Science.gov

Sample records for high-performance carbon nanotube

  1. High Performance Multifunctional Carbon Nanotube Fibers

    NASA Astrophysics Data System (ADS)

    Dalton, Alan; Collins, Steve; Munoz, Edgar; Razal, Joselito; Ebron, Von; Ferraris, John; Baughman, Ray

    2003-03-01

    Exploiting the extraordinary properties of carbon nanotubes has remained somewhat elusive due to the inability to process the as produced insoluble soot into functional macroscopic assemblies. To this end we have developed a simple but effective method to produce continuous, homogeneous fibers containing carbon nanotubes having as-spun mechanical properties that compare very favorably to recognized synthetic and natural "super fibers" such as Kevlar and spider silk. By using novel spinning apparatus, spinning solutions, and spinning coagulants, we have spun nanotube fibers having record lengths, record tensile strengths, and having an energy-to-break (toughness) higher than any material that we have found. As an example of the potential multi-functionalities of our fibers, we have fabricated fiber supercapacitors, which we weave into textiles.

  2. Imaging Carbon Nanotubes in High Performance Polymer Composites via Magnetic Force Microscope

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T.; Park, Cheol; Rouse, Jason H.; Siochi, Emilie J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Application of carbon nanotubes as reinforcement in structural composites is dependent on the efficient dispersion of the nanotubes in a high performance polymer matrix. The characterization of such dispersion is limited by the lack of available tools to visualize the quality of the matrix/carbon nanotube interaction. The work reported herein demonstrates the use of magnetic force microscopy (MFM) as a promising technique for characterizing the dispersion of nanotubes in a high performance polymer matrix.

  3. High performance transistors via aligned polyfluorene-sorted carbon nanotubes

    SciTech Connect

    Brady, Gerald J.; Joo, Yongho; Singha Roy, Susmit; Gopalan, Padma; Arnold, Michael S.

    2014-02-24

    We evaluate the performance of exceptionally electronic-type sorted, semiconducting, aligned single-walled carbon nanotubes (s-SWCNTs) in field effect transistors (FETs). High on-conductance and high on/off conductance modulation are simultaneously achieved at channel lengths which are both shorter and longer than individual s-SWCNTs. The s-SWCNTs are isolated from heterogeneous mixtures using a polyfluorene-derivative as a selective agent and aligned on substrates via dose-controlled, floating evaporative self-assembly at densities of ∼50 s-SWCNTs μm{sup −1}. At a channel length of 9 μm the s-SWCNTs percolate to span the FET channel, and the on/off ratio and charge transport mobility are 2.2 × 10{sup 7} and 46 cm{sup 2} V{sup −1} s{sup −1}, respectively. At a channel length of 400 nm, a large fraction of the s-SWCNTs directly span the channel, and the on-conductance per width is 61 μS μm{sup −1} and the on/off ratio is 4 × 10{sup 5}. These results are considerably better than previous solution-processed FETs, which have suffered from poor on/off ratio due to spurious metallic nanotubes that bridge the channel. 4071 individual and small bundles of s-SWCNTs are tested in 400 nm channel length FETs, and all show semiconducting behavior, demonstrating the high fidelity of polyfluorenes as selective agents and the promise of assembling s-SWCNTs from solution to create high performance semiconductor electronic devices.

  4. Nickel clusters embedded in carbon nanotubes as high performance magnets

    NASA Astrophysics Data System (ADS)

    Shiozawa, Hidetsugu; Briones-Leon, Antonio; Domanov, Oleg; Zechner, Georg; Sato, Yuta; Suenaga, Kazu; Saito, Takeshi; Eisterer, Michael; Weschke, Eugen; Lang, Wolfgang; Peterlik, Herwig; Pichler, Thomas

    2015-10-01

    Ensembles of fcc nickel nanowires have been synthesized with defined mean sizes in the interior of single-wall carbon nanotubes. The method allows the intrinsic nature of single-domain magnets to emerge with large coercivity as their size becomes as small as the exchange length of nickel. By means of X-ray magnetic circular dichroism we probe electronic interactions at nickel-carbon interfaces where nickel exhibit no hysteresis and size-dependent spin magnetic moment. A manifestation of the interacting two subsystems on a bulk scale is traced in the nanotube’s magnetoresistance as explained within the framework of weak localization.

