults in the thick sequence of rhyolite tuffs at Yucca Mountain, Nevada, the proposed site of an underground repository for high-level radioactive waste. The largest structures are north-striking, block-bounding normal faults (with a subordinate left-lateral component) that divide the mountain into numerous 1-4-km-wide panels of gently east-dipping strata. Block-bounding faults, which underwent Quaternary movement as well as earlier Neogene movement, are linked by dominantly northwest-striking relay faults, especially in the more extended southern part of Yucca Mountain. Intrablock faults are commonly short and discontinuous, except those on the more intensely deformed margins of the blocks. Lithologic properties of the local tuff stratigraphy strongly control the mesoscale fracture network, and locally the fracture network has a strong influence on the nature of intrablock faulting. The least faulted part of Yucca Mountain is the north-central part, the site of the proposed repository. Although bounded by complex normal-fault systems, the 4-km-wide central block contains only sparse intrablock faults. Locally intense jointing appears to be strata-bound. The complexity of deformation and the magnitude of extension increase in all directions away from the proposed repository volume, especially in the southern part of the mountain where the intensity of deformation and the amount of vertical-axis rotation increase markedly. Block-bounding faults were active at Yucca Mountain during and after eruption of the 12.8-12.7 Ma Paintbrush Group, and significant motion on these faults postdated the 11.6 Ma Rainier Mesa Tuff. Diminished fault activity continued into Quaternary time. Roughly half of the stratal tilting in the site area occurred after 11.6 Ma, probably synchronous with the main pulse of vertical-axis rotation, which occurred between 11.6 and 11.45 Ma. Studies of

  17. IMPACT OF ELIMINATING MERCURY REMOVAL PRETREATMENT ON THE PERFORMANCE OF A HIGH LEVEL RADIOACTIVE WASTE MELTER OFFGAS SYSTEM

    SciTech Connect

    Zamecnik, J; Alexander Choi, A

    2009-03-17

    The Defense Waste Processing Facility at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to: (1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; (2) adjust feed rheology; and (3) reduce by steam stripping the amount of mercury that must be processed in the melter. Elimination of formic acid pretreatment has been proposed to eliminate the production of hydrogen in the pretreatment systems; alternative reductants would be used to control redox. However, elimination of formic acid would result in significantly more mercury in the melter feed; the current specification is no more than 0.45 wt%, while the maximum expected prior to pretreatment is about 2.5 wt%. An engineering study has been undertaken to estimate the effects of eliminating mercury removal on the melter offgas system performance. A homogeneous gas-phase oxidation model and an aqueous phase model were developed to study the speciation of mercury in the DWPF melter offgas system. The model was calibrated against available experimental data and then applied to DWPF conditions. The gas-phase model predicted the Hg{sub 2}{sup 2-}/Hg{sup 2+} ratio accurately, but some un-oxidized Hg{sup 0} remained. The aqueous model, with the addition of less than 1 mM Cl{sub 2} showed that this remaining Hg{sup 0} would be oxidized such that the final Hg{sub 2}{sup 2+}/Hg{sup 2+} ratios matched the experimental data. The results of applying the model to DWPF show that due to excessive shortage of chloride, only 6% of

  18. A biosphere modeling methodology for dose assessments of the potential Yucca Mountain deep geological high level radioactive waste repository.

    PubMed

    Watkins, B M; Smith, G M; Little, R H; Kessler, J

    1999-04-01

    Recent developments in performance standards for proposed high level radioactive waste disposal at Yucca Mountain suggest that health risk or dose rate limits will likely be part of future standards. Approaches to the development of biosphere modeling and dose assessments for Yucca Mountain have been relatively lacking in previous performance assessments due to the absence of such a requirement. This paper describes a practical methodology used to develop a biosphere model appropriate for calculating doses from use of well water by hypothetical individuals due to discharges of contaminated groundwater into a deep well. The biosphere model methodology, developed in parallel with the BIOMOVS II international study, allows a transparent recording of the decisions at each step, from the specification of the biosphere assessment context through to model development and analysis of results. A list of features, events, and processes relevant to Yucca Mountain was recorded and an interaction matrix developed to help identify relationships between them. Special consideration was given to critical/potential exposure group issues and approaches. The conceptual model of the biosphere system was then developed, based on the interaction matrix, to show how radionuclides migrate and accumulate in the biosphere media and result in potential exposure pathways. A mathematical dose assessment model was specified using the flexible AMBER software application, which allows users to construct their own compartment models. The starting point for the biosphere calculations was a unit flux of each radionuclide from the groundwater in the geosphere into the drinking water in the well. For each of the 26 radionuclides considered, the most significant exposure pathways for hypothetical individuals were identified. For 14 of the radionuclides, the primary exposure pathways were identified as consumption of various crops and animal products following assumed agricultural use of the contaminated

  19. In-Situ Chemical Precipitation of Radioactive Liquid Waste - 12492

    SciTech Connect

    Osmanlioglu, Ahmet Erdal

    2012-07-01

    This paper presented in-situ chemical precipitation for radioactive liquid waste by using chemical agents. Results are reported on large-scale implementation on the removal of {sup 137}Cs, {sup 134}Cs and {sup 60}Co from liquid radioactive waste generating from Nuclear Research and Training Centre. Total amount of liquid radioactive waste was 35 m{sup 3} and main radionuclides were Cs-137, Cs- 134 and Co-60. Initial radioactivity concentration of the liquid waste was 2264, 17 and 9 Bq/liter for Cs-137, Cs-134 and Co-60 respectively. Potassium ferro cyanide was selected as chemical agent at high pH levels 8-10 according to laboratory tests. After the process, radioactive sludge precipitated at the bottom of the tank and decontaminated clean liquid was evaluated depending on discharge limits. By this precipitation method decontamination factors were determined as 60, 9 and 17 for Cs-137, Cs-134 and Co-60 respectively. At the bottom of the tank radioactive sludge amount was 0.98 m{sup 3}. It was transferred by sludge pumps to cementation unit for solidification. By in situ chemical processing 97% of volume reduction was achieved. Using the optimal concentration of 0.75 M potassium ferro cyanide about 98% of the {sup 137}Cs can be removed at pH 8. The Potassium ferro cyanide precipitation method could be used successfully in large scale applications with nickel and ferrum agents for removal of Cs-137, Cs-134 and Co- 60. Although DF values of laboratory test were much higher than in-situ implementation, liquid radioactive waste was decontaminated successfully by using potassium ferro cyanide. Majority of liquid waste were discharged as clean liquid. %97.2 volumetric amount of liquid waste was cleaned and discharged at the original site. Reduced amount of sludge transportation in drums is more economical and safer method than liquid transportation. Although DF values could be different for each of applications related to main specifications of original liquid waste, this

  20. Chemical evolution of leaked high-level liquid wastes in Hanford soils

    SciTech Connect

    NYMAN,MAY D.; KRUMHANSL,JAMES L.; ZHANG,PENGCHU; ANDERSON,HOWARD L.; NENOFF,TINA M.

    2000-05-19

    A number of Hanford tanks have leaked high level radioactive wastes (HLW) into the surrounding unconsolidated sediments. The disequilibrium between atmospheric C0{sub 2} or silica-rich soils and the highly caustic (pH > 13) fluids is a driving force for numerous reactions. Hazardous dissolved components such as {sup 133}Cs, {sup 79}Se, {sup 99}Tc may be adsorbed or sequestered by alteration phases, or released in the vadose zone for further transport by surface water. Additionally, it is likely that precipitation and alteration reactions will change the soil permeability and consequently the fluid flow path in the sediments. In order to ascertain the location and mobility/immobility of the radionuclides from leaked solutions within the vadose zone, the authors are currently studying the chemical reactions between: (1) tank simulant solutions and Hanford soil fill minerals; and (2) tank simulant solutions and C0{sub 2}. The authors are investigating soil-solution reactions at: (1) elevated temperatures (60--200 C) to simulate reactions which occur immediately adjacent a radiogenically heated tank; and (2) ambient temperature (25 C) to simulate reactions which take place further from the tanks. The authors studies show that reactions at elevated temperature result in dissolution of silicate minerals and precipitation of zeolitic phases. At 25 C, silicate dissolution is not significant except where smectite clays are involved. However, at this temperature CO{sub 2} uptake by the solution results in precipitation of Al(OH){sub 3} (bayerite). In these studies, radionuclide analogues (Cs, Se and Re--for Tc) were partially removed from the test solutions both during high-temperature fluid-soil interactions and during room temperature bayerite precipitation. Altered soils would permanently retain a fraction of the Cs but essentially all of the Se and Re would be released once the plume was past and normal groundwater came in contact with the contaminated soil. Bayerite

  1. Removal of iodide ion from simulated radioactive liquid waste

    NASA Astrophysics Data System (ADS)

    Kodama, H.

    1999-01-01

    The previous study reported that BiPbO2(NO3) is one of the most promising candidate materials for removing and immobilizing radioactive iodide. In that case, the solution contained only dissolved NaI and did not contain competing anions. This paper reports the reactivity of BiPbO2(NO3) with iodide ions in simulated radioactive liquid waste. This liquid contains many components, especially highly concentrated NaNO2, Na2CO3 and NaNO3. The obtained results show that BiPbO2(NO3) is useful for removing iodide ion from the simulated radioactive liquid waste but that there is a problem which should be resolved in the future. The problem is that a competing anion, HCO3 -, interferes with the exchange reaction, and only the surfaces of the BiPbO2(NO3) crystals are used for the reaction.

  2. Novel Solvent for the Simultaneous recovery of Radioactive Nuclides from Liquid Radioactive Wastes

    SciTech Connect

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Lgor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    1999-10-07

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  3. [The investigation of the composition of liquid radioactive waste].

    PubMed

    Suslov, A V; Suslova, I N; Bagiian, A; Leonov, V V; Kapustin, V K

    2008-01-01

    In investigation the process of composition sediment of liquid unorganic radioactive waste, that are forming in cistern-selectors at PNPI RAS, it was discovered apart from great quantity of ions of different metals and radionuclides considerable maintenance of organic material (to 30% and more from volume of sediment) unknown origin. A supposition was made about its microbiological origin. Investigation shows, that the main microorganisms, setting this sediment, are the bacterious of Pseudomonas kind, capable of effectively bind in process of grow the radionuclide 90Sr, that confirms the potential posibility of using this microorganisms for bioremediation of liquid low radioactive wastes (LRW).

  4. Geologic and hydrologic considerations for various concepts of high-level radioactive waste disposal in conterminous United States

    USGS Publications Warehouse

    Ekren, E.B.; Dinwiddie, G.A.; Mytton, J.W.; Thordarson, William; Weir, J.E.; Hinrichs, E.N.; Schroder, L.J.

    1974-01-01

    The purpose of this investigation is to evaluate and identify which geohydrologic environments in conterminous United States are best suited for various concepts or methods of underground disposal of high-level radioactive wastes and to establish geologic and hydrologic criteria that are pertinent to high-level waste disposal. The unproven methods of disposal include (1) a very deep drill hole (30,000-50,000 ft or 9,140-15,240 m), (2) a matrix of (an array of multiple) drill holes (1,000-20,000 ft or 305-6,100 m), (3) a mined chamber (1,000-10,000 ft or 305-3,050 m), (4) a cavity with separate manmade structures (1,000-10,000 ft or 305-3,050 m), and (5) an exploded cavity (2,000-20,000 ft or 610-6,100 m) o The geohydrologic investigation is made on the presumption that the concepts or methods of disposal are technically feasible. Field and laboratory experiments in the future may demonstrate whether or not any of the methods are practical and safe. All the conclusions drawn are tentative pending experimental confirmation. The investigation focuses principally on the geohydrologic possibilities of several methods of disposal in rocks other than salt. Disposal in mined chambers in salt is currently under field investigation, and this disposal method has been intensely investigated and evaluated by various workers under the sponsorship of the Atomic Energy Commission. Of the various geohydrologic factors that must be considered in the selection of optimum waste-disposal sites, the most important is hydrologic isolation to assure that the wastes will be safely contained within a small radius of the emplacement zone. To achieve this degree of hydrologic isolation, the host rock for the wastes must have very low permeability and the site must be virtually free of faults. In addition, the locality should be in (1) an area of low seismic risk where the possibility of large earthquakes rupturing the emplacement zone is very low, (2) where the possibility- of flooding by

  5. Position sensitive radioactivity detection for gas and liquid chromatography

    DOEpatents

    Cochran, Joseph L.; McCarthy, John F.; Palumbo, Anthony V.; Phelps, Tommy J.

    2001-01-01

    A method and apparatus are provided for the position sensitive detection of radioactivity in a fluid stream, particularly in the effluent fluid stream from a gas or liquid chromatographic instrument. The invention represents a significant advance in efficiency and cost reduction compared with current efforts.

  6. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part II. Geologic and hydrologic characterization

    SciTech Connect

    Sargent, K.A.; Bedinger, M.S.

    1985-12-31

    The geology and hydrology of the Basin and Range Province of the western conterminous United States are characterized in a series of data sets depicted in maps compiled for evaluation of prospective areas for further study of geohydrologic environments for isolation of high-level radioactive waste. The data sets include: (1) average precipitation and evaporation; (2) surface distribution of selected rock types; (3) tectonic conditions; and (4) surface- and ground-water hydrology and Pleistocene lakes and marshes. Rocks mapped for consideration as potential host media for the isolation of high-level radioactive waste are widespread and include argillaceous rocks, granitic rocks, tuffaceous rocks, mafic extrusive rocks, evaporites, and laharic breccias. The unsaturated zone, where probably as thick as 150 meters (500 feet), was mapped for consideration as an environment for isolation of high-level waste. Unsaturated rocks of various lithologic types are widespread in the Province. Tectonic stability in the Quaternary Period is considered the key to assessing the probability of future tectonism with regard to high-level radioactive waste disposal. Tectonic conditions are characterized on the basis of the seismic record, heat-flow measurements, the occurrence of Quaternary faults, vertical crustal movement, and volcanic features. Tectonic activity, as indicated by seismicity, is greatest in areas bordering the western margin of the Province in Nevada and southern California, the eastern margin of the Province bordering the Wasatch Mountains in Utah and in parts of the Rio Grande valley. Late Cenozoic volcanic activity is widespread, being greatest bordering the Sierra Nevada in California and Oregon, and bordering the Wasatch Mountains in southern Utah and Idaho. 43 refs., 22 figs.

  7. Characteristics of spent fuel, high-level waste, and other radioactive wastes which may require long-term isolation

    SciTech Connect

    1988-06-01

    The purpose of this report, and the information contained in the associated computerized data bases, is to establish the DOE/OCRWM reference characteristics of the radioactive waste materials that may be accepted by DOE for emplacement in the mined geologic disposal system as developed under the Nuclear Waste Policy Act of 1982. This report provides relevant technical data for use by DOE and its supporting contractors and is not intended to be a policy document. This document is backed up by five PC-compatible data bases, written in a user-oriented, menu-driven format, which were developed for this purpose.

  8. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    PubMed

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength.

  9. Implications of theories of asteroid and comet impact for policy options for management of spent nuclear fuel and high-level radioactive wastes

    USGS Publications Warehouse

    Trask, Newell J.

    1994-01-01

    Concern with the threat posed by terrestrial asteroid and comet impacts has heightened as the catastrophic consequences of such events have become better appreciated. Although the probabilities of such impacts are very small, a reasonable question for debate is whether such phenomena should be taken into account in deciding policy for the management of spent fuel and high-level radioactive waste. The rate at which asteroid or comet impacts would affect areas of surface storage of radioactive waste is about the same as the estimated rate at which volcanic activity would affect the Yucca Mountain area. The Underground Retrievable Storage (URS) concept could satisfactorily reduce the risk from cosmic impact with its associated uncertainties in addition to providing other benefits described by previous authors.

  10. Implications of theories of asteroid and comet impact for policy options for management of spent nuclear fuel and high-level radioactive wastes

    SciTech Connect

    Trask, N.J.

    1994-12-31

    Concern with the threat posed by terrestrial asteroid and comet impacts has heightened as the catastrophic consequences of such events have become better appreciated. Although the probabilities of such impacts are very small, a reasonable question for debate is whether such phenomena should be taken into account in deciding policy for the management of spent fuel and high-level radioactive waste. The rate at which asteroid or comet impacts would affect areas of surface storage of radioactive waste is about the same as the estimated rate at which volcanic activity would affect the Yucca Mountain area. The Underground Retrievable Storage (URS) concept could satisfactorily reduce the risk from cosmic impact with its associated uncertainties in addition to providing other benefits described by previous authors.

  11. Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility

    SciTech Connect

    Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

    1998-06-01

    Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF.

  12. Transient thermal analysis for radioactive liquid mixing operations in a large-scaled tank

    SciTech Connect

    Lee, S. Y.; Smith, III, F. G.

    2014-07-25

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on radioactive liquid temperature during the process of waste mixing and removal for the high-level radioactive materials stored in Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing longshaft mixer pumps used during waste removal. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermal response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%.

  13. Transient thermal analysis for radioactive liquid mixing operations in a large-scaled tank

    DOE PAGES

    Lee, S. Y.; Smith, III, F. G.

    2014-07-25

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on radioactive liquid temperature during the process of waste mixing and removal for the high-level radioactive materials stored in Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing longshaft mixer pumps used during waste removal. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermalmore » response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%.« less

  14. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's report on Functional Design Criteria for a Repository for High-Level Radioactive Waste

    SciTech Connect

    Hambley, D.F.; Russell, J.E.; Busch, J.S.; Harrison, W.; Edgar, D.E.; Tisue, M.W.

    1984-08-01

    This report summarizes Argonne's review of the Office of Nuclear Waste Isolation's (ONWI's) draft report entitled Functional Design Criteria for High-Level Nuclear Waste Repository in Salt, dated January 23, 1984. Recommendations are given for improving the ONWI draft report.

  15. Radioactive Liquid Waste Treatment Facility Discharges in 2011

    SciTech Connect

    Del Signore, John C.

    2012-05-16

    This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

  16. Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

    SciTech Connect

    Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad

    2011-10-01

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

  17. Geologic and geophysical characterization studies of Yucca Mountain, Nevada, a potential high-level radioactive-waste repository

    USGS Publications Warehouse

    Whitney, J.W.; Keefer, W.R.

    2000-01-01

    In recognition of a critical national need for permanent radioactive-waste storage, Yucca Mountain in southwestern Nevada has been investigated by Federal agencies since the 1970's, as a potential geologic disposal site. In 1987, Congress selected Yucca Mountain for an expanded and more detailed site characterization effort. As an integral part of this program, the U.S. Geological Survey began a series of detailed geologic, geophysical, and related investigations designed to characterize the tectonic setting, fault behavior, and seismicity of the Yucca Mountain area. This document presents the results of 13 studies of the tectonic environment of Yucca Mountain, in support of a broad goal to assess the effects of future seismic and fault activity in the area on design, long-term performance, and safe operation of the potential surface and subsurface repository facilities.

  18. Using geologic conditions and multiattribute decision analysis to determine the relative favorability of selected areas for siting a high-level radioactive waste repository

    SciTech Connect

    Harrison, W.; Edgar, D.E.; Baker, C.H.; Buehring, W.A.; Whitfield, R.G.; Van Luik, A.E.J.; Sood, M.K.; Flower, M.F.J.; Warren, M.F.; Jusko, M.J.; Peerenboom, J.P.; Bogner, J.E.

    1988-05-01

    A method is presented for determining the relative favorability of geologically complex areas for isolating high-level radioactive wastes. In applying the method to the northeastern region of the United States, seismicity and tectonic activity were the screening criteria used to divide the region into three areas of increasing seismotectonic risk. Criteria were then used to subdivide the area of lowest seismotectonic risk into six geologically distinct subareas including characteristics, surface-water and groundwater hydrology, potential human intrusion, site geometry, surface characteristics, and tectonic environment. Decision analysis was then used to identify the subareas most favorable from a geologic standpoint for further investigation, with a view to selecting a site for a repository. Three subareas (parts of northeastern Vermont, northern New Hampshire, and western Maine) were found to be the most favorable, using this method and existing data. However, because this study assessed relative geologic favorability, no conclusions should be drawn concerning the absolute suitability of individual subareas for high-level radioactive waste isolation. 34 refs., 7 figs., 20 tabs.

  19. Cement-based radioactive waste hosts formed under elevated temperatures and pressures (FUETAP concretes) for Savannah River Plant high-level defense waste

    SciTech Connect

    Dole, L.R.; Rogers, G.C.; Morgan, M.T.; Stinton, D.P.; Kessler, J.H.; Robinson, S.M.; Moore, J.G.

    1983-03-01

    Concretes that are formed under elevated temperatures and pressures (called FUETAP) are effective hosts for high-level radioactive defense wastes. Tailored concretes developed at the Oak Ridge National Laboratory (ORNL) have been prepared from common Portland cements, fly ash, sand, clays, and waste products. These concretes are produced by accelerated curing under mild autoclave conditions (85 to 200/sup 0/C, 0.1 to 1.5 MPa) for 24 h. The solids are subsequently dewatered (to remove unbound water) at 250/sup 0/C for 24 h. The resulting products are strong (compressive strength, 40 to 100 MPa), leach resistant (plutonium leaches at the rate of 10 pg/(cm/sup 2/.d)), and radiolytically stable, monolithic waste forms (total gas value = 0.005 molecule/100 eV). This report summarizes the results of a 4-year FUETAP development program for Savannah River Plant (SRP) high-level defense wastes. It addresses the major questions concerning the performance of concretes as radioactive waste forms. These include leachability, radiation stability, thermal stability, thermal conductivity, impact strength, permeability, phase complexity, and effect of waste composition.

  20. Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers. Final report

    SciTech Connect

    Vinson, D.W.; Bullen, D.B.

    1995-09-22

    One of the most significant factors impacting the performance of waste package container materials under repository relevant conditions is the thermal environment. This environment will be affected by the areal power density of the repository, which is dictated by facility design, and the dominant heat transfer mechanism at the site. The near-field environment will evolve as radioactive decay decreases the thermal output of each waste package. Recent calculations (Buscheck and Nitao, 1994) have addressed the importance of thermal loading conditions on waste package performance at the Yucca Mountain site. If a relatively low repository thermal loading design is employed, the temperature and relative humidity near the waste package may significantly affect the degradation of corrosion allowance barriers due to moist air oxidation and radiolytically enhanced corrosion. The purpose this report is to present a literature review of the potential degradation modes for moderately corrosion resistant nickel copper and nickel based candidate materials that may be applicable as alternate barriers for the ACD systems in the Yucca Mountain environment. This report presents a review of the corrosion of nickel-copper alloys, summaries of experimental evaluations of oxidation and atmospheric corrosion in nickel-copper alloys, views of experimental studies of aqueous corrosion in nickel copper alloys, a brief review of galvanic corrosion effects and a summary of stress corrosion cracking in these alloys.

  1. Three-Dimensional Geologic Modeling of a Prospective Deep Underground Laboratory Site for High-Level Radioactive Waste Disposal in Korea

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Lee, S.; Park, S. U.; Kim, J. M.; Kihm, J. H.

    2014-12-01

    A series of three-dimensional geologic modeling was performed using a geostatistical geologic model GOCAD (ASGA and Paradigm) to characterize quantitatively and to visualize realistically a prospective deep underground laboratory site for high-level radioactive waste disposal in Korea. The necessity of a deep underground laboratory arises from its in-situ conditions for related deep scientific experiments. However, the construction and operation of such a deep underground laboratory take great efforts and expenses owing to its larger depth and thus higher geologic uncertainty. For these reasons, quantitative characterization and realistic visualization of geologic formations and structures of a deep underground laboratory site is crucial before its construction and operation. The study area for the prospective deep underground laboratory site is mainly consists of Precambrian metamorphic rocks as a complex. First, various topographic and geologic data of the study area were collected from literature and boreholes and preliminarily analyzed. Based on the preliminary analysis results, a three-dimensional structural model, which consists of the boundaries between the geologic formations and structures, was established, and a three-dimensional grid model, which consists of hexahedral grid blocks, was produced. Three-dimensional geologic formation model was then established by polymerizing these two models. Finally, a series of three-dimensional lithofacies modeling was performed using the sequential indicator simulation (SIS) and truncated Gaussian simulation (TGS). The volume fractions of metamorphic rocks predicted using the TGS are more similar to the actual data observed in boreholes than those predicted using the SIS. These three-dimensional geologic modeling results can improve a quantitative and realistic understanding of geologic characteristics of the prospective deep underground laboratory site for high-level radioactive waste disposal and thus can provide

  2. REDOX state analysis of platinoid elements in simulated high-level radioactive waste glass by synchrotron radiation based EXAFS

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoshihiro; Shiwaku, Hideaki; Nakada, Masami; Komamine, Satoshi; Ochi, Eiji; Akabori, Mitsuo

    2016-04-01

    Extended X-ray Absorption Fine Structure (EXAFS) analyses were performed to evaluate REDOX (REDuction and OXidation) state of platinoid elements in simulated high-level nuclear waste glass samples prepared under different conditions of temperature and atmosphere. At first, EXAFS functions were compared with those of standard materials such as RuO2. Then structural parameters were obtained from a curve fitting analysis. In addition, a fitting analysis used a linear combination of the two standard EXAFS functions of a given elements metal and oxide was applied to determine ratio of metal/oxide in the simulated glass. The redox state of Ru was successfully evaluated from the linear combination fitting results of EXAFS functions. The ratio of metal increased at more reducing atmosphere and at higher temperatures. Chemical form of rhodium oxide in the simulated glass samples was RhO2 unlike expected Rh2O3. It can be estimated rhodium behaves according with ruthenium when the chemical form is oxide.

  3. Examining Supply Chain Resilience for the Intermodal Shipment of Spent Nuclear Fuel and High Level Radioactive Materials

    SciTech Connect

    Peterson, Steven K

    2016-01-01

    The U.S. Department of Energy (DOE) has a significant programmatic interest in the safe and secure routing and transportation of Spent Nuclear Fuel (SNF) and High Level Waste (HLW) in the United States, including shipments entering the country from locations outside U.S borders. In any shipment of SNF/HLW, there are multiple chains; a jurisdictional chain as the material moves between jurisdictions (state, federal, tribal, administrative), a physical supply chain (which mode), as well as a custody chain (which stakeholder is in charge/possession) of the materials being transported. Given these interconnected networks, there lies vulnerabilities, whether in lack of communication between interested stakeholders or physical vulnerabilities such as interdiction. By identifying key links and nodes as well as administrative weaknesses, decisions can be made to harden the physical network and improve communication between stakeholders. This paper examines the parallel chains of oversight and custody as well as the chain of stakeholder interests for the shipments of SNF/HLW and the potential impacts on systemic resiliency. Using the Crystal River shutdown location as well as a hypothetical international shipment brought into the United States, this paper illustrates the parallel chains and maps them out visually.

  4. Mechanisms of strontium and uranium removal from high-level radioactive waste simulant solutions by the sorbent monosodium titanate.

    PubMed

    Duff, M C; Hunter, D B; Hobbs, D T; Fink, S D; Dai, Z; Bradley, J P

    2004-10-01

    High-level waste (HLW) is a waste associated with the dissolution of spent nuclear fuel for the recovery of weapons-grade material. It is the priority problem for the U.S. Department of Energy's Environmental Management Program. Current HLW treatment processes at the Savannah River Site (Aiken, SC) include the use of monosodium titanate (MST, with a similar stoichiometry to NaTi2O5 x xH2O) to concentrate strontium (Sr) and actinides. The high affinity of MST for Sr and actinides in HLW solutions rich in Na+ is poorly understood. Mechanistic information about the nature of radionuclide uptake will provide insight about MST treatment reliability. Our study characterized the morphology of MST and the chemistry of sorbed Sr2+ and uranium [U(VI)] as uranyl ion, UO2(2+), on MST, which were added (individually) from stock solutions of Sr and 238U(VI) with spectroscopic and transmission electron microscopic techniques. The local structure of sorbed U varied with loading, but the local structure of Sr did not vary with loading. Sorbed Sr exhibited specific adsorption as partially hydrated species whereas sorbed U exhibited specific adsorption as monomeric and dimeric U(VI)-carbonate complexes. Sorption proved site specific. These differences in site specificity and sorption mechanism may account forthe difficulties associated with predicting Sr and U loading and removal kinetics using MST.

  5. A Transportation Risk Assessment Tool for Analyzing the Transport of Spent Nuclear Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository

    SciTech Connect

    Ralph Best; T. Winnard; S. Ross; R. Best

    2001-08-17

    The Yucca Mountain Transportation Database was developed as a data management tool for assembling and integrating data from multiple sources to compile the potential transportation impacts presented in the Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DEIS). The database uses the results from existing models and codes such as RADTRAN, RISKIND, INTERLINE, and HIGHWAY to estimate transportation-related impacts of transporting spent nuclear fuel and high-level radioactive waste from commercial reactors and U. S. Department of Energy (DOE) facilities to Yucca Mountain. The source tables in the database are compendiums of information from many diverse sources including: radionuclide quantities for each waste type; route and route characteristics for rail, legal-weight truck, heavy haul. truck, and barge transport options; state-specific accident and fatality rates for routes selected for analysis; packaging and shipment data by waste type; unit risk factors; the complex behavior of the packaged waste forms in severe transport accidents; and the effects of exposure to radiation or the isotopic specific effects of radionclides should they be released in severe transportation accidents. The database works together with the codes RADTRAN (Neuhauser, et al, 1994) and RISKlND (Yuan, et al, 1995) to calculate incident-free dose and accident risk. For the incident-free transportation scenario, the database uses RADTRAN and RISKIND-generated data to calculate doses to offlink populations, onlink populations, people at stops, crews, inspectors, workers at intermodal transfer stations, guards at overnight stops, and escorts, as well as non-radioactive pollution health effects. For accident scenarios, the database uses RADTRAN-generated data to calculate dose risks based on ingestion, inhalation, resuspension, immersion (cloudshine), and groundshine as

  6. Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519

    SciTech Connect

    Dilger, Fred; Halstead, Robert J.; Ballard, James D.

    2013-07-01

    Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous

  7. Disposal of liquid radioactive wastes through wells or shafts

    SciTech Connect

    Perkins, B.L.

    1982-01-01

    This report describes disposal of liquids and, in some cases, suitable solids and/or entrapped gases, through: (1) well injection into deep permeable strata, bounded by impermeable layers; (2) grout injection into an impermeable host rock, forming fractures in which the waste solidifies; and (3) slurrying into excavated subsurface cavities. Radioactive materials are presently being disposed of worldwide using all three techniques. However, it would appear that if the techniques were verified as posing minimum hazards to the environment and suitable site-specific host rock were identified, these disposal techniques could be more widely used.

  8. Uncertainty and sensitivity analysis in the 2008 performance assessment for the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada.

    SciTech Connect

    Helton, Jon Craig; Sallaberry, Cedric M.; Hansen, Clifford W.

    2010-05-01

    Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. As part of this development, an extensive performance assessment (PA) for the YM repository was completed in 2008 [1] and supported a license application by the DOE to the U.S. Nuclear Regulatory Commission (NRC) for the construction of the YM repository [2]. This presentation provides an overview of the conceptual and computational structure of the indicated PA (hereafter referred to as the 2008 YM PA) and the roles that uncertainty analysis and sensitivity analysis play in this structure.

  9. The Belgian Research and Development Feasibility Programme for the Geological Disposal of High-Level and Long-Lived Radioactive Waste - 12338

    SciTech Connect

    Van Marcke, Philippe; Van Humbeeck, Hugues

    2012-07-01

    ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials, considers geological disposal in the poorly indurated Boom Clay as the reference solution for the long-term management of high-level and/or long-lived radioactive waste. To develop a safety concept and design for geological disposal, ONDRAF/NIRAS follows an iterative process demonstrating that the repository will be both safe and feasible to implement. This process is called the safety strategy. A part of the safety strategy is the feasibility programme which aims at demonstrating, at a conceptual level, that the proposed geological disposal system can be constructed, operated and progressively closed. The followed methodology is based on the substantiation of a hierarchy of feasibility statements. These statements cover all activities from the removal of primary waste packages from interim storage buildings to the closure of the disposal site and a period of institutional control. They focus on engineering practicability, health and safety and environmental considerations, costs and quality assurance issues. A 4 year research project to support the R and D feasibility programme was launched in 2009 with several international partners coordinated by ONDRAF/NIRAS. It aims at confirming that there are no fundamental flaws or show-stoppers in the feasibility of building and operating the facilities for geological disposal in the Boom Clay. (authors)

  10. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    SciTech Connect

    Rechard, Robert P.

    2014-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.

  11. Modified microspheres for cleaning liquid wastes from radioactive nuclides

    SciTech Connect

    Danilin, Lev; Drozhzhin, Valery

    2007-07-01

    An effective solution of nuclear industry problems related to deactivation of technological and natural waters polluted with toxic and radioactive elements is the development of inorganic sorbents capable of not only withdrawing radioactive nuclides, but also of providing their subsequent conservation under conditions of long-term storage. A successful technical approach to creation of sorbents can be the use of hollow aluminosilicate microspheres. Such microspheres are formed from mineral additives during coal burning in furnaces of boiler units of electric power stations. Despite some reduction in exchange capacity per a mass unit of sorbents the latter have high kinetic characteristics that makes it possible to carry out the sorption process both in static and dynamic modes. Taking into account large industrial resources of microspheres as by-products of electric power stations, a comparative simplicity of the modification process, as well as good kinetic and capacitor characteristics, this class of sorbents can be considered promising enough for solving the problems of cleaning liquid radioactive wastes of various pollution levels. (authors)

  12. APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD

    SciTech Connect

    TEDESCHI AR; WILSON RA

    2010-01-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  13. Development of characterization protocol for mixed liquid radioactive waste classification

    SciTech Connect

    Zakaria, Norasalwa; Wafa, Syed Asraf; Wo, Yii Mei; Mahat, Sarimah

    2015-04-29

    Mixed liquid organic waste generated from health-care and research activities containing tritium, carbon-14, and other radionuclides posed specific challenges in its management. Often, these wastes become legacy waste in many nuclear facilities and being considered as ‘problematic’ waste. One of the most important recommendations made by IAEA is to perform multistage processes aiming at declassification of the waste. At this moment, approximately 3000 bottles of mixed liquid waste, with estimated volume of 6000 litres are currently stored at the National Radioactive Waste Management Centre, Malaysia and some have been stored for more than 25 years. The aim of this study is to develop a characterization protocol towards reclassification of these wastes. The characterization protocol entails waste identification, waste screening and segregation, and analytical radionuclides profiling using various analytical procedures including gross alpha/ gross beta, gamma spectrometry, and LSC method. The results obtained from the characterization protocol are used to establish criteria for speedy classification of the waste.

  14. Development of characterization protocol for mixed liquid radioactive waste classification

    NASA Astrophysics Data System (ADS)

    Zakaria, Norasalwa; Wafa, Syed Asraf; Wo, Yii Mei; Mahat, Sarimah

    2015-04-01

    Mixed liquid organic waste generated from health-care and research activities containing tritium, carbon-14, and other radionuclides posed specific challenges in its management. Often, these wastes become legacy waste in many nuclear facilities and being considered as `problematic' waste. One of the most important recommendations made by IAEA is to perform multistage processes aiming at declassification of the waste. At this moment, approximately 3000 bottles of mixed liquid waste, with estimated volume of 6000 litres are currently stored at the National Radioactive Waste Management Centre, Malaysia and some have been stored for more than 25 years. The aim of this study is to develop a characterization protocol towards reclassification of these wastes. The characterization protocol entails waste identification, waste screening and segregation, and analytical radionuclides profiling using various analytical procedures including gross alpha/ gross beta, gamma spectrometry, and LSC method. The results obtained from the characterization protocol are used to establish criteria for speedy classification of the waste.

  15. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part III. Geologic and hydrologic evaluation

    SciTech Connect

    Bedinger, M.S.; Sargent, K.A.; Brady, B.T.

    1985-12-31

    This report describes the first phase in evaluating the geology and hydrology of the Basin and Range Province for potential suitability of geohydrologic environments for isolation of high-level radioactive waste. The geologic and hydrologic factors considered in the Province evaluation include distribution of potential host rocks, tectonic conditions and data on ground-water hydrology. Potential host media considered include argillaceous rocks, tuff, basaltic rocks, granitic rocks, evaporites, and the unsaturated zone. The tectonic factors considered are Quaternary faults, late Cenozoic volcanics, seismic activity, heat flow, and late Cenozoic rates of vertical uplift. Hydrologic conditions considered include length of flow path from potential host rocks to discharge areas, interbasin and geothermal flow systems and thick unsaturated sections as potential host media. The Basin and Range Province was divided into 12 subprovinces; each subprovince is evaluated separately and prospective areas for further study are identified. About one-half of the Province appears to have combinations of potential host rocks, tectonic conditions, and ground-water hydrology that merit consideration for further study. The prospective areas for further study in each subprovince are summarized in a brief list of the potentially favorable factors and the issues of concern. Data compiled for the entire Province do not permit a complete evaluation of the favorability for high-level waste isolation. The evaluations here are intended to identify broad regions that contain potential geohydrologic environments containing multiple natural barriers to radionuclide migration. 13 refs., 14 figs.

  16. Hydrogen gettering the overpressure gas from highly radioactive liquids

    SciTech Connect

    Riley, D.L.; McCoy, J.C.; Schicker, J.R.

    1996-04-01

    Remediation of current inventories of high-activity radioactive liquid waste (HALW) requires transportation of Type-B quantities of radioactive material, possibly up to several hundred liters. However, the only currently certified packaging is limited to quantities of 50 ml (0.01 gal) quantities of Type-B radioactive liquid. Efforts are under way to recertify the existing packaging to allow the shipment of up to 4 L (1.1 gal) of Type-B quantities of HALW, but significantly larger packaging could be needed in the future. Scoping studies and preliminary designs have identified the feasibility of retrofitting an insert into existing casks, allowing the transport of up to 380 L (100 gal) of HALW. However, the insert design and ultimate certification strategy depend heavily on the gas-generating attributes of the HALW. A non-vented containment vessel filled with HALW, in the absence of any gas-mitigation technologies, poses a deflagration threat and, therefore, gas generation, specifically hydrogen generation, must be reliably controlled during all phases of transportation. Two techniques are available to mitigate hydrogen accumulation: recombiners and getters. Getters have an advantage over recombiners in that oxides are not required to react with the hydrogen. A test plan was developed to evaluate three forms of getter material in the presence of both simulated HALW and the gases that are produced by the HALW. These tests demonstrated that getters can react with hydrogen in the presence of simulated waste and in the presence of several other gases generated by the HALW, such as nitrogen, ammonia, nitrous oxide, and carbon monoxide. Although the use of such a gettering system has been shown to be technically feasible, only a preliminary design for its use has been completed. No further development is planned until the requirement for bulk transport of Type-B quantities of HALW is more thoroughly defined.

