Science.gov

Sample records for high-performance alkaline polymer

  1. High performance polymer development

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1991-01-01

    The term high performance as applied to polymers is generally associated with polymers that operate at high temperatures. High performance is used to describe polymers that perform at temperatures of 177 C or higher. In addition to temperature, other factors obviously influence the performance of polymers such as thermal cycling, stress level, and environmental effects. Some recent developments at NASA Langley in polyimides, poly(arylene ethers), and acetylenic terminated materials are discussed. The high performance/high temperature polymers discussed are representative of the type of work underway at NASA Langley Research Center. Further improvement in these materials as well as the development of new polymers will provide technology to help meet NASA future needs in high performance/high temperature applications. In addition, because of the combination of properties offered by many of these polymers, they should find use in many other applications.

  2. High Performance Polymers

    NASA Technical Reports Server (NTRS)

    Venumbaka, Sreenivasulu R.; Cassidy, Patrick E.

    2003-01-01

    This report summarizes results from research on high performance polymers. The research areas proposed in this report include: 1) Effort to improve the synthesis and to understand and replicate the dielectric behavior of 6HC17-PEK; 2) Continue preparation and evaluation of flexible, low dielectric silicon- and fluorine- containing polymers with improved toughness; and 3) Synthesis and characterization of high performance polymers containing the spirodilactam moiety.

  3. Towards high performance inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Gong, Xiong

    2013-03-01

    Bulk heterojunction polymer solar cells that can be fabricated by solution processing techniques are under intense investigation in both academic institutions and industrial companies because of their potential to enable mass production of flexible and cost-effective alternative to silicon-based electronics. Despite the envisioned advantages and recent technology advances, so far the performance of polymer solar cells is still inferior to inorganic counterparts in terms of the efficiency and stability. There are many factors limiting the performance of polymer solar cells. Among them, the optical and electronic properties of materials in the active layer, device architecture and elimination of PEDOT:PSS are the most determining factors in the overall performance of polymer solar cells. In this presentation, I will present how we approach high performance of polymer solar cells. For example, by developing novel materials, fabrication polymer photovoltaic cells with an inverted device structure and elimination of PEDOT:PSS, we were able to observe over 8.4% power conversion efficiency from inverted polymer solar cells.

  4. High Performance Polymer Memory and Its Formation

    DTIC Science & Technology

    2007-04-26

    Std. Z39.18 Final Report to AFOSR High Performance Polymer Memory Device and Its Formation Fund No.: FA9550-04-1-0215 Prepared by Prof. Yang Yang...polystyrene (PS). The metal nanoparticles were prepared by the two-phase 10-5 (b) 10𔄁Polymer film 1a CC , 10, Glass 1 -2 -1 0 1 2 3 4 5 Bias (V) Fig. I...such as copper pthalocyanine (CuPc), 24 ൢ zinc pthalocyanine (ZnPc), 27󈧠 tetracene, 29 and pentacene 30 have been used as donors combined with

  5. Tough, High-Performance, Thermoplastic Addition Polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Proctor, K. Mason; Gleason, John; Morgan, Cassandra; Partos, Richard

    1991-01-01

    Series of addition-type thermoplastics (ATT's) exhibit useful properties. Because of their addition curing and linear structure, ATT polymers have toughness, like thermoplastics, and easily processed, like thermosets. Work undertaken to develop chemical reaction forming stable aromatic rings in backbone of ATT polymer, combining high-temperature performance and thermo-oxidative stability with toughness and easy processibility, and minimizing or eliminating necessity for tradeoffs among properties often observed in conventional polymer syntheses.

  6. High performance polymer tandem solar cell

    PubMed Central

    da Silva, Wilson Jose; Schneider, Fabio Kurt; Mohd Yusoff, Abd. Rashid bin; Jang, Jin

    2015-01-01

    A power conversion efficiency of 9.02% is obtained for a fully solution-processed polymer tandem solar cell, based on the diketopyrrolopyrrole unit polymer as a low bandgap photoactive material in the rear subcell, in conjunction with a new robust interconnecting layer. This interconnecting layer is optically transparent, electrically conductive, and physically strong, thus, the charges can be collected and recombined in the interconnecting layer under illumination, while the charge is generated and extracted under dark conditions. This indicates that careful interface engineering of the charge-carrier transport layer is a useful approach to further improve the performance of polymer tandem solar cells. PMID:26669577

  7. Radiation effects on high performance polymers

    NASA Technical Reports Server (NTRS)

    Orwoll, R. A.

    1986-01-01

    Polymer matrix materials are candidates for use in large space antennas and space platforms that may be deployed in geosynchronous orbit 22,500 miles above the Earth. A principal concern is the long term effects of an environment that is hostile to organic polymers, including high energy electromagnetic radiation, bombardment by charged particles, and large abrupt changes in temperature. Two polyarylene ethers which might be utilized as models for polymers in space applications were subjected to dosages of 70 keV electrons up to 3.4 x 10 to the 10th power rad. The irradiated films were then examined to determine the effects of the high-energy electrons.

  8. Toward High Performance Photovoltaic Cells based on Conjugated Polymers

    DTIC Science & Technology

    2016-12-26

    AFRL-AFOSR-JP-TR-2016-0103 Toward High Performance Photovoltaic Cells based on Conjugated Polymers Kung-Hwa Wei National Chiao Tung University Final...REPORT TYPE Final 3. DATES COVERED (From - To) 16 Sep 2015 to 15 Sep 2016 4. TITLE AND SUBTITLE Toward High Performance Photovoltaic Cells based on...Grant 15IOA0113 “Toward High Performance Photovoltaic Cells Based on Conjugated Polymers (Taiwan side)” Dec. 16, 2016 PI information: Kung-Hwa Wei

  9. New monomers for high performance polymers

    NASA Technical Reports Server (NTRS)

    Gratz, Roy F.

    1993-01-01

    This laboratory has been concerned with the development of new polymeric materials with high thermo-oxidative stability for use in the aerospace and electronics industries. Currently, there is special emphasis on developing matrix resins and composites for the high speed civil transport (HSCT) program. This application requires polymers that have service lifetimes of 60,000 hr at 350 F (177 C) and that are readily processible into void-free composites, preferably by melt-flow or powder techniques that avoid the use of high boiling solvents. Recent work has focused on copolymers which have thermally stable imide groups separated by flexible arylene ether linkages, some with trifluoromethyl groups attached to the aromatic rings. The presence of trifluoromethyl groups in monomers and polymers often improves their solubility and processibility. The goal of this research was to synthesize several new monomers containing pendant trifluoromethyl groups and to incorporate these monomers into new imide/arylene ether copolymers. Initially, work was begun on the synthesis of three target compounds. The first two, 3,5-dihydroxybenzo trifluoride and 3-amino 5-hydroxybenzo trifluoride, are intermediates in the synthesis of more complex monomers. The third, 3,5-bis (3-amino-phenoxy) benzotrifluoride, is an interesting diamine that could be incorporated into a polyimide directly.

  10. High performance, durable polymers including poly(phenylene)

    DOEpatents

    Fujimoto, Cy; Pratt, Harry; Anderson, Travis Mark

    2017-02-28

    The present invention relates to functionalized polymers including a poly(phenylene) structure. In some embodiments, the polymers and copolymers of the invention include a highly localized concentration of acidic moieties, which facilitate proton transport and conduction through networks formed from these polymers. In addition, the polymers can include functional moieties, such as electron-withdrawing moieties, to protect the polymeric backbone, thereby extending its durability. Such enhanced proton transport and durability can be beneficial for any high performance platform that employs proton exchange polymeric membranes, such as in fuel cells or flow batteries.

  11. Simulated space environmental effects on some experimental high performance polymers

    NASA Technical Reports Server (NTRS)

    Connell, John W.

    1993-01-01

    High performance polymers for potential space applications were evaluated under simulated space environmental conditions. Experimental resins from blends of acetylene terminated materials, poly(arylene ether)s and low color polyimides were exposed to high energy electron and ultraviolet radiation in an attempt to simulate space environmental effects. Thin films, neat resin moldings, and carbon fiber reinforced composites were exposed, and the effect on certain polymer properties were determined. Recent research involving the effects of various radiation exposures on the physical, optical, and mechanical properties of several experimental polymer systems is reviewed.

  12. High Performance Polymers and Composites (HiPPAC) Center

    NASA Technical Reports Server (NTRS)

    Mintz, Eric A.; Veazie, David

    2005-01-01

    NASA University Research Centers funding has allowed Clark Atlanta University (CAU) to establish a High Performance Polymers and Composites (HiPPAC) Research Center. Clark Atlanta University, through the HiPPAC Center has consolidated and expanded its polymer and composite research capabilities through the development of research efforts in: (1) Synthesis and characterization of polymeric NLO, photorefractive, and piezoelectric materials; (2) Characterization and engineering applications of induced strain smart materials; (3) Processable polyimides and additives to enhance polyimide processing for composite applications; (4) Fabrication and mechanical characterization of polymer based composites.

  13. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  14. High-Performance, Semi-Interpenetrating Polymer Network

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Lowther, Sharon E.; Smith, Janice Y.; Cannon, Michelle S.; Whitehead, Fred M.; Ely, Robert M.

    1992-01-01

    High-performance polymer made by new synthesis in which one or more easy-to-process, but brittle, thermosetting polyimides combined with one or more tough, but difficult-to-process, linear thermoplastics to yield semi-interpenetrating polymer network (semi-IPN) having combination of easy processability and high tolerance to damage. Two commercially available resins combined to form tough, semi-IPN called "LaRC-RP49." Displays improvements in toughness and resistance to microcracking. LaRC-RP49 has potential as high-temperature matrix resin, adhesive, and molding resin. Useful in aerospace, automotive, and electronic industries.

  15. Quickly updatable hologram images with high performance photorefractive polymer composites

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Naoto; Kinashi, Kenji; Nonomura, Asato; Sakai, Wataru

    2012-02-01

    We present here quickly updatable hologram images using high performance photorefractive (PR) polymer composite based on poly(N-vinyl carbazole) (PVCz). PVCz is one of the pioneer materials for photoconductive polymer. PVCz/7- DCST/CzEPA/TNF (44/35/20/1 by wt) gives high diffraction efficiency of 68 % at E = 45 V/μm with fast response speed. Response speed of optical diffraction is the key parameter for real-time 3D holographic display. Key parameter for obtaining quickly updatable hologram images is to control the glass transition temperature lower enough to enhance chromophore orientation. Object image of the reflected coin surface recorded with reference beam at 532 nm (green beam) in the PR polymer composite is simultaneously reconstructed using a red probe beam at 642 nm. Instead of using coin object, object image produced by a computer was displayed on a spatial light modulator (SLM) is used as an object for hologram. Reflected object beam from a SLM interfered with reference beam on PR polymer composite to record a hologram and simultaneously reconstructed by a red probe beam. Movie produced in a computer was recorded as a realtime hologram in the PR polymer composite and simultaneously clearly reconstructed with a video rate.

  16. Developing Flexible, High Performance Polymers with Self-Healing Capabilities

    NASA Technical Reports Server (NTRS)

    Jolley, Scott T.; Williams, Martha K.; Gibson, Tracy L.; Caraccio, Anne J.

    2011-01-01

    Flexible, high performance polymers such as polyimides are often employed in aerospace applications. They typically find uses in areas where improved physical characteristics such as fire resistance, long term thermal stability, and solvent resistance are required. It is anticipated that such polymers could find uses in future long duration exploration missions as well. Their use would be even more advantageous if self-healing capability or mechanisms could be incorporated into these polymers. Such innovative approaches are currently being studied at the NASA Kennedy Space Center for use in high performance wiring systems or inflatable and habitation structures. Self-healing or self-sealing capability would significantly reduce maintenance requirements, and increase the safety and reliability performance of the systems into which these polymers would be incorporated. Many unique challenges need to be overcome in order to incorporate a self-healing mechanism into flexible, high performance polymers. Significant research into the incorporation of a self-healing mechanism into structural composites has been carried out over the past decade by a number of groups, notable among them being the University of I1linois [I]. Various mechanisms for the introduction of self-healing have been investigated. Examples of these are: 1) Microcapsule-based healant delivery. 2) Vascular network delivery. 3) Damage induced triggering of latent substrate properties. Successful self-healing has been demonstrated in structural epoxy systems with almost complete reestablishment of composite strength being achieved through the use of microcapsulation technology. However, the incorporation of a self-healing mechanism into a system in which the material is flexible, or a thin film, is much more challenging. In the case of using microencapsulation, healant core content must be small enough to reside in films less than 0.1 millimeters thick, and must overcome significant capillary and surface

  17. High-Performance Polymers Having Low Melt Viscosities

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.

    2005-01-01

    High-performance polymers that have improved processing characteristics, and a method of making them, have been invented. One of the improved characteristics is low (relative to corresponding prior polymers) melt viscosities at given temperatures. This characteristic makes it possible to utilize such processes as resin-transfer molding and resin-film infusion and to perform autoclave processing at lower temperatures and/or pressures. Another improved characteristic is larger processing windows that is, longer times at low viscosities. Other improved characteristics include increased solubility of uncured polymer precursors that contain reactive groups, greater densities of cross-links in cured polymers, improved mechanical properties of the cured polymers, and greater resistance of the cured polymers to chemical attack. The invention is particularly applicable to poly(arylene ether)s [PAEs] and polyimides [PIs] that are useful as adhesives, matrices of composite materials, moldings, films, and coatings. PAEs and PIs synthesized according to the invention comprise mixtures of branched, linear, and star-shaped molecules. The monomers of these polymers can be capped with either reactive end groups to obtain thermosets or nonreactive end groups to obtain thermoplastics. The synthesis of a polymeric mixture according to the invention involves the use of a small amount of a trifunctional monomer. In the case of a PAE, the trifunctional monomer is a trihydroxy- containing compound for example, 1,3,5-trihydroxybenzene (THB). In the case of a PI, the trifunctional monomer is a triamine for example, triamino pyrimidine or melamine. In addition to the aforementioned trifunctional monomer, one uses the difunctional monomers of the conventional formulation of the polymer in question (see figure). In cases of nonreactive end caps, the polymeric mixtures of the invention have melt viscosities and melting temperatures lower than those of the corresponding linear polymers of equal

  18. Electrospinning of an Alkaline Polymer Electrolyte

    NASA Astrophysics Data System (ADS)

    Roddecha, Supacharee; Dong, Zexuan; Wu, Yiquan; Anthamatten, Mitchell

    2010-03-01

    The polymer electrolyte membrane is a key component of the low temperature fuel cell to block fuel and electron crossover, while enabling ions to pass and complete the half-cell reactions. Proton exchange membranes (PEMs) are anion-containing polymers, such as Nafion, which offer proton conduction pathways. Alkaline polymer electrolytes utilize hydroxyl anions as charge carriers and are currently being researched as an alternative to PEMs because they may offer the use of inexpensive metal catalysts. However, hydroxyl anion in an alkaline electrolyte has relatively low mobility compared to that of protons in an acid electrolyte; hence a high concentration of OH^- is required to obtain high ionic conductivity. Here, we report the use of an electrospinning process to prepare nonwoven membranes. Polysulfones are first functionalized with varied ionic content of quaternary ammonium functional groups and then are electrospun to get alkaline electrolyte mat. The morphology at various ionic content, mechanical property, and in-plane conductivity of resulting films will be discussed and compared to solvent-cast films of the same material.

  19. Tough, high performance, addition-type thermoplastic polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    A tough, high performance polyimide is provided by reacting a triple bond conjugated with an aromatic ring in a bisethynyl compound with the active double bond in a compound containing a double bond activated toward the formation of a Diels-Adler type adduct, especially a bismaleimide, a biscitraconimide, or a benzoquinone, or mixtures thereof. Addition curing of this product produces a high linear polymeric structure and heat treating the highly linear polymeric structure produces a thermally stable aromatic addition-type thermoplastic polyimide, which finds utility in the preparation of molding compounds, adhesive compositions, and polymer matrix composites.

  20. Simulated space environmental effects on some experimental high performance polymers

    NASA Technical Reports Server (NTRS)

    Connell, John W.

    1991-01-01

    Organic polymeric materials are currently being considered for long term use (more than 10 years) in structural (adhesives and composite matrices) and functional (films and coatings) applications on spacecraft. Although organic polymers have been utilized successfully in short term missions, the long term durability of these materials in space is of concern. As part of a NASA effort on high performance polymers for potential space applications, various experimental polymeric materials recently synthesized at NASA Langley Research Center were evaluated under simulated space environmental conditions. Experimental resins from blends of acetylene terminated materials, poly(arylene ether)s and low color polyimides were exposed to high energy electron and ultraviolet radiation in an attempt to simulate space environmental effects. Thin films, neat resin moldings and carbon fiber reinforced composites were exposed and the effect on certain polymer properties were determined. This paper reviews recent research involving the effects of various radiation exposures on the physical, optical and mechanical properties of several experimental polymer systems.

  1. Simulated space environmental effects on some experimental high performance polymers

    NASA Technical Reports Server (NTRS)

    Connell, John W.

    1991-01-01

    Organic polymeric materials are currently being considered for long term use (more than 10 years) in structural (adhesives and composite matrices) and functional (films and coatings) applications on spacecraft. Although organic polymers have been utilized successfully in short term missions, the long term durability of these materials in space is of concern. As part of a NASA effort on high performance polymers for potential space applications, various experimental polymeric materials recently synthesized at NASA Langley Research Center were evaluated under simulated space environmental conditions. Experimental resins from blends of acetylene terminated materials, poly(arylene ether)s and low color polyimides were exposed to high energy electron and ultraviolet radiation in an attempt to simulate space environmental effects. Thin films, neat resin moldings and carbon fiber reinforced composites were exposed and the effect on certain polymer properties were determined. This paper reviews recent research involving the effects of various radiation exposures on the physical, optical and mechanical properties of several experimental polymer systems.

  2. Conducting polymer nanowire arrays for high performance supercapacitors.

    PubMed

    Wang, Kai; Wu, Haiping; Meng, Yuena; Wei, Zhixiang

    2014-01-15

    This Review provides a brief summary of the most recent research developments in the fabrication and application of one-dimensional ordered conducting polymers nanostructure (especially nanowire arrays) and their composites as electrodes for supercapacitors. By controlling the nucleation and growth process of polymerization, aligned conducting polymer nanowire arrays and their composites with nano-carbon materials can be prepared by employing in situ chemical polymerization or electrochemical polymerization without a template. This kind of nanostructure (such as polypyrrole and polyaniline nanowire arrays) possesses high capacitance, superior rate capability ascribed to large electrochemical surface, and an optimal ion diffusion path in the ordered nanowire structure, which is proved to be an ideal electrode material for high performance supercapacitors. Furthermore, flexible, micro-scale, threadlike, and multifunctional supercapacitors are introduced based on conducting polyaniline nanowire arrays and their composites. These prototypes of supercapacitors utilize the high flexibility, good processability, and large capacitance of conducting polymers, which efficiently extend the usage of supercapacitors in various situations, and even for a complicated integration system of different electronic devices.

  3. High performance electrospinning system for fabricating highly uniform polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Munir, Muhammad Miftahul; Iskandar, Ferry; Khairurrijal, Okuyama, Kikuo

    2009-02-01

    A high performance electrospinning system has been successfully developed for production of highly uniform polymer nanofibers. The electrospinning system employed a proportional-integral-derivative control action to maintain a constant current during the production of polyvinyl acetate (PVAc) nanofibers from a precursor solution prepared by dissolution of the PVAc powder in dimethyl formamide so that high uniformity of the nanofibers was achieved. It was found that the cone jet length observed at the end of the needle during the injection of the precursor solution and the average diameter of the nanofibers decreased with decreasing Q /I, where Q is the flow rate of the precursor solution of the nanofibers and I is the current flowing through the electrospinning system. A power law obtained from the relation between the average diameter and Q /I is in accordance with the theoretical model.

  4. Stacked Polymer nanofiber array for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Shiren; Qiu, Jenny

    2015-03-01

    The vertically aligned polyaniline (PANI) nanowires arrays and monolayer graphene sheets were layer-by-layered deposited to specific substrate for tailored structures. Driven by external voltage, aniline molecules and graphene oxide were alternatively assembled for hierarchical porous three-dimensional nanostructures while graphene oxide was in-situ reduced to graphene during the assembly process. As-produced stacked arrays were used as the electrodes of an ultra-capacitor, and an unusual electrochemical behavior was discovered. The capacitance increases as the stack of nanowire arrays increases, resulting in high energy density and high power density at same time. Further analysis found that the distinctive electrochemical behavior originates from the electrode/electrolyte interactions and the dependence on the diffusion and charge transferring process. The specific energy density was as high as 137 Wh/Kg while power density is in excess of 2000 W/Kg. This work pointed a simple pathway to tailor polymer structure and electrochemistry for robust design of high-performance ultra-capacitor at a limited lateral size. National Science Foundation.

  5. Quantifying phytate in dairy digesta and feces: alkaline extraction and high-performance ion chromatography.

    PubMed

    Ray, P P; Shang, C; Maguire, R O; Knowlton, K F

    2012-06-01

    Development of an analytical method with appropriate combination of extraction and quantification approaches for undigested phytate in ruminant feces and digesta will advance knowledge of phytate degradation in ruminants and help to reduce phosphorus excretion. Established quantification methods give satisfactory results for feedstuffs and nonruminant manure but recovery of phytate is incomplete for ruminant feces and digesta because of their complex sample matrix and low ratio of phytate to inorganic P. The objective was to develop a robust, accurate, sensitive, and inexpensive method to extract and quantify phytate in feeds, ruminant feces, and digesta. Diets varying in phytate content were fed to dairy heifers, dry cows, and lactating cows to generate digesta and fecal samples of varying composition to challenge extraction and quantification methods. Samples were extracted with 0.5 M HCl or 0.25 M NaOH + 0.05 M EDTA. Acid extracts were mixed with 20% NaCl, alkaline extracts were acidified to final pH < 2, and then both extracts were clarified with C₁₈ cartridges and 0.2-μm filters. High-performance ion chromatography (HPIC) was used to quantify phytate. In feed samples, the measured phytate was comparable in alkaline and acid extracts (2,965 vs. 3,085 μg/g of DM). In digesta and fecal samples, alkaline extraction yielded greater estimates of phytate content than did acid extraction (40.7 vs. 33.6 and 202.9 vs. 144.4 μg/g of DM for digesta and fecal samples, respectively). Analysis of alkaline extracts by HPIC is usually not possible because of sample matrix interferences; acidification and C(18)-cartridge elution of alkaline extracts prevented this interference. Pure phytate added to dry samples before extraction was almost completely recovered (88 to 105%), indicating high extraction efficiency, no adverse effect of extract clean-up procedures, and accurate quantification of phytate. The proposed method is rapid, inexpensive, robust, and combines the

  6. Tunable High Performance Cross-Linked Alkaline Anion Exchange Membranes for Fuel Cell Applications

    SciTech Connect

    Robertson, Nicholas J.; Kostalik, IV, Henry A.; Clark, Timothy J.; Mutolo, Paul F.; Abruña, Héctor D.; Coates, Geoffrey W.

    2010-02-23

    Fuel cells are energy conversion devices that show great potential in numerous applications ranging from automobiles to portable electronics. However, further development of fuel cell components is necessary for them to become commercially viable. One component critical to their performance is the polymer electrolyte membrane, which is an ion conductive medium separating the two electrodes. While proton conducting membranes are well established (e.g., Nafion), hydroxide conducting membranes (alkaline anion exchange membranes, AAEMs) have been relatively unexplored by comparison. Operating under alkaline conditions offers significant efficiency benefits, especially for the oxygen reduction reaction; therefore, effective AAEMs could significantly advance fuel cell technologies. Here we demonstrate the use of ring-opening metathesis polymerization to generate new cross-linked membrane materials exhibiting high hydroxide ion conductivity and good mechanical properties. Cross-linking allows for increased ion incorporation, which, in turn supports high conductivities. This facile synthetic approach enables the preparation of cross-linked materials with the potential to meet the demands of hydrogen-powered fuel cells as well as direct methanol fuel cells.

  7. Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications.

    PubMed

    Robertson, Nicholas J; Kostalik, Henry A; Clark, Timothy J; Mutolo, Paul F; Abruña, Héctor D; Coates, Geoffrey W

    2010-03-17

    Fuel cells are energy conversion devices that show great potential in numerous applications ranging from automobiles to portable electronics. However, further development of fuel cell components is necessary for them to become commercially viable. One component critical to their performance is the polymer electrolyte membrane, which is an ion conductive medium separating the two electrodes. While proton conducting membranes are well established (e.g., Nafion), hydroxide conducting membranes (alkaline anion exchange membranes, AAEMs) have been relatively unexplored by comparison. Operating under alkaline conditions offers significant efficiency benefits, especially for the oxygen reduction reaction; therefore, effective AAEMs could significantly advance fuel cell technologies. Here we demonstrate the use of ring-opening metathesis polymerization to generate new cross-linked membrane materials exhibiting high hydroxide ion conductivity and good mechanical properties. Cross-linking allows for increased ion incorporation, which, in turn supports high conductivities. This facile synthetic approach enables the preparation of cross-linked materials with the potential to meet the demands of hydrogen-powered fuel cells as well as direct methanol fuel cells.

  8. Thermodynamics of water sorption in high performance glassy thermoplastic polymers

    PubMed Central

    Scherillo, Giuseppe; Petretta, Mauro; Galizia, Michele; La Manna, Pietro; Musto, Pellegrino; Mensitieri, Giuseppe

    2014-01-01

    Sorption thermodynamics of water in two glassy polymers, polyetherimide (PEI) and polyetheretherketone (PEEK), is investigated by coupling gravimetry and on line FTIR spectroscopy in order to gather information on the total amount of sorbed water as well as on the different species of water molecules absorbed within the polymers, addressing the issue of cross- and self-interactions occurring in the polymer/water systems. Water sorption isotherms have been determined at temperatures ranging from 30 to 70°C while FTIR spectroscopy has been performed only at 30°C. The experimental analysis provided information on the groups present on the polymer backbones involved in hydrogen bonding interactions with absorbed water molecules. Moreover, it also supplied qualitative indications about the different “populations” of water molecules present within the PEEK and a quantitative assessment of these “populations” in the case of PEI. The results of the experimental analysis have been interpreted using an equation of state theory based on a compressible lattice fluid model for the Gibbs energy of the polymer-water mixture, developed by extending to the case of out of equilibrium glassy polymers a previous model intended for equilibrium rubbery polymers. The model accounts for the non-equilibrium nature of glassy polymers as well as for mean field and for hydrogen bonding interactions, providing a satisfactory quantitative interpretation of the experimental data. PMID:24860802

  9. Thermodynamics of Water Sorption in High Performance Glassy Thermoplastic Polymers

    NASA Astrophysics Data System (ADS)

    Mensitieri, Giuseppe; Scherillo, Giuseppe; Petretta, Mauro; Galizia, Michele; La Manna, Pietro; Musto, Pellegrino

    2014-05-01

    Sorption thermodynamics of water in two glassy polymers, polyetherimide (PEI) and polyetheretherketone (PEEK), is investigated by coupling gravimetry and on line FTIR spectroscopy in order to gather information on the total amount of sorbed water as well as on the different species of water molecules absorbed within the polymers, addressing the issue of cross- and self-interactions occurring in the polymer/water systems. Water sorption isotherms have been determined at temperatures ranging fro 30 to 70°C while FTIR spectroscopy has been performed only at 30°C. The experimental analysis provided information on the groups present on the polymer backbones involved in hydrogen bonding interactions with absorbed water molecules. Moreover, it also supplied qualitative indications about the different’populations’ of water molecules present within the PEEK and a quantitative assessment of these ‘populations’ in the case of PEI.The results of the experimental analysis have been interpreted using an equation of state theory based on a compressible lattice fluid model for the Gibbs energy of the polymer-water mixture, developed by extending to the case of out of equilibrium glassy polymers a previous model intended for equilibrium rubbery polymers. The model accounts for the non equilibrium nature of glassy poymers as well as for mean field and for hydrogen bonding interactions, providing a satisfactory quantitative interpretation of the experimental data.

  10. Significantly Increasing the Ductility of High Performance Polymer Semiconductors through Polymer Blending.

    PubMed

    Scott, Joshua I; Xue, Xiao; Wang, Ming; Kline, R Joseph; Hoffman, Benjamin C; Dougherty, Daniel; Zhou, Chuanzhen; Bazan, Guillermo; O'Connor, Brendan T

    2016-06-08

    Polymer semiconductors based on donor-acceptor monomers have recently resulted in significant gains in field effect mobility in organic thin film transistors (OTFTs). These polymers incorporate fused aromatic rings and have been designed to have stiff planar backbones, resulting in strong intermolecular interactions, which subsequently result in stiff and brittle films. The complex synthesis typically required for these materials may also result in increased production costs. Thus, the development of methods to improve mechanical plasticity while lowering material consumption during fabrication will significantly improve opportunities for adoption in flexible and stretchable electronics. To achieve these goals, we consider blending a brittle donor-acceptor polymer, poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo[3,4-c]pyridine] (PCDTPT), with ductile poly(3-hexylthiophene). We found that the ductility of the blend films is significantly improved compared to that of neat PCDTPT films, and when the blend film is employed in an OTFT, the performance is largely maintained. The ability to maintain charge transport character is due to vertical segregation within the blend, while the improved ductility is due to intermixing of the polymers throughout the film thickness. Importantly, the application of large strains to the ductile films is shown to orient both polymers, which further increases charge carrier mobility. These results highlight a processing approach to achieve high performance polymer OTFTs that are electrically and mechanically optimized.

  11. High-performance polymer photovoltaic cells and photodetectors

    NASA Astrophysics Data System (ADS)

    Yu, Gang; Srdanov, Gordana; Wang, Hailiang; Cao, Yong; Heeger, Alan J.

    2001-02-01

    Polymer photovoltaic cells and photodetectors have passed their infancy and become mature technologies. The energy conversion efficiency of polymer photovoltaic cells have been improved to over 4.1% (500 nm, 10 mW/cm2). Such high efficiency polymer photovoltaic cells are promising for many applications including e-papers, e-books and smart- windows. The development of polymer photodetectors is even faster. The performance parameters have been improved to the level meeting all specifications for practical applications. The polymer photodetectors are of high photosensitivity (approximately 0.2 - 0.3 A/Watt in visible and UV), low dark current (0.1 - 1 nA/cm2), large dynamic range (> 8 orders of magnitude), linear intensity dependence, low noise level and fast response time (to nanosecond time domain). These devices show long shelf and operation lives. The advantages of low manufacturing cost, large detection area, and easy hybridization and integration with other electronic or optical components make the polymer photodetectors promising for a variety of applications including chemical/biomedical analysis, full-color digital image sensing and high energy radiation detection.

  12. Iptycenes in the design of high performance polymers.

    PubMed

    Swager, Timothy M

    2008-09-01

    This Account details the use of building blocks known as iptycene units, which are particularly useful in the design of advanced materials because of their three-dimensional, noncompliant structures. Iptycenes are built upon [2,2,2]-ring systems in which the bridges are aromatic rings, and the simplest member of this class of compounds is triptycene. Iptycenes can provide steric blocking, which can prevent strong interactions between polymeric chromophores that have a strong tendency to form nonemissive exciplex complexes. Iptycene-containing conjugated polymers are exceptionally stable and display solution-like emissive spectra and quantum yields in the solid state. This application of iptycenes has enabled new vapor detection methods for ultratrace detection of high explosives that are now used by the U.S. military. The three-dimensional shape of iptycenes creates interstitial space (free volume) around the molecules. This space can confer size selectivity in sensory responses and also promotes alignment in oriented polymers and liquid crystals. Specifically, the iptycene-containing polymers and molecules align in the anisotropic host material in a way that minimizes the free volume. This effect can be used to align molecules contrary to what would be predicted by conventional models on the basis of aspect ratios. In one demonstration, we show that an iptycene polymer aligns orthogonally to the host polymer when stretched, and these structures approximate molecular versions of woven cloth. In liquid crystal solutions, the conjugated iptycene-containing polymers exhibit greater electronic delocalization, and the transport of excited states along the polymer backbone is observed. Structures that preserve high degrees of internal free volume can also be designed to create low dielectric constant insulators. These materials have high temperature stability (>500 degrees C) and hardness that make them potential interlayer dielectric materials for integrated circuits

  13. An easily fabricated high performance ionic polymer based sensor network

    NASA Astrophysics Data System (ADS)

    Zhu, Zicai; Wang, Yanjie; Hu, Xiaopin; Sun, Xiaofei; Chang, Longfei; Lu, Pin

    2016-08-01

    Ionic polymer materials can generate an electrical potential from ion migration under an external force. For traditional ionic polymer metal composite sensors, the output voltage is very small (a few millivolts), and the fabrication process is complex and time-consuming. This letter presents an ionic polymer based network of pressure sensors which is easily and quickly constructed, and which can generate high voltage. A 3 × 3 sensor array was prepared by casting Nafion solution directly over copper wires. Under applied pressure, two different levels of voltage response were observed among the nine nodes in the array. For the group producing the higher level, peak voltages reached as high as 25 mV. Computational stress analysis revealed the physical origin of the different responses. High voltages resulting from the stress concentration and asymmetric structure can be further utilized to modify subsequent designs to improve the performance of similar sensors.

  14. Strategies, linkers and coordination polymers for high-performance sorbents

    DOEpatents

    Matzger, Adam J.; Wong-Foy, Antek G.; Lebel, Oliver

    2015-09-15

    A linking ligand compound includes three bidentate chemical moieties distributed about a central chemical moiety. Another linking ligand compound includes a bidentate linking ligand and a monodentate chemical moiety. Coordination polymers include a plurality of metal clusters linked together by residues of the linking ligand compounds.

  15. Automated Fabrication Technologies for High Performance Polymer Composites

    NASA Technical Reports Server (NTRS)

    Shuart , M. J.; Johnston, N. J.; Dexter, H. B.; Marchello, J. M.; Grenoble, R. W.

    1998-01-01

    New fabrication technologies are being exploited for building high graphite-fiber-reinforced composite structure. Stitched fiber preforms and resin film infusion have been successfully demonstrated for large, composite wing structures. Other automatic processes being developed include automated placement of tacky, drapable epoxy towpreg, automated heated head placement of consolidated ribbon/tape, and vacuum-assisted resin transfer molding. These methods have the potential to yield low cost high performance structures by fabricating composite structures to net shape out-of-autoclave.

  16. The Effects of Supercritical Fluids on High Performance Polymers

    DTIC Science & Technology

    1989-02-01

    testing was conduted on an Instron Tensile Tester using a 0-100 lb cell fitted with Kallaway Clamps. Tests were run an 10 i samples of yarn drawn at a...degraded. We concluded that in these runs the teperature was too high and the primary reaction was thermal degradation of the polymer. When methanol...temperature of methanol is sufficiently high that thermal degradation processes cxmpete with amide alcoholysis. Similar results were obtained with nylon 6

  17. The functionality and cost advantages of high-performance polymers.

    PubMed

    Young, Mark

    2003-09-01

    Acetals remain extremely important for medical devices, particularly in gears, springs and other mechanisms, although going forward with progressively lower emission targets is likely to require a combination of low-emission grades and tighter processing controls. Nylon and PBT materials have a continued importance in achieving the combination of mechanical performance, biocompatibility (a range of grades are available that have been tested successfully against USP 23 Class VI) and sterilisation performance (dependent on grade and type of sterilisation). Materials such as liquid crystal polymer are progressively more important for their barrier properties, high temperature performance and all-round sterilisation performance. Polycarbonates and cyclic olefin copolymers continue to find new applications, often where clarity is important; transparent Nylons and other olefinic materials are also valuable in this area. With the continuing advances in raw materials and polymer processes, careful choices can produce some worthy advances in device technology, although utilising the technologies effectively still depends on working forwards from the user/patient need and desired functionality. Whether considering developing a new device using plastics, or reconsidering further development of an existing device, engineering polymers can provide the key to something better.

  18. High-Performance Nonfullerene Polymer Solar Cells based on Imide-Functionalized Wide-Bandgap Polymers.

    PubMed

    Fan, Baobing; Zhang, Kai; Jiang, Xiao-Fang; Ying, Lei; Huang, Fei; Cao, Yong

    2017-03-23

    High-performance nonfullerene polymer solar cells (PSCs) are developed by integrating the nonfullerene electron-accepting material 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophne) (ITIC) with a wide-bandgap electron-donating polymer PTzBI or PTzBI-DT, which consists of an imide functionalized benzotriazole (TzBI) building block. Detailed investigations reveal that the extension of conjugation can affect the optical and electronic properties, molecular aggregation properties, charge separation in the bulk-heterojunction films, and thus the overall photovoltaic performances. Single-junction PSCs based on PTzBI:ITIC and PTzBI-DT:ITIC exhibit remarkable power conversion efficiencies (PCEs) of 10.24% and 9.43%, respectively. To our knowledge, these PCEs are the highest efficiency values obtained based on electron-donating conjugated polymers consisting of imide-functionalized electron-withdrawing building blocks. Of particular interest is that the resulting device based on PTzBI exhibits remarkable PCE of 7% with the thickness of active layer of 300 nm, which is among the highest values of nonfullerene PSCs utilizing thick photoactive layer. Additionally, the device based on PTzBI:ITIC exhibits prominent stability, for which the PCE remains as 9.34% after thermal annealing at 130 °C for 120 min. These findings demonstrate the great promise of using this series of wide-bandgap conjugated polymers as electron-donating materials for high-performance nonfullerene solar cells toward high-throughput roll-to-roll processing technology.

  19. A high performance ceramic-polymer separator for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kumar, Jitendra; Kichambare, Padmakar; Rai, Amarendra K.; Bhattacharya, Rabi; Rodrigues, Stanley; Subramanyam, Guru

    2016-01-01

    A three-layered (ceramic-polymer-ceramic) hybrid separator was prepared by coating ceramic electrolyte [lithium aluminum germanium phosphate (LAGP)] over both sides of polyethylene (PE) polymer membrane using electron beam physical vapor deposition (EB-PVD) technique. Ionic conductivities of membranes were evaluated after soaking PE and LAGP/PE/LAGP membranes in a 1 Molar (1M) lithium hexafluroarsenate (LiAsF6) electrolyte in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethylmethyl carbonate (EMC) in volume ratio (1:1:1). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were employed to evaluate morphology and structure of the separators before and after cycling performance tests to better understand structure-property correlation. As compared to regular PE separator, LAGP/PE/LAGP hybrid separator showed: (i) higher liquid electrolyte uptake, (ii) higher ionic conductivity, (iii) lower interfacial resistance with lithium and (iv) lower cell voltage polarization during lithium cycling at high current density of 1.3 mA cm-2 at room temperature. The enhanced performance is attributed to higher liquid uptake, LAGP-assisted faster ion conduction and dendrite prevention. Optimization of density and thickness of LAGP layer on PE or other membranes through manipulation of PVD deposition parameters will enable practical applications of this novel hybrid separator in rechargeable lithium batteries with high energy, high power, longer cycle life, and higher safety level.

  20. Imaging Carbon Nanotubes in High Performance Polymer Composites via Magnetic Force Microscope

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T.; Park, Cheol; Rouse, Jason H.; Siochi, Emilie J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Application of carbon nanotubes as reinforcement in structural composites is dependent on the efficient dispersion of the nanotubes in a high performance polymer matrix. The characterization of such dispersion is limited by the lack of available tools to visualize the quality of the matrix/carbon nanotube interaction. The work reported herein demonstrates the use of magnetic force microscopy (MFM) as a promising technique for characterizing the dispersion of nanotubes in a high performance polymer matrix.

  1. Design, Synthesis, and Characterization of High Performance Polymer Electrolytes for Printed Electronics and Energy Storage

    DTIC Science & Technology

    2016-03-31

    AFRL-AFOSR-VA-TR-2016-0168 Design, Synthesis, and Characterization of High Performance Polymer Electrolytes for Printed Electronics and Energy ...Sep 2015 4. TITLE AND SUBTITLE Design, Synthesis, and Characterization of High Performance Polymer Electrolytes for Printed Electronics and Energy ... energy storage. This project produced 11 peer reviewed papers and results in the training of 3 graduate students and two postdoctoral fellows. The

  2. Morphology-Driven High-Performance Polymer Transistor-based Ammonia Gas Sensor.

    PubMed

    Yu, Seong Hoon; Cho, Jangwhan; Sim, Kyu Min; Ha, Jae Un; Chung, Dae Sung

    2016-03-01

    Developing high-performance gas sensors based on polymer field-effect transistors (PFETs) requires enhancing gas-capture abilities of polymer semiconductors without compromising their high charge carrier mobility. In this work, cohesive energies of polymer semiconductors were tuned by strategically inserting buffer layers, which resulted in dramatically different semiconductor surface morphologies. Elucidating morphological and structural properties of polymer semiconductor films in conjunction with FET studies revealed that surface morphologies containing large two-dimensional crystalline domains were optimal for achieving high surface areas and creating percolation pathways for charge carriers. Ammonia molecules with electron lone pairs adsorbed on the surface of conjugated semiconductors can serve as efficient trapping centers, which negatively shift transfer curves for p-type PFETs. Therefore, morphology optimization of polymer semiconductors enhances their gas sensing abilities toward ammonia, leading to a facile method of manufacturing high-performance gas sensors.

  3. Optimization of molecular organization and nanoscale morphology for high performance low bandgap polymer solar cells

    NASA Astrophysics Data System (ADS)

    He, Ming; Wang, Mengye; Lin, Changjian; Lin, Zhiqun

    2014-03-01

    Rational design and synthesis of low bandgap (LBG) polymers with judiciously tailored HOMO and LUMO levels have emerged as a viable route to high performance polymer solar cells with power conversion efficiencies (PCEs) exceeding 10%. In addition to engineering the energy-level of LBG polymers, the photovoltaic performance of LBG polymer-based solar cells also relies on the device architecture, in particular the fine morphology of the photoactive layer. The nanoscale interpenetrating networks composed of nanostructured donor and acceptor phases are the key to providing a large donor-acceptor interfacial area for maximizing the exciton dissociation and offering a continuous pathway for charge transport. In this Review Article, we summarize recent strategies for tuning the molecular organization and nanoscale morphology toward an enhanced photovoltaic performance of LBG polymer-based solar cells.

  4. Optimization of molecular organization and nanoscale morphology for high performance low bandgap polymer solar cells.

    PubMed

    He, Ming; Wang, Mengye; Lin, Changjian; Lin, Zhiqun

    2014-04-21

    Rational design and synthesis of low bandgap (LBG) polymers with judiciously tailored HOMO and LUMO levels have emerged as a viable route to high performance polymer solar cells with power conversion efficiencies (PCEs) exceeding 10%. In addition to engineering the energy-level of LBG polymers, the photovoltaic performance of LBG polymer-based solar cells also relies on the device architecture, in particular the fine morphology of the photoactive layer. The nanoscale interpenetrating networks composed of nanostructured donor and acceptor phases are the key to providing a large donor-acceptor interfacial area for maximizing the exciton dissociation and offering a continuous pathway for charge transport. In this Review Article, we summarize recent strategies for tuning the molecular organization and nanoscale morphology toward an enhanced photovoltaic performance of LBG polymer-based solar cells.

  5. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts

    PubMed Central

    Lu, Shanfu; Pan, Jing; Huang, Aibin; Zhuang, Lin; Lu, Juntao

    2008-01-01

    In recent decades, fuel cell technology has been undergoing revolutionary developments, with fundamental progress being the replacement of electrolyte solutions with polymer electrolytes, making the device more compact in size and higher in power density. Nowadays, acidic polymer electrolytes, typically Nafion, are widely used. Despite great success, fuel cells based on acidic polyelectrolyte still depend heavily on noble metal catalysts, predominantly platinum (Pt), thus increasing the cost and hampering the widespread application of fuel cells. Here, we report a type of polymer electrolyte fuel cells (PEFC) employing a hydroxide ion-conductive polymer, quaternary ammonium polysulphone, as alkaline electrolyte and nonprecious metals, chromium-decorated nickel and silver, as the catalyst for the negative and positive electrodes, respectively. In addition to the development of a high-performance alkaline polymer electrolyte particularly suitable for fuel cells, key progress has been achieved in catalyst tailoring: The surface electronic structure of nickel has been tuned to suppress selectively the surface oxidative passivation with retained activity toward hydrogen oxidation. This report of a H2–O2 PEFC completely free from noble metal catalysts in both the positive and negative electrodes represents an important advancement in the research and development of fuel cells.

  6. A (001) dominated conjugated polymer with high-performance of hydrogen evolution under solar light irradiation.

    PubMed

    Zhou, Jun; Lei, Yanhua; Ma, Chenghai; Lv, Wenhua; Li, Na; Wang, Ying; Xu, Hu; Zou, Zhigang

    2017-09-21

    A two-dimensional imide-based conjugated polymer with a preferred (001) orientation was constructed by solvent-induced assembly. A high performance of 1640 μmol h(-1) g(-1) for solar-driven photocatalytic hydrogen evolution and an excellent stability were achieved due to tunnelling charge transport between the neighbouring molecular sheets.

  7. High-performance platinized carbon electrodes for oxygen reduction in power sources with alkaline electrolytes

    NASA Astrophysics Data System (ADS)

    Manoharan, R.; Sarma, D. D.; Shukla, A. K.

    A high-performance, oxygen-reducing electrode, made from physically and chemically tailored coconut-shell charcoal substrate catalysed with 7 wt.% platinum, is reported. The electrode can be loaded with current densities of 2000 - 5200 A/m 2, with negligible deterioration, for periods of up to 1200 h. Extensive electron spectroscopic studies have been conducted to characterise the electroactive species present on the surface of the electrodes during service.

  8. Insights into the Mechanism and Kinetics of Thermo-Oxidative Degradation of HFPE High Performance Polymer.

    PubMed

    Kunnikuruvan, Sooraj; Parandekar, Priya V; Prakash, Om; Tsotsis, Thomas K; Nair, Nisanth N

    2016-06-02

    The growing requisite for materials having high thermo-oxidative stability makes the design and development of high performance materials an active area of research. Fluorination of the polymer backbone is a widely applied strategy to improve various properties of the polymer, most importantly the thermo-oxidative stability. Many of these fluorinated polymers are known to have thermo-oxidative stability up to 700 K. However, for space and aerospace applications, it is important to improve its thermo-oxidative stability beyond 700 K. Molecular-level details of the thermo-oxidative degradation of such polymers can provide vital information to improve the polymer. In this spirit, we have applied quantum mechanical and microkinetic analysis to scrutinize the mechanism and kinetics of the thermo-oxidative degradation of a fluorinated polymer with phenylethenyl end-cap, HFPE. This study gives an insight into the thermo-oxidative degradation of HFPE and explains most of the experimental observations on the thermo-oxidative degradation of this polymer. Thermolysis of C-CF3 bond in the dianhydride component (6FDA) of HFPE is found to be the rate-determining step of the degradation. Reaction pathways that are responsible for the experimentally observed weight loss of the polymer is also scrutinized. On the basis of these results, we propose a modification of HFPE polymer to improve its thermo-oxidative stability.

  9. Ultra‐high performance supercritical fluid chromatography of lignin‐derived phenols from alkaline cupric oxide oxidation

    PubMed Central

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta

    2016-01-01

    Traditional chromatographic methods for the analysis of lignin‐derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra‐high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin‐derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5–2.5 μM, a limit of quantification of 2.5–5.0 μM, and a dynamic range of 5.0–2.0 mM (R 2 > 0.997). The new ultra‐high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin‐derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin‐derived phenols in complex environmental samples. PMID:27452148

  10. Ultra-high performance supercritical fluid chromatography of lignin-derived phenols from alkaline cupric oxide oxidation.

    PubMed

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta; Turner, Charlotta

    2016-08-01

    Traditional chromatographic methods for the analysis of lignin-derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra-high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin-derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5-2.5 μM, a limit of quantification of 2.5-5.0 μM, and a dynamic range of 5.0-2.0 mM (R(2) > 0.997). The new ultra-high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin-derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin-derived phenols in complex environmental samples.

  11. High-performance zeolite NaA membranes on polymer-zeolite composite hollow fiber supports.

    PubMed

    Ge, Qinqin; Wang, Zhengbao; Yan, Yushan

    2009-12-02

    We report a new strategy: use of polymer-zeolite composite hollow fibers as supports. Zeolite membranes with high performance (flux = 8.0-9.0 kg m(-2) h(-1), alpha >10 000) can be synthesized directly on polymer-zeolite composite hollow fiber supports by a single in situ hydrothermal crystallization. The zeolite crystals imbedded in the polymer hollow fiber serve as seeds for the zeolite membrane growth, and they also "anchor" the zeolite membrane to the support to increase the adhesion of the zeolite membrane. Therefore, a separate and often complex seeding process can be omitted. A very uniform crystal distribution can be obtained easily, so continuous zeolite membranes can be prepared with high reproducibility. These composite hollow fibers can be produced simply by blending zeolite crystals into the polymer feed before the hollow fiber extrusion and thus are expected to be inexpensive.

  12. Achieving high performance polymer tandem solar cells via novel materials design

    NASA Astrophysics Data System (ADS)

    Dou, Letian

    Organic photovoltaic (OPV) devices show great promise in low-cost, flexible, lightweight, and large-area energy-generation applications. Nonetheless, most of the materials designed today always suffer from the inherent disadvantage of not having a broad absorption range, and relatively low mobility, which limit the utilization of the full solar spectrum. Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of suitable low-bandgap polymers (near-IR absorbing polymers). In this dissertation, in order to achieve high performance, we focus on design and synthesis of novel low bandgap polymers specifically for tandem solar cells. In Chapter 3, I demonstrate highly efficient single junction and tandem polymer solar cells featuring a spectrally matched low-bandgap conjugated polymer (PBDTT-DPP: bandgap, ˜1.44 eV). The polymer has a backbone based on alternating benzodithiophene and diketopyrrolopyrrole units. A single-layer device based on the polymer provides a power conversion efficiency of ˜6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which was the highest certified efficiency for a polymer solar cell. To further improve this material system, in Chapter 4, I show that the reduction of the bandgap and the enhancement of the charge transport properties of the low bandgap polymer PBDTT-DPP can be accomplished simultaneously by substituting the sulfur atoms on the DPP unit with selenium atoms. The newly designed polymer PBDTT-SeDPP (Eg = 1.38 eV) shows excellent photovoltaic performance in single junction devices with PCEs over 7% and photo-response up to 900 nm. Tandem polymer solar cells based on PBDTT-SeDPP are also demonstrated with a 9.5% PCE, which are more than 10

  13. Comparing the mechanical properties of high performances polymer nanocomposites from biological sources.

    PubMed

    Dufresne, Alain

    2006-02-01

    There are numerous examples where animals or plants synthesize extracellular high-performance skeletal biocomposites consisting of a matrix reinforced by fibrous biopolymers. Cellulose and chitin are classical examples of these reinforcing elements, which occur as whisker-like microfibrils that are biosynthesized and deposited in a continuous fashion. In many cases, this mode of biogenesis leads to crystalline microfibrils that are almost defect-free, with the consequence of axial physical properties approaching those of perfect crystals. Starch is another example of natural semicrystalline polymer that is produced by many plants and occurs as microscopic granules. It acts as a storage polymer in cereals and tubers. These abundant and natural polymers can be used to create high performance nanocomposites presenting outstanding properties. Aqueous suspensions of crystallites can be prepared by acid hydrolysis of the purified substrates. The object of this treatment is to dissolve away regions of low lateral order so that the water-insoluble, highly crystalline residue may be converted into a stable suspension by subsequent vigorous mechanical shearing action. For cellulose and chitin, these monocrystals appear as rod-like nanoparticles which dimensions depend on the biological source of the substrate. In the case of starch they consist of platelet-like nanoparticles. High reinforcing capability was reported resulting from the intrinsic chemical nature of these polymers and from their hierarchical structure. During the last decade, many works have been devoted to mimic biocomposites by blending cellulose whiskers from different sources with polymer matrices.

  14. A New Strategy to Construct Low Bandgap Polymer Acceptor for High Performance All-Polymer Solar Cells.

    PubMed

    Li, Yongfang; Zhang, Zhi-Guo; Yang, Yankang; Yao, Jia; Xue, Lingwei; Chen, Shanshan; Li, Xiaojun; Morrison, William; Yang, Changduk

    2017-08-29

    All polymer solar cells (all-PSCs) offer unique morphology stability for the application as flexible devices, but the lack of high performance polymer acceptors limits their power conversion efficiency (PCE) lower than the PSCs based on fullerene derivative or organic small molecule acceptors. We herein demonstrate a strategy to synthesize a high performance polymer acceptor PZ1 by embedding an acceptor-donor-acceptor building block into the polymer main chain. PZ1 possesses broad absorption with a low bandgap of 1.55 eV and high absorption coefficient (1.3 × 105 cm-1). The all-PSCs with a wide bandgap polymer PBDT-T as donor and PT1 as acceptor demonstrated a record high PCE of 9.19% for the all-PSCs. The success of our polymerization strategy can provide a new way to develop efficient polymer acceptors for all-PSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Medium Bandgap Conjugated Polymer for High Performance Polymer Solar Cells Exceeding 9% Power Conversion Efficiency.

    PubMed

    Jung, Jae Woong; Liu, Feng; Russell, Thomas P; Jo, Won Ho

    2015-12-02

    Two medium-bandgap polymers composed of benzo[1,2-b:4,5-b']dithiohpene and 2,1,3-benzothiadiazole with 6-octyl-thieno[3,2-b]thiophene as a π-bridge unit are synthesized and their photovoltaic properties are analyzed. The two polymers have deep highest occupied molecular orbital energy levels, high crystallinity, optimal bulk-heterojunction morphology, and efficient charge transport, resulting in a power conversion efficiency of as high as 9.44% for a single-junction polymer solar-cell device. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Chlorination of low-band-gap polymers: Toward high-performance polymer solar cells

    DOE PAGES

    Mo, Daize; Wang, Huan; Chen, Hui; ...

    2017-03-08

    Here, halogenation is an effective way to tune the energy levels of organic semiconducting materials. To date, fluorination of organic semiconducting materials to fabricate polymer solar cells (PSCs) has been used far more than chlorination; however, fluorine exchange reactions suffer from low yields and the resulting fluorinated polymer always comes with higher price, which will greatly hinder their commercial applications. Herein, we designed and synthesized a series of chlorinated donor-acceptor (D-A) type polymers, in which benzo[1,2-b:4,5- b]dithiophene and chlorinated benzothiadiazole units are connected by thiophene π-bridges with an asymmetric alkyl chain. These chlorinated polymers showed deep highest occupied molecular orbitalmore » energy levels, which promoted the efficiency of their corresponding PSCs by increasing the device open circuit voltage. The asymmetric alkyl chain on the thiophene moieties gave the final polymer sufficient solubility for solution processing and strong π-π stacking in films allowed for high mobility. Although the introduction of a large chlorine atom increased the torsion angle of the polymer backbone, the chlorinated polymers maintained high crystallinity and a favorable backbone orientation in the blended films. These factors contributed to respectable device performances from thick-film devices, which showed PCEs as high as 9.11% for a 250 nm-thick active layer. These results demonstrate that chlorination is a promising method to fine tune the energy levels of conjugated polymers, and chlorinated benzothiadiazole may be a versatile building block in materials for efficient solar energy conversion.« less

  17. High performance all polymer solar cells fabricated via non-halogenated solvents (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Bao, Zhenan

    2015-10-01

    The performance of organic solar cells consisting of a donor/acceptor bulk heterojunction (BHJ) has rapidly improved over the past few years.1. Major efforts have been focused on developing a variety of donor materials to gain access to different regions of the solar spectrum as well as to improve carrier transport properties.2 On the other hand, the most utilized acceptors are still restricted to the fullerene family, which includes PC61BM, PC71BM and ICBA.2b, 3 All-polymer solar cells, consisting of polymers for both the donor and acceptor, gained significantly increased interests recently, because of their ease of solution processing, potentially low cost, versatility in molecular design, and their potential for good chemical and morphological stability due to entanglement of polymers. Unlike small molecular fullerene acceptors, polymer acceptors can benefit from the high mobility of intra-chain charge transport and exciton generation by both donor and acceptor. Despite extensive efforts on all-polymer solar cells in the past decade, the fundamental understanding of all-polymer solar cells is still in its inceptive stage regarding both the materials chemistry and structure physics.4 Thus, rational design rules must be utilized to enable fundamental materials understanding of the all polymer solar cells. We report high performance all-polymer solar cells employing polymeric donors based on isoindigo and acceptor based on perylenedicarboximide. The phase separation domain length scale correlates well with the JSC and is found to be highly sensitive to the aromatic co-monomer structures used in the crystalline donor polymers. With the PS polymer side chain engineering, the phase separation domain length scale decreased by more than 45%. The PCE and JSC of the devices increased accordingly by more than 20%. A JSC as high as 10.0 mA cm-2 is obtained with the donor-acceptor pair despite of a low LUMO-LUMO energy offset of less than 0.1 eV. All the factors such as

  18. High-Performance Carbon Nanotube/Polymer Composite Fiber from Layer-by-Layer Deposition.

    PubMed

    Wu, Min Le; Chen, Yun; Zhang, Liang; Zhan, Hang; Qiang, Lei; Wang, Jian Nong

    2016-03-01

    So far, preparation of high-performance carbon nanotube (CNT)/polymer composites still faces big challenges mainly due to the limited control of CNT dispersion, fraction, and alignment in polymers. Here, a new "layer-by-layer deposition" method is put forward for preparing CNT/polymer composite fibers using poly(vinyl alcohol) (PVA) as an exemplary polymer. This is based on the continuous production of a hollow cylindrical CNT assembly from a high temperature reactor and its shrinking by a PVA-containing solution and deposition on a removable substrate wire. The in situ mixing of the two composite components at the molecular level allows CNTs to disperse and PVA to infiltrate into the fiber efficiently. As a result, remarkable effects of the CNT reinforcement on the PVA matrix are observed, including a strength improvement from ∼50 to 1255 MPa and electrical conductivity from ∼0 to 1948 S cm(-1). The new method offers good controllability of CNT dispersion and fraction in the polymer matrix, variability for making composite fibers using different polymers, and suitability for scaled up production. This study thus provides a new research direction for preparing CNT-reinforced composites and future performance maximization.

  19. Molecular weight: Property relationships of high performance polymers used for adhesives and composites

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D.

    1975-01-01

    Degradation of high performance polyimide precursor resins was investigated by measuring the molecular weight of the polymers in solution, using a membrane osmometer. It was found that polyimide precursor resins composed of BTDA and ODPA combined with DABP and MDA were unstable in DMAC. The degradation rate was found to depend upon the chemical nature of the isomeric diamine and the geometric structure about the amide linkage. The polymers of DABP were less susceptible to degradation than those of MDA and p,p'-compounds were more stable than m,m'-compounds. These results suggest that degradation is correlated with the basicity of the diamine. That is, the rate of the degradation reaction increases with the basicity of the diamine group in the polyimide precursor resin. The presence of water and a higher temperature increased the degradation rate of the polymers.

  20. Polymer waveguides for electro-optical integration in data centers and high-performance computers.

    PubMed

    Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan

    2015-02-23

    To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.