  5. Nickel clusters embedded in carbon nanotubes as high performance magnets

    PubMed Central

    Shiozawa, Hidetsugu; Briones-Leon, Antonio; Domanov, Oleg; Zechner, Georg; Sato, Yuta; Suenaga, Kazu; Saito, Takeshi; Eisterer, Michael; Weschke, Eugen; Lang, Wolfgang; Peterlik, Herwig; Pichler, Thomas

    2015-01-01

    Ensembles of fcc nickel nanowires have been synthesized with defined mean sizes in the interior of single-wall carbon nanotubes. The method allows the intrinsic nature of single-domain magnets to emerge with large coercivity as their size becomes as small as the exchange length of nickel. By means of X-ray magnetic circular dichroism we probe electronic interactions at nickel-carbon interfaces where nickel exhibit no hysteresis and size-dependent spin magnetic moment. A manifestation of the interacting two subsystems on a bulk scale is traced in the nanotube’s magnetoresistance as explained within the framework of weak localization. PMID:26459370

  6. Flexible carbon nanotube films for high performance strain sensors.

    PubMed

    Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda

    2014-01-01

    Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183

  7. Flexible Carbon Nanotube Films for High Performance Strain Sensors

    PubMed Central

    Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda

    2014-01-01

    Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183

  8. Toward high-performance digital logic technology with carbon nanotubes.

    PubMed

    Tulevski, George S; Franklin, Aaron D; Frank, David; Lobez, Jose M; Cao, Qing; Park, Hongsik; Afzali, Ali; Han, Shu-Jen; Hannon, James B; Haensch, Wilfried

    2014-09-23

    The slow-down in traditional silicon complementary metal-oxide-semiconductor (CMOS) scaling (Moore's law) has created an opportunity for a disruptive innovation to bring the semiconductor industry into a postsilicon era. Due to their ultrathin body and ballistic transport, carbon nanotubes (CNTs) have the intrinsic transport and scaling properties to usher in this new era. The remaining challenges are largely materials-related and include obtaining purity levels suitable for logic technology, placement of CNTs at very tight (∼5 nm) pitch to allow for density scaling and source/drain contact scaling. This review examines the potential performance advantages of a CNT-based computing technology, outlines the remaining challenges, and describes the recent progress on these fronts. Although overcoming these issues will be challenging and will require a large, sustained effort from both industry and academia, the recent progress in the field is a cause for optimism that these materials can have an impact on future technologies.

  9. High performance carbon nanotube - polymer nanofiber hybrid fabrics

    NASA Astrophysics Data System (ADS)

    Yildiz, Ozkan; Stano, Kelly; Faraji, Shaghayegh; Stone, Corinne; Willis, Colin; Zhang, Xiangwu; Jur, Jesse S.; Bradford, Philip D.

    2015-10-01

    Stable nanoscale hybrid fabrics containing both polymer nanofibers and separate and distinct carbon nanotubes (CNTs) are highly desirable but very challenging to produce. Here, we report the first instance of such a hybrid fabric, which can be easily tailored to contain 0-100% millimeter long CNTs. The novel CNT - polymer hybrid nonwoven fabrics were created by simultaneously electrospinning nanofibers onto aligned CNT sheets which were drawn and collected on a grounded, rotating mandrel. Due to the unique properties of the CNTs, the hybrids show very high tensile strength, very small pore size, high specific surface area and electrical conductivity. In order to further examine the hybrid fabric properties, they were consolidated under pressure, and also calendered at 70 °C. After calendering, the fabric's strength increased by an order of magnitude due to increased interactions and intermingling with the CNTs. The hybrids are highly efficient as aerosol filters; consolidated hybrid fabrics with a thickness of 20 microns and areal density of only 8 g m-2 exhibited ultra low particulate (ULPA) filter performance. The flexibility of this nanofabrication method allows for the use of many different polymer systems which provides the opportunity for engineering a wide range of nanoscale hybrid materials with desired functionalities.Stable nanoscale hybrid fabrics containing both polymer nanofibers and separate and distinct carbon nanotubes (CNTs) are highly desirable but very challenging to produce. Here, we report the first instance of such a hybrid fabric, which can be easily tailored to contain 0-100% millimeter long CNTs. The novel CNT - polymer hybrid nonwoven fabrics were created by simultaneously electrospinning nanofibers onto aligned CNT sheets which were drawn and collected on a grounded, rotating mandrel. Due to the unique properties of the CNTs, the hybrids show very high tensile strength, very small pore size, high specific surface area and electrical

  10. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics.