  17. Is Yucca Mountain a long-term solution for disposing of US spent nuclear fuel and high-level radioactive waste?

    PubMed

    Thorne, M C

    2012-06-01

    On 26 January 2012, the Blue Ribbon Commission on America's Nuclear Future released a report addressing, amongst other matters, options for the managing and disposal of high-level waste and spent fuel. The Blue Ribbon Commission was not chartered as a siting commission. Accordingly, it did not evaluate Yucca Mountain or any other location as a potential site for the storage or disposal of spent nuclear fuel and high-level waste. Nevertheless, if the Commission's recommendations are followed, it is clear that any future proposals to develop a repository at Yucca Mountain would require an extended period of consultation with local communities, tribes and the State of Nevada. Furthermore, there would be a need to develop generally applicable regulations for disposal of spent fuel and high-level radioactive waste, so that the Yucca Mountain site could be properly compared with alternative sites that would be expected to be identified in the initial phase of the site-selection process. Based on what is now known of the conditions existing at Yucca Mountain and the large number of safety, environmental and legal issues that have been raised in relation to the DOE Licence Application, it is suggested that it would be imprudent to include Yucca Mountain in a list of candidate sites for future evaluation in a consent-based process for site selection. Even if there were a desire at the local, tribal and state levels to act as hosts for such a repository, there would be enormous difficulties in attempting to develop an adequate post-closure safety case for such a facility, and in showing why this unsaturated environment should be preferred over other geological contexts that exist in the USA and that are more akin to those being studied and developed in other countries.

  18. Role of U.S. Nuclear Regulatory Commission`s On-Site Representatives in pre-licensing activities for a high-level radioactive waste repository

    SciTech Connect

    Justus, P.S.; Gilray, J.

    1994-12-31

    Under the Nuclear Waste Policy Act, the US Department of Energy and the US Nuclear Regulatory Commission are required to consult with each other prior to DOE`s submittal of a license application to construct a high-level radioactive waste repository. DOE entered into an agreement which, in part, enabled NRC On-Site Representatives to be stationed at a high-level waste candidate site {open_quotes}principally to serve as a point of prompt informational exchange and consultation and to preliminary identify concerns about such investigations relating to potential licensing issues.{close_quotes} On-Site Representatives` direct observation of site characterization activities including construction of an underground studies facility (at Yucca Mountain, NV candidate site) provides NRC staff opportunities to help ensure that DOE will develop data which are appropriate to determine if the site will safely isolate waste and which will be defensible in a License Application. The On-Site Representatives, through supervision and input from the Division of High-Level Waste Management, may consult with the DOE site project office and its contractor staff on items pertaining to management and program controls necessary to satisfy NRC licensing needs, such as demonstrated application of procedural controls and technical data that will support a License Application. The On-Site Representatives interact with DOE through consultations with project staff, quality assurance workshops, observations of reviews of computer software and Q-List considerations, responses to audit and surveillance observations and day-to-day contact with DOE site management, QA staff, and technical investigators.

  19. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste: Part II, Geologic and hydrologic characterization

    USGS Publications Warehouse

    Sargent, Kenneth A.; Bedinger, M.S.

    1985-01-01

    The geology and hydrology of the Basin and Range Province of the western conterminous United States are characterized in a series of data sets depicted in maps compiled for evaluation of prospective areas for further study of geohydrologic environments for isolation of high-level radioactive waste. The data sets include: (1) Average precipitation and evaporation; (2) surface distribution of selected rock types; (3) tectonic conditions; and (4) surface- and ground -water hydrology and Pleistocene lakes and marshes.Rocks mapped for consideration as potential host media for the isolation of high-level radioactive waste are widespread and include argillaceous rocks, granitic rocks, tuffaceous rocks, mafic extrusive rocks, evaporites, and laharic breccias. The unsaturated zone, where probably as thick as 150 meters (500 feet), was mapped for consideration as an environment for isolation of high-level waste. Unsaturated rocks of various lithologic types are widespread in the Province.Tectonic stability in the Quaternary Period is considered the key to assessing the probability of future tectonism with regard to high-level radioactive waste disposal. Tectonic conditions are characterized on the basis of the seismic record, heat-flow measurements, the occurrence of Quaternary faults, vertical crustal movement, and volcanic features. Tectonic activity, as indicated by seismicity, is greatest in areas bordering the western margin of the Province in Nevada and southern California, the eastern margin of the Province bordering the Wasatch Mountains in Utah and in parts of the Rio Grande valley. Late Cenozoic volcanic activity is widespread, being greatest bordering the Sierra Nevada in California and Oregon, and bordering the Wasatch Mountains in southern Utah and Idaho.he arid to semiarid climate of the Province results in few perennial streams and lakes. A large part of the surface drainage is interior and the many closed basins commonly are occupied by playas or dry lake

  20. Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste - 12551

    SciTech Connect

    Penzin, R.A.; Sarychev, G.A.

    2012-07-01

    the necessity to take emergency measures and to use marine water for cooling of reactor zone in contravention of the technological regulations. In these cases significant amount of liquid radioactive wastes of complex physicochemical composition is being generated, the purification of which by traditional methods is close to impossible. According to the practice of elimination of the accident after-effects at NPP 'Fukushima' there are still no technical means for the efficient purification of liquid radioactive wastes of complex composition like marine water from radionuclides. Therefore development of state-of-the-art highly efficient facilities capable of fast and safe purification of big amounts of liquid radioactive wastes of complex physicochemical composition from radionuclides turns to be utterly topical problem. Cesium radionuclides, being extremely dangerous for the environment, present over 90% of total radioactivity contained in liquid radioactive wastes left as a result of accidents at nuclear power objects. For the purpose of radiation accidents aftereffects liquidation VNIIHT proposes to create a plant for LRW reprocessing, consisting of 4 major technological modules: Module of LRW pretreatment to remove mechanical and organic impurities including oil products; Module of sorption purification of LWR by means of selective inorganic sorbents; Module of reverse osmotic purification and desalination; Module of deep evaporation of LRW concentrates. The first free modules are based on completed technological and designing concepts implemented by VNIIHT in the framework of LLRW Project in the period of 2000-2001 in Russia for comprehensive treatment of LWR of atomic fleet. These industrial plants proved to be highly efficient and secure during their long operation life. Module of deep evaporation is a new technological development. It will ensure conduction of evaporation and purification of LRW of different physicochemical composition, including those

  1. Chromatographic separation of platinum group metals from simulated high level liquid waste using macroporous silica-based adsorbents.

    PubMed

    Xu, Yuanlai; Kim, Seong-Yun; Ito, Tatsuya; Tokuda, Haruki; Hitomi, Keitaro; Ishii, Keizo

    2013-10-18

    To separate platinum group metals (PGMs) from high level liquid waste, three novel macroporous silica-based adsorbents, namely, (Crea+Dodec)/SiO2-P, (Crea+TOA)/SiO2-P and (MOTDGA+TOA)/SiO2-P, were synthesized by introducing extractants Crea (N',N'-di-n-hexyl-thiodiglycolamide), TOA (Tri-n-octylamine), MOTDGA (N,N'-dimethyl-N,N'-di-n-octyl-thiodiglycolamide) along with theirs modifier, Dodec (n-dodecyl alcohol), into 50μm diameter SiO2-P particles by impregnation. Chromatographic separation of PGMs from simulated high level liquid waste was investigated by column method. It was found that 100% of Pd(II) and Re(VII) could be eluted out from simulate HLLW in 3.0M HNO3 solution using three adsorbents. For Ru(III) and Rh(III), high temperature has distinct effect on the adsorption rate and a further study for Ru(III) and Rh(III) is necessary to separate them from HLLW completely. In all six column experiments, a relatively satisfactory chromatographic separation operating for PGMs from simulated HLLW was obtained using (Crea+TOA)/SiO2-P adsorbent packed column at 323K.

  2. Survey: utilization of zeolites for the removal of radioactivity from liquid waste streams. [178 references

    SciTech Connect

    Roddy, J.W.

    1981-08-01

    A survey was made of the literature and of experience at selected nuclear installations to provide information on the stability of inorganic ion exchangers when used for the decontamination of both low-level and high-level radioactive liquids. Results of past campaigns at the Savannah River Plant, Oak Ridge National Laboratory, and Rockwell Hanford Operations were examined. In addition, the performance of zeolites used for controlling water quality in nuclear fuel storage basins was evaluated. The literature survey served as a guide for identifying relevant material from foreign sources and supplemented the information obtained by direct contact of domestic researchers. The study included a brief review of the physical and chemical properties of zeolites. A secondary objective of the study was to compile data on the corrosion resistance of containment materials for zeolites.

  3. A TRANSPORTATION RISK ASSESSMENT TOOL FOR ANALYZING THE TRANSPORT OF SPENT NUCLEAR FUEL AND HIGH-LEVEL RADIOACTIVE WASTE TO THE PROPOSED YUCCA MOUNTAIN REPOSITORY

    SciTech Connect

    NA

    2001-02-15

    The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis addressed the potential for transporting spent nuclear fuel and high-level radioactive waste from 77 origins for 34 types of spent fuel and high-level radioactive waste, 49,914 legal weight truck shipments, and 10,911 rail shipments. The analysis evaluated transportation over 59,250 unique shipment links for travel outside Nevada (shipment segments in urban, suburban or rural zones by state), and 22,611 links in Nevada. In addition, the analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The analysis also used mode-specific accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. This complex mix of data and information required an innovative approach to assess the transportation impacts. The approach employed a Microsoft{reg_sign} Access database tool that incorporated data from many sources, including unit risk factors calculated using the RADTRAN IV transportation risk assessment computer program. Using Microsoft{reg_sign} Access, the analysts organized data (such as state-specific accident and fatality rates) into tables and developed queries to obtain the overall transportation impacts. Queries are instructions to the database describing how to use data contained in the database tables. While a query might be applied to thousands of table entries, there is only one sequence of queries that is used to calculate a particular transportation impact. For example, the incident-free dose to off-link populations in a state is calculated by a query that uses route segment lengths for each route in a state that could be used by shipments, populations for each segment, number of shipments on each segment, and an incident-free unit risk factor calculated using RADTRAN IV. In addition to providing a method for using large volumes of data in the calculations, the

  4. Volatility of ruthenium-106, technetium-99, and iodine-129, and the evolution of nitrogen oxide compounds during the calcination of high-level, radioactive nitric acid waste

    SciTech Connect

    Rimshaw, S.J.; Case, F.N.; Tompkins, J.A.

    1980-02-01

    The nitrate anion is the predominant constituent in all high-level nuclear wastes. Formic acid reacts with the nitrate anion to yield noncondensable, inert gases (N/sub 2/ or N/sub 2/O), which can be scrubbed free of /sup 106/Ru, /sup 129/I, and /sup 99/Tc radioactivities prior to elimination from the plant by passing through HEPA filters. Treatment of a high-level authentic radioactive waste with two moles of formic acid per mole of nitrate anion leads to a low RuO/sub 4/ volatility of about 0.1%, which can be reduced to an even lower level of 0.007% on adding a 15% excess of formic acid. Without pretreatment of the nitrate waste with formic acid, a high RuO/sub 4/ volatility of approx. 35% is observed on calcining a 4.0 N HNO/sub 3/ solution in quartz equipment at 350/sup 0/C. The RuO/sub 4/ volatility falls to approx. 1.0% on decreasing the initial HNO/sub 3/ concentration to 1.0 N or lower. It is postulated that thermal denitration of a highly nitrated ruthenium complex leads to the formation of volatile RuO/sub 4/, while decarboxylation of a ruthenium-formate complex leads to the formation of nonvolatile RuO/sub 2/. Wet scrubbing with water is used to remove RuO/sub 4/ from the off-gas stream. In all glass equipment, small amounts of particulate RuO/sub 2/ are formed in the gas phase by decomposition of RuO/sub 4/. The /sup 99/Tc volatility was found to vary from 0.2 to 1.4% on calcining HNO/sub 3/ and HCOOH (formic acid) solutions over the temperature range of 250 to 600/sup 0/C. These unexpectedly low volatilities of /sup 99/Tc are correlated to the high thermal stability limits of various metal pertechnetates and technetates. Iodine volatilities were high, varying from a low of 30% at 350/sup 0/C to a high of 97% at 650/sup 0/C. It is concluded that with a proper selection of pretreatment and operating conditions the /sup 106/Ru and /sup 99/Tc activities can be retained in the calcined solid with recycle of the wet scrubbing solution.

  5. The Solvation Structure of Na(+) and K(+) in Liquid Water Determined from High Level ab Initio Molecular Dynamics Simulations.

    PubMed

    Rowley, Christopher N; Roux, Benoıt

    2012-10-09

    Knowledge of the hydration structure of Na(+) and K(+) in the liquid phase has wide ranging implications in the field of biological chemistry. Despite numerous experimental and computational studies, even basic features such as the coordination number of these alkali ions in liquid water, thought to play a critical role in selectivity, continue to be the subject of intensive debates. Simulations based on accurate potential energy surfaces offer one approach to resolve these issues by providing reliable results on ion hydration. In this article, we report the results from molecular dynamics simulations of Na(+) and K(+) hydration based on a novel and rigorous strategy designed to overcome the challenges of QM/MM simulations of solvent molecules in the liquid phase. In this method, which we call Flexible Inner Region Ensemble Separator (FIRES), the ion and a fixed number of nearest water molecules form a dynamical and flexible inner region that is represented with high level ab initio quantum mechanical (QM) methods, while the water molecules from the surrounding bulk form an outer region that is represented by a polarizable molecular mechanical (MM) force field. Simulations yield rigorously correct thermodynamic averages as long as the solvent molecules in the flexible inner and outer regions are not allowed to exchange. Extensive FIRES simulations were carried out based on a QM/MM model in which the Na(+) or K(+) ion and the 12 nearest water molecules were represented by high level ab initio methods (RI-MP2/def2-TZVP and density functional theory with PBE/def2-TZVP), while the surrounding MM water molecules were represented by the polarizable SWM4-NDP potential. On the basis of these results, the ion coordination numbers are estimated to be within the range of 5.7-5.8 for Na(+) and 6.9-7.0 for K(+).

  6. Social scientist on board in long-term management of high level and/or long-lived radioactive waste in Belgium

    SciTech Connect

    Parotte, C.

    2013-07-01

    In Belgium, the long-term management of radioactive waste is under the exclusive competence of the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (knew as ONDRAF/NIRAS). Unlike low-level waste, no institutional policy has yet been formally approved for the long-term management of high level and/or long-lived radioactive waste (knew as B and C waste). In this context, ONDRAF/NIRAS considers the public and stakeholders' participation as an essential factor in the formulation of an effective and legitimate policy. This is why it has decided to integrate them in different ways during the elaboration of the Waste Plan (ONDRAF/NIRAS-document containing guidelines to make a principled policy decision about nuclear waste management). To do so, social scientists have been regularly mobilized either as external evaluators, follow-up committee members, or participatory observants. Hence, the Waste Plan is only the first step in a long decision-making process. For a PhD student under contract with ONDRAF/NIRAS, this mandate consists of thinking out a way to construct an inter-organizational innovative communication system that would be participative, transparent and embedded in a long-term perspective, thus integrating all the further legal steps to take throughout the decision-making process. In this regard, two paradoxical constraints must be taken into account: on the one hand, my own influence on the legal decision-making process should remain limited, because of a series of constraints, lock-ins and previous decisions which have to be respected; on the other hand, ONDRAF/NIRAS expects the research conclusions to be policy relevant and useful. In this paper, the purpose is twofold. Firstly, the issues raised by this policy mandate is an opportunity to question the per-formative dimensions of the social scientist in the decision-making process and, more specifically, to have a reflexive view on our position as PhD Student. Secondly, assuming the role of

  7. Boron removal in radioactive liquid waste by forward osmosis membrane

    SciTech Connect

    Doo Seong Hwang; Hei Min Choi; Kune Woo Lee; Jei Kwon Moon

    2013-07-01

    This study investigated the treatment of boric acid contained in liquid radioactive waste using a forward osmosis membrane. The boron permeation through the membrane depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7 and increases with an increase of the osmotic driving force. The boron flux decreases slightly with the salt concentration, but is not heavily influenced by a low salt concentration. The boron flux increases linearly with the concentration of boron. No element except for boron was permeated through the FO membrane in the multi-component system. The maximum boron flux is obtained in an active layer facing a draw solution orientation of the CTA-ES membrane under conditions of less than pH 7 and high osmotic pressure. (authors)

  8. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste: Part III, Geologic and hydrologic evaluation

    USGS Publications Warehouse

    Bedinger, M.S.; Sargent, Kenneth A.; Brady, Bruce T.

    1985-01-01

    This report describes the first phase in evaluating the geology and hydrology of the Basin and Range Province for potential suitability of geohydrologic environments for isolation of high-level radioactive waste. The evaluation of the Province applies the guidelines, discussed in Part I (Bedinger, Sargent, and Reed, 1983) of this report to the geologic and hydrologic information compiled for the Province in Part II (Sargent and Bedinger, 1983).The geologic and hydrologic factors considered in the Province evaluation include distribution of potential host rocks, tectonic conditions and data on ground-water hydrology. Potential host media considered include argillaceous rocks, tuff, basaltic rocks, granitic rocks, evaporites, and the unsaturated zone. The tectonic factors considered are Quaternary faults, late Cenozoic volcanics, seismic activity, heat flow, and late Cenozoic rates of vertical uplift. Hydrologic conditions considered include length of flow path from potential host rocks to discharge areas, interbasin and geothermal flow systems and thick unsaturated sections as potential host media.The Basin and Range Province was divided into 12 subprovinces; each subprovince is evaluated separately and prospective areas for further study are identified. About onehalf of the Province appears to have combinations of potential host rocks, tectonic conditions, and ground-water hydrology that merit consideration for further study.The prospective areas for further study in each subprovince are summarized in a brief list of the potentially favorable factors and the issues of concern. Data compiled for the entire Province do not permit a complete evaluation of the favorability for high-level waste isolation. The evaluations here are intended to identify broad regions that contain potential geohydrologic environments containing multiple natural barriers to radionuclide migration.

  9. Review of buried crystalline rocks of eastern United States in selected hydrogeologic environments potentially suitable for isolating high-level radioactive wastes

    USGS Publications Warehouse

    Davis, R.W.

    1984-01-01

    Among the concepts suggested for the deep disposal of high-level radioactive wastes from nuclear power reactors is the excavation of a repository in suitable crystalline rocks overlain by a thick sequence of sedimentary strata in a hydrogeologic environment that would effectively impede waste transport. To determine the occurrence of such environments in the Eastern United States, a review was made of available sources of published or unpublished information, using the following hydrogeologic criteria: (1) the top of the crystalline basement rock is 1,000 to 4,000 feet below land surface; (2) the crystalline rock is overlain by sedimentary rock whose lowermost part, at least, contains groundwater with a dissolved-solids concentration of 10,000 milligrams per liter or more; (3) shale and or clay confining beds overlie the saline-water aquifer; and (4) the flow system in the saline-water aquifer is known or determinable from presently available data. All of these hydrogeologic conditions occur in two general areas: (1) parts of Indiana, Ohio, and Kentucky, underlain by part of the geologic structure known as the Cincinnati arch, and (2) parts of the Atlantic Coastal Plain from Georgia to New Jersey. (USGS)

  10. Illustration of sampling-based approaches to the calculation of expected dose in performance assessments for the proposed high level radioactive waste repository at Yucca Mountain, Nevada.

    SciTech Connect

    Helton, Jon Craig; Sallaberry, Cedric J. PhD.

    2007-04-01

    A deep geologic repository for high level radioactive waste is under development by the U.S. Department of Energy at Yucca Mountain (YM), Nevada. As mandated in the Energy Policy Act of 1992, the U.S. Environmental Protection Agency (EPA) has promulgated public health and safety standards (i.e., 40 CFR Part 197) for the YM repository, and the U.S. Nuclear Regulatory Commission has promulgated licensing standards (i.e., 10 CFR Parts 2, 19, 20, etc.) consistent with 40 CFR Part 197 that the DOE must establish are met in order for the YM repository to be licensed for operation. Important requirements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. relate to the determination of expected (i.e., mean) dose to a reasonably maximally exposed individual (RMEI) and the incorporation of uncertainty into this determination. This presentation describes and illustrates how general and typically nonquantitive statements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. can be given a formal mathematical structure that facilitates both the calculation of expected dose to the RMEI and the appropriate separation in this calculation of aleatory uncertainty (i.e., randomness in the properties of future occurrences such as igneous and seismic events) and epistemic uncertainty (i.e., lack of knowledge about quantities that are poorly known but assumed to have constant values in the calculation of expected dose to the RMEI).

  11. Determination of Total Body Radioactivity Using Liquid Scintillation Detectors

    NASA Astrophysics Data System (ADS)

    Reines, F.; Schuch, R. L.; Cowan, C. L.; Harrison, F. B.; Anderson, E. C.; Hayes, F. N.

    IN the course of developing equipment for other problems1, we have made some measurements of the total radioactivity content of several humans and a dog, using a technique which may have other applications in biophysics. The equipment used consists of a liquid scintillation detector in the shape of a cylinder 30 in. in diameter and 30 in. high, surrounded by RCA type 5819 photomultipliers, fortyfive of which were used in these measurements. Cylindrical steel inserts, 14 in. in diameter in one case and 20 in. in diameter in another, 32 in. high and 0.015 in. thick, were placed in the tank, leaving an annular region filled with liquid scintillator (toluene-terphenyl-α-naphthyl phenyl oxazole). A lead shield 5 in. thick was placed around the assembly, leaving only the top of the insert open. The fortyfive photomultipliers were connected in parallel and their output fed through a linear amplifier to a tenchannel pulse-height analyser (see Fig. 1)…

  12. FLUIDIZED BED STEAM REFORMING (FBSR) OF HIGH LEVEL WASTE (HLW) ORGANIC AND NITRATE DESTRUCTION PRIOR TO VITRIFICATION: CRUCIBLE SCALE TO ENGINEERING SCALE DEMONSTRATIONS AND NON-RADIOACTIVE TO RADIOACTIVE DEMONSTRATIONS

    SciTech Connect

    Jantzen, C; Michael Williams, M; Gene Daniel, G; Paul Burket, P; Charles Crawford, C

    2009-02-07

    Over a decade ago, an in-tank precipitation process to remove Cs-137 from radioactive high level waste (HLW) supernates was demonstrated at the Savannah River Site (SRS). The full scale demonstration with actual HLW was performed in SRS Tank 48 (T48). Sodium tetraphenylborate (NaTPB) was added to enable Cs-137 extraction as CsTPB. The CsTPB, an organic, and its decomposition products proved to be problematic for subsequent processing of the Cs-137 precipitate in the SRS HLW vitrification facility for ultimate disposal in a HLW repository. Fluidized Bed Steam Reforming (FBSR) is being considered as a technology for destroying the organics and nitrates in the T48 waste to render it compatible with subsequent HLW vitrification. During FBSR processing the T48 waste is converted into organic-free and nitrate-free carbonate-based minerals which are water soluble. The soluble nature of the carbonate-based minerals allows them to be dissolved and pumped to the vitrification facility or returned to the tank farm for future vitrification. The initial use of the FBSR process for T48 waste was demonstrated with simulated waste in 2003 at the Savannah River National Laboratory (SRNL) using a specially designed sealed crucible test that reproduces the FBSR pyrolysis reactions, i.e. carbonate formation, organic and nitrate destruction. This was followed by pilot scale testing of simulants at the Science Applications International Corporation (SAIC) Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003-4 and then engineering scale demonstrations by THOR{reg_sign} Treatment Technologies (TTT) and SRS/SRNL at the Hazen Research, Inc. (HRI) test facility in Golden, CO in 2006 and 2008. Radioactive sealed crucible testing with real T48 waste was performed at SRNL in 2008, and radioactive Benchscale Steam Reformer (BSR) testing was performed in the SRNL Shielded Cell Facility (SCF) in 2008.

  13. LANL Waste acceptance criteria, Chapter 3, radioactive liquid waste treatment facility

    SciTech Connect

    McClenahan, Robert L.

    2006-08-01

    The Radioactive Liquid Waste Treatment Facility (RLWTF) receives and treats aqueous radioactive wastewater generated at Los Alamos National Laboratory (LANL) to meet he discharge criteria specified in a National Pollution Discharge Elimination System (NPDES) permit. The majority of this wastewater is received at the RLWTF through a network of buried pipelines, known as the Radioactive Liquid Waste Collection System (RLWCS). Other wastewater is transported to the RLWTF by truck. The Waste Acceptance Criteria (WAC) outlined in this Chapter are applicable to all radioactive wastewaters which are conveyed to the Technical Area 50(T A-50), RL WTF by the RLWCS or by truck.

  14. Remote automatic plasma arc-closure welding of a dry-storage canister for spent nuclear fuel and high-level radioactive waste

    SciTech Connect

    Sprecace, R.P.; Blankenship, W.P.

    1982-12-31

    A carbon steel storage canister has been designed for the dry encapsulation of spent nuclear fuel assemblies or of logs of vitrified high level radioactive waste. The canister design is in conformance with the requirements of the ASME Code, Section III, Division 1 for a Class 3 vessel. The canisters will be loaded and sealed as part of a completely remote process sequence to be performed in the hot bay of an experimental encapsulation facility at the Nevada Test Site. The final closure to be made is a full penetration butt weld between the canister body, a 12.75-in O.D. x 0.25-in wall pipe, and a mating semiellipsoidal closure lid. Due to a combination of design, application and facility constraints, the closure weld must be made in the 2G position (canister vertical). The plasma arc welding system is described, and the final welding procedure is described and discussed in detail. Several aspects and results of the procedure development activity, which are of both specific and general interest, are highlighted; these include: The critical welding torch features which must be exactly controlled to permit reproducible energy input to, and gas stream interaction with, the weld puddle. A comparison of results using automatic arc voltage control with those obtained using a mechanically fixed initial arc gap. The optimization of a keyhole initiation procedure. A comparison of results using an autogenous keyhole closure procedure with those obtained using a filler metal addition. The sensitivity of the welding process and procedure to variations in joint configuration and dimensions and to variations in base metal chemistry. Finally, the advantages and disadvantages of the plasma arc process for this application are summarized from the current viewpoint, and the applicability of this process to other similar applications is briefly indicated.

  15. Hazard area and recurrence rate time series for determining the probability of volcanic disruption of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Ho, Chih-Hsiang

    2010-03-01

    The post-12-Ma volcanism at Yucca Mountain (YM), Nevada, a potential site for an underground geologic repository of high-level radioactive waste in the USA, is assumed to follow a Poisson process and is characterized by a sequence of empirical recurrence rate time series. The last ten time series are used as a prediction set to check the predictive ability of the candidate model produced by a training sample using autoregressive integrated moving average modeling techniques. The model is used to forecast future recurrence rates that, in turn, are used to develop a continuous mean function of the volcanic process, which is not only required to evaluate the probability of site disruption by volcanic activity but accommodates a long period of compliance. At the model validation stage, our candidate model forecasts a mean number of 6.196 eruptions for the prediction set which accounts for seven volcanic events of the 33 post-12-Ma eruptions at the YM site. For a full-scaled forecasting, our fitted model predicts a waning volcanism producing only 3.296 new eruptions in the next million years. We then present the site disruption probability as the chance that a new eruption will occur in the “hazard area” based on a model developed for licensing commercial space launch and reentry operations in the space transportation industry. The results of the site disruption probability and sensitivity analysis are summarized with a numerical table generated from a simple equation sufficient for practical use. We also produce three-dimensional plots to visualize the nonlinearity of the intensity function associated with the underlying model of a nonhomogeneous Poisson process and emphasize that the interpretation of site disruption probability should always be accompanied by a compliance period.

  16. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    SciTech Connect

    J.S. Stuckless; D. O'Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  17. Underground Architecture and Layout for the Belgian High-Level and Long-Lived Intermediate-Level Radioactive Waste Disposal Facility- 12116

    SciTech Connect

    Van Cotthem, Alain; Van Humbeeck, Hughes

    2012-07-01

    The underground architecture and layout of the proposed Belgian high-level (HLW) and long-lived, intermediate-level radioactive wastes (ILW-LL) disposal system (repository) is mainly based on lessons learned during the development and 30-year-long operation of an underground research laboratory (URL) ('HADES') located adjacent to the city of Mol at a depth of 225 m in a 100-m-thick, Tertiary clay formation; the Boom clay. The following main operational and safety challenges are addressed in the proposed architecture and layout: 1. Following excavation, the underground openings needed to be promptly supported to minimize the extent of the excavation damaged zone (EDZ). 2. The size and unsupported stand-up time at tunnel crossings/intersections also needed to be minimized to minimize the extent of the related EDZ. 3. Steel components had to be minimized to limit the related long-term (post-closure) corrosion and hydrogen production. 4. The shafts and all equipment had to go down through a 180-m-thick aquifer and handle up to 65-Ton payloads. 5. The shaft seals had to be placed in the underlying clay layer. The currently proposed layout minimizes the excavated volume based on strict long-term-safety criteria and optimizes operational safety. Operational safety is further enhanced by a remote-controlled waste-package-handling system transporting the waste packages from their respective surface location down to their respective disposal location with no intermediate operation. The related on-site preparation and thenceforth use of cement-based, waste package- transportation containers are integral operational-safety components. In addition to strengthening the waste packages and providing radiation protection, these containers also provide long-term corrosion protection of the internal 'primary' steel packages. (authors)

  18. Assessment of shielding analysis methods, codes, and data for spent fuel transport/storage applications. [Radiation dose rates from shielded spent fuels and high-level radioactive waste

    SciTech Connect

    Parks, C.V.; Broadhead, B.L.; Hermann, O.W.; Tang, J.S.; Cramer, S.N.; Gauthey, J.C.; Kirk, B.L.; Roussin, R.W.

    1988-07-01

    This report provides a preliminary assessment of the computational tools and existing methods used to obtain radiation dose rates from shielded spent nuclear fuel and high-level radioactive waste (HLW). Particular emphasis is placed on analysis tools and techniques applicable to facilities/equipment designed for the transport or storage of spent nuclear fuel or HLW. Applications to cask transport, storage, and facility handling are considered. The report reviews the analytic techniques for generating appropriate radiation sources, evaluating the radiation transport through the shield, and calculating the dose at a desired point or surface exterior to the shield. Discrete ordinates, Monte Carlo, and point kernel methods for evaluating radiation transport are reviewed, along with existing codes and data that utilize these methods. A literature survey was employed to select a cadre of codes and data libraries to be reviewed. The selection process was based on specific criteria presented in the report. Separate summaries were written for several codes (or family of codes) that provided information on the method of solution, limitations and advantages, availability, data access, ease of use, and known accuracy. For each data library, the summary covers the source of the data, applicability of these data, and known verification efforts. Finally, the report discusses the overall status of spent fuel shielding analysis techniques and attempts to illustrate areas where inaccuracy and/or uncertainty exist. The report notes the advantages and limitations of several analysis procedures and illustrates the importance of using adequate cross-section data sets. Additional work is recommended to enable final selection/validation of analysis tools that will best meet the US Department of Energy's requirements for use in developing a viable HLW management system. 188 refs., 16 figs., 27 tabs.

  19. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    SciTech Connect

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M.

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on the liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.

  20. The siting record: An account of the programs of federal agencies and events that have led to the selection of a potential site for a geologic respository for high-level radioactive waste

    SciTech Connect

    Lomenick, T.F.

    1996-03-01

    This record of siting a geologic repository for high-level radioactive wastes (HLW) and spent fuel describes the many investigations that culminated on December 22, 1987 in the designation of Yucca Mountain (YM), as the site to undergo detailed geologic characterization. It recounts the important issues and events that have been instrumental in shaping the course of siting over the last three and one half decades. In this long task, which was initiated in 1954, more than 60 regions, areas, or sites involving nine different rock types have been investigated. This effort became sharply focused in 1983 with the identification of nine potentially suitable sites for the first repository. From these nine sites, five were subsequently nominated by the U.S. Department of Energy (DOE) as suitable for characterization and then, in 1986, as required by the Nuclear Waste Policy Act of 1982 (NWPA), three of these five were recommended to the President as candidates for site characterization. President Reagan approved the recommendation on May 28, 1986. DOE was preparing site characterization plans for the three candidate sites, namely Deaf Smith County, Texas; Hanford Site, Washington; and YM. As a consequence of the 1987 Amendment to the NWPA, only the latter was authorized to undergo detailed characterization. A final Site Characterization Plan for Yucca Mountain was published in 1988. Prior to 1954, there was no program for the siting of disposal facilities for high-level waste (HLW). In the 1940s and 1950s, the volume of waste, which was small and which resulted entirely from military weapons and research programs, was stored as a liquid in large steel tanks buried at geographically remote government installations principally in Washington and Tennessee.

  1. Incineration of radioactive organic liquid wastes by underwater thermal plasma

    NASA Astrophysics Data System (ADS)

    Mabrouk, M.; Lemont, F.; Baronnet, J. M.

    2012-12-01

    This work deals with incineration of radioactive organic liquid wastes using an oxygen thermal plasma jet, submerged under water. The results presented here are focused on incineration of three different wastes: a mixture of tributylphosphate (TBP) and dodecane, a perfluoropolyether oil (PFPE) and trichloroethylene (TCE). To evaluate the plutonium behavior in used TBP/dodecane incineration, zirconium is used as a surrogate of plutonium; the method to enrich TBP/dodecane mixture in zirconium is detailed. Experimental set-up is described. During a trial run, CO2 and CO contents in the exhaust gas are continuously measured; samples, periodically taken from the solution, are analyzed by appropriate chemical methods: contents in total organic carbon (COT), phosphorus, fluoride and nitrates are measured. Condensed residues are characterized by RX diffraction and SEM with EDS. Process efficiency, during tests with a few L/h of separated or mixed wastes, is given by mineralization rate which is better than 99.9 % for feed rate up to 4 L/h. Trapping rate is also better than 99 % for phosphorous as for fluorine and chlorine. Those trials, with long duration, have shown that there is no corrosion problems, also the hydrogen chloride and fluoride have been neutralized by an aqueous solution of potassium carbonate.

  2. Pilot studies to achieve waste minimization and enhance radioactive liquid waste treatment at the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    SciTech Connect

    Freer, J.; Freer, E.; Bond, A.

    1996-07-01

    The Radioactive and Industrial Wastewater Science Group manages and operates the Radioactive Liquid Waste Treatment Facility (RLWTF) at the Los Alamos National Laboratory (LANL). The RLWTF treats low-level radioactive liquid waste generated by research and analytical facilities at approximately 35 technical areas throughout the 43-square-mile site. The RLWTF treats an average of 5.8 million gallons (21.8-million liters) of liquid waste annually. Clarifloculation and filtration is the primary treatment technology used by the RLWTF. This technology has been used since the RLWTF became operable in 1963. Last year the RLWTF achieved an average of 99.7% removal of gross alpha activity in the waste stream. The treatment process requires the addition of chemicals for the flocculation and subsequent precipitation of radionuclides. The resultant sludge generated during this process is solidified in drums and stored or disposed of at LANL.

  3. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste: Part I, Introduction and guidelines

    USGS Publications Warehouse

    Bedinger, M.S.; Sargent, Kenneth A.; Reed, J.E.

    1984-01-01

    used in characterizing the Province.The current (1983) needs for a high-level radioactive waste repository include: (1) Disposal in a mined repository; (2) retrievability of the waste for as much as 50 years; and (3) confidence of isolation of the waste from the accessible environment. Isolation of the waste needs to be assured using geologic and hydrologic conditions that: (1) Minimize risk of inadvertent future intrusions by man; (2) minimize the possibility of disturbance by processes that would expose the waste or increase its mobility; and (3) provide a system of natural barriers to the migration of waste by ground water. The guidelines adopted by the Province Working Group are designed to provide a standard with which these conditions can be compared.The guidelines can be grouped into four principal categories: (1) Potential host media, (2) ground-water conditions, (3) tectonic conditions, and. (4) occurrence of natural resources. Ideally the host medium constitutes the first natural barrier to migration of radionculides. The host medium ideally should be a rock type that prevents or retards dissolution and transport of radionuclides. Rocks in both the saturated and unsaturated zones may have desirable characteristics for host media. Rocks-other than the host-in the ground-water flow path from the repository ideally should be major barriers to radionuclide migration. Confining beds of low permeability might be present to retard the rate of flow between more permeable beds. Additionally, sorption of radionuclides by materials such as clays and zeolites in the flow path can further retard the flow of radionuclides by several orders of magnitude. Tectonic conditions in an area should not present a probable cause for exhumation or increased mobility of radioactive waste. Natural resources are a factor for consideration because of the problem of future human intrusion and exposure to radioactivity in the quest for minerals, oil, gas, water, and geothermal resources

  4. Application of annular centrifugal contactors in the hot test of the improved total partitioning process for high level liquid waste.

    PubMed

    Duan, Wuhua; Chen, Jing; Wang, Jianchen; Wang, Shuwei; Feng, Xiaogui; Wang, Xinghai; Li, Shaowei; Xu, Chao

    2014-08-15

    High level liquid waste (HLLW) produced from the reprocessing of the spent nuclear fuel still contains moderate amounts of uranium, transuranium (TRU) actinides, (90)Sr, (137)Cs, etc., and thus constitutes a permanent hazard to the environment. The partitioning and transmutation (P&T) strategy has increasingly attracted interest for the safe treatment and disposal of HLLW, in which the partitioning of HLLW is one of the critical technical issues. An improved total partitioning process, including a TRPO (tri-alkylphosphine oxide) process for the removal of actinides, a CESE (crown ether strontium extraction) process for the removal of Sr, and a CECE (calixcrown ether cesium extraction) process for the removal of Cs, has been developed to treat Chinese HLLW. A 160-hour hot test of the improved total partitioning process was carried out using 72-stage 10-mm-dia annular centrifugal contactors (ACCs) and genuine HLLW. The hot test results showed that the average DFs of total α activity, Sr and Cs were 3.57 × 10(3), 2.25 × 10(4) and 1.68 × 10(4) after the hot test reached equilibrium, respectively. During the hot test, 72-stage 10-mm-dia ACCs worked stable, continuously with no stage failing or interruption of the operation.

  5. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    SciTech Connect

    Rechard, Robert P.

    2015-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2009 of the performance of a repository for spent nuclear fuel and high - level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment - specific laboratory experiments, in - situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site - specific characterization . The current sixth period beyond 2010 represents a new effort to set waste management policy in the United States. Because the relationship is important to understanding the evolution of the Yucca Mountain Project , the tabulation also shows the interaction between the policy realm and technical realm using four broad categories of events : (a) Regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives, (c) technical milestones of implementing institutions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste. Preface The historical progression of technical milestones for the Yucca Mountain Project was originally developed for 10 journal articles in a special issue of Reliability Engineering System Safety on the performance assessment for the Yucca Mountain license

  6. Strontium Isotopes in Pore Water as an Indicator of Water Flux at the Proposed High-Level Radioactive Waste Repository, Yucca Mountain, Nevada

    SciTech Connect

    B. Marshall; K. Futa

    2004-02-19

    The proposed high-level radioactive waste repository at Yucca Mountain, Nevada, would be constructed in the high-silica rhyolite (Tptp) member of the Miocene-age Topopah Spring Tuff, a mostly welded ash-flow tuff in the {approx}500-m-thick unsaturated zone. Strontium isotope compositions have been measured in pore water centrifuged from preserved core samples and in leachates of pore-water salts from dried core samples, both from boreholes in the Tptp. Strontium isotope ratios ({sup 87}Sr/{sup 86}Sr) vary systematically with depth in the surface-based boreholes. Ratios in pore water near the surface (0.7114 to 0.7124) reflect the range of ratios in soil carbonate (0.7112 to 0.7125) collected near the boreholes, but ratios in the Tptp (0.7122 to 0.7127) at depths of 150 to 370 m have a narrower range and are more radiogenic due to interaction with the volcanic rocks (primarily non-welded tuffs) above the Tptp. An advection-reaction model relates the rate of strontium dissolution from the rocks with flow velocity. The model results agree with the low transport velocity ({approx}2 cm per year) calculated from carbon-14 data by I.C. Yang (2002, App. Geochem., v. 17, no. 6, p. 807-817). Strontium isotope ratios in pore water from Tptp samples from horizontal boreholes collared in tunnels at the proposed repository horizon have a similar range (0.7121 to 0.7127), also indicating a low transport velocity. Strontium isotope compositions of pore water below the proposed repository in core samples from boreholes drilled vertically downward from tunnel floors are more varied, ranging from 0.7112 to 0.7127. The lower ratios (<0.7121) indicate that some of the pore water in these boreholes was replaced by tunnel construction water, which had an {sup 87}Sr/{sup 86}Sr of 0.7115. Ratios lower than 0.7115 likely reflect interaction of construction water with concrete in the tunnel inverts, which had an {sup 87}Sr/{sup 86}Sr < 0.709. These low Sr ratios indicate penetration of

  7. The Development of an Effective Transportation Risk Assessment Model for Analyzing the Transport of Spent Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository

    SciTech Connect

    McSweeney; Thomas; Winnard; Ross; Steven B.; Best; Ralph E.