  1. Nano-cluster-enhanced high-performance perfluoro-polymer electrets for energy harvesting

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Kimiaki; Okano, Kuniko; Miyajima, Tatsuya; Sera, Yoichi; Tanabe, Noriko; Morizawa, Yoshitomi; Suzuki, Yuji

    2011-12-01

    Development of high-performance electret materials is required to obtain a large power output of the electrostatic vibration-driven energy harvesters. In this study, by introducing aminosilane derivatives into CYTOP-based perfluorinated polymer film, we have successfully formed nano-clusters containing the organic siloxanes in the polymer electrets. Using small-angle x-ray scattering, tapping mode AFM and SEM analysis, the existence of such nano-clusters has been directly observed in the CYTOP film. It is suggested that the observed nano-clusters serve as the charge trap site and enhance the surface charge density and the thermal stability of the trapped charges. As a polymer electret, an extremely high surface charge potential of -1.6 kV with the 15 µm thick film has been obtained under the optimum condition of corona charging.

  2. Development and Characterization of New Donor-Acceptor Conjugated Polymers and Fullerene Nanoparticles for High Performance Bulk Heterojunction Solar Cells

    DTIC Science & Technology

    2011-01-14

    Nanoparticles for High Performance Bulk Heterojunction Solar Cells Jan. 14,2011 Name of Principal Investigators: Kung-Hwa Wei - e-mail address : khwei...donor-π-bridge-acceptor side chains for high efficiency polymer solar cells . Different from the commonly used linear D-A conjugated polymers, the...Development and Characterization of New Donor-Acceptor Conjugated Polymers and Fullerene Nanoparticles for High Performance Bulk Heterojunction Solar Cells

  3. High performance polymers and polymer matrix composites for spacecraft structural applications

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Connell, J. W.

    1992-01-01

    A program implemented by NASA Langley Research Center to develop and evaluate new polymers and polymer matrix composites for spacecraft structural applications is examined. Various polymeric films, moldings, and adhesives are evaluated for resistance to atomic oxygen and high energy electron and UV radiation. Thin films from the poly(arylene ether)s containing phenylphosphine oxide groups and the siloxane-epoxies exhibited minor weight loss compared to Kapton polyimide after exposure. Large doses (greater than 10 exp 9 rads) of electron radiation, simulating 30 yr of exposure in GEO, are found to alter the chemical structure of epoxies by both chain scission and cross-linking. The thermal cycling representative of both LEO and GEO environments can cause microcracking in composites which can in turn affect the dimensional stability and produce mechanical property reductions. The processing and fabrication issues associated with precision composite spacecraft components are also addressed.

  4. Gas Separation Membranes Derived from High-Performance Immiscible Polymer Blends Compatibilized with Small Molecules.

    PubMed

    Panapitiya, Nimanka P; Wijenayake, Sumudu N; Nguyen, Do D; Huang, Yu; Musselman, Inga H; Balkus, Kenneth J; Ferraris, John P

    2015-08-26

    An immiscible polymer blend comprised of high-performance copolyimide 6FDA-DAM:DABA(3:2) (6FDD) and polybenzimidazole (PBI) was compatibilized using 2-methylimidazole (2-MI), a commercially available small molecule. Membranes were fabricated from blends of 6FDD:PBI (50:50) with and without 2-MI for H2/CO2 separations. The membranes demonstrated a matrix-droplet type microstructure as evident with scanning electron microscopy (SEM) imaging where 6FDD is the dispersed phase and PBI is the continuous phase. In addition, membranes with 2-MI demonstrated a uniform microstructure as observed by smaller and more uniformly dispersed 6FDD domains in contrast to 6FDD:PBI (50:50) blend membranes without 2-MI. This compatibilization effect of 2-MI was attributed to interfacial localization of 2-MI that lowers the interfacial energy similar to a surfactant. Upon the incorporation of 2-MI, the H2/CO2 selectivity improved remarkably, compared to the pure blend, and surpassed the Robeson's upper bound. To our knowledge, this is the first report of the use of a small molecule to compatibilize a high-performance immiscible polymer blend. This approach could afford a novel class of membranes in which immiscible polymer blends can be compatibilized in an economical and convenient fashion.

  5. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  6. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

  7. Smart polymer nanoparticles for high-performance water-borne coatings.

    PubMed

    Piçarra, Susana; Fidalgo, Alexandra; Fedorov, Aleksander; Martinho, José M G; Farinha, José Paulo S

    2014-10-21

    Poly(butyl methacrylate) nanoparticles encapsulating a silica precursor, tetraethoxysilane (TEOS), were synthesized by a two-step emulsion polymerization process. We show that TEOS remains mostly unreacted inside the nanoparticles in water but acts both as a plasticizer and cross-linker in films cast from the dispersions. The diffusion-enhancing plasticizing effect is dominant at annealing temperatures closer to the glass-transition temperature of the polymer, and sol-gel cross-linking reactions predominate at higher temperatures. By choosing an appropriate annealing temperature, we were able to balance polymer interdiffusion and silica cross-linking to obtain films with good mechanical properties and excellent chemical resistance. The hybrid cross-linked films produced from these novel "smart" nanoparticles can be used in water-borne environmentally friendly coatings for high-performance applications.

  8. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics

    NASA Astrophysics Data System (ADS)

    Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji

    2014-06-01

    The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported.

  9. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics

    PubMed Central

    Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji

    2014-01-01

    The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported. PMID:27877671

  10. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics.

    PubMed

    Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji

    2014-06-01

    The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported.

  11. An update of the polymer-augmented alkaline flood at the Isenhour unit, Sublette County, Wyoming

    SciTech Connect

    Doll, T.E.

    1988-05-01

    An Almy sand polymer-augmented alkaline flood at the Isenhour Unit, Sublette County, WY, is reviewed. This paper updates process technology, including the use of clay stabilization, sweep improvement, soda ash alkaline agent (to reduce interfacial tension (IFT) and mobilize residual oil), and anionic-polymer-blend mobility buffer. Oil production has been increasing at 20%/yr since the process start.

  12. Characterisation of rat and human tissue alkaline phosphatase isoforms by high-performance liquid chromatography and agarose gel electrophoresis.

    PubMed

    Dziedziejko, Violetta; Safranow, Krzysztof; Slowik-Zylka, Dorota; Machoy-Mokrzynska, Anna; Millo, Barbara; Machoy, Zygmunt; Chlubek, Dariusz

    2009-03-01

    Alkaline phosphatase (ALP) exists as several isoenzymes and many isoforms present in tissues and serum. The objective of this study was to separate tissue ALP forms in rats and humans and characterise their properties. The materials for the investigation were intestinal, bone, and liver tissue of rats and commercially available human preparations of tissue ALP. Two methods of separation were used: high-performance liquid chromatography (HPLC) and agarose gel electrophoresis. Using HPLC in the rat tissues, two ALP isoforms in the intestine, one in the bone, and three in the liver were identified. In humans three intestinal, two bone, and one liver isoform were resolved. Electrophoresis showed two ALP activity bands in rat intestine, one wide band in the bone, and three bands in the liver. ALP of human tissues was visualised as a single wide band, with a different mobility observed for each organ. In both species the presence of a form with properties characteristic of the bone isoform of the tissue-nonspecific isoenzyme was observed in the intestine. HPLC offers a higher resolution than electrophoresis with respect to tissue ALP fractions in rats and in humans, but electrophoresis visualises high-molecular-mass insoluble enzyme forms.

  13. High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer

    PubMed Central

    Tan, Zhan'ao; Li, Shusheng; Wang, Fuzhi; Qian, Deping; Lin, Jun; Hou, Jianhui; Li, Yongfang

    2014-01-01

    Low-work-function active metals are commonly used as cathode in polymer solar cells (PSCs), but sensitivity of the active metals towards moisture and oxygen results in poor stability of the devices. Therefore, solution-proceessable and stable cathode buffer layer is of great importance for the application of PSCs. Here we demonstrate high performance PSCs by employing as-prepared zirconium acetylacetonate (a-ZrAcac) film spin-cast from its ethanol solution as cathode buffer layer. The PSCs based on a low bandgap polymer PBDTBDD as donor and PC60BM as acceptor with a-ZrAcac/Al cathode demonstrated an average power conversion efficiency (PCE) of 8.75% which is significantly improved than that of the devices with traditional Ca/Al cathode. The improved photovoltaic performance is benefitted from the decreased series resistance and enhanced light harvest of the PSCs with the a-ZrAcac/Al cathode. The results indicate that a-ZrAcac is a promising high performance cathode buffer layer for fabricating large area flexible PSCs. PMID:24732976

  14. High aspect ratio conjugated polymer nanowires for high performance field-effect transistors and phototransistors.

    PubMed

    Um, Hyun Ah; Lee, Dae Hee; Heo, Dong Uk; Yang, Da Seul; Shin, Jicheol; Baik, Hionsuck; Cho, Min Ju; Choi, Dong Hoon

    2015-05-26

    We synthesized a highly crystalline DPP-based polymer, DPPBTSPE, which contained 1,2-bis(5-(thiophen-2-yl)selenophen-2-yl)ethene as a planar and rigid electron donating group. High- and low-molecular weight (MW) DPPBTSPE fractions were collected by Soxhlet extraction and were employed to investigate their unique charge transport properties in macroscopic films and single crystalline polymer nanowire (SC-PNW), respectively. The low-MW polymer could provide well-isolated and high aspect ratio SC-PNWs, in which the direction of π-π stacking was perpendicular to the wire growing axis. The field effect transistors made of SC-PNWs exhibited remarkably high carrier mobility of 24 cm(2) V(-1) s(-1). In addition, phototransistors (PTs) made of SC-PNW showed very high performance in terms of photoresponsivity (R) and photoswitching ratio (P). The average R of the SC PNW-based PTs were in the range of 160-170 A W(-1) and the maximum R was measured at 1920 A W(-1), which is almost three orders higher than that of thin film-based PT device.

  15. Graphene Oxide Derivatives as Hole- and Electron-Extraction Layers for High-Performance Polymer Solar Cells

    DTIC Science & Technology

    2013-11-20

    Graphene oxide derivatives as hole- and electron- extraction layers for high-performance polymer solar cells Jun Liu,*a Michael Durstockb and Liming...oxide (GO) and its derivatives have been used as a new class of efficient hole- and electron-extraction materials in polymer solar cells (PSCs...new class of efficient hole- and electron-extraction materials in polymer solar cells (PSCs). Highly efficient and stable PSCs have been fabricated

  16. High-performance Polymer Membranes with Multi-functional Amphiphilic Micelles for CO2 Capture.

    PubMed

    Kim, Sang Jin; Jeon, Harim; Kim, Dong Jun; Kim, Jong Hak

    2015-11-01

    Herein, we report a high performance polymer membrane with simultaneously large improvements in the CO2 permeability and CO2/N2 selectivity. These improvements are obtained by incorporation of a multi-functional amphiphilic comb copolymer micelle, that is, poly(dimethylsiloxane)-g-poly(oxyethylene methacrylate) (PDMS-g-POEM), into a poly(amide-b-ethylene oxide) (Pebax) matrix. Both CO2 and N2 permeabilities continuously increased with PDMS-g-POEM content, whereas the CO2/N2 selectivity increased up to 40 wt % of PDMS-g-POEM, which enabled the maximum performance to approach the upper bound limit (2008). The membranes with PDMS-g-POEM exhibited greater CO2 permeability and CO2/N2 selectivity than those with a zeolitic imidazolate framework (ZIF-8), a well-known expensive inorganic filler, indicating the effectiveness of PDMS-g-POEM micelles for CO2 capture.

  17. Development of high-performing semiconducting polymers for organic electrochemical transistors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nielsen, Christian

    2016-11-01

    The organic electrochemical transistor (OECT), capable of amplifying small electrical signals in an aqueous environment, is an ideal device to utilize in organic bioelectronic applications involving for example neural interfacing and diagnostics. Currently, most OECTs are fabricated with commercially available conducting poly(3,4-ethylenedioxythiophene)-based suspensions such as PEDOT:PSS and are therefore operated in depletion mode giving rise to devices that are permanently on with non-optimal operational voltage. With the aim to develop and utilize efficient accumulation mode OECT devices, we discuss here our recent results regarding the design, synthesis and performance of novel intrinsic semiconducting polymers. Covering key aspects such as ion and charge transport in the bulk semiconductor and operational voltage and stability of the materials and devices, we have elucidated important structure-property relationships. We illustrate the improvements this approach has afforded in the development of high performance accumulation mode OECT materials.

  18. High-Performance Inverted Polymer Solar Cells with Zirconium Acetylacetonate Buffer Layers.

    PubMed

    Fan, Haijun; Zhu, Xiaozhang

    2016-12-14

    Inverted polymer solar cells incorporating solution-processed zirconium acetylacetonate (ZrAcac) buffer layers were demonstrated. The optimal device delivered a power conversion efficiency up to 9.2%, displaying ∼20% improvement compared with the device of conventional configuration. The performance improvement by adopting ZrAcac as the cathode buffer layer is attributed to the enhanced light-harvesting, facilitated electron transport, and reduced bimolecular recombination loss. The morphology of ZrAcac buffer layer was found to be critical in achieving high performance, which was tunable through the selection of processing solvents. A flat and uniform ZrAcac film consisting of ∼20 nm nanoscale aggregates deposited from a chloroform solution was proved to be highly effective, which only requires a short light-soaking time.

  19. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested

  20. Metal chloride-treated graphene oxide to produce high-performance polymer solar cells

    SciTech Connect

    Choi, Eun-Su; Noh, Yong-Jin; Kwon, Sung-Nam; Na, Seok-In; Jeon, Ye-Jin; Kim, Seok-Soon; Kim, Tae-Wook

    2015-07-13

    We introduce a simple but effective graphene oxide (GO) modification with metal chloride treatments to produce high-performance polymer solar cells (PSCs). The role of various metal chlorides on GO and their effects on device performances of PSCs was investigated. X-ray photoelectron spectroscopy, ultraviolet photoemission spectroscopy, and current-voltage measurement studies demonstrated that metal chloride can induce a p-doping effect and increase the GO work-function, thus resulting in an improved built-in potential and interfacial resistance in PSCs. The resultant PSCs with metal chloride exhibited improved device efficiency than those with the neat GO. Furthermore, with the metal chloride-doped GO, we finally achieved an excellent PSC-efficiency of 6.58% and a very desirable device stability, which constitute a highly similar efficiency but much better PSC life-time to conventional device with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). This study could be a valuable way to produce various PEDOT:PSS alternatives and beneficial for producing high-performance and cost-efficient polymeric devices.

  1. High electron mobility ZnO film for high-performance inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Lv, Peiwen; Chen, Shan-Ci; Zheng, Qingdong; Huang, Feng; Ding, Kai

    2015-04-01

    High-quality ZnO films (ZnO-MS) are prepared via magnetron sputtering deposition with a high mobility of about 2 cm2/(V.s) and are used as electron transport layer for inverted polymer solar cells (PSCs) with polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]:[6,6]-phenyl C71-butyric acid methyl ester as the active layer. A significant improvement of JSC, about 20% enhancement in contrast to the devices built on sol-gel derived ZnO film (ZnO-Sol), is found in the ZnO-MS based device. High performance ZnO-MS based PSCs exhibit power conversion efficiency (PCE) up to 8.55%, which is much better than the device based on ZnO-Sol (PCE = 7.78%). Further research on cathode materials is promising to achieve higher performance.

  2. Alcohol-soluble Star-shaped Oligofluorenes as Interlayer for High Performance Polymer Solar Cells

    PubMed Central

    Zou, Yang; He, Zhicai; Zhao, Baofeng; Liu, Yuan; Yang, Chuluo; Wu, Hongbin; Cao, Yong

    2015-01-01

    Two star-shaped oligofluorenes with hexakis(fluoren-2-yl)benzene as core are designed and sythesized for interfacial materials in polymer solar cell. Diethanolamino groups are attached to the side chain of fluorene units for T0-OH and T1-OH to enable the alcohol solubility, and additional hydrophobic n-hexyl chains are also grafted on the increased fluorene arms for T1-OH. In conventional device with PCDTBT/PC71BM as active layer, a 50% enhanced PCE is obtained by incorporating T0-OH and T1-OH as the interlayer compared with device without interlayer. By optimizing the active material with PTB7 and with the inverted device structure, a maximum PCE of 9.30% is achieved, which is among the highest efficiencies for PTB7 based polymer solar cells. The work function of modified electrode, the surface morphology and the suraface properties are systematically studied. By modifying the structures of the star-shaped molecules, a balance between the hydrophobic and hydrophilic property is finely tuned, and thus facilitate the interlayer for high performance of PSCs. PMID:26612688

  3. High electron mobility ZnO film for high-performance inverted polymer solar cells

    SciTech Connect

    Lv, Peiwen; Chen, Shan-Ci; Zheng, Qingdong; Huang, Feng Ding, Kai

    2015-04-20

    High-quality ZnO films (ZnO-MS) are prepared via magnetron sputtering deposition with a high mobility of about 2 cm{sup 2}/(V·s) and are used as electron transport layer for inverted polymer solar cells (PSCs) with polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′] dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]:[6,6]-phenyl C71-butyric acid methyl ester as the active layer. A significant improvement of J{sub SC}, about 20% enhancement in contrast to the devices built on sol-gel derived ZnO film (ZnO-Sol), is found in the ZnO-MS based device. High performance ZnO-MS based PSCs exhibit power conversion efficiency (PCE) up to 8.55%, which is much better than the device based on ZnO-Sol (PCE = 7.78%). Further research on cathode materials is promising to achieve higher performance.

  4. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  5. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent

  6. Synthesis of novel glucose-based polymers and their applications as chiral stationary phases for high performance liquid chromatography.

    PubMed

    Ikai, Tomoyuki; Yamada, Takayuki

    2016-01-01

    Two novel polymers containing glucose units as the main-chain that only differ in terms of their regioregularity were synthesized to evaluate their chiral recognition abilities as chiral stationary phases (CSPs) for high performance liquid chromatography (HPLC). The regioregular polymer (poly-5) shows clear resolution ability for the racemate of cobalt (III) acetylacetonate (Co(acac)3), whereas the corresponding regioirregular polymer (poly-3) does not show any chiral recognition for Co (acac)3. The regioregular polymer main-chain seems to play an important role not only in providing an efficient interaction with the racemate but also in expressing the chiral recognition ability as a CSP for HPLC.

  7. n-Type Water/Alcohol-Soluble Naphthalene Diimide-Based Conjugated Polymers for High-Performance Polymer Solar Cells.

    PubMed

    Wu, Zhihong; Sun, Chen; Dong, Sheng; Jiang, Xiao-Fang; Wu, Siping; Wu, Hongbin; Yip, Hin-Lap; Huang, Fei; Cao, Yong

    2016-02-17

    With the demonstration of small-area, single-junction polymer solar cells (PSCs) with power conversion efficiencies (PCEs) over the 10% performance milestone, the manufacturing of high-performance large-area PSC modules is becoming the most critical issue for commercial applications. However, materials and processes that are optimized for fabricating small-area devices may not be applicable for the production of high-performance large-area PSC modules. One of the challenges is to develop new conductive interfacial materials that can be easily processed with a wide range of thicknesses without significantly affecting the performance of the PSCs. Toward this goal, we report two novel naphthalene diimide-based, self-doped, n-type water/alcohol-soluble conjugated polymers (WSCPs) that can be processed with a broad thickness range of 5 to 100 nm as efficient electron transporting layers (ETLs) for high-performance PSCs. Space charge limited current and electron spin resonance spectroscopy studies confirm that the presence of amine or ammonium bromide groups on the side chains of the WSCP can n-dope PC71BM at the bulk heterojunction (BHJ)/ETL interface, which improves the electron extraction properties at the cathode. In addition, both amino functional groups can induce self-doping to the WSCPs, although by different doping mechanisms, which leads to highly conductive ETLs with reduced ohmic loss for electron transport and extraction. Ultimately, PSCs based on the self-doped WSCP ETLs exhibit significantly improved device performance, yielding PCEs as high as 9.7% and 10.11% for PTB7-Th/PC71BM and PffBT4T-2OD/PC71BM systems, respectively. More importantly, with PffBT4T-2OD/PC71BM BHJ as an active layer, a prominent PCE of over 8% was achieved even when a thick ETL of 100 nm was used. To the best of our knowledge, this is the highest efficiency demonstrated for PSCs with a thick interlayer and light-harvesting layer, which are important criteria for eventually making

  8. Electrically engineered polymer-carbon hybrid heterojunction for high-performance printed transistors

    NASA Astrophysics Data System (ADS)

    Kim, Do Hwan; Kang, Gyu Won; Shin, Hyeon-Jin; Kim, Woo-Jae

    2014-10-01

    Molecularly hybridized materials composed of polymer semiconductors (PSCs) and single-walled carbon nanotubes (SWNTs) may provide a new platform to exploit an advantageous combination of semiconductors, which yields electrical properties that are not available in a single component system. In this talk, we demonstrate high-performance ink-jet printed hybrid transistors with an electrically engineered heterostructure by using specially designed PSCs and semiconducting SWNTs (sc-SWNTs) whose system achieved a high mobility of 0.23 cm2V-1s-1, no Von shift, a low off-current, and good bias-stability. We also revealed that binding energy between PSCs and sc-SWNT was strongly affected by side-chain length of PSCs, leading to the formation of homogeneous nanohybrid film. Eventually, understanding of electrostatic interactions in the heterostructure and experimental results suggest criteria for the design of nanohybrid heterostructures. Acknowledgement. This work was supported by a grant (Code No. 2011-0031628) from the Center for Advanced Soft Electronics under the Global Frontier Research Program of the Ministry of Science, ICT and Future Planning, Korea. The authors acknowledge Prof. Kilwon Cho for collaboration on the analysis of x-ray diffraction.

  9. Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells

    PubMed Central

    Hedley, Gordon J.; Ward, Alexander J.; Alekseev, Alexander; Howells, Calvyn T.; Martins, Emiliano R.; Serrano, Luis A.; Cooke, Graeme; Ruseckas, Arvydas; Samuel, Ifor D. W.

    2013-01-01

    The morphology of bulk heterojunction organic photovoltaic cells controls many of the performance characteristics of devices. However, measuring this morphology is challenging because of the small length-scales and low contrast between organic materials. Here we use nanoscale photocurrent mapping, ultrafast fluorescence and exciton diffusion to observe the detailed morphology of a high-performance blend of PTB7:PC71BM. We show that optimized blends consist of elongated fullerene-rich and polymer-rich fibre-like domains, which are 10–50 nm wide and 200–400 nm long. These elongated domains provide a concentration gradient for directional charge diffusion that helps in the extraction of charge pairs with 80% efficiency. In contrast, blends with agglomerated fullerene domains show a much lower efficiency of charge extraction of ~45%, which is attributed to poor electron and hole transport. Our results show that the formation of narrow and elongated domains is desirable for efficient bulk heterojunction solar cells. PMID:24343223

  10. Designing advanced alkaline polymer electrolytes for fuel cell applications.

    PubMed

    Pan, Jing; Chen, Chen; Zhuang, Lin; Lu, Juntao

    2012-03-20

    Although the polymer electrolyte fuel cell (PEFC) is a superior power source for electric vehicles, the high cost of this technology has served as the primary barrier to the large-scale commercialization. Over the last decade, researchers have pursued lower-cost next-generation materials for fuel cells, and alkaline polymer electrolytes (APEs) have emerged as an enabling material for platinum-free fuel cells. To fulfill the requirements of fuel cell applications, the APE must be as conductive and stable as its acidic counterpart, such as Nafion. This benchmark has proved challenging for APEs because the conductivity of OH(-) is intrinsically lower than that of H(+), and the stability of the cationic functional group in APEs, typically quaternary ammonia (-NR(3)(+)), is usually lower than that of the sulfonic functional group (-SO(3)(-)) in acidic polymer electrolytes. To improve the ionic conductivity, APEs are often designed to be of high ion-exchange capacity (IEC). This modification has caused unfavorable changes in the materials: these high IEC APEs absorb excessive amounts of water, leading to significant swelling and a decline in mechanical strength of the membrane. Cross-linking the polymer chains does not completely solve the problem because stable ionomer solutions would not be available for PEFC assembly. In this Account, we report our recent progress in the development of advanced APEs, which are highly resistant to swelling and show conductivities comparable with Nafion at typical temperatures for fuel-cell operation. We have proposed two strategies for improving the performance of APEs: self-cross-linking and self-aggregating designs. The self-cross-linking design builds on conventional cross-linking methods and works for APEs with high IEC. The self-aggregating design improves the effective mobility of OH(-) and boosts the ionic conductivity of APEs with low IEC. For APEs with high IEC, cross-linking is necessary to restrict the swelling of the

  11. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  12. High-Performance Polymers for Membrane CO2 /N2 Separation.

    PubMed

    Liu, Junyi; Hou, Xianda; Park, Ho Bum; Lin, Haiqing

    2016-11-02

    This Concept examines strategies to design advanced polymers with high CO2 permeability and high CO2 /N2 selectivity, which are the key to the success of membrane technology for CO2 capture from fossil fuel-fired power plants. Specifically, polymers with enhanced CO2 solubility and thus CO2 /N2 selectivity are designed by incorporating CO2 -philic groups in polymers such as poly(ethylene oxide)-containing polymers and poly(ionic liquids); polymers with enhanced CO2 diffusivity and thus CO2 permeability are designed with contorted rigid polymer chains to obtain high free volume, such as polymers with intrinsic microporosity and thermally rearranged polymers. The underlying rationales for materials design are discussed and polymers with promising CO2 /N2 separation properties for CO2 capture from flue gas are highlighted. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Novel hybrid columns made of ultra-high performance concrete and fiber reinforced polymers

    NASA Astrophysics Data System (ADS)

    Zohrevand, Pedram

    The application of advanced materials in infrastructure has grown rapidly in recent years mainly because of their potential to ease the construction, extend the service life, and improve the performance of structures. Ultra-high performance concrete (UHPC) is one such material considered as a novel alternative to conventional concrete. The material microstructure in UHPC is optimized to significantly improve its material properties including compressive and tensile strength, modulus of elasticity, durability, and damage tolerance. Fiber-reinforced polymer (FRP) composite is another novel construction material with excellent properties such as high strength-to-weight and stiffness-to-weight ratios and good corrosion resistance. Considering the exceptional properties of UHPC and FRP, many advantages can result from the combined application of these two advanced materials, which is the subject of this research. The confinement behavior of UHPC was studied for the first time in this research. The stress-strain behavior of a series of UHPC-filled fiber-reinforced polymer (FRP) tubes with different fiber types and thicknesses were tested under uniaxial compression. The FRP confinement was shown to significantly enhance both the ultimate strength and strain of UHPC. It was also shown that existing confinement models are incapable of predicting the behavior of FRP-confined UHPC. Therefore, new stress-strain models for FRP-confined UHPC were developed through an analytical study. In the other part of this research, a novel steel-free UHPC-filled FRP tube (UHPCFFT) column system was developed and its cyclic behavior was studied. The proposed steel-free UHPCFFT column showed much higher strength and stiffness, with a reasonable ductility, as compared to its conventional reinforced concrete (RC) counterpart. Using the results of the first phase of column tests, a second series of UHPCFFT columns were made and studied under pseudo-static loading to study the effect of column

  14. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent

  15. Fabrication of High-Performance Polymer Bulk-Heterojunction Solar Cells by Interfacial Modifications I

    DTIC Science & Technology

    2009-04-30

    J . Ip, P. Jolinat, P. Destruel, Appl. Surf. Sci. 2001, 172, 75. T.- H . Lee et al. / Polymer Light - Emitting Diodes ...AlxOy). T.- H . Lee et al. / Polymer Light - Emitting Diodes Figure 3. The deconvolutions of the normalized and corrected C 1s core level signals from a) HY...at the PEGDE/Al interface. T.- H . Lee et al. / Polymer Light - Emitting Diodes Figure 4. A schematic plot presents; a) the diffusion of Al atoms

  16. Determination of oxytetracycline in milk samples by polymer inclusion membrane separation coupled to high performance liquid chromatography.

    PubMed

    Pérez-Silva, Irma; Rodríguez, José A; Ramírez-Silva, Ma Teresa; Páez-Hernández, Ma Elena

    2012-03-09

    The determination of oxytetracycline in milk samples using a polymer inclusion membrane concept with high performance liquid chromatography (HPLC) was studied. The membranes developed are composed by cellulose acetate as polymer base, Cyanex 923 as carrier and o-nitrophenyl octyl ether as plasticizer. In the optimal conditions, the method exhibits good linearity in the range 0.03-0.20 mg L(-1) with a limit of detection and quantification of 8.2 and 27.3 μg L(-1) respectively. The method was successfully applied to the analysis of milk samples with high selectivity.

  17. Positron Annihilation Spectroscopy Of High Performance Polymer Films Under CO{sub 2} Pressure

    SciTech Connect

    Quarles, C. A.; Klaehn, John R.; Peterson, Eric S.; Urban-Klaehn, Jagoda M.

    2011-06-01

    Positron annihilation Lifetime and Doppler broadening measurements are reported for six polymer films as a function of carbon dioxide (CO{sub 2}) absolute pressure ranging from 0 to 45 psi. Since the polymer films were thin and did not absorb all positrons, corrections were made in the lifetime analysis for the absorption of positrons in the positron source and sample holder using the Monte Carlo transport code MCNP. The studied polymers are found to behave differently from each other. Some polymers form positronium and others, such as the polyimide structures, do not. For those polymers that form positronium an interpretation in terms of free volume is possible; for those that don't form positronium, further work is needed to determine how best to describe the behavior in terms of the bulk positron annihilation parameters. A few of the studied polymers exhibit changes in positron lifetime and intensity under CO{sub 2} pressure which may be described by the Henry or Langmuir sorption models, while the positron response of other polymers is rather insensitive to the CO{sub 2} pressure. The results demonstrate the usefulness of positron annihilation spectroscopy in investigating the sorption of CO{sub 2} into various polymers at pressures up to about 3 atm (45psi).

  18. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.

    PubMed

    Liang, Yongye; Yu, Luping

    2010-09-21

    Solar cells based on the polymer-fullerene bulk heterojunction (BHJ) concept are an attractive class of low-cost solar energy harvesting devices. Because the power conversion efficiency (PCE) of these solar cells is still significantly lower than that of their inorganic counterparts, however, materials design and device engineering efforts are directed toward improving their output. A variety of factors limit the performance of BHJ solar cells, but the properties of the materials in the active layer are the primary determinant of their overall efficiency. The ideal polymer in a BHJ structure should exhibit the following set of physical properties: a broad absorption with high coefficient in the solar spectrum to efficiently harvest solar energy, a bicontinuous network with domain width within twice that of the exciton diffusion length, and high donor-acceptor interfacial area to favor exciton dissociation and efficient transport of separated charges to the respective electrodes. To facilitate exciton dissociation, the lowest unoccupied molecular orbital (LUMO) energy level of the donor must have a proper match with that of the acceptor to provide enough driving force for charge separation. The polymer should have a low-lying highest occupied molecular orbital (HOMO) energy level to provide a large open circuit voltage (V(oc)). All of these desired properties must be synergistically integrated to maximize solar cell performance. However, it is difficult to design a polymer to fulfill all these requirements. In this Account, we summarize our recent progress in developing a new class of semiconducting polymers, which represents the first polymeric system to generate solar PCE greater than 7%. The polymer system is composed of thieno[3,4-b]thiophene and benzodithiophene alternating units. These polymers have low bandgaps and exhibit efficient absorption throughout the region of greatest photon flux in the solar spectrum (around 700 nm). The stabilization of the

  19. Very High Performance Polymer Solar Cells -- A step closer to reality

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2010-03-01

    Recently, together with our research partners, we have demonstrated polymer solar cell with a power conversion efficiency (PCE) of close to 8%. This is achieved by several technical and scientific approaches. A new series of photovoltaic polymers based on a low bandgap polymer, poly[4,8-bis-substituted-benzo [1,2-b:4,5-b' ]dithiophene-2,6-diyl-alt-4-substituted-thieno[3,4-b]thio- phene-2,6-diyl] (PBDTTT), were designed and synthesized by chemists from University of Chicago and Solarmer Energy Inc., a start-up from UCLA. By adding different electron-withdrawing functional groups, the open circuit voltage (Voc) of polymers based on PBDTTT can be systematically increased, step by step. It was found that in this polymer system, the bandgap of the polymer can be maintained when the functional groups are added. As a result, the molecular energy levels of PBDTTT can be tuned without sacrificing the light harvesting. Together with the increased Voc, a polymer solar cell with efficiency as high as 7.7% PCE was realized, bringing them one step closer to reality for practical application.

  20. Positron Annihilation Spectroscopy of High Performance Polymer Films under CO2 Pressure

    SciTech Connect

    C.A. Quarles; John R. Klaehn; Eric S. Peterson; Jagoda M. Urban-Klaehn

    2010-08-01

    Positron annihilation Lifetime and Doppler broadening measurements are reported for six polymer films as a function of carbon dioxide absolute pressure ranging from 0 to 45 psi. Since the polymer films were thin and did not absorb all positrons, corrections were made in the lifetime analysis for the absorption of positrons in the positron source and sample holder using the Monte Carlo transport code MCNP. Different polymers are found to behave differently. Some polymers studied form positronium and some, such as the polyimide structures, do not. For those samples that form positronium an interpretation in terms of free volume is possible; for those that don’t form positronium, further work is needed to determine how best to describe the behavior in terms of the bulk positron annihilation parameters. Some polymers exhibit changes in positron lifetime and intensity under CO2 pressure which may be described by the Henry or Langmuir sorption models, while the positron response of other polymers is rather insensitive to the CO2 pressure. The results demonstrate the usefulness of positron annihilation spectroscopy in investigating the sorption of CO2 into various polymers at pressures up to about 3 atm.

  1. Alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte for Zn-air battery

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lin, Sheng-Jen

    An alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte with high ionic conductivity (10 -2 S cm -1) at room temperature has been prepared and applied to solid-state primary Zn-air batteries. The electrolyte shows excellent mechanical strength. The electrochemical characteristics of the batteries were experimentally investigated by means of ac impedance spectroscopy and galvanostatic discharge. The results indicate that the PEO-PVA-glass-fibre-mat composite polymer electrolyte is a promising candidate for application in alkaline primary Zn-air batteries.

  2. Morphology evolution in high-performance polymer solar cells processed from nonhalogenated solvent

    SciTech Connect

    Cai, Wanzhu; Liu, Peng; Jin, Yaocheng; Xue, Qifan; Liu, Feng; Russell, Thomas P.; Huang, Fei; Yip, Hin -Lap; Cao, Yong

    2015-05-26

    A new processing protocol based on non-halogenated solvent and additive is developed to produce polymer solar cells with power conversion efficiencies better than those processed from commonly used halogenated solvent-additive pair. Morphology studies show that good performance correlates with a finely distributed nanomorphology with a well-defined polymer fibril network structure, which leads to balanced charge transport in device operation.

  3. High-Performance Photovoltaic Polymers Employing Symmetry-Breaking Building Blocks.

    PubMed

    Liu, Deyu; Zhu, Qianqian; Gu, Chunyang; Wang, Junyi; Qiu, Meng; Chen, Weichao; Bao, Xichang; Sun, Mingliang; Yang, Renqiang

    2016-10-01

    Two 1D-2D asymmetric benzodithiophenes (BDTs) as donor building blocks are designed and synthesized, combining the advantages of both 1D and 2D symmetric BDTs. The photovoltaic properties of the asymmetric BDT-based polymers are improved greatly in comparison with corresponding symmetric BDT-based polymers. This work provides a new approach to design prospective organic optoelectronic materials employing the symmetry-breaking strategy.

  4. Highly aligned conjugated polymer films prepared by rotation coating for high-performance organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Van Tho, Luu; Park, Won-Tae; Choi, Eun-Young; Noh, Yong-Young

    2017-04-01

    Recently, exceptionally high field-effect mobility in organic field-effect transistors (OFETs) has been fabricated using semiconducting films with one-dimensionally aligned, highly planar electron donor-acceptor copolymers, within the channel of transistors. Here, we propose an extremely simple coating method, called rotation coating, for preparing highly aligned, conjugated polymer thin films for applications in various organic electronic devices. We realize highly aligned polymer films using various conjugated polymers and applied the films as active layers for high-performance OFETs. Significantly high field-effect mobility values of 1.45 ± 0.46 cm2/Vs have been achieved for rotation coated diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymer films.

  5. Investigations of non-linear polymers as high performance lubricant additives

    SciTech Connect

    Robinson, Joshua W.; Bhattacharya, Priyanka; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2015-03-22

    Off-the-shelf available engine oils contain an assortment of additives that increase the performance of base oils and maximize the overall efficiency of the machine. With ever increasing requirements for fuel efficiency, the demand for novel materials that outperform older generations is also on the rise. One approach towards increasing overall efficiency is to reduce internal friction and wear in an engine. From an additive approach, this is typically achieved by altering the bulk oil’s viscosity at high temperatures via polymers. In general, the hydrodynamic volume of polymers increase (expand) at elevated temperatures and decrease (contract/deflate) with declining temperatures and this effect is enhanced be carefully designing specific structures and architectures. The natural thinning tendency of base oil with increasing temperatures is in part mitigated by the expansion of the macromolecules added, and the overall effect is decreasing the viscosity losses at high temperatures. Traditional polymer architectures vary from linear to dendritic, where linear polymers of the same chemical composition and molecular weight to its dendritic counterpart will undergo a more significant free volume change in solution with regards to temperature changes. This advantage has been exploited in the literature towards the production of viscosity modifiers. However, one major disadvantage of linear polymers is degradation due to mechanical shear forces and high temperatures causing a shorter additive lifetime. Dendrimers on the other hand are known to demonstrate superior robustness to shear degradation when compared to their respective linear counterparts. An additional advantage of the dendritic architecture is the ability to tailor the peripheral end-groups towards influencing polymer-solvent and/or polymer-surface interactions. Comb-burst hyperbranched polymers are a hybrid of the aforementioned architectures and provide several compromises between the traditional

  6. High-performance TiO2 nanoparticle/DOPA-polymer composites.

    PubMed

    Liaqat, Faroha; Tahir, Muhammad Nawaz; Schechtel, Eugen; Kappl, Michael; Auernhammer, Günter K; Char, Kookheon; Zentel, Rudolf; Butt, Hans-Jürgen; Tremel, Wolfgang

    2015-06-01

    Many natural materials are complex composites whose mechanical properties are often outstanding considering the weak constituents from which they are assembled. Nacre, made of inorganic (CaCO3 ) and organic constituents, is a textbook example because of its strength and toughness, which are related to its hierarchical structure and its well-defined organic-inorganic interface. Emulating the construction principles of nacre using simple inorganic materials and polymers is essential for understanding how chemical composition and structure determine biomaterial functions. A hard multilayered nanocomposite is assembled based on alternating layers of TiO2 nanoparticles and a 3-hydroxy-tyramine (DOPA) substituted polymer (DOPA-polymer), strongly cemented together by chelation through infiltration of the polymer into the TiO2 mesocrystal. With a Young's modulus of 17.5 ± 2.5 GPa and a hardness of 1.1 ± 0.3 GPa the resulting material exhibits high resistance against elastic as well as plastic deformation. A key feature leading to the high strength is the strong adhesion of the DOPA-polymer to the TiO2 nanoparticles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Importance of Having Low-Density Functional Groups for Generating High-Performance Semiconducting Polymer Dots

    PubMed Central

    Zhang, Xuanjun; Yu, Jiangbo; Wu, Changfeng; Jin, Yuhui; Rong, Yu; Ye, Fangmao

    2012-01-01

    Semiconducting polymers with low-density side-chain carboxylic acid groups were synthesized to form stable, functionalized, and highly fluorescent polymer dots (Pdots). The influence of the molar fraction of hydrophilic side-chains on Pdot properties and performance was systematically investigated. Our results show that the density of side-chain carboxylic acid groups significantly affects Pdot stability, internal structure, fluorescence brightness, and nonspecific binding in cellular labeling. Fluorescence spectroscopy, single-particle imaging, and a dye-doping method were employed to investigate the fluorescence brightness and the internal structure of the Pdots. The results of these experiments indicate that semiconducting polymers with low density of side-chain functional groups can form stable, compact, and highly bright Pdots as compared to those with high density of hydrophilic side-chains. The functionalized polymer dots were conjugated to streptavidin (SA) by carbodiimide-catalyzed coupling and the Pdot-SA probes effectively and specifically labeled the cancer cell-surface marker Her2 in human breast cancer cells. The carboxylate-functionalized polymer could also be covalently modified with small functional molecules to generate Pdot probes for click chemistry-based bioorthogonal labeling. This study presents a promising approach for further developing functional Pdot probes for biological applications. PMID:22607220

  8. Enantioseparations by high-performance liquid chromatography using molecularly imprinted polymers.

    PubMed

    Spivak, David A

    2013-01-01

    Molecularly imprinted polymers (MIPs) are becoming increasingly useful as chromatographic adsorbents for molecular separations, especially chiral separations, because they can be tailored to specifically recognize the target molecule including its stereochemistry. Traditionally formed MIPs (as described here) are stable under ambient conditions for years, take only days to make, and use relatively inexpensive components, with the possible exception of the template in some cases which can be reused after it is removed from the polymer to keep costs down. In addition to providing experimental details for typical synthetic methods to fabricate MIPs and pack them into HPLC columns, this chapter also gives an overview of the concepts of molecular imprinting method and discusses important factors for designing an effective imprinted polymer.

  9. Toward intrinsically stretchable organic semiconductors: mechanical properties of high-performance conjugated polymers

    NASA Astrophysics Data System (ADS)

    Sawyer, Eric J.; Savagatrup, Suchol; O'Connor, Timothy F.; Makaram, Aditya S.; Burke, Daniel J.; Zaretski, Aliaksandr V.; Printz, Adam D.; Lipomi, Darren J.

    2014-10-01

    This paper describes several approaches to understanding and improving the response of π-conjugated (semiconducting) polymers to tensile strain. Our principal goal was to establish the design criteria for introducing elasticity and ductility in conjugated (semiconducting) polymers through a rigorous analysis of the structural determinants of the mechanical properties of this type of material. We elucidated the details of the effect of the alkyl side chain length on the mechanical properties of regioregular polythiophene and used this analysis to select materials for stretching and transfer printing of organic solar cells to hemispherical substrates. This demonstration represents the first time that a conjugated polymer device has ever been stretched and conformally bonded to a complex 3D surface (i.e., other than a cone or cylinder, for which flexibility—as opposed to stretchability—is sufficient). We then further explored the details of the dependence of the mechanical properties on the side chain of a semiconducting polymer by synthesizing a series of hybrid materials (block and random copolymers) containing both short and long side chains. This analysis revealed the unusual semiconducting polymer, poly(3-heptylthiophene), as having an excellent combination of mechanical and electronic properties. In parallel, we explored a new method of producing "blocky" copolymers using a new procedure based on random segmentation of conjugated monomers. We found that introduction of structural randomness increased the elasticity without having detrimental effects on the photovoltaic performance. We also describe methods of synthesizing large volumes of conjugated polymers in environmentally benign ways that were amenable to manufacturing.

  10. Towards a high performing lithium polymer battery system (VARTA PoLiFlex™)

    NASA Astrophysics Data System (ADS)

    Ilic, D.; Perner, A.; Wöhrle, T.; Haug, P.; Pompetzki, M.; Wurm, C.

    The design of a lithium polymer battery with excellent properties is presented. The focus is on cathode and anode active materials and their influence on cell properties like energy density and cycle behavior. Standard LiCoO 2 is compared with alternative cathode materials like Li-Co-Ni-Mn-O and high density LiCoO 2. Furthermore, several natural graphites and their mixtures with synthetic graphite are discussed as potential anode active material as natural graphite is attractive concerning price. The good performance of VARTA Microbattery's PoLiFlex™ lithium polymer battery results from an adequate combination of cathode and anode formulations.

  11. A novel high-performance gel polymer electrolyte membrane basing on electrospinning technique for lithium rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Wu, Na; Cao, Qi; Wang, Xianyou; Li, Xiaoyun; Deng, Huayang

    2011-10-01

    Nonwoven films of composites of thermoplastic polyurethane (TPU) with different proportion of poly(vinylidene fluoride) (PVdF) (80, 50 and 20%, w/w) are prepared by electrospinning 9 wt% polymer solution at room temperature. Then the gel polymer electrolytes (GPEs) are prepared by soaking the electrospun TPU-PVdF blending membranes in 1 M LiClO4/ethylene carbonate (EC)/propylene carbonate (PC) for 1 h. The gel polymer electrolyte (GPE) shows a maximum ionic conductivity of 3.2 × 10-3 S cm-1 at room temperature and electrochemical stability up to 5.0 V versus Li+/Li for the 50:50 blend ratio of TPU:PVdF system. At the first cycle, it shows a first charge-discharge capacity of 168.9 mAh g-1 when the gel polymer electrolyte (GPE) is evaluated in a Li/PE/lithium iron phosphate (LiFePO4) cell at 0.1 C-rate at 25 °C. TPU-PVdF (50:50, w/w) based gel polymer electrolyte is observed much more suitable than the composite films with other ratios for high-performance lithium rechargeable batteries.

  12. Unsubstituted Benzodithiophene-Based Conjugated Polymers for High-Performance Organic Field-Effect Transistors and Organic Solar Cells.

    PubMed

    Chen, Weichao; Xiao, Manjun; Han, Liangliang; Zhang, Jidong; Jiang, Huanxiang; Gu, Chuantao; Shen, Wenfei; Yang, Renqiang

    2016-08-03

    Unsubstituted benzo[1,2-b:4,5-b']dithiophene (BDT) was used to construct a high-performance conjugated polymer with 5,6-difluoro-4,7-bis[4-(2-octyldodecyl)thiophene-2-yl]benzo[c][1,2,5] thiadiazole (DTFFBT), named PBDT-DTFFBT. The polymer shows the low-lying highest occupied molecular orbital (HOMO) energy level (-5.40 eV) and a broad absorption spectra with strong vibronic absorption peak. Pure polymer films exhibit good crystallinity and edge-on orientation, partially attributed to the BDT units without any side chains, and as a result, the corresponding thin-film transistor showed excellent hole mobility over 1 cm(2) V(-1) s(-1). Interestingly, a well-distributed nanofibrillar polymer aggregation with face-on orientation was obviously formed when blending with PC71BM, which was in favor of the charge transportation. Consequently, the bulk heterojunction polymer solar cells based on the blends showed high power conversion efficiency of 9.29% with large short-current density (14.56 mA cm(-2)) and high fill factor (0.751) without any process additives or thermal annealing.

  13. A self-assembled ultrathin crystalline polymer film for high performance phototransistors.

    PubMed

    Li, Hui; Wu, Yishi; Wang, Xuedong; Kong, Qinghua; Fu, Hongbing

    2014-09-28

    The π-conjugated polymer, PQBOC8, can be easily assembled into a large-area crystalline ultrathin film at the CHCl3/water interface. A phototransistor based on this ultrathin film showed a large photoresponsivity of 970 A W(-1), and a photocurrent/dark current ratio of 1.36 × 10(4) under a very low white light irradiation.

  14. Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors.

    PubMed

    Lu, Guanghao; Blakesley, James; Himmelberger, Scott; Pingel, Patrick; Frisch, Johannes; Lieberwirth, Ingo; Salzmann, Ingo; Oehzelt, Martin; Di Pietro, Riccardo; Salleo, Alberto; Koch, Norbert; Neher, Dieter

    2013-01-01

    Polymer transistors are being intensively developed for next-generation flexible electronics. Blends comprising a small amount of semiconducting polymer mixed into an insulating polymer matrix have simultaneously shown superior performance and environmental stability in organic field-effect transistors compared with the neat semiconductor. Here we show that such blends actually perform very poorly in the undoped state, and that mobility and on/off ratio are improved dramatically upon moderate doping. Structural investigations show that these blend layers feature nanometre-scale semiconductor domains and a vertical composition gradient. This particular morphology enables a quasi three-dimensional spatial distribution of semiconductor pathways within the insulating matrix, in which charge accumulation and depletion via a gate bias is substantially different from neat semiconductor, and where high on-current and low off-current are simultaneously realized in the stable doped state. Adding only 5 wt% of a semiconducting polymer to a polystyrene matrix, we realized an environmentally stable inverter with gain up to 60.

  15. Evaluation of gardenia yellow using crocetin from alkaline hydrolysis based on ultra high performance liquid chromatography and high-speed countercurrent chromatography.

    PubMed

    Inoue, Koichi; Tanada, Chihiro; Nishikawa, Hiroaki; Matsuda, Satoru; Tada, Atsuko; Ito, Yusai; Min, Jun Zhe; Todoroki, Kenichiro; Sugimoto, Naoki; Toyo'oka, Toshimasa; Akiyama, Hiroshi

    2014-12-01

    Gardenia yellow is globally the most valuable spice and food color. It is generally a mixture of water-soluble carotenoid glycosyl esters which consist of crocetin bis(gentiobiosyl) ester as the main component. Crocetin is a natural carotenoid dicarboxylic acid that may be a candidate drug for pharmaceutical development, however, it is either present in trace amounts or is absent in natural gardenia yellow products. We here propose that crocetin produced by alkaline hydrolysis can be used to qualitatively evaluate gardenia yellow products using an ultra high performance liquid chromatographic assay. A useful and efficient isolation technique for isolating high-purity crocetin from gardenia yellow using high-speed countercurrent chromatography is described. High-speed countercurrent chromatographic fractionation followed by an ultra high performance liquid chromatographic assay showed that trans-crocetin is easily converted to about 15% cis-crocetin (85% trans-crocetin). Crocetin in gardenia yellow was quantitatively evaluated. Our approach is based on the hydrolysis process for converting crocetin glycosyl esters to crocetin before evaluation and isolation using the ultra high performance liquid chromatographic and high-speed countercurrent chromatographic methods. The combination of hydrolysis and chromatographic methods allows evaluation of the purity and quantity of crocetin in gardenia yellow. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High performance shape memory polymer networks based on rigid nanoparticle cores

    PubMed Central

    Song, Jie

    2010-01-01

    Smart materials that can respond to external stimuli are of widespread interest in biomedical science. Thermal-responsive shape memory polymers, a class of intelligent materials that can be fixed at a temporary shape below their transition temperature (Ttrans) and thermally triggered to resume their original shapes on demand, hold great potential as minimally invasive self-fitting tissue scaffolds or implants. The intrinsic mechanism for shape memory behavior of polymers is the freezing and activation of the long-range motion of polymer chain segments below and above Ttrans, respectively. Both Ttrans and the extent of polymer chain participation in effective elastic deformation and recovery are determined by the network composition and structure, which are also defining factors for their mechanical properties, degradability, and bioactivities. Such complexity has made it extremely challenging to achieve the ideal combination of a Ttrans slightly above physiological temperature, rapid and complete recovery, and suitable mechanical and biological properties for clinical applications. Here we report a shape memory polymer network constructed from a polyhedral oligomeric silsesquioxane nanoparticle core functionalized with eight polyester arms. The cross-linked networks comprising this macromer possessed a gigapascal-storage modulus at body temperature and a Ttrans between 42 and 48 °C. The materials could stably hold their temporary shapes for > 1 year at room temperature and achieve full shape recovery ≤ 51 °C in a matter of seconds. Their versatile structures allowed for tunable biodegradability and biofunctionalizability. These materials have tremendous promise for tissue engineering applications. PMID:20375285

  17. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    SciTech Connect

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.

  18. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    DOE PAGES

    Lu, Luyao; Chen, Wei; Xu, Tao; ...

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increasedmore » hole extraction, efficient energy transfer and better morphology. As a result, the working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.« less

  19. Freeze-drying for morphological control of high performance semi-interpenetrating polymer networks. III

    NASA Technical Reports Server (NTRS)

    Hsiung, H. J.; Hansen, M. G.; Pater, R. H.

    1991-01-01

    The feasibility of using a freeze-drying (solvent removal by sublimation) approach for controlling the morphology of a high-performance semi-IPN is assessed. A high-performance thermoplastic polyimide and commercially available 4,4'-bismaleimide diphenylenemethane were dissolved in a solvent, 1,3,5-trioxane. The solvent was removed from the constituents by freeze-drying. For purposes of comparison, the constituents were dissolved in a high-boiling-point solvent, N,N-dimethylformamide. The solvent was removed from the solution by evaporation. The physical and mechanical properties and phase morphology of the neat resins and composites prepared by freeze-drying and traditional solution methods are presented and compared. It is concluded that the TG is higher and that the magnitude of minor constituent separation is less in the freeze-dry processed materials than for the processed solution.

  20. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    PubMed Central

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-01-01

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs. PMID:26041586

  1. Layered conductive polymer on nylon membrane templates for high performance, thin-film supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Shi, HaoTian Harvey; Naguib, Hani E.

    2016-04-01

    Flexible Thin-film Electrochemical Capacitors (ECs) are emerging technology that plays an important role as energy supply for various electronics system for both present era and the future. Intrinsically conductive polymers (ICPs) are promising pseudo-capacitive materials as they feature both good electrical conductivity and high specific capacitance. This study focuses on the construction and characterization of ultra-high surface area porous electrodes based on coating of nano-sized conductive polymer materials on nylon membrane templates. Herein, a novel nano-engineered electrode material based on nylon membranes was presented, which allows the creation of super-capacitor devices that is capable of delivering competitive performance, while maintaining desirable mechanical characteristics. With the formation of a highly conductive network with the polyaniline nano-layer, the electrical conductivity was also increased dramatically to facilitate the charge transfer process. Cyclic voltammetry and specific capacitance results showed promising application of this type of composite materials for future smart textile applications.

  2. A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance.

    PubMed

    Zhang, Maojie; Guo, Xia; Ma, Wei; Ade, Harald; Hou, Jianhui

    2015-08-19

    A new copolymer PM6 based on fluorothienyl-substituted benzodithiophene is synthesized and characterized. The inverted polymer solar cells based on PM6 exhibit excellent performance with Voc of 0.98 V and power conversion efficiency (PCE) of 9.2% for a thin-film thickness of 75 nm. Furthermore, the single-junction semitransparent device shows a high PCE of 5.7%.

  3. High-performance Polymer Membranes with Multi-functional Amphiphilic Micelles for CO2 Capture.

    PubMed

    Kim, Sang Jin; Jeon, Harim; Kim, Dong Jun; Kim, Jong Hak

    2015-11-09

    Invited for this month's cover is the group of Jong Hak Kim at Yonsei University in South Korea. The image shows how CO2 selectively permeates through the polymer membrane containing multi-functional amphiphilic poly(dimethylsiloxane)-g-poly(oxyethylene methacrylate) (PDMS-g-POEM) comb copolymer micelles. The microphase-separated structure consists of PDMS cores and CO2 -philic POEM corona. The Full Paper itself is available at 10.1002/cssc.201501063.

  4. Sequential deposition: optimization of solvent swelling for high-performance polymer solar cells.

    PubMed

    Liu, Yao; Liu, Feng; Wang, Hsin-Wei; Nordlund, Dennis; Sun, Zhiwei; Ferdous, Sunzida; Russell, Thomas P

    2015-01-14

    Organic solar cells based on a typical DPP polymer were systematically optimized by a solvent swelling assisted sequential deposition process. We investigated the influence of solvent swelling on the morphology and structure order of the swollen film and the resultant device performance. Morphological and structural characterization confirmed the realization of ideal bulk heterojunctions using a suitable swelling solvent. A trilayered morphology was also found with the conjugated polymer concentrated bottom layer, PC71BM concentrated top layer, and interpenetrated networks of donor and acceptor in the middle by solvent swelling instead of thermal annealing in the sequential solution processing method. We proposed a simple strategy to optimize the sequential deposition fabricated devices by tuning the concentration of the PC71BM solution instead of thermal annealing. The best device showed a PCE of 7.59% with a Voc of 0.61 V, Jsc of 17.95 mA/cm(2), and FF of 69.6%, which is the highest reported efficiency for devices fabricated by a sequential processing method and among the best results for DPP polymers.

  5. Composite-Based High Performance Electroactive Polymers For Remotely Controlled Mechanical Manipulations in NASA Applications

    NASA Technical Reports Server (NTRS)

    Zhang, Q. M.

    2003-01-01

    This program supported investigation of an all-polymer percolative composite which exhibits very high dielectric constant (less than 7,000). The experimental results show that the dielectric behavior of this new class of percolative composites follows the prediction of the percolation theory and the analysis of the conductive percolation phenomena. The very high dielectric constant of the all-polymer composites which are also very flexible and possess elastic modulus not very much different from that of the insulation polymer matrix makes it possible to induce a high electromechanical response under a much reduced electric field (a strain of 2.65% with an elastic energy density of 0.18 J/cu cm can be achieved under a field of 16 MV/m). Data analysis also suggests that in these composites, the non-uniform local field distribution as well as interface effects can significantly enhance the strain responses. Furthermore, the experimental data as well as the data analysis indicate that the conduction loss in these composites will not affect the strain hysteresis.

  6. Metal- and Polymer-Matrix Composites: Functional Lightweight Materials for High-Performance Structures

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Paramsothy, Muralidharan

    2014-06-01

    The special topic "Metal- and Polymer-Matrix Composites" is intended to capture the state of the art in the research and practice of functional composites. The current set of articles related to metal-matrix composites includes reviews on functionalities such as self-healing, self-lubricating, and self-cleaning capabilities; research results on a variety of aluminum-matrix composites; and investigations on advanced composites manufacturing methods. In addition, the processing and properties of carbon nanotube-reinforced polymer-matrix composites and adhesive bonding of laminated composites are discussed. The literature on functional metal-matrix composites is relatively scarce compared to functional polymer-matrix composites. The demand for lightweight composites in the transportation sector is fueling the rapid development in this field, which is captured in the current set of articles. The possibility of simultaneously tailoring several desired properties is attractive but very challenging, and it requires significant advancements in the science and technology of composite materials. The progress captured in the current set of articles shows promise for developing materials that seem capable of moving this field from laboratory-scale prototypes to actual industrial applications.

  7. 4-Nitrophenol in 4-nitrophenyl phosphate, a substrate for alkaline phosphatase, as measured by paired-ion high-performance liquid chromatography.

    PubMed

    Culbreth, P H; Duncan, I W; Burtis, C A

    1977-12-01

    We used paired-ion high-performance liquid chromatography to determine the 4-nitrophenol content of 4-nitrophenyl phosphate, a substrate for alkaline phosphatase analysis. This was done on a reversed-phase column with a mobile phase of methanol/water, 45/55 by vol, containing 3 ml of tetrabutylammonium phosphate reagent per 200 ml of solvent. At a flow rate of 1 ml/min, 4-nitrophenol was eluted at 9 min and monitored at 404 nm; 4-nitrophenyl phosphate was eluted at 5 min and could be monitored at 311 nm. Samples of 4-nitrophenyl phosphate obtained from several sources contained 0.3 to 7.8 mole of 4-nitrophenol per mole of 4-nitrophenyl phosphate.

  8. Potential approaches to the spectroscopic characterization of high performance polymers exposed to energetic protons and heavy ions

    NASA Technical Reports Server (NTRS)

    Suleman, Naushadalli K.