    PubMed

    Cao, Qing; Han, Shu-jen; Tulevski, George S; Zhu, Yu; Lu, Darsen D; Haensch, Wilfried

    2013-03-01

    Single-walled carbon nanotubes have exceptional electronic properties and have been proposed as a replacement for silicon in applications such as low-cost thin-film transistors and high-performance logic devices. However, practical devices will require dense, aligned arrays of electronically pure nanotubes to optimize performance, maximize device packing density and provide sufficient drive current (or power output) for each transistor. Here, we show that aligned arrays of semiconducting carbon nanotubes can be assembled using the Langmuir-Schaefer method. The arrays have a semiconducting nanotube purity of 99% and can fully cover a surface with a nanotube density of more than 500 tubes/µm. The nanotube pitch is self-limited by the diameter of the nanotube plus the van der Waals separation, and the intrinsic mobility of the nanotubes is preserved after array assembly. Transistors fabricated using this approach exhibit significant device performance characteristics with a drive current density of more than 120 µA µm(-1), transconductance greater than 40 µS µm(-1) and on/off ratios of ∼1 × 10(3).

  11. High performance of potassium n-doped carbon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Radosavljević, M.; Appenzeller, J.; Avouris, Ph.; Knoch, J.

    2004-05-01

    We describe a robust technique for the fabrication of high performance vertically scaled n-doped field-effect transistors from large band gap carbon nanotubes. These devices have a tunable threshold voltage in the technologically relevant range (-1.3 V⩽Vth⩽0.5 V) and can carry up to 5-6 μA of current in the on-state. We achieve such performance by exposure to potassium (K) vapor and device annealing in high vacuum. The treatment has a twofold effect to: (i) controllably shift Vth toward negative gate biases via bulk doping of the nanotube (up to about 0.6e-/nm), and (ii) increase the on-current by 1-2 orders of magnitude. This current enhancement is achieved by lowering external device resistance due to more intimate contact between K metal and doped nanotube channel in addition to potential reduction of the Schottky barrier height at the contact.

  12. Carbon nanotube high-performance logic technology - challenges and current progress

    NASA Astrophysics Data System (ADS)

    Han, Shu-Jen

    2015-03-01

    In the last four decades, we have witnessed a tremendous information technology revolution originated from the relentless scaling of Si complementary metal-oxide semiconductor (CMOS) devices. CMOS scaling provides ever-improved transistor performance, density, power and cost, and will continue to bring new applications and functions to our daily life. However, the conventional homogeneous scaling of silicon devices has become very difficult, firstly due to the unsatisfactory electrostatic control from the gate dielectric. In addition, as we look forward to the technology nodes with sub-10 nm channel length, non-Si based channel materials will be required to provide continuous carrier velocity enhancement when the conventional strained-Si techniques run out of steam. Single-walled carbon nanotubes are promising to replace silicon as the channel material for high-performance electronics near the end of silicon scaling roadmap, with their superb electrical properties, intrinsic ultrathin body, and nearly transparent contact with certain metals. This talk discusses recent advances in modeling and experimental works that reveal the properties and potential of ultra-scaled nanotube transistors, separation and assembly techniques for forming nanotube arrays with high semiconducting nanotube purity and tight pitch separation, and engineering aspects of their implementation in integrated circuits and functional systems. A concluding discussion highlights most significant challenges from technology points of view, and provides perspectives on the future of carbon nanotube based nanoelectronics.

  13. High-performance carbon nanotube-implanted mesoporous carbon spheres for supercapacitors with low series resistance

    SciTech Connect

    Yi, Bin; Chen, Xiaohua; Guo, Kaimin; Xu, Longshan; Chen, Chuansheng; Yan, Haimei; Chen, Jianghua

    2011-11-15

    Research highlights: {yields} CNTs-implanted porous carbon spheres are prepared by using gelatin as soft template. {yields} Homogeneously distributed CNTs form a well-develop network in carbon spheres. {yields} CNTs act as a reinforcing backbone assisting the formation of pore structure. {yields} CNTs improve electrical conductivity and specific capacitance of supercapacitor. -- Abstract: Carbon nanotube-implanted mesoporous carbon spheres were prepared by an easy polymerization-induced colloid aggregation method using gelatin as a soft template. Scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption measurements reveal that the materials are mesoporous carbon spheres, with a diameter of {approx}0.5-1.0 {mu}m, a specific surface area of 284 m{sup 2}/g and average pore size of 3.9 nm. Using the carbon nanotube-implanted mesoporous carbon spheres as electrode material for supercapacitors in an aqueous electrolyte solution, a low equivalent series resistance of 0.83 {Omega} cm{sup 2} and a maximum specific capacitance of 189 F/g with a measured power density of 8.7 kW/kg at energy density of 6.6 Wh/kg are obtained.