    2001-02-06

    Past approaches for assessing the impacts of transporting spent fuel and high-level radioactive waste have not been effectively implemented or have used relatively simple approaches. The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis considers 83 origins, 34 fuel types, 49,914 legal weight truck shipments, 10,911 rail shipments, consisting of 59,250 shipment links outside Nevada (shipment kilometers and population density pairs through urban, suburban or rural zones by state), and 22,611 shipment links in Nevada. There was additional complexity within the analysis. The analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The model also considered different accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. To capture the all of the complexities of the transportation analysis, a Microsoft{reg_sign} Access database was created. In the Microsoft{reg_sign} Access approach the data is placed in individual tables and equations are developed in queries to obtain the overall impacts. While the query might be applied to thousands of table entries, there is only one equation for a particular impact. This greatly simplifies the validation effort. Furthermore, in Access, data in tables can be linked automatically using query joins. Another advantage built into MS Access is nested queries, or the ability to develop query hierarchies. It is possible to separate the calculation into a series of steps, each step represented by a query. For example, the first query might calculate the number of shipment kilometers traveled through urban, rural and suburban zones for all states. Subsequent queries could join the shipment kilometers query results with another table containing the state and mode specific accident rate to produce accidents by state. One of the biggest advantages of the nested queries is in validation

  8. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    SciTech Connect

    Biggs, J.

    1995-12-31

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

  9. Argentine experience on immobilization of simulated high-level liquid wastes in sintered borosilicate and aluminoborosilicate glasses

    SciTech Connect

    Bevilacqua, A.M.; Bernasaconi, N.B.M. de; Russo, D.O.; Audero, M.A.

    1996-12-31

    A research and development program on sintering for the immobilization of high-level liquid wastes (HLLW) is carried out since 1984 at the Division Materiales Nucleares of the Centro Atomico Bariloche. Sintered samples were produced with glasses from diverse sources and with different compositions: a German borosilicate glass (VG98/12), its local counterpart (Simil VG) and a German aluminoborosilicate glass (SG7). Simulated HLLW, light water reactor (LWR) and heavy water reactor (PHWR) types, were immobilized in these glasses with a waste loading of 10 wt.%. The behavior, including thermal stability and chemical corrosion, was studied for the sintered glasses with and without simulated HLLW. Borosilicate and aluminoborosilicate glass samples were obtained by cold pressing and sintering (CP+S), also known as pressureless sintering. Borosilicate glass samples were also produced by uniaxial hot pressing (UBP), also known as pressure sintering, in graphite dies or in the final metal container (in-can). Devitrification studies were carried out on SG7 and VG98/12 with and without simulated PHWR wastes. The microstructure of both cold pressed and sintered VG98/12-10LWR and Simil VG-IOLWR, in which calcined waste particles were immobilized, shows that the particles did not dissolve in the glass, but were homogeneously dispersed. Leaching tests (MCC-IP) were carried out at temperatures lower than 373 K. The gamma radiation damage was produced by a {sup 60}Co gamma field (Division Fuentes Intensas, Centro Atomico Ezeiza, C.N.E.A.). The dose rate was 4.34x 10{sup 4} Gy/h and the total doses ranging from 1.4 x 10{sup 6} GY to 2.0 x 10{sup 8} Gy. The density, the degree of devitrification, the microstructure and the leaching rate in ADI remained unaffected by the gamma irradiation. After leaching tests, the waste zones were more affected than the glass matrix and there was no global difference with the irradiation dose.

  10. Calculation of chemical quantities for the radioactive liquid waste treatment facility

    SciTech Connect

    Del Signore, John C.; McClenahan, Robert L.

    2007-03-01

    The Radioactive Liquid Waste Treatment Facility (RLWTF) receives, stores, and treats both low-level and transuranic radioactive liquid wastes (RLW). Treatment of RLW requires the use of different chemicals. Examples include the use of calcium oxide to precipitate metals and radioactive elements from the radioactive liquid waste, and the use of hydrochloric acid to clean membrane filters that are used in the treatment process. The RL WTF is a Hazard Category 2 nuclear facility, as set forth in the LANL Final Safety Analysis Report of October 1995, and a DOE letter of March 11, 1999. A revised safety basis is being prepared for the RLWTF, and will be submitted to the NNSA in early 2007. This set of calculations establishes maximum chemical quantities that will be used in the 2007 safety basis.

  11. Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371

    SciTech Connect

    Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.; Savkin, Alexander E.

    2012-07-01

    SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, development of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)

  12. Solidification Technologies for Radioactive and Chemical Liquid Waste Treatment - Final CRADA Report

    SciTech Connect

    Castiglioni, Andrew J.; Gelis, Artem V.

    2016-01-01

    This project, organized under DOE/NNSA's Global Initiatives for Proliferation Prevention program, joined Russian and DOE scientists in developing more effective solidification and storage technologies for liquid radioactive waste. Several patent applications were filed by the Russian scientists (Russia only) and in 2012, the technology developed was approved by Russia's Federal State Unitary Enterprise RADON for application throughout Russia in cleaning up and disposing of radioactive waste.

  13. Environmental evaluation of alternatives for long-term management of Defense high-level radioactive wastes at the Idaho Chemical Processing Plant

    SciTech Connect

    Not Available

    1982-09-01

    The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24 figures, 60 tables.

  14. Declassification of radioactive liquid wastes generated in radio immune assay [corrected] (RIA) laboratories.

    PubMed

    Sancho, M; Arnal, J M; Villaescusa, J I; Campayo, J M; Verdú, G

    2005-01-01

    Radioactive liquid wastes of low-medium activity level are generated in radio immune assay (RIA) laboratories, which are also potentially infectious because of the pathogens from patient blood. The most common way of managing these wastes consists of a temporal storage, for partial radioactivity decay, followed by management by an authorised company. The object of this work is to study the viability of treating radioactive liquid wastes coming from RIA using membrane techniques in order to reduce their volume, which would mean an improvement from the radiological point of view and a decrease in management costs. This paper describes the results of some experiments carried out with RIA real wastes, by means of processes such as ultrafiltration and reverse osmosis. It has been proved that waste volume can be significantly reduced, obtaining a treated liquid that is free of pathogens and organic matter and with an activity level around the environmental background.

  15. Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent

    DOEpatents

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2001-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  16. Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes

    DOEpatents

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2002-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  17. ICPP radioactive liquid and calcine waste technologies evaluation final report and recommendation

    SciTech Connect

    1995-04-01

    Using a formalized Systems Engineering approach, the Latched Idaho Technologies Company developed and evaluated numerous alternatives for treating, immobilizing, and disposing of radioactive liquid and calcine wastes at the Idaho Chemical Processing Plant. Based on technical analysis data as of March, 1995, it is recommended that the Department of Energy consider a phased processing approach -- utilizing Radionuclide Partitioning for radioactive liquid and calcine waste treatment, FUETAP Grout for low-activity waste immobilization, and Glass (Vitrification) for high-activity waste immobilization -- as the preferred treatment and immobilization alternative.

  18. Concentration of radioactive liquid streams by membrane processes

    SciTech Connect

    Ramachandhran, V.; Misra, B.M.

    1983-05-01

    The possibility of concentrating radioactive effluents by reverse osmosis was investigated. Cellulose acetate membranes of the Loeb-Sourirajan type were used, and their performance was evaluated the CsCl and SrCl/sub 2/ solutions in concentrations ranging from millimolar to trace level. The applicability of solution-diffusion and irreversible thermodynamic models for predicting solute separation in the above concentration range has been investigated. Some aspects of the selectivity with reference to trace radionuclides are also reported.

  19. Function and requirement for a waste disloging and conveyance system for the Idaho National Engineering Laboratory high level liquid waste tanks

    SciTech Connect

    Mullen, O.D.

    1996-09-10

    In 1990 the U.S. Department of Energy (DOE) Office of Technology Development initiated the Light Duty Utility Arm (LDUA) program to support the Consent Order between the State of Idaho, U.S. Department of Energy, and the Environmental Protection Agency that requires ceasing use of the 11 high-level liquid waste (HLLW) storage tanks at the Idaho Chemical Processing Plant (ICPP).

  20. Detection of free liquid in containers of solidified radioactive waste

    DOEpatents

    Greenhalgh, Wilbur O.

    1985-01-01

    A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  1. Detection of free liquid in containers of solidified radioactive waste

    DOEpatents

    Greenhalgh, W.O.

    Nondestructive detection of the presence of free liquid within a sealed enclosure containing solidified waste is accomplished by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solifified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  2. Apparatus for positioning an external radioactive standard in a liquid scintillation counter

    SciTech Connect

    Horrocks, D.L.; Kampf, R.S.

    1987-07-07

    This patent describes a liquid scintillation counter having a counting chamber for receiving a sample containing a scintillator substance and a sample of a radioactive substance to be counted. The improved apparatus positions a radioactive source in an operating location to irradiate the sample in the counting chamber comprising, in combination: (1) a continuous bidirectionally flexible conveyor forming a closed loop for conveying the radioactive source through on operating location and a storage location; (2) means supporting the radioactive source at a position along the flexible conveyor for conveyance; (3) guide means for supporting the conveyor and for guiding conveyor movement along a selected path, the path transversing at spaced positions the storage location for the radioactive source remote from the counting chamber and the operating location for the radioactive source near to the counting chamber; and (4) drive means coupled to the continuous flexible conveyor to draw the conveyor around the path for conveying the radioactive source through the spaced storage and operating locations.

  3. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part I. Introduction and guidelines

    SciTech Connect

    Bedinger, M.S.; Sargent, K.A.; Reed, J.E.

    1984-12-31

    The US Geological Survey`s program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight states in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the federal government in the evaluation process. Each governor was requested to nominate an earth scientist to represent the state in a province working group composed of state and US Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration. 27 refs., 6 figs., 1 tab.

  4. Interfaces between transport and geologic disposal systems for high-level radioactive wastes and spent nuclear fuel: A new international guidance document

    SciTech Connect

    Pope, R.B.; Baekelandt, L.; Hoorelbeke, J.M.; Han, K.W.; Pollog, T.; Blackman, D.; Villagran, J.E.

    1994-04-01

    An International Atomic Energy Agency (IAEA) Technical Document (TECDOC) has been developed and will be published by the IAEA. The TECDOC addresses the interfaces between the transport and geologic disposal systems for, high-level waste (HLW) and spent nuclear fuel (SNF). The document is intended to define and assist in discussing, at both the domestic and the international level, regulatory, technical, administrative, and institutional interfaces associated with HLW and SNF transport and disposal systems; it identifies and discusses the interfaces and interface requirements between the HLW and SNF, the waste transport system used for carriage of the waste to the disposal facility, and the HLW/SNF disposal facility. It provides definitions and explanations of terms; discusses systems, interfaces and interface requirements; addresses alternative strategies (single-purpose packages and multipurpose packages) and how interfaces are affected by the strategies; and provides a tabular summary of the requirements.

  5. Process for immobilizing radioactive boric acid liquid wastes

    SciTech Connect

    Greenhalgh, Wilbur O.

    1986-01-01

    A method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

  6. Thermal treatment of historical radioactive solid and liquid waste into the CILVA incinerator

    SciTech Connect

    Deckers, Jan; Mols, Ludo

    2007-07-01

    Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste. (authors)

  7. US and Russian innovative technologies to process low-level liquid radioactive wastes: The Murmansk initiative

    SciTech Connect

    Dyer, R.S.; Penzin, R.; Duffey, R.B.; Sorlie, A.

    1996-12-31

    This paper documents the status of the technical design for the upgrade and expansion to the existing Low-level Liquid Radioactive Waste (LLLRW) treatment facility in Murmansk, the Russian Federation. This facility, owned by the Ministry of Transportation and operated by the Russian company RTP Atomflot in Murmansk, Russia, has been used by the Murmansk Shipping Company (MSCo) to process low-level liquid radioactive waste generated by the operation of its civilian icebreaker fleet. The purpose of the new design is to enable Russia to permanently cease the disposal at sea of LLLRW in the Arctic, and to treat liquid waste and high saline solutions from both the Civil and North Navy Fleet operations and decommissioning activities. Innovative treatments are to be used in the plant which are discussed in this paper.

  8. Prospects for using membrane distallation for reprocessing liquid radioactive wastes

    SciTech Connect

    Dytnerskii, Y.I.; Karlin, Y.V.; Kropotov, B.N.

    1994-05-01

    Membrane distillation is a promising method for deep desalinization and for removal of impurities of different nature from water. The crux of the method is as follows. The initial (hot) solution, heated up to 30-70{degrees}C, is fed into one side of a hydrophobic microporous membrane. A less heated (cold) distillate moves along the other. Since the membrane is hydrophobic and the pores are small ({approximately}1 {mu}m and less), the liquid phase does not penetrate into the pores in accordance with Kelvin`s law. The vapor evaporating from the surface of the hot solution (the evaporation surface in this case are solution meniscuses forming at the entrance into a pore) penetrates into the pores of the membrane, diffuses through the air layer in the pore, and condenses on the surface of the menisci of cold liquid. In the process rarefaction is produced in the pores, and this accelerates evaporation and therefore increases its efficiency.

  9. Estimation of the limitations for surficial water addition above a potential high level radioactive waste repository at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect

    Fewell, M.E.; Sobolik, S.R.; Gauthier, J.H.

    1992-01-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface-based and underground testing. Analyses have been performed to design site characterization activities with minimal impact on the ability of the site to isolate waste, and on tests performed as part of the characterization process. One activity of site characterization is the construction of an Exploratory Studies Facility, consisting of underground shafts, drifts, and ramps, and the accompanying surface pad facility and roads. The information in this report addresses the following topics: (1) a discussion of the potential effects of surface construction water on repository-performance, and on surface and underground experiments; (2) one-dimensional numerical calculations predicting the maximum allowable amount of water that may infiltrate the surface of the mountain without affecting repository performance; and (3) two-dimensional numerical calculations of the movement of that amount of surface water and how the water may affect repository performance and experiments. The results contained herein should be used with other site data and scientific/engineering judgement in determining controls on water usage at Yucca Mountain. This document contains information that has been used in preparing Appendix I of the Exploratory Studies Facility Design Requirements document for the Yucca Mountain Site Characterization Project.

  10. Mineralogy and clinoptilolite K/Ar results from Yucca Mountain, Nevada, USA: A potential high-level radioactive waste repository site

    SciTech Connect

    WoldeGabriel, G.; Broxton, D.E.; Bish, D.L.; Chipera, S.J.

    1993-11-01

    The Yucca Mountain Site Characterization Project is investigating Yucca Mountain, Nevada, as a potential site for a high-level nuclear waste repository. An important aspect of this evaluation is to understand the geologic history of the site including the diagenetic processes that are largely responsible for the present-day chemical and physical properties of the altered tuffs. This study evaluates the use of K/Ar geochronology in determining the alteration history of the zeolitized portions of Miocene tuffs at Yucca Mountain. Clinoptilolite is not generally regarded as suitable for dating because of its open structure and large ion-exchange capacity. However, it is the most abundant zeolite at Yucca Mountain and was selected for this study to assess the feasibility of dating the zeolitization process and/or subsequent processes that may have affected the zeolites. In this study we examine the ability of this mineral to retain all or part of its K and radiogenic Ar during diagenesis and evaluate the usefulness of the clinoptilolite K/Ar dates for determining the history of alteration.

  11. A preliminary assessment of mineralogical criteria on the utility of argillaceous rocks and minerals for high-level radioactive waste disposal

    SciTech Connect

    Kopp, O.C.

    1986-12-01

    The purpose of this study was to review available data concerning the properties reported for shales and clay-rich rocks and clay minerals to determine whether such information could be instrumental in selecting the more favorable assemblages of clays for high-level waste repository purposes. Literature searches were conducted for reports dealing with the properties of these argillaceous materials. The properties that were obtained from appropriate references were recorded in an Appleworks Database. The data are divided into five major goups: chemical properties, general physical properties, hydrologic properties, mechanical properties, and thermal properties. The Database includes such information as the type of material, formation name, geological age, location, depth, test conditions, results, and reference(s). In general, noticeable correlations were not apparent when mineralogical information was compared with various properties using plots of the data for each individual property. The best correlations were obtained for chemical and certain mechanical and hydrologic properties. Thermal properties appear to be least influenced by clay mineral composition. An important reason for the inability to correlate mineralogical compositions with most properties was the lack of uniformity of test methods, test conditions, and even the units used for reporting the final data. There was very limited information concerning the mineralogical compositions of most of the shales tested. The potential exists for identifying the more suitable formations (or specific horizons within formations) using mineralogical data; however, in order to make such selections, it will be necessary to collect future data using standardized test methods and conditions. The mineralogical compositions of the samples tested need to be determined quantitatively rather than qualitatively.

  12. Audit of the radioactive liquid waste treatment facility operations at the Los Alamos National Laboratory

    SciTech Connect

    1997-11-19

    Los Alamos National Laboratory (Los Alamos) generates radioactive and liquid wastes that must be treated before being discharged to the environment. Presently, the liquid wastes are treated in the Radioactive Liquid Waste Treatment Facility (Treatment Facility), which is over 30 years old and in need of repair or replacement. However, there are various ways to satisfy the treatment need. The objective of the audit was to determine whether Los Alamos cost effectively managed its Treatment Facility operations. The audit determined that Los Alamos` treatment costs were significantly higher when compared to similar costs incurred by the private sector. This situation occurred because Los Alamos did not perform a complete analysis of privatization or prepare a {open_quotes}make-or-buy{close_quotes} plan for its treatment operations, although a {open_quotes}make-or-buy{close_quotes} plan requirement was incorporated into the contract in 1996. As a result, Los Alamos may be spending $2.15 million more than necessary each year and could needlessly spend $10.75 million over the next five years to treat its radioactive liquid waste. In addition, Los Alamos has proposed to spend $13 million for a new treatment facility that may not be needed if privatization proves to be a cost effective alternative. We recommended that the Manager, Albuquerque Operations Office (Albuquerque), (1) require Los Alamos to prepare a {open_quotes}make-or-buy{close_quotes} plan for its radioactive liquid waste treatment operations, (2) review the plan for approval, and (3) direct Los Alamos to select the most cost effective method of operations while also considering other factors such as mission support, reliability, and long-term program needs. Albuquerque concurred with the recommendations.

  13. Laboratory measurement of radioactivity purification for 212Pb in liquid scintillator

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Fang, Jian; Yu, Bo-Xiang; Zhang, Xuan; Zhou, Li; Cai, Xiao; Sun, Li-Jun; Liu, Wan-Jin; Wang, Lan; Lü, Jun-Guang

    2016-09-01

    Liquid scintillator (LS) has been widely used in past and running neutrino experiments, and is expected also to be used in future experiments. Requirements on LS radio-purity have become higher and higher. Water extraction is a powerful method to remove soluble radioactive nuclei, and a mini-extraction station has been constructed. To evaluate the extraction efficiency and optimize the operation parameters, a setup to load radioactivity to LS and a laboratory scale setup to measure radioactivity using the 212Bi-212Po-208Pb cascade decay have been developed. Experience from this laboratory study will be useful for the design of large scale water extraction plants and the optimization of working conditions in the future. Supported by The Strategic Priority Research Program of the Chinese Academy of Sciences (XDA10010500), Natural Science Foundation of China (11390384)

  14. DNA Extraction Protocol for Plants with High Levels of Secondary Metabolites and Polysaccharides without Using Liquid Nitrogen and Phenol.

    PubMed

    Sahu, Sunil Kumar; Thangaraj, Muthusamy; Kathiresan, Kandasamy

    2012-01-01

    Mangroves and salt marsh species are known to synthesize a wide spectrum of polysaccharides and polyphenols including flavonoids and other secondary metabolites which interfere with the extraction of pure genomic DNA. Although a plethora of plant DNA isolation protocols exist, extracting DNA from mangroves and salt marsh species is a challenging task. This study describes a rapid and reliable cetyl trimethylammonium bromide (CTAB) protocol suited specifically for extracting DNA from plants which are rich in polysaccharides and secondary metabolites, and the protocol also excludes the use of expensive liquid nitrogen and toxic phenols. Purity of extracted DNA was excellent as evident by A260/A280 ratio ranging from 1.78 to 1.84 and A260/A230 ratio was >2, which also suggested that the preparations were sufficiently free of proteins and polyphenolics/polysaccharide compounds. DNA concentration ranged from 8.8 to 9.9 μg μL(-1). The extracted DNA was amenable to RAPD, restriction digestion, and PCR amplification of plant barcode genes (matK and rbcl). The optimized method is suitable for both dry and fresh leaves. The success of this method in obtaining high-quality genomic DNA demonstrated the broad applicability of this method.

  15. Optimization of screening for radioactivity in urine by liquid scintillation.

    SciTech Connect

    Shanks, Sonoya Toyoko; Reese, Robert P.; Preston, Rose T.

    2007-08-01

    Numerous events have or could have resulted in the inadvertent uptake of radionuclides by fairly large populations. Should a population receive an uptake, valuable information could be obtained by using liquid scintillation counting (LSC) techniques to quickly screen urine from a sample of the affected population. This study investigates such LSC parameters as discrimination, quench, volume, and count time to yield guidelines for analyzing urine in an emergency situation. Through analyzing variations of the volume and their relationships to the minimum detectable activity (MDA), the optimum ratio of sample size to scintillating chemical cocktail was found to be 1:3. Using this optimum volume size, the alpha MDA varied from 2100 pCi/L for a 30-second count time to 35 pCi/L for a 1000-minute count time. The typical count time used by the Sandia National Laboratories Radiation Protection Sample Diagnostics program is 30 minutes, which yields an alpha MDA of 200 pCi/L. Because MDA is inversely proportional to the square root of the count time, count time can be reduced in an emergency situation to achieve the desired MDA or response time. Note that approximately 25% of the response time is used to prepare the samples and complete the associated paperwork. It was also found that if the nuclide of interest is an unknown, pregenerated discriminator settings and efficiency calibrations can be used to produce an activity value within a factor of two, which is acceptable for a screening method.

  16. Treatment of mixed radioactive liquid wastes at Argonne National Laboratory

    SciTech Connect

    Vandegrift, G.F.; Chamberlain, D.B.; Conner, C.

    1994-03-01

    Aqueous mixed waste at Argonne National Laboratory (ANL) is traditionally generated in small volumes with a wide variety of compositions. A cooperative effort at ANL between Waste Management (WM) and the Chemical Technology Division (CMT) was established, to develop, install, and implement a robust treatment operation to handle the majority of such wastes. For this treatment, toxic metals in mixed-waste solutions are precipitated in a semiautomated system using Ca(OH){sub 2} and, for some metals, Na{sub 2}S additions. This step is followed by filtration to remove the precipitated solids. A filtration skid was built that contains several filter types which can be used, as appropriate, for a variety of suspended solids. When supernatant liquid is separated from the toxic-metal solids by decantation and filtration, it will be a low-level waste (LLW) rather than a mixed waste. After passing a Toxicity Characteristic Leaching Procedure (TCLP) test, the solids may also be treated as LLW.

  17. Biochemical process of low level radioactive liquid simulation waste containing detergent

    NASA Astrophysics Data System (ADS)

    Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi

    2015-12-01

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10-5 Ci/m3. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod's model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour-1.

  18. Biochemical process of low level radioactive liquid simulation waste containing detergent

    SciTech Connect

    Kundari, Noor Anis Putra, Sugili; Mukaromah, Umi

    2015-12-29

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10{sup −5} Ci/m{sup 3}. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of 0

  19. Assessment of Radioactive Liquid Effluents Release at IPEN-CNEN/SP

    NASA Astrophysics Data System (ADS)

    Nisti, Marcelo Bessa; dos Santos, Adir Janete Godoy

    2008-08-01

    A continuous effluent monitoring program has been established at IPEN's plant in order to allow an environmental impact assessment due to radioactive liquid effluent discharge to sanitary system. Representative samples of radioactive liquid effluents are analyzed by using high resolution gamma spectroscopy and instrumental neutron activation analysis, facing to Brazilian radioprotection regulatory rules. The results are consolidating yearly in the Institute source-term. In this paper, results of the source-term are presented, concerning to years 2004, 2005 and 2006. The total activity discharged was 8.5×l08 Bq, 5.7×108 Bq and 2.7×l08 Bq, respectively. As the release is strongly dependent on the total amount of the effluent and on the dilution factor, special attention is needed in order to obtain the correct value of that last one. The estimated inside plant dilution factor, considering the recent facilities and the reshaping of the sewerage system was 80, 180 and 130, for period of 2004, 2005 and 2006 discharged liquid radioactive effluent.

  20. Assessment of Radioactive Liquid Effluents Release at IPEN-CNEN/SP

    SciTech Connect

    Bessa Nisti, Marcelo; Godoy dos Santos, Adir Janete

    2008-08-07

    A continuous effluent monitoring program has been established at IPEN's plant in order to allow an environmental impact assessment due to radioactive liquid effluent discharge to sanitary system. Representative samples of radioactive liquid effluents are analyzed by using high resolution gamma spectroscopy and instrumental neutron activation analysis, facing to Brazilian radioprotection regulatory rules. The results are consolidating yearly in the Institute source-term. In this paper, results of the source-term are presented, concerning to years 2004, 2005 and 2006. The total activity discharged was 8.5xl0{sup 8} Bq, 5.7x10{sup 8} Bq and 2.7xl0{sup 8} Bq, respectively. As the release is strongly dependent on the total amount of the effluent and on the dilution factor, special attention is needed in order to obtain the correct value of that last one. The estimated inside plant dilution factor, considering the recent facilities and the reshaping of the sewerage system was 80, 180 and 130, for period of 2004, 2005 and 2006 discharged liquid radioactive effluent.

  1. Production of Zero-Energy Radioactive Nuclear Beams through Extraction from the Liquid-Vapour Interface of Superfluid Helium

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Huang, W. X.; Dendooven, P.; Gloos, K.; Pekola, J. P.; ńystö, J.

    2004-04-01

    A new approach has been investigated to create an ultra-cold radioactive beam from high-energy ions. A 223Ra alpha-decay recoil source has been used to produce radioactive ions in superfluid helium. The alpha spectra demonstrate that the recoiling 219Rn ions have been extracted out of liquid helium. This first observation of the extraction of heavy positive ions across the superfluid helium surface has been possible thanks to the high sensitivity of radioactive ion detection. An efficiency of 36 % has been obtained for the ion extraction out of liquid helium.

  2. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    SciTech Connect

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  3. Process for converting sodium nitrate-containing, caustic liquid radioactive wastes to solid insoluble products

    DOEpatents

    Barney, Gary S.; Brownell, Lloyd E.

    1977-01-01

    A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.

  4. The Mochovce final treatment center for liquid radioactive waste introduced to active trial operation

    SciTech Connect

    Krajc, T.; Stubna, M.; Kravarik, K.; Zatkulak, M.; Slezak, M.; Remias, V.

    2007-07-01

    The Final Treatment Centre (FTC) for Mochovce Nuclear Power Plant (NPP) have been designed for treatment and final conditioning of radioactive liquid and wet waste produced by named NPP equipped with Russian VVER-440 type of reactors. Treated wastes comprise radioactive concentrates, spent resin and sludge. VUJE Inc. as an experienced company in field of treatment of radioactive waste in Slovakia has been chosen as main contractor for technological part of FTC. During the realisation of project the future operator of Centre required the contractor to solve the treatment of wastes produced in the process of NPP A-1 decommissioning. On the basis of this requirement the project was modified in order to enable manipulations with waste products from A-1 NPP transported to Centre in steel drums. The initial project was prepared in 2003. The design and manufacture of main components were performed in 2004 and 2005. FTC civil works started in August 2004. Initial nonradioactive testing of the system parts were carried out from April to September 2006, then the tests of systems started with model concentrates and non-radioactive resins. After the processes evaluation the radioactive test performed from February 2007. A one-year trial operation of facility is planned for completion during 2007 and 2008. The company JAVYS, Inc. is responsible for radioactive waste and spent fuel treatment in the Slovak republic and will operate the FTC during trial operation and after its completion. This Company has also significant experience with operation of Jaslovske Bohunice Treatment Centre. The overall capacity of the FTC is 820 m{sup 3}/year of concentrates and 40 m{sup 3}/year of spent resin and sludge. Bituminization and cementation were provided as main technologies for treatment of these wastes. Treatment of concentrate is performed by bituminization on Thin Film Evaporator with rotating wiping blades. Spent resin and sludge are decanted, dried and mixed with bitumen in blade

  5. Application of curium measurements for safeguarding at reprocessing plants. Study 1: High-level liquid waste and Study 2: Spent fuel assemblies and leached hulls

    SciTech Connect

    Rinard, P.M.; Menlove, H.O.

    1996-03-01

    In large-scale reprocessing plants for spent fuel assemblies, the quantity of plutonium in the waste streams each year is large enough to be important for nuclear safeguards. The wastes are drums of leached hulls and cylinders of vitrified high-level liquid waste. The plutonium amounts in these wastes cannot be measured directly by a nondestructive assay (NDA) technique because the gamma rays emitted by plutonium are obscured by gamma rays from fission products, and the neutrons from spontaneous fissions are obscured by those from curium. The most practical NDA signal from the waste is the neutron emission from curium. A diversion of waste for its plutonium would also take a detectable amount of curium, so if the amount of curium in a waste stream is reduced, it can be inferred that there is also a reduced amount of plutonium. This report studies the feasibility of tracking the curium through a reprocessing plant with neutron measurements at key locations: spent fuel assemblies prior to shearing, the accountability tank after dissolution, drums of leached hulls after dissolution, and canisters of vitrified high-level waste after separation. Existing pertinent measurement techniques are reviewed, improvements are suggested, and new measurements are proposed. The authors integrate these curium measurements into a safeguards system.

  6. Limitations on upper bound dose to adults due to intake of 129I in drinking water and a total diet-implications relative to the proposed Yucca Mountain high level radioactive waste repository.

    PubMed

    Moeller, Dade W; Ryan, Michael T

    2004-06-01

    The purpose of this report is to comment on the potential annual doses due to the intake by adults of I, an important radionuclide in the proposed high-level radioactive waste repository at Yucca Mountain. An often overlooked, but significant, factor is that, in this case, the ground water, which would be the primary transport vehicle for any releases, contains relatively high concentrations of stable iodine (127I); in fact, the median concentration in the ground water in the vicinity of the proposed repository is 5.0 microg L-1. In comparison, the maximum concentration of 129I in the ground water, due to potential releases of 129I during the first 10,000 y following closure of the repository, is estimated to be approximately 3.7 x 10(-7) Bq L-1 (approximately 10(-5) pCi L-1). This would result in a 127I to 129I ratio in the water of almost 90 million to one. Assuming no other sources of these two isotopes were being consumed, this would place an upper bound on the annual committed thyroid dose of 1.2 x 10(-1) mSv (1.2 x 10(-1) mrem), less than one thousandth of the Ground Water Protection Standard of 4 mrem y-1. When the additional intake of stable and radioactive iodine in other components of the diet is considered, the overall ratio of 127I to 129I would be more than 2 billion to one. The would place an upper bound on the annual committed effective dose of approximately 2.5 x 10(-8) mSv (approximately 2.5 x 10(-6) mrem), less than one millionth of the Individual Protection Standard of 0.15 mSv (15 mrem).

  7. Feasibility study of the applicability of the activated sludge process to treatment of radioactive organic liquid waste

    SciTech Connect

    Koyama, Akio; Nishimaki, Kenzo

    1997-12-31

    The authors used an activated sludge process to treat radioactive organic liquid waste. Organic liquid waste is difficult to treat by conventional radioactive liquid treatment processes, but in order to reduce long-term irradiation of the public the removal of radionuclides from such waste is preferable to dilution. Activated sludge processes are widely used for the biological treatment of sewage and are considered appropriate means for treating radioactive organic liquid waste. In this process, the fate of radionuclides eluted by treated water or immobilized by activated sludge, is extremely important for public safety and for the treatment of radioactive organic liquid waste. The authors performed uptake and desorption behavior experiments on the three short half-life radionuclides {sup 134}Cs, {sup 57}Co and {sup 85}Sr, and used three nutritive types of artificial sewage as the feed solution. On the basis of the results, they discuss the uptake-desorption behavior of these radionuclides in an activated sludge process. The authors conclude that treatment of radioactive organic liquid waste by an activated sludge process is possible, but improvements must be made in the process if it is to be more effective.

  8. Final Treatment Center Project for Liquid and Wet Radioactive Waste in Slovakia

    SciTech Connect

    Kravarik, K.; Stubna, M.; Pekar, A.; Krajc, T.; Zatkulak, M.; Holicka, Z.; Slezak, M.

    2006-07-01

    The Final Treatment Center (FTC) for Mochovce nuclear power plant (NPP) is designed for treatment and final conditioning of radioactive liquid and wet waste produced from plant operation. Mochovce NNP uses a Russian VVER-440 type reactor. Treated wastes comprise radioactive concentrates, spent resin and sludge. VUJE Inc. as an experienced company in field of treatment of radioactive waste in Slovakia has been chosen as main contractor for technological part of FTC. This paper describes the capacity, flow chart, overall waste flow and parameters of the main components in the FTC. The initial project was submitted for approval to the Slovak Electric plc. in 2003. The design and manufacture of main components were performed in 2004 and 2005. FTC construction work started early in 2004. Initial non-radioactive testing of the system is planned for summer 2006 and then radioactive tests are to be followed. A one-year trial operation of facility is planned for completion in 2007. SE - VYZ will be operates the FTC during trial operation and after its completion. SE - VYZ is subsidiary company of Slovak Electric plc. and it is responsible for treatment with radioactive waste and spent fuel in the Slovak republic. SE - VYZ has, besides of other significant experience with operation of Jaslovske Bohunice Treatment Centre. The overall capacity of the FTC is 870 m{sup 3}/year of concentrates and 40 m{sup 3}/year of spent resin and sludge. Bituminization and cementation were provided as main technologies for treatment of these wastes. Treatment of concentrate is performed by bituminization. Concentrate and bitumen are metered into a thin film evaporator with rotating wiping blades. Surplus water is evaporated and concentrate salts are embedded in bitumen. Bitumen product is discharged into 200 l steel drums. Spent resin and sludge are decanted, dried and mixed with bitumen. These mixtures are also discharged into 200 l steel drums. Drums are moved along bituminization line on a

  9. Detection of free liquid in drums of radioactive waste. [Patent application

    DOEpatents

    Not Available

    1979-10-16

    A nondestructive thermal imaging method for detecting the presence of a liquid such as water within a sealed container is described. The process includes application of a low amplitude heat pulse to an exterior surface area of the container, terminating the heat input and quickly mapping the resulting surface temperatures. The various mapped temperature values can be compared with those known to be normal for the container material and substances in contact. The mapped temperature values show up in different shades of light or darkness that denote different physical substances. The different substances can be determined by direct observation or by comparison with known standards. The method is particularly applicable to the detection of liquids above solidified radioactive wastes stored in sealed containers.

  10. FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL

    SciTech Connect

    Williams, M

    2008-05-09

    Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

  11. Removal of Radioactive Nuclides from Mo-99 Acidic Liquid Waste - 13027

    SciTech Connect

    Hsiao, Hsien-Ming; Pen, Ben-Li

    2013-07-01

    About 200 liters highly radioactive acidic liquid waste originating from Mo-99 production was stored at INER (Institute of Nuclear Energy Research). A study regarding the treatment of the radioactive acidic liquid waste was conducted to solve storage-related issues and allow discharge of the waste while avoiding environmental pollution. Before discharging the liquid waste, the acidity, NO{sub 3}{sup -} and Hg ions in high concentrations, and radionuclides must comply with environmental regulations. Therefore, the treatment plan was to neutralize the acidic liquid waste, remove key radionuclides to reduce the dose rate, and then remove the nitrate and mercury ions. Bench tests revealed that NaOH is the preferred solution to neutralize the high acidic waste solution and the pH of solution must be adjusted to 9∼11 prior to the removal of nuclides. Significant precipitation was produced when the pH of solution reached 9. NaNO{sub 3} was the major content in the precipitate and part of NaNO{sub 3} was too fine to be completely collected by filter paper with a pore size of approximately 3 μm. The residual fine particles remaining in solution therefore blocked the adsorption column during operation. Two kinds of adsorbents were employed for Cs-137 and a third for Sr-90 removal to minimize cost. For personnel radiation protection, significant lead shielding was required at a number of points in the process. The final process design and treatment facilities successfully treated the waste solutions and allowed for environmentally compliant discharge. (authors)

  12. Resistance of class C fly ash belite cement to simulated sodium sulphate radioactive liquid waste attack.

    PubMed

    Guerrero, A; Goñi, S; Allegro, V R

    2009-01-30

    The resistance of class C fly ash belite cement (FABC-2-W) to concentrated sodium sulphate salts associated with low level wastes (LLW) and medium level wastes (MLW) is discussed. This study was carried out according to the Koch and Steinegger methodology by testing the flexural strength of mortars immersed in simulated radioactive liquid waste rich in sulphate (48,000 ppm) and demineralised water (used as a reference), at 20 degrees C and 40 degrees C over a period of 180 days. The reaction mechanisms of sulphate ion with the mortar was carried out through a microstructure study, which included the use of Scanning electron microscopy (SEM), porosity and pore-size distribution and X-ray diffraction (XRD). The results showed that the FABC mortar was stable against simulated sulphate radioactive liquid waste (SSRLW) attack at the two chosen temperatures. The enhancement of mechanical properties was a result of the formation of non-expansive ettringite inside the pores and an alkaline activation of the hydraulic activity of cement promoted by the ingress of sulphate. Accordingly, the microstructure was strongly refined.