    1991-01-01

    A potential limitation to human activity on the lunar surface or in deep space is the exposure of the crew to unacceptably high levels of penetrating space radiations. The radiations of most concerns for such missions are high-energy protons emitted during solar flares, and galactic cosmic rays which are high-energy ions ranging from protons to iron. The development of materials for effective shielding from energetic space radiations will clearly require a greater understanding of the underlying mechanisms of radiation-induced damage in bulk materials. This can be accomplished in part by the detailed spectroscopic characterization of bulk materials that were exposed to simulated space radiations. An experimental data base thus created can then be used in conjunction with existing radiation transport codes in the design and fabrication of effective radiation shielding materials. Electron Paramagnetic Resonance Spectroscopy was proven very useful in elucidating radiation effects in polymers (high performance polymers are often an important components of structural composites).

  9. Ultrafine Silver Nanoparticles Supported on a Conjugated Microporous Polymer as High-Performance Nanocatalysts for Nitrophenol Reduction.

    PubMed

    Cao, Hai-Lei; Huang, Hai-Bo; Chen, Zhi; Karadeniz, Bahar; Lü, Jian; Cao, Rong

    2017-02-15

    A conjugated microporous polymer (CMP) material was designed with pore function of cyano and pyridyl groups that act as potential binding sites for Ag(+) ion capture. Ultrafine silver nanoparticles (less than 5 nm) were successfully supported on the predesigned CMP material to afford Ag(0)@CMP composite materials by means of a simple liquid impregnation and light-induced reduction method. Spherical Ag(0) nanoparticles with a statistical mean diameter of ca. 3.9 nm were observed and characterized by scanning electron microscopy and transmission electron microscopy. The Ag(0)@CMP composite materials were consequently exploited as high-performance nanocatalysts for the reduction of nitrophenols, a family of priority pollutants, at various temperatures and ambient pressure. Moreover, the composite nanocatalysts feature convenient recovery and excellent reusability. This work presents an efficient platform to achieve ultrafine metal nanoparticles immobilized on porous supports with predominant catalytic properties by virtue of the structural design and spatial confinement effect available for conjugated microporous polymers.

  10. Energetic heterogeneity of the surface of a molecularly imprinted polymer studied by high-performance liquid chromatography.

    PubMed

    Szabelski, Paweł; Kaczmarski, Krzysztof; Cavazzini, Alberto; Chen, Y B; Sellergren, Börje; Guiochon, Georges

    2002-07-26

    The influence of thermal annealing on the surface homogeneity of a polymer imprinted against L-phenylalanine anilide (LPA) was examined using high-performance liquid chromatography (HPLC) for the measurement of the adsorption isotherms. The isotherms obtained for LPA and for its enantiomer, D-phenylalanine anilide (DPA) were fitted to the Freundlich (F) equation which accounts for the energetic heterogeneity of the surface with a separate parameter. Changes in the adsorptive properties of the polymer produced by thermal annealing were deduced by comparing the heterogeneity parameters given by the nonlinear regression. These changes were also illustrated by deriving the isosteric heats of adsorption as functions of the amounts adsorbed and by calculating the associated affinity distributions. This latter technique involves an application of the affinity spectrum (AS) combined with the F adsorption model. The plausibility and accuracy of the combination is discussed. It is shown that the derivation of the amplitudes of the affinity distributions from the F parameters is inaccurate, making difficult the proper estimate of the changes in the total population of adsorption sites. In contrast, the AS method gives correct estimates of the parameter that characterizes the slope of the affinity distributions. The results derived from the three sets of results (F model parameters, isosteric heats of adsorption, AS + F method) show consistently that annealing reduces the energetic heterogeneity of the polymer surface for both LPA and DPA. In practice, however, the improvement of the polymer performance in HPLC is relatively limited.

  11. High-performance dual-action polymer-TiO2 nanocomposite films via melting processing.

    PubMed

    Kubacka, Anna; Serrano, Cristina; Ferrer, Manuel; Lünsdorf, Heinrich; Bielecki, Piotr; Cerrada, María Luisa; Fernández-García, Marta; Fernández-García, Marcos

    2007-08-01

    The incorporation of TiO2 nanoparticles into (ethylene-vinyl alcohol)-based food packaging copolymers affords an opportunity to synthesize polymer-based nanocomposite materials with novel and powerful biocidal and photodegradability properties, resulting in the production of an advanced, environmentally friendly system prepared using a cost-effective synthesis method via a simple melt compounding without the need of a coupling agent incorporation. The presented materials display an unprecedented performance in the killing of both Gram positive and negative bacteria without the necessity of being release to the media and an easy degradation under sunlight which favorably competes with biodegradation procedures.

  12. Polymer-assisted direct deposition of uniform carbon nanotube bundle networks for high performance transparent electrodes.

    PubMed

    Hellstrom, Sondra L; Lee, Hang Woo; Bao, Zhenan

    2009-06-23

    Flexible transparent electrodes are crucial for touch screen, flat panel display, and solar cell technologies. While carbon nanotube network electrodes show promise, characteristically poor dispersion properties have limited their practicality. We report that addition of small amounts of conjugated polymer to nanotube dispersions enables straightforward fabrication of uniform network electrodes by spin-coating and simultaneous tuning of parameters such as bundle size and density. After treatment in thionyl chloride, electrodes have sheet resistances competitive with other reported carbon nanotube based transparent electrodes to date.

  13. Fabrication of a polymer-coated silver hollow optical fiber with high performance.

    PubMed

    Shi, Yi-Wei; Ito, Kentaro; Ma, Lin; Yoshida, Takanori; Matsuura, Yuji; Miyagi, Mitsunobu

    2006-09-10

    The techniques for fabricating a hollow optical fiber with an inner silver layer and a cyclic olefin polymer (COP) layer have been improved to reduce the surface roughness of these two layers. The loss spectrum was thereby drastically reduced over a wide wavelength range, from visible to near infrared. Optimization of the COP layer thickness resulted in low loss simultaneously at several key laser wavelengths. Infrared hollow fiber with low loss was developed for Er:YAG and Nd:YAG lasers. It can also deliver green and red pilot beams with low loss. Use of this fiber in therapeutic and pilot lasers should prove useful for research and development in laser medicine.

  14. A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Tianchi; Shao, Rong; Chen, Song; He, Xuemei; Qiao, Jinli; Zhang, Jiujun

    2015-10-01

    The past two decades have witnessed many efforts to develop radiation-grafted alkaline membranes for alkaline PEM fuel cell applications, as such membranes have certain advantages over other kinds of alkaline membranes, including well-controlled composition, functionality, and other promising properties. To facilitate research and development in this area, the present paper reviews radiation-grafted alkaline membranes. We examine their synthesis/fabrication/characterization, membrane material selection, and theoretical approaches for fundamental understanding. We also present detailed examinations of their application in fuel cell in terms of the working principles of the radiation grafting process, the fabrication of MEAs using radiation-grafted membranes, the membranes' corresponding performance in alkaline PEM fuel cells, as well as performance optimization. The paper also summarizes the challenges and mitigation strategies for radiation-grafted alkaline membranes and their application in PEM fuel cells, presenting an overall picture of the technology as it presently stands.

  15. High performance radiation-grafted membranes and electrodes for polymer electrolyte fuel cells

    SciTech Connect

    Nezu, Shinji; Seko, Hideo; Gondo, Masaki; Ito, Naoki

    1996-12-31

    Polymer electrolyte fuel cells (PEFC) have attracted much attention for stationary and electric vehicle applications. Much progress has been made to improve their performance recently. However there are still several problems to overcome for commercialization. Among them, the cost of polymer electrolyte membranes seems to be rather critical, because a cost estimate of a practical fuel cell stack shows that the membrane cost must be reduced at least by two orders of magnitude based on current perfluorosulfonic acid membranes eg. Nafion{reg_sign}. Thus the development of new membrane materials is strongly desired. Styrene grafted tetrafluoroethylene-hexafluoropropylene copolymer (FEP) membranes have been studied for a fuel cell application by G. Scherer et al. These authors showed that membranes obtained by radiation grafting served as an alternative membrane for fuel cells although there were several problems to overcome in the future. These problems include shorter life time which was concluded to result from the decomposition of grafted polystyrene side chains. We report here the performance of our fuel cells which were fabricated from our radiation grafted membranes (IMRA MEMBRANE) and gas diffusion electrodes.

  16. Upgrading low-quality natural gas by means of highly performing polymer membranes

    SciTech Connect

    Stern, S.A.

    1995-04-01

    The objective of the present study is to assess the potential usefulness of membrane separation processes for removing acid gases (CO{sub 2} and H{sub 2}S) from low-quality natural gas. Nonporous {open_quotes}dense{close_quotes} (homogeneous) membranes made from new, highly gas-selective polymers are being evaluated for this purpose. The project comprises gas permeability and separation measurements with CH{sub 4}/CO{sub 2} and CH{sub 4}/CO{sub 2}/H{sub 2}S mixtures having compositions in ranges found in low-quality natural gas. Process design studies and economic evaluations are also being made to determine the cost of upgrading low-quality natural gas with the most promising membranes. Until recently, the membranes used in this study were made from new types of polyimides synthesized in our laboratory. The polyimide membranes were found to exhibit a very high CO{sub 2}/CH{sub 4} selectivity but a relatively low H{sub 2}S/CH{sub 4} selectivity. Therefore, different types of polymers that exhibit a high H{sub 2}S/CH{sub 4} selectivity are also being evaluated.

  17. High-performance inverted polymer solar cells based on thin copper film

    NASA Astrophysics Data System (ADS)

    Luo, Guoping; Cheng, Xiaoping; He, Zhicai; Wu, Hongbin; Cao, Yong

    2015-01-01

    We report the fabrication of cost-effective indium-free polymer solar cells (PSCs) with an inverted structure that incorporates an ultrathin copper (Cu) film as a bottom cathode via thermal evaporation. The average optical transmittance of the 15-nm Cu coated glass substrate in the visible region of the spectrum was found to be around 80% with a highest value of 84.5%. The Cu electrode was modified by an interfacial layer of an alcohol-/water-soluble conjugated polymer, poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) interlayer to ensure a very smooth surface. Upon the use of the PFN interfacial layer, the work function of Cu was decreased from 4.68 to 4.31 eV, which can form an Ohmic contact with photoactive layer and facilitate electrode transport and extraction. As a result, a power conversion efficiency of 3.6% was achieved when poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] and a [6,6]-phenyl C71-butyric acid methyl ester blend were utilized as the photoactive layers, demonstrating that the thermally evaporated Cu thin-film electrode can be a promising candidate to replace indium tin oxide for highly efficient PSCs.

  18. Free-Standing Conducting Polymer Films for High-Performance Energy Devices.

    PubMed

    Li, Zaifang; Ma, Guoqiang; Ge, Ru; Qin, Fei; Dong, Xinyun; Meng, Wei; Liu, Tiefeng; Tong, Jinhui; Jiang, Fangyuan; Zhou, Yifeng; Li, Ke; Min, Xue; Huo, Kaifu; Zhou, Yinhua

    2016-01-18

    Thick, uniform, easily processed, highly conductive polymer films are desirable as electrodes for solar cells as well as polymer capacitors. Here, a novel scalable strategy is developed to prepare highly conductive thick poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (HCT-PEDOT:PSS) films with layered structure that display a conductivity of 1400 S cm(-1) and a low sheet resistance of 0.59 ohm sq(-1). Organic solar cells with laminated HCT-PEDOT:PSS exhibit a performance comparable to the reference devices with vacuum-deposited Ag top electrodes. More importantly, the HCT-PEDOT:PSS film delivers a specific capacitance of 120 F g(-1) at a current density of 0.4 A g(-1). All-solid-state flexible symmetric supercapacitors with the HCT-PEDOT:PSS films display a high volumetric energy density of 6.80 mWh cm(-3) at a power density of 100 mW cm(-3) and 3.15 mWh cm(-3) at a very high power density of 16160 mW cm(-3) that outperforms previous reported solid-state supercapacitors based on PEDOT materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High Performance Electroactive Polymer Actuators Based on Sulfonated Block Copolymers Comprising Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Kim, Onnuri; Park, Moon Jeong

    2015-03-01

    Electroactive polymer (EAP) actuators that show reversible deformation under external electric stimulus have attracted great attention toward a range of biomimetic applications such as microsensors and artificial muscles. Key challenges to advance the technologies can be placed on the achievement of fast response time, low driving voltage, and durable operation in air. In present study, we are motivated to solve these issues by employing self-assembled block copolymers containing ionic liquids (ILs) as polymer layers in the actuator based on knowledge of factors affecting electromechanical properties of actuators. By controlling the block architecture and molecular weight of block copolymers, bending strain and durability were controlled in a straightforward manner. It has also been revealed that the type of IL makes impact on the EAP actuator performance by determining ion migration dynamics. Our actuators demonstrated large bending strains (up to 4%) under low voltages of 1-3V, which far exceeds the best performance of other EAP actuators reported in the literature. To underpin the molecular-level understanding of actuation mechanisms underlying the improved performance, we carried out in situ spectroscopy and in situ scattering experiments under actuation.

  20. High-performance polymers from nature: catalytic routes and processes for industry.

    PubMed

    Walther, Guido

    2014-08-01

    It is difficult to imagine life today without polymers. However, most chemicals are almost exclusively synthesized from petroleum. With diminishing oil reserves, establishing an industrial process to transform renewables into high-value chemicals may be more challenging than running a car without gasoline. This is due to the difficulty in setting up processes that are novel, profitable, and environmentally benign at the same time. Additionally, the quest for sustainability of renewable resources should be based on incorporating ethical considerations in the development of plans that utilize feedstocks intended for human nutrition and health. Thus, it is important to use bio-energy containing renewable resources in the most efficient way. This Concept goes beyond the synthesis of monomers and provides insights for establishing an industrial process that transforms renewable resources into high-value chemicals, and it describes careful investigations that are of paramount importance, including evaluations from an economical and an ecological perspective. The synthesis of monomers suitable for polymer production from renewable resources would ideally be accompanied by a reduction in CO2 emission and waste, through the complete molecular utilization of the feedstock. This Concept advocates the drop-in strategy, and is guided by the example of catalytically synthesized dimethyl 1,19-nonadecanedioate and its α,ω-functionalized derivatives. With respect to the Twelve Principles of Green Chemistry, this Concept describes a technological leap forward for a sustainable green chemical industry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nitrogen-doped biomass/polymer composite porous carbons for high performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Shu, Yu; Maruyama, Jun; Iwasaki, Satoshi; Maruyama, Shohei; Shen, Yehua; Uyama, Hiroshi

    2017-10-01

    Nitrogen-doped porous monolithic carbon (NDPMC) is obtained from biomass-derived activated carbon/polyacrylonitrile composite for the first time via a template-free thermally induced phase separation (TIPS) approach followed by KOH activation. The electrochemical results indicate that NDPMC possesses ultrahigh specific capacitance of 442 F g-1 at 1 A g-1, excellent rate capability with 81% retention rate from 1 to 100 A g-1 and outstanding cycling stability with 98% capacitance retention at 20 A g-1 after 5000 cycles. Furthermore, the evaluation of NDPMC on the practical symmetrical system also exhibits desired electrochemical performances. The novel composite carbon displays remarkable capacitance properties and the feasible, low-cost synthetic route demonstrates great potential for large-scale production of high-performance electrode materials for supercapacitors.

  2. Acid-doped polymer nanofiber framework: Three-dimensional proton conductive network for high-performance fuel cells

    NASA Astrophysics Data System (ADS)

    Tanaka, Manabu; Takeda, Yasushi; Wakiya, Takeru; Wakamoto, Yuta; Harigaya, Kaori; Ito, Tatsunori; Tarao, Takashi; Kawakami, Hiroyoshi

    2017-02-01

    High-performance polymer electrolyte membranes (PEMs) with excellent proton conductivity, gas barrier property, and membrane stability are desired for future fuel cells. Here we report the development of PEMs based on our proposed new concept ;Nanofiber Framework (NfF).; The NfF composite membranes composed of phytic acid-doped polybenzimidazole nanofibers (PBINf) and Nafion matrix show higher proton conductivity than the recast-Nafion membrane without nanofibers. A series of analyses reveal the formation of three-dimensional network nanostructures to conduct protons and water effectively through acid-condensed layers at the interface of PBINf and Nafion matrix. In addition, the NfF composite membrane achieves high gas barrier property and distinguished membrane stability. The fuel cell performance by the NfF composite membrane, which enables ultra-thin membranes with their thickness less than 5 μm, is superior to that by the recast-Nafion membrane, especially at low relative humidity. Such NfF-based high-performance PEM will be accomplished not only by the Nafion matrix used in this study but also by other polymer electrolyte matrices for future PEFCs.

  3. High performance of inverted polymer solar cells with cobalt oxide as hole-transporting layer

    NASA Astrophysics Data System (ADS)

    Wang, Xiangdong; Peng, Qing; Zhu, Weiguo; Lei, Gangtie

    2015-05-01

    Cobalt oxide (II, III) (CoOx) was inserted as efficient hole-transporting interlayer between the active layer and top electrode in inverted polymer solar cells (PSCs) with titanium (diisopropoxide) bis(2, 4-pentanedionate) (TIPD) as an electron selective layer. The work function of CoOx was measured by Kelvin probe and the device performances with different thicknesses of cobalt oxide were studied. The device with CoOx exhibited a remarkable improvement in power conversion efficiency compared with that without CoOx, which indicated that CoOx efficiently prevented the recombination of charge carriers at the organic/top electrode interface. The performance improvement was attributed to the fact that the CoOx thin film can module the Schottky barrier and form an ohmic contact at the organic/metal interface, which makes it a promising hole-transporting layer.

  4. Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors

    PubMed Central

    2016-01-01

    The organic electrochemical transistor (OECT), capable of transducing small ionic fluxes into electronic signals in an aqueous environment, is an ideal device to utilize in bioelectronic applications. Currently, most OECTs are fabricated with commercially available conducting poly(3,4-ethylenedioxythiophene) (PEDOT)-based suspensions and are therefore operated in depletion mode. Here, we present a series of semiconducting polymers designed to elucidate important structure–property guidelines required for accumulation mode OECT operation. We discuss key aspects relating to OECT performance such as ion and hole transport, electrochromic properties, operational voltage, and stability. The demonstration of our molecular design strategy is the fabrication of accumulation mode OECTs that clearly outperform state-of-the-art PEDOT-based devices, and show stability under aqueous operation without the need for formulation additives and cross-linkers. PMID:27444189

  5. Assessment of microcapsule—catalyst particles healing system in high performance fibre reinforced polymer composite

    NASA Astrophysics Data System (ADS)

    Bolimowski, P. A.; Wass, D. F.; Bond, I. P.

    2016-08-01

    Autonomous self-healing in carbon fibre reinforced polymer (CFRP) is demonstrated using epoxy resin filled microcapsules and a solid-state catalyst. Microcapsules filled with oligomeric epoxy resin (20-450 μm) and particles of Sc(OTf)3 are embedded in an interleave region of a unidirectional CFRP laminate and tested under mode I loading. Double cantilever beam (DCB) test specimens containing variable concentrations of microcapsules and catalyst were prepared, tested and compared to those healed by manual injection with corresponding healing resin formulation. The healing efficiency was evaluated by comparing the maximum peak load recorded on load-displacement curves for pristine and healed specimens. A 44% maximum recovery was observed for specimens containing 10 wt% of solid phase catalyst and 11 wt% of epoxy microcapsules. However, a significant (80%) decrease in initial strain energy release rate (G IC) was observed for specimens with the embedded healing chemistries.

  6. Lignin-based monomers: Utilization in high-performance polymers and the effects of their structures on polymer properties

    NASA Astrophysics Data System (ADS)

    Stanzione, Joseph F., III

    With the uncertainty of petroleum reserves and future crude oil prices, lignocellulosic biomass is becoming an increasingly valuable resource for the sustainable development of fuels, chemicals, and materials, including vinyl ester resins (VERs). Petroleum-based VERs are used to produce polymer composites for a wide variety of commercial applications. Although possessing relatively high moduli, strengths, and glass transition temperatures, commercial VERs typically contain high concentrations of a reactive diluent, such as styrene. However, these reactive diluents are often considered hazardous air pollutants (HAPs), volatile organic compounds (VOCs), and anticipated carcinogens. Moreover, bisphenol-A, which has gained considerable attention due to potential associated health-related issues, is utilized as a precursor in the synthesis of VERs. A green chemistry and engineering approach in the development of new VERs and renewable reactive diluents that are based on lignin is presented in this dissertation. Lignin, which is currently an abundant, renewable waste product of the paper and pulping industry, is primarily burned as a low value fuel. However, lignin has the potential to be a low cost feedstock in future lignocellulosic biorefineries that could yield highly valuable aromatic chemicals (lignin model compounds, LMCs) when strategically depolymerized. The incorporation of aromaticity in a resin's chemical structure is known to improve overall polymer composite performance and the high aromatic content found in lignin is ideal for novel resin development. Highlighted in this dissertation are three projects: (1) the synthesis and characterization of a lignin-based bio-oil resin/reactive diluent, (2) the use of functionalized LMCs as styrene replacements in VERs, and (3) the synthesis and characterization of a vanillin-based resin. Through the use of traditional and new polymer theory coupled with spectroscopic, thermal, and mechanical techniques, structure

  7. Physically Cross-linked Polymer Binder Induced by Reversible Acid-Base Interaction for High-Performance Silicon Composite Anodes.

    PubMed

    Lim, Sanghyun; Chu, Hodong; Lee, Kukjoo; Yim, Taeeun; Kim, Young-Jun; Mun, Junyoung; Kim, Tae-Hyun

    2015-10-28

    Silicon is greatly promising for high-capacity anode materials in lithium-ion batteries (LIBs) due to their exceptionally high theoretical capacity. However, it has a big challenge of severe volume changes during charge and discharge, resulting in substantial deterioration of the electrode and restricting its practical application. This conflict requires a novel binder system enabling reliable cyclability to hold silicon particles without severe disintegration of the electrode. Here, a physically cross-linked polymer binder induced by reversible acid-base interaction is reported for high performance silicon-anodes. Chemical cross-linking of polymer binders, mainly based on acidic polymers including poly(acrylic acid) (PAA), have been suggested as effective ways to accommodate the volume expansion of Si-based electrodes. Unlike the common chemical cross-linking, which causes a gradual and nonreversible fracturing of the cross-linked network, a physically cross-linked binder based on PAA-PBI (poly(benzimidazole)) efficiently holds the Si particles even after the large volume changes due to its ability to reversibly reconstruct ionic bonds. The PBI-containing binder, PAA-PBI-2, exhibited large capacity (1376.7 mAh g(-1)), high Coulombic efficiency (99.1%) and excellent cyclability (751.0 mAh g(-1) after 100 cycles). This simple yet efficient method is promising to solve the failures relating with pulverization and isolation from the severe volume changes of the Si electrode, and advance the realization of high-capacity LIBs.

  8. Fluorinated benzothiadiazole-based conjugated polymers for high-performance polymer solar cells without any processing additives or post-treatments.

    PubMed

    Wang, Ning; Chen, Zheng; Wei, Wei; Jiang, Zhenhua

    2013-11-13

    Thanks to their many favorable advantages, polymer solar cells exhibit great potential for next-generation clean energy sources. Herein, we have successfully designed and synthesized a series of new fluorinated benzothiadiazole-based conjugated copolymers PBDT(TEH)-DT(H)BTff (P1), PBDT(TEH)-DT(EH)BTff (P2), and PBDT(HDO)-DT(H)BTff (P3). The power conversion efficiencies of 4.46, 6.20, and 8.30% were achieved for P1-, P2-, and P3-based devices within ~100 nm thickness active layers under AM 1.5G illumination without any processing additives or post-treatments, respectively. The PCE of 8.30% for P3 is the highest value for the reported traditional single-junction polymer solar cells via a simple fabrication architecture without any additives or post-treatments. In addition, it is noteworthy that P3 also allows making high efficient polymer solar cells with high PCEs of 7.27 and 6.56% under the same condition for ~200 and ~300 nm thickness active layers, respectively. Excellent photoelectric properties and good solubility make polymer P3 become an alternative material for high-performance polymer solar cells.

  9. A new high-performance ionic polymer-metal composite based on Nafion/polyimide blends

    NASA Astrophysics Data System (ADS)

    Nam, Jungsoo; Hwang, Taeseon; Kim, Kwang Jin; Lee, Dong-Chan

    2017-03-01

    For the first time, we report ion-exchange membranes based on Nafion and polyimide (PI, Kapton) blends to fabricate ionic polymer-metal composites (IPMCs). Polyamic acid [PAA, poly(pyromellitic dianhydride-co-4,4‧-oxydianiline), as a precursor of PI] solution was blended with Nafion solution using physical blending method to provide PAA-Nafion blend membrane. This work demonstrates that, by simple physical blending method, the thermal and mechanical properties of Nafion can be improved while maintaining the excellent actuating performance. After thermal imidization, PAA converted into PI, resulting in PI-Nafion blend membrane. Optimum conditions to cast PAA-Nafion blends and thermal imidization have been established, and blend membranes with PI wt% of 6, 12, 18, and 30 were prepared. Fourier transform infrared spectroscopy confirmed the incorporation of PI in the Nafion matrix. Thermal decomposition unique to the PI became more noticeable as the content of PI increased, which was measured by thermogravimetric analysis. Dynamic mechanical analysis showed that the storage modulus (E‧) increased as a function of PI content while loss modulus (E″) exhibited only a minor change, which resulted in the decrease in the damping properties (tan δ). The blend membranes were fabricated into IPMCs by deposition of platinum electrode onto the membrane surface through electroless plating process. Among tested, NPI-18 IPMC actuator, which has 18 wt% of PI in Nafion, showed comparable electromechanical performance to the commercially available Nafion 117 IPMC actuator.

  10. Versatile Device Architectures for High-Performing Light-Soaking-Free Inverted Polymer Solar Cells.

    PubMed

    Yan, Yu; Cai, Feilong; Yang, Liyan; Li, Wei; Gong, Yanyan; Cai, Jinlong; Liu, Shuang; Gurney, Robert S; Liu, Dan; Wang, Tao

    2017-09-27

    Metal oxide charge transport layers have been widely employed to prepare inverted polymer solar cells with high efficiency and long lifetime. However, the intrinsic defects in the metal oxide layers, especially those prepared from low-temperature routes, overshadow the high efficiency that can be achieved and also introduce "light-soaking" issues to these devices. In this work, we have employed polyethyleneimine (PEI) and poly(9,9-bis(6'-(N,N-diethylamino)propyl)-fluorene-alt-9,9-bis-(3-ethyl(oxetane-3-ethyloxy)-hexyl)-fluorene] (PFN-OX) to modify our low-temperature-processed TiO2 electron transport layer (ETL) and demonstrated that the light-soaking issue can be effectively eliminated by PEI modifications because of the formation of abundant dipole moments, whereas PFN-OX was ineffective as a result of deficient dipole moments at the interface. Excitingly, PEI modifications enable versatile device architectures to obtain light-soaking-free, inverted PTB7-Th:PC71BM solar cells with efficiencies of over 10%, by adding PEI either in the bulk or as an adjacent layer below or above the TiO2 ETL.

  11. High-Performance Polymer Solar Cells Employing Rhodamines as Cathode Interfacial Layers.

    PubMed

    Li, Wang; Liu, Zhiyang; Yang, Rongjuan; Guan, Qian; Jiang, Weigang; Islam, Amjad; Lei, Tao; Hong, Ling; Peng, Ruixiang; Ge, Ziyi

    2017-08-16

    The development of simple and water-/alcohol-soluble interfacial materials is crucial for the cost-effective fabrication process of polymer solar cells (PSCs). Herein, highly efficient PSCs are reported employing water-/alcohol-soluble and low-cost rhodamines as cathode interfacial layers (CILs). The results reveal that rhodamine-based CILs can reduce the work function of the Al cathode and simultaneously increase the open-circuit voltage, current density, fill factor, and power conversion efficiency (PCE) of PSCs. The solution-processed rhodamine-based PSCs demonstrated a remarkable PCE of 10.39%, which is one of the best efficiencies reported for thieno[3,4-b]thiophene/benzodithiophene:[6,6]-phenyl C71-butyric acid methyl ester-based PSCs so far. The efficiency is also 42.3% higher than that of the vacuum-deposited Ca-based device (PCE of 7.30%) and 21.5% higher than that of the complicated solution-processable polymeric electrolyte poly[(9,9-bis(3-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]-based device (PCE of 8.55%). Notably, rhodamines are very economical and have been extensively used as dyes in industries. Our work indicates that rhodamines have shown a strong potential as CILs compared to their counterparts in the large-area fabrication process of PSCs.

  12. High Performance Particle/Polymer Nanofiber Anodes for Li-ion Batteries using Electrospinning.

    PubMed

    Self, Ethan C; McRen, Emily C; Pintauro, Peter N

    2016-01-01

    Electrospun nanofiber mats containing carbon nanoparticles in a poly(vinylidene fluoride) binder were prepared and characterized as Li-ion battery anodes. The mats exhibited an initial capacity of 161 mAh g(-1) with 91.7% capacity retention after 510 cycles at 0.1 C (1 C=372 mA gcarbon (-1)). Whereas many nanoscale electrodes are limited to low areal and/or volumetric capacities, the particle/polymer nanofiber anodes can be made thick with a high fiber volume fraction while maintaining good rate capabilities. Thus, a nanofiber anode with a fiber volume fraction of 0.79 exhibits a volumetric capacity of 55 mAh cm(-3) at 2 C, which is twice that of a typical graphite anode. Similarly, thick nanofiber mats with a high areal capacity of 4.3 mAh cm(-2) were prepared and characterized. The excellent performance of electrospun anodes is attributed to electrolyte intrusion throughout the interfiber void space and efficient Li(+) transport between the electrolyte and carbon nanoparticles in the radial fiber direction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synergistic Ultrathin Functional Polymer-Coated Carbon Nanotube Interlayer for High Performance Lithium-Sulfur Batteries.

    PubMed

    Kim, Joo Hyun; Seo, Jihoon; Choi, Junghyun; Shin, Donghyeok; Carter, Marcus; Jeon, Yeryung; Wang, Chengwei; Hu, Liangbing; Paik, Ungyu

    2016-08-10

    Lithium-sulfur (Li-S) batteries have been intensively investigated as a next-generation rechargeable battery due to their high energy density of 2600 W·h kg(-1) and low cost. However, the systemic issues of Li-S batteries, such as the polysulfide shuttling effect and low Coulombic efficiency, hinder the practical use in commercial rechargeable batteries. The introduction of a conductive interlayer between the sulfur cathode and separator is a promising approach that has shown the dramatic improvements in Li-S batteries. The previous interlayer work mainly focused on the physical confinement of polysulfides within the cathode part, without considering the further entrapment of the dissolved polysulfides. Here, we designed an ultrathin poly(acrylic acid) coated single-walled carbon nanotube (PAA-SWNT) film as a synergic functional interlayer to address the issues mentioned above. The designed interlayer not only lowers the charge transfer resistance by the support of the upper current collector but also localizes the dissolved polysulfides within the cathode part by the aid of a physical blocking and chemical bonding. With the synergic combination of PAA and SWNT, the sulfur cathode with a PAA-SWNT interlayer maintained higher capacity retention over 200 cycles and achieved better rate retention than the sulfur cathode with a SWNT interlayer. The proposed approach of combining a functional polymer and conductive support material can provide an optimiztic strategy to overcome the fundamental challenges underlying in Li-S batteries.

  14. Carbon nanotube buckypaper to improve fire retardancy of high-temperature/high-performance polymer composites.

    PubMed

    Fu, Xiang; Zhang, Chuck; Liu, Tao; Liang, Richard; Wang, Ben

    2010-06-11

    Mixed single-walled and multi-walled carbon nanotube membrane (buckypaper) was incorporated onto the surface of polyimide/carbon fibre composites via a compression moulding process. Flammability was investigated by cone calorimeter tests under an external radiant heat flux of 50 kW m(-2). The burning residue was analysed with scanning electron microscopy and thermogravimetric analysis. The buckypaper survived the burning test and decreased the peak heat release rate by 40%, reduced the total heat release by 26%, produced 82% less smoke release and resulted in 33% less mass loss. The directly mixed carbon nanotubes (5 wt% multi-walled carbon nanotubes) yielded 38% less peak heat release rate, only 3.7% less total heat release, 28% more smoke release and no change in mass loss. Compared to direct mixing of carbon nanotubes into the resin, the use of buckypaper is more efficient in fire retardancy improvement; it yielded further delay of ignition, lower heat release rate, further reduced heat release, lower mass loss and less smoke release. The buckypaper worked as an excellent physical barrier, obstructing the flow of heat and oxygen to the inner polymer resin. The as-prepared buckypaper greatly improved the fire retardancy of polyimide matrix carbon fibre composites.

  15. Recycling high-performance carbon fiber reinforced polymer composites using sub-critical and supercritical water

    NASA Astrophysics Data System (ADS)

    Knight, Chase C.

    Carbon fiber reinforced plastics (CFRP) are composite materials that consist of carbon fibers embedded in a polymer matrix, a combination that yields materials with properties exceeding the individual properties of each component. CFRP have several advantages over metals: they offer superior strength to weight ratios and superior resistance to corrosion and chemical attack. These advantages, along with continuing improvement in manufacturing processes, have resulted in rapid growth in the number of CFRP products and applications especially in the aerospace/aviation, wind energy, automotive, and sporting goods industries. Due to theses well-documented benefits and advancements in manufacturing capabilities, CFRP will continue to replace traditional materials of construction throughout several industries. However, some of the same properties that make CFRP outstanding materials also pose a major problem once these materials reach the end of service life. They become difficult to recycle. With composite consumption in North America growing by almost 5 times the rate of the US GDP in 2012, this lack of recyclability is a growing concern. As consumption increases, more waste will inevitably be generated. Current composite recycling technologies include mechanical recycling, thermal processing, and chemical processing. The major challenge of CFRP recycling is the ability to recover materials of high-value and preserve their properties. To this end, the most suitable technology is chemical processing, where the polymer matrix can be broken down and removed from the fiber, with limited damage to the fibers. This can be achieved using high concentration acids, but such a process is undesirable due to the toxicity of such materials. A viable alternative to acid is water in the sub-critical and supercritical region. Under these conditions, the behavior of this abundant and most environmentally friendly solvent resembles that of an organic compound, facilitating the breakdown

  16. A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor.

    PubMed

    Gopalan, A I; Muthuchamy, N; Komathi, S; Lee, K-P

    2016-10-15

    The fabrication of a highly sensitive electrochemical non-enzymatic glucose sensor based on copper nanoparticles (Cu NPs) dispersed in a graphene (G)-ferrocene (Fc) redox polymer multicomponent nanobead (MCNB) is reported. The preparation of MCNB involves three major steps, namely: i) the preparation of a poly(aniline-co-anthranilic acid)-grafted graphene (G-PANI(COOH), ii) the covalent linking of ferrocene to G-PANI(COOH) via a polyethylene imine (PEI), and iii) the electrodeposition of Cu NPs. The prepared MCNB (designated as G-PANI(COOH)-PEI-Fc/Cu-MCNB), contains a conductive G-PANI(COOH), electron mediating Fc, and electrocatalytic Cu NPs that make it suitable for ultrasensitive non-enzymatic electrochemical sensing. The morphology, structure, and electro activities of MCNB were characterized. Electrochemical measurements showed that the G-PANI(COOH)-PEI-Fc/Cu-MCNB/GCE modified electrode exhibited good electrocatalytic behavior towards the detection of glucose in a wide linear range (0.50 to 15mM), with a low detection limit (0.16mM) and high sensitivity (14.3µAmM(-1)cm(-2)). Besides, the G-PANI(COOH)-PEI-Fc/Cu-MCNB/GCE sensor electrode did not respond to the presence of electroactive interferrants (such as uric acid, ascorbic acid, and dopamine) and saccharides or carbohydrates (fructose, lactose, d-isoascorbic acid, and dextrin), demonstrating its selectivity towards glucose. The fabricated NEG sensor exhibited high precision for measuring glucose in serum samples, with an average RSD of 4.3% and results comparable to those of commercial glucose test strips. This reliability and stability of glucose sensing indicates that G-PANI(COOH)-PEI-Fc/Cu-MCNB/GCE would be a promising material for the non-enzymatic detection of glucose in physiological fluids.

  17. High-Performance Electrochromic Devices Based on Poly[Ni(salen)]-Type Polymer Films.

    PubMed

    Nunes, Marta; Araújo, Mariana; Fonseca, Joana; Moura, Cosme; Hillman, Robert; Freire, Cristina

    2016-06-08

    We report the application of two poly[Ni(salen)]-type electroactive polymer films as new electrochromic materials. The two films, poly[Ni(3-Mesalen)] (poly[1]) and poly[Ni(3-MesaltMe)] (poly[2]), were successfully electrodeposited onto ITO/PET flexible substrates, and their voltammetric characterization revealed that poly[1] showed similar redox profiles in LiClO4/CH3CN and LiClO4/propylene carbonate (PC), while poly[2] showed solvent-dependent electrochemical responses. Both films showed multielectrochromic behavior, exhibiting yellow, green, and russet colors according to their oxidation state, and promising electrochromic properties with high electrochemical stability in LiClO4/PC supporting electrolyte. In particular, poly[1] exhibited a very good electrochemical stability, changing color between yellow and green (λ = 750 nm) during 9000 redox cycles, with a charge loss of 34.3%, an optical contrast of ΔT = 26.2%, and an optical density of ΔOD = 0.49, with a coloration efficiency of η = 75.55 cm(2) C(-1). On the other hand, poly[2] showed good optical contrast for the color change from green to russet (ΔT = 58.5%), although with moderate electrochemical stability. Finally, poly[1] was used to fabricate a solid-state electrochromic device using lateral configuration with two figures of merit: a simple shape (typology 1) and a butterfly shape (typology 2); typology 1 showed the best performance with optical contrast ΔT = 88.7% (at λ = 750 nm), coloration efficiency η = 130.4 cm(2) C(-1), and charge loss of 37.0% upon 3000 redox cycles.

  18. Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution

    NASA Astrophysics Data System (ADS)

    Lai, Qingxue; Gao, Qingwen; Su, Qi; Liang, Yanyu; Wang, Yuxi; Yang, Zhi

    2015-08-01

    Oxygen reduction electrocatalysts with low cost and excellent performance are urgently required for large-scale application in fuel cells and metal-air batteries. Though nitrogen-enriched transition metal/graphene hybrids (N-TM/G, TM = Fe, Co, and Ni and related compounds) have been developed as novel substitutes for precious metal catalysts (PMCs) towards oxygen reduction reaction (ORR), a significant challenge still remains for simple and efficient synthesis of N-TM/G catalysts with satisfactory electrocatalytic behavior. Herein, we demonstrate a universal bottom-up strategy for efficient fabrication of strongly-coupled N-TM/G catalysts. This strategy is implemented via direct polymerization of transition metal phthalocyanine (TMPc) in the two-dimensional confined space of in situ generated g-C3N4 and a subsequent pyrolysis. Such a space-confined bottom-up synthesis route successfully constructs a strongly-coupled triple junction of transition metal-graphitic carbon-nitrogen-doped graphene (TM-GC-NG) with extensive controllability over the specific surface area, nitrogen content/types as well as the states of metal. As a result, the optimized N-Fe/G materials have promising potential as high-performance NPMCs towards ORR both in alkaline and acidic solution.Oxygen reduction electrocatalysts with low cost and excellent performance are urgently required for large-scale application in fuel cells and metal-air batteries. Though nitrogen-enriched transition metal/graphene hybrids (N-TM/G, TM = Fe, Co, and Ni and related compounds) have been developed as novel substitutes for precious metal catalysts (PMCs) towards oxygen reduction reaction (ORR), a significant challenge still remains for simple and efficient synthesis of N-TM/G catalysts with satisfactory electrocatalytic behavior. Herein, we demonstrate a universal bottom-up strategy for efficient fabrication of strongly-coupled N-TM/G catalysts. This strategy is implemented via direct polymerization of transition

  19. Application of polymer based stationary phases in high performance liquid chromatography and capillary high performance liquid chromatography hyphenated to microcoil 1H nuclear magnetic resonance spectroscopy.

    PubMed

    Grynbaum, Marc David; Meyer, Christoph; Putzbach, Karsten; Rehbein, Jens; Albert, Klaus

    2007-07-13

    The increased demand for chromatographic materials that are able to achieve a fast separation of large quantities of structure analogues is a great challenge. It is known that polymer based chromatographic materials have a higher loadability, compared to silica based sorbents. Unfortunately these polymer materials cannot be used under high pressure which is necessary in order to obtain high flow rates, and hence long times are needed to perform a separation. However, by immobilizing a polymer on a mechanically stable porous silica core, this problem can be circumvented and higher flows become feasible on these materials. Especially for capillary liquid chromatography hyphenated with nuclear magnetic resonance a high loadability is of great importance in order to obtain sharp, resolved, and concentrated peaks thus resulting in a good signal to noise ratio in the NMR experiment. Therefore, a highly shape selective chromatographic sorbent was developed by covalently immobilizing a poly(ethylene-co-acrylic) acid copolymer (-CH(2)CH(2)-)(x)[CH(2)CH(CO(2)H)-](y) (x=119, y=2.4) with a mass fraction of acrylic acid of 5% as stationary phase on silica via a spacer molecule (3-glycidoxypropyltrimethoxysilane). First, the loadability of this sorbent compared to C(30) is demonstrated by the HPLC separation of two xanthophyll isomers. Subsequently, it has been successfully employed in the hyphenation of capillary HPLC with microcoil (1)H NMR spectroscopy by separating and identifying a highly concentrated solution of the tocopherol homologues.

  20. Polymer Microchips Integrating Solid Phase Extraction and High Performance Liquid Chromatography Using Reversed-Phase Polymethacrylate Monoliths

    PubMed Central

    Liu, Jikun; Chen, C. F.; Tsao, C. W.; Chang, C. C.; Chu, C. C.; DeVoe, D. L.

    2009-01-01

    Polymer microfluidic chips employing in situ photopolymerized polymethacrylate monoliths for high performance liquid chromatography separations of peptides is described. The integrated chip design employs a 15 cm long separation column containing a reversed-phase polymethacrylate monolith as a stationary phase, with its front end seamlessly coupled to a 5 mm long methacrylate monolith which functions as a solid phase extraction (SPE) element for sample cleanup and enrichment, serving to increase both detection sensitivity and separation performance. In addition to sample concentration and separation, solvent splitting is also performed on-chip, allowing the use of a conventional LC pump for the generation of on-chip nano-flow solvent gradients. The integrated platform takes advantage of solvent bonding and a novel high-pressure needle interface which together enable the polymer chips to withstand internal pressures above 20 MPa (~2,900 psi) for efficient pressure-driven HPLC separations. Gradient reversed-phase separation of fluorescein-labeled model peptides and BSA tryptic digest are demonstrated using the microchip HPLC system. On-line removal of free fluorescein and enrichment of labeled proteins are simultaneously achieved using the on-chip SPE column, resulting in a 150-fold improvement in sensitivity and a 10-fold reduction in peak width in the following microchip gradient LC separation. PMID:19267447

  1. Spontaneously formed high-performance charge-transport layers of organic single-crystal semiconductors on precisely synthesized insulating polymers

    NASA Astrophysics Data System (ADS)

    Makita, Tatsuyuki; Sasaki, Masayuki; Annaka, Tatsuro; Sasaki, Mari; Matsui, Hiroyuki; Mitsui, Chikahiko; Kumagai, Shohei; Watanabe, Shun; Hayakawa, Teruaki; Okamoto, Toshihiro; Takeya, Jun

    2017-04-01

    Charge-transporting semiconductor layers with high carrier mobility and low trap-density, desired for high-performance organic transistors, are spontaneously formed as a result of thermodynamic phase separation from a blend of π-conjugated small molecules and precisely synthesized insulating polymers dissolved in an aromatic solvent. A crystal film grows continuously to the size of centimeters, with the critical conditions of temperature, concentrations, and atmosphere. It turns out that the molecular weight of the insulating polymers plays an essential role in stable film growth and interfacial homogeneity at the phase separation boundary. Fabricating the transistor devices directly at the semiconductor-insulator boundaries, we demonstrate that the mixture of 3,11-didecyldinaphtho[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene and poly(methyl methacrylate) with the optimized weight-average molecular weight shows excellent device performances. The spontaneous phase separation with a one-step fabrication process leads to a high mobility up to 10 cm2 V-1 s-1 and a low subthreshold swing of 0.25 V dec-1 even without any surface treatment such as self-assembled monolayer modifications on oxide gate insulators.

  2. Molecular-shape selective high-performance liquid chromatography: stabilization effect of polymer main chain by alternating copolymerization.

    PubMed

    Mallik, Abul K; Qiu, Hongdeng; Sawada, Tsuyoshi; Takafuji, Makoto; Ihara, Hirotaka

    2012-04-06

    This work aims to clarify that stabilization or increased rigidity of polymer main chains as an organic stationary phase can lead the selectivity enhancement in high-performance liquid chromatography (HPLC). For this purpose, the alternating copolymer of octadecyl acrylate (ODA) with a cyclic monomer (N-octadecylmaleimide, OMI) as a rigid segment was synthesized and compared with the ODA homopolymer. Both of the polymer-grafted silicas (Sil-poly(ODA-alt-OMI) and Sil-poly(ODA), respectively) were prepared by radical polymerization on 3-mercaptopropyltrimethoxysilane-modified silica. The characterizations were carried out by elemental analyses, diffuse reflectance infrared Fourier transform (DRIFT), and solid-state (13)C cross-polarization magic angle spinning nuclear magnetic resonance (CP-MAS-NMR) spectroscopies. Chromatographic behaviors were evaluated by the retention studies of shape-constrained isomers of polycyclic aromatic hydrocarbons (PAHs), isomers of tocopherol and carotenoids. Higher molecular-linearity selectivity toward PAHs was obtained on Sil-poy(ODA-alt-OMI) regardless of temperature changes but at temperature below 40 °C, Sil-poly(ODA) showed better planarity selectivity than that of Sil-poy(ODA-alt-OMI). As a result, the higher separation ability toward tocopherols and carotenoids was obtained on Sil-poy(ODA-alt-OMI). These results indicate that the stabilization in the polymer main chain by alternating copolymerization and the stabilization in the side chains by a disordered-to-ordered phase transition were effective to enhance the molecular-shape selectivity. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Enzymatic activity of alkaline phosphatase inside protein and polymer structures fabricated via multiphoton excitation.

    PubMed

    Basu, Swarna; Campagnola, Paul J

    2004-01-01

    We demonstrate micron scale control of bioactivity through the use of multiphoton excited photochemistry, where this technique has been used to cross-link three-dimensional matrixes of alkaline phosphatase, bovine serum albumin, and polyacrylamide and combinations therein. Using a fluorescence-based assay (ELF-97), the enzymatic activity has been studied using a Michaelis-Menten analysis, and we have measured the specificity constants kcat/KM for alkaline phosphatase in both the protein and polymer matrixes to be on the order of 10(5)-10(6) M(-1) s(-1)and are comparable to known literature values in other environments. It is found that the enzyme is simply entrapped in the polymer matrix, whereas it is completely covalently bound in the protein structures. The relative reaction rate of alkaline phosphatase bound to BSA with the ELF substrate was measured as a function of cross-link density and was found to decrease in the more tightly formed matrixes, indicating a decrease in the diffusion in the matrix.

  4. Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane

    NASA Astrophysics Data System (ADS)

    Bertolotti, Bruno; Messaoudi, Houssam; Chikh, Linda; Vancaeyzeele, Cédric; Alfonsi, Séverine; Fichet, Odile

    2015-01-01

    We developed original anion exchange membranes to protect air electrodes operating in aqueous lithium-air battery configuration, i.e. supplied with atmospheric air and in concentrated aqueous lithium hydroxide. These protective membranes have an interpenetrating polymer network (IPN) architecture combining a hydrogenated cationic polyelectrolyte network based on poly(epichlorohydrin) (PECH) and a fluorinated neutral network based on perfluoropolyether (Fluorolink® MD700). Two phases, each one rich in one of the polymer, are co-continuous in the materials. This morphology allows combining their properties according to the weight proportions of each polymer. Thus, PECH/Fluorolink IPNs show ionic conductivity varying from 1 to 2 mS cm-1, water uptake from 30 to 90 wt.% and anionic transport number from 0.65 to 0.80 when the PECH proportion varies from 40 to 90 wt.%. These membranes have been systematically assembled on air electrodes. Air electrode protected with PECH/Fluorolink 70/30 IPN shows outstanding stability higher than 1000 h, i.e. a 20-fold increase in the lifetime of the non-modified electrode. This efficient membrane/air electrode assembly is promising for development of alkaline electrolyte based storage or production energy systems, such as metal air batteries or alkaline fuel cells.

  5. Two 3D structured Co-Ni bimetallic oxides as cathode catalysts for high-performance alkaline direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shu, Chengyong; Fang, Yuan; Chen, Yuanzhen; Liu, Yongning

    2017-09-01

    Two NiCo2O4 bimetallic oxides were synthesized via a facile hydrothermal method. SEM and TEM observations show that these materials have three-dimensional (3D) dandelion-like (DL) and flower-like (FL) morphologies. Their large specific surface areas (90.68 and 19.8 m2·g-1) and porous structures provide many active sites and effective transport pathways for the oxygen reduction reaction (ORR). Electrochemical measurements with a rotating ring-disc electrode (RRDE) indicate that the electron transfer numbers of the NiCo2O4-DL and NiCo2O4-FL catalysts for ORR in an alkaline solution are 3.97 and 3.91, respectively. Fuel cells were assembled with the bimetallic oxides, PtRu/C and a polymer fiber membrane (PFM) as cathode catalysts, anode catalyst and electrolyte film, respectively. For NiCo2O4-DL, the peak power density reaches up to 73.5 mW·cm-2 at 26 °C, which is the highest room-temperature value reported to date. The high catalytic activity of NiCo2O4 is mainly attributed to the presence of many Co3+ cations that directly donate electrons to O2 to reduce it via a more efficient and effective route. Furthermore, the catalytic performance of NiCo2O4-DL is superior to that of NiCo2O4-FL because it has a higher specific surface area and is less crystalline.

  6. High performance p-type organic thin film transistors with an intrinsically photopatternable, ultrathin polymer dielectric layer☆

    PubMed Central

    Petritz, Andreas; Wolfberger, Archim; Fian, Alexander; Krenn, Joachim R.; Griesser, Thomas; Stadlober, Barbara

    2013-01-01

    A high-performing bottom-gate top-contact pentacene-based oTFT technology with an ultrathin (25–48 nm) and electrically dense photopatternable polymeric gate dielectric layer is reported. The photosensitive polymer poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE) is patterned directly by UV-exposure (λ = 254 nm) at a dose typical for conventionally used negative photoresists without the need for any additional photoinitiator. The polymer itself undergoes a photo-Fries rearrangement reaction under UV illumination, which is accompanied by a selective cross-linking of the macromolecules, leading to a change in solubility in organic solvents. This crosslinking reaction and the negative photoresist behavior are investigated by means of sol–gel analysis. The resulting transistors show a field-effect mobility up to 0.8 cm2 V−1 s−1 at an operation voltage as low as −4.5 V. The ultra-low subthreshold swing in the order of 0.1 V dec−1 as well as the completely hysteresis-free transistor characteristics are indicating a very low interface trap density. It can be shown that the device performance is completely stable upon UV-irradiation and development according to a very robust chemical rearrangement. The excellent interface properties, the high stability and the small thickness make the PNDPE gate dielectric a promising candidate for fast organic electronic circuits. PMID:24748853

  7. Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells

    PubMed Central

    Jeon, Yukwon; Kim, Dong Jun; Koh, Jong Kwan; Ji, Yunseong; Kim, Jong Hak; Shul, Yong-Gun

    2015-01-01

    Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method. The best MEA performance is achieved using patterned Nafion membrane with a circle 2 μm in size, which exhibited a very high power density of 1906 mW/cm2 at 75 °C and Pt loading of 0.4 mg/cm2 with 73% improvement compared to the commercial membrane. The improved performance are attributed to the decreased MEA resistances and increased surface area for higher Pt utilization of over 80%. From these enhanced properties, it is possible to operate at lower Pt loading of 0.2 mg/cm2 with an outstanding performance of 1555 mW/cm2 and even at air/low humidity operations. PMID:26552839

  8. Fast stack activation procedure and effective long-term storage for high-performance polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Seung Yong; Seo, Dong-Jun; Kim, Myeong-Ri; Seo, Min Ho; Hwang, Sun-Mi; Jung, Yong-Min; Kim, Beom-Jun; Yoon, Young-Gi; Han, Byungchan; Kim, Tae-Young

    2016-10-01

    Time-saving stack activation and effective long-term storage are one of most important issues that must be resolved for the commercialization of polymer electrolyte membrane fuel cell (PEMFC). Herein, we developed the cost-effective stack activation method to finish the whole activation within 30 min and the long-term storage method by using humidified N2 without any significant decrease in cell's performance for 30 days. Specifically, the pre-activation step with the direct injection of DI water into the stack and storage at 65 or 80 °C for 2 h increases the distinctive phase separation between the hydrophobic and hydrophilic regions in Nafion membrane, which significantly reduces the total activation time within 30 min. Additionally, the long-term storage with humidified N2 has no effect on the Pt oxidation and drying of Nafion membrane for 30 days due to its exergonic reaction in the cell. As a result, the high water content in Nafion membrane and the decrease of Pt oxidation are the critical factors that have a strong influence on the activation and long-term storage for high-performance PEMFC.

  9. Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes.

    PubMed

    Hwang, Jin Ok; Park, Ji Sun; Choi, Dong Sung; Kim, Ju Young; Lee, Sun Hwa; Lee, Kyung Eun; Kim, Yong-Hyun; Song, Myoung Hoon; Yoo, Seunghyup; Kim, Sang Ouk

    2012-01-24

    Graphene is a promising candidate to complement brittle and expensive transparent conducting oxides. Nevertheless, previous research efforts have paid little attention to reduced graphene, which can be of great benefit due to low-cost solution processing without substrate transfer. Here we demonstrate workfunction-tunable, highly conductive, N-doped reduced graphene film, which is obtainable from the spin-casting of graphene oxide dispersion and can be successfully employed as a transparent cathode for high-performance polymer light-emitting diodes (PLEDs) as an alternative to fluorine-doped tin oxide (FTO). The sheet resistance of N-doped reduced graphene attained 300 Ω/□ at 80% transmittance, one of the lowest values ever reported from the reduction of graphene oxide films. The optimal doping of quaternary nitrogen and the effective removal of oxygen functionalities via sequential hydrazine treatment and thermal reduction accomplished the low resistance. The PLEDs employing N-doped reduced graphene cathodes exhibited a maximum electroluminescence efficiency higher than those of FTO-based devices (4.0 cd/A for FTO and 7.0 cd/A for N-doped graphene at 17,000 cd/m(2)). The reduced barrier for electron injection from a workfunction-tunable, N-doped reduced graphene cathode offered this remarkable device performance.

  10. Porous organic polymer/RGO composite as high performance cathode for half and full sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Aihua; Feng, Zhenyu; Sun, Yan; Shang, Limei; Xu, Liqiang

    2017-03-01

    Redox-active organic polymers are promising cathode electrodes owing to the advantages of open and flexible frame-works, renewability and environmental friendliness. Sodium salt of poly (2, 5-dihydroxy-p-benzoquinonyl sulfide)/RGO (Na2PDHBQS/RGO) composite has been fabricated via a convenient route and applied as a high performance and stable cathode for sodium ion batteries. The Na2PDHBQS/RGO was investigated in ether-based electrolyte, which demonstrated better electrochemical performances (228, 214, 203, 193, 172 and 147 mAh g-1 at 0.1, 0.2, 0.4, 0.8, 2 and 4C, respectively) than that in traditional ester-based ones. The high specific capacity, excellent cycle stability and reversibility of Na2PDHBQS/RGO may be attributed to the special porous structure, enhanced electronic conductivity by the introduction of RGO and fast sodium ion and electron diffusion rate in ether-based electrolyte. In addition, the Na2PDHBQS/RGO cathode has been assembled with disodium terephthalate (Na2TP) anode to compose a full cell for the first time, which presents an initial reversible capacity of 210 mAh g-1 at 0.1C.

  11. Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Jeon, Yukwon; Kim, Dong Jun; Koh, Jong Kwan; Ji, Yunseong; Kim, Jong Hak; Shul, Yong-Gun

    2015-11-01

    Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method. The best MEA performance is achieved using patterned Nafion membrane with a circle 2 μm in size, which exhibited a very high power density of 1906 mW/cm2 at 75 °C and Pt loading of 0.4 mg/cm2 with 73% improvement compared to the commercial membrane. The improved performance are attributed to the decreased MEA resistances and increased surface area for higher Pt utilization of over 80%. From these enhanced properties, it is possible to operate at lower Pt loading of 0.2 mg/cm2 with an outstanding performance of 1555 mW/cm2 and even at air/low humidity operations.

  12. Toward High-Performance Organic-Inorganic Hybrid Solar Cells: Bringing Conjugated Polymers and Inorganic Nanocrystals in Close Contact.

    PubMed

    He, Ming; Qiu, Feng; Lin, Zhiqun

    2013-06-06

    Organic-inorganic hybrid solar cells composed of conjugated polymers (CPs) and inorganic nanocrystal (NC) semiconductors have garnered considerable attention as a potential alternative to traditional silicon solar cells due to the capacity of producing high-efficiency solar energy in a cost-effective manner. The combination of advantageous characteristics of CPs and NCs enables the construction of nanostructured high-performance, lightweight, flexible, large-area, and low-cost hybrid solar cells. However, it remains a grand challenge to control the film morphology and interfacial structure of such organic/inorganic semiconductor blends on the nanoscale. In this Perspective, we highlight the strategies of implementing close contact between CPs and NCs by tailoring the colloidal synthesis, the coordination reaction, and the chemical modification of CPs. As such, they offer promising opportunities for rationally controlling the phase separation between electron-donating CPs and electron-accepting NCs, increasing the interfacial areas between them, enhancing their electronic interaction, and thus substantially promoting the photovoltaic performance of the resulting organic-inorganic hybrid solar cells.

  13. All solid-state electric double-layer capacitors based on alkaline polyvinyl alcohol polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Hsu, Sung-Ting; Chien, Wen-Chen

    Solid-state electrochemical double-layer capacitors (ELDCs) based on alkaline polyvinyl alcohol (PVA) solid polymer electrolytes (SPEs) are prepared. Electrochemical capacitance performance of these capacitors is studied by cyclic voltammetry, galvanostatic charge-discharge testing, and ac impedance spectroscopy. For comparison, two types of EDLC cells are constructed and tested. It is found that an EDLC with a PVA polymer electrolyte exhibits much higher capacitance and longer cycle-life than one with the PP/PE separator. The specific capacitance for the EDLC with the PVA-based SPE is in the range of 100-112 F g -1, and depends on the scan rate or the charge-discharge current rates. The results also indicate that the solid-state EDLC shows a relatively stable specific capacitance of 100 F g -1 after 1000 cycles. The findings suggest that the PVA-based SPE is a promising material for use in EDLCs.