  14. Three-dimensional porous carbon nanotube sponges for high-performance anodes of microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Erbay, Celal; Yang, Gang; de Figueiredo, Paul; Sadr, Reza; Yu, Choongho; Han, Arum

    2015-12-01

    Highly-porous, light-weight, and inexpensive three-dimensional (3D) sponges consisting of interconnected carbon nanotubes (CNTs) without base materials are synthesized with a facile and scalable one-step chemical vapor deposition process as anode of microbial fuel cells (MFCs). The MFCs generates higher power densities of 2150 W m-3 (per anode volume) or 170 W m-3 (per anode chamber volume), comparable to those of commercial 3D carbon felt electrodes under the same conditions. The high performances are due to excellent charge transfer between CNTs and microbes owing to 13 times lower charge transfer resistance compared to that of carbon felt. The material cost of producing these CNT sponge estimates to be ∼0.1/gCNT, significantly lower than that of other methods. In addition, the high production rate of about 3.6 g h-1 compared to typical production rate of 0.02 g h-1 of other CNT-based materials makes this process economically viable. The one-step synthesis method allowing self-assembly of 3D CNT sponges as they grow is low cost and scalable, making this a promising method for manufacturing high-performance anodes of MFCs, with broad applicability to microbial electrochemical systems in general.

  15. High performance electrochemical and electrothermal artificial muscles from twist-spun carbon nanotube yarn

    NASA Astrophysics Data System (ADS)

    Lee, Jae Ah; Baughman, Ray H.; Kim, Seon Jeong

    2015-04-01

    High performance torsional and tensile artificial muscles are described, which utilize thermally- or electrochemically-induced volume changes of twist-spun, guest-filled, carbon nanotube (CNT) yarns. These yarns were prepared by incorporating twist in carbon nanotube sheets drawn from spinnable CNT forests. Inserting high twist into the CNT yarn results in yarn coiling, which can dramatically amplify tensile stroke and work capabilities compared with that for the non-coiled twisted yarn. When electrochemically driven in a liquid electrolyte, these artificial muscles can generate a torsional rotation per muscle length that is over 1000 times higher than for previously reported torsional muscles. All-solid-state torsional electrochemical yarn muscles have provided a large torsional muscle stroke (53° per mm of yarn length) and a tensile stroke of up to 1.3% when lifting loads that are ~25 times heavier than can be lifted by the same diameter human skeletal muscle. Over a million torsional and tensile actuation cycles have been demonstrated for thermally powered CNT hybrid yarns muscles filled with paraffin wax, wherein a muscle spins a rotor at an average 11,500 revolutions/minute or delivers 3% tensile contraction at 1200 cycles/minute. At lower actuation rates, these thermally powered muscles provide tensile strokes of over 10%.

  16. Fabrication of graphene foam supported carbon nanotube/polyaniline hybrids for high-performance supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Yang, Hongxia; Wang, Nan; Xu, Qun; Chen, Zhimin; Ren, Yumei; Razal, Joselito M.; Chen, Jun

    2014-12-01

    A large-scale, high-powered energy storage system is crucial for addressing the energy problem. The development of high-performance materials is a key issue in realizing the grid-scale applications of energy-storage devices. In this work, we describe a simple and scalable method for fabricating hybrids (graphene-pyrrole/carbon nanotube-polyaniline (GPCP)) using graphene foam as the supporting template. Graphene-pyrrole (G-Py) aerogels are prepared via a green hydrothermal route from two-dimensional materials such as graphene sheets, while a carbon nanotube/polyaniline (CNT/PANI) composite dispersion is obtained via the in situ polymerization method. The functional nanohybrid materials of GPCP can be assembled by simply dipping the prepared G-py aerogels into the CNT/PANI dispersion. The morphology of the obtained GPCP is investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed that the CNT/PANI was uniformly deposited onto the surfaces of the graphene. The as-synthesized GPCP maintains its original three-dimensional hierarchical porous architecture, which favors the diffusion of the electrolyte ions into the inner region of the active materials. Such hybrid materials exhibit significant specific capacitance of up to 350 F g-1, making them promising in large-scale energy-storage device applications.