  13. On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010

    SciTech Connect

    OSMANLIOGLU, Ahmet Erdal

    2013-07-01

    This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

  14. Study on separation of platinum group metals from high level liquid waste using macroporous (MOTDGA-TOA)/SiO{sub 2}-P silica-based absorbent

    SciTech Connect

    Ito, Tatsuya; Kim, Seong-Yun; Xu, Yuanlai; Hitomi, Keitaro; Ishii, Keizo; Nagaishi, Ryuji; Kimura, Takaumi

    2013-07-01

    The recovery of platinum group metals (PGMs) from high level liquid waste (HLLW) by macroporous silica-based adsorbent, (MOTDGA-TOA)/SiO{sub 2}-P has been developed by impregnating two extractants of N,N'-dimethyl-N,N'-di-n-octyl-thio-diglycolamide (MOTDGA) and tri-n-octylamine (TOA) into a silica/polymer composite support (SiO{sub 2}-P). The adsorption of Ru(III), Rh(III) and Pd(II) have been investigated in simulated HLLW by batch method. The adsorbent has shown good uptake property for Pd(II). In addition, the combined use of MOTDGA and TOA improved the adsorption of Ru(III) and Rh(III) better than the individual use of them. The usability of adsorbent in radiation fields was further confirmed by irradiation experiments. The adsorbent remained to have the uptake capability for PGMs over the absorbed dose of 100 kGy, corresponding with one really adsorbed by the adsorbent, and showed good retention capability for Pd(II) even at the absorbed dose of 800 kGy. The chromatographic separation of metal ions was demonstrated with the adsorbent packed column, there is no influence of Re(VII) (instead of Tc) on the excellent separation behavior of Pd(II). (authors)

  15. Melton Valley liquid low-level radioactive waste storage tanks evaluation

    SciTech Connect

    1995-06-01

    The Melton Valley Liquid Low-Level Radioactive Waste Storage Tanks (MVSTs) store the evaporator concentrates from the Liquid Low-Level Radioactive Waste (LLLW) System at the Oak Ridge National Laboratory (ORNL). The eight stainless steel tanks contain approximately 375,000 gallons of liquid and sludge waste. These are some of the newer, better-designed tanks in the LLLW System. They have been evaluated and found by the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation to comply with all Federal Facility Agreement requirements for double containment. The operations and maintenance aspects of the tanks were also reviewed by the Defense Nuclear Facilities Safety Board (DNFSB) in September 1994. This document also contains an assessment of the risk to the public and ORNL workers from a leak in one of the MVSTs. Two primary scenarios were investigated: (1) exposure of the public to radiation from drinking Clinch River water contaminated by leaked LLLW, and (2) exposure of on-site workers to radiation by inhaling air contaminated by leaked LLLW. The estimated frequency of a leak from one of the MVSTs is about 8 {times} 10{sup {minus}4} events per year, or about once in 1200 years (with a 95% confidence level). If a leak were to occur, the dose to a worker from inhalation would be about 2.3 {times} 10{sup {minus}1} mrem (with a 95% confidence level). The dose to a member of the public through the drinking water pathway is estimated to be about 7 {times} 10{sup {minus}1} mrem (with a 95% confidence level). By comparison with EPA Safe Drinking Water regulations, the allowable lifetime radiation dose is about 300 mrem. Thus, a postulated LLLW leak from the MVSTs would not add appreciably to an individual`s lifetime radiation dose.

  16. Partitioning of K, U, and Th between sulfide and silicate liquids - Implications for radioactive heating of planetary cores

    NASA Technical Reports Server (NTRS)

    Murrell, M. T.; Burnett, D. S.

    1986-01-01

    Experimental partitioning studies are reported of K, U, and Th between silicate and FeFeS liquids designed to test the proposal that actinide partitioning into sulfide liquids is more important then K partitioning in the radioactive heating of planetary cores. For a basaltic liquid at 1450 C and 1.5 GPa, U partitioning into FeFeS liquids is five times greater than K partitioning. A typical value for the liquid partition coefficient for U from a granitic silicate liquid at one atmosphere at 1150 C and low fO2 is about 0.02; the coefficient for Th is similar. At low fO2 and higher temperature, experiments with basaltic liquids produce strong Ca and U partitioning into the sulfide liquid with U coefficient greater than one. The Th coefficient is less strongly affected.

  17. Modern Alchemy: Solidifying high-level nuclear waste

    SciTech Connect

    Newton, C.C.

    1997-07-01

    The U.S. Department of Energy is putting a modern version of alchemy to work to produce an answer to a decades-old problem. It is taking place at the Savannah River Site (SRS) in Aiken, South Carolina and at the West Valley Demonstration Project (WVDP) near Buffalo, New York. At both locations, contractor Westinghouse Electric Corporation is applying technology that is turning liquid high-level radioactive waste (HLW) into a stabilized, durable glass for safer and easier management. The process is called vitrification. SRS and WVDP are now operating the nation`s first full-scale HLW vitrification plants.

  18. Microbiology of formation waters from the deep repository of liquid radioactive wastes Severnyi.

    PubMed

    Nazina, Tamara N; Kosareva, Inessa M; Petrunyaka, Vladimir V; Savushkina, Margarita K; Kudriavtsev, Evgeniy G; Lebedev, Valeriy A; Ahunov, Viktor D; Revenko, Yuriy A; Khafizov, Robert R; Osipov, George A; Belyaev, Sergey S; Ivanov, Mikhail V

    2004-07-01

    The presence, diversity, and geochemical activity of microorganisms in the Severnyi repository of liquid radioactive wastes were studied. Cultivable anaerobic denitrifiers, fermenters, sulfate-reducers, and methanogens were found in water samples from a depth of 162-405 m below sea level. Subsurface microorganisms produced methane from [2-(14)C]acetate and [(14)C]CO(2), formed hydrogen sulfide from Na(2) (35)SO(4), and reduced nitrate to dinitrogen in medium with acetate. The cell numbers of all studied groups of microorganisms and rates of anaerobic processes were higher in the zone of dispersion of radioactive wastes. Microbial communities present in the repository were able to utilise a wide range of organic and inorganic compounds and components of waste (acetate, nitrate, and sulfate) both aerobically and anaerobically. Bacterial production of gases may result in a local increase of the pressure in the repository and consequent discharge of wastes onto the surface. Microorganisms can indirectly decrease the mobility of radionuclides due to consumption of oxygen and production of sulfide, which favours deposition of metals. These results show the necessity of long-term microbiological and radiochemical monitoring of the repository.

  19. Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste.

    PubMed

    El Afifi, E M; Attallah, M F; Borai, E H

    2016-01-01

    Potential utilization of hematite as a natural material for immobilization of long-lived radionuclides from radioactive liquid waste was investigated. Hematite ore has been characterized by different analytical tools such as Fourier transformer infrared (FTIR), X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetry (TG) and differential thermal (DT) analysis, scanning electron microscopy (SEM) and BET-surface area. In this study, europium was used as REEs(III) and as a homolog of Am(III)-isotopes (such as (241)Am of 432.6 y, (242m)Am of 141 y and (243)Am of 7370 y). Micro particles of the hematite ore were used for treatment of radioactive waste containing (152+154)Eu(III). The results indicated that 96% (4.1 × 10(4) Bq) of (152+154)Eu(III) was efficiently retained onto hematite ore. Kinetic experiments indicated that the processes could be simulated by a pseudo-second-order model and suggested that the process may be chemisorption in nature. The applicability of Langmuir, Freundlich and Temkin models was investigated. It was found that Langmuir isotherm exhibited the best fit with the experimental results. It can be concluded that hematite is an economic and efficient reactive barrier for immobilization of long-lived radio isotopes of actinides and REEs(III).

  20. A new approach to assessment and management of the impact from medical liquid radioactive waste.

    PubMed

    Sundell-Bergman, S; de la Cruz, I; Avila, R; Hasselblad, S

    2008-10-01

    The Swedish regulations concerning disposal of clinical radioactive waste are currently under revision and a graded approach is proposed for risk limitation purposes. To assist the revision procedures, a screening study was performed to estimate public exposures from liquid releases from hospitals to public sewers. The results showed that doses to sewage workers were above the dose constraint of 100 microSv a(-1) especially for 131I and (99m)Tc. Hence, a dynamic model, LUCIA, was developed for realistic assessments in which radionuclide transportation in sewers was modelled. Probabilistic simulations were performed to obtain probability distributions of radionuclide concentrations in sludge. Concurrently, estimates of the effective doses to sewage workers decreased significantly and were below 10 microSv a(-1) except for 111In and 131I. However, the Kd-coefficients representing the partition of radioactivity between water and sludge in sewers are highly uncertain for 111In. As shown by sensitivity studies, these values are the major determinant of the exposures in sewers.

  1. Design features of the radioactive Liquid-Fed Ceramic Melter system

    SciTech Connect

    Holton, L.K. Jr.

    1985-06-01

    During 1983, the Pacific Northwest Laboratory (PNL), at the request of the Department of Energy (DOE), undertook a program with the principal objective of testing the Liquid-Fed Ceramic Melter (LFCM) process in actual radioactive operations. This activity, termed the Radioactive LFCM (RLFCM) Operations is being conducted in existing shielded hot-cell facilities in B-Cell of the 324 Building, 300 Area, located at Hanford, Washington. This report summarizes the design features of the RLFCM system. These features include: a waste preparation and feed system which uses pulse-agitated waste preparation tanks for waste slurry agitation and an air displacement slurry pump for transferring waste slurries to the LFCM; a waste vitrification system (LFCM) - the design features, design approach, and reasoning for the design of the LFCM are described; a canister-handling turntable for positioning canisters underneath the RLFCM discharge port; a gamma source positioning and detection system for monitoring the glass fill level of the product canisters; and a primary off-gas treatment system for removing the majority of the radionuclide contamination from the RLFCM off gas. 8 refs., 48 figs., 6 tabs.

  2. Decommissioning strategy for liquid low-level radioactive waste surface storage water reservoir.

    PubMed

    Utkin, S S; Linge, I I

    2016-11-22

    The Techa Cascade of water reservoirs (TCR) is one of the most environmentally challenging facilities resulted from FSUE "PA "Mayak" operations. Its reservoirs hold over 360 mln m(3) of liquid radioactive waste with a total activity of some 5 × 10(15) Bq. A set of actions implemented under a special State program involving the development of a strategic plan aimed at complete elimination of TCR challenges (Strategic Master-Plan for the Techa Cascade of water reservoirs) resulted in considerable reduction of potential hazards associated with this facility. The paper summarizes the key elements of this master-plan: defining TCR final state, feasibility study of the main strategies aimed at its attainment, evaluation of relevant long-term decommissioning strategy, development of computational tools enabling the long-term forecast of TCR behavior depending on various engineering solutions and different weather conditions.

  3. Efficiency of a blast furnace slag cement for immobilizing simulated borate radioactive liquid waste.

    PubMed

    Guerrero, A; Goñi, S

    2002-01-01

    The efficiency of a blast furnace slag cement (Spanish CEM III/B) for immobilizing simulated radioactive borate liquid waste [containing H3BO3, NaCl, Na2SO4 and Na(OH)] has been evaluated by means of a leaching attack in de-mineralized water at the temperature of 40 degrees C over 180 days. The leaching was carried out according to the ANSI/ANS-16.1-1986 test. Moreover, changes of the matrix microstructure were characterized through porosity and pore-size distribution analysis carried out by mercury intrusion porosimetry (MIP), X-ray diffraction (XRD) and thermal analysis (TG). The results were compared with those obtained from a calcium aluminate cement matrix, previously published.

  4. Best available technology for the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    SciTech Connect

    Midkiff, W.S.; Romero, R.L.; Suazo, I.L.; Garcia, R.; Parsons, R.M.

    1993-10-15

    The existing Los Alamos National Laboratory TA-50 liquid radioactive waste treatment plant RLWP has been in service for over thirty years, during this period many technical, regulatory, and processing changes have occurred. The existing facility can no longer comply with the demands and requirements for continued operation, and would not be able to comply with anticipated stringent future contaminant discharge limitations. Either a major upgrading or replacement of the existing facility is required. In order to assess the most appropriate means of providing an adequate facility to comply with predicted requirements for Ta-50, this Best Available Technology (BAT) Study was conducted to compare feasible technical and economic alternatives in order to define the most favorable technology configuration. This report consists of eleven sections. Section 1 provides a general introduction and background of the TA-50 operations and the basis for this study. Section 2 provides a technical discussion of the unit processes at TA-50 and several other comparable operations at other DOE sites. Section 3 addresses the evaluation and selection of appropriate treatment processes. Section 4 provides an analysis of environmental issues and concerns. Section 5 presents the rationale for the selection of preferred process configurations. Section 6 is the evaluation of operational issues. Section 7 addresses energy and resource use topics. Section 8 provides an economic analysis, and Section 9 summarizes the evaluation and the identification of the BAT. These sections are augmented by appendices. The report identifies the construction of a new radioactive liquid waste treatment facility as the BAT. Based on the information analyzed for this study, this option appears to provide the best combination of environmental compliance, operability, and economic value.

  5. High-level waste tank farm set point document

    SciTech Connect

    Anthony, J.A. III

    1995-01-15

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.

  6. Handling of liquid radioactive wastes produced during the decommissioning of nuclear-powered submarines

    SciTech Connect

    Martynov, B.V.

    1995-10-01

    Liquid radioactive wastes are produced during the standard decontamination of the reactor loop and liquidation of the consequences of accidents. In performing the disassembly work on decommissioned nuclear-powered submarines, the equipment must first be decontaminated. All this leads to the formation of a large quantity of liquid wastes with a total salt content of more then 3l-5 g/liter and total {beta}-activity of up to 1 {center_dot}10{sup {minus}4} Ci/liter. One of the most effective methods for reprocessing these wastes - evaporation - has limitations: The operating expenses are high and the apparatus requires expensive alloyed steel. The methods of selective sorption of radionuclides on inorganic sorbents are used for reprocessing liquid wastes form the nuclear-powered fleet. A significant limitation of the method is the large decrease in sorption efficiency with increasing total salt-content of the wastes. In some works, in which electrodialysis is used for purification of the salt wastes, the total salt content can be decreased by a factor of 10-100 and the same quantity of radionuclides can be removed. We have developed an electrodialysis-sorption scheme for purifying salt wastes that makes it possible to remove radionuclides to the radiation safety standard and chemically harmful substances to the health standards. The scheme includes electrodialysis desalinization (by 90% per pass on the EDMS apparatus), followed by additional purification of the diluent on synthetic zeolites and electro-osmotic concentration (to 200-250 g/liter on the EDK apparatus). The secondard wastes---salt concentrates and spent sorbents---are solidified. (This is the entire text of the article.)

  7. Current status and performance assessment for the Techa cascade of reservoirs - liquid radioactive waste storage facility

    SciTech Connect

    Linge, Igor I.; Utkin, Sergey S.; Mokrov, Yury G.; Drozhko, Evgeny G.

    2013-07-01

    The Techa cascade of water reservoirs is the world's largest open storage facility for liquid low-level radioactive waste. Its capacity is about 360 mln. m{sup 3}, it occupies an area of more than 65 km{sup 2}, the total activity accumulated in the water and sediments is about 6.10{sup 15} Bq. The major challenge facing the Techa cascade is virtually uncontrollable water level changes. The water level rise can cause significant pollution of the environment. From the late 1990's onwards, the issue of the Techa cascade safety assurance is considered to be one of the major challenges pertaining to nuclear legacy for 'Mayak' and Russia as a whole. Unlike other industrial water reservoirs the Techa cascade liquidation is estimated as highly unrealistic. The main objectives of the paper are: - brief results summary of the practical works on safety improvement at the Techa cascade carried out over the past decade; - introduction the works on the Techa cascade performance assessment; - determination of the existing risks and strategic areas for solving the problem. (authors)

  8. M558 radioactive tracer diffusion. [diffusion coefficients of Zn-65 in liquid zinc under weightlessness conditions

    NASA Technical Reports Server (NTRS)

    Ukanwa, A. O.

    1974-01-01

    This experiment was performed in Skylab 3 with two objectives in mind. First, the experimental self-diffusion coefficients for liquid zinc were to be determined in a convection-free environment. Secondly the reduction in convective mixing in earth gravity by going into the zero-gravity environment of space was to be estimated. The experiment was designed to utilize high temperatures and linear thermal gradients provided by the M518 Multipurpose Electric Furnace, and the radioactivity of zinc-65 of 245-day half-life to investigate self-diffusion in liquid zinc. The distribution of zinc-65 tracer, after melting, maintaining at soak temperature for 1 hour of soak time and then resolidifying, was obtained by sample sectioning. The concentration of activity of each section (microcurie-gram) was plotted against positions along the sample axial and radial position. Experimental data and theoretical results from solution of Fick's law of diffusion in one dimensional were compared. Samples tested on earth showed very rapid diffusion. Diffusion coefficient in unit gravity was 50 times the zero-gravity diffusion coefficient of Skylab.

  9. Process for solidifying high-level nuclear waste

    DOEpatents

    Ross, Wayne A.

    1978-01-01

    The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.

  10. Collective dose estimates by the marine food pathway from liquid radioactive wastes dumped in the Sea of Japan.

    PubMed

    Togawa, O; Povinec, P P; Pettersson, H B

    1999-09-30

    IAEA-MEL has been engaged in an assessment programme related to radioactive waste dumping by the former USSR and other countries in the western North Pacific Ocean and its marginal seas. This paper focuses on the Sea of Japan and on estimation of collective doses from liquid radioactive wastes. The results from the Japanese-Korean-Russian joint expeditions are summarized, and collective doses for the Japanese population by the marine food pathway are estimated from liquid radioactive wastes dumped in the Sea of Japan and compared with those from global fallout and natural radionuclides. The collective effective dose equivalents by the annual intake of marine products caught in each year show a maximum a few years after the disposals. The total dose from all radionuclides reaches a maximum of 0.8 man Sv in 1990. Approximately 90% of the dose derives from 137Cs, most of which is due to consumption of fish. The total dose from liquid radioactive wastes is approximately 5% of that from global fallout, the contribution of which is below 0.1% of that of natural 210Po.

  11. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  12. Geologyy of the Yucca Mountain Site Area, Southwestern Nevada, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1)

    SciTech Connect

    W.R. Keefer; J.W. Whitney; D.C. Buesch

    2006-09-25

    Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (> 10% crystal fragments) member, a more voluminous lower crystal-poor (< 5% crystal fragments) member, and an intervening thin transition zone. Rocks within the crystal-poor member of the Topopah Spring Tuff, lying some 280 m below the crest of Yucca Mountain, constitute the proposed host rock to be excavated for the storage of high-level radioactive wastes. Separation of the tuffaceous rock formations into subunits that allow for detailed mapping and structural interpretations is based on macroscopic features, most importantly the relative abundance of lithophysae and the degree of welding. The latter feature, varying from nonwelded through partly and moderately welded to densely welded, exerts a strong control on matrix porosities and other rock properties that provide essential criteria for distinguishing hydrogeologic and thermal-mechanical units, which are of major interest in evaluating the suitability of Yucca Mountain to host a safe and permanent geologic repository for waste storage. A thick and varied sequence of surficial deposits mantle large parts of the Yucca Mountain site area. Mapping of these deposits and associated soils in exposures and in the walls of trenches excavated across buried faults provides evidence for multiple surface-rupturing events along all of the major faults during

  13. Radioactive Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2015-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2014. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes.

  14. Radioactive Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2016-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2015. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes.

  15. Conditioning of Boron-Containing Low and Intermediate Level Liquid Radioactive Waste - 12041

    SciTech Connect

    Gorbunova, Olga A.; Kamaeva, Tatiana S.

    2012-07-01

    Improved cementation of low and intermediate level radioactive waste (ILW and LLW) aided by vortex electromagnetic treatment as well as silica addition was investigated. Positive effects including accelerated curing of boron-containing cement waste forms, improve end product quality, decreased product volume and reduced secondary LRW volume from equipment decontamination were established. These results established the possibility of boron-containing LRW cementation without the use of neutralizing alkaline additives that greatly increase the volume of the final product intended for long-term storage (burial). Physical (electromagnetic) treatment in a vortex mixer can change the state of LRW versus chemical treatment. By treating the liquid phase of cement solution only, instead of the whole solution, and using fine powder and nano-particles of ferric oxides instead of separable ferromagnetic cores for the activating agents the positive effect are obtained. VET for 1 to 3 minutes yields boron-containing LRW cemented products of satisfactory quality. Silica addition at 10 % by weight will accelerate curing and solidification and to decrease radionuclide leaching rates from boron-containing cement products. (authors)

  16. Degradation of hazardous chemicals in liquid radioactive wastes from biomedical research using a mixed microbial population

    SciTech Connect

    Wolfram, J.H.; Radtke, M.; Wey, J.E.; Rogers, R.D.; Rau, E.H.

    1997-10-01

    As the costs associated with treatment of mixed wastes by conventional methods increase, new technologies will be investigated as alternatives. This study examines the potential of using a selected mixed population of microorganisms to treat hazardous chemical compounds in liquid low level radioactive wastes from biomedical research procedures. Microorganisms were isolated from various waste samples and enriched against compounds known to occur in the wastes. Individual isolates were tested for their ability to degrade methanol, ethanol, phenol, toluene, phthalates, acetonitrile, chloroform, and trichloroacetic acid. Following these tests, the organisms were combined in a media with a mixture of the different compounds. Three compounds: methanol, acetonitrile, and pseudocumene, were combined at 500 microliter/liter each. Degradation of each compound was shown to occur (75% or greater) under batch conditions with the mixed population. Actual wastes were tested by adding an aliquot to the media, determining the biomass increase, and monitoring the disappearance of the compounds. The compounds in actual waste were degraded, but at different rates than the batch cultures that did not have waste added. The potential of using bioprocessing methods for treating mixed wastes from biomedical research is discussed.

  17. EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING

    SciTech Connect

    Brown, A.

    2014-04-27

    One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was a significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.

  18. A NEW, SMALL DRYING FACILITY FOR WET RADIOACTIVE WASTE AND LIQUIDS

    SciTech Connect

    Oldiges, Olaf; Blenski, Hans-Juergen

    2003-02-27

    Due to the reason, that in Germany every Waste, that is foreseen to be stored in a final disposal facility or in a long time interim storage facility, it is necessary to treat a lot of waste using different drying technologies. In Germany two different drying facilities are in operation. The GNS Company prefers a vacuum-drying-technology and has built and designed PETRA-Drying-Facilities. In a lot of smaller locations, it is not possible to install such a facility because inside the working areas of that location, the available space to install the PETRA-Drying-Facility is too small. For that reason, GNS decided to design a new, small Drying-Facility using industrial standard components, applying the vacuum-drying-technology. The new, small Drying-Facility for wet radioactive waste and liquids is presented in this paper. The results of some tests with a prototype facility are shown in chapter 4. The main components of that new facility are described in chapter 3.

  19. Durability of class C fly ash belite cement in simulated sodium chloride radioactive liquid waste: influence of temperature.

    PubMed

    Guerrero, A; Goñi, S; Allegro, V R

    2009-03-15

    This work is a continuation of a previous durability study of class C fly ash belite cement (FABC-2-W) in simulated radioactive liquid waste (SRLW) that is very rich in sulphate salts. The same experimental methodology was applied in the present case, but with a SRLW rich in sodium chloride. The study was carried out by testing the flexural strength of mortars immersed in simulated radioactive liquid waste that was rich in chloride (0.5M), and demineralised water as a reference, at 20 and 40 degrees C over a period of 180 days. The reaction mechanism of chloride ions with the mortar was evaluated by scanning electron microscopy (SEM), porosity and pore-size distribution, and X-ray diffraction (XRD). The results showed that the FABC mortar was stable against simulated chloride radioactive liquid waste (SCRLW) attack at the two chosen temperatures. The enhancement of mechanical properties was a result of the formation of non-expansive Friedel's salt inside the pores; accordingly, the microstructure was refined.

  20. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be

  1. High-Level Waste Vitrification Facility Feasibility Study

    SciTech Connect

    D. A. Lopez

    1999-08-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035.

  2. Radioactive Waste.

    ERIC Educational Resources Information Center

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  3. Functional design criteria radioactive liquid waste line replacement, Project W-087. Revision 3

    SciTech Connect

    McVey, C.B.

    1994-10-13

    This document provides the functional design criteria for the 222-S Laboratory radioactive waste drain piping and transfer pipeline replacement. The project will replace the radioactive waste drain piping from the hot cells in 222-S to the 219-S Waste Handling Facility and provide a new waste transfer route from 219-S to the 244-S Catch Station in Tank Farms.

  4. DEMONSTRATION SOLIDIFICATION TESTS CONDUCTED ON RADIOACTIVELY CONTAMINATED ORGANIC LIQUIDS AT THE AECL WHITESHELL LABORATORIES

    SciTech Connect

    Ryz, R. A.; Brunkow, W. G.; Govers, R.; Campbell, D.; Krause, D.

    2002-02-25

    The AECL, Whiteshell Laboratory (WL) near Pinawa Manitoba, Canada, was established in the early 1960's to carry out AECL research and development activities for higher temperature versions of the CANDU{reg_sign} reactor. The initial focus of the research program was the Whiteshell Reactor-1 (WR-1) Organic Cooled Reactor (OCR) that began operation in 1965. The OCR program was discontinued in the early 1970's in favor of the successful heavy-water-cooled CANDU system. WR-1 continued to operate until 1985 in support of AECL nuclear research programs. A consequence of the Federal government's recent program review process was AECL's business decision to discontinue research programs and operations at the Whiteshell Laboratories and to consolidate its' activities at the Chalk River Laboratories. As a result, AECL received government concurrence in 1998 to proceed to plan actions to achieve closure of WL. The planning actions now in progress address the need to safely and effectively transition the WL site from an operational state, in support of AECL's business, to a shutdown and decommissioned state that meets the regulatory requirements for a licensed nuclear site. The decommissioning program that will be required at WL is unique within AECL and Canada since it will need to address the entire research site rather than individual facilities declared redundant. Accordingly, the site nuclear facilities are being systematically placed in a safe shutdown state and planning for the decommissioning work to place the facilities in a secure monitoring and surveillance state is in progress. One aspect of the shutdown activities is to deal with the legacy of radioactively contaminated organic liquid wastes. Use of a polymer powder to solidify these organic wastes was identified as one possibility for improved interim storage of this material pending final disposition.

  5. LOW LEVEL LIQUID RADIOACTIVE WASTE TREATMENT AT MURMANSK, RUSSIA: FACILITY UPGRADE AND EXPANSION

    SciTech Connect

    BOWERMAN,B.; CZAJKOWSKI,C.; DYER,R.S.; SORLIE,A.

    2000-03-01

    Today there exist many almost overfilled storage tanks with liquid radioactive waste in the Russian Federation. This waste was generated over several years by the civil and military utilization of nuclear power. The current waste treatment capacity is either not available or inadequate. Following the London Convention, dumping of the waste in the Arctic seas is no longer an alternative. Waste is being generated from today's operations, and large volumes are expected to be generated from the dismantling of decommissioned nuclear submarines. The US and Norway have an ongoing co-operation project with the Russian Federation to upgrade and expand the capacity of a treatment facility for low level liquid waste at the RTP Atomflot site in Murmansk. The capacity will be increased from 1,200 m{sup 3}/year to 5,000 m{sup 3} /year. The facility will also be able to treat high saline waste. The construction phase will be completed the first half of 1998. This will be followed by a start-up and a one year post-construction phase, with US and Norwegian involvement for the entire project. The new facility will consist of 9 units containing various electrochemical, filtration, and sorbent-based treatment systems. The units will be housed in two existing buildings, and must meet more stringent radiation protection requirements that were not enacted when the facility was originally designed. The US and Norwegian technical teams have evaluated the Russian design and associated documentation. The Russian partners send monthly progress reports to US and Norway. Not only technical issues must be overcome but also cultural differences resulting from different methods of management techniques. Six to eight hour time differentials between the partners make real time decisions difficult and relying on electronic age tools becomes extremely important. Language difficulties is another challenge that must be solved. Finding a common vocabulary, and working through interpreters make the

  6. Characterization of biocenoses in the storage reservoirs of liquid radioactive wastes of Mayak PA. Initial descriptive report.

    PubMed

    Pryakhin, E A; Mokrov, Yu G; Tryapitsina, G A; Ivanov, I A; Osipov, D I; Atamanyuk, N I; Deryabina, L V; Shaposhnikova, I A; Shishkina, E A; Obvintseva, N A; Egoreichenkov, E A; Styazhkina, E V; Osipova, O F; Mogilnikova, N I; Andreev, S S; Tarasov, O V; Geras'kin, S A; Trapeznikov, A V; Akleyev, A V

    2016-01-01

    As a result of operation of the Mayak Production Association (Mayak PA), Chelyabinsk Oblast, Russia, an enterprise for production and separation of weapon-grade plutonium in the Soviet Union, ecosystems of a number of water bodies have been radioactively contaminated. The article presents information about the current state of ecosystems of 6 special industrial storage reservoirs of liquid radioactive waste from Mayak PA: reservoirs R-3, R-4, R-9, R-10, R-11 and R-17. At present the excess of the radionuclide content in the water of the studied reservoirs and comparison reservoirs (Shershnyovskoye and Beloyarskoye reservoirs) is 9 orders of magnitude for (90)Sr and (137)Cs, and 6 orders of magnitude for alpha-emitting radionuclides. According to the level of radioactive contamination, the reservoirs of the Mayak PA could be arranged in the ascending order as follows: R-11, R-10, R-4, R-3, R-17 and R-9. In 2007-2012 research of the status of the biocenoses of these reservoirs in terms of phytoplankton, zooplankton, bacterioplankton, zoobenthos, aquatic plants, ichthyofauna, avifauna parameters was performed. The conducted studies revealed decrease in species diversity in reservoirs with the highest levels of radioactive and chemical contamination. This article is an initial descriptive report on the status of the biocenoses of radioactively contaminated reservoirs of the Mayak PA, and is the first article in a series of publications devoted to the studies of the reaction of biocenoses of the fresh-water reservoirs of the Mayak PA to a combination of natural and man-made factors, including chronic radiation exposure.

  7. Calculation of releases of radioactive materials in gaseous and liquid effluents from pressurized water reactors (PWR-GALE Code). Revision 1

    SciTech Connect

    Chandrasekaran, T.; Lee, J.Y.; Willis, C.A.

    1985-04-01

    This report revises the original issuance of NUREG-0017, ''Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors (PWR-GALE-Code)'' (April 1976), to incorporate more recent operating data now available as well as the results of a number of in-plant measurement programs at operating pressurized water reactors. The PWR-GALE Code is a computerized mathematical model for calculating the releases of radioactive material in gaseous and liquid effluents (i.e., the gaseous and liquid source terms). The US Nuclear Regulatory Commission uses the PWR-GALE Code to determine conformance with the requirements of Appendix I to 10 CFR Part 50.

  8. Sampling and analysis of radioactive liquid wastes and sludges in the Melton Valley and evaporator facility storage tanks at ORNL

    SciTech Connect

    Sears, M.B.; Botts, J.L.; Ceo, R.N.; Ferrada, J.J.; Griest, W.H.; Keller, J.M.; Schenley, R.L.

    1990-09-01

    The sampling and analysis of the radioactive liquid wastes and sludges in the Melton Valley Storage Tanks (MVSTs), as well as two of the evaporator service facility storage tanks at ORNL, are described. Aqueous samples of the supernatant liquid and composite samples of the sludges were analyzed for major constituents, radionuclides, total organic carbon, and metals listed as hazardous under the Resource Conservation and Recovery Act (RCRA). Liquid samples from five tanks and sludge samples from three tanks were analyzed for organic compounds on the Environmental Protection Agency (EPA) Target Compound List. Estimates were made of the inventory of liquid and sludge phases in the tanks. Descriptions of the sampling and analytical activities and tabulations of the results are included. The report provides data in support of the design of the proposed Waste Handling and Packaging Plant, the Liquid Low-Level Waste Solidification Project, and research and development activities (R D) activities in developing waste management alternatives. 7 refs., 8 figs., 16 tabs.

  9. Treatment of radioactive liquid waste (Co-60) by sorption on Zeolite Na-A prepared from Iraqi kaolin.

    PubMed

    Mustafa, Yasmen A; Zaiter, Maysoon J

    2011-11-30

    Iraqi synthetic zeolite type Na-A has been suggested as ion exchange material to treat cobalt-60 in radioactive liquid waste which came from neutron activation for corrosion products. Batch experiments were conducted to find out the equilibrium isotherm for source sample. The equilibrium isotherm for radioactive cobalt in the source sample showed unfavorable type, while the equilibrium isotherm for the total cobalt (the radioactive and nonradioactive cobalt) in the source sample showed a favorable type. The ability of Na-A zeolite to remove cobalt from wastewater was checked for high cobalt concentration (822 mg/L) in addition to low cobalt concentration in the source sample (0.093 mg/L). A good fitting for the experimental data with Langmuir equilibrium model was observed. Langmuir constant qm which is related to monolayer adsorption capacity for low and high cobalt concentration was determined to be 0.021 and 140 mg/g(zeolite). The effects of important design variables on the zeolite column performance were studied these include initial concentration, flow rate, and bed depth. The experimental results have shown that high sorption capacity can be obtained at high influent concentration, low flow rate, and high bed depth. Higher column performance was obtained at higher bed depth. Thomas model was employed to predict the breakthrough carves for the above variables. A good fitting was observed with correlation coefficients between 0.915 and 0.985.

  10. Radioactive waste disposal in the marine environment

    NASA Astrophysics Data System (ADS)

    Anderson, D. R.

    In order to find the optimal solution to waste disposal problems, it is necessary to make comparisons between disposal media. It has become obvious to many within the scientific community that the single medium approach leads to over protection of one medium at the expense of the others. Cross media comparisons are being conducted in the Department of Energy ocean disposal programs for several radioactive wastes. Investigations in three areas address model development, comparisons of laboratory tests with field results and predictions, and research needs in marine disposal of radioactive waste. Tabulated data are included on composition of liquid high level waste and concentration of some natural radionuclides in the sea.

  11. Joule-Heated Ceramic-Lined Melter to Vitrify Liquid Radioactive Wastes Containing Am241 Generated From MOX Fuel Fabrication in Russia

    SciTech Connect

    Smith, E C; Bowan II, B W; Pegg, I; Jardine, L J

    2004-11-16

    americium it contains. Silver is widely used as an additive in glass making. However, its solubility is known to be limited in borosilicate glasses. Further, silver, which is present as a nitrate salt in the waste, can be easily reduced to molten silver in the melting process. Molten silver, if formed, would be difficult to reintroduce into the glass matrix and could pose operating difficulties for the glass melter. This will place a limitation on the waste loading of the melter feed material to prevent the separation of silver from the waste within the melter. If the silver were recovered in the MOx fabrication process, which is currently under consideration, the composition of the glass would likely be limited only by the thermal heat load from the incorporated {sup 241}Am. The resulting mass of glass used to encapsulate the waste could then be reduced by a factor of approximately three. The vitrification process used to treat the waste stream is proposed to center on a joule-heated ceramic lined slurry fed melter. Glass furnaces of this type are used in the United States to treat high-level waste (HLW) at the: Defense Waste Processing Facility, West Valley Demonstration Project, and to process the Hanford tank waste. The waste will initially be blended with glass-forming chemicals, which are primarily sand and boric acid. The resulting slurry is pumped to the melter for conversion to glass. The melter is a ceramic lined metal box that contains a molten glass pool heated by passing electric current through the glass. Molten glass from the melter is poured into canisters to cool and solidify. They are then sealed and decontaminated to form the final waste disposal package. Emissions generated in the melter from the vitrification process are treated by an off-gas system to remove radioactive contamination and destroy nitrogen oxides (NOx).

  12. Development of a New Thermal HF Plasma Reactor for the Destruction of Radioactive Organic Halogen Liquid Wastes

    SciTech Connect

    Bournonville, B.; Meillot, E.; Girold, C.

    2006-07-01

    A newly patented process employing thermal plasma for destruction of radioactive organic halogen liquid wastes is proposed. This studied safe system can destroy a great variety of wastes, even mixed together, using plasma torch as high temperature source. At the exit of the process, only non-toxic products are formed as atmospheric gases, liquid water and halogen sodium salt. The process has been built with the help of thermodynamic and kinetic simulations. A good atomic stoichiometry is necessary for avoiding the formation of solid carbon (soot) or toxic COCl{sub 2}. That why liquid water is added to the waste in the plasma flow. Then, an introduction of air cools and dilutes the formed gases and adds oxidant agent achieving oxidation of explosive H{sub 2} and toxic CO. Due to the high concentration of hydrochloric acid, an efficient wet treatment using soda traps it. Subsequently, the exhaust gases are only composed of Ar, O{sub 2}, N{sub 2}, CO{sub 2} and H{sub 2}O. In the first experimental step, pure organic molecules, mixed or not, without halogen have been destroyed. The experimental results show that all the compounds have been completely destroyed and only CO{sub 2} and H{sub 2}O have been formed without formation of any toxic compound or soot. After these encouraging results, chlorinated compounds as dichloromethane or chloroform have been destroyed by the process. In this case, the results are close to the previous one with an important formation of hydrochloric acid, as expected, which was well trapped by the soda to respect the French norm of rejection. A specific parameter study has been done with dichloromethane for optimising the operating condition to experimentally observe the influence of different parameters of the process as the stoichiometry ratio between waste and water, the air addition flow, the waste flow. The final aim of this study is to develop a clean process for treatment of radioactive organic halogen compounds. A small scale reactor

  13. Development and Deployment of Advanced Corrosion Monitoring Systems for High-Level Waste Tanks

    SciTech Connect

    Terry, M. T.; Edgemon, G. L.; Mickalonis, J. I.; Mizia, R. E.

    2002-02-26

    This paper describes the results of a collaborative technology development program, sponsored by the Tanks Focus Area, to use electrochemical noise (EN) for corrosion monitoring in underground storage tanks. These tanks, made of carbon or stainless steels, contain high-level radioactive liquid waste (HLW) generated by weapons production or radioactive liquid waste from nuclear fuel reprocessing activities at several Department of Energy (DOE) sites. The term EN is used to describe low frequency fluctuations in current and voltage measurements associated with corrosion. In their most basic form, EN-based corrosion monitoring systems measure and record these fluctuations over time from electrodes immersed in the environment of interest--in this case, radioactive tank waste. The resulting EN signals have characteristic patterns for different corrosion mechanisms. In recent years, engineers and scientists from several DOE sites, in collaboration with several private companies, have conducted laboratory studies and field applications to correlate the EN signals with corrosion mechanisms active in the radioactive waste tanks. The participating DOE sites are Hanford, Savannah River, Oak Ridge Reservation and the Idaho National Engineering and Environmental Laboratory. The commercial vendors have included HiLine Engineering and Fabrication, Inc., EIC Laboratories, Inc., and AEA Technologies. Successful deployment of the EN technology will yield improved information of waste tank corrosion conditions, better tank management, and lower overall cost.

  14. Development and deployment of advanced corrosion monitoring systems for high-level waste tanks.

    SciTech Connect

    Terry, M. T.; Edgemon, G. L.; Mickalonis, J. I.; Mizia, R. E.

    2002-01-01

    This paper describes the results of a collaborative technology development program, sponsored by the Tanks Focus Area, to use electrochemical noise (EN) for corrosion monitoring in underground storage tanks. These tanks, made of carbon or stainless steels, contain high-level radioactive liquid waste (HLW) generated by weapons production or radioactive liquid waste from nuclear fuel reprocessing activities at several Department of Energy (DOE) sites. The term EN is used to describe low frequency fluctuations in current and voltage measurements associated with corrosion. In their most basic form, EN-based corrosion monitoring systems measure and record these fluctuations over time from electrodes immersed in the environment of interest - in this case, radioactive tank waste. The resulting EN signals have characteristic patterns for different corrosion mechanisms. In recent years, engineers and scientists from several DOE sites, in collaboration with several private companies, have conducted laboratory studies and field applications to correlate the EN signals with corrosion mechanisms active in the radioactive waste tanks. The participating DOE sites are Hanford, Savannah River, Oak Ridge Reservation and the Idaho National Engineering and Environmental Laboratory. The commercial vendors have included HiLine Engineering and Fabrication, Inc., EIC Laboratories, Inc., and M A Technologies. Successful deployment of the EN technology will yield improved information of waste tank corrosion conditions, better tank management, and lower overall cost.