  14. The effect of polymer-surfactant interaction on the rheological properties of surfactant enhanced alkaline flooding formulations

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1993-02-01

    Surfactant-enhanced, lower pH (weak) alkaline chemicals are effective for mobilizing residual oil. Polymer is used for mobility control because if mobility control is lost, then oil recovery is reduced. The ability to maintain mobility control during surfactant-alkaline flooding can be adversely affected by chemical interaction. In this work, interaction between polymers and surfactants was shown to be affected by pH, ionic strength, crude oil, and the properties of the polymers and surfactants. Polymer-surfactant interaction (phase separation, precipitation, and viscosity loss) occurred between most of the polymers and surfactants that were tested. Polymer-surfactant interaction is difficult to eliminate, and no method was found for completely eliminating interaction. Polymer-surfactant interaction occurred at optimal salinity and below optimal salinity. Polymer-surfactant interaction had an adverse effect on polymer rheology; however, the adverse effect of interaction on polymer rheology was lessened when oil was present. Increasing the pH of chemical systems further reduced the adverse effects of interaction on polymer rheology.

  15. Synthesis and characterization of alkaline polyvinyl alcohol and poly(epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lin, Sheng-Jen; Hsu, Sung-Ting

    Alkaline SPE was obtained from a blend of polyvinyl alcohol (PVA) and poly(epichlorohydrin) (PECH), PVA-PECH, by a solution-cast technique. The PVA host polymer is blended with PECH polymer to provide a polymer electrolyte with improved chemical and mechanical properties. The ionic conductivity of the PVA-PECH polymer electrolytes is between 10 -2 and 10 -3 S cm -1 at room temperature when the blend ratio is varied from 1:0.2 to 1:1. The PVA-PECH polymer was characterized by means of scanning electron microscopy, X-ray diffraction, stress-strain test, cyclic voltammetry, and a.c. impedance spectroscopy. It is found that the polymer electrolytes exhibit good mechanical strength and excellent chemical stability. The electrochemical performance of solid-state Zn-air batteries with various types of the blended polymer electrolyte films is examined by a galvanostatic discharge method.

  16. Control of miscibility and aggregation via the material design and coating process for high-performance polymer blend solar cells.

    PubMed

    Zhou, Erjun; Cong, Junzi; Hashimoto, Kazuhito; Tajima, Keisuke

    2013-12-23

    A power conversion efficiency of 3.6% for an all-polymer solar cell, which is the highest ever reported, is achieved by introducing a conjugated side chain into a p-type polymer to improve the miscibility of the polymer blend and by adding small amounts of 1,8-diiodooctane to increase the aggregation of n-type polymer. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Linear alkaline earth metal phosphinate coordination polymers: synthesis and structural characterization.

    PubMed

    Rood, Jeffrey A; Huttenstine, Ashley L; Schmidt, Zachery A; White, Michael R; Oliver, Allen G

    2014-06-01

    Reaction of alkaline earth metal salts with diphenylphosphinic acid in dimethylformamide solvent afforded four coordination polymers: [Mg3(O2PPh2)6(DMF)2]·2DMF (I), [Ca(O2PPh2)2(DMF)2] (II), [Sr(O2PPh2)2(DMF)2] (III) and [Ba(O2PPh2)2(DMF)2] (IV) (where DMF is N,N-dimethylformamide). Single-crystal X-ray diffraction revealed that all four compounds produce linear chain structures in the solid state, with the Ca, Sr and Ba forming isostructural crystals. The bulk materials were characterized by FT-IR and (1)H NMR spectroscopy and elemental analyses.

  18. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate

    NASA Astrophysics Data System (ADS)

    Ling, Yajing; Bai, Dongjie; Feng, Yunlong; He, Yabing

    2016-10-01

    Combination of hexakis(4-carboxylatephenoxy)cyclotriphosphazene with alkaline earth ions of increasing ionic radii (Mg2+, Ca2+ and Ba2+) under different solvothermal conditions yielded three new coordination polymers, and their crystal structures were determined by single-crystal X-ray diffraction analysis. The magnesium compound displays a three dimensional (3D) network structure constructed from the deprotonated ligand and the secondary building block Mg(COO)4, which can be rationalized as a (4,6)-connected topological net with the Schläfli symbol of (44·62)3(49·66)2. The calcium compound consists of 1D infinite "Ca-O" inorganic chains connected by the deprotonated ligands to from a 3D framework. The barium compound exhibits a 3D framework in which 1D "Ba-O" inorganic chains are connected together by the deprotonated organic linkers. Due to the semi-rigid nature, the ligand adopts distinctly different conformations in the three compounds. The metal ions' influence exerted on the final structure of the resulting coordination polymers is also discussed. When the radii of alkaline earth ions increases descending down the group from Mg(II) to Ba(II), the coordination number becomes larger and more versatile: from 6 in the magnesium compound, to 6,7 and 10 in the calcium compound, and to 8 and 9 in the barium compound, thus substantially influencing the resulting final framework structures. Also, the photophysical properties were investigated systematically, revealing that the three compounds are photoluminscent in the solid state at room temperature. This work demonstrates that although the multiplicity of conformation in the hexacarboxylate ligand based on the inorganic scaffold cyclotriphosphazene makes it difficult to predict how this ligand will form extended network, but provides unique opportunities for the formation of diverse inorganic-organic hybrids exhibiting rich structural topologies.

  19. Importance of Solubilizing Group and Backbone Planarity in Low Band Gap Polymers for High Performance Ambipolar field-effect Transistors

    SciTech Connect

    Lee, Joong Suk; Son, Seon Kyoung; Song, Sanghoon; Kim, Hyunjung; Lee, Dong Ryoul; Kim, Kyungkon; Ko, Min Jae; Choi, Dong Hoon; Kim, BongSoo; Cho, Jeong Ho

    2012-06-13

    We investigated the performance of ambipolar field-effect transistors based on a series of alternating low band gap polymers of oligothiophene and diketopyrrolopyrrole (DPP). The polymers contain oligothiophene units of terthiophene [T3] and thiophene-thienothiophene-thiophene [T2TT] and DPP units carrying branched alkyl chains of 2-hexyldecyl [HD] or 2-octyldodecyl [OD]. The structural variation allows us to do a systematic study on the relationship between the interchain stacking/ordering of semiconducting polymers and their resulting device performance. On the basis of synchrotron X-ray diffraction and atomic force microscopy measurements on polymer films, we found that longer branched alkyl side chains, i.e., OD, and longer and more planar oligothiophene, i.e., T2TT, generate the more crystalline structures. Upon thermal annealing, the crystallinity of the polymers was largely improved, and polymers containing a longer branched alkyl chain responded faster because longer alkyl chains have larger cohesive forces than shorter chains. For all the polymers, excellent ambipolar behavior was observed with a maximum hole and electron mobility of 2.2 and 0.2 cm{sup 2} V{sup -1} s{sup -1}, respectively.

  20. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries

    PubMed Central

    Zhang, Jianjun; Yue, Liping; Hu, Pu; Liu, Zhihong; Qin, Bingsheng; Zhang, Bo; Wang, Qingfu; Ding, Guoliang; Zhang, Chuanjian; Zhou, Xinhong; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-01-01

    Inspired by Taichi, we proposed rigid-flexible coupling concept and herein developed a highly promising solid polymer electrolyte comprised of poly (ethylene oxide), poly (cyano acrylate), lithium bis(oxalate)borate and robust cellulose nonwoven. Our investigation revealed that this new class solid polymer electrolyte possessed comprehensive properties in high mechanical integrity strength, sufficient ionic conductivity (3 × 10−4 S cm−1) at 60°C and improved dimensional thermostability (up to 160°C). In addition, the lithium iron phosphate (LiFePO4)/lithium (Li) cell using such solid polymer electrolyte displayed superior rate capacity (up to 6 C) and stable cycle performance at 80°C. Furthermore, the LiFePO4/Li battery could also operate very well even at an elevated temperature of 160°C, thus improving enhanced safety performance of lithium batteries. The use of this solid polymer electrolyte mitigates the safety risk and widens the operation temperature range of lithium batteries. Thus, this fascinating study demonstrates a proof of concept of the use of rigid-flexible coupling solid polymer electrolyte toward practical lithium battery applications with improved reliability and safety. PMID:25183416

  1. Linked‐Acceptor Type Conjugated Polymer for High Performance Organic Photovoltaics with an Open‐Circuit Voltage Exceeding 1 V

    PubMed Central

    Xia, Benzheng; Zhao, Yifan; Zhang, Jianqi; Yuan, Liu; Zhu, Lingyun; Yi, Yuanping

    2015-01-01

    A linked‐acceptor type conjugated polymer is designed and sythesized based on 4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) and linked‐thieno[3,4‐c]pyrrole‐4,6‐dione (LTPD). This polymer uses alkyl‐substituted thiophene as a bridge. The PBDTT‐LTPD includes two TPD units in one repeating unit, which can enhance acceptor density in the polymer backbone and lower the highest occupied molecular orbital (HOMO) level. By contrast, variable alkyl substitutions in the thiophene‐bridges ensure the subtle regulation of polymer properties. The solar cells based on PBDTT‐LTPD display an open‐circuit voltage (V oc) that exceeds 1 V, and a maximum power conversion efficiency (PCE) of 7.59% is obtained. This PCE value is the highest for conventional single‐junction bulk heterojunction solar cells with V oc values of up to 1 V. Given that PBDTT‐LTPD exhibits a low HOMO energy level and a band gap equivalent to that of poly(3‐hexylthiophene), PBDTT‐LTPD/phenyl‐C61‐butyric acid methyl ester may be a promising candidate for the front cell in tandem polymer solar cells. PMID:27980933

  2. Rational material, interface, and device engineering for high-performance polymer and perovskite solar cells (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Jen, Alex K.

    2015-10-01

    The performance of polymer and hybrid solar cells is also strongly dependent on their efficiency in harvesting light, exciton dissociation, charge transport, and charge collection at the metal/organic/metal oxide or the metal/perovskite/metal oxide interfaces. Our laboratory employs a molecular engineering approach to develop processible low band-gap polymers with high charge carrier mobility that can enhance power conversion efficiency of the single junction solar cells to values as high as ~11%. We have also developed several innovative strategies to modify the interface of bulk-heterojunction devices and create new device architectures to fully explore their potential for solar applications. In this talk, the integrated approach of combining material design, interface, and device engineering to significantly improve the performance of polymer and hybrid perovskite photovoltaic cells will be discussed. Specific emphasis will be placed on the development of low band-gap polymers with reduced reorganizational energy and proper energy levels, formation of optimized morphology of active layer, and minimized interfacial energy barriers using functional conductive surfactants. At the end, several new device architectures and optical engineering strategies to make tandem cells and semitransparent solar cells will be discussed to explore the full promise of polymer and perovskite hybrid solar cells.

  3. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun

    2016-10-01

    A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.

  4. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries.

    PubMed

    Zhang, Jianjun; Yue, Liping; Hu, Pu; Liu, Zhihong; Qin, Bingsheng; Zhang, Bo; Wang, Qingfu; Ding, Guoliang; Zhang, Chuanjian; Zhou, Xinhong; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-09-03

    Inspired by Taichi, we proposed rigid-flexible coupling concept and herein developed a highly promising solid polymer electrolyte comprised of poly (ethylene oxide), poly (cyano acrylate), lithium bis(oxalate)borate and robust cellulose nonwoven. Our investigation revealed that this new class solid polymer electrolyte possessed comprehensive properties in high mechanical integrity strength, sufficient ionic conductivity (3 × 10(-4) S cm(-1)) at 60°C and improved dimensional thermostability (up to 160°C). In addition, the lithium iron phosphate (LiFePO4)/lithium (Li) cell using such solid polymer electrolyte displayed superior rate capacity (up to 6 C) and stable cycle performance at 80°C. Furthermore, the LiFePO4/Li battery could also operate very well even at an elevated temperature of 160°C, thus improving enhanced safety performance of lithium batteries. The use of this solid polymer electrolyte mitigates the safety risk and widens the operation temperature range of lithium batteries. Thus, this fascinating study demonstrates a proof of concept of the use of rigid-flexible coupling solid polymer electrolyte toward practical lithium battery applications with improved reliability and safety.

  5. Linked-Acceptor Type Conjugated Polymer for High Performance Organic Photovoltaics with an Open-Circuit Voltage Exceeding 1 V.

    PubMed

    Xia, Benzheng; Lu, Kun; Zhao, Yifan; Zhang, Jianqi; Yuan, Liu; Zhu, Lingyun; Yi, Yuanping; Wei, Zhixiang

    2015-04-01

    A linked-acceptor type conjugated polymer is designed and sythesized based on 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (BDTT) and linked-thieno[3,4-c]pyrrole-4,6-dione (LTPD). This polymer uses alkyl-substituted thiophene as a bridge. The PBDTT-LTPD includes two TPD units in one repeating unit, which can enhance acceptor density in the polymer backbone and lower the highest occupied molecular orbital (HOMO) level. By contrast, variable alkyl substitutions in the thiophene-bridges ensure the subtle regulation of polymer properties. The solar cells based on PBDTT-LTPD display an open-circuit voltage (Voc) that exceeds 1 V, and a maximum power conversion efficiency (PCE) of 7.59% is obtained. This PCE value is the highest for conventional single-junction bulk heterojunction solar cells with Voc values of up to 1 V. Given that PBDTT-LTPD exhibits a low HOMO energy level and a band gap equivalent to that of poly(3-hexylthiophene), PBDTT-LTPD/phenyl-C61-butyric acid methyl ester may be a promising candidate for the front cell in tandem polymer solar cells.

  6. Multifunctional Free-Standing Gel Polymer Electrolyte with Carbon Nanofiber Interlayers for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Choi, Sinho; Song, Jianjun; Wang, Chengyin; Park, Soojin; Wang, Guoxiu

    2017-07-04

    Free-standing trimethylolpropane ethoxylate triacrylate gel polymer electrolyte is synthesized by a chemical cross-linking process and used as an electrolyte and separator membrane in lithium-sulfur batteries. The cross linked gel polymer electrolyte also exhibited a stable geometric size retention of 95 % at the high temperature of 130 °C. The as-prepared gel polymer electrolyte membrane with carbon nanofibers interlayer can effectively prevent polysulfide dissolution and shuttle effect, leading to significantly enhanced electrochemical properties, including high capacity and cycling stability, with an enhanced specific capacity of 790 mA h g(-1) after 100 cycles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A seeded synthetic strategy for uniform polymer and carbon nanospheres with tunable sizes for high performance electrochemical energy storage.

    PubMed

    Qian, Jiasheng; Liu, Mingxian; Gan, Lihua; Tripathi, Pranav K; Zhu, Dazhang; Xu, Zijie; Hao, Zhixian; Chen, Longwu; Wright, Dominic S

    2013-04-14

    We established a novel and facile strategy to synthesize uniform polymer and carbon nanospheres, the diameters of which can be precisely programmed between 35-105 and 30-90 nm, respectively, via time-controlled formation of colloidal seeds. The carbon nanospheres show promising prospects in high rate performance electrochemical energy storage.

  8. High-performance 193-nm photoresist materials based on a new class of polymers containing spaced ester finctionalities

    NASA Astrophysics Data System (ADS)

    Khojasteh, Mahmoud; Chen, K. Rex; Kwong, Ranee W.; Lawson, Margaret C.; Varanasi, Pushkara R.; Patel, Kaushal S.; Kobayashi, Eiichi

    2003-06-01

    ArF lithography has been selected as the imaging method for the 90 nm technology node. Manufacturing related issues will have to be addressed when designing advanced 193 nm resists that are production worthy. Post exposure bake (PEB) sensitivity, dissolution properties and process window are some issues that need continuous improvement. Initially our investigation focused on a cyclic olefin (CO) platform which led us to a better understanding of the relationship between polymer structure and physical properties and how to improve cyclic olefin resist performance. Since then we have developed a new class of acrylate polymers with pendant "spaced ester" functionality. We have investigated the potential use of "spaced ester" functionality on improving the lithographic performance of CO and acrylate resist platforms. We have found that with "spaced ester" as pending group in CO polymer structures, it can lower the Tg and improve the dissolution properties of the CO resists. Resists formulated with acrylate containing "spaced ester" group exhibit excellent PEB temperature sensitivity (1 nm/°C), and are soluble in PGMEA. In addition, we have demonstrated sub-100 nm resolution with excellent process window through formulation optimization for acrylate based resists. This paper will focus on the "spaced ester" based polymer design, material properties; resist characteristics, and the lithographic performance for logic dense line applications.

  9. Determination of Proanthocyanidin A2 Content in Phenolic Polymer Isolates by Reversed-Phase High Performance Liquid Chromatography

    USDA-ARS?s Scientific Manuscript database

    This article summarizes the development of an analytical method for the determination of proanthocyanidin (PAC) A2 in phenolic polymer isolates following acid-catalyzed degradation in the presence of excess phloroglucinol. Isolates from cranberry juice concentrate (CJC) were extensively characterize...

  10. High Performance and Long-Term Stability in Ambiently Fabricated Segmented Solid-State Polymer Electrochromic Displays.

    PubMed

    Remmele, Julian; Shen, D Eric; Mustonen, Tero; Fruehauf, Norbert

    2015-06-10

    This work reports on the performance of a segmented polymer electrochromic display that was fabricated with solution-based processes in ambient atmosphere. An encapsulation process and the combination of structured wells for the polymer electrochrome and electrolyte layers as well as the use of a preoxidized counter polymer yields high contrasts and fast switching speeds. Asymmetric driving-with respect to time-of the display is investigated for the first time and the degradation effects in the electrochrome layer are analyzed and addressed to yield a stable device exceeding 100,000 switching cycles. A printed circuit board was integrated with the display, allowing the device to be run as a clock, where the segments only required short pulses to switch without the need for a constant current to maintain its state. Such an application pairs well with the advantages of electrochromic polymers, drawing on its high contrast, stability, and ability to maintain its colored or colorless state without the need for a constant power supply, to demonstrate the promise as well as the challenges of developing more sophisticated electrochromic devices.

  11. High-Performance Flexible Solid-State Supercapacitor with an Extended Nanoregime Interface through in Situ Polymer Electrolyte Generation.

    PubMed

    Anothumakkool, Bihag; Torris A T, Arun; Veeliyath, Sajna; Vijayakumar, Vidyanand; Badiger, Manohar V; Kurungot, Sreekumar

    2016-01-20

    Here, we report an efficient strategy by which a significantly enhanced electrode-electrolyte interface in an electrode for supercapacitor application could be accomplished by allowing in situ polymer gel electrolyte generation inside the nanopores of the electrodes. This unique and highly efficient strategy could be conceived by judiciously maintaining ultraviolet-triggered polymerization of a monomer mixture in the presence of a high-surface-area porous carbon. The method is very simple and scalable, and a prototype, flexible solid-state supercapacitor could even be demonstrated in an encapsulation-free condition by using the commercial-grade electrodes (thickness = 150 μm, area = 12 cm(2), and mass loading = 7.3 mg/cm(2)). This prototype device shows a capacitance of 130 F/g at a substantially reduced internal resistance of 0.5 Ω and a high capacitance retention of 84% after 32000 cycles. The present system is found to be clearly outperforming a similar system derived by using the conventional polymer electrolyte (PVA-H3PO4 as the electrolyte), which could display a capacitance of only 95 F/g, and this value falls to nearly 50% in just 5000 cycles. The superior performance in the present case is credited primarily to the excellent interface formation of the in situ generated polymer electrolyte inside the nanopores of the electrode. Further, the interpenetrated nature of the polymer also helps the device to show a low electron spin resonance and power rate and, most importantly, excellent shelf-life in the unsealed flexible conditions. Because the nature of the electrode-electrolyte interface is the major performance-determining factor in the case of many electrochemical energy storage/conversion systems, along with the supercapacitors, the developed process can also find applications in preparing electrodes for the devices such as lithium-ion batteries, metal-air batteries, polymer electrolyte membrane fuel cells, etc.

  12. Synthesis and Physical Behavior of Model Polymer Electrolyte Membranes for Alkaline Fuel Cells

    NASA Astrophysics Data System (ADS)

    Beyer, Rick; Price, Samuel; Jackson, Aaron; Gold, Christopher; Ye, Yuesheng; Elabd, Yossef

    2012-02-01

    Alkaline fuel cell (AFC) technology holds significant promise for portable power supplies because AFCs are very efficient at temperatures under 200 C, but also because AFCs can use relatively inexpensive, non-noble metals (Ni, Fe, Co) as the catalyst material. Wide-spread use of the AFC has been prevented by the use of aqueous KOH liquid as the electrolyte, which is easily poisoned by the formation of K2CO3. Development of an semipermeable polymeric alkali anion exchange membrane (AEM) would significantly improve the usefulness of AFCs by eliminating carbonate poisoning and the engineering problems associate with a liquid electrolyte. We have been exploring model copolymers containing phosphonium cations as candidate materials for AEMs. Recent findings on the transport properties and stability of random copolymers of styrene and p-vinylbenzyl-trimethylphosphonium chloride will be presented, as well as ongoing efforts to study the effect of polymer morphology on transport and stability in ionomers based on both phosphonium and ammonium cations.

  13. Influence of Hydration Level on Polymer and Water Dynamics in Alkaline Anion Exchange Fuel Cell Membranes

    NASA Astrophysics Data System (ADS)

    Tarver, Jacob; Kim, Jenny; Tyagi, Madhu; Soles, Christopher; Tsai, Tsung-Han; Coughlin, Bryan

    2015-03-01

    Triblock copolymers based on poly(chloromethylstyrene)-b-poly(ethylene)-b-poly(chloromethylstyrene) can be quaternized to different extents to yield anion exchange membranes for alkaline fuel cells. In the absence of moisture, these membranes demonstrate bilayer lamellar morphology. Upon high levels of hydration, however, in-situ small angle neutron scattering reveals the emergence of higher-order diffraction peaks. This phenomena has previously been observed in analogous diblock copolymer-based membranes and has been attributed to the induction of a multilayer lamellar morphology in which selective striping of water occurs in the center of the ion-rich domain. By conducting humidity-resolved quasielastic neutron scattering (QENS) measurements using deuterated water, we are able to isolate differences in the pico- to nanosecond timescale dynamics of the hydrogenated membrane upon hydration. QENS measurements in the presence of a hydrogenated water source subsequently permit deconvolution and isolation of the translational and rotational dynamics of water as a function of relative humidity, revealing spatial and temporal changes in polymer and water motion at high levels of hydration.

  14. Tailorable PC71 BM Isomers: Using the Most Prevalent Electron Acceptor to Obtain High-Performance Polymer Solar Cells.

    PubMed

    Zhan, Xin-Xing; Zhang, Xin; Dai, Si-Min; Li, Shu-Hui; Lu, Xu-Zhai; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun

    2016-12-23

    Despite being widely used as electron acceptor in polymer solar cells, commercially available PC71 BM (phenyl-C71 -butyric acid methyl ester) usually has a "random" composition of mixed regioisomers or stereoisomers. Here PC71 BM has been isolated into three typical isomers, α-, β1 - and β2 -PC71 BM, to establish the isomer-dependent photovoltaic performance on changing the ternary composition of α-, β1 - and β2 -PC71 BM. Mixing the isomers in a ratio of α/β1 /β2 =8:1:1 resulted in the best power conversion efficiency (PCE) of 7.67 % for the polymer solar cells with PTB7:PC71 BM as photoactive layer (PTB7=poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  15. Development of critical molecular weight-property specifications for high performance polymers used as adhesives and composites

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D. E.

    1982-01-01

    The polyimide resin, LARC-160, was prepared from diethyl-3, 3', 4,4'-benzophenone tetracarboxylate, ethyl-5-norbornene-2,3-dicarboxylate and Jeffamine AP-22. The imidization reactions of NE and BTDE were studied by HPLC, C-13-NMR and IR. NE imidizes slowly at 12 C; BTDE imidizes when the resin is heated above 100 C. Both imidization reactions proceed directly to the imide. Neither amic acid is present in significant quantities at any stage of the imidization reactions. The monomer mixture was stored at 12 C for periods up to 14 months. The effects of resin aging at this temperature on the chemical composition of the resin monomer mixture and the imidized polymer formed on curing were investigated. Aging the resin monomer mixture has the effect of partially advancing the imidization reaction. The average size of the cured polymer increases slightly with resin age.

  16. One-step Conjugation of Glycyrrhetinic Acid to Cationic Polymers for High-performance Gene Delivery to Cultured Liver Cell.

    PubMed

    Cong, Yue; Shi, Bingyang; Lu, Yiqing; Wen, Shihui; Chung, Roger; Jin, Dayong

    2016-02-23

    Gene therapies represent a promising therapeutic route for liver cancers, but major challenges remain in the design of safe and efficient gene-targeting delivery systems. For example, cationic polymers show good transfection efficiency as gene carriers, but are hindered by cytotoxicity and non-specific targeting. Here we report a versatile method of one-step conjugation of glycyrrhetinic acid (GA) to reduce cytotoxicity and improve the cultured liver cell -targeting capability of cationic polymers. We have explored a series of cationic polymer derivatives by coupling different ratios of GA to polypropylenimine (PPI) dendrimer. These new gene carriers (GA-PPI dendrimer) were systematically characterized by UV-vis,(1)H NMR titration, electron microscopy, zeta potential, dynamic light-scattering, gel electrophoresis, confocal microscopy and flow cytometry. We demonstrate that GA-PPI dendrimers can efficiently load and protect pDNA, via formation of nanostructured GA-PPI/pDNA polyplexes. With optimal GA substitution degree (6.31%), GA-PPI dendrimers deliver higher liver cell transfection efficiency (43.5% vs 22.3%) and lower cytotoxicity (94.3% vs 62.5%, cell viability) than the commercial bench-mark DNA carrier bPEI (25 kDa) with cultured liver model cells (HepG2). There results suggest that our new GA-PPI dendrimer are a promising candidate gene carrier for targeted liver cancer therapy.

  17. High-Performance Small Molecule/Polymer Ternary Organic Solar Cells Based on a Layer-By-Layer Process.

    PubMed

    Chen, Weichao; Du, Zhengkun; Xiao, Manjun; Zhang, Jidong; Yang, Chunpeng; Han, Liangliang; Bao, Xichang; Yang, Renqiang

    2015-10-21

    The layer-by-layer process method, which had been used to fabricate a bilayer or bulk heterojunction organic solar cell, was developed to fabricate highly efficient ternary blend solar cells in which small molecules and polymers act as two donors. The active layer could be formed by incorporating the small molecules into the polymer based active layer via a layer-by-layer method: the small molecules were first coated on the surface of poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) ( PSS), and then the mixed solution of polymer and fullerene derivative was spin-coated on top of a small molecule layer. In this method, the small molecules in crystalline state were effectively mixed in the active layer. Without further optimization of the morphology of the ternary blend, a high power conversion efficiency (PCE) of 8.76% was obtained with large short-circuit current density (Jsc) (17.24 mA cm(-2)) and fill factor (FF) (0.696). The high PCE resulted from not only enhanced light harvesting but also more balanced charge transport by incorporating small molecules.

  18. One-step Conjugation of Glycyrrhetinic Acid to Cationic Polymers for High-performance Gene Delivery to Cultured Liver Cell

    PubMed Central

    Cong, Yue; Shi, Bingyang; Lu, Yiqing; Wen, Shihui; Chung, Roger; Jin, Dayong

    2016-01-01

    Gene therapies represent a promising therapeutic route for liver cancers, but major challenges remain in the design of safe and efficient gene-targeting delivery systems. For example, cationic polymers show good transfection efficiency as gene carriers, but are hindered by cytotoxicity and non-specific targeting. Here we report a versatile method of one-step conjugation of glycyrrhetinic acid (GA) to reduce cytotoxicity and improve the cultured liver cell -targeting capability of cationic polymers. We have explored a series of cationic polymer derivatives by coupling different ratios of GA to polypropylenimine (PPI) dendrimer. These new gene carriers (GA-PPI dendrimer) were systematically characterized by UV-vis,1H NMR titration, electron microscopy, zeta potential, dynamic light-scattering, gel electrophoresis, confocal microscopy and flow cytometry. We demonstrate that GA-PPI dendrimers can efficiently load and protect pDNA, via formation of nanostructured GA-PPI/pDNA polyplexes. With optimal GA substitution degree (6.31%), GA-PPI dendrimers deliver higher liver cell transfection efficiency (43.5% vs 22.3%) and lower cytotoxicity (94.3% vs 62.5%, cell viability) than the commercial bench-mark DNA carrier bPEI (25kDa) with cultured liver model cells (HepG2). There results suggest that our new GA-PPI dendrimer are a promising candidate gene carrier for targeted liver cancer therapy. PMID:26902258

  19. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Lei, Yanlian; Deng, Ping; Li, Jun; Lin, Ming; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Ong, Beng S.

    2016-04-01

    Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm2V‑1s‑1), on/off ratio (107), and other desirable field-effect properties that meet impactful OFET application requirements.

  20. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors

    PubMed Central

    Lei, Yanlian; Deng, Ping; Li, Jun; Lin, Ming; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Ong, Beng S.

    2016-01-01

    Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm2V−1s−1), on/off ratio (107), and other desirable field-effect properties that meet impactful OFET application requirements. PMID:27091315

  1. Incorporation of ionic liquid into porous polymer monoliths to enhance the separation of small molecules in reversed-phase high-performance liquid chromatography.

    PubMed

    Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan

    2015-06-01

    An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography.

  2. High-Performance Polymer Solar Cells with PCE of 10.42% via Al-Doped ZnO Cathode Interlayer.

    PubMed

    Liu, Xiaohui; Li, Xiaodong; Li, Yaru; Song, Changjian; Zhu, Liping; Zhang, Wenjun; Wang, Hai-Qiao; Fang, Junfeng

    2016-09-01

    High-performance polymer solar cells incorporating a low-temperature-processed aluminum-doped zinc oxide (AZO) cathode interlayer are constructed with power conversion efficiency (PCE) of 10.42% based on PTB7-Th:PC71 BM blends (insensitive to the AZO thickness). Moreover, flexible devices on poly(ethylene terephthalate)/indium tin oxide substrates with PCE of 8.93% are also obtained, and welldistributed efficiency and good device stability are demonstrated as well. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Controllable synthesis of cobalt oxide nanoflakes on three-dimensional porous cobalt networks as high-performance cathode for alkaline hybrid batteries

    SciTech Connect

    Chen, Minghua; Xia, Xinhui; Zhang, Jiawei; Qi, Meili; Yin, Jinghua; Chen, Qingguo

    2016-02-15

    Highlights: • Construct self-supported porous Co networks. • Porous Co/CoO composite films show high capacity and good cycling life. • Porous conductive metal network is favorable for fast ion/electron transfer. - Abstract: Herein we report porous three-dimensional cobalt networks supported CoO nanoflakes by the combination of successive electro-deposition methods. The electrodeposited Co networks have average large pores of ∼5 μm and all the branches are composed of interconnected nanoparticles. CoO nanoflakes with thickness of ∼15 nm are uniformly coated on the Co networks forming self-supported Co/CoO composite films. The as-prepared Co/CoO composite films possess combined properties of porous structure and strong mechanical stability. As cathode for alkaline hybrid batteries, the Co/CoO composite films exhibit good electrochemical performances with high capacity of 83.5 mAh g{sup −1} at 1 A g{sup −1} and stable high-rate cycling life (65 mAh g{sup −1} at 10 A g{sup −1} after 15,000 cycles). The hierarchical porous architecture provides positive roles in the enhancement of electrochemical properties, including fast electronic transportation path, short diffusion of ions and high contact area between the active material and the electrolyte.

  4. Double-shelled tremella-like NiO@Co3O4@MnO2 as a high-performance cathode material for alkaline supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Ren, Qian; Brett, Dan J. L.; He, Guanjie; Wang, Rongfang; Key, Julian; Ji, Shan

    2017-03-01

    Tremella-like NiO@Co3O4@MnO2 particles of core-double-shelled structure were synthesized by a three-step hydrothermal route and thermal treatment. The hierarchical layered porous structure of the particles has a BET surface area of 179.2 m2 g-1. Galvanostatic cycling in 6.0 M KOH aqueous solution produced capacitance over an ideal cathode potential cycling range. At a high current density of 2 A g-1, NiO@Co3O4@MnO2 has a high specific capacitance of 792.5 F g-1 with > 90% capacity retention over 1000 cycles, and a high rate capability of 68.9% of its initial capacitance was also maintained over a 0.2-4 A g-1 current density increase. We conclude that NiO@Co3O4@MnO2 offers a promising high rate, high specific capacitance cathode material for alkaline supercapacitors, which owes both to its porous architecture and its synergistic mixed oxide core-shell-shell composition.

  5. Superficially porous particles with 1000Å pores for large biomolecule high performance liquid chromatography and polymer size exclusion chromatography.

    PubMed

    Wagner, Brian M; Schuster, Stephanie A; Boyes, Barry E; Shields, Taylor J; Miles, William L; Haynes, Mark J; Moran, Robert E; Kirkland, Joseph J; Schure, Mark R

    2017-03-17

    To facilitate mass transport and column efficiency, solutes must have free access to particle pores to facilitate interactions with the stationary phase. To ensure this feature, particles should be used for HPLC separations which have pores sufficiently large to accommodate the solute without restricted diffusion. This paper describes the design and properties of superficially porous (also called Fused-Core(®), core shell or porous shell) particles with very large (1000Å) pores specifically developed for separating very large biomolecules and polymers. Separations of DNA fragments, monoclonal antibodies, large proteins and large polystyrene standards are used to illustrate the utility of these particles for efficient, high-resolution applications.

  6. Correlation between Hierarchical Structure and Processing Control of Large-area Spray-coated Polymer Solar Cells toward High Performance

    PubMed Central

    Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U-Ser; Chen, Charn-Ying

    2016-01-01

    The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm2. The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes. PMID:26817585

  7. Noncovalent Se···O Conformational Locks for Constructing High-Performing Optoelectronic Conjugated Polymers.

    PubMed

    Dong, Tao; Lv, Lei; Feng, Linlin; Xia, Yu; Deng, Wei; Ye, Pan; Yang, Bei; Ding, Shang; Facchetti, Antonio; Dong, Huanli; Huang, Hui

    2017-09-01

    Noncovalent conformational locks are broadly employed to construct highly planar π-conjugated semiconductors exhibiting substantial charge transport characteristics. However, current chalcogen-based conformational lock strategies for organic semiconductors are limited to S···X (X = O, N, halide) weak interactions. An easily accessible (minimal synthetic steps) and structurally planar selenophene-based building block, 1,2-diethoxy-1,2-bisselenylvinylene (DESVS), with novel Se···O noncovalent conformational locks is designed and synthesized. DESVS unique properties are supported by density functional theory computed electronic structures, single crystal structures, and experimental lattice cohesion metrics. Based on this building block, a new class of stable, structurally planar, and solution-processable conjugated polymers are synthesized and implemented in organic thin-film transistors (TFT) and organic photovoltaic (OPV) cells. DESVS-based polymers exhibit carrier mobilities in air as high as 1.49 cm(2) V(-1) s(-1) (p-type) and 0.65 cm(2) V(-1) s(-1) (n-type) in TFTs, and power conversion efficiency >5% in OPV cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Correlation between Hierarchical Structure and Processing Control of Large-area Spray-coated Polymer Solar Cells toward High Performance.

    PubMed

    Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U-Ser; Chen, Charn-Ying

    2016-01-28

    The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm(2). The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes.

  9. Manufacturing of high performance polymer nanocomposites containing carbon nanotubes and carbon nanofibers using ultrasound assisted extrusion process

    NASA Astrophysics Data System (ADS)

    Kumar, Rishi

    The major objective of this study was to investigate the effect of ultrasonic treatment on the state of dispersion and properties of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) in polymer matrices. In order to achieve this objective, an ultrasonic single screw extruder operating at a frequency of 20 kHz and an amplitude of upto 10 microm and an ultrasonic twin screw extruder operating at a frequency of 40 kHz and an amplitude of upto 6.0 microm, were used to process highly viscous materials and disperse these nanofillers homogeneously in a polymer matrix at residence times of order of seconds. High temperature thermoplastic resins including polyetherimide (PEI), liquid crystalline polymer (LCP) and polyetheretherketone (PEEK) were used. Multiwalled carbon nanotubes (MWNTs) and CNFs were used as reinforcing fillers. The effect of nanofiller loading and ultrasonic amplitudes on rheological, mechanical, electrical, thermal and morphological properties of the nanocomposites was studied. Ultrasonic treatment showed a tremendous decrease in die pressure. Morphological studies showed that ultrasonic treatment improved dispersion of CNFs and CNTs in polymer matrices. PEI/CNFs and PEI/MWNTs nanocomposites were prepared using ultrasound assisted single and twin screw extruder, respectively. A permanent increase in the viscosity, storage and loss modulus and decrease in tan delta was observed with ultrasonic treatment. Ultrasonically treated PEI/CNFs nanocomposites showed a decrease in electrical percolation threshold value as compared to the untreated ones. Breakage of CNFs was observed primarily due to extrusion process alone. In case of PEI/MWNTs nanocomposites, percolation threshold value was found to be between 1 and 2 wt% loading of CNTs for both treated and untreated samples. LCP/CNFs nanocomposites were prepared using ultrasound assisted twin screw extruder with separate feeding of CNFs in the polymer melt. In contrast to behavior of PEI/CNFs and PEI

  10. Analysis of Cocoa Proanthocyanidins Using Reversed Phase High-Performance Liquid Chromatography and Electrochemical Detection: Application to Studies on the Effect of Alkaline Processing.

    PubMed

    Stanley, Todd H; Smithson, Andrew T; Neilson, Andrew P; Anantheswaran, Ramaswamy C; Lambert, Joshua D

    2015-07-01

    Flavan-3-ols and proanthocyanidins play a key role in the health beneficial effects of cocoa. Here, we developed a new reversed phased high-performance liquid chromatography-electrochemical detection (HPLC-ECD) method for the analysis of flavan-3-ols and proanthocyanidins of degree of polymerization (DP) 2-7. We used this method to examine the effect of alkalization on polyphenol composition of cocoa powder. Treatment of cocoa powder with NaOH (final pH 8.0) at 92 °C for up to 1 h increased catechin content by 40%, but reduced epicatechin and proanthocyanidins by 23-66%. Proanthocyanidin loss could be modeled using a two-phase exponential decay model (R(2) > 0.7 for epicatchin and proanthocyanidins of odd DP). Alkalization resulted in a significant color change and 20% loss of total polyphenols. The present work demonstrates the first use of HPLC-ECD for the detection of proanthocyanidins up to DP 7 and provides an initial predictive model for the effect of alkali treatment on cocoa polyphenols.

  11. Molecularly imprinted polymer cartridges coupled on-line with high performance liquid chromatography for simple and rapid analysis of dextromethorphan in human plasma samples.

    PubMed

    Moein, Mohammad Mahdi; Javanbakht, Mehran; Akbari-Adergani, Behrouz

    2011-04-01

    In this paper, a novel method is described for automated determination of dextromethorphan in biological fluids using molecularly imprinted solid-phase extraction (MISPE) as a sample clean-up technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and dextromethorphan as template molecule. These imprinted polymers were used as solid-phase extraction sorbent for the extraction of dextromethorphan from human plasma samples. Various parameters affecting the extraction efficiency of the MIP cartridges were evaluated. The high selectivity of the sorbent coupled to the high performance liquid chromatographic system permitted a simple and rapid analysis of this drug in plasma samples with limits of detection (LOD) and quantification (LOQ) of 0.12 ng/mL and 0.35 ng/mL, respectively. The MIP selectivity was evaluated by analyzing of the dextromethorphan in presence of several substances with similar molecular structures and properties. Results from the HPLC analyses showed that the recoveries of dextromethorphan using MIP cartridges from human plasma samples in the range of 1-50 ng/mL were higher than 87%. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Process for controlling morphology and improving thermal-mechanical performance of high performance interpenetrating and semi-interpenetrating polymer networks

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Hansen, Marion G. (Inventor)

    1997-01-01

    In the process of the present invention, a non-polar, aprotic solvent is removed from an oligomer/polymer solution by freeze-drying in order to produce IPNs and semi-IPNs. By thermally quenching the solution to a solid in a short length of time, the size of the minor constituent-rich regions is greatly reduced as they are excluded along with the major constituent from the regions of crystallizing solvent. The use of this process sequence of controlling phase morphology provides IPNs and semi-IPNs with improved fracture toughness, microcracking resistance, and other physical-mechanical properties as compared to IPNs and semi-IPNs formed when the solvent is evaporated rather than sublimed.

  13. Process for controlling morphology and improving thermal mechanical performance of high performance interpenetrating and semiinterpenetrating polymer networks

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Hansen, Marion G. (Inventor)

    1998-01-01

    In the process of the present invention, a non-polar, aprotic solvent is removed from an oligomer/polymer solution by freeze-drying in order to produce IPNs and semi-IPNs. By thermally quenching the solution to a solid in a short length of time, the size of the minor constituent-rich regions is greatly reduced as they are excluded along with the major constituent from the regions of crystallizing solvent. The use of this process sequence of controlling phase morphology provides IPNs and semi-IPNs with improved fracture toughness, microcracking resistance, and other physical-mechanical properties as compared to IPNs and semi-IPNs formed when the solvent is evaporated rather than sublimed.

  14. Surface-initiated poly(3-methylthiophene) as a hole-transport layer for polymer solar cells with high performance.

    PubMed

    Yang, Liqiang; Sontag, S Kyle; LaJoie, Travis W; Li, Wentao; Huddleston, N Eric; Locklin, Jason; You, Wei

    2012-10-24

    In this work, uniform poly(3-methylthiophene) (P3MT) films are fabricated on indium-tin oxide (ITO) surfaces using surface-initiated Kumada catalyst-transfer polycondensation (SI-KCTP) from surface-bound arylnickel(II) bromide initiators. The P3MT interfacial layer is covalently bound to the ITO surface, thereby preventing possible delamination during the processing of additional layers. These surface-bound P3MT layers successfully serve as the hole-transport layer for solution-processed bulk heterojunction polymer solar cells. Efficiencies greater than 5% have been achieved on devices based on doped thin P3MT interfacial layers. Moreover, because of the excellent stability of the covalently immobilized P3MT on ITO substrates, devices based on reused P3MT/ITO substrates extracted from old devices exhibit efficiencies similar to those of the original devices.

  15. Side-chain engineering of benzodithiophene-fluorinated quinoxaline low-band-gap co-polymers for high-performance polymer solar cells.

    PubMed

    Xu, Xiaopeng; Wu, Yulei; Fang, Junfeng; Li, Zuojia; Wang, Zhenguo; Li, Ying; Peng, Qiang

    2014-10-06

    A new series of donor-acceptor co-polymers based on benzodithiophene and quinoxaline with various side chains have been developed for polymer solar cells. The effect of the degree of branching and dimensionality of the side chains were systematically investigated on the thermal stability, optical absorption, energy levels, molecular packing, and photovoltaic performance of the resulting co-polymers. The results indicated that the linear and 2D conjugated side chains improved the thermal stabilities and optical absorptions. The introduction of alkylthienyl side chains could efficiently lower the energy levels compared with the alkoxyl-substituted analogues, and the branched alkoxyl side chains could deepen the HOMO levels relative to the linear alkoxyl chains. The branched alkoxyl groups induced better lamellar-like ordering, but poorer face-to-face packing behavior. The 2D conjugated side chains had a negative influence on the crystalline properties of the co-polymers. The performance of the devices indicated that the branched alkoxyl side chains improved the Voc, but decreased the Jsc and fill factor (FF). However, the 2D conjugated side chains would increase the Voc, Jsc, and FF simultaneously. For the first time, our work provides insight into molecular design strategies through side-chain engineering to achieve efficient polymer solar cells by considering both the degree of branching and dimensionality.

  16. Characterization of local electrochemical doping of high performance conjugated polymer for photovoltaics using scanning droplet cell microscopy.

    PubMed

    Gasiorowski, Jacek; Mardare, Andrei Ionut; Sariciftci, Niyazi Serdar; Hassel, Achim Walter

    2013-12-15

    The electrochemical oxidation of a next generation low bandgap high performance photovoltaic material namely poly[4,8-bis-substituted-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-4-substituted-thieno[3,4-b] thiophene-2,6-diyl] (PBDTTT-c) thin film was investigated using a scanning droplet cell microscope. Cyclic voltammetry was used for the basic characterization of the oxidation/doping of PBDTTT-c. Application of the different final potentials during the electrochemical study provides a close look to the oxidation kinetics. The electrical properties of both doped and undoped PBDTTT-c were analyzed in situ by electrochemical impedance spectroscopy giving the possibility to correlate the changes in the doping level with the subsequent changes in the resistance and capacitance. As a result one oxidation peak was found during the cyclic voltammetry and in potentiostatic measurements. From Mott-Schottky analysis a donor concentration of 2.3 × 10(20) cm(-3) and a flat band potential of 1.00 V vs. SHE were found. The oxidation process resulted in an increase of the conductivity by two orders of magnitude reaching a maximum for the oxidized form of 1.4 S cm(-1).

  17. Simultaneous analysis of trace polymer additives in plastic beverage packaging by solvent sublation followed by high-performance liquid chromatography.

    PubMed

    Chang, Lin; Bi, Pengyu; Liu, Yanan; Mu, Yinglin; Nie, Fengquan; Luo, Shizhong; Wei, Yun

    2013-07-24

    Using solvent sublation (SS), a novel pretreatment method for separating and concentrating antioxidants and ultraviolet absorbers from plastic beverage packaging was developed, and these target compounds were quantitatively analyzed by high-performance liquid chromatography (HPLC). In the pretreatment section, the effects of the sublation solvent, solution pH, NaCl concentration, nitrogen flow rate, sublation time, and light condition on the sublation efficiency were investigated in detail and the optimal conditions of the solvent sublation process were selected. The analytical method of SS-HPLC showed good linearity in the range from 0.33 to 667 ng/mL with good presenting regression coefficients (0.9995 ≥ R(2) ≥ 0.9972). Low limits of detection (LODs) of 0.34-1.25 ng/mL and limits of quantification (LOQs) of 1.13-4.15 ng/mL were achieved. The mean recoveries were in the range from 88.73 to 107.65% at 20, 30, and 40 ng/mL spiked levels, and the relative standard deviations (RSDs) were in the range from 2.16 to 10.55%.

  18. Molecularly imprinted polymer for selective extraction of malachite green from seawater and seafood coupled with high-performance liquid chromatographic determination.

    PubMed

    Lian, Ziru; Wang, Jiangtao

    2012-12-01

    In this paper, a highly selective sample cleanup procedure combining molecular imprinting technique (MIT) and solid-phase extraction (SPE) was developed for the isolation of malachite green in seawater and seafood samples. The molecularly imprinted polymer (MIP) was prepared using malachite green as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linking monomer. The imprinted polymer and non-imprinted polymer were characterized by scanning electron microscope and static adsorption experiments. The MIP showed a high adsorption capacity and was used as selective sorbent for the SPE of malachite green. An off-line molecularly imprinted solid-phase extraction (MISPE) method followed by high-performance liquid chromatography with diodearray detection for the analysis of malachite green in seawater and seafood samples was also established. Finally, five samples were determined. The results showed that malachite green concentration in one seawater sample was at 1.30 μg L⁻¹ and the RSD (n=3) was 4.15%.

  19. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications.

    PubMed

    Houchins, Cassidy; Kleen, Greg J; Spendelow, Jacob S; Kopasz, John; Peterson, David; Garland, Nancy L; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C

    2012-12-18

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed.

  20. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications

    PubMed Central

    Houchins, Cassidy; Kleen, Greg J.; Spendelow, Jacob S.; Kopasz, John; Peterson, David; Garland, Nancy L.; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C.

    2012-01-01

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed. PMID:24958432

  1. Orienting the Microstructure Evolution of Copper Phthalocyanine as an Anode Interlayer in Inverted Polymer Solar Cells for High Performance.

    PubMed

    Li, Zhiqi; Liu, Chunyu; Zhang, Xinyuan; Li, Shujun; Zhang, Xulin; Guo, Jiaxin; Guo, Wenbin; Zhang, Liu; Ruan, Shengping

    2017-09-20

    Recent advances in the interfacial modification of inverted-type polymer solar cells (PSCs) have resulted from controlling the surface energy of the cathode-modified layer (TiO2 or ZnO) to enhance the short-circuit current (Jsc) or optimizing the contact morphology of the cathode (indium tin oxide or fluorine-doped tin oxide) and active layer to increase the fill factor. Herein, we report that the performance enhancement of PSCs is achieved by incorporating a donor macromolecule copper phthalocyanine (CuPc) as an anode modification layer. Using the approach based on orienting the microstructure evolution, uniformly dispersed island-shaped CuPc spot accumulations are built on the top of PTB7:PC71BM blend film, leading to an efficient spectral absorption and photogenerated exciton splitting. The best power conversion efficiency of PSCs is increased up to 9.726%. In addition to the enhanced light absorption, the tailored anode energy level alignment and optimized boundary morphology by incorporating the CuPc interlayer boost charge extraction efficiency and suppress the interfacial molecular recombination. These results demonstrate that surface morphology induction through molecular deposition is an effective method to improve the performance of PSCs, which reveals the potential implications of the interlayer between the organic active layer and the electrode buffer layer.

  2. Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries

    PubMed Central

    Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young

    2014-01-01

    As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries. PMID:24710575

  3. 3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media

    DOE PAGES

    Qiao, Zhi; Zhang, Hanguang; Karakalos, Stavros; ...

    2017-08-03

    Current platinum group metal (PGM)-free carbon nanocomposite catalysts for the oxygen reduction reaction (ORR) in acidic electrolyte often suffer from rapid degradation associated with carbon corrosion due to the use of large amount of amorphoous carbon black supports. Here, we developed a new concept of using freestanding 3D hydrogel to design support-free Fe-N-C catalysts. A 3D polyaniline (PANI)-based hydrogel was used for preparing a new type of single atomic iron site-rich catalyst, which has exhibited exceptionally enhanced activity and stability compared to conventional Fe-N-C catalysts supported on amorphous carbon blacks. The achieved performance metric on the hydrogel PANI-Fe catalysts ismore » one of the best ever reported PGM-free catalysts, reaching a half-wave potential up to 0.83 V vs. RHE and only leaving 30 mV gap with Pt/C catalysts (60 μgPt/cm2) in challenging acidic media. Remarkable ORR stability was accomplished as well on the same catalyst evidenced by using harsh potential cycling tests. The well dispersion of atomic iron into partially graphitized carbon, featured with dominance of micropores and porous network structures, is capable of accommodating increased number of active sites, strengthening local bonding among iron, nitrogen and carbon, and facilitating mass transfer. The 3D polymer hydrogel approach would be a new pathway to advance PGM-free catalysts.« less

  4. Polydopamine as a promising candidate for the design of high performance and corrosion-tolerant polymer electrolyte fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Long, Hongtao; Del Frari, Doriane; Martin, Arnaud; Didierjean, Joffrey; Ball, Vincent; Michel, Marc; Ahrach, Hicham Ibn El

    2016-03-01

    Carbon materials such as carbon black or nanotubes suffer from degradation when subjected to harsh conditions occurring in a Polymer Electrolyte Membrane Fuel Cells (PEMFCs) electrode. Hence, nowadays it is more and more important to search for alternative support materials. The present work shows the results for the incorporation of alternative materials into PEMFCs electrode architectures. Commercially available Multi-Walled NanoTubes (MWNTs) are used as a support for Pt nanoparticles in combination with Polydopamine (PDA). The role of MWNTs is to confer a high electronic conductivity and help to form a porous network. On the other side the role of polydopamine is both to promote the proton conductivity similarly to ionomers such as Nafion and to protect the MWNTs against corrosion. The fuel cell polarization test shows a maximum power density of 780 mW cm-2 and a Pt utilization of 6051 mW mg(Pt)-1. The Pt utilization reached in this work is almost three times higher than for Pt/MWNTs electrodes containing the same Pt loading. Beside this, it is also shown for the first time that PDA serves as protective layer against carbon corrosion.

  5. Conjunction of Conducting Polymer Nanostructures with Macroporous Structured Graphene Thin Films for High-Performance Flexible Supercapacitors.

    PubMed

    Memon, Mushtaque A; Bai, Wei; Sun, Jinhua; Imran, Muhammad; Phulpoto, Shah Nawaz; Yan, Shouke; Huang, Yong; Geng, Jianxin

    2016-05-11

    Fabrication of hybridized structures is an effective strategy to promote the performances of graphene-based composites for energy storage/conversion applications. In this work, macroporous structured graphene thin films (MGTFs) are fabricated on various substrates including flexible graphene papers (GPs) through an ice-crystal-induced phase separation process. The MGTFs prepared on GPs (MGTF@GPs) are recognized with remarkable features such as interconnected macroporous configuration, sufficient exfoliation of the conductive RGO sheets, and good mechanical flexibility. As such, the flexible MGTF@GPs are demonstrated as a versatile conductive platform for depositing conducting polymers (CPs), e.g., polyaniline (PAn), polypyrrole, and polythiophene, through in situ electropolymerization. The contents of the CPs in the composite films are readily controlled by varying the electropolymerization time. Notably, electrodeposition of PAn leads to the formation of nanostructures of PAn nanofibers on the walls of the macroporous structured RGO framework (PAn@MGTF@GPs): thereafter, the PAn@MGTF@GPs display a unique structural feature that combine the nanostructures of PAn nanofibers and the macroporous structures of RGO sheets. Being used as binder-free electrodes for flexible supercapacitors, the PAn@MGTF@GPs exhibit excellent electrochemical performance, in particular a high areal specific capacity (538 mF cm(-2)), high cycling stability, and remarkable capacitive stability to deformation, due to the unique electrode structures.

  6. Improved manufacturing technology for producing porous Nafion for high-performance ionic polymer-metal composite actuators

    NASA Astrophysics Data System (ADS)

    Zhao, Dongxu; Li, Dichen; Wang, Yanjie; Chen, Hualing

    2016-07-01

    The current actuation performance of ionic polymer-metal composites (IPMCs) limits their further application in the aerospace, energy, and optics fields, among others. To overcome this issue, we developed a freeze-drying process to generate Nafion membranes with a porous structure, the characteristics of which were investigated using thermogravimetric analysis, Fourier transform infrared spectrometry, field-emission scanning electron microscopy, and water uptake tests. The pores fabricated using the developed freeze-drying process had a diameter of approximately 270 nm, and a porosity of nearly 40.45%. The displacement and the central angle were introduced as variables to evaluate the bending deformation of an IPMC actuator based on the porous Nafion membrane. Compared with conventional actuators, this IPMC actuator showed an increase in displacement of 4963.6% at 2 V, and an increase in central angle of 73.35% at 3 V. Although the blocking forces of this IPMC actuator decreased to some extent, it was confirmed that the integrated actuation performance, which was evaluated using the strain energy density increment, was improved. The performance of the IPMC actuator was enhanced as a result of the porous Nafion structure manufactured using the developed freeze-drying process.

  7. Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries.

    PubMed

    Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young

    2014-04-08

    As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.

  8. High Performance Transparent Transistor Memory Devices Using Nano-Floating Gate of Polymer/ZnO Nanocomposites

    PubMed Central

    Shih, Chien-Chung; Lee, Wen-Ya; Chiu, Yu-Cheng; Hsu, Han-Wen; Chang, Hsuan-Chun; Liu, Cheng-Liang; Chen, Wen-Chang

    2016-01-01

    Nano-floating gate memory devices (NFGM) using metal nanoparticles (NPs) covered with an insulating polymer have been considered as a promising electronic device for the next-generation nonvolatile organic memory applications NPs. However, the transparency of the device with metal NPs is restricted to 60~70% due to the light absorption in the visible region caused by the surface plasmon resonance effects of metal NPs. To address this issue, we demonstrate a novel NFGM using the blends of hole-trapping poly (9-(4-vinylphenyl) carbazole) (PVPK) and electron-trapping ZnO NPs as the charge storage element. The memory devices exhibited a remarkably programmable memory window up to 60 V during the program/erase operations, which was attributed to the trapping/detrapping of charge carriers in ZnO NPs/PVPK composite. Furthermore, the devices showed the long-term retention time (>105 s) and WRER test (>200 cycles), indicating excellent electrical reliability and stability. Additionally, the fabricated transistor memory devices exhibited a relatively high transparency of 90% at the wavelength of 500 nm based on the spray-coated PEDOT:PSS as electrode, suggesting high potential for transparent organic electronic memory devices. PMID:26831222

  9. Preparation of styrene-co-4-vinylpyridine magnetic polymer beads by microwave irradiation for analysis of trace 24-epibrassinolide in plant samples using high performance liquid chromatography.

    PubMed

    Zhang, Zhuomin; Zhang, Yi; Tan, Wei; Li, Gongke; Hu, Yuling

    2010-10-15

    In the study, a kind of novel styrene-co-4-vinylpyridine (St-co-4-VP) porous magnetic polymer beads was prepared by microwave irradiation using suspension polymerization. Microwave heating preparation greatly reduced the polymerization time to 1h. Physical characteristic tests suggested that these beads were cross-linking and possessed spherical shape, good magnetic response and porous morphologies with a narrow diameter distribution of 70-180 μm. Therefore, these beads displayed the long-term stability after undergoing 100-time extractions. Then, an analytical method for the determination of trace 24-epiBR in plant samples was developed by magnetic polymer bead extraction coupled with high performance liquid chromatography-fluorescence detection. St-co-4-VP magnetic polymer beads demonstrated the higher extraction selectivity for 24-epiBR than other reference compounds. Linear range was 10.00-100.0 μg/L with a relative standard deviation (RSD) of 6.7%, and the detection limit was 6.5 μg/kg. This analytical method was successfully applied to analyze the trace 24-epiBR in cole and breaking-wall rape pollen samples with recoveries of 77.2-90.0% and 72.3-83.4%, respectively, and RSDs were less than 4.1%. The amount of 24-epiBR in real breaking-wall rape pollen samples was found to be 26.2 μg/kg finally. This work proposed a sensitive, rapid, reliable and convenient analytical method for the determination of trace brassinosteroids in complicated plant samples by the use of St-co-4-VP magnetic polymer bead extraction coupled with chromatographic method. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Simultaneous determination of 24 or more acidic and alkaline phytohormones in femtomole quantities of plant tissues by high-performance liquid chromatography-electrospray ionization-ion trap mass spectrometry.

    PubMed

    Liu, Shichang; Chen, Weiqi; Qu, Long; Gai, Ying; Jiang, Xiangning

    2013-02-01

    Phytohormones act at relatively low concentrations as major regulatory factors of plant growth and development, and cross talk of phytohormones is currently of great interest throughout the plant science community. To meet this demand, a method that is capable of simultaneously analyzing diverse plant hormones is essential. This paper introduces a high-performance liquid chromatographic separation technique coupled with sensitive and selective ion trap mass spectrometry to simultaneously determine 24 or more acidic and alkaline phytohormones, including auxin, cis- and trans-abscisic acid, 11 cytokinins, and 10 gibberellins, in a single injection of sample. A binary solid-phase extraction using Oasis MCX cartridges for cations and Oasis MAX cartridges for anions was used to prepurify more than 24 acidic and alkaline phytohormones from a single plant extract. The method showed good linearity for all 24 phytohormones with R(2) values ranging from 0.9903 to 0.9997. Limits of detection for most of the phytohormones were in the femtomole range with some extending into the sub-femtomole range. This method was applied to hundreds of plant samples comprising different tissues from various plants, including herbaceous, woody climbing, and woody plants to demonstrate feasibility and to validate the methodology.

  11. High-temperature solvent stability of sol-gel germania triblock polymer coatings in capillary microextraction on-line coupled to high-performance liquid chromatography.