  17. Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Jeong, Young Gyu

    2014-08-01

    High performance elastomeric electric heating elements were prepared by incorporating various contents of pristine multiwalled carbon nanotube (MWCNT) in polydimethylsiloxane (PDMS) matrix by using an efficient solution-casting and curing technique. The pristine MWCNTs were identified to be uniformly dispersed in the PDMS matrix and the electrical percolation of MWCNTs was evaluated to be at ˜0.27 wt. %, where the electrical resistivity of the MWCNT/PDMS composite films dropped remarkably. Accordingly, the composite films with higher MWCNT contents above 0.3 wt. % exhibit excellent electric heating performance in terms of temperature response rapidity and electric energy efficiency at constant applied voltages. In addition, the composite films, which were thermally stable up to 250 °C, showed excellent heating-cooling cyclic performance, which was associated with operational stability in actual electric heating applications.

  18. Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements

    SciTech Connect

    Yan, Jing; Jeong, Young Gyu

    2014-08-04

    High performance elastomeric electric heating elements were prepared by incorporating various contents of pristine multiwalled carbon nanotube (MWCNT) in polydimethylsiloxane (PDMS) matrix by using an efficient solution-casting and curing technique. The pristine MWCNTs were identified to be uniformly dispersed in the PDMS matrix and the electrical percolation of MWCNTs was evaluated to be at ∼0.27 wt. %, where the electrical resistivity of the MWCNT/PDMS composite films dropped remarkably. Accordingly, the composite films with higher MWCNT contents above 0.3 wt. % exhibit excellent electric heating performance in terms of temperature response rapidity and electric energy efficiency at constant applied voltages. In addition, the composite films, which were thermally stable up to 250 °C, showed excellent heating-cooling cyclic performance, which was associated with operational stability in actual electric heating applications.

  19. Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances.

    PubMed

    Weng, Wei; Sun, Qian; Zhang, Ye; Lin, Huijuan; Ren, Jing; Lu, Xin; Wang, Min; Peng, Huisheng

    2014-06-11

    Inspired by the fantastic and fast-growing wearable electronics such as Google Glass and Apple iWatch, matchable lightweight and weaveable energy storage systems are urgently demanded while remaining as a bottleneck in the whole technology. Fiber-shaped energy storage devices that can be woven into electronic textiles may represent a general and effective strategy to overcome the above difficulty. Here a coaxial fiber lithium-ion battery has been achieved by sequentially winding aligned carbon nanotube composite yarn cathode and anode onto a cotton fiber. Novel yarn structures are designed to enable a high performance with a linear energy density of 0.75 mWh cm(-1). A wearable energy storage textile is also produced with an areal energy density of 4.5 mWh cm(-2).

  20. Determination of puerarin in rat plasma using PEGylated magnetic carbon nanotubes by high performance liquid chromatography.

    PubMed

    Yu, Panfeng; Wang, Qi; Ma, Hongwei; Wu, Ji; Shen, Shun

    2014-05-15

    This paper described a novel application of PEGylated magnetic carbon nanotubes as solid-phase extraction nanosorbents for the determination of puerarin in rat plasma by high performance liquid chromatography (HPLC). A solvothermal method was employed for the synthesis of monodisperse magnetites anchored onto multi-walled carbon nanotubes (MWCNTs@Fe3O4). In order to enhance the water solubility of MWCNTs@Fe3O4 that ensured sufficient contact between nanosorbents and analytes in the sampling procedure, the obtained nanomaterials were further noncovalently functionalized using a phospholipids-polyethylene glycol (DSPE-PEG). The PEGylated MWCNTs@Fe3O4 nanomaterials had an extremely large surface area and exhibit a strong interaction capability for puerarin with π-π stacking interactions. The captured puerarin/nanosorbents were easily isolated from the plasma by placing a magnet, and desorbed by acetonitrile. The experimental variables affecting the extraction efficiency were investigated. The calibration curve of puerarin was linear from 0.01 to 20 μg/ml, and the limit of detection was 0.005 μg/ml. The precisions ranged from 2.7% to 3.5% for within-day measurement, and for between-day variation was in the range of 3.1-5.9%. The method recoveries were acquired from 95.2% to 98.0%. Moreover, the analytical performance obtained by PEGylated magnetic MWCNTs was also compared with that of magnetic MWCNTs. All results showed that our proposed method was an excellent alternative for the analysis of puerarin in rat plasma.