  15. Liquid waste treatment system. Final report

    SciTech Connect

    Baker, M.N.; Houston, H.M.

    1999-06-01

    Pretreatment of high-level liquid radioactive waste (HLW) at the West Valley Demonstration Project (WVDP) involved three distinct processing operations: decontamination of liquid HLW in the Supernatant Treatment System (STS); volume reduction of decontaminated liquid in the Liquid Waste Treatment System (LWTS); and encapsulation of resulting concentrates into an approved cement waste form in the Cement Solidification System (CSS). Together, these systems and operations made up the Integrated Radwaste Treatment System (IRTS).

  16. UPDATING AN EXPERT ELICITATION IN THE LIGHT OF NEW DATA: TEN YEARS OF PROBABILISTIC VOLCANIC HAZARD ANALYSIS FOR THE PROPOSED HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY AT YUCCA MOUNTAIN, NEVADA

    SciTech Connect

    F.V. Perry; A. Cogbill; R. Kelley

    2005-08-26

    The U.S. Department of Energy (DOE) considers volcanism to be a potentially disruptive class of events that could affect the safety of the proposed high-level waste repository at Yucca Mountain. Volcanic hazard assessment in monogenetic volcanic fields depends on an adequate understanding of the temporal and spatial pattern of past eruptions. At Yucca Mountain, the hazard is due to an 11 Ma-history of basaltic volcanism with the latest eruptions occurring in three Pleistocene episodes to the west and south of Yucca Mountain. An expert elicitation convened in 1995-1996 by the DOE estimated the mean hazard of volcanic disruption of the repository as slightly greater than 10{sup -8} dike intersections per year with an uncertainty of about two orders of magnitude. Several boreholes in the region have encountered buried basalt in alluvial-filled basins; the youngest of these basalts is dated at 3.8 Ma. The possibility of additional buried basalt centers is indicated by a previous regional aeromagnetic survey conducted by the USGS that detected approximately 20 magnetic anomalies that could represent buried basalt volcanoes. Sensitivity studies indicate that the postulated presence of buried post-Miocene volcanoes to the east of Yucca Mountain could increase the hazard by an order of magnitude, and potentially significantly impact the results of the earlier expert elicitation. Our interpretation of the aeromagnetic data indicates that post-Miocene basalts are not present east of Yucca Mountain, but that magnetic anomalies instead represent faulted and buried Miocene basalt that correlates with nearby surface exposures. This interpretation is being tested by drilling. The possibility of uncharacterized buried volcanoes that could significantly change hazard estimates led DOE to support an update of the expert elicitation in 2004-2006. In support of the expert elicitation data needs, the DOE is sponsoring (1) a new higher-resolution, helicopter-borne aeromagnetic survey

  17. Metabolite identification of a radiotracer by electrochemistry coupled to liquid chromatography with mass spectrometric and radioactivity detection.

    PubMed

    Baumann, Anne; Faust, Andreas; Law, Marylin P; Kuhlmann, Michael T; Kopka, Klaus; Schäfers, Michael; Karst, Uwe

    2011-07-01

    Radioligands, which specifically bind to a receptor or enzyme (target), enable molecular imaging of the target expression by positron emission tomography (PET). One very promising PET tracer is (S)-1-(4-(2-[(18)F]-fluoroethoxy)benzyl)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin (isatin), a caspase-3 inhibitor, which has been developed at the University Hospital of Münster to image cell death (apoptosis). The translation of this novel tracer from preclinical evaluation to clinical examinations requires biodistribution studies, which characterize the pharmakodynamics and metabolic fate of the compound. This information is used to further optimize the radioligands and to interpret radioactive signals from tissues upon injection of the radioligand in vivo with respect to their specificity. The analysis of the metabolism of radioligands is hampered by the low amount of the compound being typically injected (nano/picomolar amount per injection). In the present study, electrochemistry (EC) is applied to elucidate the oxidative metabolism pathway of the radiotracer. Previous studies have demonstrated that EC can be utilized as a complementary tool to conventional in vitro approaches in drug metabolism studies. Thereby, potential oxidative metabolites of the isatin are determined by EC coupled to electrospray ionization mass spectrometry (EC/ESI-MS). Moreover, using EC/liquid chromatography (LC) and ESI-ion trap MS(n), structural elucidation of the oxidation products is performed. Comparatively to EC, in vitro metabolism studies with rat liver microsomes are conducted. Finally, the developed LC/ESI-MS method is applied to determine metabolites in body fluids and cell extracts from in vivo studies with the nonradioactive ((19)F) and radioactive isatin ((18)F). On the basis of the electrochemically generated oxidation products of the radioligand, the major radioactive metabolite occurring in vivo was successfully identified.

  18. Technical feasibility study of electrolytic ion transfer membranes for radioactive liquid waste processing

    SciTech Connect

    Not Available

    1982-08-11

    Results are presented of a test program designed to determine the technical feasibility of INNOVA Ion Transfer Membranes (ITM) to separate radionuclides from waste streams at N Reactor. The ITM system was tested using the following test solutions, which either chemically simulated or duplicated the radioactive waste streams generated at N Reactor: TURCO 4512A - /sup 59/Co, 4% Na/sub 2/So/sub 4/ - /sup 59/Fe, and Ion Exchange Resin Regeneration (IXR) waste from an irradiated fuel storage basin. In addition, the ITM construction material was tested to determine its resistance to a radioactive environment. To assure that the ITM membranes could withstand a radioactive environment, samples of the ITM membrane material were exposed to high doses of gamma radiation and then tested for change in burst strength. The irradiated membranes did not show significant signs of degradation until a total gamma radiation exposure of 10/sup 7/ Rads was reached. Extrapolation of this data strongly suggests that the membrane life expectancy in a radiation environment is good. The following recommendations were made. Sequential unialysis be investigated for processing IXR waste. Reactor Decontamination Waste be treated by the Oxidation Reduction Coagulation cell prior to ITM processing to confirm pre-treatment feasibility. The Oxidation Reduction Coagulation cell be developed for other N Area applications. An ITM unialysis system be developed for selective radionuclide extraction from irradiated fuel storage basins. The ITM economic feasibility be determined on the applications tested in this report. A unialysis ITM system be tested for extraction of radionuclides from electropolish decontamination wastes.

  19. Corrosion Control Measures For Liquid Radioactive Waste Storage Tanks At The Savannah River Site

    SciTech Connect

    Wiersma, B. J.; Subramanian, K. H.

    2012-11-27

    The Savannah River Site has stored radioactive wastes in large, underground, carbon steel tanks for approximately 60 years. An assessment of potential degradation mechanisms determined that the tanks may be vulnerable to nitrate- induced pitting corrosion and stress corrosion cracking. Controls on the solution chemistry and temperature of the wastes are in place to mitigate these mechanisms. These controls are based upon a series of experiments performed using simulated solutions on materials used for construction of the tanks. The technical bases and evolution of these controls is presented in this paper.

  20. Utilization of different crown ethers impregnated polymeric resin for treatment of low level liquid radioactive waste by column chromatography.

    PubMed

    Attallah, M F; Borai, E H; Hilal, M A; Shehata, F A; Abo-Aly, M M

    2011-11-15

    The main goal of this study was to find a novel impregnated resin as an alternative for the conventional resin (KY-2 and AN-31) used for low and intermediate level liquid radioactive waste treatment. Novel impregnated ion exchangers namely, poly (acrylamide-acrylic acid-acrylonitril)-N,N'-methylenedi-acrylamide-4,4'(5')di-t-butylbenzo 18 crown 6 [P(AM-AA-AN)-DAM/DtBB18C6], poly (acrylamide-acrylic acid-acrylonitril)-N,N'-methylenediacrylamide-dibenzo 18 crown 6 [P(AM-AA-AN)-DAM/DB18C6], and poly (acrylamide-acrylic acid-acrylonitril)-N,N'-methylenediacrylamide-18 crown 6 [P(AM-AA-AN)-DAM/18C6] were prepared and their removal efficiency of some radionuclides was investigated. Preliminary batch experiments were performed in order to study the influence of the different derivatives of 18 crown 6 on the characteristic removal performance. Separation of (134)Cs, (60)Co, (65)Zn and ((152+154))Eu radionuclides from low level liquid radioactive waste was investigated by using column chromatography with P(AM-AA-AN)-DAM/DtBB18C6 and metal salt solutions traced with the corresponding radionuclides. Breakthrough data was obtained in a fixed bed column at room temperature (298K) using different bed heights and flow rates. The breakthrough capacities were found to be 94.7, 83.3, 58.7, 43.1 (mg/g) for (60)Co, (65)Zn, (134)Cs, and ((152+154))Eu, respectively. Pre-concentration and separation of all radionuclides under study have been carried out using different concentration of nitric and/or oxalic acids.

  1. Infrared Thermography in High Level Waste

    SciTech Connect

    GLEATON, DAVIDT.

    2004-08-24

    The Savannah River Site is a Department of Energy, government-owned, company-operated industrial complex built in the 1950s to produce materials used in nuclear weapons. Five reactors were built to support the production of nuclear weapons material. Irradiated materials were moved from the reactors to one of the two chemical separation plants. In these facilities, known as ''canyons,'' the irradiated fuel and target assemblies were chemically processed to separate useful products from waste. Unfortunately, the by-product waste of nuclear material production was a highly radioactive liquid that had to be stored and maintained. In 1993 a strategy was developed to implement predictive maintenance technologies in the Liquid Waste Disposition Project Division responsible for processing the liquid waste. Responsibilities include the processing and treatment of 51 underground tanks designed to hold 750,000 to1,300,000 gallons of liquid waste and operation of a facility that vitrifies highly radioactive liquid waste into glass logs. Electrical and mechanical equipment monitored at these facilities is very similar to that found in non-nuclear industrial plants. Annual inspections are performed on electrical components, roof systems, and mechanical equipment. Troubleshooting and post installation and post-maintenance infrared inspections are performed as needed. In conclusion, regardless of the industry, the use of infrared thermography has proven to be an efficient and effective method of inspection to help improve plant safety and reliability through early detection of equipment problems.

  2. Flowsheet model for the electrochemical treatment of liquid radioactive wastes. Final report

    SciTech Connect

    Hobbs, D.T.; Prasad, S.; Farell, A.E.; Weidner, J.W.; White, R.E.

    1995-12-31

    The objective of this report is to describe the modeling and optimization procedure for the electrochemical removal of nitrates and nitrites from low level radioactive wastes. The simulation is carried out in SPEEDUP{trademark}, which is a state of the art flowsheet modeling package. The flowsheet model will provide a better understanding of the process and aid in the scale-up of the system. For example, the flowsheet model has shown that the electrochemical cell must be operated in batch mode to achieve 95 percent destruction. The flowsheet model is detailed in this report along with a systematic description of the batch optimization of the electrochemical cell. Results from two batch runs and one optimization run are also presented.

  3. Report on the flowsheet model for the electrochemical treatment of liquid radioactive wastes

    SciTech Connect

    Hobbs, D.T.

    1995-04-11

    The objective of this report is to describe the modeling and optimization procedure for the electrochemical removal of nitrates and nitrites from low level radioactive wastes. The simulation is carried out in SPEEDUP{trademark}, which is a state of the art flowsheet modeling package. The flowsheet model will provide a better understanding of the process and aid in the scale-up of the system. For example, the flowsheet model has shown that the electrochemical cell must be operated in batch mode to achieve 95% destruction. The present status of the flowsheet model is detailed in this report along with a systematic description of the batch optimization of the electrochemical cell. Results from two batch runs and one optimization run are also presented.

  4. Comparison between CMPO and DHDECMP for alpha decontamination of radioactive liquid waste

    SciTech Connect

    Muscatello, A.C.; Yarbro, S.L.; Marsh, S.F.

    1990-01-01

    Ion exchange is the major method used at Los Alamos to recover and purify plutonium from a variety of different contaminants. During this process, a high-acid (5-7M), low-activity stream is produced that presently is concentrated by evaporation, then cemented for long-term disposal. Our goal is to remove and concentrate the radioactive elements so that the remainder can be treated as low-level'' or regular industrial waste. Solvent extraction with neutral bifunctional extractants, such as DHDECMP and CMPO, has been chosen as the process to be developed. Experimental work has shown that both extractants effectively remove actinides to below the required limits, but that CMPO was much more difficult to strip. In addition, studies of plutonium and americium removal using a wide variety of ion exchangers and supported extractants including DHDECMP, CMPO, and TOPO will be reviewed. 22 refs., 10 figs., 3 tabs.

  5. Analysis by high-performance liquid chromatography of radioactively labeled carbohydrate components of proteoglycans

    SciTech Connect

    Lohmander, L.S.

    1986-04-01

    Methods were developed for the separation of radioactively labeled carbohydrate components of proteoglycans by isocratic ion-moderated partition HPLC. Neutral sugars were separated after hydrolysis in trifluoroacetic acid with baseline separation between glucose, xylose, galactose, fucose, and mannose. N-Acetylneuraminic acid, N-acetylated hexosamines, glucose, galactose, and xylitol were likewise well separated from each other under isocratic elution conditions. Glucuronic acid, iduronic acid, and their lactones were separated after hydrolysis in formic acid and sulfuric acid. Glucosamine, galactosamine, galactosaminitol, and glucosaminitol were separated by HPLC on a cation exchanger with neutral buffer after hydrolysis in hydrochloric acid. THe separation techniques also proved useful in fractionation of exoglycosidase digests of O- and N-linked oligosaccharides. Separations of aldoses, hexosamines, and uronic acids were adapted to sensitive photometric detection.

  6. Radioactive tank waste remediation focus area

    SciTech Connect

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  7. Treatment Options for Liquid Radioactive Waste. Factors Important for Selecting of Treatment Methods

    SciTech Connect

    Dziewinski, J.J.

    1998-09-28

    The cleanup of liquid streams contaminated with radionuclides is obtained by the selection or a combination of a number of physical and chemical separations, processes or unit operations. Among those are: Chemical treatment; Evaporation; Ion exchange and sorption; Physical separation; Electrodialysis; Osmosis; Electrocoagulation/electroflotation; Biotechnological processes; and Solvent extraction.

  8. Determination of vapor-liquid equilibrium data and decontamination factors needed for the development of evaporator technology for use in volume reduction of radioactive waste streams

    SciTech Connect

    Betts, Stephen Ellsworth

    1993-05-01

    A program is currently in progress at Argonne National Laboratory to evaluate and develop evaporator technology for concentrating radioactive waste streams. By concentrating radioactive waste streams, disposal costs can be significantly reduced. To effectively reduce the volume of waste, the evaporator must achieve high decontamination factors so that the distillate is sufficiently free of radioactive material. One technology that shows a great deal of potential for this application is being developed by LICON, Inc. In this program, Argonne plans to apply LICON`s evaporator designs to the processing of radioactive solutions. Concepts that need to be incorporated into the design of the evaporator include, criticality safety, remote operation and maintenance, and materials of construction. To design an effective process for concentrating waste streams, both solubility and vapor-liquid equilibrium data are needed. The key issue, however, is the high decontamination factors that have been demonstrated by this equipment. Two major contributions were made to this project. First, a literature survey was completed to obtain available solubility and vapor-liquid equilibrium data. Some vapor-liquid data necessary for the project but not available in the literature was obtained experimentally. Second, the decontamination factor for the evaporator was determined using neutron activation analysis (NAA).

  9. Ceramicrete stabilization of radioactive-salt-containing liquid waste and sludge water. Final CRADA report.

    SciTech Connect

    Ehst, D.; Nuclear Engineering Division

    2010-08-04

    It was found that the Ceramicrete Specimens incorporated the Streams 1 and 2 sludges with the adjusted loading about 41.6 and 31.6%, respectively, have a high solidity. The visible cracks in the matrix materials and around the anionite AV-17 granules included could not obtain. The granules mentioned above fixed by Ceramicrete matrix very strongly. Consequently, we can conclude that irradiation of Ceramecrete matrix, goes from the high radioactive elements, not result the structural degradation. Based on the chemical analysis of specimens No.462 and No.461 used it was shown that these matrix included the formation elements (P, K, Mg, O), but in the different samples their correlations are different. These ratios of the content of elements included are about {+-} 10%. This information shows a great homogeneity of matrix prepared. In the list of the elements founded, expect the matrix formation elements, we detected also Ca and Si (from the wollastonite - the necessary for Ceramicrete compound); Na, Al, S, O, Cl, Fe, Ni also have been detected in the Specimen No.642 from the waste forms: NaCl, Al(OH){sub 3}, Na{sub 2}SO{sub 4}. Fe(OH){sub 3}, nickel ferrocyanide and Ni(NO{sub 3})2. The unintelligible results also were found from analysis of an AV-17 granules, in which we obtain the great amount of K. The X-ray radiographs of the Ceramicrete specimens with loading 41.4 % of Stream 1 and 31.6% of Stream 2, respectively showed that the realization of the advance technology, created at GEOHKI, leads to formation of excellent ceramic matrix with high amount of radioactive streams up to 40% and more. Really, during the interaction with start compounds MgO and KH{sub 2}PO{sub 4} with the present of H{sub 3}BO{sub 3} and Wollastonite this process run with high speed under the controlled regimes. That fact that the Ceramicrete matrix with 30-40% of Streams 1 and 2 have a crystalline form, not amorphous matter, allows to permit that these matrix should be very stable, reliable

  10. SOLIEX: A Novel Solid-Liquid Method of Radionuclides Extraction from Radioactive Waste Solutions - 13486

    SciTech Connect

    Shilova, E.; Viel, P.; Huc, V.

    2013-07-01

    This paper describes recent developments in new solid-liquid extraction method, called SOLIEX, to remove cesium from alkaline solutions. SOLIEX relies on the use of a reversible complexing system comprising a carbon felt bearing molecular traps (calixarenes). This complexing system exhibits a high selectivity for Cs, and is thus expected to be helpful for the treatment of highly diluted cesium wastes even with a high concentration of competing alkali metal cations. As additional advantage, this complexing system can be adapted by molecular engineering to capture other radionuclides, such as Sr, Eu, Am. Finally, this complexing system can be easily and efficiently regenerated by using a cost effective stripping procedure, which limits further generation of waste to meet 'zero liquid' discharge requirements for nuclear facilities. (authors)

  11. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent.

    PubMed

    Awual, Md Rabiul; Yaita, Tsuyoshi; Taguchi, Tomitsugu; Shiwaku, Hideaki; Suzuki, Shinichi; Okamoto, Yoshihiro

    2014-08-15

    Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of dibenzo-24-crown-8 ether onto inorganic mesoporous silica. The effective parameters such as solution pH, contact time, initial Cs concentration and ionic strength of Na and K ion concentrations were evaluated and optimized systematically. This adsorbent was exhibited the high surface area-to-volume ratios and uniformly shaped pores in case cavities, and its active sites kept open functionality to taking up Cs. The obtained results revealed that adsorbent had higher selectivity toward Cs even in the presence of a high concentration of Na and K and this is probably due to the Cs-π interaction of the benzene ring. The proposed adsorbent was successfully applied for radioactive Cs removal to be used as the potential candidate in Fukushima nuclear wastewater treatment. The adsorbed Cs was eluted with suitable eluent and simultaneously regenerated into the initial form for the next removal operation after rinsing with water. The adsorbent retained functionality despite several cycles during sorption-elution-regeneration operations.

  12. Analysis of radioactive strontium-90 in food by Čerenkov liquid scintillation counting.

    PubMed

    Pan, Jingjing; Emanuele, Kathryn; Maher, Eileen; Lin, Zhichao; Healey, Stephanie; Regan, Patrick

    2017-01-27

    A simple liquid scintillation counting method using DGA/TRU resins for removal of matrix/radiometric interferences, Čerenkov counting for measuring (90)Y, and EDXRF for quantifying Y recovery was validated for analyzing (90)Sr in various foods. Analysis of samples containing energetic β emitters required using TRU resin to avoid false detection and positive bias. Additional 34% increase in Y recovery was obtained by stirring the resin while eluting Y with H2C2O4. The method showed acceptable accuracy (±10%), precision (10%), and detectability (~0.09Bqkg(-1)).

  13. Preconceptual design study for solidifying high-level waste: Appendices A, B and C West Valley Demonstration Project

    SciTech Connect

    Hill, O.F.

    1981-04-01

    This report presents a preconceptual design study for processing radioactive high-level liquid waste presently stored in underground tanks at Western New York Nuclear Service Center (WNYNSC) near West Valley, New York, and for incorporating the radionculides in that waste into a solid. The high-level liquid waste accumulated from the operation of a chemical reprocessing plant by the Nuclear Fuel Services, Inc. from 1966 to 1972. The high-level liquid waste consists of approximately 560,000 gallons of alkaline waste from Purex process operations and 12,000 gallons of acidic (nitric acid) waste from one campaign of processing thoria fuels by a modified Thorex process (during this campaign thorium was left in the waste). The alkaline waste contains approximately 30 million curies and the acidic waste contains approximately 2.5 million curies. The reference process described in this report is concerned only with chemically processing the high-level liquid waste to remove radionuclides from the alkaline supernate and converting the radionuclide-containing nonsalt components in the waste into a borosilicate glass.

  14. Efficient and compact mobile equipment based on the new RADEON-NWM technology to process liquid radioactive wastes resulted from the accidents of the nuclear installations

    SciTech Connect

    Martoyan, Gagik; Nalbandyan, Garik; Gagiyan, Lavrenti; Karamyan, Gagik; Brutyan, Gagik

    2013-07-01

    During the operation of nuclear reactors important volume of liquid and solid radioactive wastes are generated, which, in normal conditions, becomes processed by stationary equipment by different methods to minimize their volume and then sent to specially constructed storages. The cases of accidents of Chernobyl and Fukushima showed that the localization of rejected big quantity of radioactive wastes is a prior problem for their further processing by stationary equipment. In this regard it is very important the processing of radioactive wastes on the contaminated areas to localize them by mobile equipment based on the efficient technologies. RADEONNWM new technology allows resolving this problem. This technology is compact, completely automated, which makes possible to assemble it on a standard 40-ft by 7-ft trailer driven by heavy-duty truck. The new technology is fully elaborated, the necessary tests are conducted. (authors)

  15. Implementation of environmental compliance for operating radioactive liquid waste systems at the Oak Ridge National Laboratory

    SciTech Connect

    Hooyman, J.H.; Robinson, S.M.

    1992-10-19

    This paper addresses methods being implemented at the Oak Ridge National Laboratory (ORNL) to continue operating while achieving compliance with new standards for liquid low level waste (LLLW) underground storage tank systems. The Superfund Amendment and Reauthorization Act (SARA) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) required that the Department of Energy (DOE) execute a Federal Facility Agreement (FFA) with the Environmental Protection Agency (EPA) within 6 months of listing of the ORNL on the National Priorities List. An FFA for ORNL became effective January 1, 1992 among the EPA, DOE, and the Tennessee Department of Environment and Conservation (TDEC). The agreement ensures that environmental impacts resulting from operations at the Oak Ridge Reservation are investigated and remediated to protect the public health, welfare, and environment.

  16. Discriminating cosmic muons and radioactivity using a liquid scintillation fiber detector

    NASA Astrophysics Data System (ADS)

    Zhang, Y. P.; Xu, J. L.; Lu, H. Q.; Zhang, P.; Zhang, C. C.; Yang, C. G.

    2017-03-01

    In the case of underground experiments for neutrino physics or rare event searches, the background caused by cosmic muons contributes significantly and therefore must be identified and rejected. We proposed and optimized a new detector using liquid scintillator with wavelenghth-shifting fibers which can be employed as a veto detector for cosmic muons background rejection. From the prototype study, it has been found that the detector has good performances and is capable of discriminating between muons induced signals and environmental radiation background. Its muons detection efficiency is greater than 98%, and on average, 58 photo-electrons (p.e.) are collected when a muon passes through the detector. To optimize the design and enhance the collection of light, the reflectivity of the coating materials has been studied in detail. A Monte Carlo simulation of the detector has been developed and compared to the performed measurements showing a good agreement between data and simulation results.

  17. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    SciTech Connect

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m. The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m in radius. Using this process, ORNL has disposed of over 1.5 x 10/sup 6/ Ci of activity; the principal nuclides are /sup 90/Sr and /sup 137/Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 liters of slurry. Disposal cost per liter is about $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. Recent regulatory constraints may cause permanent cessation of the operation. Federal and state statutes, written for other types of injection facilities, impact the ORNL facility. This disposal process, which may have great applicability for disposal of many wastes, including hazardous wastes, may not be developed for future use.

  18. Subsurface disposal of liquid low-level radioactive wastes at Oak Ridge, Tennessee

    SciTech Connect

    Stow, S.H.; Haase, C.S.

    1986-01-01

    At Oak Ridge National Laboratory (ORNL) subsurface injection has been used to dispose of low-level liquid nuclear waste for the last two decades. The process consists of mixing liquid waste with cement and other additives to form a slurry that is injected under pressure through a cased well into a low-permeability shale at a depth of 300 m (1000 ft). The slurry spreads from the injection well along bedding plane fractures and forms solid grout sheets of up to 200 m (660 ft) in radius. Using this process, ORNL has disposed of over 1.5 x 10/sup 6/ Ci of activity; the principal nuclides are /sup 90/Sr and /sup 137/Cs. In 1982, a new injection facility was put into operation. Each injection, which lasts some two days, results in the emplacement of approximately 750,000 l (180,000 gal) of slurry. Disposal cost per liter is approximately $0.30, including capital costs of the facility. This subsurface disposal process is fundamentally different from other operations. Wastes are injected into a low-permeability aquitard, and the process is designed to isolate nuclides, preventing dispersion in groundwaters. The porosity into which wastes are injected is created by hydraulically fracturing the host formation along bedding planes. The site is in the structurally complex Valley and Ridge Province. The stratigraphy consists of lower Paleozoic rocks. Investigations are under way to determine the long-term hydrologic isolation of the injection zone and the geochemical impact of saline groundwater on nuclide mobility. Injections are monitored by gamma-ray logging of cased observation wells to determine grout sheet orientation after an injection. Recent monitoring work has involved the use of tiltmeters, surface uplift surveys, and seismic arrays. 26 refs., 7 figs.

  19. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    SciTech Connect

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

  20. [Transport processes of low-level radioactive liquid effluent of nuclear power station in closed water body].

    PubMed

    Wu, Guo-Zheng; Xu, Zong-Xue

    2012-07-01

    The transport processes of low-level radioactive liquid effluent of Xianning nuclear power station in the closed water body Fushui Reservoir are simulated using the EFDC model. Six nuclides concentration distribution with different half-lives in the reservoir are analyzed under the condition of 97% guarantee rate incoming water and four-running nuclear power units. The results show that the nuclides concentration distribution is mainly affected by the flow field of the reservoir and the concentration is decided by the half-lives of nuclide and the volume of incoming water. In addition, the influence region is enlarged as increasing of half-life and tends to be stable when the half-life is longer than 5 years. Moreover, the waste water discharged from the outlet of the nuclear power plant has no effect on the water-intake for the outlet located at the upstream of the water-intake and the flow field flows to the dam of the reservoir.

  1. Spectrophotometric determination of plutonium in highly radioactive liquid waste using an internal standardization technique with neodymium(III).

    PubMed

    Surugaya, Naoki; Taguchi, Shigeo; Sato, Soichi; Watahiki, Masaru; Hiyama, Toshiaki

    2008-03-01

    A simple and rapid spectrophotometric method has been developed for the determination of Pu in highly radioactive liquid waste. This method uses Nd(III) as an internal standard, which enables us to determine the concentration of Pu and to authenticate the whole analytical scheme as well. A Nd(III) standard mixed with a sample solution and Pu was quantitatively oxidized to Pu(VI) with Ce(IV) in a nitric acid medium, having the maximum absorbance at 830 nm. A spectrophotometric measurement of Pu(VI) was subsequently performed to determine the concentration compared with the maximum absorbance of Nd(III) at 795 nm. It was estimated that the relative expanded uncertainty for a real sample is less than 10%. The limit of detection was calculated to be 1.8 mg/L (3 sigma). The proposed method was also validated through comparison experiments with isotope dilution mass spectrometry, and was successfully applied to analysis for nuclear waste management at spent nuclear fuel reprocessing plants.

  2. Assay for inorganic pyrophosphate in chondrocyte culture using anion-exchange high-performance liquid chromatography and radioactive orthophosphate labeling

    SciTech Connect

    Prins, A.P.; Kiljan, E.; v.d. Stadt, R.J.; v.d. Korst, J.K.

    1986-02-01

    A method is described for determination of inorganic pyrophosphate (PPi) in cell culture medium and in rabbit articular chondrocytes grown in the presence of radioactive orthophosphate (/sup 32/Pi). Intra- and extracellular /sup 32/PPi formed was measured using high-performance liquid chromatographic (HPLC) separation of the PPi from orthophosphate (Pi) and other phosphate-containing compounds. The chromatographic separation on a weak anion-exchange column is based on the extent to which various phosphate compounds form complexes with Mg2+ at low pH and the rate at which such formation occurs. These complexes are eluted more readily than the uncomplexed compounds. Best results were obtained using a simultaneous gradient of Mg2+ ions and ionic strength. In this case separation of small amounts of PPi from a large excess of Pi was possible without prior removal of Pi or extraction of the PPi fraction. The assay is also useful for measurement of inorganic pyrophosphatase activity. The sensitivity of the assay depends on the specific activity of the added /sup 32/Pi and on the culture conditions, but is comparable with the most sensitive of the enzymatic assays. Sample preparation, particularly deproteinization, proved to be of importance. The losses of PPi which occur during procedures of this sort due to hydrolysis and coprecipitation were quantitated.

  3. Reconstruction of the radionuclide spectrum of liquid radioactive waste released into the Techa river in 1949-1951.

    PubMed

    Mokrov, Yuri G

    2003-04-01

    The major part of the liquid radioactive waste released by the Mayak Production Association (PA) radiochemical plant into the Techa river occurred in 1949-1951, but there is information on only one single radiochemical analysis of a water sample taken on 24 and 25 September 1951. These data are here used to assess the spectrum of radionuclides that were released between 1949 and 1951. For this purpose, details of the radiochemical methods of radionuclide extraction and radiometric measurements of beta-activity used at Mayak PA in the 1950s have been taken into account. It is concluded that the data from the radiochemical measurements agree with the theoretical composition of fission products in uranium after exposure times in the reactor (120 days) and subsequent hold times (35 days) that were typical for the procedures at that time. The results of the analysis are at variance with assumptions that underlie the current Techa river dosimetry system. They confirm the conclusion that the external doses to the Techa river residents in the critical period up to 1952 were predominantly due to short-lived fission products.

  4. Validation of a procedure for the analysis of (226)Ra in naturally occurring radioactive materials using a liquid scintillation counter.

    PubMed

    Kim, Hyuncheol; Jung, Yoonhee; Ji, Young-Yong; Lim, Jong-Myung; Chung, Kun Ho; Kang, Mun Ja

    2017-01-01

    An analytical procedure for detecting (226)Ra in naturally occurring radioactive materials (NORMs) using a liquid scintillation counter (LSC) was developed and validated with reference materials (zircon matrix, bauxite matrix, coal fly ash, and phosphogypsum) that represent typical NORMs. The (226)Ra was released from samples by a fusion method and was separated using sulfate-coprecipitation. Next, a (222)Rn-emanation technique was applied for the determination of (226)Ra. The counting efficiency was 238 ± 8% with glass vials. The recovery for the reference materials was 80 ± 11%. The linearity of the method was tested with different masses of zircon matrix reference materials. Using 15 types of real NORMs, including raw materials and by-products, this LSC method was compared with γ-spectrometry, which had already been validated for (226)Ra analysis. The correlation coefficient for the results from the LSC method and γ-spectrometry was 0.993 ± 0.058.

  5. The Polymers for Liquid Radioactive Waste Solidification: a Lost Chapter in the History of Engineering or a Step Forward? - 13529

    SciTech Connect

    Pokhitonov, Yury; Kelley, Dennis

    2013-07-01

    Ideas on the application of polymers for the liquid radioactive waste immobilization go a way back, and the first studies in the area were published 30-40 years ago. One should admit that regardless of the fairly large number of publications appeared in the past years currently the interest in this work came down greatly. It was the successful assimilation and worldwide implementation of the LRW cementation technology caused a slump in the interest in polymers. But today it's safe to say that the situation slowly changes, particularly due to the market appearance of the high-tech polymers manufactured by Nochar Company, and unique properties of these polymers gradually raise the demand in various countries. The results of multiple experiments performed with the simulated solutions have passed the comprehensive tests with actual waste. The economic effect from the implementation of the new technology is defined by the volume reduction of waste coming onto the repository, by the decline in the cost of transportation and of the repository construction on account of cutting down the construction volume. Interesting results have been obtained during the search for the technical decisions that would allow using the polymer materials in the processing technology of the industrial toxic waste. One more promising area of the possible application of polymers should be pointed out. It is the application of polymer materials as the assets for the emergency damage control when the advantages of the polymers become obvious. (authors)

  6. Cement encapsulation of low-level waste liquids. Final report

    SciTech Connect

    Baker, M.N.; Houston, H.M.

    1999-01-01

    Pretreatment of liquid high-level radioactive waste at the West Valley Demonstration Project (WVDP) was essential to ensuring the success of high-level waste (HLW) vitrification. By chemically separating the HLW from liquid waste, it was possible to achieve a significant reduction in the volume of HLW to be vitrified. In addition, pretreatment made it possible to remove sulfates, which posed several processing problems, from the HLW before vitrification took place.

  7. [Development of a simple quantitative method for the strontium-89 concentration of radioactive liquid waste using the plastic scintillation survey meter for beta rays].

    PubMed

    Narita, Hiroto; Tsuchiya, Yuusuke; Hirase, Kiyoshi; Uchiyama, Mayuki; Fukushi, Masahiro

    2012-11-01

    Strontium-89 (89Sr: pure beta, E; 1.495 MeV-100%, halflife: 50.5 days) chloride is used as pain relief from bone metastases. An assay of 89Sr is difficult because of a pure beta emitter. For management of 89Sr, we tried to evaluate a simple quantitative method for the 59Sr concentration of radioactive liquid waste using scintillation survey meter for beta rays. The counting efficiency of the survey meter with this method was 35.95%. A simple 30 minutes measurement of 2 ml of the sample made the quantitative measurement of 89Sr practical. Reducing self-absorption of the beta ray in the solution by counting on the polyethlene paper improved the counting efficiency. Our method made it easy to manage the radioactive liquid waste under the legal restrictions.

  8. Implementation of environmental compliance for operating radioactive liquid waste systems at the Oak Ridge National Laboratory

    SciTech Connect

    Hooyman, J.H.

    1993-12-31

    This paper addresses methods being implemented at the Oak Ridge National Laboratory (ORNL) to continue operating while achieving compliance with new standards for liquid low level waste (LLLW) underground storage tank systems. The Superfund Amendment and Reauthorization Act (SARA) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) required that the Department of Energy (DOE) execute a Federal Facility Agreement (FFA) with the Environmental Protection Agency (EPA) within 6 months of listing of the ORNL on the National Priorities List. An FFA for ORNL became effective January 1, 1992 among the EPA, DOE, and the Tennessee Department of Environment and Conservation (TDEC). The objective of the FFA as it relates to these tank systems is to ensure that structural integrity, containment, leak detection capability, and LLLW source control are maintained until final remedial action. The FFA requires that leaking LLLW tank systems be immediately removed from service, and that active tank systems be doubly contained, cathodically protected, and have leak detection capability. LLLW tank systems that do not meet requirements are to be either upgraded or replaced, but can remain in service if they do not leak in the interim.

  9. Radioactive Iodine

    MedlinePlus

    ... Phone Home » Radioactive Iodine Leer en Español Radioactive Iodine Iodine is essential for proper function of the ... that takes up and holds onto iodine. Radioactive Iodine FAQs WHAT IS RADIOACTIVE IODINE (RAI)? Iodine, in ...

  10. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  11. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  12. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals.

    PubMed

    Borai, E H; Harjula, R; Malinen, Leena; Paajanen, Airi

    2009-12-15

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs+ ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  13. Low-level liquid radioactive waste treatment at Murmansk, Russia: Technical design and review of facility upgrade and expansion

    SciTech Connect

    Dyer, R.S.; Diamante, J.M.; Duffey, R.B.

    1996-07-01

    The governments of Norway and the US have committed their mutual cooperation and support the Murmansk Shipping Company (MSCo) to expand and upgrade the Low-Level Liquid Radioactive Waste (LLRW) treatment system located at the facilities of the Russian company RTP Atomflot, in Murmansk, Russia. RTP Atomflot provides support services to the Russian icebreaker fleet operated by the MSCo. The objective is to enable Russia to permanently cease disposing of this waste in Arctic waters. The proposed modifications will increase the facility`s capacity from 1,200 m{sup 3} per year to 5,000 m{sup 3} per year, will permit the facility to process high-salt wastes from the Russian Navy`s Northern fleet, and will improve the stabilization and interim storage of the processed wastes. The three countries set up a cooperative review of the evolving design information, conducted by a joint US and Norwegian technical team from April through December, 1995. To ensure that US and Norwegian funds produce a final facility which will meet the objectives, this report documents the design as described by Atomflot and the Russian business organization, ASPECT, both in design documents and orally. During the detailed review process, many questions were generated, and many design details developed which are outlined here. The design is based on the adsorption of radionuclides on selected inorganic resins, and desalination and concentration using electromembranes. The US/Norwegian technical team reviewed the available information and recommended that the construction commence; they also recommended that a monitoring program for facility performance be instituted.

  14. High Level Waste Disposal System Optimization

    SciTech Connect

    Dirk Gombert; M. Connolly; J. Roach; W. Holtzscheiter

    2005-02-01

    The high level waste (HLW) disposal system consists of the Yucca Mountain Facility (YMF) and waste product (e.g. glass) generation facilities. Responsibility for management is shared between the U. S. Department of Energy (DOE) Offices of Civilian Radioactive Waste Management (DOE-RW) and Environmental Management (DOE-EM). The DOE-RW license application and the Waste Acceptance System Requirements Document (WASRD), as well as the DOE-EM Waste Acceptance Product Specification for Vitrified High Level Waste Forms (WAPS) govern the overall performance of the system. This basis for HLW disposal should be reassessed to consider waste form and process technology research and development (R&D), which have been conducted by DOE-EM, international agencies (i.e. ANSTO, CEA), and the private sector; as well as the technical bases for including additional waste forms in the final license application. This will yield a more optimized HLW disposal system to accelerate HLW disposition, more efficient utilization of the YMF, and overall system cost reduction.

  15. Spray Calciner/In-Can Melter high-level waste solidification technical manual

    SciTech Connect

    Larson, D.E.

    1980-09-01

    This technical manual summarizes process and equipment technology developed at Pacific Northwest Laboratory over the last 20 years for vitrification of high-level liquid waste by the Spray Calciner/In-Can Melter process. Pacific Northwest Laboratory experience includes process development and demonstration in laboratory-, pilot-, and full-scale equipment using nonradioactive synthetic wastes. Also, laboratory- and pilot-scale process demonstrations have been conducted using actual high-level radioactive wastes. In the course of process development, more than 26 tonnes of borosilicate glass have been produced in 75 canisters. Four of these canisters contained radioactive waste glass. The associated process and glass chemistry is discussed. Technology areas described include calciner feed treatment and techniques, calcination, vitrification, off-gas treatment, glass containment (the canister), and waste glass chemistry. Areas of optimization and site-specific development that would be needed to adapt this base technology for specific plant application are indicated. A conceptual Spray Calciner/In-Can Melter system design and analyses are provided in the manual to assist prospective users in evaluating the process for plant application, to provide equipment design information, and to supply information for safety analyses and environmental reports. The base (generic) technology for the Spray Calciner/In-Can Melter process has been developed to a point at which it is ready for plant application.