    PubMed

    Segro, Scott S; Malik, Abdul

    2010-09-10

    Germania-based sol-gel organic-inorganic hybrid coatings were prepared for on-line coupling of capillary microextraction with high-performance liquid chromatography. For this, a germania-based sol-gel precursor, tetra-n-butoxygermane and a hydroxy-terminated triblock copolymer, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) were used. These sol-gel germania triblock polymer coatings were chemically anchored to the inner walls of a fused silica capillary (0.25 mm I.D.) in course of its evolution from the sol solution. Scanning electron microscopy images of the sol-gel germania triblock polymer coating were obtained to estimate the coating thickness. For the first time, the analyte distribution constants between a sol-gel germania organic-inorganic hybrid coating and the samples (K(cs)) were determined. For a variety of analytes from different chemical classes, including polycyclic aromatic hydrocarbons (PAHs), ketones, alcohols, phenols and amines, the K(cs) values ranged from 8.1 x 10(1) to 5.6 x 10(4). Also, for the first time, the stability of the sol-gel germania-based coating in high-temperature reversed-phase solvent environment was evaluated. The sol-gel germania triblock polymer coatings were capable of surviving exposure to high-temperature solvent conditions (200 degrees C) with little change in extraction capabilities. This demonstrates that sol-gel germania triblock polymer hybrid materials might be suitable for further applications in high-temperature HPLC. The reproducibility of the method for preparation of the sol-gel germania triblock polymer coatings was also evaluated, and the capillary-to-capillary RSD values ranged from 5.3 to 6.5%. The use of higher flow rates in extraction was found to significantly reduce the time required (from 30-40 to 10-15 min) to reach equilibrium between the sol-gel germania triblock polymer coating and the analytes in the sample solution.

  12. High performance liquid level monitoring system based on polymer fiber Bragg gratings embedded in silicone rubber diaphragms

    NASA Astrophysics Data System (ADS)

    Marques, Carlos A. F.; Peng, Gang-Ding; Webb, David J.

    2015-05-01

    Liquid-level sensing technologies have attracted great prominence, because such measurements are essential to industrial applications, such as fuel storage, flood warning and in the biochemical industry. Traditional liquid level sensors are based on electromechanical techniques; however they suffer from intrinsic safety concerns in explosive environments. In recent years, given that optical fiber sensors have lots of well-established advantages such as high accuracy, costeffectiveness, compact size, and ease of multiplexing, several optical fiber liquid level sensors have been investigated which are based on different operating principles such as side-polishing the cladding and a portion of core, using a spiral side-emitting optical fiber or using silica fiber gratings. The present work proposes a novel and highly sensitive liquid level sensor making use of polymer optical fiber Bragg gratings (POFBGs). The key elements of the system are a set of POFBGs embedded in silicone rubber diaphragms. This is a new development building on the idea of determining liquid level by measuring the pressure at the bottom of a liquid container, however it has a number of critical advantages. The system features several FBG-based pressure sensors as described above placed at different depths. Any sensor above the surface of the liquid will read the same ambient pressure. Sensors below the surface of the liquid will read pressures that increase linearly with depth. The position of the liquid surface can therefore be approximately identified as lying between the first sensor to read an above-ambient pressure and the next higher sensor. This level of precision would not in general be sufficient for most liquid level monitoring applications; however a much more precise determination of liquid level can be made by linear regression to the pressure readings from the sub-surface sensors. There are numerous advantages to this multi-sensor approach. First, the use of linear regression using

  13. ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD

    SciTech Connect

    Malcolm Pitts; Ron Damm; Bev Seyler

    2003-03-01

    Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

  14. ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD

    SciTech Connect

    Malcolm Pitts; Ron Damm; Bev Seyler

    2003-04-01

    Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

  15. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jeong, Gisu; Kim, MinJoong; Han, Junyoung; Kim, Hyoung-Juhn; Shul, Yong-Gun; Cho, EunAe

    2016-08-01

    Although high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) have a high carbon monoxide tolerance and allow for efficient water management, their practical applications are limited due to their lower performance than conventional low-temperature PEMFCs. Herein, we present a high-performance membrane-electrode assembly (MEA) with an optimal polytetrafluoroethylene (PTFE) content for HT-PEMFCs. Low or excess PTFE content in the electrode leads to an inefficient electrolyte distribution or severe catalyst agglomeration, respectively, which hinder the formation of triple phase boundaries in the electrodes and result in low performance. MEAs with PTFE content of 20 wt% have an optimal pore structure for the efficient formation of electrolyte/catalyst interfaces and gas channels, which leads to high cell performance of approximately 0.5 A cm-2 at 0.6 V.

  16. Detailed evaluation of the West Kiehl alkaline-surfactant-polymer field project and its application to mature Minnelusa waterfloods. Final report

    SciTech Connect

    Pitts, M.J.; Surkalo, H.

    1995-03-01

    The combination of an interfacial tension agent and a mobility control agent has the potential to produce additional oil beyond a waterflood. The West Kiehl alkaline-surfactant-polymer project is the first application of this chemical enhanced oil recovery technique. The West Kiehl alkaline-surfactant-polymer flood was initiated in September 1987 as a secondary application after primary recovery. The following analysis of the West Kiehl alkaline-surfactant-polymer flood indicates that incremental oil greater than waterflooding was produced at a cost of less than $2.00 per incremental barrel. A analysis of approximately 120 Minnelusa oil fields in the Powder River Basin indicates that the total original stock tank oil in place exceeds one billion barrels. If the enhanced oil recovery technology implemented at West Kiehl field could be successfully applied to these fields, the potential incremental oil recovery would approach 130 million barrels. The goals of ``Detailed Evaluation of the West Kield Alkaline-Surfactant-Polymer Field Project and It`s Application to Mature Minnelusa Waterfloods`` are to evaluate both the field performance of the alkaline-surfactant-polymer enhanced oil recovery technology as well as its potential application to other Minnelusa oil fields.

  17. Detailed evaluation of the West Kiehl alkaline-surfactant-polymer field project and its application to mature Minnelusa waterfloods. Annual report for the period January 1993--December 1993

    SciTech Connect

    Pitts, M.J.; Surkalo, H.; Mundorf, W.R.

    1994-11-01

    The combination of an interfacial tension agent and a mobility control agent has the potential to produce additional oil beyond a waterflood. The West Kiehl alkaline-surfactant-polymer project is the most advanced application of this chemical enhanced oil recovery technique. The West Kiehl alkaline-surfactant-polymer flood was initiated in September 1987 as a secondary application after primary recovery. A preliminary analysis of the West Kiehl alkaline-surfactant-polymer flood indicates that incremental oil of 20% of the original stock tank oil in place will be produced above waterflooding. The cost of the incremental oil will be less than $2.50 per incremental barrel. A statistical analysis of approximately 120 Minnelusa oil fields in the Powder River Basin indicates that the original stock tank oil in place exceeds one billion barrels. If the enhanced oil recovery technology implemented at West Kiehl field could be successfully applied to these fields, the potential incremental oil recovery would approach 200 million barrels. {open_quotes}Detailed Evaluation of the West Kiehl Alkaline-Surfactant-Polymer Field Project and Its Application to Mature Minnelusa Waterfloods{close_quotes} objective is to evaluate both the field performance of the alkaline-surfactant-polymer enhanced oil recovery technology as well as its potential application to other Minnelusa oil fields.

  18. The effect of polymer-surfactant interaction on the rheological properties of surfactant enhanced alkaline flooding formulations. [Phase separation, precipitation and viscosity loss

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1993-02-01

    Surfactant-enhanced, lower pH (weak) alkaline chemicals are effective for mobilizing residual oil. Polymer is used for mobility control because if mobility control is lost, then oil recovery is reduced. The ability to maintain mobility control during surfactant-alkaline flooding can be adversely affected by chemical interaction. In this work, interaction between polymers and surfactants was shown to be affected by pH, ionic strength, crude oil, and the properties of the polymers and surfactants. Polymer-surfactant interaction (phase separation, precipitation, and viscosity loss) occurred between most of the polymers and surfactants that were tested. Polymer-surfactant interaction is difficult to eliminate, and no method was found for completely eliminating interaction. Polymer-surfactant interaction occurred at optimal salinity and below optimal salinity. Polymer-surfactant interaction had an adverse effect on polymer rheology; however, the adverse effect of interaction on polymer rheology was lessened when oil was present. Increasing the pH of chemical systems further reduced the adverse effects of interaction on polymer rheology.

  19. High performance polymeric foams

    SciTech Connect

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-08-28

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy.

  20. Selective determination of trace thiamphenicol in milk and honey by molecularly imprinted polymer monolith microextraction and high-performance liquid chromatography.

    PubMed

    Li, Juan; Chen, Huaixia; Chen, Hui; Ye, Yong

    2012-01-01

    A novel solid-phase microextraction (SPME) method based on molecularly imprinted polymer (MIP) monolith as the sorbent for the selective extraction of thiamphenicol (TAP) in milk and honey was developed. The newly developed MIP monolith was produced using TAP as the template molecule, 4-vinylpyridine (4-VP) as the functional monomer. The TAP-MIP monolith synthesized in a micropipette tip could be connected with syringes in different sizes simply to perform SPME process without any other treatment. The derivated MIP monolith showed high selectivity and enrichment ability for TAP. A simple, rapid and sensitive method for the determination of TAP in milk and honey using polymer monolith microextraction (PMME) based on the MIP monolith combined with high-performance liquid chromatography-photodiodes array detector was developed. Several parameters affecting MIP monolith microextraction were investigated, including the flow rate, volume, pH and salt concentration of sample, the type and volume of washing solution, the type and flow rate of eluent. The recovery of this method for TAP was investigated and high recoveries of 92.9-99.3% from milk and honey were obtained with relative standard deviations less than 4.9%.

  1. Synthesis of molecular imprinted polymers for selective extraction of domperidone from human serum using high performance liquid chromatography with fluorescence detection.

    PubMed

    Salehi, Simin; Rasoul-Amini, Sara; Adib, Noushin; Shekarchi, Maryam

    2016-08-01

    In this study a novel method is described for selective quantization of domperidone in biological matrices applying molecular imprinted polymers (MIPs) as a sample clean up procedure using high performance liquid chromatography coupled with a fluorescence detector. MIPs were synthesized with chloroform as the porogen, ethylene glycol dimethacrylate as the crosslinker, methacrylic acid as the monomer, and domperidone as the template molecule. The new imprinted polymer was used as a molecular sorbent for separation of domperidone from serum. Molecular recognition properties, binding capacity and selectivity of MIPs were determined. The results demonstrated exceptional affinity for domperidone in biological fluids. The domperidone analytical method using MIPs was verified according to validation parameters, such as selectivity, linearity (5-80ng/mL, r(2)=0.9977), precision and accuracy (10-40ng/mL, intra-day=1.7-5.1%, inter-day=4.5-5.9%, and accuracy 89.07-98.9%).The limit of detection (LOD) and quantization (LOQ) of domperidone was 0.0279 and 0.092ng/mL, respectively. The simplicity and suitable validation parameters makes this a highly valuable selective bioequivalence method for domperidone analysis in human serum.

  2. Molecularly imprinted polymer cartridges coupled on-line with high performance liquid chromatography for simple and rapid analysis of human insulin in plasma and pharmaceutical formulations.

    PubMed

    Moein, Mohammad Mahdi; Javanbakht, Mehran; Akbari-adergani, Behrouz

    2014-04-01

    In this paper, a novel method is described for automated determination of human insulin in biological fluids using principle of sequential injection on a molecularly imprinted solid-phase extraction (MISPE) cartridge as a sample clean-up technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, chloroform as a porogen and insulin as a template molecule. The imprinted polymers were then employed as the solid-phase extraction sorbent for on-line extraction of insulin from human plasma samples. To achieve the best condition, influential parameters on the extraction efficiency were thoroughly investigated. Rapid and simple analysis of the hormone was successfully accomplished through the good selectivity of the prepared sorbent coupled with HPLC. Limits of detection (LOD) and quantification (LOQ) of 0.2 ng mL(-1), 0.7 ng mL(-1), and 0.03 ng mL(-1), 0.1 ng mL(-1) were obtained in plasma and urine respectively. The obtained data exhibited the great recoveries for extraction of insulin from human plasma and pharmaceutical samples, higher than 87%.

  3. Antibody-free ultra-high performance liquid chromatography/tandem mass spectrometry measurement of angiotensin I and II using magnetic epitope-imprinted polymers.

    PubMed

    Tan, Lei; Yu, Zerong; Zhou, Xiaoming; Xing, Da; Luo, Xiaoyan; Peng, Rongfei; Tang, Youwen

    2015-09-11

    The major challenges in measuring plasma renin activity (PRA) stem from the complexity of biological matrix, as well as from the instability and low circulating concentration of angiotensin. In this study, an ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) based technique has been developed for the measurement of angiotensin using magnetically imprinted polymers for simultaneous enrichment of the precursor peptide angiotensin II (Ang II) and the upstream peptide precursor angiotensin I (Ang I). This technique involved surface graft imprinting in aqueous solutions using vinyl-modified nano-iron oxide as solid supports, the specificity determinant of Ang I and Ang II as the epitope, and methacrylic acid and N-t-butylacrylamide as functional monomers. The vinyl-modified nano-iron oxide acted as a magnetic separation media, and the molecularly imprinted shell provided analyte selectivity for the recognition of Ang I and Ang II. Selective enrichment of Ang I and Ang II was accomplished by the magnetically imprinted polymers, followed by a magnetic separation procedure and subsequent quantification by UPLC-MS/MS in the positive ionization mode with multiple reaction monitoring. Through the latter protocol, a low limit of detection could be realized, viz. 0.07ng/mL and 0.06ng/mL for Ang I and II, respectively, which was thoroughly validated for accuracy and reproducibility through analyzing Ang I and Ang II in human plasma samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Magnetic molecularly imprinted polymer for the efficient and selective preconcentration of diazinon before its determination by high-performance liquid chromatography.

    PubMed

    Zare, Fahimeh; Ghaedi, Mehrorang; Daneshfar, Ali; Ostovan, Abbas

    2015-08-01

    A molecularly imprinted polymer was selectively applied for solid-phase extraction and diazinon residues enrichment before high-performance liquid chromatography. Diazinon was thermally copolymerized with Fe3 O4 @polyethyleneglycol nanoparticles, methacrylic acid (functional monomer), 2-hydroxyethyl methacrylate (co-monomer), and ethylene glycol dimethacrylate (cross-linking monomer) in the presence of acetonitrile (porogen) and 2,2-azobisisobutyronitrile (initiator). Then, the imprinted diazinon was reproducibly eluted with methanol/acetic acid (9:1, v/v). The sorbent particles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The comprehensive study of variables through experimental design showed that the maximum performance was achieved under these conditions: pH 7, 10 mL sample volume, 15 mg sorbent, 10 min vortex time, 5 min ultrasonic time, 200 μL methanol/acetic acid (9:1, v/v) as eluent, and 5 min desorption time. Under optimized conditions, the molecularly imprinted polymer solid-phase extraction method demonstrated a linear range (0.02-5 g/mL), a correlation coefficient of 0.997, and 0.005 g/mL detection limit.

  5. Menstrual blood loss measurement: validation of the alkaline hematin technique for feminine hygiene products containing superabsorbent polymers.

    PubMed

    Magnay, Julia L; Nevatte, Tracy M; Dhingra, Vandana; O'Brien, Shaughn

    2010-12-01

    To validate the alkaline hematin technique for measurement of menstrual blood loss using ultra-thin sanitary towels that contain superabsorbent polymer granules as the absorptive agent. Laboratory study using simulated menstrual fluid (SMF) and Always Ultra Normal, Long, and Night "with wings" sanitary towels. Keele Menstrual Disorders Laboratory. None. None. Recovery of blood, linearity, and interassay variation over a range of SMF volumes applied to towels. Because of the variable percentage of blood in menstrual fluid, blood recovery was assessed from SMF constituted as 10%, 25%, 50%, and 100% blood. The lower limit of reliable detection and the effect of storing soiled towels for up to 4 weeks at 15°C-20°C, 4°C, and -20°C before analysis were determined. Ninety percent recovery was reproducibly achieved up to 30 mL applied volume at all tested SMF compositions, except at low volume or high dilution equivalent to <2 mL whole blood. Samples could be stored for 3 weeks at all tested temperatures without loss of recovery. The technique was suitable for processing towels individually or in batches. The alkaline hematin technique is a suitable and validated method for measuring menstrual blood loss from Always Ultra sanitary towels that contain superabsorbent polymers. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. High-performance all-polymer solar cells via side-chain engineering of the polymer acceptor: the importance of the polymer packing structure and the nanoscale blend morphology.

    PubMed

    Lee, Changyeon; Kang, Hyunbum; Lee, Wonho; Kim, Taesu; Kim, Ki-Hyun; Woo, Han Young; Wang, Cheng; Kim, Bumjoon J

    2015-04-17

    The effectiveness of side-chain engineering is demonstrated to produce highly efficient all-polymer solar cells (efficiency of 5.96%) using a series of naphthalene diimide-based polymer acceptors with controlled side chains. The dramatic changes in the polymer packing, blend morphology, and electron mobility of all-polymer solar cells elucidate clear trends in the photovoltaic performances.

  7. High performance rolling element bearing

    NASA Technical Reports Server (NTRS)

    Bursey, Jr., Roger W. (Inventor); Olinger, Jr., John B. (Inventor); Owen, Samuel S. (Inventor); Poole, William E. (Inventor); Haluck, David A. (Inventor)

    1993-01-01

    A high performance rolling element bearing (5) which is particularly suitable for use in a cryogenically cooled environment, comprises a composite cage (45) formed from glass fibers disposed in a solid lubricant matrix of a fluorocarbon polymer. The cage includes inserts (50) formed from a mixture of a soft metal and a solid lubricant such as a fluorocarbon polymer.

  8. Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells.

    PubMed

    Chen, Chih-Ping; Chan, Shu-Hua; Chao, Teng-Chih; Ting, Ching; Ko, Bao-Tsan

    2008-09-24

    Two low-bandgap (LGB) conjugated polymers ( P1 and P2) based on thiophene-phenylene-thiophene (TPT) with adequate energy levels have been designed and synthesized for application in bulk-heterojunction polymer solar cells (PSCs). The absorption spectral, electrochemical, field effect hole mobility and photovoltaic properties of LGB TPT derivatives are investigated and compared with poly(3-hexylthiophene) (P3HT). Photophysical studies reveal bandgaps of 1.76 eV for P1 and 1.70 eV for P2, which could effectively harvest broader solar spectrum. In addition, the thin film absorption coefficients of P1 and P2 are 1.6 x 10 (5) cm (-1) (lambda approximately 520 nm) and 1.4 x 10 (5) cm (-1) (lambda approximately 590 nm), respectively. Electrochemical studies indicate desirable HOMO/LUMO levels that enable a high open circuit voltage while blending them with fullerene derivatives as electron acceptors. Furthermore, both materials show sufficient hole mobility (3.4 x 10 (-3) cm (2)/Vs for P2) allowing efficient charge extraction and a good fill-factor for PSC application. High-performance power conversion efficiency (PCE) of 4.4% is obtained under simulated solar light AM 1.5 G (100 mW/cm (2)) from PSC device with an active layer containing 25 wt% P2 and 75 wt% [6,6]-phenyl-C71-butyric acid methyl ester (PC 71BM), which is superior to that of the analogous P3HT cell (3.9%) under the same experimental condition.

  9. Bioconjugation of alkaline phosphatase to mechanically processed, aqueous suspendible electrospun polymer nanofibers for use in chemiluminescent detection assays.

    PubMed

    Mark, Sonny S; Stolper, Samuel I; Baratti, Carla; Park, Jason Y; Taku, Maria A; Santiago-Avilés, Jorge J; Kricka, Larry J

    2008-06-11

    Aqueous suspendible polymer nanostructures were prepared by simple microtome processing of electrospun nylon 6 nanofibers and were used to immobilize calf intestinal alkaline phosphatase (ALP) by either covalent or noncovalent bioconjugation chemistries. It was found that noncovalent immobilization of ALP to the mechanically cut nanofibers (mean length approximately 4 microm; mean diameter approximately 80 nm) using a multi-stacked, layer-by-layer (LBL) approach with the cationic polymer Sapphire II resulted in the highest enzyme loading (48.1 +/- 0.4 microg . mg(-1) nanofiber) when compared to other covalent immobilization methods based on glutaraldehyde crosslinking. The biofunctionalized nanofibers were also characterized for their chemiluminescent activity with the dioxetane substrate, CSPD. The results indicate that the kinetic parameters, K(m) and V(max), for the catalytic activity of the nanostructure-bound ALP enzyme were influenced by the particular types of immobilization methods employed. In terms of the overall catalytic performance of the various immobilized ALP systems, a single-stacked LBL assembly approach resulted in the highest level of enzymatic activity per unit mass of nanofiber support. To the best of our knowledge, this study represents the first report examining the preparation of mechanically shortened, aqueous dispersed electrospun polymer nanofibers for potential application as enzyme scaffolds in chemiluminescent-based assay systems.

  10. High-Performance Polymer Solar Cells Based on a Wide-Bandgap Polymer Containing Pyrrolo[3,4-f]benzotriazole-5,7-dione with a Power Conversion Efficiency of 8.63.

    PubMed

    Lan, Liuyuan; Chen, Zhiming; Hu, Qin; Ying, Lei; Zhu, Rui; Liu, Feng; Russell, Thomas P; Huang, Fei; Cao, Yong

    2016-09-01

    A novel donor-acceptor type conjugated polymer based on a building block of 4,8-di(thien-2-yl)-6-octyl-2-octyl-5H-pyrrolo[3,4-f]benzotriazole-5,7(6H)-dione (TZBI) as the acceptor unit and 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo-[1,2-b:4,5-b']dithiophene as the donor unit, named as PTZBIBDT, is developed and used as an electron-donating material in bulk-heterojunction polymer solar cells. The resulting copolymer exhibits a wide bandgap of 1.81 eV along with relatively deep highest occupied molecular orbital energy level of -5.34 eV. Based on the optimized processing conditions, including thermal annealing, and the use of a water/alcohol cathode interlayer, the single-junction polymer solar cell based on PTZBIBDT:PC71BM ([6,6]-phenyl-C71-butyric acid methyl ester) blend film affords a power conversion efficiency of 8.63% with an open-circuit voltage of 0.87 V, a short circuit current of 13.50 mA cm(-2), and a fill factor of 73.95%, which is among the highest values reported for wide-bandgap polymers-based single-junction organic solar cells. The morphology studies on the PTZBIBDT:PC71BM blend film indicate that a fibrillar network can be formed and the extent of phase separation can be mani-pulated by thermal annealing. These results indicate that the TZBI unit is a very promising building block for the synthesis of wide-bandgap polymers for high-performance single-junction and tandem (or multijunction) organic solar cells.

  11. Biomechanical Evaluation of a Tooth Restored with High Performance Polymer PEKK Post-Core System: A 3D Finite Element Analysis.

    PubMed

    Lee, Ki-Sun; Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan; Lee, Jeong-Yol

    2017-01-01

    The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems.

  12. Biomechanical Evaluation of a Tooth Restored with High Performance Polymer PEKK Post-Core System: A 3D Finite Element Analysis

    PubMed Central

    Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan

    2017-01-01

    The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems. PMID:28386547

  13. Metal-Organic Coordination Polymer to Prepare Density Controllable and High Nitrogen-Doped Content Carbon/Graphene for High Performance Supercapacitors.

    PubMed

    Luo, Jinwei; Zhong, Wenbin; Zou, Yubo; Xiong, Changlun; Yang, Wantai

    2017-01-11

    Design and preparation of carbon-based electrode material with high nitrogen-doping ratio and appropriate density attract much interest for supercapacitors in practical application. Herein, three porous carbon/graphene (NCGCu, NCGFe, and NCGZn) with high doping ratio of nitrogen have been prepared via directly pyrolysis of graphene oxide (GO)/metal-organic coordination polymer (MOCP) composites, which were formed by reacting 4,4'-bipyridine (BPD) with CuCl2, FeCl3, and ZnCl2, respectively. As-prepared NCGCu, NCGFe and NCGZn showed high nitrogen doping ratio of 10.68, 12.99, and 11.21 at. %; and high density of 1.52, 0.84, and 1.15 g cm(-3), respectively. When as-prepared samples were used as supercapacitor electrodes, NCGCu, NCGFe and NCGZn exhibited high gravimetric specific capacitances of 369, 298.5, 309.5 F g(-1), corresponding to high volumetric specific capacitances of 560.9, 250.7, 355.9 F cm(-3) at a current density of 0.5 A g(-1), as well as good cycling stability, nearly 100% of the capacitance retained after 1000 cycles even at a large current density of 10 A g(-1). It is expected that the provided novel strategy can be used to develop electrode materials in high performance energy conversion/storage devices.

  14. Determination of Polymer Additives-Antioxidants, Ultraviolet Stabilizers, Plasticizers and Photoinitiators in Plastic Food Package by Accelerated Solvent Extraction Coupled with High-Performance Liquid Chromatography.

    PubMed

    Li, Bo; Wang, Zhi-Wei; Lin, Qin-Bao; Hu, Chang-Ying; Su, Qi-Zhi; Wu, Yu-Mei

    2015-07-01

    An analytical method for the quantitative determination of 4 antioxidants, 9 ultraviolet (UV) stabilizers, 12 phthalate plasticizers and 2 photoinitiators in plastic food package using accelerated solvent extraction (ASE) coupled with high-performance liquid chromatography-photodiode array detector (HPLC-PDA) has been developed. Parameters affecting the efficiency in the process such as extraction and chromatographic conditions were studied in order to determine operating conditions. The analytical method of ASE-HPLC showed good linearity with good correlation coefficients (R ≥ 0.9833). The limits of detection and quantification were between 0.03 and 0.30 µg mL(-1) and between 0.10 and 1.00 µg mL(-1) for 27 analytes. Average spiked recoveries for most analytes in samples were >70.4% at 10, 20 and 40 µg g(-1) spiked levels, except UV-9 and Irganox 1010 (58.6 and 64.0% spiked at 10 µg g(-1), respectively), the relative standard deviations were in the range from 0.4 to 15.4%. The methodology has been proposed for the analysis of 27 polymer additives in plastic food package. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Determination of polymer additives-antioxidants and ultraviolet (UV) absorbers by high-performance liquid chromatography coupled with UV photodiode array detection in food simulants.

    PubMed

    Gao, Yali; Gu, Yanxiang; Wei, Yun

    2011-12-28

    An analytical method for the quantitative determination of migration levels of polymer additives such as antioxidants and UV absorbers in food packages by high-performance liquid chromatography coupled with UV-vis photodiode array detection has been developed. The pretreatment step involved solid-phase extraction with silica C18 cartridges. The analytical method showed good linearity, presenting regression coefficients (R(2)) ≥ 0.9990 for all compounds. This optimized method was also validated with respect to precision, reproducibility, stability, and accuracy. The limits of detection and quantification were between 0.09 and 1.72 μg mL(-1) and between 0.20 and 5.64 μg mL(-1) for 12 analytes, respectively. Recoveries were in the range of 67.48 and 108.55%, with relative standard deviations between 2.76 and 9.81%. Migration levels of antioxidants and UV absorbers were determined. Butylated hydroxyanisole, 2,6-di-tert-butyl-4-methylphenol (BHT), 2,4-di-tert-butylphenol, Cyanox 2246, Irganox 1035, Tinuvin 326, Tinuvin 328, Irganox 1010, and Irganox 1330 were detected; BHT and Cyanox 2246 were at higher levels than the specific migration levels in some food simulants.

  16. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    SciTech Connect

    Lassinantti Gualtieri, Magdalena

    2015-01-15

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed.

  17. Facile Approach to Preparing a Vanadium Oxide Hydrate Layer as a Hole-Transport Layer for High-Performance Polymer Solar Cells.

    PubMed

    Cong, Hailin; Han, Dongwei; Sun, Bingbing; Zhou, Dongying; Wang, Chen; Liu, Ping; Feng, Lai

    2017-05-31

    We demonstrate a facile and green approach to preparing a vanadium oxide hydrate (VOx·nH2O) layer to serve as the hole-transport layer (HTL) in high-performance polymer solar cells (PSCs). The VOx·nH2O layer was in situ prepared by a combined H2O2 and ultraviolet-ozone (UVO) processing on a VOx layer. The as-prepared VOx·nH2O layer featured a work function of 5.0 ± 0.1 eV, high transmittance, and better interface properties compared to those of the generally prepared VOx (UVO or thermal annealing) layers. PSCs based on poly[(ethylhexyl-thiophenyl)-benzodithiophene-(ethylhexyl)-thienothiophene]/[6,6]-phenyl-C71-butyric acid methyl ester using the VOx·nH2O layer as the HTL yielded high power conversion efficiencies (PCEs) up to 8.11%, outperforming the devices with VOx layers (PCE of 6.79% for the UVO-processed VOx layer and 6.10% for the thermally annealed VOx layer) and conventional polyethylenedioxythiophene-polystyrenesulfonate (PEDOT:PSS) layers (PCE of 7.67%). The improved PCE was attributed to the enhanced JSC and/or fill factor, which mainly correlate to the improved interfacial contact between the photoactive layer and the indium tin oxide/HTL or cathode when using the VOx·nH2O layer as the HTL. A similar improvement in the PCE was also observed for the PSCs based on poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester. In addition, PSCs with a VOx·nH2O layer as the HTL showed a higher stability than that of those with a PEDOT:PSS layer. Hence, it would be possible to use this simply and in situ prepared VOx·nH2O layer as an inexpensive HTL for high-performance PSCs.

  18. Analysis of Double Layer and Adsorption Effects at the Alkaline Polymer Electrolyte-Electrode Interface

    DTIC Science & Technology

    2011-10-05

    losses in al - kaline media (0.1 M K/ NaOH ) compared to non-adsorbing acidic electrolytes (0.1 M HClO4). In alkaline media, the slower HOR ki- netics was... NaOH in the fuel.22 In addition to methanol, several other fuels with metal hydroxide addition have been used in AEM fuel cells. Li et al . recently...by anode performance. Further analysis of the alcohol oxidation anode was performed with an alcohol/H2 half-cell system . Figure 3 shows the half-cell

  19. Water-compatible graphene oxide/molecularly imprinted polymer coated stir bar sorptive extraction of propranolol from urine samples followed by high performance liquid chromatography-ultraviolet detection.

    PubMed

    Fan, Wenying; He, Man; You, Linna; Zhu, Xuewei; Chen, Beibei; Hu, Bin

    2016-04-22

    Due to the high selectivity and stability, molecularly imprinted polymers (MIPs) have been successfully applied in stir bar sorptive extraction (SBSE) as a special coating to improve the selective extraction capability for target analytes. However, traditional MIPs usually suffer from incompatibility in aqueous media and low adsorption capacity, which limit the application of MIP coated stir bar in aqueous samples. To solve these problems, a water-compatible graphene oxides (GO)/MIP composite coated stir bar was prepared in this work by in situ polymerization. The prepared water-compatible GO/MIP coated stir bar presented good mechanical strength and chemical stability, and its recognition ability in aqueous samples was improved due to the polymerization of MIP in water environment, the adsorption capacity for target analytes was also increased by the addition of GO in MIP pre-polymer solution. Based on it, a method of water-compatible GO/MIP coated stir bar sorptive extraction combined with high performance liquid chromatography-ultraviolet detector (HPLV-UV) was proposed for the analysis of propranolol (PRO) in aqueous solution. The influencing factors of SBSE, such as sample pH, salt effect, stirring rate, extraction time, desorption solvent and desorption time, were optimized, and the analytical performance of the developed SBSE-HPLC-UV method was evaluated under the optimized conditions. The limit of detection (LOD) of the proposed method for PRO was about 0.37 μg L(-1), and the enrichment factor (EF) was 59.7-fold (theoretical EF was 100-fold). The reproducibility was also investigated at concentrations of 5 μg L(-1) and the relative standard deviation (RSD) was found to be 7.3% (n=7). The proposed method of GO/MIP coating-SBSE-HPLC-UV was successfully applied for the assay of the interested PRO drug in urine samples, and further extended to the investigation of the excretion of the drugs by monitoring the variation of the concentration of PRO in urine

  20. Hollow porous ionic liquids composite polymers based solid phase extraction coupled online with high performance liquid chromatography for selective analysis of hydrophilic hydroxybenzoic acids from complex samples.

    PubMed

    Dai, Xingping; Wang, Dongsheng; Li, Hui; Chen, Yanyi; Gong, Zhicheng; Xiang, Haiyan; Shi, Shuyun; Chen, Xiaoqing

    2017-02-10

    Polar and hydrophilic properties of hydroxybenzoic acids usually made them coelute with interferences in high performance liquid chromatography (HPLC) analysis. Then selective analysis of them was necessary. Herein, hollow porous ionic liquids composite polymers (PILs) based solid phase extraction (SPE) was firstly fabricated and coupled online with HPLC for selective analysis of hydroxybenzoic acids from complex matrices. Hollow porous PILs were firstly synthesized using Mobil Composition of Matter No. 48 (MCM-48) spheres as sacrificial support, 1-vinyl-3-methylimidazolium chloride (VMIM(+)Cl(-)) as monomer, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Various parameters affecting synthesis, adsorption and desorption behaviors were investigated and optimized. Steady-state adsorption studies showed the resulting hollow porous PILs exhibited high adsorption capacity, fast adsorption kinetics, and excellent specific adsorption. Subsequently, the application of online SPE system was studied by selective analysis of protocatechuic acid (PCA), 4-hydroxybenzoic acid (4-HBA), and vanillic acid (VA) from Pollen Typha angustifolia. The obtained limit of detection (LOD) varied from 0.002 to 0.01μg/mL, the linear range (0.05-5.0μg/mL) was wide with correlation coefficient (R) from 0.9982 to 0.9994, and the average recoveries at three spiking levels ranged from 82.7 to 102.4%, with column-to-column relative standard deviation (RSD) below 8.1%. The proposed online method showed good accuracy, precision, specificity and convenience, which opened up a universal and efficient route for selective analysis of hydroxybenzoic acids from complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Acylhydrazone bond dynamic covalent polymer gel monolithic column online coupling to high-performance liquid chromatography for analysis of sulfonamides and fluorescent whitening agents in food.

    PubMed

    Zhang, Chengjiang; Luo, Xialin; Wei, Tianfu; Hu, Yufei; Li, Gongke; Zhang, Zhuomin

    2017-10-13

    A new dynamic covalent polymer (DCP) gel was well designed and constructed based on imine chemistry. Polycondensation of 4,4'-biphenyldicarboxaldehyde and 1,3,5-benzenetricarbohydrazide via Schiff-base reaction resulted in an acylhydrazone bond gel (AB-gel) DCP. AB-gel DCP had three-dimensional network of interconnected nanoparticles with hierarchically porous structure. AB-gel DCP was successfully fabricated as a monolithic column by an in-situ chemical bonding method for online enrichment and separation purpose with excellent permeability. AB-gel DCP based monolithic column showed remarkable adsorption affinity towards target analytes including sulfonamides (SAs) and fluorescent whitening agents (FWAs) due to its strong π-π affinity, hydrophobic effect and hydrogen bonding interaction. Then, AB-gel DCP based monolithic column was applied for online separation and analysis of trace SAs and FWAs in food samples coupled with high-performance liquid chromatography (HPLC). Sulfathiazole (ST) and sulfadimidine (SM2) in one positive weever sample were actually found and determined with concentrations of 273.8 and 286.3μg/kg, respectively. 2,5-Bis(5-tert-butyl-2-benzoxazolyl) thiophene (FWA184) was actually quantified in one tea infusion sample with the concentration of 268.5ng/L. The spiked experiments suggested the good recoveries in range of 74.5-110% for SAs in weever and shrimp samples with relative standard deviations (RSDs) less than 9.7% and in range of 74.0-113% for FWAs in milk and tea infusion samples with RSDs less than 9.0%. AB-gel DCP monolithic column was proved to be a promising sample preparation medium for online separation and analysis of trace analytes in food samples with complex matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Simple O2 plasma-processed V2O5 as an anode buffer layer for high-performance polymer solar cells.

    PubMed

    Bao, Xichang; Zhu, Qianqian; Wang, Ting; Guo, Jing; Yang, Chunpeng; Yu, Donghong; Wang, Ning; Chen, Weichao; Yang, Renqiang

    2015-04-15

    A simple O2 plasma processing method for preparation of a vanadium oxide (V2O5) anode buffer layer on indium tin oxide (ITO)-coated glass for polymer solar cells (PSCs) is reported. The V2O5 layer with high transmittance and good electrical and interfacial properties was prepared by spin coating a vanadium(V) triisopropoxide oxide alcohol solution on ITO and then O2 plasma treatment for 10 min [V2O5 (O2 plasma)]. PSCs based on P3HT:PC61BM and PBDTTT-C:PC71BM using V2O5 (O2 plasma) as an anode buffer layer show high power conversion efficiencies (PCEs) of 4.47 and 7.54%, respectively, under the illumination of AM 1.5G (100 mW/cm(2)). Compared to that of the control device with PBDTTT-C:PC71BM as the active layer and PSS (PCE of 6.52%) and thermally annealed V2O5 (PCE of 6.27%) as the anode buffer layer, the PCE was improved by 15.6 and 20.2%, respectively, after the introduction of a V2O5 (O2 plasma) anode buffer layer. The improved PCE is ascribed to the greatly improved fill factor and enhanced short-circuit current density of the devices, which benefited from the change in the work function of V2O5, a surface with many dangling bonds for better interfacial contact, and the excellent charge transport property of the V2O5 (O2 plasma) layer. The results indicate that an O2 plasma-processed V2O5 film is an efficient and economical anode buffer layer for high-performance PSCs. It also provides an attractive choice for low-cost fabrication of organic electronics.

  3. Characterization of capillary-channeled polymer fiber stationary phases for high-performance liquid chromatography protein separations: Comparative analysis with a packed-bed column.

    PubMed

    Nelson, Dwella M; Marcus, R Kenneth

    2006-12-15

    Capillary-channeled polymer (C-CP) fibers are investigated as reversed-phase (RP) stationary phases for high-performance liquid chromatography of proteins. A comparative analysis of column characteristics for polypropylene and poly(ethylene terephthalate) C-CP fiber columns and a conventional packed-bed (C4-derivatized silica) column has been undertaken. Five proteins (ribonuclease A, cytochrome c, lysozyme, myoglobin, bovine serum albumin) were used to investigate the separation characteristics under typical RP gradient conditions. Column performance was compared under standard (identical) and optimized RP chromatographic conditions. The gradient compositions utilized with the C-CP fiber columns are similar to those used with conventional columns, employing flow rates in the 1-6 mL/min range and gradient rates of approximately 1%/min. The packed-bed column was operated as prescribed by the column manufacturer. The retention factor (k'), separation factor (alpha), resolution (Rs), asymmetry factor (As), elution order, and peak capacity values of a four protein separations performed on the C-CP fiber columns are compared to the same separation on the C4 column. One unique feature observed here is the lessening of the percentage of organic modifier necessary to elute the proteins from the fiber phases with increased linear velocity. The potential contribution of the different stationary phases to protein denaturation was evaluated through a spectrophotometric enzymatic activity assay. The repeatability of retention times under both sets of conditions for six consecutive injections of lysozyme on each C-CP fiber column is < or =1.5% RSD. The column-to-column reproducibility of retention times for three columns of each fiber type is also < or =1.5% RSD. The overall performance of the C-CP fiber columns was comparable to the conventional column used in these studies. Basic characteristics demonstrated here suggested further developments in the areas of ultrafast protein

  4. Honeycomb-shaped coordination polymers based on the self-assembly of long flexible ligands and alkaline-earth ions

    SciTech Connect

    Lian, Chen; Liu, Liu; Guo, Xu; Long, Yinshuang; Jia, Shanshan; Li, Huanhuan; Yang, Lirong

    2016-01-15

    Two novel coordination polymers, namely, [Ca(NCP){sub 2}]{sub ∞} (I) and [Sr(NCP){sub 2}]{sub ∞} (II) were synthesized under hydrothermal conditions based on 2-(4-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline (HNCP) and characterized by elemental analysis, infrared spectrometry, X-ray powder diffraction and single crystal X-ray diffraction. Findings indicate that I and II are isomorphous and isostructural, containing the unit of M(NCP{sup −}){sub 4} (M=Ca(II) and Sr(II)), based on which to assemble into three-dimensional (3D) porous 4-fold interpenetration honeycomb-shaped neutral coordination polymers (CPs). Between the adjacent lamellar structures in I and II, there exist π–π interactions between the pyridine rings belonging to phenanthroline of NCP{sup −} which stabilize the frameworks. Both I and II display stronger fluorescence emissions as well as high thermal stability. - Graphical abstract: One-dimensional nanotubular channels with the cross dimension of 37.1959(20)×23.6141(11)Å{sup 2} in the three-dimensional honeycomb-shaped coordination network of II are observed. The topological analysis of II indicates that there exists a typical diamond framework possessing large adamantanoid cages, which containing four cyclohexane-shaped patterns in chair conformations. - Highlights: • Two isomorphous and isostructural coordination polymers based on flexible ligand and two alkaline-earth metal salts have been synthesized and characterized. • Structural analysis indicates that I and II are assembled into 3D porous honeycomb-shaped metal-organic frameworks. • Both I and II display stronger fluorescence emissions and higher thermal stability.

  5. Tough high performance composite matrix

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Johnston, Norman J. (Inventor)

    1994-01-01

    This invention is a semi-interpentrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. Provided is an improved high temperature matrix resin which is capable of performing in the 200 to 300 C range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance, and moisture and solvent resistances.

  6. Ratiometric detection of copper ions and alkaline phosphatase activity based on semiconducting polymer dots assembled with rhodamine B hydrazide.

    PubMed

    Sun, Junyong; Mei, Han; Gao, Feng

    2017-05-15

    The rational surface functionalization of semiconducting polymer dots (Pdots) has attracted much attention to extend their applications in fabricating chemo/biosensing platform. In this study, a novel ratiometric fluorescent sensing platform using functionalized Pdots as probes for fluorescence signal transmission has been designed for sensing Cu(Ⅱ) and activity of alkaline phosphatase (ALP) with high selectivity and enhanced sensitivity. The highly fluorescent Pdots were firstly prepared with Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)] (PFBT) via nanoprecipitation method, and then assembled with non-fluorescent rhodamine B hydrazide (RB-hy), which shows special binding activity to Cu(Ⅱ), through adsorption process to obtain functionalized nanohybrids, Pdots@RB-hy. As thus, a FRET donors/acceptors pair, in which PFBT Pdots act as energy donors while RB-hy-Cu(II) complexes act as energy acceptors were constructed. On the basis of the varies in fluorescence intensities of donors/acceptors in the presence of different amounts of Cu(II), a ratiometric method for sensing Cu(II) has been proposed. The proposed ratiometric Cu(II) sensor shows a good linear detection range from 0.05 to 5μM with a detection limit of 15nM. Furthermore, using the Pdots@RB-hy-Cu(II) system as signal transducer, a ratiometric sensing for alkaline phosphatase (ALP) activity has also been established with pyrophosphate (PPi) as substrates. The constructed ratiometric sensor of ALP activity displays a linear detection range from 0.005 to 15UL(-1) with a detection limit of 0.0018UL(-1). The sensor was further successfully used for ALP activity detection in human serum with satisfactory results.

  7. Detailed evaluation of the West Kiehl alkaline-surfactant-polymer field project and it`s application to mature Minnelusa waterfloods. Annual technical report, January 1993--December 1993

    SciTech Connect

    Pitts, M.J.

    1995-02-01

    The combination of an interfacial tension agent and a mobility control agent has the potential to produce additional oil beyond a waterflood. The West Kiehl alkaline-surfactant-polymer project is the most advanced application of this chemical enhanced oil recovery technique. The West Kiehl alkaline-surfactant-polymer flood was initiated in September 1987 as a secondary application after primary recovery. A preliminary analysis of the West Kiehl alkaline-surfactant-polymer flood indicates that incremental oil of 20% of the original stock tank oil in place will be produced above waterflooding. The cost of the incremental oil will be less than $2.50 per incremental barrel. A statistical analysis of approximately 120 Minnelusa oil fields in the Powder River Basin indicates that the original stock tank oil in place exceeds one billion barrels. If the enhanced oil recovery technology implemented at West Kiehl field could be successfully applied to these fields, the potential incremental oil recovery would approach 200 million barrels. This project (1) evaluates the geological deposition environment of West Kiehl and adjacent Minneluse sand reservoirs; (2) compares the production performance results of the best geologic and reservoir performance analogs and select two fields for future study; (3) compares the two best field analogs to the west Kiehl field using numerical simulation; (4) predict results of applying the enhancement technology on two mature Minneluse waterflood analog units using engineering and numerical simulation; (5) predict waterflood and polymer flood performance of the West Kiehl field using numerical simulation.

  8. Cannabinoids assessment in plasma and urine by high performance liquid chromatography-tandem mass spectrometry after molecularly imprinted polymer microsolid-phase extraction.

    PubMed

    Sánchez-González, Juan; Salgueiro-Fernández, Rocío; Cabarcos, Pamela; Bermejo, Ana María; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2017-02-01

    A molecularly imprinted polymer (MIP) selective for cannabinoids [Δ(9)-tetrahydrocannabinol (Δ9-THC), 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (Δ9-THC-COOH), and 11-hydroxy-Δ(9)-tetrahydrocannabinol (Δ9-THC-OH)] has been synthesized, fully characterized, and applied to the assessment of plasma and urine analysis of marijuana abuse by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Δ9-THC-COOH was used as a template molecule, whereas ethylene glycol dimethacrylate (EGDMA) was used as a functional monomer, divinylbenzene (DVB) as a cross-linker, and 2,2'-azobisisobutyronitrile (AIBN) as an initiator. The prepared MIP was found to be highly selective for cannabinoids typically found in blood and urine, and also for cannabinol (CBN) and cannabidiol (CBD). MIP beads (50 mg) were loaded inside a cone-shaped device made of a polypropylene (PP) membrane for microsolid-phase extraction (μ-SPE) in batch mode. Optimum retention of analytes (0.1 to 1.0 mL of plasma/urine) was achieved by fixing plasma/urine pH at 6.5 and assisting the procedure by mechanical shaking (150 rpm, 40 °C, 12 min). Optimum elution conditions implied 2 mL of a 90:10 methanol/acetic acid and ultrasound extraction (35 kHz, 325 W) for 6 min. Good precision was assessed by intra-day and inter-day assays. In addition, the method was found to be accurate after intra-day and inter-day analytical recovery assays and after analyzing control serum and urine control samples. The limits of quantification were in the range of 0.36-0.49 ng L(-1) (plasma analysis) and 0.47-0.57 ng L(-1) (urine analysis). These values are low enough for confirmative conclusions regarding marijuana abuse through blood and urine analysis. Graphical Abstract ᅟ.

  9. Development of magnetic molecularly imprinted polymers for solid phase extraction of cocaine and metabolites in urine before high performance liquid chromatography - tandem mass spectrometry.

    PubMed

    Sánchez-González, Juan; Jesús Tabernero, María; Bermejo, Ana María; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2016-01-15

    A magnetic molecularly imprinted polymer (MMIP) has been synthesized and applied for cocaine (COC) and metabolites (benzoylecgonine, BZE; cocaethylene, CE; and ecgonine methyl ester, EME) recognition/pre-concentration in urine samples. The MMIP has been prepared using COC as a template molecule, ethylene dimethacrylate (EDMA) as a functional monomer, divinylbenzene (DVB) as a cross-linker, Fe3O4 magnetite as a magnetic component, and 2,2'-azobisisobutyronitrile (AIBN) as an initiator. The best results (MIP layer on the surface of the magnetic nanoparticles) and physical properties of the prepared MMIP were obtained when assisting the synthesis procedure with ultrasounds (325W, 37kHz, 30°C, 4h). After solid phase extraction (SPE) with the prepared adsorbent material, analytes were determined by high performance liquid chromatography - tandem mass spectrometry (HPLC-MS/MS). Variables affecting the SPE process (batch mode) were fully evaluated. Optimum retention of analytes (1.8mL of urine and 50mg of MMIP) was achieved by fixing the urine pH at 5.5 (use of a KH2PO4/NaOH, pH 5.5 buffer solution), and magnetic stirring (25°C, 700rpm) for 10min. Elution was performed by using 2mL of a dichloromethane/2-propanol/ammonium hydroxide (75:20:5) mixture under ultrasounds (325W, 35kHz, room temperature) for 5min. The method was validated according to the guidance for bioanalytical method validation of the US Department of Health and Human Services, Food and Drug Administration. The detection limits were in the range of 0.39-1.4ngL(-1). The relative standard deviations of intra- and inter-day tests ranged from 5 to 11% and from 3 to 11%, respectively. Analytical recoveries were in the range of 79-106% when spiking drug-free urine samples at three concentration levels. Good results were also obtained after analyzing an FDT +25% control material. The applicability of the method was proved for screening/quantifying COC, BZE, CE and EME in several samples from poly-drug abusers

  10. Side-Chain Fluorination: An Effective Approach to Achieving High-Performance All-Polymer Solar Cells with Efficiency Exceeding 7.

    PubMed

    Oh, Jiho; Kranthiraja, Kakaraparthi; Lee, Changyeon; Gunasekar, Kumarasamy; Kim, Seonha; Ma, Biwu; Kim, Bumjoon J; Jin, Sung-Ho

    2016-12-01

    Side-chain fluorination of polymers is demonstrated as a highly effective strategy to improve the efficiency of all-polymer solar cells from 2.93% (nonfluorinated P1) to 7.13% (fluorinated P2). This significant enhancement is achieved by synergistic improvements in open-circuit voltage, charge generation, and charge transport, as fluorination of the donor polymer optimizes the band alignment and the film morphology.

  11. Steric hindrance regulated supramolecular assembly between β-cyclodextrin polymer and pyrene for alkaline phosphatase fluorescent sensing

    NASA Astrophysics Data System (ADS)

    Song, Chunxia; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Liu, Jianbo; Huang, Jin; Zhou, Maogui; Guo, Xiaochen

    2016-03-01

    We herein report a strategy for sensitive alkaline phosphatase (ALP) fluorescent sensing based on steric hindrance regulated supramolecular assembly between β-cyclodextrin polymer (polyβ-CD) and pyrene. The fluorescence of pyrene was enhanced more than 10 times through supramolecular assembly with polyβ-CD. The 5‧-phosphorylated dsDNA probe with pyrene attached on the 3‧-terminal could be cleaved by λ exonuclease (λ exo), yielding pyrene attached on mononucleotides. Pyrene attached on mononucleotides could easily enter the cavity of polyβ-CD, resulting in fluorescence enhancement. When ALP was introduced, it could remove 5‧-phosphate groups from dsDNA and then prevented the cleavage of dsDNA. Pyrene attached on dsDNA was difficult to enter the cavity of polyβ-CD because of steric hindrance, resulting in an inconspicuous fluorescence enhancement. Owing to the excellent fluorescence enhancement during steric hindrance regulated supramolecular assembly, excellent performance of the assay method was achieved for ALP with a detection limit of 0.04 U mL- 1. The detection limit was superior or comparable with the reported methods. Besides, this method was simple in design, avoiding double-labeling of probe.

  12. n-Type semiconducting naphthalene diimide-perylene diimide copolymers: controlling crystallinity, blend morphology, and compatibility toward high-performance all-polymer solar cells.

    PubMed

    Hwang, Ye-Jin; Earmme, Taeshik; Courtright, Brett A E; Eberle, Frank N; Jenekhe, Samson A

    2015-04-08

    Knowledge of the critical factors that determine compatibility, blend morphology, and performance of bulk heterojunction (BHJ) solar cells composed of an electron-accepting polymer and an electron-donating polymer remains limited. To test the idea that bulk crystallinity is such a critical factor, we have designed a series of new semiconducting naphthalene diimide (NDI)-selenophene/perylene diimide (PDI)-selenophene random copolymers, xPDI (10PDI, 30PDI, 50PDI), whose crystallinity varies with composition, and investigated them as electron acceptors in BHJ solar cells. Pairing of the reference crystalline (crystalline domain size Lc = 10.22 nm) NDI-selenophene copolymer (PNDIS-HD) with crystalline (Lc = 9.15 nm) benzodithiophene-thieno[3,4-b]thiophene copolymer (PBDTTT-CT) donor yields incompatible blends, whose BHJ solar cells have a power conversion efficiency (PCE) of 1.4%. However, pairing of the new 30PDI with optimal crystallinity (Lc = 5.11 nm) as acceptor with the same PBDTTT-CT donor yields compatible blends and all-polymer solar cells with enhanced performance (PCE = 6.3%, Jsc = 18.6 mA/cm(2), external quantum efficiency = 91%). These photovoltaic parameters observed in 30PDI:PBDTTT-CT devices are the best so far for all-polymer solar cells, while the short-circuit current (Jsc) and external quantum efficiency are even higher than reported values for [70]-fullerene:PBDTTT-CT solar cells. The morphology and bulk carrier mobilities of the polymer/polymer blends varied substantially with crystallinity of the acceptor polymer component and thus with the NDI/PDI copolymer composition. These results demonstrate that the crystallinity of a polymer component and thus compatibility, blend morphology, and efficiency of polymer/polymer blend solar cells can be controlled by molecular design.

  13. High performance solid-state supercapacitor with PVA-KOH-K3[Fe(CN)6] gel polymer as electrolyte and separator

    NASA Astrophysics Data System (ADS)

    Ma, Guofu; Li, Jiajia; Sun, Kanjun; Peng, Hui; Mu, Jingjing; Lei, Ziqiang

    2014-06-01

    A gel polymer PVA-KOH-K3[Fe(CN)6] is prepared by potassium hydroxide and potassium ferricyanide doped polyvinyl alcohol, and a solid-state supercapacitor is assembled using the gel polymer as electrolyte and separator, activated carbons as electrode. The gel polymer exhibits flexible, high ionic conductivity and wide potential properties. The electrochemical properties of the supercapacitor are investigated using cyclic voltammetry, galvanostatic charge/discharge, and impedance spectroscopy techniques. The electrode specific capacitance of the supercapacitor can be as high as 430.95 F g-1, and after 1000 cycles at a current density of 1 A g-1 it still remains higher than 380 F g-1. The energy density and power density of the supercapacitor reach 57.94 Wh kg-1 and 59.84 kW kg-1, respectively. These novel flexible gel polymers are desirable for applications in supercapacitor devices.

  14. Determination of donepezil in serum samples using molecularly imprinted polymer nanoparticles followed by high-performance liquid chromatography with ultraviolet detection.

    PubMed

    Khansari, Mehdi Rajabnia; Bikloo, Shahrzad; Shahreza, Sara

    2016-03-01

    A molecularly imprinted polymer designed for the selective extraction of donepezil from serum samples was synthesized using a noncovalent molecular imprinting approach. The molecularly imprinted polymer was evaluated chromatographically and then its affinity for donepezil was confirmed by solid-phase extraction. The optimal conditions for solid-phase extraction were provided by cartridge conditioning using acidified water purified from a Milli-Q system, sample loading under basic aqueous conditions, clean-up using acetonitrile, and elution with methanol/tetrahydrofuran. Desirable molecular recognition properties of the molecularly imprinted polymer led to good donepezil recoveries (90-102%). The data indicated that the imprinted polymer has a perfect selectivity and affinity for donepezil and could be used for selective extraction and analysis of donepezil in human serum.

  15. Real-time ratiometric fluorescent assay for alkaline phosphatase activity with stimulus responsive infinite coordination polymer nanoparticles.

    PubMed

    Deng, Jingjing; Yu, Ping; Wang, Yuexiang; Mao, Lanqun

    2015-03-03

    This study demonstrates a novel ratiometric fluorescent method for real-time alkaline phosphatase (ALP) activity assay with stimulus responsive infinite coordination polymer (ICP) nanoparticles as the probe. The ICP nanoparticles used in this study are composed of two components; one is the supramolecular ICP network formed with guanine monophosphate (GMP) as the ligand and Tb(3+) as the central metal ion, and the other is a fluorescent dye, i.e., 7-amino-4-methyl coumarin (coumarin) encapsulated into the ICP network. Upon being excited at 315 nm, the ICP network itself emits green fluorescence at 552 nm. Coumarin dye encapsulated in the ICP network emits weak fluorescence at 450 nm upon excitation at the same wavelength (315 nm), and this fluorescence emission becomes strong when the encapsulated dye is released from the network into the solution phase. Hence, we develop a ratiometric fluorescent assay based on the ALP-induced destruction of the supramolecular ICP network and the release of coumarin. This mechanism can be used for real-time ratiometric fluorescent monitoring of ALP activity by continuously measuring the ratio of fluorescent intensity at the wavelength of 552 nm (F552) to that at 450 nm (F450) (F552/F450) in the time-dependent fluorescent spectra of the coumarin@Tb-GMP suspension containing ALP with different activities. Under the experimental conditions employed here, the F552/F450 value is linear with the ALP activity within a range from 0.025 U/mL to 0.2 U/mL. The detection limit is down to 0.010 U/mL (S/N = 3). Moreover, the assay developed here is employed for ALP inhibitor evaluation. This study offers a simple yet sensitive method for real-time ALP activity assay.

  16. Fine tuning of the PCDTBT-OR:PC71BM blend nanoscale phase separation via selective solvent annealing toward high-performance polymer photovoltaics

    NASA Astrophysics Data System (ADS)

    Meng, Bin; Fang, Gang; Fu, Yingying; Xie, Zhiyuan; Wang, Lixiang

    2013-12-01

    Solution-processable polymer solar cells show great promise for providing a cost-effective route to create lightweight and flexible solar energy conversion devices. The photoactive layer comprising the conjugated polymer donor and fullerene derivative acceptor must be optimized to form bicontinuous nanoscale phase separation in order for efficient exciton dissociation and charge collection due to the short exciton diffusion length of organic semiconductors. The donor polymer poly[9-(heptadecan-9-yl)-9H-carbazole- 2,7-diyl-alt-(5,6-bis(hexyloxy)-4,7-di(thiophen-2- yl)benzo[c][1,2,5]thiadiazole)-5,5-diyl] (PCDTBT-OR) has a deeper highest occupied molecular orbital level compared to its counterpart PCDTBT, and shows promise in increasing the open-circuit voltage and power conversion efficiency (PCE) of polymer solar cells. The phase separation evolution of the PCDTBT-OR:PC71BM blend with various weight ratios under tetrahydrofuran (THF) vapor annealing and its influence on the photovoltaic performance is investigated in detail. It is found that THF vapor annealing can promote the acceptor PC71BM aggregation from the donor PCDTBT-OR matrix to form nanoscale donor/acceptor phase separation for efficient exciton dissociation and charge collection depending on the donor/acceptor weight ratio and the annealing time. The THF vapor-annealed PCDTBT-OR:PC71BM solar cells exhibit remarkable enhancement, with a PCE of 7.01% compared to 3.25% of the as-cast solar cells with the same active layer thickness. This work provides a general methodology to construct nano-interpenetrating networks for homogeneous polymer/fullerene blends and is potentially applicable to the roll-to-roll manufacturing of polymer solar cells.

  17. Fine tuning of the PCDTBT-OR:PC71BM blend nanoscale phase separation via selective solvent annealing toward high-performance polymer photovoltaics.