  1. High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission

    SciTech Connect

    Hojati-Talemi, Pejman; Gibson, Mark A.; East, Daniel; Simon, George P.

    2011-11-07

    We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

  2. Polymer-assisted direct deposition of uniform carbon nanotube bundle networks for high performance transparent electrodes.

    PubMed

    Hellstrom, Sondra L; Lee, Hang Woo; Bao, Zhenan

    2009-06-23

    Flexible transparent electrodes are crucial for touch screen, flat panel display, and solar cell technologies. While carbon nanotube network electrodes show promise, characteristically poor dispersion properties have limited their practicality. We report that addition of small amounts of conjugated polymer to nanotube dispersions enables straightforward fabrication of uniform network electrodes by spin-coating and simultaneous tuning of parameters such as bundle size and density. After treatment in thionyl chloride, electrodes have sheet resistances competitive with other reported carbon nanotube based transparent electrodes to date. PMID:19422197

  3. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells.

    PubMed

    Xie, Xing; Hu, Liangbing; Pasta, Mauro; Wells, George F; Kong, Desheng; Criddle, Craig S; Cui, Yi

    2011-01-12

    Microbial fuel cells (MFCs) harness the metabolism of microorganisms, converting chemical energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC performance, but only a little development has been reported. Here, we describe a biocompatible, highly conductive, two-scale porous anode fabricated from a carbon nanotube-textile (CNT-textile) composite for high-performance MFCs. The macroscale porous structure of the intertwined CNT-textile fibers creates an open 3D space for efficient substrate transport and internal colonization by a diverse microflora, resulting in a 10-fold-larger anolyte-biofilm-anode interfacial area than the projective surface area of the CNT-textile. The conformally coated microscale porous CNT layer displays strong interaction with the microbial biofilm, facilitating electron transfer from exoelectrogens to the CNT-textile anode. An MFC equipped with a CNT-textile anode has a 10-fold-lower charge-transfer resistance and achieves considerably better performance than one equipped with a traditional carbon cloth anode: the maximum current density is 157% higher, the maximum power density is 68% higher, and the energy recovery is 141% greater.

  4. High-Performance Carbon Nanotube/Polymer Composite Fiber from Layer-by-Layer Deposition.

    PubMed

    Wu, Min Le; Chen, Yun; Zhang, Liang; Zhan, Hang; Qiang, Lei; Wang, Jian Nong

    2016-03-01

    So far, preparation of high-performance carbon nanotube (CNT)/polymer composites still faces big challenges mainly due to the limited control of CNT dispersion, fraction, and alignment in polymers. Here, a new "layer-by-layer deposition" method is put forward for preparing CNT/polymer composite fibers using poly(vinyl alcohol) (PVA) as an exemplary polymer. This is based on the continuous production of a hollow cylindrical CNT assembly from a high temperature reactor and its shrinking by a PVA-containing solution and deposition on a removable substrate wire. The in situ mixing of the two composite components at the molecular level allows CNTs to disperse and PVA to infiltrate into the fiber efficiently. As a result, remarkable effects of the CNT reinforcement on the PVA matrix are observed, including a strength improvement from ∼50 to 1255 MPa and electrical conductivity from ∼0 to 1948 S cm(-1). The new method offers good controllability of CNT dispersion and fraction in the polymer matrix, variability for making composite fibers using different polymers, and suitability for scaled up production. This study thus provides a new research direction for preparing CNT-reinforced composites and future performance maximization.

  5. High-Performance Carbon Nanotube/Polymer Composite Fiber from Layer-by-Layer Deposition.

    PubMed

    Wu, Min Le; Chen, Yun; Zhang, Liang; Zhan, Hang; Qiang, Lei; Wang, Jian Nong

    2016-03-01

    So far, preparation of high-performance carbon nanotube (CNT)/polymer composites still faces big challenges mainly due to the limited control of CNT dispersion, fraction, and alignment in polymers. Here, a new "layer-by-layer deposition" method is put forward for preparing CNT/polymer composite fibers using poly(vinyl alcohol) (PVA) as an exemplary polymer. This is based on the continuous production of a hollow cylindrical CNT assembly from a high temperature reactor and its shrinking by a PVA-containing solution and deposition on a removable substrate wire. The in situ mixing of the two composite components at the molecular level allows CNTs to disperse and PVA to infiltrate into the fiber efficiently. As a result, remarkable effects of the CNT reinforcement on the PVA matrix are observed, including a strength improvement from ∼50 to 1255 MPa and electrical conductivity from ∼0 to 1948 S cm(-1). The new method offers good controllability of CNT dispersion and fraction in the polymer matrix, variability for making composite fibers using different polymers, and suitability for scaled up production. This study thus provides a new research direction for preparing CNT-reinforced composites and future performance maximization. PMID:26959406