  16. ORNL radioactive waste operations

    SciTech Connect

    Sease, J.D.; King, E.M.; Coobs, J.H.; Row, T.H.

    1982-01-01

    Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards.

  17. RPython high-level synthesis

    NASA Astrophysics Data System (ADS)

    Cieszewski, Radoslaw; Linczuk, Maciej

    2016-09-01

    The development of FPGA technology and the increasing complexity of applications in recent decades have forced compilers to move to higher abstraction levels. Compilers interprets an algorithmic description of a desired behavior written in High-Level Languages (HLLs) and translate it to Hardware Description Languages (HDLs). This paper presents a RPython based High-Level synthesis (HLS) compiler. The compiler get the configuration parameters and map RPython program to VHDL. Then, VHDL code can be used to program FPGA chips. In comparison of other technologies usage, FPGAs have the potential to achieve far greater performance than software as a result of omitting the fetch-decode-execute operations of General Purpose Processors (GPUs), and introduce more parallel computation. This can be exploited by utilizing many resources at the same time. Creating parallel algorithms computed with FPGAs in pure HDL is difficult and time consuming. Implementation time can be greatly reduced with High-Level Synthesis compiler. This article describes design methodologies and tools, implementation and first results of created VHDL backend for RPython compiler.

  18. Radioactive Decay

    EPA Pesticide Factsheets

    Radioactive decay is the emission of energy in the form of ionizing radiation. Example decay chains illustrate how radioactive atoms can go through many transformations as they become stable and no longer radioactive.

  19. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

    2003-04-22

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  20. Final report on cermet high-level waste forms

    SciTech Connect

    Kobisk, E.H.; Quinby, T.C.; Aaron, W.S.

    1981-08-01

    Cermets are being developed as an alternate method for the fixation of defense and commercial high level radioactive waste in a terminal disposal form. Following initial feasibility assessments of this waste form, consisting of ceramic particles dispersed in an iron-nickel base alloy, significantly improved processing methods were developed. The characterization of cermets has continued through property determinations on samples prepared by various methods from a variety of simulated and actual high-level wastes. This report describes the status of development of the cermet waste form as it has evolved since 1977. 6 tables, 18 figures.

  1. Comparison of selected foreign plans and practices for spent fuel and high-level waste management

    SciTech Connect

    Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.; Johnson, A.B. Jr.; Hazelton, R.F.; Bradley, D.J.

    1990-04-01

    This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal of spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs.

  2. The tracking of high level waste shipments-TRANSCOM system

    SciTech Connect

    Johnson, P.E.; Joy, D.S.; Pope, R.B.

    1995-12-31

    The TRANSCOM (transportation tracking and communication) system is the U.S. Department of Energy`s (DOE`s) real-time system for tracking shipments of spent fuel, high-level wastes, and other high-visibility shipments of radioactive material. The TRANSCOM system has been operational since 1988. The system was used during FY1993 to track almost 100 shipments within the US.DOE complex, and it is accessed weekly by 10 to 20 users.

  3. The CMS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Trocino, Daniele

    2014-06-01

    The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger, implemented in custom-designed electronics, and the High-Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a tradeoff between the complexity of the algorithms running with the available computing power, the sustainable output rate, and the selection efficiency. We present the performance of the main triggers used during the 2012 data taking, ranging from simple single-object selections to more complex algorithms combining different objects, and applying analysis-level reconstruction and selection. We discuss the optimisation of the trigger and the specific techniques to cope with the increasing LHC pile-up, reducing its impact on the physics performance.

  4. Understanding radioactive waste

    SciTech Connect

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  5. Effect of temperature on the durability of class C fly ash belite cement in simulated radioactive liquid waste: synergy of chloride and sulphate ions.

    PubMed

    Guerrero, A; Goñi, S; Allegro, V R

    2009-06-15

    The durability of class C fly ash belite cement (FABC-2-W) in simulated radioactive liquid waste (SRLW) rich in a mixed sodium chloride and sulphate solution is presented here. The effect of the temperature and potential synergic effect of chloride and sulfate ions are discussed. This study has been carried out according to the Koch-Steinegger test, at the temperature of 20 degrees C and 40 degrees C during a period of 180 days. The durability has been evaluated by the changes of the flexural strength of mortar, fabricated with this cement, immersed in a simulated radioactive liquid waste rich in sulfate (0.5M), chloride (0.5M) and sodium (1.5M) ions--catalogued like severely aggressive for the traditional Portland cement--and demineralised water, which was used as reference. The reaction mechanism of sulphate, chloride and sodium ions with the mortar was evaluated by scanning electron microscopy (SEM), porosity and pore-size distribution, and X-ray diffraction (XRD). The results showed that the chloride binding and formation of Friedel's salt was inhibited by the presence of sulphate. Sulphate ion reacts preferentially with the calcium aluminate hydrates forming non-expansive ettringite which precipitated inside the pores; the microstructure was refined and the mechanical properties enhanced. This process was faster and more marked at 40 degrees C.

  6. Design and operating features of the high-level waste vitrification system for the West Valley demonstration project

    SciTech Connect

    Siemens, D.H.; Beary, M.M.; Barnes, S.M.; Berger, D.N.; Brouns, R.A.; Chapman, C.C.; Jones, R.M.; Peters, R.D.; Peterson, M.E.

    1986-03-01

    A liquid-fed joule-heated ceramic melter system is the reference process for immobilization of the high-level liquid waste in the US and several foreign countries. This system has been under development for over ten years at Pacific Northwest Laboratory and other national laboratories operated for the US Department of Energy. Pacific Northwest Laboratory contributed to this research through its Nuclear Waste Treatment Program and used applicable data to design and test melters and related systems using remote handling of simulated radioactive wastes. This report describes the equipment designed in support of the high-level waste vitrification program at West Valley, New York. Pacific Northwest Laboratory worked closely with West Valley Nuclear Services Company to design a liquid-fed ceramic melter, a liquid waste preparation and feed tank and pump, an off-gas treatment scrubber, and an enclosed turntable for positioning the waste canisters. Details of these designs are presented including the rationale for the design features and the alternatives considered.

  7. Risk-based prioritization for the interim remediation of inactive low-level liquid radioactive waste underground storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Chidambariah, V.; Travis, C.C.; Trabalka, J.R.; Thomas, J.K.

    1992-09-01

    The paper presents a risk-based approach for rapid prioritization of low-level liquid radioactive waste underground storage tanks (LLLW USTs), for possible interim corrective measures and/or ultimate closure. The ranking of LLLW USTs is needed to ensure that tanks with the greatest potential for adverse impact on the environment and human health receive top priority for further evaluation and remediation. Wastes from the LLLW USTs at Oak Ridge National Laboratory were pumped out when the tanks were removed from service. The residual liquids and sludge contain a mixture of radionuclides and chemicals. Contaminants of concern that were identified in the liquid phase of the inactive LLLW USTs include the radionuclides [sup 90]Sr, [sup 137]Cs, and [sup 233]U and the chemicals carbon tetrachloride, trichloroethane, tetrachloroethene, methyl ethyl ketone, mercury, lead, and chromium. The risk-based approach for prioritization of the LLLW USTs is based upon three major criteria: (1) leaking characteristics of the tank, (2) location of the tanks, and (3) toxic potential of the tank contents. Leaking characteristics of LLLW USTs will aid in establishing the potential for the release of contaminants to environmental media. In this study, only the liquid phase was assumed to be released to the environment. Scoring criteria for release potential of LLLW USTs was determined after consideration of the magnitude of any known leaks and the tank type for those that are not known to leak.

  8. Risk-based prioritization for the interim remediation of inactive low-level liquid radioactive waste underground storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Chidambariah, V.; Travis, C.C.; Trabalka, J.R.; Thomas, J.K.

    1992-09-01

    The paper presents a risk-based approach for rapid prioritization of low-level liquid radioactive waste underground storage tanks (LLLW USTs), for possible interim corrective measures and/or ultimate closure. The ranking of LLLW USTs is needed to ensure that tanks with the greatest potential for adverse impact on the environment and human health receive top priority for further evaluation and remediation. Wastes from the LLLW USTs at Oak Ridge National Laboratory were pumped out when the tanks were removed from service. The residual liquids and sludge contain a mixture of radionuclides and chemicals. Contaminants of concern that were identified in the liquid phase of the inactive LLLW USTs include the radionuclides {sup 90}Sr, {sup 137}Cs, and {sup 233}U and the chemicals carbon tetrachloride, trichloroethane, tetrachloroethene, methyl ethyl ketone, mercury, lead, and chromium. The risk-based approach for prioritization of the LLLW USTs is based upon three major criteria: (1) leaking characteristics of the tank, (2) location of the tanks, and (3) toxic potential of the tank contents. Leaking characteristics of LLLW USTs will aid in establishing the potential for the release of contaminants to environmental media. In this study, only the liquid phase was assumed to be released to the environment. Scoring criteria for release potential of LLLW USTs was determined after consideration of the magnitude of any known leaks and the tank type for those that are not known to leak.

  9. Reference commercial high-level waste glass and canister definition.

    SciTech Connect

    Slate, S.C.; Ross, W.A.; Partain, W.L.

    1981-09-01

    This report presents technical data and performance characteristics of a high-level waste glass and canister intended for use in the design of a complete waste encapsulation package suitable for disposal in a geologic repository. The borosilicate glass contained in the stainless steel canister represents the probable type of high-level waste product that will be produced in a commercial nuclear-fuel reprocessing plant. Development history is summarized for high-level liquid waste compositions, waste glass composition and characteristics, and canister design. The decay histories of the fission products and actinides (plus daughters) calculated by the ORIGEN-II code are presented.

  10. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    SciTech Connect

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  11. Optimizing High Level Waste Disposal

    SciTech Connect

    Dirk Gombert

    2005-09-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  12. Decontamination of high-level waste canisters

    SciTech Connect

    Nesbitt, J.F.; Slate, S.C.; Fetrow, L.K.

    1980-12-01

    This report presents evaluations of several methods for the in-process decontamination of metallic canisters containing any one of a number of solidified high-level waste (HLW) forms. The use of steam-water, steam, abrasive blasting, electropolishing, liquid honing, vibratory finishing and soaking have been tested or evaluated as potential techniques to decontaminate the outer surfaces of HLW canisters. Either these techniques have been tested or available literature has been examined to assess their applicability to the decontamination of HLW canisters. Electropolishing has been found to be the most thorough method to remove radionuclides and other foreign material that may be deposited on or in the outer surface of a canister during any of the HLW processes. Steam or steam-water spraying techniques may be adequate for some applications but fail to remove all contaminated forms that could be present in some of the HLW processes. Liquid honing and abrasive blasting remove contamination and foreign material very quickly and effectively from small areas and components although these blasting techniques tend to disperse the material removed from the cleaned surfaces. Vibratory finishing is very capable of removing the bulk of contamination and foreign matter from a variety of materials. However, special vibratory finishing equipment would have to be designed and adapted for a remote process. Soaking techniques take long periods of time and may not remove all of the smearable contamination. If soaking involves pickling baths that use corrosive agents, these agents may cause erosion of grain boundaries that results in rough surfaces.

  13. Technology for Treatment of Liquid Radioactive Waste Generated during Uranium and Plutonium Chemical and Metallurgical Manufacturing in FSUE PO Mayak - 13616

    SciTech Connect

    Adamovich, D.

    2013-07-01

    Created technological scheme for treatment of liquid radioactive waste generated while uranium and plutonium chemical and metallurgical manufacturing consists of: - Liquid radioactive waste (LRW) purification from radionuclides and its transfer into category of manufacturing waste; - Concentration of suspensions containing alpha-nuclides and their further conversion to safe dry state (calcinate) and moving to long controlled storage. The following technologies are implemented in LRW treatment complex: - Settling and filtering technology for treatment of liquid intermediate-level waste (ILW) with volume about 1500m{sup 3}/year and alpha-activity from 10{sup 6} to 10{sup 8} Bq/dm{sup 3} - Membrane and sorption technology for processing of low-level waste (LLW) of radioactive drain waters with volume about 150 000 m{sup 3}/year and alpha-activity from 10{sup 3} to 10{sup 4} Bq/dm{sup 3}. Settling and filtering technology includes two stages of ILW immobilization accompanied with primary settling of radionuclides on transition metal hydroxides with the following flushing and drying of the pulp generated; secondary deep after settling of radionuclides on transition metal hydroxides with the following solid phase concentration by the method of tangential flow ultrafiltration. Besides, the installation capacity on permeate is not less than 3 m{sup 3}/h. Concentrates generated are sent to calcination on microwave drying (MW drying) unit. Membrane and sorption technology includes processing of averaged sewage flux by the method of tangential flow ultrafiltration with total capacity of installations on permeate not less than 18 m{sup 3}/h and sorption extraction of uranium from permeate on anionite. According to radionuclide contamination level purified solution refers to general industrial waste. Concentrates generated during suspension filtering are evaporated in rotary film evaporator (RFE) in order to remove excess water, thereafter they are dried on infrared heating

  14. Department of Energy pretreatment of high-level and low-level wastes

    SciTech Connect

    McGinnis, C.P.; Hunt, R.D.

    1995-12-31

    The remediation of the 1 {times} 10{sup 8} gal of highly radioactive waste in the underground storage tanks (USTs) at five US Department of Energy (DOE) sites is one of DOE`s greatest challenges. Therefore, the DOE Office of Environmental Management has created the Tank Focus Area (TFA) to manage an integrated technology development program that results in the safe and efficient remediation of UST waste. The TFA has divided its efforts into five areas, which are safety, characterization, retrieval/closure, pretreatment, and immobilization. All DOE pretreatment activities are integrated by the Pretreatment Technical Integration Manager of the TFA. For FY 1996, the 14 pretreatment tasks are divided into 3 systems: supernate separations, sludge treatment, and solid/liquid separation. The plans and recent results of these TFA tasks, which include two 25,000-gal demonstrations and two former TFA tasks on Cs removal, are presented. The pretreatment goals are to minimize the volume of high-level waste and the radioactivity in low-level waste.

  15. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    DOEpatents

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  16. Ecotoxicological screen of Potential Release Site 50-006(d) of Operable Unit 1147 of Mortandad Canyon and relationship to the Radioactive Liquid Waste Treatment Facilities project

    SciTech Connect

    Gonzales, G.J.; Newell, P.G.

    1996-04-01

    Potential ecological risk associated with soil contaminants in Potential Release Site (PRS) 50-006(d) of Mortandad Canyon at the Los Alamos National Laboratory was assessed by performing an ecotoxicological risk screen. The PRS surrounds Outfall 051, which discharges treated effluent from the Radioactive Liquid Waste Treatment Facility. Discharge at the outfall is permitted under the Clean Water Act National Pollution Discharge Elimination System. Radionuclide discharge is regulated by US Department of Energy (DOE) Order 5400.5. Ecotoxicological Screening Action Levels (ESALSs) were computed for nonradionuclide constituents in the soil, and human risk SALs for radionuclides were used as ESALs. Within the PRS and beginning at Outfall 051, soil was sampled at three points along each of nine linear transects at 100-ft intervals. Soil samples from 3 depths for each sampling point were analyzed for the concentration of a total of 121 constituents. Only the results of the surface sampling are reported in this report.

  17. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Bryant, Jeffrey W.

    2010-08-12

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  18. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect

    Bryant, Jeffrey Whealdon; Nenni, Joseph A; Timothy S. Yoder

    2003-04-01

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  19. Graphical and tabular summaries of decay characteristics for once-through PWR, LMFBR, and FFTF fuel cycle materials. [Spent fuel, high-level waste fuel can scrap

    SciTech Connect

    Croff, A.G.; Liberman, M.S.; Morrison, G.W.

    1982-01-01

    Based on the results of ORIGEN2 and a newly developed code called ORMANG, graphical and summary tabular characteristics of spent fuel, high-level waste, and fuel assembly structural material (cladding) waste are presented for a generic pressurized-water reactor (PWR), a liquid-metal fast breeder reactor (LMFBR), and the Fast Flux Test Facility (FFTF). The characteristics include radioactivity, thermal power, and toxicity (water dilution volume). Given are graphs and summary tables containing characteristic totals and the principal nuclide contributors as well as graphs comparing the three reactors for a single material and the three materials for a single reactor.

  20. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    DOEpatents

    Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  1. Corrosion and failure processes in high-level waste tanks

    SciTech Connect

    Mahidhara, R.K.; Elleman, T.S.; Murty, K.L.

    1992-11-01

    A large amount of radioactive waste has been stored safely at the Savannah River and Hanford sites over the past 46 years. The aim of this report is to review the experimental corrosion studies at Savannah River and Hanford with the intention of identifying the types and rates of corrosion encountered and indicate how these data contribute to tank failure predictions. The compositions of the High-Level Wastes, mild steels used in the construction of the waste tanks and degradation-modes particularly stress corrosion cracking and pitting are discussed. Current concerns at the Hanford Site are highlighted.

  2. High-level wastes: DOE names three sites for characterization

    SciTech Connect

    1986-07-01

    DOE announced in May 1986 that there will be there site characterization studies made to determine suitability for a high-level radioactive waste repository. The studies will include several test drillings to the proposed disposal depths. Yucca Mountain, Nevada; Deaf Smith Country, Texas, and Hanford, Washington were identified as the study sites, and further studies for a second repository site in the East were postponed. The affected states all filed suits in federal circuit courts because they were given no advance warning of the announcement of their selection or the decision to suspend work on a second repository. Criticisms of the selection process include the narrowing or DOE options.

  3. Radioactive Air Emission Notice of Construction (NOC) for Construction of Liquid Effluent Transfer System Project W-519

    SciTech Connect

    HOMAN, N.A.

    2000-05-01

    The proposed action is to install a new liquid effluent transfer system (three underground waste transfer pipelines). As such, a potential new source will be created as a result of the construction activities. The anticipated emissions associated with this activity are insignificant.

  4. Implementation plan for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee

    SciTech Connect

    1995-06-01

    This document is an annual revision of the plans and schedules for implementing the Federal Facility Agreement (FFA) compliance program, originally submitted in ES/ER-17&D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the FFA commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. Chapter 1 provides general background information and philosophies that lead to the plans and schedules that appear in Chapters 2 through 5.

  5. SELF SINTERING OF RADIOACTIVE WASTES

    DOEpatents

    McVay, T.N.; Johnson, J.R.; Struxness, E.G.; Morgan, K.Z.

    1959-12-29

    A method is described for disposal of radioactive liquid waste materials. The wastes are mixed with clays and fluxes to form a ceramic slip and disposed in a thermally insulated container in a layer. The temperature of the layer rises due to conversion of the energy of radioactivity to heat boillng off the liquid to fomn a dry mass. The dry mass is then covered with thermal insulation, and the mass is self-sintered into a leach-resistant ceramic cake by further conversion of the energy of radioactivity to heat.

  6. RADIOACTIVE CONCENTRATOR AND RADIATION SOURCE

    DOEpatents

    Hatch, L.P.

    1959-12-29

    A method is presented for forming a permeable ion exchange bed using Montmorillonite clay to absorb and adsorb radioactive ions from liquid radioactive wastes. A paste is formed of clay, water, and a material that fomns with clay a stable aggregate in the presence of water. The mixture is extruded into a volume of water to form clay rods. The rods may then be used to remove radioactive cations from liquid waste solutions. After use, the rods are removed from the solution and heated to a temperature of 750 to 1000 deg C to fix the ratioactive cations in the clay.

  7. Radioactive by-products of a self-shielded cyclotron and the liquid target system for F-18 routine production.

    PubMed

    Kambali, I; Suryanto, H; Parwanto

    2016-06-01

    Routine production of F-18 radionuclide using proton beams accelerated in a cyclotron could potentially generate residual radioisotopes in the cyclotron vicinity which eventually become major safety concerns over radiation exposure to the workers. In this investigation, a typical 11-MeV proton, self-shielded cyclotron has been assessed for its residual radiation sources in the cyclotron's shielding, tank/chamber, cave wall as well as target system. Using a portable gamma ray spectroscopy system, the radiation measurement in the cyclotron environment has been carried out. Experimental results indicate that relatively long-lived radioisotopes such as Mn-54, Zn-65 and Eu-152 are detected in the inner and outer surface of the cyclotron shielding respectively while Mn-54 spectrum is observed around the cyclotron chamber. Weak intensity of Eu-152 radioisotope is again spotted in the inner and outer surface of the cyclotron cave wall. Angular distribution measurement of the Eu-152 shows that the intensity slightly drops with increasing observation angle relative to the proton beam incoming angle. In the target system, gamma rays from Co-56, Mn-52, Co-60, Mn-54, Ag-110 m are identified. TALYS-calculated nuclear cross-section data are used to study the origins of the radioactive by-products.

  8. Copper Ferrocyanide Functionalized Core-Shell Magnetic Silica Composites for the Selective Removal of Cesium Ions from Radioactive Liquid Waste.

    PubMed

    Lee, Hyun Kyu; Yang, Da Som; Oh, Wonzin; Choi, Sang-June

    2016-06-01

    The copper ferrocyanide functionalized core-shell magnetic silica composite (mag@silica-CuFC) was prepared and was found to be easily separated from aqueous solutions by using magnetic field. The synthesized mag@silica-CuFC composite has a high sorption ability of Cs owing to its strong affinity for Cs as well as the high surface area of the supports. Cs sorption on the mag@silica-CuFC composite quickly reached the sorption equilibrium after 2 h of contact time. The effect of the presence of salts with a high concentration of up to 3.5 wt% on the efficiency of Cs sorption onto the composites was also studied. The maximum sorption ability was found to be maintained in the presence of up to 3.5 wt% of NaCl in the solution. Considering these results, the mag@silica-CuFC composite has great potential for use as an effective sorbent for the selective removal of radioactive Cs ions.

  9. Separation of fission produced (106)Ru from simulated high level nuclear wastes for production of brachytherapy sources.

    PubMed

    Blicharska, Magdalena; Bartoś, Barbara; Krajewski, Seweryn; Bilewicz, Aleksander

    An effective and simple process for the isolation of (106)Ru from high-level liquid wastes was developed. Radioactive ruthenium was oxidized by H5IO6 in HNO3 solution and was extracted to CCl4 phase in the form of RuO4. In order to obtain ruthenium in the suitable form for production of brachytherapy sources, RuO4 in organic phase was reduced and re-extracted to aqueous phase. The efficiency of extraction of (103)Ru to organic phase was 86 %, re-extraction to aqueous solution was near 100 %, so the overall recovery of (103)Ru is estimated at more than 80 %.

  10. SYNTHESIS OF NON-RADIOACTIVE SLURRIES TO SIMULATE THE PROCESSING BEHAVIOR OF PARTICLES IN RADIOACTIVE WASTE SLURRIES 626-G

    SciTech Connect

    Koopman, D.; Lambert, D.; Eibling, R.; Newell, J.; Stone, M.

    2009-09-03

    Process development using non-radioactive analogs to high-level radioactive waste slurries is an established cost effective alternative to working with actual samples of the real waste. Current simulated waste slurries, however, do not capture all of the physical behavior of real waste. New methods of preparing simulants are under investigation along with mechanisms for altering certain properties of finished simulants. These methods have achieved several notable successes recently in the areas of rheology and foaminess. Particle size is also being manipulated more effectively than in the past, though not independently of the rheological properties. The interaction between rheology and foaminess has exhibited counter-intuitive behavior with more viscous slurries being less foamy even though drainage of liquid from the foam lamellae should be inhibited by higher viscosities.

  11. The audit of the Replacement High Level Waste Evaporator at the Savannah River Site

    SciTech Connect

    1995-06-26

    The Savannah River Site (Site), owned by the Departmen Energy (Department) and managed by Westinghouse Savannah River Company (Westinghouse), recently changed its primary mission from producing nuclear materials to environmental restoration and waste management. A major focus in the Site`s mission is the storage, treatment, stabilization, and disposal of high level radioactive waste materials. To accomplish this mission, the Site will integrate its high level waste treatment facilities into a High Level Waste System (System), which will process the radioactive waste material in six distinct batches. An integral part of the System is the Replacement High Level Waste Evaporator (Replacement Evaporator) which will evaporate water added to the high level waste during processing, thereby minimizing the volume of the waste stream. Currently, the System has the evaporator and tank farm capacity to accommodate the processing of the first batch of radioactive waste, which is scheduled to begin in March 1996. However, the system will need the Replacement Evaporator to accommodate the volume of water and solvent added during processing of the second batch of radioactive waste scheduled to begin processing in 2004.

  12. Integrated High-Level Waste System Planning - Utilizing an Integrated Systems Planning Approach to Ensure End-State Definitions are Met and Executed - 13244

    SciTech Connect

    Ling, Lawrence T.; Chew, David P.

    2013-07-01

    The Savannah River Site (SRS) is a Department of Energy site which has produced nuclear materials for national defense, research, space, and medical programs since the 1950's. As a by-product of this activity, approximately 37 million gallons of high-level liquid waste containing approximately 292 million curies of radioactivity is stored on an interim basis in 45 underground storage tanks. Originally, 51 tanks were constructed and utilized to support the mission. Four tanks have been closed and taken out of service and two are currently undergoing the closure process. The Liquid Waste System is a highly integrated operation involving safely storing liquid waste in underground storage tanks; removing, treating, and dispositioning the low-level waste fraction in grout; vitrifying the higher activity waste at the Defense Waste Processing Facility; and storing the vitrified waste in stainless steel canisters until permanent disposition. After waste removal and processing, the storage and processing facilities are decontaminated and closed. A Liquid Waste System Plan (hereinafter referred to as the Plan) was developed to integrate and document the activities required to disposition legacy and future High-Level Waste and to remove from service radioactive liquid waste tanks and facilities. It establishes and records a planning basis for waste processing in the liquid waste system through the end of the program mission. The integrated Plan which recognizes the challenges of constrained funding provides a path forward to complete the liquid waste mission within all regulatory and legal requirements. The overarching objective of the Plan is to meet all Federal Facility Agreement and Site Treatment Plan regulatory commitments on or ahead of schedule while preserving as much life cycle acceleration as possible through incorporation of numerous cost savings initiatives, elimination of non-essential scope, and deferral of other scope not on the critical path to compliance

  13. Analysis of radioactive mixed hazardous waste using derivatization gas chromatography/mass spectrometry, liquid chromatography, and liquid chromatography/mass spectrometry

    SciTech Connect

    Campbell, J.A.; Lerner, B.D.; Bean, R.M.; Grant, K.E.; Lucke, R.B.; Mong, G.M.; Clauss, S.A.

    1994-08-01

    Six samples of core segments from Tank 101-SY were analyzed for chelators, chelator fragments, and several carboxylic acids by derivatization gas chromatography/mass spectrometry. The major components detected were ethylenediaminetetraacetic acid, nitroso-iminodiacetic acid, nitrilotriacetic acid, citric acid, succinic acid, and ethylenediaminetriacetic acid. The chelator of highest concentration was ethylenediaminetetraacetic acid in all six samples analyzed. Liquid chromatography was used to quantitate low molecular weight acids including oxalic, formic, glycolic, and acetic acids, which are present in the waste as acid salts. From 23 to 61% of the total organic carbon in the samples analyzed was accounted for by these acids.

  14. Dose-response relationships of FMISO between trace dose and various macro-doses in rat by ultra-performance liquid chromatography with mass spectrometry and radioactivity analysis.

    PubMed

    Du, Jinglei; Zhu, Lin; Zhou, Xue; Yin, Wei; Deng, Aifang; Qiao, Jinping

    2012-11-01

    Screening the pharmacokinetics of candidates using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) may be efficacious and safe for the research and development of new PET imaging agents. However, the PET imaging agent is administered as trace dose and the sensitivity of LC-MS/MS is often insufficient. If the dose was increased to be quantifiable, it should be necessary to prove whether the pharmacokinetics between trace and macro-doses is consistent or not. In this paper, fluoromisonidazole (FMISO), a tumor PET imaging agent, was chosen to evaluate the dose-response pharmacokinetics by administering various single intravenous doses (0.1, 0.4, 1.6 and 6.4 mg/kg) in male Sprague-Dawley rats. The plasma concentration of FMISO was determined by an ultra-performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method, and the blood radioactivity of [(18)F]FMISO was detected by a gamma counter. By calculating and comparing the pharmacokinetic parameters, the total area under the plasma concentration-time curve from time zero to infinity (AUC(0-∞)) and peak plasma concentration (C(max)) values increased with the selected FMISO doses, and showing linear dose-dependent. On the other hand, some parameters related to time, such as the elimination half-lives (t(1/2)) and elimination rate constant (K(e)) were dose-independent, and there is no significant deference between trace dose and various macro-doses. The data should be useful to evaluate the novel 2-nitroimidazole derivatives as potential PET tumor imaging agents.

  15. HUMAN MACHINE INTERFACE (HMI) EVALUATION OF ROOMS TA-50-1-60/60A AT THE RADIOACTIVE LIQUID WASTE TREATMENT FACILITY (RLWTF)

    SciTech Connect

    Gilmore, Walter E.; Stender, Kerith K.

    2012-08-29

    This effort addressed an evaluation of human machine interfaces (HMIs) in Room TA-50-1-60/60A of the Radioactive Liquid Waste Treatment Facility (RLWTF). The evaluation was performed in accordance with guidance outlined in DOE-STD-3009, DOE Standard Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, 2006 [DOE 2006]. Specifically, Chapter 13 of DOE 2006 highlights the 10 CFR 830, Nuclear Safety Management, 2012, [CFR 2012] and DOE G 421.1-2 [DOE 2001a] requirements as they relate to the human factors process and, in this case, the safety of the RLWTF. The RLWTF is a Hazard Category 3 facility and, consequently, does not have safety-class (SSCs). However, safety-significant SSCs are identified. The transuranic (TRU) wastewater tanks and associated piping are the only safety-significant SSCs in Rooms TA-50-1-60/60A [LANL 2010]. Hence, the human factors evaluation described herein is only applicable to this particular assemblage of tanks and piping.

  16. Federal Facility Agreement plans and schedules for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1992-03-01

    Although the Federal Facility Agreement (FFA) addresses the entire Oak Ridge Reservation, specific requirements are set forth for the liquid low-level radioactive waste (LLLW) storage tanks and their associated piping and equipment, tank systems, at ORNL. The stated objected of the FFA as it relates to these tank systems is to ensure that structural integrity, containment and detection of releases, and source control are maintained pending final remedial action at the site. The FFA requires that leaking LLLW tank systems be immediately removed from service. It also requires the LLLW tank systems that do not meet the design and performance requirements established for secondary containment and leak detection be either upgraded or replaced. The FFA establishes a procedural framework for implementing the environmental laws. For the LLLW tank systems, this framework requires the specified plans and schedules be submitted to EPA and TDEC for approval within 60 days, or in some cases, within 90 days, of the effective date of the agreement.

  17. Federal Facility Agreement plans and schedules for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Not Available

    1992-03-01

    Although the Federal Facility Agreement (FFA) addresses the entire Oak Ridge Reservation, specific requirements are set forth for the liquid low-level radioactive waste (LLLW) storage tanks and their associated piping and equipment, tank systems, at ORNL. The stated objected of the FFA as it relates to these tank systems is to ensure that structural integrity, containment and detection of releases, and source control are maintained pending final remedial action at the site. The FFA requires that leaking LLLW tank systems be immediately removed from service. It also requires the LLLW tank systems that do not meet the design and performance requirements established for secondary containment and leak detection be either upgraded or replaced. The FFA establishes a procedural framework for implementing the environmental laws. For the LLLW tank systems, this framework requires the specified plans and schedules be submitted to EPA and TDEC for approval within 60 days, or in some cases, within 90 days, of the effective date of the agreement.

  18. Evaluation of plasma melter technology for verification of high-sodium content low-level radioactive liquid wastes: Demonstration test No. 4 preliminary test report

    SciTech Connect

    McLaughlin, D.F.; Gass, W.R.; Dighe, S.V.; D`Amico, N.; Swensrud, R.L.; Darr, M.F.

    1995-01-10

    This document provides a preliminary report of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System Low-Level Waste (LLW) Vitrification Program. Phase I test conduct included 26 hours (24 hours steady state) of melting of simulated high-sodium low-level radioactive liquid waste. Average processing rate was 4.9 kg/min (peak rate 6.2 kg/min), producing 7330 kg glass product. Free-flowing glass pour point was 1250 C, and power input averaged 1530 kW(e), for a total energy consumption of 19,800 kJ/kg glass. Restart capability was demonstrated following a 40-min outage involving the scrubber liquor heat exchanger, and glass production was continued for another 2 hours. Some volatility losses were apparent, probably in the form of sodium borates. Roughly 275 samples were collected and forwarded for analysis. Sufficient process data were collected for heat/material balances. Recommendations for future work include lower boron contents and improved tuyere design/operation.

  19. Radioactivity Calculations

    ERIC Educational Resources Information Center

    Onega, Ronald J.

    1969-01-01

    Three problems in radioactive buildup and decay are presented and solved. Matrix algebra is used to solve the second problem. The third problem deals with flux depression and is solved by the use of differential equations. (LC)

  20. Concentrating Radioactivity

    ERIC Educational Resources Information Center

    Herrmann, Richard A.

    1974-01-01

    By concentrating radioactivity contained on luminous dials, a teacher can make a high reading source for classroom experiments on radiation. The preparation of the source and its uses are described. (DT)

  1. Simulated Radioactivity

    ERIC Educational Resources Information Center

    Boettler, James L.

    1972-01-01

    Describes the errors in the sugar-cube experiment related to radioactivity as described in Project Physics course. The discussion considers some of the steps overlooked in the experiment and generalizes the theory beyond the sugar-cube stage. (PS)

  2. Efficiency of inductively torch plasma operating at atmospheric pressure on destruction of chlorinated liquid wastes- A path to the treatment of radioactive organic halogen liquid wastes

    NASA Astrophysics Data System (ADS)

    Kamgang-Youbi, G.; Poizot, K.; Lemont, F.

    2012-12-01

    The performance of a plasma reactor for the degradation of chlorinated hydrocarbon waste is reported. Chloroform was used as a target for a recently patented destruction process based using an inductive plasma torch. Liquid waste was directly injected axially into the argon plasma with a supplied power of ~4 kW in the presence of oxygen as oxidant and carrier gas. Decomposition was performed at CHCl3 feed rates up to 400 g·h-1 with different oxygen/waste molar ratios, chloroform destruction was obtained with at least 99% efficiency and the energy efficiency reached 100 g·kWh-1. The conversion end products were identified and assayed by online FTIR spectroscopy (CO2, HCl and H2O) and redox titration (Cl2). Considering phosgene as representative of toxic compounds, only very small quantities of toxics were released (< 1 g·h-1) even with high waste feed rates. The experimental results were very close to the equilibrium composition predicted by thermodynamic calculations. At the bottom of the reactor, the chlorinated acids were successfully trapped in a scrubber and transformed into mineral salts, hence, only CO2 and H2O have been found in the final off-gases composition.

  3. A highly efficient solvent system containing functionalized diglycolamides and an ionic liquid for americium recovery from radioactive wastes.

    PubMed

    Sengupta, Arijit; Mohapatra, Prasanta K; Iqbal, Mudassir; Huskens, Jurriaan; Verboom, Willem

    2012-06-21

    Three room temperature ionic liquids (RTILs), viz. C(4)mim(+)·PF(6)(-), C(6)mim(+)·PF(6)(-) and C(8)mim(+)·PF(6)(-), were evaluated as diluents for the extraction of Am(III) by N,N,N',N'-tetraoctyl diglycolamide (TODGA). At 3 M HNO(3), the D(Am)-values by 0.01 M TODGA were found to be 102, 34 and 74 for C(4)mim(+)·PF(6)(-), C(6)mim(+)·PF(6)(-) and C(8)mim(+)·PF(6)(-), respectively. The extraction of Am(III) decreased with increasing feed acidity for all three diluents, indicating an ion exchange mechanism for the extraction. The stoichiometry of the extracted species suggested that two TODGA molecules were associated with Am(III) during the extraction for all three RTILs and the conditional extraction constants have been determined. The D(M)-values for different metal ions followed the order: 75 (Am(III)) > 30.7 (Pu(IV)) > 3.9 (Np(IV)) > 1.19 (Pu(VI)) > 0.52 (U(VI)) > 0.12 (Cs(I)) > 0.024 (Sr(II)). The distribution behaviour of Am(III) was also studied with a recently synthesized calix[4]arene-4DGA (C4DGA) extractant dissolved in C(8)mim(+)·PF(6)(-). Using this extractant diluent combination, the D(Am)-value was 194 at 3 M HNO(3) using 5 × 10(-5) M C4DGA, suggesting a very high distribution coefficient at very low extractant concentrations. The stoichiometry of the extracted species containing Am was found to be 1:2 (M:L) in C(8)mim(+)·PF(6)(-). The thermodynamics of the extraction was also studied for both extractants in C(8)mim(+)·PF(6)(-). The use of RTILs gives rise to significantly improved extraction properties than the commonly used n-dodecane and an unusual increase in separation factor values was seen for the first time which can lead to selective separation of Am from wastes containing a mixture of U, Pu and Am.

  4. High-level waste-form-product performance evaluation. [Leaching; waste loading; mechanical stability

    SciTech Connect

    Bernadzikowski, T A; Allender, J S; Stone, J A; Gordon, D E; Gould, Jr, T H; Westberry, III, C F

    1982-01-01

    Seven candidate waste forms were evaluated for immobilization and geologic disposal of high-level radioactive wastes. The waste forms were compared on the basis of leach resistance, mechanical stability, and waste loading. All forms performed well at leaching temperatures of 40, 90, and 150/sup 0/C. Ceramic forms ranked highest, followed by glasses, a metal matrix form, and concrete. 11 tables.

  5. Design of equipment used for high-level waste vitrification at the West Valley Demonstration Project

    SciTech Connect

    Vance, R.F.; Brill, B.A.; Carl, D.E.

    1997-06-01

    The equipment as designed, started, and operated for high-level radioactive waste vitrification at the West Valley Demonstration Project in western New York State is described. Equipment for the processes of melter feed make-up, vitrification, canister handling, and off-gas treatment are included. For each item of equipment the functional requirements, process description, and hardware descriptions are presented.

  6. International High Level Nuclear Waste Management

    ERIC Educational Resources Information Center

    Dreschhoff, Gisela; And Others

    1974-01-01

    Discusses the radioactive waste management in Belgium, Canada, France, Germany, India, Italy, Japan, the United Kingdom, the United States, and the USSR. Indicates that scientists and statesmen should look beyond their own lifetimes into future centuries and millennia to conduct long-range plans essential to protection of future generations. (CC)

  7. SIMULANT DEVELOPMENT FOR SAVANNAH RIVER SITE HIGH LEVEL WASTE

    SciTech Connect

    Stone, M; Russell Eibling, R; David Koopman, D; Dan Lambert, D; Paul Burket, P

    2007-09-04

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The HLW is processed in large batches through DWPF; DWPF has recently completed processing Sludge Batch 3 (SB3) and is currently processing Sludge Batch 4 (SB4). The composition of metal species in SB4 is shown in Table 1 as a function of the ratio of a metal to iron. Simulants remove radioactive species and renormalize the remaining species. Supernate composition is shown in Table 2.