    PubMed

    Meng, Bin; Fang, Gang; Fu, Yingying; Xie, Zhiyuan; Wang, Lixiang

    2013-12-06

    Solution-processable polymer solar cells show great promise for providing a cost-effective route to create lightweight and flexible solar energy conversion devices. The photoactive layer comprising the conjugated polymer donor and fullerene derivative acceptor must be optimized to form bicontinuous nanoscale phase separation in order for efficient exciton dissociation and charge collection due to the short exciton diffusion length of organic semiconductors. The donor polymer poly[9-(heptadecan-9-yl)-9H-carbazole- 2,7-diyl-alt-(5,6-bis(hexyloxy)-4,7-di(thiophen-2- yl)benzo[c][1,2,5]thiadiazole)-5,5-diyl] (PCDTBT-OR) has a deeper highest occupied molecular orbital level compared to its counterpart PCDTBT, and shows promise in increasing the open-circuit voltage and power conversion efficiency (PCE) of polymer solar cells. The phase separation evolution of the PCDTBT-OR:PC71BM blend with various weight ratios under tetrahydrofuran (THF) vapor annealing and its influence on the photovoltaic performance is investigated in detail. It is found that THF vapor annealing can promote the acceptor PC71BM aggregation from the donor PCDTBT-OR matrix to form nanoscale donor/acceptor phase separation for efficient exciton dissociation and charge collection depending on the donor/acceptor weight ratio and the annealing time. The THF vapor-annealed PCDTBT-OR:PC71BM solar cells exhibit remarkable enhancement, with a PCE of 7.01% compared to 3.25% of the as-cast solar cells with the same active layer thickness. This work provides a general methodology to construct nano-interpenetrating networks for homogeneous polymer/fullerene blends and is potentially applicable to the roll-to-roll manufacturing of polymer solar cells.

  18. The DARPA High-Performance Polymer Program. Volume 2. Appendix--Selected Presentation Material From the Program Review Held on 14-15 January 1992

    DTIC Science & Technology

    1992-09-01

    wel as durng dwe no-co exeson nftid ofM6flD0-.12A3lj0. POLYMER LIQUID CRYSTALS 1. Kent State Unviersity =58 Liquid Crystal Institute (J.W. Doane) 2...Shielding Electrostatic Control Conductive Coatings Resistive Heating Sensors U I 1I-B- 14 ~~d S~I I VERSICON’m CONDUCTIVE POLYMER Appearance: Dark...am ge em in sb dstate I heated at -60 OC for 1.5 hrs.. then held X moom tempeatre overnight I 3 II-B-57 Chance in Dim ensicns of Stratch-Alicned

  19. para-Azaquinodimethane: A Compact Quinodimethane Variant as an Ambient Stable Building Block for High-Performance Low Band Gap Polymers

    DOE PAGES

    Liu, Xuncheng; He, Bo; Anderson, Christopher L.; ...

    2017-05-24

    Quinoidal structures incorporating expanded para-quinodimethane (p-QM) units have garnered great interest as functional organic electronic, optical, and magnetic materials. The direct use of the compact p-QM unit as an electronic building block, however, has been inhibited by the high reactivity conveyed by its biradical character. Herein, we introduce a stable p-QM variant, namely p-azaquinodimethane (p-AQM), that incorporates nitrogen atoms in the central ring and alkoxy substituents on the periphery to increase the stability of the quinoidal structure. The succinct synthesis from readily available precursors leads to regio- and stereospecific p-AQMs that can be readily integrated into the backbone of conjugatedmore » polymers. The quinoidal character of the p-AQM unit endows the resulting polymers with narrow band gaps and high carrier transport mobilities. The study of a series of copolymers employing different numbers of thiophene units revealed an unconventional trend in band gaps, which is distinct from the widely adopted donor-acceptor approach to tuning the band gaps of conjugated polymers. Theoretical calculations have shed light on the nature of this trend, which may provide a unique class of conjugated polymers with promising optical and electronic properties.« less

  20. Broad Bandgap D-A Copolymer Based on Bithiazole Acceptor Unit for Application in High-Performance Polymer Solar Cells with Lower Fullerene Content.

    PubMed

    Wang, Kun; Guo, Xia; Guo, Bing; Li, Wanbin; Zhang, Maojie; Li, Yongfang

    2016-07-01

    A new broad bandgap and 2D-conjugated D-A copolymer, PBDTBTz-T, based on bithienyl-benzodithiophene donor unit and bithiazole (BTz) acceptor unit, is designed and synthesized for the application as donor material in polymer solar cells (PSCs). The polymer possesses highly coplanar and crystalline structure with a higher hole mobility and lower HOMO energy level which is beneficial to achieve higher open circuit voltage (Voc ) of the PSCs with the polymer as donor. The PSCs based on PBDTBTz-T:PC71 BM blend film with a lower PC71 BM content of 40% demonstrate a power conversion efficiency (PCE) of 6.09% with a relatively higher Voc of 0.92 V. These results indicate that the lower HOMO energy level of the BTz-based D-A copolymer is beneficial to a high Voc of the PSCs. The polymer, with highly coplanar and crystalline structure, can effectively reduce the content of fullerene acceptor in the active layer and can enhance the absorption and PCE of the PSCs.

  1. Cross-linked branching nanohybrid polymer electrolyte with monodispersed TiO2 nanoparticles for high performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Cheng; Zhang, Jinfang; Xu, Mingquan; Xia, Qingbing; Liu, Jiatu; Zhao, Shuai; Chen, Libao; Pan, Anqiang; Ivey, Douglas G.; Wei, Weifeng

    2016-06-01

    Nanohybrid polymer electrolytes (NHPE) with ceramic particles have attracted significant attention owing to their improvement in electrochemical performance. However, particle aggregation and weak nanoparticle/polymer matrix interaction restrict their further application in lithium-ion batteries (LIBs). We demonstrate a facile in-situ polymerization/crystallization method to synthesize a homogeneous TiO2-grafted NHPE with a cross-linked branching structure, comprised of ion-conducting poly(ethylene glycol) methyl ether methacrylate (PEGMEM) and non-polar stearyl methacrylate (SMA). This technique is different from existing methods of blending functionalized ceramic particles into the polymer matrix. Highly monodispersed TiO2 nanocrystals enhance the effective interfacial interactions between particles and polymer matrix, which suppress the crystallization of ethylene oxide (EO) groups and facilitate forming continuously interconnected ion-conducting channels. Moreover, an increased dissociation degree of Li salt can also be achieved. The TiO2-grafted NHPE exhibits superior electrochemical properties with an ionic conductivity of 1.1 × 10-4 S cm-1 at 30 °C, a high lithium ion transference number and excellent interfacial compatibility with the lithium electrode. In particular, a lithium-ion battery based on TiO2-grafted NHPE demonstrates good C-rate performance, as well as excellent cycling stability with an initial discharge capacity of 153.5 mAh g-1 and a capacity retention of 96% after 300 cycles at 1 C (80 °C).

  2. High performance dielectric materials development

    NASA Astrophysics Data System (ADS)

    Piche, Joe; Kirchner, Ted; Jayaraj, K.

    1994-09-01

    The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.

  3. High performance dielectric materials development

    NASA Technical Reports Server (NTRS)

    Piche, Joe; Kirchner, Ted; Jayaraj, K.

    1994-01-01

    The mission of polymer composites materials technology is to develop materials and processing technology to meet DoD and commercial needs. The following are outlined in this presentation: high performance capacitors, high temperature aerospace insulation, rationale for choosing Foster-Miller (the reporting industry), the approach to the development and evaluation of high temperature insulation materials, and the requirements/evaluation parameters. Supporting tables and diagrams are included.

  4. High-Performance Non-Fullerene Organic Solar Cells Based on a Selenium-Containing Polymer Donor and a Twisted Perylene Bisimide Acceptor

    SciTech Connect

    Liu, Tao; Meng, Dong; Cai, Yunhao; Sun, Xiaobo; Li, Yan; Huo, Lijun; Liu, Feng; Wang, Zhaohui; Russell, Thomas P.; Sun, Yanming

    2016-04-23

    A novel polymer donor (PBDTS-Se) is designed to match with a non-fullerene acceptor (SdiPBI-S). The corresponding solar cells show a high efficiency of 8.22%, which result from synergetic improvements of light harvesting, charge carrier transport and collection, and morphology. The results indicate that rational design of novel donor materials is important for non-fullerene organic solar cells.

  5. High-Performance Non-Fullerene Organic Solar Cells Based on a Selenium-Containing Polymer Donor and a Twisted Perylene Bisimide Acceptor.

    PubMed

    Liu, Tao; Meng, Dong; Cai, Yunhao; Sun, Xiaobo; Li, Yan; Huo, Lijun; Liu, Feng; Wang, Zhaohui; Russell, Thomas P; Sun, Yanming

    2016-09-01

    A novel polymer donor (PBDTS-Se) is designed to match with a non-fullerene acceptor (SdiPBI-S). The corresponding solar cells show a high efficiency of 8.22%, which result from synergetic improvements of light harvesting, charge carrier transport and collection, and morphology. The results indicate that rational design of novel donor materials is important for non-fullerene organic solar cells.

  6. High performance photolithographically-patterned polymer thin-film transistors gated with an ionic liquid/poly(ionic liquid) blend ion gel

    NASA Astrophysics Data System (ADS)

    Thiburce, Q.; Porcarelli, L.; Mecerreyes, D.; Campbell, A. J.

    2017-06-01

    We demonstrate the fabrication of polymer thin-film transistors gated with an ion gel electrolyte made of the blend of an ionic liquid and a polymerised ionic liquid. The ion gel exhibits a high stability and ionic conductivity, combined with facile processing by simple drop-casting from solution. In order to avoid parasitic effects such as high hysteresis, high off-currents, and slow switching, a fluorinated photoresist is employed in order to enable high-resolution orthogonal patterning of the polymer semiconductor over an area that precisely defines the transistor channel. The resulting devices exhibit excellent characteristics, with an on/off ratio of 106, low hysteresis, and a very large transconductance of 3 mS. We show that this high transconductance value is mostly the result of ions penetrating the polymer film and doping the entire volume of the semiconductor, yielding an effective capacitance per unit area of about 200 μF cm-2, one order of magnitude higher than the double layer capacitance of the ion gel. This results in channel currents larger than 1 mA at an applied gate bias of only -1 V. We also investigate the dynamic performance of the devices and obtain a switching time of 20 ms, which is mostly limited by the overlap capacitance between the ion gel and the source and drain contacts.

  7. Molecularly imprinted polymer for the extraction of parabens from environmental solid samples prior to their determination by high performance liquid chromatography-ultraviolet detection.

    PubMed

    Núñez, L; Turiel, E; Martin-Esteban, A; Tadeo, J L

    2010-03-15

    An analytical methodology incorporating a molecularly imprinted solid-phase extraction procedure (MISPE) has been developed for the determination of parabens in environmental solid samples. Four different polymers were prepared combining the use of acetonitrile or toluene as porogen, and 4-vinylpyridine (VP) or methacrylic acid (MAA) as monomer, using benzylparaben (BzP) as a template molecule. Although all the polymers were able to recognize the template in rebinding experiments, the MIP prepared in toluene using MAA showed better performance. This polymer was also capable of recognizing other parabens (methyl, ethyl, isopropyl, propyl, isobutyl, butyl and benzylparaben) allowing to develop an appropriated MISPE procedure for this family of compounds. The extraction of the parabens from environmental solid samples was performed by ultrasonic assisted extraction in small columns (SAESC), and this procedure next to MISPE as clean-up step followed by HPLC-UV determination was successfully used for the determination of parabens in soil and sediment samples of different locations. Recoveries ranging from 80% to 90% have been achieved depending on the compound and the samples, and limits of detection (LODs) were under 1 ng g(-1) for all the compounds, making this method suitable for the determination of parabens in environmental solid matrices. The method was further applied to the determination of paraben contents in real samples, founding levels up to 11.5 ng g(-1) in sea sediments.

  8. High performance polymer electrolytes based on main and side chain pyridine aromatic polyethers for high and medium temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Geormezi, M.; Chochos, C. L.; Gourdoupi, N.; Neophytides, S. G.; Kallitsis, J. K.

    Novel aromatic polyether type copolymers bearing side chain polar pyridine rings as well as combination of main and side chain pyridine units have been evaluated as potential polymer electrolytes for proton exchange membrane fuel cells (PEMFCs). The advanced chemical and physicochemical properties of these new polymers with their high oxidative stability, mechanical integrity and high glass transition temperatures (T g's up to 270 °C) and decomposition temperatures (T d's up to 480 °C) make them promising candidates for high and medium temperature proton exchange membranes in fuel cells. These copolymers exhibit adequate proton conductivities up to 0.08 S cm -1 even at moderate phosphoric acid doping levels. An optimized terpolymer chemical structure has been developed, which has been effectively tested as high temperature phosphoric acid imbibed polymer electrolyte. MEA prepared out of the novel terpolymer chemical structure is approaching state of the art fuel cell operating performance (135 mW cm -2 with electrical efficiency 45%) at high temperatures (150-180 °C) despite the low phosphoric acid content (<200 wt%) and the low platinum loading (ca. 0.7 mg cm -2). Durability tests were performed affording stable performance for more than 1000 h.

  9. The influence of alkalinity of portland cement on the absorption characteristics of superabsorbent polymers (SAP) for use in internally cured concrete

    NASA Astrophysics Data System (ADS)

    Tabares Tamayo, Juan D.

    The concrete industry increasingly emphasizes advances in novel materials that promote construction of more resilient infrastructure. Due to its potential to improve concrete durability, internal curing (IC) of concrete by means of superabsorbent polymers (SAP) has been identified as one of the most promising technologies of the 21st century. The addition of superabsorbent polymers into a cementitious system promotes further hydration of cement by providing internal moisture during the hardening and strength development periods, and thus limits self-desiccation, shrinkage, and cracking. This thesis presents the work performed on the series of cement pastes with varying alkalinity of their pore solutions to provide a better understanding of: (1) the influence of the chemistry of the pore solution (i.e. its level of alkalinity and the type of ionic species present) on the absorption capacity of SAP, and (2) the effectiveness of SAP with different absorption capacities as an internal curing agent. This research work was divided into three stages: (a) materials characterization, (b) measurement of absorption capacity of SAP in synthetic pore solutions, and (c) evaluation of the internal curing effectiveness of SAP. During the first stage (Materials Characterization), pore solutions were extracted from the fresh (5 minutes old) cement pastes prepared using cements with three different levels of alkalinity. The pH values of the extracted solutions were determined (using the pH meter) and their chemical analysis was performed by means of titration (concentration of hydroxyl), ion chromatography (sulfates and chlorides), atomic absorption (AA) and inductively coupled plasma optical emission spectrometry (ICP) (sodium, potassium and calcium). The commercial SAP adopted for this study was used with "as-supplied" gradation and with the finer gradation obtained by grinding the original polymer in the 6850 Cryomilling Freezer/Mill. The physical properties of these SAP's, such

  10. Morphologic improvement of the PBDTTT-C and PC71BM blend film with mixed solvent for high-performance inverted polymer solar cells.

    PubMed

    Chen, Hsin-Yi; Lin, Shang-Hong; Sun, Jen-Yu; Hsu, Chi-Hsing; Lan, Shiang; Lin, Ching-Fuh

    2013-12-06

    Tracing the evolution of the bulk heterojunction structure, a dramatic promotion in the efficiency of polymer solar cells has been obtained in recent years. The active layer morphology of low-bandgap polymer solar cells is one of the critical factors for high-efficiency performance. In the past, the relationship between morphology improvement and the device's characteristics (such as efficiency, fill factor and short-circuit current) in low-bandgap polymer solar cells has been studied intensively with regards to the conventional structure. Here we demonstrate the morphologic improvement of the poly[(4,8-bis-(2-ethylhexyloxy)-benzo[1,2-b;4,5-b']dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiopene)-2,6-diyl]/[6,6]-phenyl C71 butyric acid methyl ester (PBDTTT-C/PC71BM) blend film for inverted solar cells. By utilizing a mixed solvent of dichlorobenzene/chlorobenzene with (1,8-diiodooctane) additives, the device efficiency can be significantly enhanced, from 0.92% to 4.43%. This enhancement is attributed to active layer morphologic improvement promoting carrier transport. Furthermore, the thickness optimization of the active layer and the electron blocking layer MoO3 further contributes to efficiency. The device performance could be achieved with an efficiency as high as 5.35%, an open-circuit voltage of 0.70 V, a short-circuit current density of 13.5 mA cm(-2), and a fill factor of 57%.

  11. Connecting high-performance carbon-fiber-reinforced polymer cables of suspension and cable-stayed bridges through the use of gradient materials

    NASA Astrophysics Data System (ADS)

    Meier, Urs; Farshad, Mehdi

    1996-08-01

    Carbon-fiber-reinforced polymer (CFRP) cables offer a very attractive combination of high specific strength and modulus (ratio of strength or modulus to density), outstanding fatigue performance, good corrosion resistance, and low axial thermal expansion. The high specific strength permits the design of structures with highly increased spans. The high specific modulus translates into a high relative equivalent modulus. This factor is very important in view of the deflection constraints imposed on large bridges. A relative high modulus coupled with a low mass density offer CFRP cables already an advantage for spans above 1000 m. Since 1980 EMPA has been developing CFRP cables for cable-stayed and suspension bridges that are produced as assemblies of parallel CFRP wires. The key problem facing the application of CFRP cables, and thus their widespread use in the future, is how to connect them. A new reliable anchoring scheme developed with computer-aided materials design and produced with advanced gradient materials based on ceramics and polymers is described. Early 1996 such CFRP cables with a load-carrying capacity of 12 MN (1200 metric tons) have been applied for the first time on a cable-stayed road bridge with a 124-m span. Each cable is built up from 241 CFRP wires having a diameter of 5 mm.

  12. High-Performing Thin-Film Transistors in Large Spherulites of Conjugated Polymer Formed by Epitaxial Growth on Removable Organic Crystalline Templates.

    PubMed

    Kim, Jae Yoon; Yang, Da Seul; Shin, Jicheol; Bilby, David; Chung, Kyeongwoon; Um, Hyun Ah; Chun, Jaehee; Pyo, Seungmoon; Cho, Min Ju; Kim, Jinsang; Choi, Dong Hoon

    2015-06-24

    Diketopyrrolopyrrole (DPP)-based conjugated polymer PDTDPPQT was synthesized and was used to perform epitaxial polymer crystal growth on removable 1,3,5-trichlorobenzene crystallite templates. A thin-film transistor (TFT) was successfully fabricated in well-grown large spherulites of PDTDPPQT. The charge carrier mobility along the radial direction of the spherulites was measured to be 5.46-12.04 cm(2) V(-1) s(-1), which is significantly higher than that in the direction perpendicular to the radial direction. The dynamic response of charge transport was also investigated by applying a pulsed bias to TFTs loaded with a resistor (∼20 MΩ). The charge-transport behaviors along the radial direction and perpendicular to the radial direction were investigated by static and dynamic experiments through a resistor-loaded (RL) inverter. The RL inverter made of PDTDPPQT-based TFT operates well, maintaining a fairly high switching voltage ratio (Vout(ON)/Vout(OFF)) at a relatively high frequency when the source-drain electrodes are aligned parallel to the radial direction.

  13. Preconcentration and Determination of Mefenamic Acid in Pharmaceutical and Biological Fluid Samples by Polymer-grafted Silica Gel Solid-phase Extraction Following High Performance Liquid Chromatography

    PubMed Central

    Bagheri Sadeghi, Hayedeh; Panahi, Homayon Ahmad; Mahabadi, Mahsa; Moniri, Elham

    2015-01-01

    Mefenamic acid is a nonsteroidal anti-inflammatory drug (NSAID) that has analgesic, anti-infammatory and antipyretic actions. It is used to relieve mild to moderate pains. Solid-phase extraction of mefenamic acid by a polymer grafted to silica gel is reported. Poly allyl glycidyl ether/iminodiacetic acid-co-N, N-dimethylacrylamide was synthesized and grafted to silica gel and was used as an adsorbent for extraction of trace mefenamic acid in pharmaceutical and biological samples. Different factors affecting the extraction method were investigated and optimum conditions were obtained. The optimum pH value for sorption of mefenamic acid was 4.0. The sorption capacity of grafted adsorbent was 7.0 mg/g. The best eluent solvent was found to be trifluoroacetic acid-acetic acid in methanol with a recovery of 99.6%. The equilibrium adsorption data of mefenamic acid by grafted silica gel was analyzed by Langmuir model. The conformation of obtained data to Langmuir isotherm model reveals the homogeneous binding sites of grafted silica gel surface. Kinetic study of the mefenamic acid sorption by grafted silica gel indicates the good accessibility of the active sites in the grafted polymer. The sorption rate of the investigated mefenamic acid on the grafted silica gel was less than 5 min. This novel synthesized adsorbent can be successfully applied for the extraction of trace mefenamic acid in human plasma, urine and pharmaceutical samples. PMID:26330865

  14. Preparation and application of a molecularly imprinted polymer for the determination of trace metolcarb in food matrices by high performance liquid chromatography.

    PubMed

    Qian, Kun; Fang, Guozhen; He, Jinxing; Pan, Mingfei; Wang, Shuo

    2010-07-01

    In this article, for the first time, a molecularly imprinted polymer (MIP) for the metolcarb was prepared by bulk polymerization using metolcarb as the template, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linker. The prepared polymer was characterized by FT-IR, static and kinetic adsorption experiments, and the results showed that it has been successfully synthesized and had good selective ability for metolcarb. The MIP was applied as a sorbent in molecularly imprinted SPE coupled with HPLC-UV for separation and determination of trace metolcarb in three kinds of food matrices at three concentration levels. Under the optimal conditions, the LODs (S/N=3) of cabbage, cucumber and pear were 7.622, 6.455 and 13.52 microg/kg, respectively, and recoveries were in the range of 68.80-101.31% with RSD (n=3) below 3.78% in all cases. To demonstrate further the selectivity of the MIP obtained, a comparison with commercially available C(18) SPE was performed. The results indicated that molecularly imprinted SPE showed better chromatography, better selectivity and higher recoveries for metolcarb than commercially available C(18) SPE.

  15. Automated sample preparation based on the sequential injection principle. Solid-phase extraction on a molecularly imprinted polymer coupled on-line to high-performance liquid chromatography.

    PubMed

    Theodoridis, Georgios; Zacharis, Constantinos K; Tzanavaras, Paraskevas D; Themelis, Demetrius G; Economou, Anastasios

    2004-03-19

    A molecularly imprinted polymer (MIP) prepared using caffeine, as a template, was validated as a selective sorbent for solid-phase extraction (SPE), within an automated on-line sample preparation method. The polymer produced was packed in a polypropylene cartridge, which was incorporated in a flow system prior to the HPLC analytical instrumentation. The principle of sequential injection was utilised for a rapid automated and efficient SPE procedure on the MIP. Samples, buffers, washing and elution solvents were introduced to the extraction cartridge via a peristaltic pump and a multi-position valve, both controlled by appropriate software developed in-house. The method was optimised in terms of flow rates, extraction time and volume. After extraction, the final eluent from the extraction cartridge was directed to the injection loop and was subsequently analysed on HPLC. The overall set-up facilitated unattended operation, operation and improved both mixing fluidics and method development flexibility. This system may be readily built in the laboratory and can be further used as an automated platform for on-line sample preparation.

  16. Simple and rapid high performance liquid chromatography method for the determination of polidocanol as bulk product and in pharmaceutical polymer matrices using charged aerosol detection.

    PubMed

    Ilko, David; Puhl, Sebastian; Meinel, Lorenz; Germershaus, Oliver; Holzgrabe, Ulrike

    2015-02-01

    Currently, neither the European nor the United States Pharmacopoeia provide a method for the determination of polidocanol (PD) content despite the fact that PD, besides being an excipient, is also used as an active pharmaceutical ingredient. We therefore developed a method where the PD content was determined using a Kinetex C18 column operated at 40°C with water-acetonitrile (15:85, v/v) as mobile phase. A Corona(®) charged aerosol detector was employed for the detection of PD that is lacking a suitable UV chromophore. The method was fully validated. Additionally, the method was applied for the determination of PD release from a pharmaceutical polymer matrix consisting of poly-ɛ-caprolactone and poly(lactic-co-glycolic acid) and PD. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Synthesis of mesoporous NiCo2S4 deposited on reduced graphite oxide assistant by co-polymer Pluronic F127 for high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Qin, Huiya; Yang, Shuo; Zhao, Wenliang; Yang, Zhengchun; Li, Xuan; Li, Huijun; Yao, Pei

    2017-10-01

    Mesoporous NiCo2S4 particles deposited on reduced graphite oxide (RGO) sheets using the co-polymer Pluronic F127 as a structure-directing agent have been successfully prepared as a supercapacitor electrode. The formation of F127 micelles alleviated the aggregation of the RGO sheets and generated NiCo2S4 nanoparticles through hydrophilic affinity of ethylene oxide (EO) ends to produce porous channels during the hydrothermal process. This resulted in a large specific area of the prepared material, and superior electrochemical performance in terms of outstanding rate capability of 85.6% (from 1 A g-1 to 20 A g-1) and cycling stability (92.7% retention after 6500 cycles), features that are crucial for supercapacitors in practical application.

  18. High performance Cu adhesion coating

    SciTech Connect

    Lee, K.W.; Viehbeck, A.; Chen, W.R.; Ree, M.

    1996-12-31

    Poly(arylene ether benzimidazole) (PAEBI) is a high performance thermoplastic polymer with imidazole functional groups forming the polymer backbone structure. It is proposed that upon coating PAEBI onto a copper surface the imidazole groups of PAEBI form a bond with or chelate to the copper surface resulting in strong adhesion between the copper and polymer. Adhesion of PAEBI to other polymers such as poly(biphenyl dianhydride-p-phenylene diamine) (BPDA-PDA) polyimide is also quite good and stable. The resulting locus of failure as studied by XPS and IR indicates that PAEBI gives strong cohesive adhesion to copper. Due to its good adhesion and mechanical properties, PAEBI can be used in fabricating thin film semiconductor packages such as multichip module dielectric (MCM-D) structures. In these applications, a thin PAEBI coating is applied directly to a wiring layer for enhancing adhesion to both the copper wiring and the polymer dielectric surface. In addition, a thin layer of PAEBI can also function as a protection layer for the copper wiring, eliminating the need for Cr or Ni barrier metallurgies and thus significantly reducing the number of process steps.

  19. Amino-functionalized alkaline clay with cationic star-shaped polymer as adsorbents for removal of Cr(VI) in aqueous solution

    NASA Astrophysics Data System (ADS)

    Pan, Yuanfeng; Cai, Pingxiong; Farmahini-Farahani, Madjid; Li, Yiduo; Hou, Xiaobang; Xiao, Huining

    2016-11-01

    Pentaerythritol (PER) was esterified with 2-bromoisobutyryl bromide to synthesize a four-arm initiator 4Br-PER for atom transfer radical polymerization (ATRP). Star-shaped copolymers (P(AM-co-DMAEMA)4, CSP) were prepared via ATRP using dimethyl aminoethyl methacrylate (DMAEMA) and acrylamide (AM) as comonomers, while Br-PER and CuBr/2,2‧-bipyridine (BPY) as the initiator and the catalyst, respectively. The resulting four-arm initiator and star-shaped polymer (CSP) were characterized with FT-IR, 1H NMR and Ubbelohde viscometry. Alkaline clay (AC) was immobilized with CSPs to yield amino groups, and the cationic star polymer-immobilized alkaline clay (CSP-AC) was applied to remove Cr(VI) from the aqueous solution in batch experiments. Various influencing factors, including pH, contact time and immobilization amount of CSP on adsorption capacity of CSP-AC for Cr(VI) were also investigated. The results demonstrated that Cr(VI) adsorption was highly pH dependent. The optimized pH value was 4.0. The adsorption isotherms of the adsorbent fit the Langmuir model well, with the maximum adsorption capacity of 137.9 mg/g at 30 °C. The material should be a promising adsorbent for Cr(VI) removal, with the advantages of high adsorption capacity.

  20. Exploration of coordination polymer as sorbent for flow injection solid-phase extraction on-line coupled with high-performance liquid chromatography for determination of polycyclic aromatic hydrocarbons in environmental materials.

    PubMed

    Zhou, You-Ya; Yan, Xiu-Ping; Kim, Ki-Nam; Wang, Shan-Wei; Liu, Ming-Guang

    2006-05-26

    The copper(II) isonicotinate (Cu(4-C5H4N-COO)2(H2O)4) coordination polymer was prepared, characterized and explored as sorbent for flow injection solid-phase extraction on-line coupled with high-performance liquid chromatography (HPLC) for determination of trace polycyclic aromatic hydrocarbons (PAHs) in environmental matrices. Naphthalene, phenanthrene, anthracene, fluoranthene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene and benzo(ghi)perylene with various shape, size and hydrophobicity were used as model analytes. The porosity of the coordination polymer allows these guest PAHs molecules to diffuse into the buck structure, and the shape and size of the pores lead to shape- and size-selectivity over the guests. The precolumn packed with the coordination polymer was shown to be promising for solid-phase extraction of PAHs in environmental samples with subsequent HPLC separation and UV detection. With extraction of 50 ml of sample solution, the enhancement factors for the PAHs studied ranged from 200 to 2337, depending on the shape, size and hydrophobic property of the PAHs. The detection limits (S/N = 3) of 2-14 ng l(-1) and the sample throughput of 3 samples h(-1) were obtained. The developed method was applied to the determination of trace PAHs in a certified reference material (coal fly ash) and local water samples.

  1. Increasing the open-circuit voltage in high-performance organic photovoltaic devices through conformational twisting of an indacenodithiophene-based conjugated polymer.

    PubMed

    Chen, Chih-Ping; Hsu, Hsiang-Lin

    2013-10-01

    A fused ladder indacenodithiophene (IDT)-based donor-acceptor (D-A)-type alternating conjugated polymer, PIDTHT-BT, presenting n-hexylthiophene conjugated side chains is prepared. By extending the degree of intramolecular repulsion through the conjugated side chain moieties, an energy level for the highest occupied molecular orbital (HOMO) of -5.46 eV--a value approximately 0.27 eV lower than that of its counterpart PIDTDT-BT--is obtained, subsequently providing a fabricated solar cell with a high open-circuit voltage of approximately 0.947 V. The hole mobility (determined using the space charge-limited current model) in a blend film containing 20 wt% PIDTHT-BT) and 80 wt% [6,6]-phenyl-C71 butyric acid methyl ester (PC71 BM) is 2.2 × 10(-9) m(2) V(-1) s(-1), which is within the range of reasonable values for applications in organic photovoltaics. The power conversion efficiency is 4.5% under simulated solar illumination (AM 1.5G, 100 mW cm(-2)).

  2. A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Chunli; Zheng, Xuan; Liu, Hai; Wang, Guangjin; Cheng, Fan; Zheng, Genwen; Wen, Sheng; Law, Wing-Cheung; Tsui, Chi-Pong; Tang, Chak-Yin

    2016-09-01

    Remarkable progress has been made on the use of polymer electrolyte membranes (PEMs) for renewable-energy-related research. In particular, carbon nanotubes (CNTs) have emerged as versatile nanomaterials to modify PEMs. However, the inert ionic conduction ability and possible short-circuiting risk are the two major obstacles to their further development. In this work, CNTs are firstly functionalized with an inorganic proton conductor, boron phosphate (BPO4), using a facile polydopamine-assisted sol-gel method to yield BPO4@CNTs. This new additive is then used to modify sulfonated poly(ether ether ketone) (SPEEK). Polydopamine coating layer can act as an extraordinary glue to homogeneously adhere BPO4 nanoparticles on CNTs, thereby not only reducing the risk of short-circuiting, but also fabricating new proton-conducting pathways in the composite membranes. A comprehensive characterization reveals that the thermal stability, tensile properties, and dimensional stability of PEMs are significantly improved. Compared with pure SPEEK, the proton conductivity of SPEEK/BPO4@CNTs-2 is improved by 45% and 150% at 20 °C and at 80 °C, respectively. Furthermore, the H2/O2 cell performance of SPEEK/BPO4@CNTs-2 membrane exhibits a peak power density of 340.7 mW cm-2 at 70 °C, which is significantly better than that of pure SPEEK (254.2 mW cm-2), demonstrating the great potential of proton conductors-functionalized CNTs in PEMs.

  3. High-Performance Solution-Processed Single-Junction Polymer Solar Cell Achievable by Post-Treatment of PEDOT:PSS Layer with Water-Containing Methanol.

    PubMed

    Li, Weiping; Zhang, Xinliang; Zhang, Xin; Yao, Jiannian; Zhan, Chuanlang

    2017-01-18

    PSS (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)) is widely used as the hole-transporting layer for fabrication of new-generation solar cells. Herein, we utilize water-containing methanol to post-treat the PEDOT:PSS surface, by which the insulating PSS component is partially washed out with the PEDOT-to-PSS weight ratio increasing from 1:6.79 to 1:2.93. As a result, the surface becomes more covered with the electrically conductive PEDOT nanodomains, and again the mean current of the conductive nanodomains increases slightly from 6.68 to 7.28 pA, as demonstrated with conductive atomic force microscopy images. The electrical conductivity of the bulk PEDOT:PSS layer increases from 5.51 × 10(-4) to 4.04 × 10(-2) S/cm. The improvement in the surface conductivity allows for more efficient collection of mobile holes with a bit higher value of the hole mobility (5.56 vs 6.78 × 10(-4) cm(2) V(-1) s(-1)). The solution-processed single-junction polymer solar cell fabricated on the treated PEDOT:PSS surface shows a higher mean short-circuit current-density (14.46 vs 16.48 mA cm(-2)) and, hence, a higher mean power conversion efficiency (8.23% vs 9.28%) than that on the untreated surface, as calculated from over 200 cells.

  4. High performance solid-state electric double layer capacitor from redox mediated gel polymer electrolyte and renewable tamarind fruit shell derived porous carbon.

    PubMed

    Senthilkumar, S T; Selvan, R Kalai; Melo, J S; Sanjeeviraja, C

    2013-11-13

    The activated carbon was derived from tamarind fruit shell and utilized as electrodes in a solid state electrochemical double layer capacitor (SSEDLC). The fabricated SSEDLC with PVA (polyvinyl alcohol)/H2SO4 gel electrolyte delivered high specific capacitance and energy density of 412 F g(-1) and 9.166 W h kg(-1), respectively, at 1.56 A g(-1). Subsequently, Na2MoO4 (sodium molybdate) added PVA/H2SO4 gel electrolyte was also prepared and applied for SSEDLC, to improve the performance. Surprisingly, 57.2% of specific capacitance (648 F g(-1)) and of energy density (14.4 Wh kg(-1)) was increased while introducing Na2MoO4 as the redox mediator in PVA/H2SO4 gel electrolyte. This improved performance is owed to the redox reaction between Mo(VI)/Mo(V) and Mo(VI)/Mo(IV) redox couples in Na2MoO4/PVA/H2SO4 gel electrolyte. Similarly, the fabricated device shows the excellent capacitance retention of 93% for over 3000 cycles. The present work suggests that the Na2MoO4 added PVA/H2SO4 gel is a potential electrolyte to improve the performance instead of pristine PVA/H2SO4 gel electrolyte. Based on the overall performance, it is strongly believed that the combination of tamarind fruit shell derived activated carbon and Na2MoO4/PVA/H2SO4 gel electrolyte is more attractive in the near future for high performance SSEDLCs.

  5. High-Performance and Stable Gel-State Dye-Sensitized Solar Cells Using Anodic TiO2 Nanotube Arrays and Polymer-Based Gel Electrolytes.

    PubMed

    Seidalilir, Zahra; Malekfar, Rasoul; Wu, Hui-Ping; Shiu, Jia-Wei; Diau, Eric Wei-Guang

    2015-06-17

    Highly ordered and vertically oriented TiO2 nanotube (NT) arrays were synthesized with potentiostatic anodization of Ti foil and applied to fabricate gel-state dye-sensitized solar cells (DSSCs). The open structure of the TiO2 NT facilitates the infiltration of the gel-state electrolyte; their one-dimensional structural feature provides effective charge transport. TiO2 NTs of length L=15-35 μm were produced on anodization for periods of t=5-15 h at a constant voltage of 60 V, and sensitized with N719 for photovoltaic characterization. A commercially available copolymer, poly(methyl methacrylate-co-ethyl acrylate) (PMMA-EA), served as a gelling agent to prepare a polymer-gel electrolyte (PGE) for DSSC applications. The PGE as prepared exhibited a maximum conductivity of 4.58 mS cm(-1) with PMMA-EA (7 wt %). The phase transition temperature (Tp) of the PGE containing PMMA-EA at varied concentrations was determined on the basis of the viscosities measured at varied temperatures. Tp increased with increasing concentration of PMMA-EA. An NT-DSSC with L=30 μm assembled using a PGE containing PMMA-EA (7 wt %) exhibited an overall power conversion efficiency (PCE) of 6.9%, which is comparable with that of a corresponding liquid-type device, PCE=7.1%. Moreover, the gel-state NT-DSSC exhibited excellent thermal and light-soaking enduring stability: the best device retained ∼90% of its initial efficiency after 1000 h under 1 sun of illumination at 50 °C, whereas its liquid-state counterpart decayed appreciably after light soaking for 500 h.

  6. High-Performance Long-Term-Stable Dopant-Free Perovskite Solar Cells and Additive-Free Organic Solar Cells by Employing Newly Designed Multirole π-Conjugated Polymers.

    PubMed

    Kranthiraja, Kakaraparthi; Gunasekar, Kumarasamy; Kim, Hyunji; Cho, An-Na; Park, Nam-Gyu; Kim, Seonha; Kim, Bumjoon J; Nishikubo, Ryosuke; Saeki, Akinori; Song, Myungkwan; Jin, Sung-Ho

    2017-06-01

    Perovskite solar cells (PSCs) and organic solar cells (OSCs) are promising renewable light-harvesting technologies with high performance, but the utilization of hazardous dopants and high boiling additives is harmful to all forms of life and the environment. Herein, new multirole π-conjugated polymers (P1-P3) are developed via a rational design approach through theoretical hindsight, further successfully subjecting them into dopant-free PSCs as hole-transporting materials and additive-free OSCs as photoactive donors, respectively. Especially, P3-based PSCs and OSCs not only show high power conversion efficiencies of 17.28% and 8.26%, but also display an excellent ambient stability up to 30 d (for PSCs only), owing to their inherent superior optoelectronic properties in their pristine form. Overall, the rational approach promises to support the development of environmentally and economically sustainable PSCs and OSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Detection of basal acetylcholine release in the microdialysis of rat frontal cortex by high-performance liquid chromatography using a horseradish peroxidase-osmium redox polymer electrode with pre-enzyme reactor.

    PubMed

    Kato, T; Liu, J K; Yamamoto, K; Osborne, P G; Niwa, O

    1996-06-28

    To determine the basal acetylcholine level in the dialysate of rat frontal cortex, a horseradish peroxidase-osmium redox polymer-modified glassy carbon electrode (HRP-GCE) was employed instead of the conventional platinum electrode used in high-performance liquid chromatography-electrochemical detection (HPLC-ED). In initial experiments, an oxidizable unknown compound interfered with the detection of basal acetylcholine release on HPLC-HRP-GCE. An immobilized peroxidase-choline oxidase precolumn (pre-reactor) was included in the HPLC system, to eliminate the interference from the unknown compound. This combination could detect less than 10 fmol of standard acetylcholine and basal acetylcholine levels in the dialysate from a conventional concentric design microdialysis probe, without the use of cholinesterase inhibitor, and may facilitate physiological investigation of cholinergic neuronal activity in the central nervous system.

  8. High-Performance Polymer Solar Cells Based on a Wide-Bandgap Polymer Containing Pyrrolo[3,4- f ]benzotriazole-5,7-dione with a Power Conversion Efficiency of 8.63%

    SciTech Connect

    Lan, Liuyuan; Chen, Zhiming; Hu, Qin; Ying, Lei; Zhu, Rui; Liu, Feng; Russell, Thomas P.; Huang, Fei; Cao, Yong

    2016-04-25

    In article 1600032, an efficient new wide-bandgap polymer based on a novel moiety of pyrrolo[3,4-f]benzotriazole-5,7-dione (TZBI) is developed by Lei Ying, Feng Lui, Thomas P. Russel, Fei Huang, and co-workers. The new chemistry enables fine electronic structure tuning and solution-processed single-junction polymer solar cells provided a remarkable power conversion efficiency of 8.63%. Full electrical and structural characterization reveales that TZBI is a promising building block for the application in highly efficient organic photovoltaics.

  9. High-Performance Polymer Solar Cells Based on a Wide-Bandgap Polymer Containing Pyrrolo[3,4- f ]benzotriazole-5,7-dione with a Power Conversion Efficiency of 8.63%

    DOE PAGES

    Lan, Liuyuan; Chen, Zhiming; Hu, Qin; ...

    2016-04-25

    In article 1600032, an efficient new wide-bandgap polymer based on a novel moiety of pyrrolo[3,4-f]benzotriazole-5,7-dione (TZBI) is developed by Lei Ying, Feng Lui, Thomas P. Russel, Fei Huang, and co-workers. The new chemistry enables fine electronic structure tuning and solution-processed single-junction polymer solar cells provided a remarkable power conversion efficiency of 8.63%. Full electrical and structural characterization reveales that TZBI is a promising building block for the application in highly efficient organic photovoltaics.

  10. Human exposure assessment to a large set of polymer additives through the analysis of urine by solid phase extraction followed by ultra high performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Pouech, Charlène; Kiss, Agneta; Lafay, Florent; Léonard, Didier; Wiest, Laure; Cren-Olivé, Cécile; Vulliet, Emmanuelle

    2015-12-04

    Polymer items are extensively present in the human environment. Humans may be consequently exposed to some compounds, such as additives, incorporated in these items. The objective of this work is to assess the human exposure to the main additives such as those authorized in the packaging for pharmaceutical products. The urinary matrix was selected to optimally answer this challenge because it has already been proven that the exposure to chemicals can be revealed by the analysis of this biological matrix. A multi-residue analytical method for the trace analysis at ng/mL in human urine was developed, and consisted of an extraction of analytes from urine by solid phase extraction (SPE) and an analysis by ultra-high performance liquid chromatography coupled to a tandem mass spectrometer (UHPLC-MS/MS). Even if the quantification of these compounds was an analytical challenge because of (i) the presence of these substances in the analytical process, (ii) the diversity of their physicochemical properties, and (iii) the complexity of the matrix, the optimized method exhibited quantification limits lower than 25ng/mL and recoveries between 51% and 120% for all compounds. The method was validated and applied to 52 human urines. To the best of our knowledge, this work presents the first study allowing the assessment of the occurrence of more than twenty polymer additives at ng/mL in human urine. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Separation of oligo/polymers of 5-N-acetylneuraminic acid, 5-N-glycolylneuraminic acid, and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid by high-performance anion-exchange chromatography with pulsed amperometric detector.

    PubMed

    Zhang, Y; Inoue, Y; Inoue, S; Lee, Y C

    1997-08-01

    A sensitive and efficient method to analyze oligo/ poly-sialic acids containing alpha2-8-linked 5-N-acetylneuraminic acid (Neu5Ac), 5-N-glycolylneuraminic acid (Neu5Gc), and deaminated neuraminic acid (KDN) using high-performance anion-exchange chromatography (HPAEC) with a pulsed amperometric detector (PAD-2) has been developed. Using a CarboPac PA-100 column and sodium nitrate as the pushing agent, polymers in colominic acid with degree of polymerization (DP) up to 80 were separated in 68 min. A similar DP-based resolution was also obtained on a CarboPac PA-1 column. The elution ladders of the Neu5Ac, Neu5Gc, and KDN series were sufficiently different to be used as diagnostic indices. This technique was applied to identification of the sialic acid components in a polysialoglycoprotein (PSGP) sample as well as monitoring the oligo/poly-KDN-containing fractions during the purification of KDN-containing glycoprotein (KDN-gp). The maximum DPs of oligo-Neu5Gc and oligo-KDN that can be detected in PSGP and KDN-gp hydrolysates were 11 and 8, respectively. The high sensitivity of this method was demonstrated by the quantification of Neu5Ac oligomers. Distributions of the monomer and oligo/polymers in the acid and enzymatic hydrolysates of colominic acid and PSGP under different conditions were also studied.

  12. Synthesis and characterization of NiFe2O4 electrocatalyst for the hydrogen evolution reaction in alkaline water electrolysis using different polymer binders

    NASA Astrophysics Data System (ADS)

    Chanda, Debabrata; Hnát, Jaromír; Paidar, Martin; Schauer, Jan; Bouzek, Karel

    2015-07-01

    NiFe2O4 electrocatalyst for the hydrogen evolution reaction (HER) has been synthesized using the co-precipitation method of the respective metal ions from water solution. After calcination of the precipitate, the resulting electrocatalyst was characterized by a broad range of techniques to obtain information on its crystallographic structure, specific surface area, morphology and chemical composition. The electrocatalytic activity towards HER in alkaline water electrolysis was investigated by means of linear sweep voltammetry. The catalyst showed promising electrocatalytic properties. Subsequently three types of binders were used to prepare a cathode catalytic layer based on a catalyst synthesized on top of a nickel foam support, namely an anion-selective quaternized poly(phenylene oxide) (qPPO) ionomer, an electroneutral polymer polytetrafluoroethylene and cation-selective Nafion®. The resulting membrane-electrode assemblies (MEAs), based on an anion-selective membrane, were tested in an alkaline water electrolyzer. In a single-cell test the MEA with a qPPO ionomer exhibited higher HER activity compared to the remaining binders tested. The current density obtained using a MEA containing qPPO binder attained a value of 125 mA cm-2 at a cell voltage of 1.85 V. The stability of the MEA containing qPPO binder was examined by continuous operation for 143 h, followed by 55 h intermittent electrolysis.

  13. High Performance Organic Semiconductors

    DTIC Science & Technology

    2012-07-31

    the polymers in o-DCB. Grazing incidence X-ray diffraction (GIXD) studies performed on oADT-dTDPP thin films shows distinct out-of- plane (h00...have helped to promote interchain interactions and the formation of lamellar order. In- plane diffraction intensity profile along qxy shows multiple...perpendicular to the substrate, a motif that may give rise to better in- plane charge transport properties than previous less-ordered ADT-containing polymer

  14. A tough high performance composite matrix

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor); Johnston, Norman J. (Inventor)

    1992-01-01

    This invention is a semi-interpenetrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. An improved high temperature matrix resin is provided which is capable of performing in the 200 to 300 C range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance and moisture and solvent resistances.

  15. High Performance Graded Index Polymer Optical Fibers

    DTIC Science & Technology

    1998-05-11

    tested have NAs of near 0.2, they are underfilled by the input light. An underfilled launch condition tends to produce higher bandwidth than an...include extrinsic features such as micro bends, diameter variations, micro voids and cracks in addition to intrinsic static and dynamic density

  16. Stability of polydopamine and poly(DOPA) melanin-like films on the surface of polymer membranes under strongly acidic and alkaline conditions.

    PubMed

    Wei, Houliang; Ren, Jun; Han, Bo; Xu, Li; Han, Lulu; Jia, Lingyun

    2013-10-01

    This study investigated the stability of polydopamine and poly(3,4-dihydroxyphenylalanine) (poly(DOPA)) melanin-like films on the surface of polymer substrates. Three polymer membranes, polypropylene (PP), poly(vinylidenefluoride) (PVDF) and nylon, were modified with polydopamine or poly(DOPA), and then immersed in 0.1M HCl or NaOH, followed by UV-vis spectrometry analysis to detect the presence of film detachment. The results showed that the outer parts of both polydopamine and poly(DOPA) films were detached, probably due to electrostatic repulsion between the polymers within the film, when the modified membranes were washed in HCl or NaOH solution. These two films were more stable in strongly acidic solution, but the stability of poly(DOPA) film was better than that of polydopamine film. Compared to the films on the surface of PVDF or nylon membrane, films on PP surface showed the lowest stability, possibly because of the hydrophobic property of PP. The process of film detachment was analyzed by GPC, which showed that unreacted dopamine or DOPA monomers were still present in the freshly formed films. The unreacted monomers, as well as polydopamine or poly(DOPA) that were incorporated in the film via noncovalent interactions, became detached when the film was exposed to strongly acidic or alkaline solution. Oxidation of freshly formed films could significantly enhance their stability. The results therefore provide us with a better understanding of the stability of melanin-like films, and allow us to develop an effective strategy for constructing stable films. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. High-Performance Happy

    ERIC Educational Resources Information Center

    O'Hanlon, Charlene

    2007-01-01

    Traditionally, the high-performance computing (HPC) systems used to conduct research at universities have amounted to silos of technology scattered across the campus and falling under the purview of the researchers themselves. This article reports that a growing number of universities are now taking over the management of those systems and…

  18. High performance systems

    SciTech Connect

    Vigil, M.B.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  19. High-Performance Happy

    ERIC Educational Resources Information Center

    O'Hanlon, Charlene

    2007-01-01

    Traditionally, the high-performance computing (HPC) systems used to conduct research at universities have amounted to silos of technology scattered across the campus and falling under the purview of the researchers themselves. This article reports that a growing number of universities are now taking over the management of those systems and…

  20. High performance parallel architectures

    SciTech Connect

    Anderson, R.E. )

    1989-09-01

    In this paper the author describes current high performance parallel computer architectures. A taxonomy is presented to show computer architecture from the user programmer's point-of-view. The effects of the taxonomy upon the programming model are described. Some current architectures are described with respect to the taxonomy. Finally, some predictions about future systems are presented. 5 refs., 1 fig.

  1. Alkaline flooding injection strategy

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1992-03-01

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  2. Novel cathode interlayers based on neutral alcohol-soluble small molecules with a triphenylamine core featuring polar phosphonate side chains for high-performance polymer light-emitting and photovoltaic devices.

    PubMed

    Chen, Dongcheng; Zhou, Hu; Liu, Ming; Zhao, Wei-Ming; Su, Shi-Jian; Cao, Yong

    2013-04-12

    A new family of neutral alcohol-soluble small molecular materials comprised of electron-rich triphenylamine (TPA) and fluorene featuring phosphonate side chains (FEP) is reported, namely 3TPA-FEP, 2TPA-2FEP and TPA-3FEP, which have different TPA and FEP contents. Due to their good solubility in polar solvents like alcohol, multilayer devices can be fabricated by a wet process from orthogonal solvents. Polymer light-emitting devices with these materials as a cathode interlayer and Al as the cathode show greatly enhanced efficiencies in contrast to control devices without such a cathode interlayer, and their efficiencies are comparable with or even higher than devices with the low work-function metal Ba/Al as the cathode. In addition, high-performance polymer solar cells based on the poly[N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT):[6,6]-phenyl C71 -butyric acid methyl ester (PC71 BM) system are also achieved with power conversion efficiencies of 7.21%, 6.90% and 6.89%, by utilizing 3TPA-FEP, 2TPA-2FEP and TPA-3FEP as the cathode interlayer, respectively. These efficiencies are also much higher than those for control devices without the cathode interlayer. Although TPA is well-known as a hole-transport unit, the current findings indicate that alcohol-soluble TPA-based small molecules are also a promising cathode interlayer for both electron injection and extraction.

  3. In-tube solid-phase microextraction based on NH2-MIL-53(Al)-polymer monolithic column for online coupling with high-performance liquid chromatography for directly sensitive analysis of estrogens in human urine.

    PubMed

    Luo, Xialin; Li, Gongke; Hu, Yufei

    2017-04-01

    In this work, a novel NH2-MIL-53(Al) incorporated poly(styrene-divinylbenzene-methacrylic acid) (poly(St-DVB-MAA)) monolith was prepared via chemical fabrication. Moreover, it has been efficiently applied to the in-tube solid-phase microextraction (SPME) for online coupling with high-performance liquid chromatography (HPLC) to the direct determination of five estrogens in human urine samples. The NH2-MIL-53(Al)-polymer monolith was suitable for in-tube SPME owing to its good permeability, high extraction efficiency, chemical stability, good reproducibility and long lifetime. The extraction conditions including extraction solvent, pH of sample solution, flow rate of extraction and desorption, and desorption volume were investigated. Under the optimum conditions, the enrichment factors were 180-304 and saturated amounts of extraction were 2326-21393 pmol for estriol, 17β-estradiol, estrone, ethinyl estradiol and progesterone, respectively. The adsorption mechanism was also explored which contributed to its strong extraction to target compounds. The proposed method had low limit of detection (2.0-40ng/L) and good linearity (with R(2) between 0.9908 and 0.9978). Four endogenous estrogens were detected in urine samples and the recoveries of all five analytes were ranged from 75.1-120% with relative standard deviations (RSDs) less than 8.7%. The results showed that the proposed online SPME-HPLC method based on NH2-MIL-53(Al)-polymer monolithic column was highly sensitive for directly monitoring trace amount of estrogens in human urine sample.

  4. High Performance, Dependable Multiprocessor

    NASA Technical Reports Server (NTRS)

    Ramos, Jeremy; Samson, John R.; Troxel, Ian; Subramaniyan, Rajagopal; Jacobs, Adam; Greco, James; Cieslewski, Grzegorz; Curreri, John; Fischer, Michael; Grobelny, Eric; George, Alan; Aggarwal, Vikas; Patel, Minesh; Some, Raphael

    2006-01-01

    With the ever increasing demand for higher bandwidth and processing capacity of today's space exploration, space science, and defense missions, the ability to efficiently apply commercial-off-the-shelf (COTS) processors for on-board computing is now a critical need. In response to this need, NASA's New Millennium Program office has commissioned the development of Dependable Multiprocessor (DM) technology for use in payload and robotic missions. The Dependable Multiprocessor technology is a COTS-based, power efficient, high performance, highly dependable, fault tolerant cluster computer. To date, Honeywell has successfully demonstrated a TRL4 prototype of the Dependable Multiprocessor [I], and is now working on the development of a TRLS prototype. For the present effort Honeywell has teamed up with the University of Florida's High-performance Computing and Simulation (HCS) Lab, and together the team has demonstrated major elements of the Dependable Multiprocessor TRLS system.

  5. Rational Design of High-Performance Wide-Bandgap (≈2 eV) Polymer Semiconductors as Electron Donors in Organic Photovoltaics Exhibiting High Open Circuit Voltages (≈1 V).

    PubMed

    Chochos, Christos L; Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos

    2017-01-01

    Systematic optimization of the chemical structure of wide-bandgap (≈2.0 eV) "donor-acceptor" copolymers consisting of indacenodithiophene or indacenodithieno[3,2-b]thiophene as the electron-rich unit and thieno[3,4-c]pyrrole-4,6-dione as the electron-deficient moiety in terms of alkyl side chain engineering and distance of the electron-rich and electron-deficient monomers within the repeat unit of the polymer chain results in high-performance electron donor materials for organic photovoltaics. Specifically, preliminary results demonstrate extremely high open circuit voltages (V oc s) of ≈1.0 V, reasonable short circuit current density (J sc ) of around 11 mA cm(-2) , and moderate fill factors resulting in efficiencies close to 6%. All the devices are fabricated in an inverted architecture with the photoactive layer processed by doctor blade equipment, showing the compatibility with roll-to-roll large-scale manufacturing processes. From the correlation of the chemical structure-optoelectronic properties-photovoltaic performance, a rational guide toward further optimization of the chemical structure in this family of copolymers, has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Online size-exclusion high-performance liquid chromatography light scattering and differential refractometry methods to determine degree of polymer conjugation to proteins and protein-protein or protein-ligand association states.

    PubMed

    Kendrick, B S; Kerwin, B A; Chang, B S; Philo, J S

    2001-12-15

    Characterizing the solution structure of protein-polymer conjugates and protein-ligand interactions is important in fields such as biotechnology and biochemistry. Size-exclusion high-performance liquid chromatography with online classical light scattering (LS), refractive index (RI), and UV detection offers a powerful tool in such characterization. Novel methods are presented utilizing LS, RI, and UV signals to rapidly determine the degree of conjugation and the molecular mass of the protein conjugate. Baseline resolution of the chromatographic peaks is not required; peaks need only be sufficiently separated to represent relatively pure fractions. An improved technique for determining the polypeptide-only mass of protein conjugates is also described. These techniques are applied to determining the degree of erythropoietin glycosylation, the degree of polyethylene glycol conjugation to RNase A and brain-derived neurotrophic factor, and the solution association states of these molecules. Calibration methods for the RI, UV, and LS detectors will also be addressed, as well as online methods to determine protein extinction coefficients and dn/dc values both unconjugated and conjugated protein molecules. (c)2001 Elsevier Science.

  7. High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells.

    PubMed

    Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2015-05-07

    Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In this report, we present the development of a highly active, stable and low-cost non-precious metal ORR catalyst by direct synthesis under autogenic-pressure conditions. Transmission electron microscopy studies show highly porous Fe-N-C and Co-N-C structures, which were further confirmed by Brunauer-Emmett-Teller surface area measurements. The surface areas of the Fe-N-C and Co-N-C catalysts were found to be 377.5 and 369.3 m(2) g(-1), respectively. XPS results show the possible existence of N-C and M-Nx structures, which are generally proposed to be the active sites in non-precious metal catalysts. The Fe-N-C electrocatalyst exhibits an ORR half-wave potential 20 mV higher than the reference Pt/C catalyst. The cycling durability test for Fe-N-C over 5000 cycles shows that the half-wave potential lost only 4 mV, whereas the half-wave potential of the Pt/C catalyst lost about 50 mV. The Fe-N-C catalyst exhibited an improved activity and stability compared to the reference Pt/C catalyst and it possesses a direct 4-electron transfer pathway for the ORR process. Further, the Fe-N-C catalyst produces extremely low HO2(-) content, as confirmed by the rotating ring-disk electrode measurements. In the alkaline fuel single cell tests, maximum power densities of 75 and 80 mW cm(-2) were observed for the Fe-N-C and Pt/C cathodes, respectively. Durability studies (100 h) showed that decay of the fuel cell current was more prominent for the Pt/C cathode catalyst compared to the Fe-N-C cathode catalyst. Therefore, the Fe-N-C catalyst appears to be a promising new class of non-precious metal catalysts prepared by an autogenic synthetic method.

  8. Cross-linked anion exchange membranes with pendent quaternary pyrrolidonium salts for alkaline polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lan, Chunhua; Fang, Jun; Guan, Yingjie; Zhou, Huili; Zhao, Jinbao

    2015-11-01

    Novel anion-exchange membranes based on two kinds of pyrrolidonium type ionic liquids, N-methyl-N-vinyl-pyrrolidonium (NVMP) and N-ethyl-N-vinyl-pyrrolidonium (NVEP), have been synthesized via polymerization and crosslinking treatment, followed by membrane casting. The covalent cross-linked structures of these membranes are confirmed by FT-IR. The obtained membranes are also characterized in terms of water uptake, ion exchange capacity (IEC), ionic conductivity as well as thermal, dimensional and chemical stability. The membranes display hydroxide conductivity of above 10-2 S cm-1 at 25 °C. Excellent thermal stability with onset degradation temperature above 235 °C, good alkaline stability in 6 mol L-1 NaOH at 60 °C for 168 h and remarkable dimensional stability of the resulting membranes have been proved. H2/air single fuel cells employed membrane M3 and N3 show the open-circuit voltage (OCV) of 0.953 V and 0.933 V, and the maximum power density of 88.90 mW cm-2 and 81.90 mW cm-2 at the current density of 175 mA cm-2 and 200 mA cm-2 at 65 °C, respectively.

  9. High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2015-04-01

    Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In this report, we present the development of a highly active, stable and low-cost non-precious metal ORR catalyst by direct synthesis under autogenic-pressure conditions. Transmission electron microscopy studies show highly porous Fe-N-C and Co-N-C structures, which were further confirmed by Brunauer-Emmett-Teller surface area measurements. The surface areas of the Fe-N-C and Co-N-C catalysts were found to be 377.5 and 369.3 m2 g-1, respectively. XPS results show the possible existence of N-C and M-Nx structures, which are generally proposed to be the active sites in non-precious metal catalysts. The Fe-N-C electrocatalyst exhibits an ORR half-wave potential 20 mV higher than the reference Pt/C catalyst. The cycling durability test for Fe-N-C over 5000 cycles shows that the half-wave potential lost only 4 mV, whereas the half-wave potential of the Pt/C catalyst lost about 50 mV. The Fe-N-C catalyst exhibited an improved activity and stability compared to the reference Pt/C catalyst and it possesses a direct 4-electron transfer pathway for the ORR process. Further, the Fe-N-C catalyst produces extremely low HO2- content, as confirmed by the rotating ring-disk electrode measurements. In the alkaline fuel single cell tests, maximum power densities of 75 and 80 mW cm-2 were observed for the Fe-N-C and Pt/C cathodes, respectively. Durability studies (100 h) showed that decay of the fuel cell current was more prominent for the Pt/C cathode catalyst compared to the Fe-N-C cathode catalyst. Therefore, the Fe-N-C catalyst appears to be a promising new class of non-precious metal catalysts prepared by an autogenic synthetic method.Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In

  10. High Performance FORTRAN

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush

    1994-01-01

    High performance FORTRAN is a set of extensions for FORTRAN 90 designed to allow specification of data parallel algorithms. The programmer annotates the program with distribution directives to specify the desired layout of data. The underlying programming model provides a global name space and a single thread of control. Explicitly parallel constructs allow the expression of fairly controlled forms of parallelism in particular data parallelism. Thus the code is specified in a high level portable manner with no explicit tasking or communication statements. The goal is to allow architecture specific compilers to generate efficient code for a wide variety of architectures including SIMD, MIMD shared and distributed memory machines.

  11. High Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  12. High performance steam development

    SciTech Connect

    Duffy, T.; Schneider, P.

    1995-12-31

    DOE has launched a program to make a step change in power plant to 1500 F steam, since the highest possible performance gains can be achieved in a 1500 F steam system when using a topping turbine in a back pressure steam turbine for cogeneration. A 500-hour proof-of-concept steam generator test module was designed, fabricated, and successfully tested. It has four once-through steam generator circuits. The complete HPSS (high performance steam system) was tested above 1500 F and 1500 psig for over 102 hours at full power.

  13. From alkaline earth ion aggregates via transition metal coordination polymer networks towards heterometallic single source precursors for oxidic materials.

    PubMed

    Gschwind, Fabienne; Crochet, Aurélien; Maudez, William; Fromm, Katharina M

    2010-01-01

    Heterometallic oxides are used as materials in many applications, e.g. from ferroelectrics to superconductors. Making these compounds usually requires high temperatures and long reaction times. Molecular precursors may contribute to render their processing shorter and accessible at lower temperatures, thus cheaper in energy and time. In this review article, different approaches toward oxide materials will be shown, starting with homometallic clusters and coordination polymers and highlighting recent results with heterometallic single source precursors. On the way to the latter, we came across many exciting results which themselves allowed applications in different fields. This work will give an overview on how these fields were brought together for the current mixed metallic compounds as precursors for heterometallic oxides.

  14. High Performance Buildings Database

    DOE Data Explorer

    The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

  15. High Performance Window Retrofit

    SciTech Connect

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  16. Dynamic liquid-liquid-solid microextraction based on molecularly imprinted polymer filaments on-line coupling to high performance liquid chromatography for direct analysis of estrogens in complex samples.

    PubMed

    Zhong, Qisheng; Hu, Yufei; Hu, Yuling; Li, Gongke

    2012-06-08

    A novel sample preparation technique termed dynamic liquid-liquid-solid microextraction (DLLSME) was developed and on-line coupled to high performance liquid chromatography (HPLC) for direct extraction, desorption, and analysis of trace estrogens in complex samples. The DLLSME consists of the aqueous donor phase, the organic medium phase and the molecularly imprinted polymer filaments (MIPFs) as solid acceptor phase. The organic solvent with lesser density was directly added on top of the aqueous sample, and the dynamic extraction was performed by circulating the organic solvent through the MIPFs inserted into a PEEK tube which served as an extraction and desorption chamber. Afterwards, the extracted analytes on the MIPFs were on-line desorbed and then introduced into the HPLC for analysis. To evaluate the feasibility of the on-line system, a new DLLSME-HPLC method was developed for the analysis of five estrogens in aqueous samples by using 17β-estradiol MIPFs as the solid phase. Under the optimized conditions, the enrichment factors of 51-70, limits of detection of 0.08-0.25 μg/L and precision within 4.5-6.9% were achieved. Furthermore, the proposed method was applied to the analysis of real samples including urine, milk and skin toner, satisfactory recovery (81.9-99.8%) and reproducibility (4.1-7.9%) were obtained. Especially, 0.59 μg/L of 17β-estradiol was determined in female urine sample. The DLLSME offers an attractive alternative for direct analysis of trace analytes in aqueous samples and could potentially be extended to other adsorptive materials.

  17. High performing micromachined retroreflector

    NASA Astrophysics Data System (ADS)

    Lundvall, Axel; Nikolajeff, Fredrik; Lindstrom, Tomas

    2003-10-01

    This paper reports on the realization of a type of micromachined retroreflecting sheeting material. The geometry presented has high reflection efficiency even at large incident angles, and it can be manufactured through polymer replication techniques. The paper consists of two parts: A theoretical section outlining the design parameters and their impact on the optical performance, and secondly, an experimental part comprising both manufacturing and optical evaluation for a candidate retroreflecting sheet material in traffic control devices. Experimental data show that the retroreflecting properties are promising. The retroreflector consists of a front layer of densely packed spherical microlenses, a back surface of densely packed spherical micromirrors, and a transparent spacer layer. The thickness of the spacer layer determines in part the optical characteristics of the retroreflector.

  18. High performance sapphire windows

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.; Liou, Larry

    1993-01-01

    High-quality, wide-aperture optical access is usually required for the advanced laser diagnostics that can now make a wide variety of non-intrusive measurements of combustion processes. Specially processed and mounted sapphire windows are proposed to provide this optical access to extreme environment. Through surface treatments and proper thermal stress design, single crystal sapphire can be a mechanically equivalent replacement for high strength steel. A prototype sapphire window and mounting system have been developed in a successful NASA SBIR Phase 1 project. A large and reliable increase in sapphire design strength (as much as 10x) has been achieved, and the initial specifications necessary for these gains have been defined. Failure testing of small windows has conclusively demonstrated the increased sapphire strength, indicating that a nearly flawless surface polish is the primary cause of strengthening, while an unusual mounting arrangement also significantly contributes to a larger effective strength. Phase 2 work will complete specification and demonstration of these windows, and will fabricate a set for use at NASA. The enhanced capabilities of these high performance sapphire windows will lead to many diagnostic capabilities not previously possible, as well as new applications for sapphire.

  19. High Performance Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek; Kaewpijit, Sinthop

    1998-01-01

    Traditional remote sensing instruments are multispectral, where observations are collected at a few different spectral bands. Recently, many hyperspectral instruments, that can collect observations at hundreds of bands, have been operational. Furthermore, there have been ongoing research efforts on ultraspectral instruments that can produce observations at thousands of spectral bands. While these remote sensing technology developments hold great promise for new findings in the area of Earth and space science, they present many challenges. These include the need for faster processing of such increased data volumes, and methods for data reduction. Dimension Reduction is a spectral transformation, aimed at concentrating the vital information and discarding redundant data. One such transformation, which is widely used in remote sensing, is the Principal Components Analysis (PCA). This report summarizes our progress on the development of a parallel PCA and its implementation on two Beowulf cluster configuration; one with fast Ethernet switch and the other with a Myrinet interconnection. Details of the implementation and performance results, for typical sets of multispectral and hyperspectral NASA remote sensing data, are presented and analyzed based on the algorithm requirements and the underlying machine configuration. It will be shown that the PCA application is quite challenging and hard to scale on Ethernet-based clusters. However, the measurements also show that a high- performance interconnection network, such as Myrinet, better matches the high communication demand of PCA and can lead to a more efficient PCA execution.

  20. High Performance Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek; Kaewpijit, Sinthop

    1998-01-01

    Traditional remote sensing instruments are multispectral, where observations are collected at a few different spectral bands. Recently, many hyperspectral instruments, that can collect observations at hundreds of bands, have been operational. Furthermore, there have been ongoing research efforts on ultraspectral instruments that can produce observations at thousands of spectral bands. While these remote sensing technology developments hold great promise for new findings in the area of Earth and space science, they present many challenges. These include the need for faster processing of such increased data volumes, and methods for data reduction. Dimension Reduction is a spectral transformation, aimed at concentrating the vital information and discarding redundant data. One such transformation, which is widely used in remote sensing, is the Principal Components Analysis (PCA). This report summarizes our progress on the development of a parallel PCA and its implementation on two Beowulf cluster configuration; one with fast Ethernet switch and the other with a Myrinet interconnection. Details of the implementation and performance results, for typical sets of multispectral and hyperspectral NASA remote sensing data, are presented and analyzed based on the algorithm requirements and the underlying machine configuration. It will be shown that the PCA application is quite challenging and hard to scale on Ethernet-based clusters. However, the measurements also show that a high- performance interconnection network, such as Myrinet, better matches the high communication demand of PCA and can lead to a more efficient PCA execution.

  1. Polymer-anchored peroxo compounds of vanadium(V) and molybdenum(VI): synthesis, stability, and their activities with alkaline phosphatase and catalase.

    PubMed

    Boruah, Jeena Jyoti; Kalita, Diganta; Das, Siva Prasad; Paul, Saurav; Islam, Nashreen S

    2011-09-05

    We generated a series of new polymer-bound peroxo complexes of vanadium(V) and molybdenum(VI) of the type [VO(O(2))(2)(sulfonate)]-PSS [PSS = poly(sodium 4-styrene sulfonate)] (PV(3)), [V(2)O(2)(O(2))(4)(carboxylate)VO(O(2))(2)(sulfonate)]-PSSM [PSSM = poly(sodium styrene sulfonate-co-maleate)] (PV(4)), [Mo(2)O(2)(O(2))(4)(carboxylate)]-PA [PA = poly(sodium acrylate)] (PMo(1)), [MoO(O(2))(2)(carboxylate)]-PMA [PMA = poly(sodium methacrylate)] (PMo(2)), and [MoO(O(2))(2)(amide)]-PAm [PAm = poly(acrylamide)] (PMo(3)) by reacting V(2)O(5) (for PV(3) and PV(4)) or H(2)MoO(4) (for PMo(1), PMo(2), and PMo(3)) with H(2)O(2) and the respective water-soluble macromolecular ligand at pH 5-6. The compounds were characterized by elemental analysis (CHN and energy-dispersive X-ray spectroscopy), spectral studies (UV-vis, IR, (13)C NMR, (51)V NMR, and (95) Mo NMR), thermal (TGA) as well as scanning electron micrographs (SEM), and EDX analysis. It has been demonstrated that compounds retain their structural integrity in solutions of a wide range of pH values and are approximately 100 times weaker as substrate to the enzyme catalase relative to H(2)O(2), its natural substrate. The effect of the title compounds, along with previously reported compounds [V(2)O(2)(O(2))(4)(carboxylate)]-PA (PV(1)) and [VO(O(2))(2)(carboxylate)]-PMA (PV(2)) on rabbit intestine alkaline phosphatase (ALP) has been investigated and compared with the effect induced by the free diperoxometallates viz. Na[VO(O(2))(2)(H(2)O)] (DPV), [MoO(O(2))(2)(glycine)(H(2)O)] (DMo(1)), and [MoO(O(2))(2)(asparagine)(H(2)O)] (DMo(2)). It has been observed that although all the compounds tested are potent inhibitors of the enzyme, the polymer-bound and neat complexes act via distinct mechanisms. Each of the macromolecular compounds is a classical noncompetitive inhibitor of ALP. In contrast, the action of neat pV and heteroligand pMo compounds on the enzyme function is consistent with a mixed type of inhibition.

  2. Commoditization of High Performance Storage

    SciTech Connect

    Studham, Scott S.

    2004-04-01

    The commoditization of high performance computers started in the late 80s with the attack of the killer micros. Previously, high performance computers were exotic vector systems that could only be afforded by an illustrious few. Now everyone has a supercomputer composed of clusters of commodity processors. A similar commoditization of high performance storage has begun. Commodity disks are being used for high performance storage, enabling a paradigm change in storage and significantly changing the price point of high volume storage.

  3. High Performance Solution Processable TFTs

    NASA Astrophysics Data System (ADS)

    Gundlach, David

    2008-03-01

    Organic-based electronic devices offer the potential to significantly impact the functionality and pervasiveness of large-area electronics. We report on soluble acene-based organic thin film transistors (OTFTs) where the microstructure of as-cast films can be precisely controlled via interfacial chemistry. Chemically tailoring the source/drain contact interface is a novel route to self-patterning of soluble small molecule organic semiconductors and enables the growth of highly ordered regions along opposing contact edges which extend into the transistor channel. The unique film forming properties of soluble fluorinated anthradithiophenes allows us to fabricate high performance OTFTs, OTFT circuits, and to deterministically study the influence of the film microstructure on the electrical characteristics of devices. Most recently we have grown single crystals of soluble fluorinated anthradithiophenes by vapor transport method allowing us to probe deeper into their intrinsic properties and determine the potential and limitations of this promising family of oligomers for use in organic-based electronic devices. Co-Authors: O. D. Jurchescu^1,4, B. H. Hamadani^1, S. K. Park^4, D. A. Mourey^4, S. Subramanian^5, A. J. Moad^2, R. J. Kline^3, L. C. Teague^2, J. G. Kushmerick^2, L. J. Richter^2, T. N. Jackson^4, and J. E. Anthony^5 ^1Semiconductor Electronics Division, ^2Surface and Microanalysis Science Division, ^3Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 ^4Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 ^5Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055

  4. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  5. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  6. The effect of alkaline agents on retention of EOR chemicals

    SciTech Connect

    Lorenz, P.B.

    1991-07-01

    This report summarizes a literature survey on how alkaline agents reduce losses of surfactants and polymers in oil recovery by chemical injection. Data are reviewed for crude sulfonates, clean anionic surfactants, nonionic surfactants, and anionic and nonionic polymers. The role of mineral chemistry is briefly described. Specific effects of various alkaline anions are discussed. Investigations needed to improve the design of alkaline-surfactant-polymer floods are suggested. 62 refs., 28 figs., 6 tabs.

  7. Release of bound procyanidins from cranberry pomace by alkaline hydrolysis.

    PubMed

    White, Brittany L; Howard, Luke R; Prior, Ronald L

    2010-07-14

    Procyanidins in plant products are present as extractable or unextractable/bound forms. We optimized alkaline hydrolysis conditions to liberate procyanidins and depolymerize polymers from dried cranberry pomace. Alkaline extracts were neutralized (pH 6-7) and then procyanidins were extracted with ethyl acetate and analyzed by normal phase high performance liquid chromatography. Alkaline hydrolysis resulted in an increase in low molecular weight procyanidins, and the increase was greater at higher temperature, short time combinations. The most procyanidins (DP1-DP3) were extracted at 60 degrees C for 15 min with each concentration of NaOH. When compared to conventional extraction using homogenization with acetone/water/acetic acid (70:29.5:0.5 v/v/v), treatment with NaOH increased procyanidin oligomer extraction by 3.8-14.9-fold, with the greatest increase being DP1 (14.9x) and A-type DP2 (8.4x) procyanidins. Alkaline treatment of the residue remaining after conventional extraction resulted in further procyanidin extraction, indicating that procyanidins are not fully extracted by conventional extraction methods.

  8. High Performance Fortran: An overview

    SciTech Connect

    Zosel, M.E.

    1992-12-23

    The purpose of this paper is to give an overview of the work of the High Performance Fortran Forum (HPFF). This group of industry, academic, and user representatives has been meeting to define a set of extensions for Fortran dedicated to the special problems posed by a very high performance computers, especially the new generation of parallel computers. The paper describes the HPFF effort and its goals and gives a brief description of the functionality of High Performance Fortran (HPF).

  9. High Performance Thin Layer Chromatography.

    ERIC Educational Resources Information Center

    Costanzo, Samuel J.

    1984-01-01

    Clarifies where in the scheme of modern chromatography high performance thin layer chromatography (TLC) fits and why in some situations it is a viable alternative to gas and high performance liquid chromatography. New TLC plates, sample applications, plate development, and instrumental techniques are considered. (JN)

  10. High Performance Thin Layer Chromatography.

    ERIC Educational Resources Information Center

    Costanzo, Samuel J.

    1984-01-01

    Clarifies where in the scheme of modern chromatography high performance thin layer chromatography (TLC) fits and why in some situations it is a viable alternative to gas and high performance liquid chromatography. New TLC plates, sample applications, plate development, and instrumental techniques are considered. (JN)

  11. Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood

    SciTech Connect

    Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt; Madhavan, Vineeth; Johanek, Philip; Frailey, Scott

    2012-12-21

    Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) is estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses

  12. Multilayer high performance insulation materials

    NASA Technical Reports Server (NTRS)

    Stuckey, J. M.

    1971-01-01

    A number of tests are required to evaluate both multilayer high performance insulation samples and the materials that comprise them. Some of the techniques and tests being employed for these evaluations and some of the results obtained from thermal conductivity tests, outgassing studies, effect of pressure on layer density tests, hypervelocity impact tests, and a multilayer high performance insulation ambient storage program at the Kennedy Space Center are presented.

  13. Selective capture and rapid identification of Panax notoginseng metabolites in rat faeces by the integration of magnetic molecularly imprinted polymers and high-performance liquid chromatography coupled with orbitrap mass spectrometry.

    PubMed

    Cai, Qizhi; Yang, Zaiyue; Chen, Ning; Zhou, Xuemin; Hong, Junli

    2016-07-15

    In the present work, an advanced pretreatment method magnetic molecular imprinted polymers-dispersive solid phase extraction (MMIPs-DSPE) combined with the high sensitivity LTQ-Orbitrap mass spectrometry was applied to the complicated metabolites analysis of Traditional Chinese Medicines (TCMs) in complex matrices. The ginsenoside Rb1 magnetic molecular imprinted polymers (Rb1-MMIPs) were successfully synthesized for specific recognition and selective enrichment of Panax notoginseng saponin metabolites in rat faeces. The polymers were prepared by using Fe3O4@SiO2 as the supporting material, APTES as the functional monomer and TEOS as the cross-linker. The Rb1-MMIPs showed quick separation (10.8 emu/g), large adsorption capacity (636μmol/g), high selectivity and fast binding kinetics (25min). Dispersion solid-phase extraction using Rb1-MMIPs (Rb1-MMIPs-DSPE) integrated with LTQ-Orbitrap MS was applied to fish out and identify saponin metabolites from rat faeces, and totally 58 related compounds were detected within 20min, including 26 PPD-group and 32 PPT-group notoginsenoside metabolites. Parallel tests showed that Rb1-MMIPs-DSPE obtained the lowest matrix effects of 0.98-14.84% and captured the largest number of structural analogues compared with traditional pretreatment methods organic solvent extraction (OSE) and solid phase extraction (SPE).

  14. The cyclic fatigue of high-performance fibers

    NASA Astrophysics Data System (ADS)

    Kerr, M.; Chawla, N.; Chawla, K. K.

    2005-02-01

    High-performance fibers are virtually ubiquitous in our everyday lives. In a variety of structural applications, fibers and fiber-reinforced composites are subjected to cyclic mechanical loading. This paper reviews the fatigue behavior of some common high-performance fibers such as polymer, metal, and ceramic fibers. Fatigue mechanisms unique to each type of fiber are identified and a description of fatigue damage and fracture is provided.

  15. Negative Electrode For An Alkaline Cell

    DOEpatents

    Coco, Isabelle; Cocciantelli, Jean-Michel; Villenave, Jean-Jacques

    1998-07-14

    The present invention concerns a negative electrode for an alkaline cell, comprising a current collector supporting a paste containing an electrochemically active material and a binder, characterized in that said binder is a polymer containing hydrophilic and hydrophobic groups, said polymer being selected from an acrylic homopolymer, copolymer and terpolymer, an unsaturated organic acid copolymer and an unsaturated acid anhydride copolymer.

  16. High Performance Computing at NASA

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The speaker will give an overview of high performance computing in the U.S. in general and within NASA in particular, including a description of the recently signed NASA-IBM cooperative agreement. The latest performance figures of various parallel systems on the NAS Parallel Benchmarks will be presented. The speaker was one of the authors of the NAS (National Aerospace Standards) Parallel Benchmarks, which are now widely cited in the industry as a measure of sustained performance on realistic high-end scientific applications. It will be shown that significant progress has been made by the highly parallel supercomputer industry during the past year or so, with several new systems, based on high-performance RISC processors, that now deliver superior performance per dollar compared to conventional supercomputers. Various pitfalls in reporting performance will be discussed. The speaker will then conclude by assessing the general state of the high performance computing field.

  17. High-Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Reuhs, Bradley L.; Rounds, Mary Ann

    High-performance liquid chromatography (HPLC) developed during the 1960s as a direct offshoot of classic column liquid chromatography through improvements in the technology of columns and instrumental components (pumps, injection valves, and detectors). Originally, HPLC was the acronym for high-pressure liquid chromatography, reflecting the high operating pressures generated by early columns. By the late 1970s, however, high-performance liquid chromatography had become the preferred term, emphasizing the effective separations achieved. In fact, newer columns and packing materials offer high performance at moderate pressure (although still high pressure relative to gravity-flow liquid chromatography). HPLC can be applied to the analysis of any compound with solubility in a liquid that can be used as the mobile phase. Although most frequently employed as an analytical technique, HPLC also may be used in the preparative mode.

  18. INL High Performance Building Strategy

    SciTech Connect

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  19. High performance flexible heat pipes

    NASA Technical Reports Server (NTRS)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  20. High performance flexible heat pipes

    NASA Technical Reports Server (NTRS)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  1. High performance light emitting transistors

    NASA Astrophysics Data System (ADS)

    Namdas, Ebinazar B.; Ledochowitsch, Peter; Yuen, Jonathan D.; Moses, Daniel; Heeger, Alan J.

    2008-05-01

    Solution processed light emitting field-effect transistors (LEFETs) with peak brightness exceeding 2500cd/m2 and external quantum efficiency of 0.15% are demonstrated. The devices utilized a bilayer film comprising a hole transporting polymer, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) and a light emitting polymer, Super Yellow, a polyphenylenevinylene derivative. The LEFETs were fabricated in the bottom gate architecture with top-contact Ca /Ag as source/drain electrodes. Light emission was controlled by the gate voltage which controls the hole current. These results indicate that high brightness LEFETs can be made by using the bilayer film (hole transporting layer and a light emitting polymer).

  2. High-performance liquid chromatography of histamine and 1-methylhistamine with on-column fluorescence derivatization.

    PubMed

    Saito, K; Horie, M; Nose, N; Nakagomi, K; Nakazawa, H

    1992-03-20

    An on-column fluorometric derivatization method was developed for the determination of histamine and 1-methylhistamine (HMs) by high-performance liquid chromatography. The system for the derivatization consisted only of a commercially available single-plunger pump and a reversed-phase C18 column supported on synthetic polymer with a mobile phase of acetonitrile and alkaline borate buffer solution containing o-phthalaldehyde as a derivatization reagent. It required no additional reaction system as for a post-column derivatization method. Injected HMs might be derivatized to a fluorophore on the inlet site of the high-performance liquid chromatographic column, followed by chromatography on the same column. Optimization of the on-column reaction conditions resulted in a simple and sensitive analytical method for the determination of HMs with excellent reproducibility and linearity of 0.05-5 micrograms/ml of both HMs. Application of this method to the determination of HMs in food samples resulted in a limit of quantification of 0.05 mg/100 g and in a greater than 95% overall mean recovery at a fortification of 0.1 mg/g of both HMs. This method was furthermore applicable to the determination of histamine released from rat peritoneal mast cells.

  3. High Performance Bulk Thermoelectric Materials

    SciTech Connect

    Ren, Zhifeng

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  4. High-Performance Polymeric Materials.

    DTIC Science & Technology

    1987-12-07

    interactions, Chain packing, Polybenzobisoxazoles Electrical conductivity Polybenzobisthiazoles Ceramic particles Chain flexibility Elastomer reinforcement...structures for the polybenzobisoxazole (PBO) and polybenzobisthiazole (PBT) chains originally synthesized and much studied because of their utility as...high-performance fibers and films. For cts-PBO, trans-PBO. and trans-PBT chains in their coplanar conformations, the band gaps in the axial direction

  5. Preparation of an epitope-imprinted polymer with antibody-like selectivity for beta2-microglobulin and application in serum sample analysis with a facile method of on-line solid-phase extraction coupling with high performance liquid chromatography.

    PubMed

    Yang, Fangfang; Deng, Dandan; Dong, Xiangchao; Lin, Shen

    2017-03-09

    Molecularly imprinted polymers (MIPs) for protein recognition have great application potential in the biological analysis. However, preparation of protein imprinted polymer is still facing challenge. Beta2-microglobulin (β2m) is a protein biomarker that can be used in diagnosis of different diseases. In this research, a novel MIP with ability of β2m recognition has been developed by epitope and surface-confined imprinting approaches. A peptide with sequence of MIQRTPKIQ was selected as template. A strategy of combination of hierarchical imprinting and template immobilization was employed in the β2m-MIP synthesis. Imprinted binding sites with open-entrance have been created that have good accessibility for β2m and facilitated fast reversible binding kinetics. The experimental results demonstrated that the MIP has good selectivity. It can differentiate the template from peptide with different sequence and distinguish the β2m from other proteins with similar size and pI values. After binding property study of the β2m-MIP, a method of β2m determination in serum was established in which β2m was on-line extracted by MIP and analyzed by HPLC process. The recoveries for spiked serum was ≥83% with RSD <1.1%, indicating that the method has good accuracy and precisions. The LOD and LOQ were 0.058 and 0.195mgL(-1) respectively, which meet the requirements of the β2m analysis. The successful application of the β2m-MIP demonstrated that β2m has reversible binding on the MIP with a kinetics that can meet the requirements of the HPLC analysis. It also indicated that the β2m-MIP has good mechanical strength and reusability that can be applied reliably in the practical analysis. As a synthetic antibody, β2m-MIP is advantageous compared to the biological molecules.

  6. Interest of molecularly imprinted polymers in the fight against doping. Extraction of tamoxifen and its main metabolite from urine followed by high-performance liquid chromatography with UV detection.

    PubMed

    Claude, Bérengère; Morin, Philippe; Bayoudh, Sami; de Ceaurriz, Jacques

    2008-07-04

    A molecular imprinted polymer (MIP) has been synthesized in order to specifically extract tamoxifen, a nonsteroidal antiestrogen, and its metabolites from urine by solid-phase extraction (SPE) before HPLC-UV analysis. Clomiphene, a chlorinated tamoxifen analogue, was selected as template for MIP synthesis. Polymerisation was achieved by thermal polymerisation of methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EDMA) as cross-linking agent and acetonitrile as porogen. The efficient elimination of the urinary matrix has been obtained by MIP-SPE but the elution recovery of tamoxifen was initially too low ( approximately 14%). This problem has been overcome following two ways. At first, a preliminary HLB-SPE of the urine has enabled to discard endogenous salts and to percolate an organic sample through the MIP cartridge. Extraction recoveries are equal to 56 and 74% for tamoxifen and 4-hydroxytamoxifen, respectively. Then, a second MIP has been prepared with styrene and MAA as functional co-monomers. Strong pi-pi interactions occurring between phenyl groups of styrene and tamoxifen promote rebinding of the analyte by the specific sites. The enhanced hydrophobic character of the imprinted polymer has enabled the direct percolation of urine through MIP-SPE and the easy elimination of endogenous salts from urine with only one aqueous washing step. HPLC-UV analysis has confirmed high extraction recoveries (85%) for tamoxifen and its metabolite with an enrichment factor of 8. This analytical protocol can selectively detect the presence of tamoxifen metabolites in urines and be useful as a proof of doping in competitive sports.

  7. Alcohol/ether separation by pervaporation. High performance membrane design

    SciTech Connect

    Roizard, D.; Jonquieres, A.; Leger, C.

    1999-02-01

    Several routes were investigated to design high performance membranes for the separation of tert-butyl ethers (octane enhancers) from alcohols by pervaporation. These routes aim at incorporating Lewis base groups into good film-forming polymers with different structures. The Lewis base groups showed a high affinity to alcohols in screening tests, thus imparting high pervaporation selectivity to the polymer materials. They led to several membranes able to extract pure ethanol out of the azeotropic mixture, but with very low permeation rates. Further modifications of the polymer structure allowed the authors to synthesize materials with greatly enhanced transfer rates and with acceptable selectivity for industrial applications. Structure-property relationships were derived from sorption and pervaporation data for a qualitative prediction of the effect of polymer structure on the flux and selectivity. For these solvent-polymer systems the diffusion phenomenon appears to further improve the pervaporation selectivity for alcohol compared with that given by the sorption process at the membrane face.

  8. Eeonomer 200F®: A High-Performance Nanofiller for Polymer Reinforcement—Investigation of the Structure, Morphology and Dielectric Properties of Polyvinyl Alcohol/Eeonomer-200F® Nanocomposites for Embedded Capacitor Applications

    NASA Astrophysics Data System (ADS)

    Deshmukh, Kalim; Ahamed, M. Basheer; Deshmukh, Rajendra R.; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Pasha, S. K. Khadheer; AlMaadeed, Mariam Al-Ali; Polu, Anji Reddy; Chidambaram, K.

    2017-04-01

    In the present study, Eeonomer 200F® was used as a high-performance nanofiller to prepare polyvinyl alcohol (PVA)-based nanocomposite films using a simple and eco-friendly solution casting technique. The prepared PVA/Eeonomer nanocomposite films were further investigated using various techniques including Fourier transform infrared spectroscopy, x-ray diffraction, thermogravimetric analysis, polarized optical microscopy, scanning electron microscopy and mechanical testing. The dielectric behavior of the nanocomposites was examined over a broad frequency range from 50 Hz to 20 MHz and temperatures ranging from 40°C to 150°C. A notable improvement in the thermal stability of the PVA was observed with the incorporation of Eeonomer. The nanocomposites also demonstrated improved mechanical properties due to the fine dispersion of the Eeonomer, and good compatibility and strong interaction between the Eeonomer and the PVA matrix. A significant improvement was observed in the dielectric properties of the PVA upon the addition of Eeonomer. The nanocomposites containing 5 wt.% Eeonomer exhibited a dielectric constant of about 222.65 (50 Hz, 150°C), which was 18 times that of the dielectric constant (12.33) of neat PVA film under the same experimental conditions. These results thus indicate that PVA/Eeonomer nanocomposites can be used as a flexible high-k dielectric material for embedded capacitor applications.

  9. High performance bilateral telerobot control.

    PubMed

    Kline-Schoder, Robert; Finger, William; Hogan, Neville

    2002-01-01

    Telerobotic systems are used when the environment that requires manipulation is not easily accessible to humans, as in space, remote, hazardous, or microscopic applications or to extend the capabilities of an operator by scaling motions and forces. The Creare control algorithm and software is an enabling technology that makes possible guaranteed stability and high performance for force-feedback telerobots. We have developed the necessary theory, structure, and software design required to implement high performance telerobot systems with time delay. This includes controllers for the master and slave manipulators, the manipulator servo levels, the communication link, and impedance shaping modules. We verified the performance using both bench top hardware as well as a commercial microsurgery system.

  10. A set of alkali and alkaline-earth coordination polymers based on the ligand 2-(1H-benzotriazol-1-yl) acetic acid: Effects the radius of metal ions on structures and properties

    SciTech Connect

    Wang, Jin-Hua; Tang, Gui-Mei; Qin, Ting-Xiao; Yan, Shi-Chen; Wang, Yong-Tao; Cui, Yue-Zhi; Weng Ng, Seik

    2014-11-15

    Four new metal coordination complexes, namely, [Na(BTA)]{sub n} (1), [K{sub 2}(BTA){sub 2}(μ{sub 2}-H{sub 2}O)]{sub n} (2), and [M(BTA){sub 2}(H{sub 2}O){sub 2}]{sub n} (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1–4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11 nodal net with Schläfli symbol of (3{sup 18}). Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of (3{sup 11}×4{sup 2}). Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1–4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail. - Graphical abstract: A set of alkali and alkaline-earth metal coordination polymers were hydrothermally synthesized by 2-(1H-benzotriazol-1-yl)acetic acid, displaying interesting topologic motifs from two-dimension to one-dimension and specific physical properties. - Highlights: • Alkali and alkaline-earth metal coordination polymers have been obtained. • The ligand 2-(1H-benzotriazol-1-yl)acetic acid has been adopted. • The two-dimensional and one

  11. Alkaline earth imidazolate coordination polymers by solvent free melt synthesis as potential host lattices for rare earth photoluminescence: (x)(∞)[AE(Im)2(ImH)(2-3)], Mg, Ca, Sr, Ba, x = 1-2.

    PubMed

    Zurawski, Alexander; Rybak, J-Christoph; Meyer, Larissa V; Matthes, Philipp R; Stepanenko, Vladimir; Dannenbauer, Nicole; Würthner, Frank; Müller-Buschbaum, Klaus

    2012-04-14

    The series of alkaline earth elements magnesium, calcium, strontium and barium yields single crystalline imidazolate coordination polymers by reactions of the metals with a melt of 1H-imidazole: (1)(∞)[Mg(Im)(2)(ImH)(3)] (1), (2)(∞)[AE(Im)(2)(ImH)(2)], AE = Ca (2), Sr (3), and (1)(∞)[Ba(Im)(2)(ImH)(2)] (4). No additional solvents were used for the reactions. Co-doping experiments by addition of the rare earth elements cerium, europium and terbium were carried out. They indicate (2)(∞)[Sr(Im)(2)(ImH)(2)] as a possible host lattice for cerium(III) photoluminescence showing a blue emission and thus a novel blue emitting hybrid material phosphor 3:Ce(3+). Co-doping with europium and terbium is also possible but resulted in formation of (3)(∞)[Sr(Im)(2)]:Ln, Ln = Eu and Tb (5), with both exhibiting green emission of either Eu(2+) or Tb(3+). The other alkaline earth elements do not show acceptance of the rare earth ions investigated and a different structural chemistry. For magnesium and barium one-dimensional strand structures are observed whereas calcium and strontium give two-dimensional network structures. Combined with an increase of the ionic radii of AE(2+) the coordinative demand is also increasing from Mg(2+) to Ba(2+), reflected by four different crystal structures for the four elements Mg, Ca, Sr, Ba in 1-4. Different linkages of the imidazolate ligands result in a change from complete σ-N coordination in 1 to additional η(5)-π coordination in 4. The success of co-doping with different lanthanide ions is based on a match in the chemical behaviour and cationic radii. The use of strontium for host lattices with imidazole is a rare example in coordination chemistry of co-doping with small amounts of luminescence centers and successfully reduces the amount of high price rare earth elements in hybrid materials while maintaining the properties. All compounds are examples of pure N-coordinated coordination polymers of the alkaline earth metals and were

  12. Inexpensive cross-linked polymeric separators made from water-soluble polymers. [for secondary alkaline nickel-zinc and silver-zinc cells

    NASA Technical Reports Server (NTRS)

    Hsu, L.-C.; Sheibley, D. W.

    1982-01-01

    Polyvinyl alcohol (PVA), cross-linked chemically with aldehyde reagents, produces membranes which demonstrate oxidation resistance, dimensional stability, low ionic resistivity (less than 0.8 Ohms sq cm), low zincate diffusivity (less than 1 x 10 to the -7th mols/sq cm per min), and low zinc dendrite penetration rate (greater than 350 min) which make them suitable for use as alkaline battery separators. They are intrinsically low in cost, and environmental health and safety problems associated with commercial production appear minimal. Preparation, property measurements, and cell test results in Ni/Zn and Ag/Zn cells are described and discussed.

  13. High-performance sports medicine.

    PubMed

    Speed, Cathy

    2013-02-01

    High performance sports medicine involves the medical care of athletes, who are extraordinary individuals and who are exposed to intensive physical and psychological stresses during training and competition. The physician has a broad remit and acts as a 'medical guardian' to optimise health while minimising risks. This review describes this interesting field of medicine, its unique challenges and priorities for the physician in delivering best healthcare.

  14. New, high performance rotating parachute

    SciTech Connect

    Pepper, W.B. Jr.

    1983-01-01

    A new rotating parachute has been designed primarily for recovery of high performance reentry vehicles. Design and development/testing results are presented from low-speed wind tunnel testing, free-flight deployments at transonic speeds and tests in a supersonic wind tunnel at Mach 2.0. Drag coefficients of 1.15 based on the 2-ft diameter of the rotor have been measured in the wind tunnel. Stability of the rotor is excellent.

  15. High performance ammonium nitrate propellant

    NASA Technical Reports Server (NTRS)

    Anderson, F. A. (Inventor)

    1979-01-01

    A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.

  16. High Performance Tools And Technologies

    SciTech Connect

    Collette, M R; Corey, I R; Johnson, J R

    2005-01-24

    This goal of this project was to evaluate the capability and limits of current scientific simulation development tools and technologies with specific focus on their suitability for use with the next generation of scientific parallel applications and High Performance Computing (HPC) platforms. The opinions expressed in this document are those of the authors, and reflect the authors' current understanding and functionality of the many tools investigated. As a deliverable for this effort, we are presenting this report describing our findings along with an associated spreadsheet outlining current capabilities and characteristics of leading and emerging tools in the high performance computing arena. This first chapter summarizes our findings (which are detailed in the other chapters) and presents our conclusions, remarks, and anticipations for the future. In the second chapter, we detail how various teams in our local high performance community utilize HPC tools and technologies, and mention some common concerns they have about them. In the third chapter, we review the platforms currently or potentially available to utilize these tools and technologies on to help in software development. Subsequent chapters attempt to provide an exhaustive overview of the available parallel software development tools and technologies, including their strong and weak points and future concerns. We categorize them as debuggers, memory checkers, performance analysis tools, communication libraries, data visualization programs, and other parallel development aides. The last chapter contains our closing information. Included with this paper at the end is a table of the discussed development tools and their operational environment.

  17. High Performance Anion Chromatography of Gadolinium Chelates.

    PubMed

    Hajós, Peter; Lukács, Diana; Farsang, Evelin; Horváth, Krisztian

    2016-11-01

    High performance anion chromatography (HPIC) method to separate ionic Gd chelates, [Formula: see text], [Formula: see text], [Formula: see text] and free matrix anions was developed. At alkaline pHs, polydentate complexing agents such as ethylene-diamine-tetraacetate, diethylene-triamine pentaacetate and trans-1,2-diamine-cyclohexane-tetraacetate tend to form stable Gd chelate anions and can be separated by anion exchange. Separations were studied in the simple isocratic chromatographic run over the wide range of pH and concentration of carbonate eluent using suppressed conductivity detection. The ion exchange and complex forming equilibria were quantitatively described and demonstrated in order to understand major factors in the control of selectivity of Gd chelates. Parameters of optimized resolution between concurrent ions were presented on a 3D resolution surface. The applicability of the developed method is represented by the simultaneous analysis of Gd chelates and organic/inorganic anions. Inductively coupled plasma atomic emission spectroscopy  (ICP-AES) analysis was used for confirmation of HPIC results for Gd. Collection protocols for the heart-cutting procedure of chromatograms were applied. SPE procedures were also developed not only to extract traces of free gadolinium ions from samples, but also to remove the high level of interfering anions of the complex matrices. The limit of detection, the recoverability and the linearity of the method were also presented. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. High performance pyroelectric infrared detector

    NASA Astrophysics Data System (ADS)

    Hu, Xu; Luo, Haosu; Ji, Yulong; Yang, Chunli

    2015-10-01

    Single infrared detector made with Relaxative ferroelectric crystal(PMNT) present excellence performance. In this paper include detector capacitance, characteristic of frequency--response, characteristic of detectivity. The measure result show that detectivity of detector made with relaxative ferroelectric crystal(PMNT) exceed three times than made with LT, the D*achieved than 1*109cmHz0.5W-1. The detector will be applied on NDIR spectrograph, FFT spectrograph and so on. The high performance pyroelectric infrared detector be developed that will be broadened application area of infrared detector.

  19. High-Performance Thermoelectric Semiconductors

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre; Caillat, Thierry; Borshchevsky, Alexander

    1994-01-01

    Figures of merit almost double current state-of-art thermoelectric materials. IrSb3 is semiconductor found to exhibit exceptional thermoelectric properties. CoSb3 and RhSb3 have same skutterudite crystallographic structure as IrSb3, and exhibit exceptional transport properties expected to contribute to high thermoelectric performance. These three compounds form solid solutions. Combination of properties offers potential for development of new high-performance thermoelectric materials for more efficient thermoelectric power generators, coolers, and detectors.

  20. High-performance permanent magnets

    NASA Astrophysics Data System (ADS)

    Goll, D.; Kronmüller, H.

    High-performance permanent magnets (pms) are based on compounds with outstanding intrinsic magnetic properties as well as on optimized microstructures and alloy compositions. The most powerful pm materials at present are RE-TM intermetallic alloys which derive their exceptional magnetic properties from the favourable combination of rare earth metals (RE=Nd, Pr, Sm) with transition metals (TM=Fe, Co), in particular magnets based on (Nd,Pr)2Fe14B and Sm2(Co,Cu,Fe,Zr)17. Their development during the last 20 years has involved a dramatic improvement in their performance by a factor of >15 compared with conventional ferrite pms therefore contributing positively to the ever-increasing demand for pms in many (including new) application fields, to the extent that RE-TM pms now account for nearly half of the worldwide market. This review article first gives a brief introduction to the basics of ferromagnetism to confer an insight into the variety of (permanent) magnets, their manufacture and application fields. We then examine the rather complex relationship between the microstructure and the magnetic properties for the two highest-performance and most promising pm materials mentioned. By using numerical micromagnetic simulations on the basis of the Finite Element technique the correlation can be quantitatively predicted, thus providing a powerful tool for the further development of optimized high-performance pms.

  1. High-performance permanent magnets.

    PubMed

    Goll, D; Kronmüller, H

    2000-10-01

    High-performance permanent magnets (pms) are based on compounds with outstanding intrinsic magnetic properties as well as on optimized microstructures and alloy compositions. The most powerful pm materials at present are RE-TM intermetallic alloys which derive their exceptional magnetic properties from the favourable combination of rare earth metals (RE = Nd, Pr, Sm) with transition metals (TM = Fe, Co), in particular magnets based on (Nd.Pr)2Fe14B and Sm2(Co,Cu,Fe,Zr)17. Their development during the last 20 years has involved a dramatic improvement in their performance by a factor of > 15 compared with conventional ferrite pms therefore contributing positively to the ever-increasing demand for pms in many (including new) application fields, to the extent that RE-TM pms now account for nearly half of the worldwide market. This review article first gives a brief introduction to the basics of ferromagnetism to confer an insight into the variety of (permanent) magnets, their manufacture and application fields. We then examine the rather complex relationship between the microstructure and the magnetic properties for the two highest-performance and most promising pm materials mentioned. By using numerical micromagnetic simulations on the basis of the Finite Element technique the correlation can be quantitatively predicted, thus providing a powerful tool for the further development of optimized high-performance pms.

  2. High-performance multiple-donor bulk heterojunction solar cells

    SciTech Connect

    Yang, Yang; Chen, Wei; Dou, Letian; Chang, Wei-Hsuan; Duan, Hsin-Sheng; Bob, Brion; Li, Gang; Yang, Yang

    2015-02-09

    Broadening the absorption bandwidth of polymer solar cells by incorporating multiple absorber donors into the bulk-heterojunction active layer is an attractive means of resolving the narrow absorption of organic semiconductors. However, this leads to a much more complicated system, and previous efforts have met with only limited success. Here, several dual-donor and multi-donor bulk-heterojunction polymer solar cells based on a pool of materials with different absorption ranges and preferred molecular structures were studied. The study shows clearly that compatible polymer donors can coexist harmoniously, but the mixing of incompatible polymers can lead to severe molecular disorder and limit device performance. These results provide guidance for the general use of multiple-donor bulk heterojunctions to overcome the absorption limitation and achieve both high performance and fabrication simplicity for organic solar cells.

  3. FPGA Based High Performance Computing

    SciTech Connect

    Bennett, Dave; Mason, Jeff; Sundararajan, Prasanna; Dellinger, Erik; Putnam, Andrew; Storaasli, Olaf O

    2008-01-01

    Current high performance computing (HPC) applications are found in many consumer, industrial and research fields. From web searches to auto crash simulations to weather predictions, these applications require large amounts of power by the compute farms and supercomputers required to run them. The demand for more and faster computation continues to increase along with an even sharper increase in the cost of the power required to operate and cool these installations. The ability of standard processor based systems to address these needs has declined in both speed of computation and in power consumption over the past few years. This paper presents a new method of computation based upon programmable logic as represented by Field Programmable Gate Arrays (FPGAs) that addresses these needs in a manner requiring only minimal changes to the current software design environment.

  4. High Performance Perovskite Solar Cells.

    PubMed

    Tong, Xin; Lin, Feng; Wu, Jiang; Wang, Zhiming M

    2016-05-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long-term stable all-solid-state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost-effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole-transporting materials (HTMs) and electron-transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction.

  5. Toward high performance graphene fibers.

    PubMed

    Chen, Li; He, Yuling; Chai, Songgang; Qiang, Hong; Chen, Feng; Fu, Qiang

    2013-07-07

    Two-dimensional graphene and graphene-based materials have attracted tremendous interest, hence much attention has been drawn to exploring and applying their exceptional characteristics and properties. Integration of graphene sheets into macroscopic fibers is a very important way for their application and has received increasing interest. In this study, neat and macroscopic graphene fibers were continuously spun from graphene oxide (GO) suspensions followed by chemical reduction. By varying wet-spinning conditions, a series of graphene fibers were prepared, then, the structural features, mechanical and electrical performances of the fibers were investigated. We found the orientation of graphene sheets, the interaction between inter-fiber graphene sheets and the defects in the fibers have a pronounced effect on the properties of the fibers. Graphene fibers with excellent mechanical and electrical properties will yield great advances in high-tech applications. These findings provide guidance for the future production of high performance graphene fibers.

  6. High Performance Perovskite Solar Cells

    PubMed Central

    Tong, Xin; Lin, Feng; Wu, Jiang

    2015-01-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long‐term stable all‐solid‐state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost‐effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole‐transporting materials (HTMs) and electron‐transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction. PMID:27774402

  7. Developing high-performance leaders.

    PubMed

    Melum, Mara

    2002-01-01

    Although there is widespread recognition that strong leadership is key in these challenging times, many companies provide only the tip of the iceberg of leadership development support. This article is a resource for high-powered leadership development systems that will have an impact on performance. Four topics are discussed: (1) models, (2) investment and results, (3) critical success factors, and (4) case studies of how the 3M Company and HealthPartners develop high-performance leaders. Studies that quantity the effect of leadership development on performance are noted. Five critical success factors are described, and examples from leadership development benchmark organizations such as General Electric and Reell Precision Manufacturing are discussed.

  8. High Performance Flexible Thermal Link

    NASA Astrophysics Data System (ADS)

    Sauer, Arne; Preller, Fabian

    2014-06-01

    The paper deals with the design and performance verification of a high performance and flexible carbon fibre thermal link.Project goal was to design a space qualified thermal link combining low mass, flexibility and high thermal conductivity with new approaches regarding selected materials and processes. The idea was to combine the advantages of existing metallic links regarding flexibility and the thermal performance of high conductive carbon pitch fibres. Special focus is laid on the thermal performance improvement of matrix systems by means of nano-scaled carbon materials in order to improve the thermal performance also perpendicular to the direction of the unidirectional fibres.One of the main challenges was to establish a manufacturing process which allows handling the stiff and brittle fibres, applying the matrix and performing the implementation into an interface component using unconventional process steps like thermal bonding of fibres after metallisation.This research was funded by the German Federal Ministry for Economic Affairs and Energy (BMWi).

  9. High Performance Parallel Computational Nanotechnology

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    At a recent press conference, NASA Administrator Dan Goldin encouraged NASA Ames Research Center to take a lead role in promoting research and development of advanced, high-performance computer technology, including nanotechnology. Manufacturers of leading-edge microprocessors currently perform large-scale simulations in the design and verification of semiconductor devices and microprocessors. Recently, the need for this intensive simulation and modeling analysis has greatly increased, due in part to the ever-increasing complexity of these devices, as well as the lessons of experiences such as the Pentium fiasco. Simulation, modeling, testing, and validation will be even more important for designing molecular computers because of the complex specification of millions of atoms, thousands of assembly steps, as well as the simulation and modeling needed to ensure reliable, robust and efficient fabrication of the molecular devices. The software for this capacity does not exist today, but it can be extrapolated from the software currently used in molecular modeling for other applications: semi-empirical methods, ab initio methods, self-consistent field methods, Hartree-Fock methods, molecular mechanics; and simulation methods for diamondoid structures. In as much as it seems clear that the application of such methods in nanotechnology will require powerful, highly powerful systems, this talk will discuss techniques and issues for performing these types of computations on parallel systems. We will describe system design issues (memory, I/O, mass storage, operating system requirements, special user interface issues, interconnects, bandwidths, and programming languages) involved in parallel methods for scalable classical, semiclassical, quantum, molecular mechanics, and continuum models; molecular nanotechnology computer-aided designs (NanoCAD) techniques; visualization using virtual reality techniques of structural models and assembly sequences; software required to

  10. High Performance Parallel Computational Nanotechnology

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    At a recent press conference, NASA Administrator Dan Goldin encouraged NASA Ames Research Center to take a lead role in promoting research and development of advanced, high-performance computer technology, including nanotechnology. Manufacturers of leading-edge microprocessors currently perform large-scale simulations in the design and verification of semiconductor devices and microprocessors. Recently, the need for this intensive simulation and modeling analysis has greatly increased, due in part to the ever-increasing complexity of these devices, as well as the lessons of experiences such as the Pentium fiasco. Simulation, modeling, testing, and validation will be even more important for designing molecular computers because of the complex specification of millions of atoms, thousands of assembly steps, as well as the simulation and modeling needed to ensure reliable, robust and efficient fabrication of the molecular devices. The software for this capacity does not exist today, but it can be extrapolated from the software currently used in molecular modeling for other applications: semi-empirical methods, ab initio methods, self-consistent field methods, Hartree-Fock methods, molecular mechanics; and simulation methods for diamondoid structures. In as much as it seems clear that the application of such methods in nanotechnology will require powerful, highly powerful systems, this talk will discuss techniques and issues for performing these types of computations on parallel systems. We will describe system design issues (memory, I/O, mass storage, operating system requirements, special user interface issues, interconnects, bandwidths, and programming languages) involved in parallel methods for scalable classical, semiclassical, quantum, molecular mechanics, and continuum models; molecular nanotechnology computer-aided designs (NanoCAD) techniques; visualization using virtual reality techniques of structural models and assembly sequences; software required to

  11. High Performance Proactive Digital Forensics

    NASA Astrophysics Data System (ADS)

    Alharbi, Soltan; Moa, Belaid; Weber-Jahnke, Jens; Traore, Issa

    2012-10-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  12. High performance aerated lagoon systems

    SciTech Connect

    Rich, L.

    1999-08-01

    At a time when less money is available for wastewater treatment facilities and there is increased competition for the local tax dollar, regulatory agencies are enforcing stricter effluent limits on treatment discharges. A solution for both municipalities and industry is to use aerated lagoon systems designed to meet these limits. This monograph, prepared by a recognized expert in the field, provides methods for the rational design of a wide variety of high-performance aerated lagoon systems. Such systems range from those that can be depended upon to meet secondary treatment standards alone to those that, with the inclusion of intermittent sand filters or elements of sequenced biological reactor (SBR) technology, can also provide for nitrification and nutrient removal. Considerable emphasis is placed on the use of appropriate performance parameters, and an entire chapter is devoted to diagnosing performance failures. Contents include: principles of microbiological processes, control of algae, benthal stabilization, design for CBOD removal, design for nitrification and denitrification in suspended-growth systems, design for nitrification in attached-growth systems, phosphorus removal, diagnosing performance.

  13. ALMA high performance nutating subreflector

    NASA Astrophysics Data System (ADS)

    Gasho, Victor L.; Radford, Simon J. E.; Kingsley, Jeffrey S.

    2003-02-01

    For the international ALMA project"s prototype antennas, we have developed a high performance, reactionless nutating subreflector (chopping secondary mirror). This single axis mechanism can switch the antenna"s optical axis by +/-1.5" within 10 ms or +/-5" within 20 ms and maintains pointing stability within the antenna"s 0.6" error budget. The light weight 75 cm diameter subreflector is made of carbon fiber composite to achieve a low moment of inertia, <0.25 kg m2. Its reflecting surface was formed in a compression mold. Carbon fiber is also used together with Invar in the supporting structure for thermal stability. Both the subreflector and the moving coil motors are mounted on flex pivots and the motor magnets counter rotate to absorb the nutation reaction force. Auxiliary motors provide active damping of external disturbances, such as wind gusts. Non contacting optical sensors measure the positions of the subreflector and the motor rocker. The principle mechanical resonance around 20 Hz is compensated with a digital PID servo loop that provides a closed loop bandwidth near 100 Hz. Shaped transitions are used to avoid overstressing mechanical links.

  14. The High Performance Storage System

    SciTech Connect

    Coyne, R.A.; Hulen, H.; Watson, R.

    1993-09-01

    The National Storage Laboratory (NSL) was organized to develop, demonstrate and commercialize technology for the storage system that will be the future repositories for our national information assets. Within the NSL four Department of Energy laboratories and IBM Federal System Company have pooled their resources to develop an entirely new High Performance Storage System (HPSS). The HPSS project concentrates on scalable parallel storage system for highly parallel computers as well as traditional supercomputers and workstation clusters. Concentrating on meeting the high end of storage system and data management requirements, HPSS is designed using network-connected storage devices to transfer data at rates of 100 million bytes per second and beyond. The resulting products will be portable to many vendor`s platforms. The three year project is targeted to be complete in 1995. This paper provides an overview of the requirements, design issues, and architecture of HPSS, as well as a description of the distributed, multi-organization industry and national laboratory HPSS project.

  15. Energy Efficient Graphene Based High Performance Capacitors.

    PubMed

    Bae, Joonwon; Lee, Chang-Soo; Kwon, Oh Seok

    2016-10-27

    Graphene (GRP) is an interesting class of nano-structured electronic materials for various cutting-edge applications. To date, extensive research activities have been performed on the investigation of diverse properties of GRP. The incorporation of this elegant material can be very lucrative in terms of practical applications in energy storage/conversion systems. Among various those systems, high performance electrochemical capacitors (ECs) have become popular due to the recent need for energy efficient and portable devices. Therefore, in this article, the application of GRP for capacitors is described succinctly. In particular, a concise summary on the previous research activities regarding GRP based capacitors is also covered extensively. It was revealed that a lot of secondary materials such as polymers and metal oxides have been introduced to improve the performance. Also, diverse devices have been combined with capacitors for better use. More importantly, recent patents related to the preparation and application of GRP based capacitors are also introduced briefly. This article can provide essential information for future study.

  16. Highly conductive quasi-coaxial electrospun quaternized polyvinyl alcohol nanofibers and composite as high-performance solid electrolytes

    NASA Astrophysics Data System (ADS)

    Liao, Guan-Ming; Li, Pin-Chieh; Lin, Jia-Shiun; Ma, Wei-Ting; Yu, Bor-Chern; Li, Hsieh-Yu; Liu, Ying-Ling; Yang, Chun-Chen; Shih, Chao-Ming; Lue, Shingjiang Jessie

    2016-02-01

    Electrospun quaternized polyvinyl alcohol (Q-PVA) nanofibers are prepared, and a potassium hydroxide (KOH)-doped nanofiber mat demonstrates enhanced ionic conductivity compared with a dense Q-PVA film with KOH doping. The Q-PVA composite containing 5.98% electrospun Q-PVA nanofibers exhibits suppressed methanol permeability. Both the high conductivity and suppressed methanol permeability are attributed to the quasi-coaxial structure of the electrospun nanofibers. The core of the fibers exhibits a more amorphous region that forms highly conductive paths, while the outer shell of the nanofibers contains more polymer crystals that serve as a hard sheath surrounding the soft core. This shell induces mass transfer resistance and creates a tortuous fuel pathway that suppresses methanol permeation. Such a Q-PVA composite is an effective solid electrolyte that makes the use of alkaline fuel cells viable. In a direct methanol alkaline fuel cell operated at 60 °C, a peak power density of 54 mW cm-2 is obtained using the electrospun Q-PVA composite, a 36.4% increase compared with a cell employing a pristine Q-PVA film. These results demonstrate that highly conductive coaxial electrospun nanofibers can be prepared through a single-opening spinneret and provide a possible approach for high-performance electrolyte fabrication.

  17. High performance silicon optical modulators

    NASA Astrophysics Data System (ADS)

    Reed, G. T.; Thomson, D. J.; Gardes, F. Y.; Hu, Y.; Owens, N.; Debnath, K.; O'Faolain, L.; Krauss, T. F.; Lever, L.; Ikonic, Z.; Kelsall, R. W.; Myronov, M.; Leadley, D. R.; Marko, I. P.; Sweeney, S. J.; Cox, D. C.; Brimont, A.; Sanchis, P.; Duan, G.-H.; Le Liepvre, A.; Jany, C.; Lamponi, M.; Make, D.; Lelarge, F.; Fedeli, J. M.; Messaoudene, S.; Keyvaninia, S.; Roelkens, G.; Van Thourhout, D.; Liu, S.; Yang, X.; Petropoulos, P.

    2012-11-01

    In this work we present results from high performance silicon optical modulators produced within the two largest silicon photonics projects in Europe; UK Silicon Photonics (UKSP) and HELIOS. Two conventional MZI based optical modulators featuring novel self-aligned fabrication processes are presented. The first is based in 400nm overlayer SOI and demonstrates 40Gbit/s modulation with the same extinction ratio for both TE and TM polarisations, which relaxes coupling requirements to the device. The second design is based in 220nm SOI and demonstrates 40Gbits/s modulation with a 10dB extinction ratio as well modulation at 50Gbit/s for the first time. A ring resonator based optical modulator, featuring FIB error correction is presented. 40Gbit/s, 32fJ/bit operation is also shown from this device which has a 6um radius. Further to this slow light enhancement of the modulation effect is demonstrated through the use of both convention photonic crystal structures and corrugated waveguides. Fabricated conventional photonic crystal modulators have shown an enhancement factor of 8 over the fast light case. The corrugated waveguide device shows modulation efficiency down to 0.45V.cm compared to 2.2V.cm in the fast light case. 40Gbit/s modulation is demonstrated with a 3dB modulation depth from this device. Novel photonic crystal based cavity modulators are also demonstrated which offer the potential for low fibre to fibre loss. In this case preliminary modulation results at 1Gbit/s are demonstrated. Ge/SiGe Stark effect devices operating at 1300nm are presented. Finally an integrated transmitter featuring a III-V source and MZI modulator operating at 10Gbit/s is presented.