  8. Federal Facility Agreement plans and schedules for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1993-06-01

    The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facility Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the Department of Energy Oak Ridge Field Office (DOE-OR), the US Environmental Protection Agency (EPA)-Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA was January 1, 1992. Section 9 and Appendix F of the agreement impose design and operating requirements on the Oak Ridge National Laboratory (ORNL) liquid low-level radioactive waste (LLLW) tank systems and identify several plans, schedules, and assessments that must be submitted to EPA/TDEC for review or approval. The initial issue of this document in March 1992 transmitted to EPA/TDEC those plans and schedules that were required within 60 to 90 days of the FFA effective date. The current revision of this document updates the plans, schedules, and strategy for achieving compliance with the FFA, and it summarizes the progress that has been made over the past year. Chapter 1 describes the history and operation of the ORNL LLLW System, the objectives of the FFA, the organization that has been established to bring the system into compliance, and the plans for achieving compliance. Chapters 2 through 7 of this report contain the updated plans and schedules for meeting FFA requirements. This document will continue to be periodically reassessed and refined to reflect newly developed information and progress.

  9. High-level waste processing at the Savannah River Site: An update

    SciTech Connect

    Marra, J.E.; Bennett, W.M.; Elder, H.H.; Lee, E.D.; Marra, S.L.; Rutland, P.L.

    1997-09-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) in Aiken, SC mg began immobilizing high-level radioactive waste in borosilicate glass in 1996. Currently, the radioactive glass is being produced as a ``sludge-only`` composition by combining washed high-level waste sludge with glass frit. The glass is poured in stainless steel canisters which will eventually be disposed of in a permanent, geological repository. To date, DWPF has produced about 100 canisters of vitrified waste. Future processing operations will, be based on a ``coupled`` feed of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of the processing activities completed to date, operational/flowsheet problems encountered, and programs underway to increase production rates.

  10. A Software Architecture for High Level Applications

    SciTech Connect

    Shen,G.

    2009-05-04

    A modular software platform for high level applications is under development at the National Synchrotron Light Source II project. This platform is based on client-server architecture, and the components of high level applications on this platform will be modular and distributed, and therefore reusable. An online model server is indispensable for model based control. Different accelerator facilities have different requirements for the online simulation. To supply various accelerator simulators, a set of narrow and general application programming interfaces is developed based on Tracy-3 and Elegant. This paper describes the system architecture for the modular high level applications, the design of narrow and general application programming interface for an online model server, and the prototype of online model server.

  11. Closing Radioactive Waste Tanks in South Carolina

    SciTech Connect

    Newman, J.L.

    2000-08-29

    The Savannah River Site (SRS) is owned by the US Department of Energy (DOE) and is operated by the Westinghouse Savannah River Company (WSRC). Since the early 1950s, the primary mission of the site has been to produce nuclear materials for national defense. The chemical separations processes used to recover uranium and plutonium from production reactor fuel and target assemblies in the chemical separations area at SRS generated liquid high-level radioactive waste. This waste, which now amounts to approximately 34 million gallons, is stored in underground tanks in the F- and H-Areas near the center of the site. DOE is closing the High Level Waste (HLW) tank systems, which are permitted by SCDHEC under authority of the South Carolina Pollution Control Act (SCPCA) as wastewater treatment facilities, in accordance with South Carolina Regulation R.61-82, ''Proper Closeout of Wastewater Treatment Facilities''. To date, two HLW tank systems have been closed in place. Closure of these tanks is the first of its kind in the US. This paper describes the waste tank closure methodologies, standards and regulatory background.

  12. Status of high-level waste processing at West Valley

    SciTech Connect

    Howell, A.J.; Baker, M.N. )

    1991-11-01

    The US Department of Energy is charged with the solidification of high-level liquid waste remaining from nuclear fuel reprocessing activities that were conducted at West Valley, New York, between 1966 and 1972. The 2.27 million liters (600,000 gal) of waste in an underground storage tank has separated into a sludge layer, {approximately}10% of the original volume, and a liquid layer. Prior to the high-level waste (HLW) vitrification, volume reduction of the waste is necessary. Sine May 1988, West Valley has successfully processed >1.59 million liters (420,000 gal) of HLW. Processing to date has involved the removal of {sup 139}Cs from the HLW effluent by ion exchange, evaporation to concentrate the effluent to a predetermined salt concentration, and finally cementation. This process has removed {approximately}80% of the {sup 137}Cs from the HLW liquid phase. Modifications are currently being made to begin the second phase of the HLW processing at West Valley. The second phase of HLW processing will include the removal of plutonium as well as cesium from the HLW sludge. This paper describes the progress made to date and the modifications being made to the process and to the feed stream to begin the second phase of HLW processing.

  13. High-Level Application Framework for LCLS

    SciTech Connect

    Chu, P; Chevtsov, S.; Fairley, D.; Larrieu, C.; Rock, J.; Rogind, D.; White, G.; Zalazny, M.; /SLAC

    2008-04-22

    A framework for high level accelerator application software is being developed for the Linac Coherent Light Source (LCLS). The framework is based on plug-in technology developed by an open source project, Eclipse. Many existing functionalities provided by Eclipse are available to high-level applications written within this framework. The framework also contains static data storage configuration and dynamic data connectivity. Because the framework is Eclipse-based, it is highly compatible with any other Eclipse plug-ins. The entire infrastructure of the software framework will be presented. Planned applications and plug-ins based on the framework are also presented.

  14. RADIOACTIVE BATTERY

    DOEpatents

    Birden, J.H.; Jordan, K.C.

    1959-11-17

    A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

  15. Burning high-level TRU waste in fusion fission reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yaosong

    2016-09-01

    Recently, the concept of actinide burning instead of a once-through fuel cycle for disposing spent nuclear fuel seems to get much more attention. A new method of burning high-level transuranic (TRU) waste combined with Thorium-Uranium (Th-U) fuel in the subcritical reactors driven by external fusion neutron sources is proposed in this paper. The thorium-based TRU fuel burns all of the long-lived actinides via a hard neutron spectrum while outputting power. A one-dimensional model of the reactor concept was built by means of the ONESN_BURN code with new data libraries. The numerical results included actinide radioactivity, biological hazard potential, and much higher burnup rate of high-level transuranic waste. The comparison of the fusion-fission reactor with the thermal reactor shows that the harder neutron spectrum is more efficient than the soft. The Th-U cycle produces less TRU, less radiotoxicity and fewer long-lived actinides. The Th-U cycle provides breeding of 233U with a long operation time (>20 years), hence significantly reducing the reactivity swing while improving safety and burnup.

  16. Space augmentation of military high-level waste disposal

    NASA Technical Reports Server (NTRS)

    English, T.; Lees, L.; Divita, E.

    1979-01-01

    Space disposal of selected components of military high-level waste (HLW) is considered. This disposal option offers the promise of eliminating the long-lived radionuclides in military HLW from the earth. A space mission which meets the dual requirements of long-term orbital stability and a maximum of one space shuttle launch per week over a period of 20-40 years, is a heliocentric orbit about halfway between the orbits of earth and Venus. Space disposal of high-level radioactive waste is characterized by long-term predictability and short-term uncertainties which must be reduced to acceptably low levels. For example, failure of either the Orbit Transfer Vehicle after leaving low earth orbit, or the storable propellant stage failure at perihelion would leave the nuclear waste package in an unplanned and potentially unstable orbit. Since potential earth reencounter and subsequent burn-up in the earth's atmosphere is unacceptable, a deep space rendezvous, docking, and retrieval capability must be developed.

  17. PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)

    SciTech Connect

    CERTA, P.J.

    2006-02-22

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

  18. High-level waste management technology program plan

    SciTech Connect

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

  19. Removal of radioactive contaminants by polymeric microspheres.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2016-11-01

    Radionuclide removal from radioactive liquid waste by adsorption on polymeric microspheres is the latest application of polymers in waste management. Polymeric microspheres have significant immobilization capacity for ionic substances. A laboratory study was carried out by using poly(N-isopropylacrylamide) for encapsulation of radionuclide in the liquid radioactive waste. There are numbers of advantages to use an encapsulation technology in radioactive waste management. Results show that polymerization step of radionuclide increases integrity of solidified waste form. Test results showed that adding the appropriate polymer into the liquid waste at an appropriate pH and temperature level, radionuclide was encapsulated into polymer. This technology may provide barriers between hazardous radioactive ions and the environment. By this method, solidification techniques became easier and safer in nuclear waste management. By using polymer microspheres as dust form, contamination risks were decreased in the nuclear industry and radioactive waste operations.

  20. Medium-Sized Mammals around a Radioactive Liquid Waste Lagoon at Los Alamos National Laboratory: Uptake of Contaminants and Evaluation of Radio-Frequency Identification Technology

    SciTech Connect

    Leslie A. Hansen; Phil R. Fresquez; Rhonda J. Robinson; John D. Huchton; Teralene S. Foxx

    1999-11-01

    Use of a radioactive liquid waste lagoon by medium-sized mammals and levels of tritium, other selected radionuclides, and metals in biological tissues of the animals were documented at Technical Area 53 (TA-53) of Los Alamos National Laboratory during 1997 and 1998. Rock squirrel (Spermophilus variegates), raccoon (Procyon lotor), striped skunk (Mephitis mephitis), and bobcat (Lynx rufus) were captured at TA-53 and at a control site on the Santa Fe National Forest. Captured animals were anesthetized and marked with radio-frequency identification (RFD) tags and/or ear tags. We collected urine and hair samples for tritium and metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and thallium) analyses, respectively. In addition, muscle and bone samples from two rock squirrels collected from each of TA-53, perimeter, and regional background sites were tested for tritium, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, and total uranium. Animals at TA-53 were monitored entering and leaving the lagoon area using a RFID monitor to read identification numbers from the RFID tags of marked animals and a separate camera system to photograph all animals passing through the monitor. Cottontail rabbit (Sylvilagus spp.), rock squirrel, and raccoon were the species most frequently photographed going through the RFID monitor. Less than half of all marked animals in the lagoon area were detected using the lagoon. Male and female rock squirrels from the lagoon area had significantly higher tritium concentrations compared to rock squirrels from the control area. Metals tested were not significantly higher in rock squirrels from TA-53, although there was a trend toward increased levels of lead in some individuals at TA-53. Muscle and bone samples from squirrels in the lagoon area appeared to have higher levels of tritium, total uranium, and {sup 137}Cs than samples collected from perimeter and

  1. High-Level Waste Melter Study Report

    SciTech Connect

    Perez Jr, Joseph M; Bickford, Dennis F; Day, Delbert E; Kim, Dong-Sang; Lambert, Steven L; Marra, Sharon L; Peeler, David K; Strachan, Denis M; Triplett, Mark B; Vienna, John D; Wittman, Richard S

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  2. The DWPF: Results of full scale qualification runs leading to radioactive operations

    SciTech Connect

    Marra, S.L.; Elder, H.H.; Occhipinti, J.H.; Snyder, D.E.

    1996-01-10

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site in Aiken, SC will immobilize high-level radioactive liquid waste, currently stored in underground carbon steel tanks, in borosilicate glass. The radioactive waste is transferred to the DWPF in two forms: precipitate slurry and sludge slurry. The radioactive waste is pretreated and then combined with a borosilicate glass frit in the DWPF. This homogeneous slurry is fed to a Joule-heated melter which operates at approximately 1150 degrees C. The glass is poured into stainless steel canisters for eventual disposal in a geologic repository. The DWPF product (i.e. the canistered waste form) must comply with the Waste Acceptance Product Specifications (WAPS) in order to be acceptable for disposal. The DWPF has completed Waste Qualification Runs which demonstrate the facility`s ability to comply with the waste acceptance specifications. During the Waste Qualification Runs seventy-one canisters of simulated waste glass were produced in preparation for Radioactive Operations. These canisters of simulated waste glass were produced during five production campaigns which also exercised the facility prior to beginning Radioactive Operations. The results of the Waste Qualification Runs are presented.

  3. Vitrification of hazardous and radioactive wastes

    SciTech Connect

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  4. High-Level Waste Tank Cleaning and Field Characterization at the West Valley Demonstration Project

    SciTech Connect

    Drake, J. L.; McMahon, C. L.; Meess, D. C.

    2002-02-26

    The West Valley Demonstration Project (WVDP) is nearing completion of radioactive high-level waste (HLW) retrieval from its storage tanks and subsequent vitrification of the HLW into borosilicate glass. Currently, 99.5% of the sludge radioactivity has been recovered from the storage tanks and vitrified. Waste recovery of cesium-137 (Cs-137) adsorbed on a zeolite media during waste pretreatment has resulted in 97% of this radioactivity being vitrified. Approximately 84% of the original 1.1 x 1018 becquerels (30 million curies) of radioactivity was efficiently vitrified from July 1996 to June 1998 during Phase I processing. The recovery of the last 16% of the waste has been challenging due to a number of factors, primarily the complex internal structural support system within the main 2.8 million liter (750,000 gallon) HLW tank designated 8D-2. Recovery of this last waste has become exponentially more challenging as less and less HLW is available to mobilize and transfer to the Vitrification Facility. This paper describes the progressively more complex techniques being utilized to remove the final small percentage of radioactivity from the HLW tanks, and the multiple characterization technologies deployed to determine the quantity of Cs-137, strontium-90 (Sr-90), and alpha-transuranic (alpha-TRU) radioactivity remaining in the tanks.

  5. EAP high-level product architecture

    NASA Astrophysics Data System (ADS)

    Gudlaugsson, T. V.; Mortensen, N. H.; Sarban, R.

    2013-04-01

    EAP technology has the potential to be used in a wide range of applications. This poses the challenge to the EAP component manufacturers to develop components for a wide variety of products. Danfoss Polypower A/S is developing an EAP technology platform, which can form the basis for a variety of EAP technology products while keeping complexity under control. High level product architecture has been developed for the mechanical part of EAP transducers, as the foundation for platform development. A generic description of an EAP transducer forms the core of the high level product architecture. This description breaks down the EAP transducer into organs that perform the functions that may be present in an EAP transducer. A physical instance of an EAP transducer contains a combination of the organs needed to fulfill the task of actuator, sensor, and generation. Alternative principles for each organ allow the function of the EAP transducers to be changed, by basing the EAP transducers on a different combination of organ alternatives. A model providing an overview of the high level product architecture has been developed to support daily development and cooperation across development teams. The platform approach has resulted in the first version of an EAP technology platform, on which multiple EAP products can be based. The contents of the platform have been the result of multi-disciplinary development work at Danfoss PolyPower, as well as collaboration with potential customers and research institutions. Initial results from applying the platform on demonstrator design for potential applications are promising. The scope of the article does not include technical details.

  6. Python based high-level synthesis compiler

    NASA Astrophysics Data System (ADS)

    Cieszewski, Radosław; Pozniak, Krzysztof; Romaniuk, Ryszard

    2014-11-01

    This paper presents a python based High-Level synthesis (HLS) compiler. The compiler interprets an algorithmic description of a desired behavior written in Python and map it to VHDL. FPGA combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be reconfigured over the lifetime of the system. FPGAs therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Creating parallel programs implemented in FPGAs is not trivial. This article describes design, implementation and first results of created Python based compiler.

  7. Service Oriented Architecture for High Level Applications

    SciTech Connect

    Chu, Chungming; Chevtsov, Sergei; Wu, Juhao; Shen, Guobao; /Brookhaven

    2012-06-28

    Standalone high level applications often suffer from poor performance and reliability due to lengthy initialization, heavy computation and rapid graphical update. Service-oriented architecture (SOA) is trying to separate the initialization and computation from applications and to distribute such work to various service providers. Heavy computation such as beam tracking will be done periodically on a dedicated server and data will be available to client applications at all time. Industrial standard service architecture can help to improve the performance, reliability and maintainability of the service. Robustness will also be improved by reducing the complexity of individual client applications.

  8. [Microbiological Aspects of Radioactive Waste Storage].

    PubMed

    Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N

    2015-01-01

    The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).

  9. High-level waste melter alternatives assessment report

    SciTech Connect

    Calmus, R.B.

    1995-02-01

    This document describes the Tank Waste Remediation System (TWRS) High-Level Waste (HLW) Program`s (hereafter referred to as HLW Program) Melter Candidate Assessment Activity performed in fiscal year (FY) 1994. The mission of the TWRS Program is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and encapsulated strontium and cesium isotopic sources) in an environmentally sound, safe, and cost-effective manner. The goal of the HLW Program is to immobilize the HLW fraction of pretreated tank waste into a vitrified product suitable for interim onsite storage and eventual offsite disposal at a geologic repository. Preparation of the encapsulated strontium and cesium isotopic sources for final disposal is also included in the HLW Program. As a result of trade studies performed in 1992 and 1993, processes planned for pretreatment of tank wastes were modified substantially because of increasing estimates of the quantity of high-level and transuranic tank waste remaining after pretreatment. This resulted in substantial increases in needed vitrification plant capacity compared to the capacity of original Hanford Waste Vitrification Plant (HWVP). The required capacity has not been finalized, but is expected to be four to eight times that of the HWVP design. The increased capacity requirements for the HLW vitrification plant`s melter prompted the assessment of candidate high-capacity HLW melter technologies to determine the most viable candidates and the required development and testing (D and T) focus required to select the Hanford Site HLW vitrification plant melter system. An assessment process was developed in early 1994. This document describes the assessment team, roles of team members, the phased assessment process and results, resulting recommendations, and the implementation strategy.

  10. Commissioning of the CMS High Level Trigger

    SciTech Connect

    Agostino, Lorenzo; et al.

    2009-08-01

    The CMS experiment will collect data from the proton-proton collisions delivered by the Large Hadron Collider (LHC) at a centre-of-mass energy up to 14 TeV. The CMS trigger system is designed to cope with unprecedented luminosities and LHC bunch-crossing rates up to 40 MHz. The unique CMS trigger architecture only employs two trigger levels. The Level-1 trigger is implemented using custom electronics, while the High Level Trigger (HLT) is based on software algorithms running on a large cluster of commercial processors, the Event Filter Farm. We present the major functionalities of the CMS High Level Trigger system as of the starting of LHC beams operations in September 2008. The validation of the HLT system in the online environment with Monte Carlo simulated data and its commissioning during cosmic rays data taking campaigns are discussed in detail. We conclude with the description of the HLT operations with the first circulating LHC beams before the incident occurred the 19th September 2008.

  11. DWPF Safely Dispositioning Liquid Waste

    SciTech Connect

    2016-01-05

    The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called “vitrification,” as the preferred option for treating liquid radioactive waste.

  12. Umbra's High Level Architecture (HLA) Interface

    SciTech Connect

    GOTTLIEB, ERIC JOSEPH; MCDONALD, MICHAEL J.; OPPEL III, FRED J.

    2002-04-01

    This report describes Umbra's High Level Architecture HLA library. This library serves as an interface to the Defense Simulation and Modeling Office's (DMSO) Run Time Infrastructure Next Generation Version 1.3 (RTI NG1.3) software library and enables Umbra-based models to be federated into HLA environments. The Umbra library was built to enable the modeling of robots for military and security system concept evaluation. A first application provides component technologies that ideally fit the US Army JPSD's Joint Virtual Battlespace (JVB) simulation framework for Objective Force concept analysis. In addition to describing the Umbra HLA library, the report describes general issues of integrating Umbra with RTI code and outlines ways of building models to support particular HLA simulation frameworks like the JVB.

  13. Potential for erosion corrosion of SRS high level waste tanks

    SciTech Connect

    Zapp, P.E.

    1994-01-01

    SRS high-level radioactive waste tanks will not experience erosion corrosion to any significant degree during slurry pump operations. Erosion corrosion in carbon steel structures at reported pump discharge velocities is dominated by electrochemical (corrosion) processes. Interruption of those processes, as by the addition of corrosion inhibitors, sharply reduces the rate of metal loss from erosion corrosion. The well-inhibited SRS waste tanks have a near-zero general corrosion rate, and therefore will be essentially immune to erosion corrosion. The experimental data on carbon steel erosion corrosion most relevant to SRS operations was obtained at the Hanford Site on simulated Purex waste. A metal loss rate of 2.4 mils per year was measured at a temperature of 102 C and a slurry velocity comparable to calculated SRS slurry velocities on ground specimens of the same carbon steel used in SRS waste tanks. Based on these data and the much lower expected temperatures, the metal loss rate of SRS tanks under waste removal and processing conditions should be insignificant, i.e. less than 1 mil per year.

  14. Why consider subseabed disposal of high-level nuclear waste

    SciTech Connect

    Heath, G. R.; Hollister, C. D.; Anderson, D. R.; Leinen, M.

    1980-01-01

    Large areas of the deep seabed warrant assessment as potential disposal sites for high-level radioactive waste because: (1) they are far from seismically and tectonically active lithospheric plate boundaries; (2) they are far from active or young volcanos; (3) they contain thick layers of very uniform fine-grained clays; (4) they are devoid of natural resources likely to be exploited in the forseeable future; (5) the geologic and oceanographic processes governing the deposition of sediments in such areas are well understood, and are remarkably insensitive to past oceanographic and climatic changes; and (6) sedmentary records of tens of millions of years of slow, uninterrupted deposition of fine grained clay support predictions of the future stability of such sites. Data accumulated to date on the permeability, ion-retardation properties, and mechanical strength of pelagic clay sediments indicate that they can act as a primary barrier to the escape of buried nuclides. Work in progress should determine within the current decade whether subseabed disposal is environmentally acceptable and technically feasible, as well as address the legal, political and social issues raised by this new concept.

  15. The High Level Data Reduction Library

    NASA Astrophysics Data System (ADS)

    Ballester, P.; Gabasch, A.; Jung, Y.; Modigliani, A.; Taylor, J.; Coccato, L.; Freudling, W.; Neeser, M.; Marchetti, E.

    2015-09-01

    The European Southern Observatory (ESO) provides pipelines to reduce data for most of the instruments at its Very Large telescope (VLT). These pipelines are written as part of the development of VLT instruments, and are used both in the ESO's operational environment and by science users who receive VLT data. All the pipelines are highly specific geared toward instruments. However, experience showed that the independently developed pipelines include significant overlap, duplication and slight variations of similar algorithms. In order to reduce the cost of development, verification and maintenance of ESO pipelines, and at the same time improve the scientific quality of pipelines data products, ESO decided to develop a limited set of versatile high-level scientific functions that are to be used in all future pipelines. The routines are provided by the High-level Data Reduction Library (HDRL). To reach this goal, we first compare several candidate algorithms and verify them during a prototype phase using data sets from several instruments. Once the best algorithm and error model have been chosen, we start a design and implementation phase. The coding of HDRL is done in plain C and using the Common Pipeline Library (CPL) functionality. HDRL adopts consistent function naming conventions and a well defined API to minimise future maintenance costs, implements error propagation, uses pixel quality information, employs OpenMP to take advantage of multi-core processors, and is verified with extensive unit and regression tests. This poster describes the status of the project and the lesson learned during the development of reusable code implementing algorithms of high scientific quality.

  16. Review of High Level Waste Tanks Ultrasonic Inspection Data

    SciTech Connect

    Wiersma, B

    2006-03-09

    A review of the data collected during ultrasonic inspection of the Type I high level waste tanks has been completed. The data was analyzed for relevance to the possibility of vapor space corrosion and liquid/air interface corrosion. The review of the Type I tank UT inspection data has confirmed that the vapor space general corrosion is not an unusually aggressive phenomena and correlates well with predicted corrosion rates for steel exposed to bulk solution. The corrosion rates are seen to decrease with time as expected. The review of the temperature data did not reveal any obvious correlations between high temperatures and the occurrences of leaks. The complex nature of temperature-humidity interaction, particularly with respect to vapor corrosion requires further understanding to infer any correlation. The review of the waste level data also did not reveal any obvious correlations.

  17. Confinement matrices for low- and intermediate-level radioactive waste

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Omel'Yanenko, B. I.; Yudintsev, S. V.; Stefanovsky, S. V.

    2012-02-01

    Mining of uranium for nuclear fuel production inevitably leads to the exhaustion of natural uranium resources and an increase in market price of uranium. As an alternative, it is possible to provide nuclear power plants with reprocessed spent nuclear fuel (SNF), which retains 90% of its energy resource. The main obstacle to this solution is related to the formation in the course of the reprocessing of SNF of a large volume of liquid waste, and the necessity to concentrate, solidify, and dispose of this waste. Radioactive waste is classified into three categories: low-, intermediate-, and high-level (LLW, ILW, and HLW); 95, 4.4, and 0.6% of the total waste are LLW, ILW, and HLW, respectively. Despite its small relative volume, the radioactivity of HLW is approximately equal to the combined radioactivity of LLW + ILW (LILW). The main hazard of HLW is related to its extremely high radioactivity, the occurrence of long-living radionuclides, heat release, and the necessity to confine HLW for an effectively unlimited time period. The problems of handling LILW are caused by the enormous volume of such waste. The available technology for LILW confinement is considered, and conclusion is drawn that its concentration, vitrification, and disposal in shallow-seated repositories is a necessary condition of large-scale reprocessing of SNF derived from VVER-1000 reactors. The significantly reduced volume of the vitrified LILW and its very low dissolution rate at low temperatures makes borosilicate glass an ideal confinement matrix for immobilization of LILW. At the same time, the high corrosion rate of the glass matrix at elevated temperatures casts doubt on its efficient use for immobilization of heat-releasing HLW. The higher cost of LILW vitrification compared to cementation and bitumen impregnation is compensated for by reduced expenditure for construction of additional engineering barriers, as well as by substantial decrease in LLW and ILW volume, localization of shallow

  18. Hydrogen generation during treatment of simulated high-level radioactive waste with formic acid

    SciTech Connect

    Ritter, J.A.; Zamecnik, J.R.; Hsu, C.W.

    1992-01-01

    The Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS), operated by the Savannah River Laboratory, is a one-fifth scale pilot facility used in support of the start-up and operation of the Department of Energy's DWPF. Five IDMS runs determined the effect of the presence of noble metals in HLW sludge on the H{sub 2} generation rate during the preparation of melter feed with formic acid. Overall, the results clearly showed that H{sub 2} generation in the DWPF SRAT could, at times, exceed the lower flammable limit of H{sub 2} in air (4 vol%), depending on such factors as offgas generation and air inleakage of the DWPF vessels. Therefore, the installation of a forced air purge system and H{sub 2} monitors were recommended to the DWPF to control the generation of H{sub 2} during melter feed preparation by fuel dilution.

  19. Hydrogen generation during treatment of simulated high-level radioactive waste with formic acid

    SciTech Connect

    Ritter, J.A.; Zamecnik, J.R.; Hsu, C.W.

    1992-05-01

    The Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS), operated by the Savannah River Laboratory, is a one-fifth scale pilot facility used in support of the start-up and operation of the Department of Energy`s DWPF. Five IDMS runs determined the effect of the presence of noble metals in HLW sludge on the H{sub 2} generation rate during the preparation of melter feed with formic acid. Overall, the results clearly showed that H{sub 2} generation in the DWPF SRAT could, at times, exceed the lower flammable limit of H{sub 2} in air (4 vol%), depending on such factors as offgas generation and air inleakage of the DWPF vessels. Therefore, the installation of a forced air purge system and H{sub 2} monitors were recommended to the DWPF to control the generation of H{sub 2} during melter feed preparation by fuel dilution.

  20. The High-Level Radioactive Waste Policy Dilemma: Prospects for a Realistic Management Policy

    ERIC Educational Resources Information Center

    Hadjilambrinos, Constantine

    2006-01-01

    Since the dawn of the atomic age, the United States and every other nation that has chosen to use nuclear power have created hazardous substances that have the capacity to outlast human civilization, and possibly even the human species, and the potential to devastate the environment. The management of these substances that make up what has been…

  1. Chemical Environment at Waste Package Surfaces in a High-Level Radioactive Waste Repository

    SciTech Connect

    Carroll, S; Alai, M; Craig, L; Gdowski, G; Hailey, P; Nguyen, Q A; Rard, J; Staggs, K; Sutton, M; Wolery, T

    2005-05-26

    We have conducted a series of deliquescence, boiling point, chemical transformation, and evaporation experiments to determine the composition of waters likely to contact waste package surfaces over the thermal history of the repository as it heats up and cools back down to ambient conditions. In the above-boiling period, brines will be characterized by high nitrate to chloride ratios that are stable to higher temperatures than previously predicted. This is clearly shown for the NaCl-KNO{sub 3} salt system in the deliquescence and boiling point experiments in this report. Our results show that additional thermodynamic data are needed in nitrate systems to accurately predict brine stability and composition due to salt deliquescence in dust deposited on waste package surfaces. Current YMP models capture dry-out conditions but not composition for NaCl-KNO{sub 3} brines, and they fail to predict dry-out conditions for NaCl-KNO{sub 3}-NaNO{sub 3} brines. Boiling point and deliquescence experiments are needed in NaCl-KNO{sub 3}-NaNO{sub 3} and NaCl-KNO{sub 3}-NaNO{sub 3}-Ca(NO{sub 3}){sub 2} systems to directly determine dry-out conditions and composition, because these salt mixtures are also predicted to control brine composition in the above-boiling period. Corrosion experiments are needed in high temperature and high NO{sub 3}:Cl brines to determine if nitrate inhibits corrosion in these concentrated brines at temperatures above 160 C. Chemical transformations appear to be important for pure calcium- and magnesium-chloride brines at temperatures greater than 120 C. This stems from a lack of acid gas volatility in NaCl/KNO{sub 3} based brines and by slow CO{sub 2}(g) diffusion in alkaline brines. This suggests that YMP corrosion models based on bulk solution experiments over the appropriate composition, temperature, and relative humidity range can be used to predict corrosion in thin brine films formed by salt deliquescence. In contrast to the above-boiling period, the below-boiling period is characterized predominately by NaCl based brines with minor amounts of K, NO{sub 3}, Ca, Mg, F, and Br at less than 70% relative humidity. These brines are identified as sulfate and bicarbonate brines by the chemical divide theory. Nitrate to chloride ratios are strongly tied to relative humidity and halite solubility. Once the relative humidity is low enough to produce brines saturated with respect to halite, then NO{sub 3}:Cl increases to levels and may inhibit corrosion. In addition to the more abundant NaCl-based brines some measured pore waters will evaporate towards acid NaCl-CaCl{sub 2} brines. Acid volatility also occurs with this brine type indicating that chemical transformations may be important in thin films. In contrast to the above-boiling period, comparison of our experimental data with calculated data suggest that current YMP geochemical models adequately predict in-drift chemistry in the below-boiling period.

  2. Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers

    SciTech Connect

    Vinson, D.W.; Nutt, W.M.; Bullen, D.B.

    1995-06-01

    Oxidation and atmospheric corrosion data suggest that addition of Cr provides the greatest improvement in oxidation resistance. Cr-bearing cast irons are resistant to chloride environments and solutions containing strongly oxidizing constituents. Weathering steels, including high content and at least 0.04% Cu, appear to provide adequate resistance to oxidation under temperate conditions. However, data from long-term, high-temperature oxidation studies on weathering steels were not available. From the literature, it appears that the low alloy steels, plain carbon steels, cast steels, and cast irons con-ode at similar rates in an aqueous environment. Alloys containing more than 12% Cr or 36% Ni corrode at a lower rate than plain carbon steels, but pitting may be worse. Short term tests indicate that an alloy of 9Cr-1Mo may result in increased corrosion resistance, however long term data are not available. Austenitic cast irons show the best corrosion resistance. A ranking of total corrosion performance of the materials from most corrosion resistant to least corrosion resistant is: Austenitic Cast Iron; 12% Cr = 36% Ni = 9Cr-1Mo; Carbon Steel = Low Alloy Steels; and Cast Iron. Since the materials to be employed in the Advanced Conceptual Design (ACD) waste package are considered to be corrosion allowance materials, the austenitic cast irons, high Cr steels, high Ni steels and the high Cr-Mo steels should not be considered as candidates for the outer containment barrier. Based upon the oxidation and corrosion data available for carbon steels, low alloy steels, and cast irons, a suitable list of candidate materials for a corrosion allowance outer barrier for an ACD waste package could include, A516, 2.25%Cr -- 1%Mo Steel, and A27.

  3. National Commission on High-Level Radioactive Waste and Spent Nuclear Fuel Establishment Act of 2009

    THOMAS, 111th Congress

    Sen. Reid, Harry [D-NV

    2009-03-12

    03/12/2009 Read twice and referred to the Committee on Environment and Public Works. (text of measure as introduced: CR S3085-3086) (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  4. High levels of natural radioactivity in biota from deep-sea hydrothermal vents: a preliminary communication.

    PubMed

    Charmasson, Sabine; Sarradin, Pierre-Marie; Le Faouder, Antoine; Agarande, Michèle; Loyen, Jeanne; Desbruyères, Daniel

    2009-06-01

    Hydrothermal deep-sea vent fauna is naturally exposed to a peculiar environment enriched in potentially toxic species such as sulphides, heavy metals and natural radionuclides. It is now well established that some of the organisms present in such an environment accumulate metals during their lifespan. Though only few radionuclide measurements are available, it seems likely that hydrothermal vent communities are exposed to high natural radiation doses. Various archived biological samples collected on the East Pacific Rise and the Mid-Atlantic Ridge in 1996, 2001 and 2002 were analysed by ICP-MS in order to determine their uranium contents ((238)U, (235)U and (234)U). In addition (210)Po-Pb were determined in 2 samples collected in 2002. Vent organisms are characterized by high U, and Po-Pb levels compared to what is generally encountered in organisms from outside hydrothermal vent ecosystems. Though the number of data is low, the results reveal various trends in relation to the site, the location within the mixing zone and/or the organisms' trophic regime.

  5. Locations of spent nuclear fuel and high-level radioactive waste ultimately destined for geologic disposal

    SciTech Connect

    Not Available

    1994-09-01

    Since the late 1950s, Americans have come to rely more and more on energy generated from nuclear reactors. Today, 109 commercial nuclear reactors supply over one-fifth of the electricity used to run our homes, schools, factories, and farms. When the nuclear fuel can no longer sustain a fission reaction in these reactors it becomes `spent` or `used` and is removed from the reactors and stored onsite. Most of our Nation`s spent nuclear fuel is currently being stored in specially designed deep pools of water at reactor sites; some is being stored aboveground in heavy thick-walled metal or concrete structures. Sites currently using aboveground dry storage systems include Virginia Power`s Surry Plant, Carolina Power and Light`s H.B. Robinson Plant, Duke Power`s Oconee Nuclear Station, Colorado Public Service Company`s shutdown reactor at Fort St. Vrain, Baltimore Gas and Electric`s Calvert Cliffs Plant, and Michigan`s Consumer Power Palisades Plant.

  6. The processing of simulated high-level radioactive waste sludges containing nitrites and mercury

    SciTech Connect

    Zamecnik, J.R.; Hutson, N.D.; Ritter, J.A.; Carter, J.T.

    1991-01-01

    The reaction of formic acid with simulated alkaline sludge containing mercury and nitrite was studied in an engineering-scale facility. Quantification of offgas production was performed, with the major offgases being CO{sub 2} and NO{sub x}. A small amount of CO was also found. The NO{sub x} was scrubbed in the offgas condenser and formed very acidic solutions of nitrous and nitric acids. These acids dissolved mercury that was stripped from the sludge. However, the overall efficiency of mercury stripping was greater than expected, and the final mercury concentration in the sludge was lower than expected. The NO{sub x} in the offgas also caused large temperature rises in the offgas system due to the exothermic reaction of NO with O{sub 2}. This temperature rise had a detrimental effect on the performance of the Formic Acid Vent Condenser, such that redesign is being contemplated. 6 refs., 6 figs., 3 tabs.

  7. Survey of matrix materials for solidified radioactive high-level waste

    SciTech Connect

    Gurwell, W.E.

    1981-09-01

    Pacific Northwest Laboratory (PNL) has been investigating advanced waste forms, including matrix waste forms, that may provide a very high degree of stability under the most severe repository conditions. The purpose of this study was to recommend practical matrix materials for future development that most enhance the stability of the matrix waste forms. The functions of the matrix were reviewed. Desirable matrix material properties were discussed and listed relative to the matrix functions. Potential matrix materials were discussed and recommendations were made for future matrix development. The matrix mechanically contains waste cores, reduces waste form temperatures, and is capable of providing a high-quality barrier to leach waters. High-quality barrier matrices that separate and individually encapsulate the waste cores are fabricated by powder fabrication methods, such as sintering, hot pressing, and hot isostatic pressing. Viable barrier materials are impermeable, extremely corrosion resistant, and mechanically strong. Three material classes potentially satisfy the requirements for a barrier matrix and are recommended for development: titanium, glass, and graphite. Polymers appear to be marginally adequate, and a more thorough engineering assessment of their potential should be made.

  8. A biosphere assessment of high-level radioactive waste disposal in Sweden.

    PubMed

    Kautsky, Ulrik; Lindborg, Tobias; Valentin, Jack

    2015-04-01

    Licence applications to build a repository for the disposal of Swedish spent nuclear fuel have been lodged, underpinned by myriad reports and several broader reviews. This paper sketches out the technical and administrative aspects and highlights a recent review of the biosphere effects of a potential release from the repository. A comprehensive database and an understanding of major fluxes and pools of water and organic matter in the landscape let one envisage the future by looking at older parts of the site. Thus, today's biosphere is used as a natural analogue of possible future landscapes. It is concluded that the planned repository can meet the safety criteria and will have no detectable radiological impact on plants and animals. This paper also briefly describes biosphere work undertaken after the review. The multidisciplinary approach used is relevant in a much wider context and may prove beneficial across many environmental contexts.

  9. Proton Affinity Calculations with High Level Methods.

    PubMed

    Kolboe, Stein

    2014-08-12

    Proton affinities, stretching from small reference compounds, up to the methylbenzenes and naphthalene and anthracene, have been calculated with high accuracy computational methods, viz. W1BD, G4, G3B3, CBS-QB3, and M06-2X. Computed and the currently accepted reference proton affinities are generally in excellent accord, but there are deviations. The literature value for propene appears to be 6-7 kJ/mol too high. Reported proton affinities for the methylbenzenes seem 4-5 kJ/mol too high. G4 and G3 computations generally give results in good accord with the high level W1BD. Proton affinity values computed with the CBS-QB3 scheme are too low, and the error increases with increasing molecule size, reaching nearly 10 kJ/mol for the xylenes. The functional M06-2X fails markedly for some of the small reference compounds, in particular, for CO and ketene, but calculates methylbenzene proton affinities with high accuracy.

  10. HIGH LEVEL RF FOR THE SNS RING.

    SciTech Connect

    ZALTSMAN,A.; BLASKIEWICZ,M.; BRENNAN,J.; BRODOWSKI,J.; METH,M.; SPITZ,R.; SEVERINO,F.

    2002-06-03

    A high level RF system (HLRF) consisting of power amplifiers (PA's) and ferrite loaded cavities is being designed and built by Brookhaven National Laboratory (BNL) for the Spallation Neutron Source (SNS) project. It is a fixed frequency, two harmonic system whose main function is to maintain a gap for the kicker rise time. Three cavities running at the fundamental harmonic (h=l) will provide 40 kV and one cavity at the second harmonic (h=2) will provide 20 kV. Each cavity has two gaps with a design voltage of 10 kV per gap and will be driven by a power amplifier (PA) directly adjacent to it. The PA uses a 600kW tetrode to provide the necessary drive current. The anode of the tetrode is magnetically coupled to the downstream cell of the cavity. Drive to the PA will be provided by a wide band, solid state amplifier located remotely. A dynamic tuning scheme will be implemented to help compensate for the effect of beam loading.