  18. The Axial Compressive Strength of High Performance Polymer Fibers

    DTIC Science & Technology

    1985-03-01

    examined is a high-modulus graphite fiber (Union Carbide P-75) that is spun from mesophase pitch . This fiber is stretched during the graphitization...After approximately 3% axial compressive strain the fibers exhibited surface helical kink bands having a pitch angle of 600. Both left- and right-handed...strength using transmission optical microscopy with the beam bending technique. However, the compressive strengths of similar pitch -based graphite fibers

  19. Indoor Air Quality in High Performance Schools

    EPA Pesticide Factsheets

    High performance schools are facilities that improve the learning environment while saving energy, resources, and money. The key is understanding the lifetime value of high performance schools and effectively managing priorities, time, and budget.

  20. Carpet Aids Learning in High Performance Schools

    ERIC Educational Resources Information Center

    Hurd, Frank

    2009-01-01

    The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…

  1. Carpet Aids Learning in High Performance Schools

    ERIC Educational Resources Information Center

    Hurd, Frank

    2009-01-01

    The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…

  2. Alkaline post-treatment of Cd(II)-glutathione coordination polymers: toward green synthesis of water-soluble and cytocompatible CdS quantum dots with tunable optical properties.

    PubMed

    Huang, Pengcheng; Jiang, Qin; Yu, Ping; Yang, Lifen; Mao, Lanqun

    2013-06-12

    In this study, we demonstrate a facile and environmentally friendly method for the synthesis of glutathione (GSH)-capped water-soluble CdS quantum dots (QDs) with a high cytocompatibility and a tunable optical property based on alkaline post-treatment of Cd-GSH coordination polymers (CPs). Cd-GSH CPs are synthesized with the coordination reaction of Cd(2+) with GSH at different pH values, and the CdS QDs are then formed by adding NaOH to the aqueous dispersion of the Cd-GSH CPs to break the coordination interaction between Cd(2+) and GSH with the release of sulfur. The particle size and optical property of the as-formed CdS QDs are found to be easily tailored by simply adjusting the starting pH values of GSH solutions used for the formation of Cd-GSH CPs, in which the wavelengths of trap-state emission of the QDs red-shift with an increase in the sizes of the QDs that is caused by an increase in the starting pH values of GSH solutions. In addition, the use of GSH as the capping reagent eventually endows the as-formed CdS QDs with enhanced water solubility and good cytocompatibility, as demonstrated with HeLa cells. The method demonstrated here is advantageous in that the cadmium precursor and the sulfur source are nontoxic and easily available, and the size, optical properties, water solubility, and cytocompatibilty of the as-formed CdS QDs are simply achieved and experimentally regulated. This study offers a new and green synthetic route to water-soluble and cytocompatible CdS QDs with tunable optical properties.

  3. High-Performance Synthetic Fibers for Composites

    DTIC Science & Technology

    1992-04-01

    series under subject contracts. 1989- 1955 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS High-Performance Synthetic Fibers for Composites MDA 903-89-K-0078...MDA 972-92-C-0028 6. AUTHOR(S) Committee on High-Performance Synthetic Fibers for Composites 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S...Maximum 200 words) This report describes the properties of the principal classes of high-performance synthetic fibers , as well as several current and

  4. Statistical properties of high performance cesium standards

    NASA Technical Reports Server (NTRS)

    Percival, D. B.

    1973-01-01

    The intermediate term frequency stability of a group of new high-performance cesium beam tubes at the U.S. Naval Observatory were analyzed from two viewpoints: (1) by comparison of the high-performance standards to the MEAN(USNO) time scale and (2) by intercomparisons among the standards themselves. For sampling times up to 5 days, the frequency stability of the high-performance units shows significant improvement over older commercial cesium beam standards.

  5. Method of making a high performance ultracapacitor

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.

    2000-07-26

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  6. High performance carbon nanocomposites for ultracapacitors

    DOEpatents

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  7. Common Factors of High Performance Teams

    ERIC Educational Resources Information Center

    Jackson, Bruce; Madsen, Susan R.

    2005-01-01

    Utilization of work teams is now wide spread in all types of organizations throughout the world. However, an understanding of the important factors common to high performance teams is rare. The purpose of this content analysis is to explore the literature and propose findings related to high performance teams. These include definition and types,…

  8. High Performance Work Systems and Firm Performance.

    ERIC Educational Resources Information Center

    Kling, Jeffrey

    1995-01-01

    A review of 17 studies of high-performance work systems concludes that benefits of employee involvement, skill training, and other high-performance work practices tend to be greater when new methods are adopted as part of a consistent whole. (Author)

  9. Sustaining High Performance in Bad Times.

    ERIC Educational Resources Information Center

    Bassi, Laurie J.; Van Buren, Mark A.

    1997-01-01

    Summarizes the results of the American Society for Training and Development Human Resource and Performance Management Survey of 1996 that examined the performance outcomes of downsizing and high performance work systems, explored the relationship between high performance work systems and downsizing, and asked whether some downsizing practices were…

  10. High Performance Work Practices and Firm Performance.

    ERIC Educational Resources Information Center

    Department of Labor, Washington, DC. Office of the American Workplace.

    A literature survey established that a substantial amount of research has been conducted on the relationship between productivity and the following specific high performance work practices: employee involvement in decision making, compensation linked to firm or worker performance, and training. According to these studies, high performance work…

  11. New materials drive high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Ruhmann, Douglas C.; Bates, William F., Jr.; Dexter, H. B.; June, Reid B.

    1992-01-01

    This report shows how advanced composite materials and new processing methods are enabling lighter, lower cost aircraft structures. High-temperature polymers research will focus on systems capable of 50,000 to 100,000 hours of operation in the 212-400 F temperature range. Prospective materials being evaluated include high-temperature epoxies, toughened bismaleimides, cyanates, thermoplastics, polyimides and other polymers.

  12. High-performances carbonaceous adsorbents for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Zhao, Weigang; Fierro, Vanessa; Aylon, E.; Izquierdo, M. T.; Celzard, Alain

    2013-03-01

    Activated carbons (ACs) with controlled microporosity have been prepared and their H2 storage performances have been tested in a gravimetric device. Such adsorbents are natural Chinese anthracites chemically activated with alkaline hydroxides, NaOH or KOH. Outstanding total storage capacities of hydrogen, as high as 6.6wt.% equivalent to excess capacity of 6.2 wt.%, have been obtained at 4MPa for some of these adsorbents. These values of hydrogen adsorption are among the best, if not the highest, ever published so far in the open literature. They are well above those of some commercial materials, e.g. Maxsorb-3, considered as a reference of high-performance adsorbent for hydrogen adsorption. Such exceptional storage capacities may be ascribed to a higher volume of micropores (< 2nm).

  13. Oxidation catalysts on alkaline earth supports

    DOEpatents

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  14. Strategy Guideline: High Performance Residential Lighting

    SciTech Connect

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  15. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and…

  16. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  17. Alkaline igneous rocks

    SciTech Connect

    Fitton, J.G.; Upton, B.G.J.

    1987-01-01

    In this volume, an international team of scientists provides an up-to-date overview of the nature, origin, and evolution of alkaline magmas. Particular attention is paid to carbonatites, lamprophyres, and lamproites which are rock suites of current interest not recently reviewed elsewhere. Recent work on the classical alkaline provinces of East Africa, South Greenland, and the Kola Peninsula is included together with reviews of other areas of alkaline magmatism in North and South America, East Greenland, Europe, West Africa, and the ocean basins. Other papers discuss the impact of experimental isotopic and geochemical studies of the petrogenesis of alkaline rocks. This book will be of interest to petrologists and geochemists studying alkaline igneous rocks, and to other earth scientists as a reference on the rapidly expanding field of igneous petrology.

  18. LANL High-Performance Data System (HPDS)

    NASA Technical Reports Server (NTRS)

    Collins, M. William; Cook, Danny; Jones, Lynn; Kluegel, Lynn; Ramsey, Cheryl

    1993-01-01

    The Los Alamos High-Performance Data System (HPDS) is being developed to meet the very large data storage and data handling requirements of a high-performance computing environment. The HPDS will consist of fast, large-capacity storage devices that are directly connected to a high-speed network and managed by software distributed in workstations. The HPDS model, the HPDS implementation approach, and experiences with a prototype disk array storage system are presented.

  19. Architecture Analysis of High Performance Capacitors (POSTPRINT)

    DTIC Science & Technology

    2009-07-01

    includes the measurement of heat dissipated from a recently developed fluorenyl polyester (FPE) capacitor under an AC excitation. II. Capacitor ...AFRL-RZ-WP-TP-2010-2100 ARCHITECTURE ANALYSIS OF HIGH PERFORMANCE CAPACITORS (POSTPRINT) Hiroyuki Kosai and Tyler Bixel UES, Inc...2009 4. TITLE AND SUBTITLE ARCHITECTURE ANALYSIS OF HIGH PERFORMANCE CAPACITORS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c

  20. High-Performance Alkaline Direct Methanol Fuel Cell using a Nitrogen-Postdoped Anode

    DTIC Science & Technology

    2014-01-01

    methanol strip - ping voltammetry {MSV) technique.rm Notably, CO stripping curves could not be obtained for either the N-doped PtRu/C or the undoped...rate of 5 mV s-1 at 25 oc. The ECSA of the cathode was measured by cyclic voltammetry (CV). The cathode of the MEA was fed with 2M NaOH for 30 min at...terfacial structure, and hence performance, the study em- ployed very high catalyst loadings for both the anode (PtRu black 8 mgcm-2) and cathode {Pt

  1. Alkaline battery operational methodology

    SciTech Connect

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  2. Advanced high-performance computer system architectures

    NASA Astrophysics Data System (ADS)

    Vinogradov, V. I.

    2007-02-01

    Convergence of computer systems and communication technologies are moving to switched high-performance modular system architectures on the basis of high-speed switched interconnections. Multi-core processors become more perspective way to high-performance system, and traditional parallel bus system architectures (VME/VXI, cPCI/PXI) are moving to new higher speed serial switched interconnections. Fundamentals in system architecture development are compact modular component strategy, low-power processor, new serial high-speed interface chips on the board, and high-speed switched fabric for SAN architectures. Overview of advanced modular concepts and new international standards for development high-performance embedded and compact modular systems for real-time applications are described.

  3. Strategy Guideline. Partnering for High Performance Homes

    SciTech Connect

    Prahl, Duncan

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. This guide is intended for use by all parties associated in the design and construction of high performance homes. It serves as a starting point and features initial tools and resources for teams to collaborate to continually improve the energy efficiency and durability of new houses.

  4. High-performance computing and communications

    SciTech Connect

    Stevens, R.

    1993-11-01

    This presentation has two parts. The first part discusses the US High-Performance Computing and Communications program -- its goals, funding, process, revisions, and research in high-performance computing systems, advanced software technology, and basic research and human resources. The second part of the presentation covers specific work conducted under this program at Argonne National Laboratory. Argonne`s efforts focus on computational science research, software tool development, and evaluation of experimental computer architectures. In addition, the author describes collaborative activities at Argonne in high-performance computing, including an Argonne/IBM project to evaluate and test IBM`s newest parallel computers and the Scalable I/O Initiative being spearheaded by the Concurrent Supercomputing Consortium.

  5. High performance bio-integrated devices

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeong; Lee, Jongha; Park, Minjoon

    2014-06-01

    In recent years, personalized electronics for medical applications, particularly, have attracted much attention with the rise of smartphones because the coupling of such devices and smartphones enables the continuous health-monitoring in patients' daily life. Especially, it is expected that the high performance biomedical electronics integrated with the human body can open new opportunities in the ubiquitous healthcare. However, the mechanical and geometrical constraints inherent in all standard forms of high performance rigid wafer-based electronics raise unique integration challenges with biotic entities. Here, we describe materials and design constructs for high performance skin-mountable bio-integrated electronic devices, which incorporate arrays of single crystalline inorganic nanomembranes. The resulting electronic devices include flexible and stretchable electrophysiology electrodes and sensors coupled with active electronic components. These advances in bio-integrated systems create new directions in the personalized health monitoring and/or human-machine interfaces.

  6. Dinosaurs can fly -- High performance refining

    SciTech Connect

    Treat, J.E.

    1995-09-01

    High performance refining requires that one develop a winning strategy based on a clear understanding of one`s position in one`s company`s value chain; one`s competitive position in the products markets one serves; and the most likely drivers and direction of future market forces. The author discussed all three points, then described measuring performance of the company. To become a true high performance refiner often involves redesigning the organization as well as the business processes. The author discusses such redesigning. The paper summarizes ten rules to follow to achieve high performance: listen to the market; optimize; organize around asset or area teams; trust the operators; stay flexible; source strategically; all maintenance is not equal; energy is not free; build project discipline; and measure and reward performance. The paper then discusses the constraints to the implementation of change.

  7. Determination of saccharides in biological materials by high-performance anion-exchange chromatography with pulsed amperometric detection.

    PubMed

    Martens, D A; Frankenberger, W T

    1991-06-21

    High-performance anion-exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD) under alkaline conditions (pH 9-13) separates aminosaccharides, neutral saccharides and glycuronic acids based upon their molecular size, saccharide composition and glycosidic linkages. Carbohydrates were extracted by utilizing 0.5 M H2SO4 (neutral monosaccharides), 0.25 M H2SO4 coupled with enzyme catalysis (glycuronic acids) and 3 M H2SO4 (aminosaccharides). Solid-phase extraction with strong cation and strong anion resins was used to partition the cationic aminosaccharides and anionic glycuronic acids and to deionize acid extracts for neutral saccharides. Separation was conducted on a medium-capacity anion-exchange column (36 mequiv.) utilizing sodium hydroxide (5-200 mM and sodium acetate (0-250 mM) as the mobile phase. The saccharides were detected by oxidation at a gold working electrode with triple-pulsed amperometry. HPAEC-PAD was found superior to high-performance liquid chromatography with refractive index (RI) detection for neutral monosaccharides and aminosaccharides and to low-wavelength UV detection for glycuronic acids in terms of resolution and sensitivity. HPAEC-PAD was not subject to interferences as was the case for low UV detection (210 nm) or RI analyses and was highly selective for mono- and aminosaccharides and glycuronic acids. The use of HPAEC-PAD was applied for the determination of the saccharide composition of organic materials (plant residues, animal wastes and sewage sludge), microbial polymers and soil.

  8. High performance computing at Sandia National Labs

    SciTech Connect

    Cahoon, R.M.; Noe, J.P.; Vandevender, W.H.

    1995-10-01

    Sandia`s High Performance Computing Environment requires a hierarchy of resources ranging from desktop, to department, to centralized, and finally to very high-end corporate resources capable of teraflop performance linked via high-capacity Asynchronous Transfer Mode (ATM) networks. The mission of the Scientific Computing Systems Department is to provide the support infrastructure for an integrated corporate scientific computing environment that will meet Sandia`s needs in high-performance and midrange computing, network storage, operational support tools, and systems management. This paper describes current efforts at SNL/NM to expand and modernize centralized computing resources in support of this mission.

  9. Project materials [Commercial High Performance Buildings Project

    SciTech Connect

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  10. High Performance Computing and Communications Panel Report.

    ERIC Educational Resources Information Center

    President's Council of Advisors on Science and Technology, Washington, DC.

    This report offers advice on the strengths and weaknesses of the High Performance Computing and Communications (HPCC) initiative, one of five presidential initiatives launched in 1992 and coordinated by the Federal Coordinating Council for Science, Engineering, and Technology. The HPCC program has the following objectives: (1) to extend U.S.…

  11. Commercial Buildings High Performance Rooftop Unit Challenge

    SciTech Connect

    2011-12-16

    The U.S. Department of Energy (DOE) and the Commercial Building Energy Alliances (CBEAs) are releasing a new design specification for high performance rooftop air conditioning units (RTUs). Manufacturers who develop RTUs based on this new specification will find strong interest from the commercial sector due to the energy and financial savings.

  12. Creating a High-Performance School System.

    ERIC Educational Resources Information Center

    Thompson, Scott

    2003-01-01

    Describes several critical factors of a high-performing school system such as the system holds itself accountable for the success of all its schools. Provides school district examples of critical success factors in action. Includes districts in Colorado, Washington, Texas, California, New Jersey. Discusses the role of strategic and authentic…

  13. Overview of high performance aircraft propulsion research

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.

    1992-01-01

    The overall scope of the NASA Lewis High Performance Aircraft Propulsion Research Program is presented. High performance fighter aircraft of interest include supersonic flights with such capabilities as short take off and vertical landing (STOVL) and/or high maneuverability. The NASA Lewis effort involving STOVL propulsion systems is focused primarily on component-level experimental and analytical research. The high-maneuverability portion of this effort, called the High Alpha Technology Program (HATP), is part of a cooperative program among NASA's Lewis, Langley, Ames, and Dryden facilities. The overall objective of the NASA Inlet Experiments portion of the HATP, which NASA Lewis leads, is to develop and enhance inlet technology that will ensure high performance and stability of the propulsion system during aircraft maneuvers at high angles of attack. To accomplish this objective, both wind-tunnel and flight experiments are used to obtain steady-state and dynamic data, and computational fluid dynamics (CFD) codes are used for analyses. This overview of the High Performance Aircraft Propulsion Research Program includes a sampling of the results obtained thus far and plans for the future.

  14. Technology Leadership in Malaysia's High Performance School

    ERIC Educational Resources Information Center

    Yieng, Wong Ai; Daud, Khadijah Binti

    2017-01-01

    Headmaster as leader of the school also plays a role as a technology leader. This applies to the high performance schools (HPS) headmaster as well. The HPS excel in all aspects of education. In this study, researcher is interested in examining the role of the headmaster as a technology leader through interviews with three headmasters of high…

  15. High Performance Builder Spotlight: Imagine Homes

    SciTech Connect

    2011-01-01

    Imagine Homes, working with the DOE's Building America research team member IBACOS, has developed a system that can be replicated by other contractors to build affordable, high-performance homes. Imagine Homes has used the system to produce more than 70 Builders Challenge-certified homes per year in San Antonio over the past five years.

  16. Teacher Accountability at High Performing Charter Schools

    ERIC Educational Resources Information Center

    Aguirre, Moises G.

    2016-01-01

    This study will examine the teacher accountability and evaluation policies and practices at three high performing charter schools located in San Diego County, California. Charter schools are exempted from many laws, rules, and regulations that apply to traditional school systems. By examining the teacher accountability systems at high performing…

  17. Miniaturized high-performance MEMS accelerometer detector

    NASA Astrophysics Data System (ADS)

    Gonseth, Stephan; Rudolf, Felix; Eichenberger, Christoph; Durrant, Dick; Airey, Phil

    2015-06-01

    In the framework of the demonstration of European capabilities for future space exploration mission, a high-performance miniaturized MEMS accelerometer detector is developed by Colibrys for incorporation into a compact inertial measurement unit (IMU). The envisaged missions where a miniaturized IMU is under development by SEA should cover: Aerobraking;

  18. High Performance Work Systems for Online Education

    ERIC Educational Resources Information Center

    Contacos-Sawyer, Jonna; Revels, Mark; Ciampa, Mark

    2010-01-01

    The purpose of this paper is to identify the key elements of a High Performance Work System (HPWS) and explore the possibility of implementation in an online institution of higher learning. With the projected rapid growth of the demand for online education and its importance in post-secondary education, providing high quality curriculum, excellent…

  19. High Performance Work Systems for Online Education

    ERIC Educational Resources Information Center

    Contacos-Sawyer, Jonna; Revels, Mark; Ciampa, Mark

    2010-01-01

    The purpose of this paper is to identify the key elements of a High Performance Work System (HPWS) and explore the possibility of implementation in an online institution of higher learning. With the projected rapid growth of the demand for online education and its importance in post-secondary education, providing high quality curriculum, excellent…

  20. High Performance Work Organizations. Myths and Realities.

    ERIC Educational Resources Information Center

    Kerka, Sandra

    Organizations are being urged to become "high performance work organizations" (HPWOs) and vocational teachers have begun considering how best to prepare workers for them. Little consensus exists as to what HPWOs are. Several common characteristics of HPWOs have been identified, and two distinct models of HPWOs are emerging in the United…

  1. High Performance Networks for High Impact Science

    SciTech Connect

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  2. Performance, Performance System, and High Performance System

    ERIC Educational Resources Information Center

    Jang, Hwan Young

    2009-01-01

    This article proposes needed transitions in the field of human performance technology. The following three transitions are discussed: transitioning from training to performance, transitioning from performance to performance system, and transitioning from learning organization to high performance system. A proposed framework that comprises…

  3. Teacher Accountability at High Performing Charter Schools

    ERIC Educational Resources Information Center

    Aguirre, Moises G.

    2016-01-01

    This study will examine the teacher accountability and evaluation policies and practices at three high performing charter schools located in San Diego County, California. Charter schools are exempted from many laws, rules, and regulations that apply to traditional school systems. By examining the teacher accountability systems at high performing…

  4. Massive Contingency Analysis with High Performance Computing

    SciTech Connect

    Huang, Zhenyu; Chen, Yousu; Nieplocha, Jaroslaw

    2009-07-26

    Contingency analysis is a key function in the Energy Management System (EMS) to assess the impact of various combinations of power system component failures based on state estimates. Contingency analysis is also extensively used in power market operation for feasibility test of market solutions. Faster analysis of more cases is required to safely and reliably operate today’s power grids with less marginal and more intermittent renewable energy sources. Enabled by the latest development in the computer industry, high performance computing holds the promise of meet the need in the power industry. This paper investigates the potential of high performance computing for massive contingency analysis. The framework of "N-x" contingency analysis is established and computational load balancing schemes are studied and implemented with high performance computers. Case studies of massive 300,000-contingency-case analysis using the Western Electricity Coordinating Council power grid model are presented to illustrate the application of high performance computing and demonstrate the performance of the framework and computational load balancing schemes.

  5. Debugging a high performance computing program

    DOEpatents

    Gooding, Thomas M.

    2013-08-20

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  6. Debugging a high performance computing program

    DOEpatents

    Gooding, Thomas M.

    2014-08-19

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  7. Development of a High Performance Acousto-Ultrasonic Scan System

    NASA Astrophysics Data System (ADS)

    Roth, D. J.; Martin, R. E.; Harmon, L. M.; Gyekenyesi, A. L.; Kautz, H. E.

    2003-03-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition/distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods such as ultrasonic c-scan, x-ray radiography, and themographic inspection that tend to be used primarily for discrete flaw detection. Through its history, AU has been used to inspect polymer matrix composite, metal matrix composite, ceramic matrix composite, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. In this paper, a review of essential AU technology is given. Additionally, the basic hardware and software configuration, and preliminary results with the system, are described.

  8. Development of a High Performance Acousto-Ultrasonic Scan System

    NASA Astrophysics Data System (ADS)

    Roth, D. J.; Martin, R. E.; Harmon, L. M.; Gyekenyesi, A. L.; Kautz, H. E.

    2002-10-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition/distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods such as ultrasonic c-scan, x-ray radiography, and thermographic inspection that tend to be used primarily for discrete flaw detection. Through its history, AU has been used to inspect polymer matrix composite, metal matrix composite, ceramic matrix composite, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. In this paper, a review of essential AU technology is given. Additionally, the basic hardware and software configuration, and preliminary results with the system, are described.

  9. Development of a High Performance Acousto-ultrasonic Scan System

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Martin, R. E.; Harmon, L. M.; Gyekenyesi, A. L.; Kautz, H. E.

    2002-01-01

    Acousto-ultrasonic (AU) interrogation is a single-sided nondestructive evaluation (NDE) technique employing separated sending and receiving transducers. It is used for assessing the microstructural condition/distributed damage state of the material between the transducers. AU is complementary to more traditional NDE methods such as ultrasonic c-scan, x-ray radiography, and thermographic inspection that tend to be used primarily for discrete flaw detection. Through its history, AU has been used to inspect polymer matrix composite, metal matrix composite, ceramic matrix composite, and even monolithic metallic materials. The development of a high-performance automated AU scan system for characterizing within-sample microstructural and property homogeneity is currently in a prototype stage at NASA. In this paper, a review of essential AU technology is given. Additionally, the basic hardware and software configuration, and preliminary results with the system, are described.

  10. Alkaline flooding for enhanced oil recovery

    SciTech Connect

    Gittler, W.E.

    1983-09-01

    There are over 12 active projects of varying size using one of 3 major types of alkaline agents. These include sodium silicate, caustic soda, and soda ash. Among the largest pilots currently is the THUMS project in the Wilmington field, California. Plans called for the injection of a 4% weight concentration of sodium orthosilicate over a 60% PV. Through the first 3 yr, over 27 million bbl of chemicals have been injected. Gulf Oil is operating several alkaline floods, one of which is located off shore in the Quarantine Bay field, Louisiana. In this pilot, sodium hydroxide in a weight concentration of 5 to 12% is being injected. Belco Petroleum Corp. has reported that their pilot operating in the Isenhour Unit in Wyoming is using a .5% weight concentration of soda ash in conjunction with a polymer. Other uses for alkaline agents in chemical flooding include the use of silicate as a preflush or sacrificial agent in micellar/polymer and surfactant recovery systems. In addition, caustic has been tested in the surface-mixed caustic emulsion process while orthosilicate has been tested in a recovery method known as mobility-controlled caustic floods.

  11. Low-cost, high-performance solar flat-plate collectors for applications in northern latitudes

    SciTech Connect

    Wilhelm, W.G.

    1981-01-01

    Solar flat plate collector designs have been developed which incorporate high performance polymer film and laminate technology that have a projected manufacturing cost approaching $15/m/sup 2/ and potential thermal performance consistent with the best commercial solar flat plate collectors available today.

  12. Alkaline phosphatase: an overview.

    PubMed

    Sharma, Ujjawal; Pal, Deeksha; Prasad, Rajendra

    2014-07-01

    Alkaline phosphatase (ALP; E.C.3.I.3.1.) is an ubiquitous membrane-bound glycoprotein that catalyzes the hydrolysis of phosphate monoesters at basic pH values. Alkaline phosphatase is divided into four isozymes depending upon the site of tissue expression that are Intestinal ALP, Placental ALP, Germ cell ALP and tissue nonspecific alkaline phosphatase or liver/bone/kidney (L/B/K) ALP. The intestinal and placental ALP loci are located near the end of long arm of chromosome 2 and L/B/K ALP is located near the end of the short arm of chromosome 1. Although ALPs are present in many mammalian tissues and have been studied for the last several years still little is known about them. The bone isoenzyme may be involved in mammalian bone calcification and the intestinal isoenzyme is thought to play a role in the transport of phosphate into epithelial cells of the intestine. In this review, we tried to provide an overview about the various forms, structure and functions of alkaline phosphatase with special focus on liver/bone/kidney alkaline phosphatase.

  13. Monitoring SLAC High Performance UNIX Computing Systems

    SciTech Connect

    Lettsome, Annette K.; /Bethune-Cookman Coll. /SLAC

    2005-12-15

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia. Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface.

  14. Evaluation of high-performance computing software

    SciTech Connect

    Browne, S.; Dongarra, J.; Rowan, T.

    1996-12-31

    The absence of unbiased and up to date comparative evaluations of high-performance computing software complicates a user`s search for the appropriate software package. The National HPCC Software Exchange (NHSE) is attacking this problem using an approach that includes independent evaluations of software, incorporation of author and user feedback into the evaluations, and Web access to the evaluations. We are applying this approach to the Parallel Tools Library (PTLIB), a new software repository for parallel systems software and tools, and HPC-Netlib, a high performance branch of the Netlib mathematical software repository. Updating the evaluations with feed-back and making it available via the Web helps ensure accuracy and timeliness, and using independent reviewers produces unbiased comparative evaluations difficult to find elsewhere.

  15. High performance flight simulation at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II; Sudik, Steven J.; Grove, Randall D.

    1992-01-01

    The use of real-time simulation at the NASA facility is reviewed specifically with regard to hardware, software, and the use of a fiberoptic-based digital simulation network. The network hardware includes supercomputers that support 32- and 64-bit scalar, vector, and parallel processing technologies. The software include drivers, real-time supervisors, and routines for site-configuration management and scheduling. Performance specifications include: (1) benchmark solution at 165 sec for a single CPU; (2) a transfer rate of 24 million bits/s; and (3) time-critical system responsiveness of less than 35 msec. Simulation applications include the Differential Maneuvering Simulator, Transport Systems Research Vehicle simulations, and the Visual Motion Simulator. NASA is shown to be in the final stages of developing a high-performance computing system for the real-time simulation of complex high-performance aircraft.

  16. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    PubMed Central

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-01-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm−2 at 80 °C with a low platinum loading of 0.09 mgPt cm−2, corresponding to a platinum utilization of 0.13 gPt kW−1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction. PMID:28737170

  17. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  18. High performance platinum single atom electrocatalyst for oxygen reduction reaction.

    PubMed

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-24

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm(-2) at 80 °C with a low platinum loading of 0.09 mgPt cm(-2), corresponding to a platinum utilization of 0.13 gPt kW(-1) in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  19. High-performance reactionless scan mechanism

    NASA Technical Reports Server (NTRS)

    Williams, Ellen I.; Summers, Richard T.; Ostaszewski, Miroslaw A.

    1995-01-01

    A high-performance reactionless scan mirror mechanism was developed for space applications to provide thermal images of the Earth. The design incorporates a unique mechanical means of providing reactionless operation that also minimizes weight, mechanical resonance operation to minimize power, combined use of a single optical encoder to sense coarse and fine angular position, and a new kinematic mount of the mirror. A flex pivot hardware failure and current project status are discussed.

  20. High Performance Split-Stirling Cooler Program

    DTIC Science & Technology

    1982-09-01

    7 SPLIT- STIRLING CYCLE CRYOCOOLER . ...... . . . . . 13 8 TEMPERATURE-SHOCK COMPARISON PERFORMANCE DATA, S/N 002 . . 23 9 TEMPERATURE-SHOCK...PERFORMANCE SPLIT- STIRLING "COOLER PROGRAM FINAL TECHNICAL REPORT "September 1982 Prepared for NIGHT VISION AND ELECTRO-OPTICS LABORATORI ES "Contract DAAK70...REPORT & P.Vt2OO COVERED HIGH PERFORMANCE SPLIT- STIRLING COOLER PROGRAM Final Technical Sept. 1979. - Sept. 1982 S. PERPORMING ORO. REPORT KUMMER

  1. AHPCRC - Army High Performance Computing Research Center

    DTIC Science & Technology

    2008-01-01

    materials “from the atoms up” or to model biological systems at the molecular level. The speed and capacity of massively parallel computers are key...Streamlined, massively parallel high performance computing structural codes allow researchers to examine many relevant physical factors simultaneously...expenditure of energy, so that the drones can carry their load of sensors, communications devices, and fuel. AHPCRC researchers are using massively

  2. High performance microsystem packaging: A perspective

    SciTech Connect

    Romig, A.D. Jr.; Dressendorfer, P.V.; Palmer, D.W.

    1997-10-01

    The second silicon revolution will be based on intelligent, integrated microsystems where multiple technologies (such as analog, digital, memory, sensor, micro-electro-mechanical, and communication devices) are integrated onto a single chip or within a multichip module. A necessary element for such systems is cost-effective, high-performance packaging. This paper examines many of the issues associated with the packaging of integrated microsystems, with an emphasis on the areas of packaging design, manufacturability, and reliability.

  3. High Performance Multiwall Carbon Nanotube Bolometers

    DTIC Science & Technology

    2010-10-21

    REPORT High performance multiwall carbon nanotube bolometers 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: High infrared bolometric photoresponse has...been observed in multiwall carbon nanotube MWCNT films at room temperature. The observed detectivity D in exceeding 3.3 106 cm Hz1/2 /W on MWCNT film...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS carbon nanotube, infrared detector, bolometer

  4. Noise of High Performance Aircraft at Afterburner

    DTIC Science & Technology

    2016-05-04

    Research Project Title: Noise of High-Performance Aircraft at Afterburner Principal Investigator Dr. Christopher Tam Department of...During this quarter, our research effort concentrated on processing and understanding the real time noise data of the F-18E aircraft . There...18E aircraft tones are combustor resonances. At this time, in the absence of other independent data, we are unable to conclude whether the tones of

  5. High-performance polymeric componentry for telecom and datacom applications

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.; Blomquist, Robert; Shacklette, Lawrence W.; McFarland, Michael J.

    2000-03-01

    We review a polymeric waveguide technology developed to produce affordable high-performance optical components that address the needs of both the telecom and the datacom industries. We engineer advanced organic polymers that can be readily made into planar single-mode, multimode, and micro-optical waveguide structures of controlled numerical apertures and geometries. These materials are formed from highly crosslinked acrylate monomers with specific linkages that determine properties such as flexibility, toughness, optical loss, and environmental stability. These monomers are intermiscible, providing for precise continuous adjustment of the refractive index over a wide range. In polymer form, they exhibit state-of-the-art loss values, suppressed polarization effects, and exceptional stability, enabling their use in a variety of demanding applications. Waveguides are formed photolithographically, with the liquid monomer mixture polymerizing upon illumination in the UV via either mask exposure or laser direct writing. A wide range of rigid and flexible structures can be used. The devices we describe include a variety of passive and thermo-optically active elements that achieve a variety of coupling, routing, and filtering functionalities. These devices can be either individually pigtailed and packaged components or they can be part of a massively parallel photonic integrated circuit on the multichip module, board, or backplane level.

  6. Computational Biology and High Performance Computing 2000

    SciTech Connect

    Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L.; Arkin, Adam P.

    2000-10-19

    The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

  7. Task parallelism and high-performance languages

    SciTech Connect

    Foster, I.

    1996-03-01

    The definition of High Performance Fortran (HPF) is a significant event in the maturation of parallel computing: it represents the first parallel language that has gained widespread support from vendors and users. The subject of this paper is to incorporate support for task parallelism. The term task parallelism refers to the explicit creation of multiple threads of control, or tasks, which synchronize and communicate under programmer control. Task and data parallelism are complementary rather than competing programming models. While task parallelism is more general and can be used to implement algorithms that are not amenable to data-parallel solutions, many problems can benefit from a mixed approach, with for example a task-parallel coordination layer integrating multiple data-parallel computations. Other problems admit to both data- and task-parallel solutions, with the better solution depending on machine characteristics, compiler performance, or personal taste. For these reasons, we believe that a general-purpose high-performance language should integrate both task- and data-parallel constructs. The challenge is to do so in a way that provides the expressivity needed for applications, while preserving the flexibility and portability of a high-level language. In this paper, we examine and illustrate the considerations that motivate the use of task parallelism. We also describe one particular approach to task parallelism in Fortran, namely the Fortran M extensions. Finally, we contrast Fortran M with other proposed approaches and discuss the implications of this work for task parallelism and high-performance languages.

  8. Achieving High Performance Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  9. Supervising the highly performing general practice registrar.

    PubMed

    Morgan, Simon

    2014-02-01

    There is extensive literature on the poorly performing learner. In contrast, there is very little written on supervising the highly performing registrar. Outstanding trainees with high-level knowledge and skills can be a challenge for supervisors to supervise and teach. Narrative review and discussion. As with all learners, a learning-needs analysis is fundamental to successful supervision. The key to effective teaching of the highly performing registrar is to contextualise clinical knowledge and skills with the wisdom of accumulated experience. Moreover, supervisors must provide a stimulating learning environment, with regular opportunities for intellectual challenge. The provision of specific, constructive feedback is essential. There are potential opportunities to extend the highly performing registrar in all domains of general practice, namely communication skills and patient-centred care, applied knowledge and skills, population health, professionalism, and organisation and legal issues. Specific teaching strategies include role-play, video-consultation review, random case analysis, posing hypothetical clinical scenarios, role modelling and teaching other learners. © 2014 John Wiley & Sons Ltd.

  10. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    SciTech Connect

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-04-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

  11. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    SciTech Connect

    Sandra L. Fox; Xina Xie; Greg Bala

    2004-11-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones to enhance oil recovery (EOR). Polymer technology relies mainly on the use of polyacrylamides cross-linked by a hazardous metal or organic. Contemporary polymer plugging has investigated the stimulation of in-situ microorganisms to produce polymers (Jenneman et. al., 2000) and the use of biocatalysts to trigger gelling (Bailey et. al., 2000). The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts have produced a reactive alkaline-soluble biopolymer from Agrobacterium species ATCC # 31749 that gels upon decreasing the pH of the polymeric solution. Microbial polymers are of interest due to their potential cost savings, compared to conventional use of synthetic chemical polymers. Numerous microorganisms are known to produce extracellular polysaccharides. One microbiological polymer of interest is curdlan, â - (1, 3) glucan, which has demonstrated gelling properties by a reduction in pH. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability.

  12. High Performance Vertical Organic Field Effect Transistors

    DTIC Science & Technology

    2010-05-01

    synthesized low bandgap silole-containing polymers for OPV application; [7] and studied Anisotropy in Organic Single-Crystal Photovoltaic devices based on...transfer effect in the polyaniline -gold nanoparticle memory system.[9] A composite system comprised of polyaniline nanofibers bonded with gold... polyaniline and the gold nanoparticles and is confirmed by x-ray photoelectron spectroscopy and Raman spectroscopy. This charge transfer enables a bistable

  13. Functionalized Materials From Elastomers to High Performance Thermoplastics

    SciTech Connect

    Salazar, Laura Ann

    2003-01-01

    Synthesis and incorporation of functionalized materials continues to generate significant research interest in academia and in industry. If chosen correctly, a functional group when incorporated into a polymer can deliver enhanced properties, such as adhesion, water solubility, thermal stability, etc. The utility of these new materials has been demonstrated in drug-delivery systems, coatings, membranes and compatibilizers. Two approaches exist to functionalize a material. The desired moiety can be added to the monomer either before or after polymerization. The polymers used range from low glass transition temperature elastomers to high glass transition temperature, high performance materials. One industrial example of the first approach is the synthesis of Teflon(reg. sign). Poly(tetrafluoroethylene) (PTFE or Teflon(reg. sign)) is synthesized from tetrafluoroethylene, a functionalized monomer. The resulting material has significant property differences from the parent, poly(ethylene). Due to the fluorine in the polymer, PTFE has excellent solvent and heat resistance, a low surface energy and a low coefficient of friction. This allows the material to be used in high temperature applications where the surface needs to be nonabrasive and nonstick. This material has a wide spread use in the cooking industry because it allows for ease of cooking and cleaning as a nonstick coating on cookware. One of the best examples of the second approach, functionalization after polymerization, is the vulcanization process used to make tires. Natural rubber (from the Hevea brasiliensis) has a very low glass transition temperature, is very tacky and would not be useful to make tires without synthetic alteration. Goodyear's invention was the vulcanization of polyisoprene by crosslinking the material with sulfur to create a rubber that was tough enough to withstand the elements of weather and road conditions. Due to the development of polymerization techniques to make cis

  14. Aromatic Polyimides with High Performances and Deuteration

    SciTech Connect

    Anselmi, E.; Raby, J.; Balland-Longeau, A.

    2004-03-15

    Inertial Confinement Fusion experiments are conducted in polymer capsule in which nuclear products are located. In order to vary optical properties, we need to develop polyimides with high mechanical properties in which we have to substitute all the hydrogen atoms by deuterium atoms. The best way to obtain deuterated polymer is to deuterate monomers instead of direct deuteration of polymers. In a first part, mechanical properties of aromatic polyimide films based on two dianhydrides (pyromellitic dianhydride PMDA and 3,3',4,4'-biphenyltetracarboxylic dianhydride BPDA) and two diamines (4,4'-oxydianiline ODA and pphenylenediamine PDA) have been described. The optimization of synthesis and fabrication parameters of polyimide films PMDA/ODA and BPDA/PDA having high inherent viscosity, so high molecular weight, have allowed us to obtain high mechanical properties. And in a second part, deuterated monomers have been synthesized via multi-steps organic reactions and/or under pressure conditions. We have investigated the preparation of deuterated poly(amic-acid) solutions in NMP and the preparation of the corresponding polyimides deuterated membranes. Results show that deuterium does not affect the reactivity of monomers to form the poly(amic-acid) solution.

  15. High performance zinc anode for battery applications

    NASA Technical Reports Server (NTRS)

    Casey, John E., Jr. (Inventor)

    1998-01-01

    An improved zinc anode for use in a high density rechargeable alkaline battery is disclosed. A process for making the zinc electrode comprises electrolytic loading of the zinc active material from a slightly acidic zinc nitrate solution into a substrate of nickel, copper or silver. The substrate comprises a sintered plaque having very fine pores, a high surface area, and 80-85 percent total initial porosity. The residual porosity after zinc loading is approximately 25-30%. The electrode of the present invention exhibits reduced zinc mobility, shape change and distortion, and demonstrates reduced dendrite buildup cycling of the battery. The disclosed battery is useful for applications requiring high energy density and multiple charge capability.

  16. [Advances of alkaline amylase production and applications].

    PubMed

    Yang, Haiquan; Liu, Long; Li, Jianghua; Du, Guocheng; Chen, Jian

    2012-04-01

    Alkaline amylase is one of alkaline enzymes with optimum pH in the alkaline range, and it could keep stability and efficiently hydrolyze starch under alkaline conditions. Alkaline amylase finds wide applications in textile, detergent, pharmaceutical, food and other fields. Alkaline amylases could be produced by alkaliphilic microorganisms. In this work, the advances of alkaline amylase production and applications were reviewed.

  17. High performance HRM: NHS employee perspectives.

    PubMed

    Hyde, Paula; Sparrow, Paul; Boaden, Ruth; Harris, Claire

    2013-01-01

    The purpose of this paper is to examine National Health Service (NHS) employee perspectives of how high performance human resource (HR) practices contribute to their performance. The paper draws on an extensive qualitative study of the NHS. A novel two-part method was used; the first part used focus group data from managers to identify high-performance HR practices specific to the NHS. Employees then conducted a card-sort exercise where they were asked how or whether the practices related to each other and how each practice affected their work. In total, 11 high performance HR practices relevant to the NHS were identified. Also identified were four reactions to a range of HR practices, which the authors developed into a typology according to anticipated beneficiaries (personal gain, organisation gain, both gain and no-one gains). Employees were able to form their own patterns (mental models) of performance contribution for a range of HR practices (60 interviewees produced 91 groupings). These groupings indicated three bundles particular to the NHS (professional development, employee contribution and NHS deal). These mental models indicate employee perceptions about how health services are organised and delivered in the NHS and illustrate the extant mental models of health care workers. As health services are rearranged and financial pressures begin to bite, these mental models will affect employee reactions to changes both positively and negatively. The novel method allows for identification of mental models that explain how NHS workers understand service delivery. It also delineates the complex and varied relationships between HR practices and individual performance.

  18. Toward a theory of high performance.

    PubMed

    Kirby, Julia

    2005-01-01

    What does it mean to be a high-performance company? The process of measuring relative performance across industries and eras, declaring top performers, and finding the common drivers of their success is such a difficult one that it might seem a fool's errand to attempt. In fact, no one did for the first thousand or so years of business history. The question didn't even occur to many scholars until Tom Peters and Bob Waterman released In Search of Excellence in 1982. Twenty-three years later, we've witnessed several more attempts--and, just maybe, we're getting closer to answers. In this reported piece, HBR senior editor Julia Kirby explores why it's so difficult to study high performance and how various research efforts--including those from John Kotter and Jim Heskett; Jim Collins and Jerry Porras; Bill Joyce, Nitin Nohria, and Bruce Roberson; and several others outlined in a summary chart-have attacked the problem. The challenge starts with deciding which companies to study closely. Are the stars the ones with the highest market caps, the ones with the greatest sales growth, or simply the ones that remain standing at the end of the game? (And when's the end of the game?) Each major study differs in how it defines success, which companies it therefore declares to be worthy of emulation, and the patterns of activity and attitude it finds in common among them. Yet, Kirby concludes, as each study's method incrementally solves problems others have faced, we are progressing toward a consensus theory of high performance.

  19. Failure analysis of high performance ballistic fibers

    NASA Astrophysics Data System (ADS)

    Spatola, Jennifer S.

    High performance fibers have a high tensile strength and modulus, good wear resistance, and a low density, making them ideal for applications in ballistic impact resistance, such as body armor. However, the observed ballistic performance of these fibers is much lower than the predicted values. Since the predictions assume only tensile stress failure, it is safe to assume that the stress state is affecting fiber performance. The purpose of this research was to determine if there are failure mode changes in the fiber fracture when transversely loaded by indenters of different shapes. An experimental design mimicking transverse impact was used to determine any such effects. Three different indenters were used: round, FSP, and razor blade. The indenter height was changed to change the angle of failure tested. Five high performance fibers were examined: KevlarRTM KM2, SpectraRTM 130d, DyneemaRTM SK-62 and SK-76, and ZylonRTM 555. Failed fibers were analyzed using an SEM to determine failure mechanisms. The results show that the round and razor blade indenters produced a constant failure strain, as well as failure mechanisms independent of testing angle. The FSP indenter produced a decrease in failure strain as the angle increased. Fibrillation was the dominant failure mechanism at all angles for the round indenter, while through thickness shearing was the failure mechanism for the razor blade. The FSP indenter showed a transition from fibrillation at low angles to through thickness shearing at high angles, indicating that the round and razor blade indenters are extreme cases of the FSP indenter. The failure mechanisms observed with the FSP indenter at various angles correlated with the experimental strain data obtained during fiber testing. This indicates that geometry of the indenter tip in compression is a contributing factor in lowering the failure strain of the high performance fibers. TEM analysis of the fiber failure mechanisms was also attempted, though without

  20. High performance channel injection sealant invention abstract

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Basiulis, D. I.; Salisbury, D. P. (Inventor)

    1982-01-01

    High performance channel sealant is based on NASA patented cyano and diamidoximine-terminated perfluoroalkylene ether prepolymers that are thermally condensed and cross linked. The sealant contains asbestos and, in its preferred embodiments, Lithofrax, to lower its thermal expansion coefficient and a phenolic metal deactivator. Extensive evaluation shows the sealant is extremely resistant to thermal degradation with an onset point of 280 C. The materials have a volatile content of 0.18%, excellent flexibility, and adherence properties, and fuel resistance. No corrosibility to aluminum or titanium was observed.

  1. High-Performance Water-Iodinating Cartridge

    NASA Technical Reports Server (NTRS)

    Sauer, Richard; Gibbons, Randall E.; Flanagan, David T.

    1993-01-01

    High-performance cartridge contains bed of crystalline iodine iodinates water to near saturation in single pass. Cartridge includes stainless-steel housing equipped with inlet and outlet for water. Bed of iodine crystals divided into layers by polytetrafluoroethylene baffles. Holes made in baffles and positioned to maximize length of flow path through layers of iodine crystals. Resulting concentration of iodine biocidal; suppresses growth of microbes in stored water or disinfects contaminated equipment. Cartridge resists corrosion and can be stored wet. Reused several times before necessary to refill with fresh iodine crystals.

  2. An Introduction to High Performance Computing

    NASA Astrophysics Data System (ADS)

    Almeida, Sérgio

    2013-09-01

    High Performance Computing (HPC) has become an essential tool in every researcher's arsenal. Most research problems nowadays can be simulated, clarified or experimentally tested by using computational simulations. Researchers struggle with computational problems when they should be focusing on their research problems. Since most researchers have little-to-no knowledge in low-level computer science, they tend to look at computer programs as extensions of their minds and bodies instead of completely autonomous systems. Since computers do not work the same way as humans, the result is usually Low Performance Computing where HPC would be expected.

  3. Strategy Guideline. High Performance Residential Lighting

    SciTech Connect

    Holton, J.

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  4. High performance forward swept wing aircraft

    NASA Technical Reports Server (NTRS)

    Koenig, David G. (Inventor); Aoyagi, Kiyoshi (Inventor); Dudley, Michael R. (Inventor); Schmidt, Susan B. (Inventor)

    1988-01-01

    A high performance aircraft capable of subsonic, transonic and supersonic speeds employs a forward swept wing planform and at least one first and second solution ejector located on the inboard section of the wing. A high degree of flow control on the inboard sections of the wing is achieved along with improved maneuverability and control of pitch, roll and yaw. Lift loss is delayed to higher angles of attack than in conventional aircraft. In one embodiment the ejectors may be advantageously positioned spanwise on the wing while the ductwork is kept to a minimum.

  5. High performance thyratron driver with low jitter.

    PubMed

    Verma, Rishi; Lee, P; Springham, S V; Tan, T L; Rawat, R S

    2007-08-01

    We report the design and development of insulated gate bipolar junction transistor based high performance driver for operating thyratrons in grounded grid mode. With careful design, the driver meets the specification of trigger output pulse rise time less than 30 ns, jitter less than +/-1 ns, and time delay less than 160 ns. It produces a -600 V pulse of 500 ns duration (full width at half maximum) at repetition rate ranging from 1 Hz to 1.14 kHz. The developed module also facilitates heating and biasing units along with protection circuitry in one complete package.

  6. Noise of High Performance Aircraft at Afterburner

    DTIC Science & Technology

    2016-02-10

    14,  2015   Submitted  to   The  Office  of  Naval  Research     Project  Title:   Noise  of  High-­‐Performance...Until recently, the noise of high performance military aircraft has not been studied in details. During the last two years, noise spectral data from the...any major differences between the dominant noise components of these jets and those of a standard high temperature laboratory supersonic jet. It is

  7. High performance thyratron driver with low jitter

    NASA Astrophysics Data System (ADS)

    Verma, Rishi; Lee, P.; Springham, S. V.; Tan, T. L.; Rawat, R. S.

    2007-08-01

    We report the design and development of insulated gate bipolar junction transistor based high performance driver for operating thyratrons in grounded grid mode. With careful design, the driver meets the specification of trigger output pulse rise time less than 30ns, jitter less than ±1ns, and time delay less than 160ns. It produces a -600V pulse of 500ns duration (full width at half maximum) at repetition rate ranging from 1Hzto1.14kHz. The developed module also facilitates heating and biasing units along with protection circuitry in one complete package.

  8. High-performance neural networks. [Neural computers

    SciTech Connect

    Dress, W.B.

    1987-06-01

    The new Forth hardware architectures offer an intermediate solution to high-performance neural networks while the theory and programming details of neural networks for synthetic intelligence are developed. This approach has been used successfully to determine the parameters and run the resulting network for a synthetic insect consisting of a 200-node ''brain'' with 1760 interconnections. Both the insect's environment and its sensor input have thus far been simulated. However, the frequency-coded nature of the Browning network allows easy replacement of the simulated sensors by real-world counterparts.

  9. BEDOPS: high-performance genomic feature operations.

    PubMed

    Neph, Shane; Kuehn, M Scott; Reynolds, Alex P; Haugen, Eric; Thurman, Robert E; Johnson, Audra K; Rynes, Eric; Maurano, Matthew T; Vierstra, Jeff; Thomas, Sean; Sandstrom, Richard; Humbert, Richard; Stamatoyannopoulos, John A

    2012-07-15

    The large and growing number of genome-wide datasets highlights the need for high-performance feature analysis and data comparison methods, in addition to efficient data storage and retrieval techniques. We introduce BEDOPS, a software suite for common genomic analysis tasks which offers improved flexibility, scalability and execution time characteristics over previously published packages. The suite includes a utility to compress large inputs into a lossless format that can provide greater space savings and faster data extractions than alternatives. http://code.google.com/p/bedops/ includes binaries, source and documentation.

  10. High-Performance Water-Iodinating Cartridge

    NASA Technical Reports Server (NTRS)

    Sauer, Richard; Gibbons, Randall E.; Flanagan, David T.

    1993-01-01

    High-performance cartridge contains bed of crystalline iodine iodinates water to near saturation in single pass. Cartridge includes stainless-steel housing equipped with inlet and outlet for water. Bed of iodine crystals divided into layers by polytetrafluoroethylene baffles. Holes made in baffles and positioned to maximize length of flow path through layers of iodine crystals. Resulting concentration of iodine biocidal; suppresses growth of microbes in stored water or disinfects contaminated equipment. Cartridge resists corrosion and can be stored wet. Reused several times before necessary to refill with fresh iodine crystals.

  11. High Performance Computing for complex fluids simulation

    NASA Astrophysics Data System (ADS)

    Ismail, Mourad; Chabannes, Vincent; Doyeux, Vincent; Priem, Stéphane; Prud'Homme, Christophe; Feelpp Team

    2014-11-01

    In order to better understand the behavior of complex fluids in general and blood flow in particular, several models have been proposed by considering blood as a Newtonian fluid (governed by the Stokes equations or Navier-Stokes) in which are immersed deformable entities. These particles contain a second fluid of different viscosity and density from outer fluid. This context, I will present some models based on the same principle and will show its validations using some known benchmarks. I will also talk briefly about High Performance Computing in the framework of complex fluids simulations. http://www.feelpp.org/

  12. Strategy Guideline: Partnering for High Performance Homes

    SciTech Connect

    Prahl, D.

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. In an environment where the builder is the only source of communication between trades and consultants and where relationships are, in general, adversarial as opposed to cooperative, the chances of any one building system to fail are greater. Furthermore, it is much harder for the builder to identify and capitalize on synergistic opportunities. Partnering can help bridge the cross-functional aspects of the systems approach and achieve performance-based criteria. Critical success factors for partnering include support from top management, mutual trust, effective and open communication, effective coordination around common goals, team building, appropriate use of an outside facilitator, a partnering charter progress toward common goals, an effective problem-solving process, long-term commitment, continuous improvement, and a positive experience for all involved.

  13. A Linux Workstation for High Performance Graphics

    NASA Technical Reports Server (NTRS)

    Geist, Robert; Westall, James

    2000-01-01

    The primary goal of this effort was to provide a low-cost method of obtaining high-performance 3-D graphics using an industry standard library (OpenGL) on PC class computers. Previously, users interested in doing substantial visualization or graphical manipulation were constrained to using specialized, custom hardware most often found in computers from Silicon Graphics (SGI). We provided an alternative to expensive SGI hardware by taking advantage of third-party, 3-D graphics accelerators that have now become available at very affordable prices. To make use of this hardware our goal was to provide a free, redistributable, and fully-compatible OpenGL work-alike library so that existing bodies of code could simply be recompiled. for PC class machines running a free version of Unix. This should allow substantial cost savings while greatly expanding the population of people with access to a serious graphics development and viewing environment. This should offer a means for NASA to provide a spectrum of graphics performance to its scientists, supplying high-end specialized SGI hardware for high-performance visualization while fulfilling the requirements of medium and lower performance applications with generic, off-the-shelf components and still maintaining compatibility between the two.

  14. A High Performance COTS Based Computer Architecture

    NASA Astrophysics Data System (ADS)

    Patte, Mathieu; Grimoldi, Raoul; Trautner, Roland

    2014-08-01

    Using Commercial Off The Shelf (COTS) electronic components for space applications is a long standing idea. Indeed the difference in processing performance and energy efficiency between radiation hardened components and COTS components is so important that COTS components are very attractive for use in mass and power constrained systems. However using COTS components in space is not straightforward as one must account with the effects of the space environment on the COTS components behavior. In the frame of the ESA funded activity called High Performance COTS Based Computer, Airbus Defense and Space and its subcontractor OHB CGS have developed and prototyped a versatile COTS based architecture for high performance processing. The rest of the paper is organized as follows: in a first section we will start by recapitulating the interests and constraints of using COTS components for space applications; then we will briefly describe existing fault mitigation architectures and present our solution for fault mitigation based on a component called the SmartIO; in the last part of the paper we will describe the prototyping activities executed during the HiP CBC project.

  15. Management issues for high performance storage systems

    SciTech Connect

    Louis, S.; Burris, R.

    1995-03-01

    Managing distributed high-performance storage systems is complex and, although sharing common ground with traditional network and systems management, presents unique storage-related issues. Integration technologies and frameworks exist to help manage distributed network and system environments. Industry-driven consortia provide open forums where vendors and users cooperate to leverage solutions. But these new approaches to open management fall short addressing the needs of scalable, distributed storage. We discuss the motivation and requirements for storage system management (SSM) capabilities and describe how SSM manages distributed servers and storage resource objects in the High Performance Storage System (HPSS), a new storage facility for data-intensive applications and large-scale computing. Modem storage systems, such as HPSS, require many SSM capabilities, including server and resource configuration control, performance monitoring, quality of service, flexible policies, file migration, file repacking, accounting, and quotas. We present results of initial HPSS SSM development including design decisions and implementation trade-offs. We conclude with plans for follow-on work and provide storage-related recommendations for vendors and standards groups seeking enterprise-wide management solutions.

  16. High-performance computing for airborne applications

    SciTech Connect

    Quinn, Heather M; Manuzzato, Andrea; Fairbanks, Tom; Dallmann, Nicholas; Desgeorges, Rose

    2010-06-28

    Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even though the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.

  17. DOE High Performance Concentrator PV Project

    SciTech Connect

    McConnell, R.; Symko-Davies, M.

    2005-08-01

    Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

  18. High-performance computing in seismology

    SciTech Connect

    1996-09-01

    The scientific, technical, and economic importance of the issues discussed here presents a clear agenda for future research in computational seismology. In this way these problems will drive advances in high-performance computing in the field of seismology. There is a broad community that will benefit from this work, including the petroleum industry, research geophysicists, engineers concerned with seismic hazard mitigation, and governments charged with enforcing a comprehensive test ban treaty. These advances may also lead to new applications for seismological research. The recent application of high-resolution seismic imaging of the shallow subsurface for the environmental remediation industry is an example of this activity. This report makes the following recommendations: (1) focused efforts to develop validated documented software for seismological computations should be supported, with special emphasis on scalable algorithms for parallel processors; (2) the education of seismologists in high-performance computing technologies and methodologies should be improved; (3) collaborations between seismologists and computational scientists and engineers should be increased; (4) the infrastructure for archiving, disseminating, and processing large volumes of seismological data should be improved.

  19. Complex Suspension Rheology Using High Performance Computing

    NASA Astrophysics Data System (ADS)

    Heine, David

    In processing advanced ceramic materials, the properties of the final product depend on the process conditions and the interactions between the materials at the scale of the individual particles. Along with general bulk properties, more subtle properties including particle orientation, segregation, and pore structure must be established during processing to achieve the desired functionality. Accomplishing this requires a thorough understanding of the mesoscale interactions and how they influence the macroscale behavior. We conduct a series of large scale simulations of highly filled polymer-nanoparticle composites as analogs of ceramic pastes and reveal how the ceramic particle and binder properties determine the structure and rheology of the bulk material. As with real ceramic pastes, particle shape and size distribution along with composition determine the shear modulus, extent of segregation, and degree of particle alignment. These factors are influenced by the binder through the rheology of the binder phase and the interaction between binder and particles. This talk presents the results of this study of polymer-nanoparticle composites along with a brief overview of research and development at Corning showing the similarities and differences between research in industry and academia.

  20. Optics of high-performance electron microscopes*

    PubMed Central

    Rose, H H

    2008-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described. PMID:27877933