  11. Performance of the CMS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Perrotta, Andrea

    2015-12-01

    The CMS experiment has been designed with a 2-level trigger system. The first level is implemented using custom-designed electronics. The second level is the so-called High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. For Run II of the Large Hadron Collider, the increases in center-of-mass energy and luminosity will raise the event rate to a level challenging for the HLT algorithms. The increase in the number of interactions per bunch crossing, on average 25 in 2012, and expected to be around 40 in Run II, will be an additional complication. We present here the expected performance of the main triggers that will be used during the 2015 data taking campaign, paying particular attention to the new approaches that have been developed to cope with the challenges of the new run. This includes improvements in HLT electron and photon reconstruction as well as better performing muon triggers. We will also present the performance of the improved tracking and vertexing algorithms, discussing their impact on the b-tagging performance as well as on the jet and missing energy reconstruction.

  12. Canister arrangement for storing radioactive waste

    DOEpatents

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  13. Canister arrangement for storing radioactive waste

    DOEpatents

    Lorenzo, Donald K.; Van Cleve, Jr., John E.

    1982-01-01

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  14. Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes

    SciTech Connect

    Harmon, K.M.; Johnson, A.B. Jr.

    1984-04-01

    The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

  15. Preliminary report on the geology and hydrology of Mortandad Canyon near Los Alamos, New Mexico, with reference to disposal of liquid low-level radioactive waste

    USGS Publications Warehouse

    Baltz, E.H.; Abrahams, J.H.; Purtyman, W.D.

    1963-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Atomic Energy Commission and the Los Alamos Scientific Laboratory, selected the upper part of Mortandad Canyon near Los Alamos, New Mexico for a site for disposal of treated liquid low-level radioactive waste. This report summarizes the part of a study of the geology and hydrology that was done from October 1960 through June 1961. Additional work is being continued. Mortandad Canyon is a narrow east-southeast-trending canyon about 9? miles long that heads on the central part of the Pajarito Plateau at an altitude of about 7,340 feet. The canyon is tributary to the Rio Grande. The drainage area of the part of Mortandad Canyon that was investigated is about 2 square miles, and the total drainage area is about 4.9 square miles. The Pajarito Plateau is capped by the Bandelier Tuff of Pleistocene age. Mortandad Canyon is cut in the Bandelier, and alluvium covers the floor of the canyon to depths ranging from less than 1 foot to as much as 100 feet. The Bandelier is underlain by silt, sand, conglomerate, and interbedded basalt of the Santa Fe Group of Miocene, Pliocene, and Pleistocene(?) age. Some ground water is perched in the alluvium in the canyon; however, the top of the main aquifer is in the Santa Fe Group at a depth of about 990 feet below the canyon floor. Joints in the Bandelier Tuff probably were caused by shrinkage of the tuff during cooling. The joints range in width from hairline cracks to fissures several inches wide. Water can infiltrate along the open joints where the Bandelier is at the surface; however, soil, alluvial fill, and autochthonous clay inhibit infiltration on the tops of mesas and probably in the alluvium-floored canyons also. Thirty-three test holes, each less than 100 feet deep, were drilled in 10 lies across Mortandad Canyon from the western margin of the study area to just west of the Los Alamos-Santa Fe County line. Ten of the holes were cased for observation wells to measure

  16. DEFENSE HIGH LEVEL WASTE GLASS DEGRADATION

    SciTech Connect

    W. Ebert

    2001-09-20

    The purpose of this Analysis/Model Report (AMR) is to document the analyses that were done to develop models for radionuclide release from high-level waste (HLW) glass dissolution that can be integrated into performance assessment (PA) calculations conducted to support site recommendation and license application for the Yucca Mountain site. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M&O 2000a). It specifically addresses the item, ''Defense High Level Waste Glass Degradation'', of the product technical work plan. The AP-3.15Q Attachment 1 screening criteria determines the importance for its intended use of the HLW glass model derived herein to be in the category ''Other Factors for the Postclosure Safety Case-Waste Form Performance'', and thus indicates that this factor does not contribute significantly to the postclosure safety strategy. Because the release of radionuclides from the glass will depend on the prior dissolution of the glass, the dissolution rate of the glass imposes an upper bound on the radionuclide release rate. The approach taken to provide a bound for the radionuclide release is to develop models that can be used to calculate the dissolution rate of waste glass when contacted by water in the disposal site. The release rate of a particular radionuclide can then be calculated by multiplying the glass dissolution rate by the mass fraction of that radionuclide in the glass and by the surface area of glass contacted by water. The scope includes consideration of the three modes by which water may contact waste glass in the disposal system: contact by humid air, dripping water, and immersion. The models for glass dissolution under these contact modes are all based on the rate expression for aqueous dissolution of borosilicate glasses. The mechanism and rate expression for aqueous dissolution are adequately understood; the analyses in this AMR were conducted to

  17. Safety assessment comparison methodology for toxic and radioactive wastes (SACO version 1.0)

    SciTech Connect

    Torres, C.; Simon, I.; Agueero, A.; Little, R.H.; Smith, G.M.

    1993-12-31

    As part of a research contract jointly funded by the Commission of the European Communities (CEC) and Empresa Nacional de Residuos Radiactivos S.A. (Enresa, Spain), the Instituto de Medioambiente of the CIEMAT Research Centre and Intera (UK) are developing and testing a general methodology (SACO) to assess the post-disposal environmental impact produced by waste disposal practices. The scope of the methodology includes toxic, radioactive and mixed hazardous wastes. The term toxic is interpreted broadly to include any kind of liquid or solid non-radioactive waste which could give rise to some detrimental environmental effects post-disposal. Radioactive wastes considered include the full range from low to high level solid wastes arising inside and outside the nuclear power industry. Mixed hazardous waste is taken to be waste presenting both radioactive and other toxic hazard potential. In this paper SACO version 1.0 methodology is presented and it is applied to the assessment of the impact of shallow and deep disposal of waste.

  18. Radioactive decay.

    PubMed

    Groch, M W

    1998-01-01

    When a parent radionuclide decays to its daughter radionuclide by means of alpha, beta, or isomeric transition, the decay follows an exponential form, which is characterized by the decay constant lambda. The decay constant represents the probability per unit time that a single radioatom will decay. The decay equation can be used to provide a useful expression for radionuclide decay, the half-life, the time when 50% of the radioatoms present will have decayed. Radiotracer half-life has direct implications in nuclear imaging, radiation therapy, and radiation safety because radionuclide half-life affects the ability to evaluate tracer kinetics and create appropriate nuclear images and also affects organ, tumor, and whole-body radiation dose. The number of radioatoms present in a sample is equal to the activity, defined as the number of transitions per unit time, divided by the decay constant; the mass of radioatoms present in a sample can be calculated to determine the specific activity (activity per unit mass). The dynamic relationship between the number of parent and daughter atoms present over time may lead to radioactive equilibrium, which takes two forms--secular and transient--and has direct relevance to generator-produced radionuclides.

  19. PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION

    SciTech Connect

    D.C. Richardson

    2003-03-19

    In accordance with the Nuclear Waste Policy Amendments Act of 1987, Yucca Mountain was designated as the site to be investigated as a potential repository for the disposal of high-level radioactive waste. The Yucca Mountain site is an undeveloped area located on the southwestern edge of the Nevada Test Site (NTS), about 100 miles northwest of Las Vegas. The site currently lacks rail service or an existing right-of-way. If the Yucca Mountain site is found suitable for the repository, rail service is desirable to the Office of Civilian Waste Management (OCRWM) Program because of the potential of rail transportation to reduce costs and to reduce the number of shipments relative to highway transportation. A Preliminary Rail Access Study evaluated 13 potential rail spur options. Alternative routes within the major options were also developed. Each of these options was then evaluated for potential land use conflicts and access to regional rail carriers. Three potential routes having few land use conflicts and having access to regional carriers were recommended for further investigation. Figure 1-1 shows these three routes. The Jean route is estimated to be about 120 miles long, the Carlin route to be about 365 miles long, and Caliente route to be about 365 miles long. The remaining ten routes continue to be monitored and should any of the present conflicts change, a re-evaluation of that route will be made. Complete details of the evaluation of the 13 routes can be found in the previous study. The DOE has not identified any preferred route and recognizes that the transportation issues need a full and open treatment under the National Environmental Policy Act. The issue of transportation will be included in public hearings to support development of the Environmental Impact Statement (EIS) proceedings for either the Monitored Retrievable Storage Facility or the Yucca Mountain Project or both.

  20. Computed tomography of radioactive objects and materials

    NASA Astrophysics Data System (ADS)

    Sawicka, B. D.; Murphy, R. V.; Tosello, G.; Reynolds, P. W.; Romaniszyn, T.

    1990-12-01

    Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uraniun: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly.

  1. Health and environmental risk-related impacts of actinide burning on high-level waste disposal

    SciTech Connect

    Forsberg, C.W.

    1992-05-01

    The potential health and environmental risk-related impacts of actinide burning for high-level waste disposal were evaluated. Actinide burning, also called waste partitioning-transmutation, is an advanced method for radioactive waste management based on the idea of destroying the most toxic components in the waste. It consists of two steps: (1) selective removal of the most toxic radionuclides from high-level/spent fuel waste and (2) conversion of those radionuclides into less toxic radioactive materials and/or stable elements. Risk, as used in this report, is defined as the probability of a failure times its consequence. Actinide burning has two potential health and environmental impacts on waste management. Risks and the magnitude of high-consequence repository failure scenarios are decreased by inventory reduction of the long-term radioactivity in the repository. (What does not exist cannot create risk or uncertainty.) Risk may also be reduced by the changes in the waste characteristics, resulting from selection of waste forms after processing, that are superior to spent fuel and which lower the potential of transport of radionuclides from waste form to accessible environment. There are no negative health or environmental impacts to the repository from actinide burning; however, there may be such impacts elsewhere in the fuel cycle.

  2. Corrosion monitoring of high-level waste storage Tank 8-D2 at the West Valley Demonstration Project

    SciTech Connect

    Shukla, R.K.; Bourgeois, P.M.; Jaramins, R.J.; Secen, W.G.; Stroud, D.J.; Perkins, A.J.

    1994-12-31

    From 1966 to 1972, nearly 600,000 gallons of highly radioactive liquid waste were generated at the site of the only commercial nuclear fuel reprocessing facility to have operated in the United States, located in West Valley, New York. This waste has been held in underground storage tanks since reprocessing operations ceased in 1972. Premature failure of tank walls represents a significant safety risk at West Valley. For this reason, application of conventional methods of probe insertion and data acquisition are impractical. Because a satisfactory corrosion monitoring system must allow for remote monitoring, as well as decontamination of any probe or coupon that comes into contact with the liquid high-level waste (HLW) held in the tanks, a fully automated Integrated Corrosion Monitoring System has been implemented at West Valley. This system allows for remote continuous monitoring of corrosion effects by linear polarization and electrical resistance probes. Real time corrosion data that indicates metal loss versus time and corrosion rate for electrical resistance probes, as well as corrosion rate and pitting tendencies for linear polarization resistance probes is depicted on a electroluminescent display. Because corrosion rates are being continuously checked, this system is ideal for monitoring the corrosive conditions that will affect the life of the containment HLW storage vessels. The probes in the system also permits the simultaneous use of coupons for determining specific types of corrosion occurring, and the average corrosion rate for the entire exposure period. This paper describes the design parameters, installation procedures, and the results of data collected from the Integrated Corrosion Monitoring System installed at West Valley.

  3. High level waste characterization in support of low level waste certification. I. HLW supernate radionuclide characterization

    SciTech Connect

    Jamison, M.E.; d`Entremont, P.D.; Clemmons, J.S.; Bess, C.E.; Brown, D.F.

    1994-07-08

    High Level Waste Programs has radioactive waste storage, treatment and processing facilities that are located in the F and H Areas at the Savannah River Site. These facilities include the Effluent Treatment Facility (ETF), F and H Area Tank Farms, Extended Sludge Processing (ESP), and In-Tank Precipitation (ITP). Job wastes are generated from operation, maintenance, and construction activities inside radiological areas. These items may have been contaminated with radioactive supernate, salt, and sludge material. Most of these wastes will be disposed of in the E-area Vaults. Therefore, an isotopic and hazardous characterization must be performed. The characterization of HLW supernate radionuclides is discussed in Chapter I. The characterization for salt and sludge phases, which can also contaminate LLW, will be included in other Chapters.

  4. Can Sisyphus succeed? Getting U.S. high-level nuclear waste into a geological repository.

    PubMed

    North, D Warner

    2013-01-01

    The U.S. government has the obligation of managing the high-level radioactive waste from its defense activities and also, under existing law, from civilian nuclear power generation. This obligation is not being met. The January 2012 Final Report from the Blue Ribbon Commission on America's Nuclear Future provides commendable guidance but little that is new. The author, who served on the federal Nuclear Waste Technical Review Board from 1989 to 1994 and subsequently on the Board on Radioactive Waste Management of the National Research Council from 1994 to 1999, provides a perspective both on the Commission's recommendations and a potential path toward progress in meeting the federal obligation. By analogy to Sisyphus of Greek mythology, our nation needs to find a way to roll the rock to the top of the hill and have it stay there, rather than continuing to roll back down again.

  5. Reactor radioactive emission monitor

    SciTech Connect

    Jester, W.A.; Mc Master, I.B.; Baratta, A.J.

    1987-05-05

    This patent describes a means for measuring quantities of a selected radioactive component in a stream of radioactive fluid. The means comprise: a first fluid path with a first means for retaining the selected radioactive component mounted in the fluid path for retaining the radioactive component while passing the remainder of the stream of radioactive fluid; a second fluid path with a second means for retaining the selected radioactive component mounted in the second fluid path for retaining the radioactive component while passing the remainder of the stream of the radioactive fluid; first and second detectors for detecting the level of radioactivity emitted by the retained radioactive component in the first and second retaining means; a means for integrating the output of one or more of the detectors as a function of time to measure any increase in the radioactivity emitted by the radioactive component retained by the retaining means, and the increase being representative of the amount of selected radioactive component present in the stream of radioactive fluid.

  6. High level nuclear waste treatment in the Defense Waste Processing Facility: Overview and integrated flowsheet model

    SciTech Connect

    Choi, A.S.; Fowler, J.R.; Edwards, R.E. Jr.; Randall, C.T.

    1991-01-01

    Design and construction of the world's largest vitrification facility for high level nuclear waste has been nearly completed at the US Department of Energy's Savannah River Site. Equipment testing and calibration are currently being performed in preparation for the nonradioactive Chemical Runs in the late 1991. In 1993, the Defense Waste Processing Facility (DWPF) will begin producing 100 kg/hr of radioactive waste glass at 28 wt% waste oxide loading. This paper describes all phases of waste processing operations in DWPF and waste tank farms using the integrated flowsheet modeling approach. Particular emphases are given to recent developments in the DWPF processes and design.

  7. High level nuclear waste treatment in the Defense Waste Processing Facility: Overview and integrated flowsheet model

    SciTech Connect

    Choi, A.S.; Fowler, J.R.; Edwards, R.E. Jr.; Randall, C.T.

    1991-12-31

    Design and construction of the world`s largest vitrification facility for high level nuclear waste has been nearly completed at the US Department of Energy`s Savannah River Site. Equipment testing and calibration are currently being performed in preparation for the nonradioactive Chemical Runs in the late 1991. In 1993, the Defense Waste Processing Facility (DWPF) will begin producing 100 kg/hr of radioactive waste glass at 28 wt% waste oxide loading. This paper describes all phases of waste processing operations in DWPF and waste tank farms using the integrated flowsheet modeling approach. Particular emphases are given to recent developments in the DWPF processes and design.

  8. Chemical Speciation of Americium, Curium and Selected Tetravalent Actinides in High Level Waste

    SciTech Connect

    Felmy, Andrew R.

    2006-06-01

    Large volumes of high-level waste (HLW) currently stored in tanks at DOE sites contain both sludges and supernatants. The sludges are composed of insoluble precipitates of actinides, radioactive fission products, and nonradioactive components. The supernatants are alkaline carbonate solutions, which can contain soluble actinides, fission products, metal ions, and high concentrations of major electrolytes including sodium hydroxide, nitrate, nitrite, phosphate, carbonate, aluminate, sulfate, and organic complexants. The organic complexants include several compounds that can form strong aqueous complexes with actinide species and fission products including ethylenediaminetetraacetic acid (EDTA), N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), citrate, glycolate, gluconate, and degradation products, formate and oxalate.

  9. Chemical Speciation of Americium, Curium and Selected Tetravalent Actinides in High Level Waste

    SciTech Connect

    Felmy, Andrew R.

    2005-06-01

    Large volumes of high-level waste (HLW) currently stored in tanks at DOE sites contain both sludges and supernatants. The sludges are composed of insoluble precipitates of actinides, radioactive fission products, and nonradioactive components. The supernatants are alkaline carbonate solutions, which can contain soluble actinides, fission products, metal ions, and high concentrations of major electrolytes including sodium hydroxide, nitrate, nitrite, phosphate, carbonate, aluminate, sulfate, and organic complexants. The organic complexants include several compounds that can form strong aqueous complexes with actinide species and fission products including ethylenediaminetetraacetic acid (EDTA), N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), citrate, glycolate, gluconate, and degradation products, formate and oxalate.

  10. Hydrocolloid-stabilized magnetite for efficient removal of radioactive phosphates.

    PubMed

    Vellora Thekkae Padil, Vinod; Rouha, Michael; Cerník, Miroslav

    2014-01-01

    Liquid radioactive waste is a common by-product when using radioactive isotopes in research and medicine. Efficient remediation of such liquid waste is crucial for increasing safety during the necessary storage of the material. Herein, we present a novel Gum Karaya stabilized magnetite for the efficient removal of radioactive phosphorus (32)P from liquid radioactive waste. This environmentally friendly material is well suited to be used as a nanohydrogel for the removal of liquid waste, which can then be stored in a smaller space and without the risk of the spills inherent to the initial liquid material. The maximum adsorption capacity of the GK/M in this study was found to be 15.68 GBq/g. We present a thorough morphological characterization of the synthesised GK/M, as well as a discussion of the possible phosphorus adsorption mechanisms.

  11. Hydrocolloid-Stabilized Magnetite for Efficient Removal of Radioactive Phosphates

    PubMed Central

    Vellora Thekkae Padil, Vinod; Rouha, Michael; Černík, Miroslav

    2014-01-01

    Liquid radioactive waste is a common by-product when using radioactive isotopes in research and medicine. Efficient remediation of such liquid waste is crucial for increasing safety during the necessary storage of the material. Herein, we present a novel Gum Karaya stabilized magnetite for the efficient removal of radioactive phosphorus 32P from liquid radioactive waste. This environmentally friendly material is well suited to be used as a nanohydrogel for the removal of liquid waste, which can then be stored in a smaller space and without the risk of the spills inherent to the initial liquid material. The maximum adsorption capacity of the GK/M in this study was found to be 15.68 GBq/g. We present a thorough morphological characterization of the synthesised GK/M, as well as a discussion of the possible phosphorus adsorption mechanisms. PMID:24696854

  12. RADIO-ACTIVE TRANSDUCER

    DOEpatents

    Wanetick, S.

    1962-03-01

    ABS>ure the change in velocity of a moving object. The transducer includes a radioactive source having a collimated beam of radioactive particles, a shield which can block the passage of the radioactive beam, and a scintillation detector to measure the number of radioactive particles in the beam which are not blocked by the shield. The shield is operatively placed across the radioactive beam so that any motion normal to the beam will cause the shield to move in the opposite direction thereby allowing more radioactive particles to reach the detector. The number of particles detected indicates the acceleration. (AEC)

  13. Technical elements for the performance assessment of a high-level waste geologic repository

    NASA Astrophysics Data System (ADS)

    Light, William Bradley

    Techniques for predicting various performance elements of a high level radioactive waste repository are developed and demonstrated. In the unsaturated Yucca Mountain repository site gaseous radionuclides traveling through open fractures will be retarded by absorption into pore-bound liquid. For small values of the modified Peclet number the fractured porous medium can be modeled as an equivalent continuum as demonstrated by discrete fracture analysis. The travel time for C-14(O2) from failed containers to the accessible environment is predicted to be hundreds to thousands of years and doses from above ground concentrations to be much lower than background radiation at sea level. A spent fuel source term is developed for episodic flooding of a partially-failed container. Solubility-limited, congruent, preferential and alteration-rate based release modes are considered. Transport is by advection with the mostly-intact container being credited with effectively blocking diffusive pathways. The possible benefits of limited oxygen entry into the container is also discussed. Calculated releases in response to assumed major flooding episodes are comparable to those of wet-drip models. A weapons-plutonium glass waste form might be driven to supercriticality by a flooding episode in the distant future if neutron poisons are first washed away as shown by a preliminary hydrodynamics-coupled reactor model. Criticality is approached from the undermoderated side as water enters the degraded waste form. Point neutronics equations track the event through self-shutdown by water expulsion. Calculated event magnitudes are comparable to those of documented criticality accidents. The fundamental problem of diffusion from a circular disc source at constant concentration located in the boundary of a semi-infinite media is solved numerically using coordinate transformation, grid scaling, and intelligent finite difference algorithms. The resulting time-dependent mass-transfer rate is

  14. Impact of transporting defense high-level waste to a geologic repository

    SciTech Connect

    Joy, D.S.; Shappert, L.B.; Boyle, J.W.

    1984-12-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425) provides for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel and requires the Secretary of Energy to evaluate five potential repository sites. One factor that is to be examined is transportation of radioactive materials to such a repository and whether transportation might be affected by shipments to a defense-only repository, or to one that accepts both defense and commercial waste. In response to this requirement, The Department of Energy has undertaken an evaluation of the cost and risk associated with the potential shipments. Two waste-flow scenarios are considered which are related to the total quantity of defense high-level waste which will be placed in a repository. The low-flow case is based on a total of 6700 canisters being transported from one site, while the high-flow case assumes that a total of 20,000 canisters will be transported from three sites. For the scenarios considered, the estimated shipping costs range from $105 million to $257 million depending upon the mode of transport and the repository location. The total risks associated with shipping defense high-level waste to a repository are estimated to be significantly smaller than predicted for other transportation activities. In addition, the cost of shipping defense high-level waste to a repository does not depend on whether the site is a defense-only or a commercial repository. Therefore, the transportation considerations are not a basis for the selection of one of the two disposal options.

  15. Radioactive diagnostic agent

    SciTech Connect

    Shigematsu, A.; Aihara, M.; Matsuda, M.; Suzuki, A.; Tsuya, A.

    1984-02-07

    A radioactive diagnostic agent for renal cortex, adrenal cortex, myocardium, brain stem, spinal nerve, etc., which comprises as an essential component monoiodoacetic acid wherein the iodine atom is radioactive.

  16. Radioactive Iodine (Radioiodine) Therapy

    MedlinePlus

    ... and Stage Thyroid Cancer Treating Thyroid Cancer Radioactive Iodine (Radioiodine) Therapy for Thyroid Cancer Your thyroid gland absorbs nearly all of the iodine in your body. When radioactive iodine (RAI), also ...

  17. Qualification of Innovative High Level Waste Pipeline Unplugging Technologies

    SciTech Connect

    McDaniel, D.; Gokaltun, S.; Varona, J.; Awwad, A.; Roelant, D.; Srivastava, R.

    2008-07-01

    In the past, some of the pipelines have plugged during high level waste (HLW) transfers resulting in schedule delays and increased costs. Furthermore, pipeline plugging has been cited by the 'best and brightest' technical review as one of the major issues that can result in unplanned outages at the Waste Treatment Plant causing inconsistent operation. As the DOE moves toward a more active high level waste retrieval, the site engineers will be faced with increasing cross-site pipeline waste slurry transfers that will result in increased probability of a pipeline getting plugged. Hence, availability of a pipeline unplugging tool/technology is crucial to ensure smooth operation of the waste transfers and in ensuring tank farm cleanup milestones are met. FIU had earlier tested and evaluated various unplugging technologies through an industry call. Based on mockup testing, two technologies were identified that could withstand the rigors of operation in a radioactive environment and with the ability to handle sharp 90 elbows. We present results of the second phase of detailed testing and evaluation of pipeline unplugging technologies and the objective is to qualify these pipeline unplugging technologies for subsequent deployment at a DOE facility. The current phase of testing and qualification comprises of a heavily instrumented 3-inch diameter (full-scale) pipeline facilitating extensive data acquisition for design optimization and performance evaluation, as it applies to three types of plugs atypical of the DOE HLW waste. Furthermore, the data from testing at three different lengths of pipe in conjunction with the physics of the process will assist in modeling the unplugging phenomenon that will then be used to scale-up process parameters and system variables for longer and site typical pipe lengths, which can extend as much as up to 19,000 ft. Detailed information resulting from the testing will provide the DOE end-user with sufficient data and understanding of the

  18. Startup of Savannah River`s Defense Waste Processing Facility to produce radioactive glass

    SciTech Connect

    Bennett, W.M.

    1997-08-06

    The Savannah River Site (SRS) began production of radioactive glass in the Defense Waste Process Facility (DWPF) in 1996 following an extensive test program discussed earlier. Currently DWPF is operating in a `sludge only` mode to produce radioactive glass consisting of washed high-level waste sludge and glass frit. Future operations will produce radioactive glass consisting of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of processing activities to date, operational problems encountered since entering radioactive operations, and the programs underway to solve them.

  19. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    SciTech Connect

    Wasan, Darsh T.

    2007-10-09

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study

  20. 10 CFR 72.104 - Criteria for radioactive materials in effluents and direct radiation from an ISFSI or MRS.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation... 10 Energy 2 2011-01-01 2011-01-01 false Criteria for radioactive materials in effluents and direct...) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE,...

  1. 10 CFR 72.104 - Criteria for radioactive materials in effluents and direct radiation from an ISFSI or MRS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation... 10 Energy 2 2010-01-01 2010-01-01 false Criteria for radioactive materials in effluents and direct...) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE,...

  2. 10 CFR 72.104 - Criteria for radioactive materials in effluents and direct radiation from an ISFSI or MRS.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation... 10 Energy 2 2012-01-01 2012-01-01 false Criteria for radioactive materials in effluents and direct...) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE,...

  3. 10 CFR 72.104 - Criteria for radioactive materials in effluents and direct radiation from an ISFSI or MRS.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation... 10 Energy 2 2013-01-01 2013-01-01 false Criteria for radioactive materials in effluents and direct...) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE,...

  4. 10 CFR 72.104 - Criteria for radioactive materials in effluents and direct radiation from an ISFSI or MRS.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation... 10 Energy 2 2014-01-01 2014-01-01 false Criteria for radioactive materials in effluents and direct...) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE,...

  5. JET MIXING ANALYSIS FOR SRS HIGH-LEVEL WASTE RECOVERY

    SciTech Connect

    Lee, S.

    2011-07-05

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four slurry pumps located within the tank liquid. The slurry pump may be fixed in position or they may rotate depending on the specific mixing requirements. The high-level waste in Tank 48 contains insoluble solids in the form of potassium tetraphenyl borate compounds (KTPB), monosodium titanate (MST), and sludge. Tank 48 is equipped with 4 slurry pumps, which are intended to suspend the insoluble solids prior to transfer of the waste to the Fluidized Bed Steam Reformer (FBSR) process. The FBSR process is being designed for a normal feed of 3.05 wt% insoluble solids. A chemical characterization study has shown the insoluble solids concentration is approximately 3.05 wt% when well-mixed. The project is requesting a Computational Fluid Dynamics (CFD) mixing study from SRNL to determine the solids behavior with 2, 3, and 4 slurry pumps in operation and an estimate of the insoluble solids concentration at the suction of the transfer pump to the FBSR process. The impact of cooling coils is not considered in the current work. The work consists of two principal objectives by taking a CFD approach: (1) To estimate insoluble solids concentration transferred from Tank 48 to the Waste Feed Tank in the FBSR process and (2) To assess the impact of different combinations of four slurry pumps on insoluble solids suspension and mixing in Tank 48. For this work, several different combinations of a maximum of four pumps are considered to determine the resulting flow patterns and local flow velocities which are thought to be associated with sludge particle mixing. Two different elevations of pump nozzles are used for an assessment of the flow patterns on the tank mixing. Pump design and operating parameters used for the analysis are summarized in Table 1. The baseline

  6. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    SciTech Connect

    Rudisill, T.; King, W.; Hay, M.; Jones, D.

    2015-11-19

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions during tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.

  7. Review of high-level waste form properties. [146 bibliographies

    SciTech Connect

    Rusin, J.M.

    1980-12-01

    This report is a review of waste form options for the immobilization of high-level-liquid wastes from the nuclear fuel cycle. This review covers the status of international research and development on waste forms as of May 1979. Although the emphasis in this report is on waste form properties, process parameters are discussed where they may affect final waste form properties. A summary table is provided listing properties of various nuclear waste form options. It is concluded that proposed waste forms have properties falling within a relatively narrow range. In regard to crystalline versus glass waste forms, the conclusion is that either glass of crystalline materials can be shown to have some advantage when a single property is considered; however, at this date no single waste form offers optimum properties over the entire range of characteristics investigated. A long-term effort has been applied to the development of glass and calcine waste forms. Several additional waste forms have enough promise to warrant continued research and development to bring their state of development up to that of glass and calcine. Synthetic minerals, the multibarrier approach with coated particles in a metal matrix, and high pressure-high temperature ceramics offer potential advantages and need further study. Although this report discusses waste form properties, the total waste management system should be considered in the final selection of a waste form option. Canister design, canister materials, overpacks, engineered barriers, and repository characteristics, as well as the waste form, affect the overall performance of a waste management system. These parameters were not considered in this comparison.

  8. High-level disinfection of gastrointestinal endoscope reprocessing.

    PubMed

    Chiu, King-Wah; Lu, Lung-Sheng; Chiou, Shue-Shian

    2015-02-20

    High level disinfection (HLD) of the gastrointestinal (GI) endoscope is not simply a slogan, but rather is a form of experimental monitoring-based medicine. By definition, GI endoscopy is a semicritical medical device. Hence, such medical devices require major quality assurance for disinfection. And because many of these items are temperature sensitive, low-temperature chemical methods, such as liquid chemical germicide, must be used rather than steam sterilization. In summarizing guidelines for infection prevention and control for GI endoscopy, there are three important steps that must be highlighted: manual washing, HLD with automated endoscope reprocessor, and drying. Strict adherence to current guidelines is required because compared to any other medical device, the GI endoscope is associated with more outbreaks linked to inadequate cleaning or disinfecting during HLD. Both experimental evaluation on the surveillance bacterial cultures and in-use clinical results have shown that, the monitoring of the stringent processes to prevent and control infection is an essential component of the broader strategy to ensure the delivery of safe endoscopy services, because endoscope reprocessing is a multistep procedure involving numerous factors that can interfere with its efficacy. Based on our years of experience in the surveillance of culture monitoring of endoscopic reprocessing, we aim in this study to carefully describe what details require attention in the GI endoscopy disinfection and to share our experience so that patients can be provided with high quality and safe medical practices. Quality management encompasses all aspects of pre- and post-procedural care including the efficiency of the endoscopy unit and reprocessing area, as well as the endoscopic procedure itself.

  9. DWPF Safely Dispositioning Liquid Waste

    ScienceCinema

    None

    2016-07-12

    The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called “vitrification,” as the preferred option for treating liquid radioactive waste.

  10. Application of the Evacuated Canister System for Removing Residual Molten Glass From the West Valley Demonstration Project High-Level Waste Melter

    SciTech Connect

    May, Joseph J.; Dombrowski, David J.; Valenti, Paul J.; Houston, Helene M.

    2003-02-27

    The principal mission of the West Valley Demonstration Project (WVDP) is to meet a series of objectives defined in the West Valley Demonstration Project Act (Public Law 96-368). Chief among these is the objective to solidify liquid high-level waste (HLW) at the WVDP site into a form suitable for disposal in a federal geologic repository. In 1982, the Secretary of Energy formally selected vitrification as the technology to be used to solidify HLW at the WVDP. One of the first steps in meeting the HLW solidification objective involved designing, constructing and operating the Vitrification (Vit) Facility, the WVDP facility that houses the systems and subsystems used to process HLW into stainless steel canisters of borosilicate waste-glass that satisfy waste acceptance criteria (WAC) for disposal in a federal geologic repository. HLW processing and canister production began in 1996. The final step in meeting the HLW solidification objective involved ending Vit system operations and shut ting down the Vit Facility. This was accomplished by conducting a discrete series of activities to remove as much residual material as practical from the primary process vessels, components, and associated piping used in HLW canister production before declaring a formal end to Vit system operations. Flushing was the primary method used to remove residual radioactive material from the vitrification system. The inventory of radioactivity contained within the entire primary processing system diminished by conducting the flushing activities. At the completion of flushing activities, the composition of residual molten material remaining in the melter (the primary system component used in glass production) consisted of a small quantity of radioactive material and large quantities of glass former materials needed to produce borosilicate waste-glass. A special system developed during the pre-operational and testing phase of Vit Facility operation, the Evacuated Canister System (ECS), was

  11. 75 FR 137 - Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... materials. Subsequent extraction cycles, treatment processes, and follow-on decontamination activities generated additional liquid HLW that was combined to form SBW, which is generally much less radioactive than... constructing a facility for the purpose of treating and packaging the SBW. This new facility is known as...

  12. Hot-wall corrosion testing of simulated high level nuclear waste

    SciTech Connect

    Chandler, G.T.; Zapp, P.E.; Mickalonis, J.I.

    1995-01-01

    Three materials of construction for steam tubes used in the evaporation of high level radioactive waste were tested under heat flux conditions, referred to as hot-wall tests. The materials were type 304L stainless steel alloy C276, and alloy G3. Non-radioactive acidic and alkaline salt solutions containing halides and mercury simulated different high level waste solutions stored or processed at the United States Department of Energy`s Savannah River Site. Alloy C276 was also tested for corrosion susceptibility under steady-state conditions. The nickel-based alloys C276 and G3 exhibited excellent corrosion resistance under the conditions studied. Alloy C276 was not susceptible to localized corrosion and had a corrosion rate of 0.01 mpy (0.25 {mu}m/y) when exposed to acidic waste sludge and precipitate slurry at a hot-wall temperature of 150{degrees}C. Type 304L was susceptible to localized corrosion under the same conditions. Alloy G3 had a corrosion rate of 0.1 mpy (2.5 {mu}m/y) when exposed to caustic high level waste evaporator solution at a hot-wall temperature of 220{degrees}C compared to 1.1 mpy (28.0 {mu}/y) for type 304L. Under extreme caustic conditions (45 weight percent sodium hydroxide) G3 had a corrosion rate of 0.1 mpy (2.5 {mu}m/y) at a hot-wall temperature of 180{degrees}C while type 304L had a high corrosion rate of 69.4 mpy (1.8 mm/y).

  13. Mercury Phase II Study - Mercury Behavior across the High-Level Waste Evaporator System

    SciTech Connect

    Bannochie, C. J.; Crawford, C. L.; Jackson, D. G.; Shah, H. B.; Jain, V.; Occhipinti, J. E.; Wilmarth, W. R.

    2016-06-17

    The Mercury Program team’s effort continues to develop more fundamental information concerning mercury behavior across the liquid waste facilities and unit operations. Previously, the team examined the mercury chemistry across salt processing, including the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU), and the Defense Waste Processing Facility (DWPF) flowsheets. This report documents the data and understanding of mercury across the high level waste 2H and 3H evaporator systems.

  14. 46 CFR 119.530 - Bilge high level alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bilge high level alarms. 119.530 Section 119.530... Bilge and Ballast Systems § 119.530 Bilge high level alarms. (a) Each vessel must be provided with a visual and audible alarm at the operating station to indicate a high water level in each of the...

  15. 46 CFR 182.530 - Bilge high level alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Bilge high level alarms. 182.530 Section 182.530... TONS) MACHINERY INSTALLATION Bilge and Ballast Systems § 182.530 Bilge high level alarms. (a) On a... operating station to indicate a high water level in each of the following normally unmanned spaces: (1)...

  16. Disposition of intravenous radioactive acyclovir

    SciTech Connect

    de Miranda, P.; Good, S.S.; Laskin, O.L.; Krasny, H.C.; Connor, J.D.; Lietman, P.S.

    1981-11-01

    The kinetic and metabolic disposition of (8-14C)acyclovir (ACV) was investigated in five subjects with advanced malignancy. The drug was administered by 1-hr intravenous infusion at doses of 0.5 and 2.5 mg/kg. Plasma and blood radioactivity-time, and plasma concentration-time data were defined by a two-compartment open kinetic model. There was nearly equivalent distribution of radioactivity in blood and plasma. The overall mean plasma half-life and total body clearance +/- SD of ACV were 2.1 +/- 0.5 hr and 297 +/- 53 ml/min/1.73 m2. Binding of ACV to plasma proteins was 15.4 +/- 4.4%. Most of the radioactive dose excreted was recovered in the urine (71% to 99%) with less than 2% excretion in the feces and only trace amounts in the expired Co2. Analyses by reverse-phase high-performance liquid chromatography indicated that 9-(carboxymethoxymethyl)guanine was the only significant urinary metabolite of ACV, accounting for 8.5% to 14.1% of the dose. A minor metabolite (less than 0.2% of dose) had the retention time of 8-hydroxy-9-((2-hydroxyethoxy)methyl)guanine. Unchanged urinary ACV ranged from 62% to 91% of the dose. There was no indication of ACV cleavage to guanine. Renal clearance of ACV was approximately three times the corresponding creatinine clearances.

  17. Transport and extraction of radioactive ions stopped in superfluid helium

    NASA Astrophysics Data System (ADS)

    Huang, W. X.; Dendooven, P.; Gloos, K.; Takahashi, N.; Arutyunov, K.; Pekola, J. P.; Äystö, J.

    2003-05-01

    A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyväskylä, Finland. An open 223Ra alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium. The alpha spectra demonstrate that the recoiling 219Rn ions have been extracted out of liquid helium. This first observation of the extraction of heavy positive ions across the superfluid helium surface was possible thanks to the high sensitivity of radioactivity detection. An efficiency of 36% was obtained for the ion extraction out of liquid helium.

  18. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOEpatents

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  19. Radioactivity and food

    SciTech Connect

    Olszyna-Marzys, A.E. )

    1990-03-01

    Two topics relating to radioactivity and food are discussed: food irradiation for preservation purposes, and food contamination from radioactive substances. Food irradiation involves the use of electromagnetic energy (x and gamma rays) emitted by radioactive substances or produced by machine in order to destroy the insects and microorganisms present and prevent germination. The sanitary and economic advantages of treating food in this way are discussed. Numerous studies have confirmed that under strictly controlled conditions no undesirable changes take place in food that has been irradiated nor is radioactivity induced. Reference is made to the accident at the Chernobyl nuclear power station, which aroused public concern about irradiated food. The events surrounding the accident are reviewed, and its consequences with regard to contamination of different foods with radioactive substances, particularly iodine-131 and cesium-137, are described. Also discussed are the steps that have been taken by different international organizations to set limits on acceptable radioactivity in food.15 references.

  20. Putting Radioactive Wastes on Ice: A Proposal for an International Radionuclide Depository in Antarctica

    ERIC Educational Resources Information Center

    Zeller, E. J.; And Others

    1973-01-01

    Describes need for creating permanent disposal of high-level radioactive wastes accumulating in different countries. Possibilities of establishing facilities for this purpose in Antarctic ice cap are examined. (PS)