  6. Carbon nanotube buckypaper to improve fire retardancy of high-temperature/high-performance polymer composites

    NASA Astrophysics Data System (ADS)

    Fu, Xiang; Zhang, Chuck; Liu, Tao; Liang, Richard; Wang, Ben

    2010-06-01

    Mixed single-walled and multi-walled carbon nanotube membrane (buckypaper) was incorporated onto the surface of polyimide/carbon fibre composites via a compression moulding process. Flammability was investigated by cone calorimeter tests under an external radiant heat flux of 50 kW m - 2. The burning residue was analysed with scanning electron microscopy and thermogravimetric analysis. The buckypaper survived the burning test and decreased the peak heat release rate by 40%, reduced the total heat release by 26%, produced 82% less smoke release and resulted in 33% less mass loss. The directly mixed carbon nanotubes (5 wt% multi-walled carbon nanotubes) yielded 38% less peak heat release rate, only 3.7% less total heat release, 28% more smoke release and no change in mass loss. Compared to direct mixing of carbon nanotubes into the resin, the use of buckypaper is more efficient in fire retardancy improvement; it yielded further delay of ignition, lower heat release rate, further reduced heat release, lower mass loss and less smoke release. The buckypaper worked as an excellent physical barrier, obstructing the flow of heat and oxygen to the inner polymer resin. The as-prepared buckypaper greatly improved the fire retardancy of polyimide matrix carbon fibre composites.

  7. Carbon nanotube buckypaper to improve fire retardancy of high-temperature/high-performance polymer composites.

    PubMed

    Fu, Xiang; Zhang, Chuck; Liu, Tao; Liang, Richard; Wang, Ben

    2010-06-11

    Mixed single-walled and multi-walled carbon nanotube membrane (buckypaper) was incorporated onto the surface of polyimide/carbon fibre composites via a compression moulding process. Flammability was investigated by cone calorimeter tests under an external radiant heat flux of 50 kW m(-2). The burning residue was analysed with scanning electron microscopy and thermogravimetric analysis. The buckypaper survived the burning test and decreased the peak heat release rate by 40%, reduced the total heat release by 26%, produced 82% less smoke release and resulted in 33% less mass loss. The directly mixed carbon nanotubes (5 wt% multi-walled carbon nanotubes) yielded 38% less peak heat release rate, only 3.7% less total heat release, 28% more smoke release and no change in mass loss. Compared to direct mixing of carbon nanotubes into the resin, the use of buckypaper is more efficient in fire retardancy improvement; it yielded further delay of ignition, lower heat release rate, further reduced heat release, lower mass loss and less smoke release. The buckypaper worked as an excellent physical barrier, obstructing the flow of heat and oxygen to the inner polymer resin. The as-prepared buckypaper greatly improved the fire retardancy of polyimide matrix carbon fibre composites. PMID:20463386

  8. High performance carbon nanocomposites for ultracapacitors

    DOEpatents

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  9. Fabrication of high-performance flexible alkaline batteries by implementing multiwalled carbon nanotubes and copolymer separator.

    PubMed

    Wang, Zhiqian; Wu, Zheqiong; Bramnik, Natalia; Mitra, Somenath

    2014-02-12

    A flexible alkaline battery with multiwalled carbon nanotube (MWCNT) enhanced composite electrodes and polyvinyl alcohol (PVA)-poly (acrylic acid) (PAA) copolymer separator has been developed. Purified MWCNTs appear to be the most effective conductive additive, while the flexible copolymer separator not only enhances flexibility but also serves as electrolyte storage. PMID:24510667

  10. 'Bucky gel' of multiwalled carbon nanotubes as electrodes for high performance, flexible electric double layer capacitors.

    PubMed

    Singh, Manoj K; Kumar, Yogesh; Hashmi, S A

    2013-11-22

    We report the preparation of a gelled form of multiwalled carbon nanotubes (MWCNTs) with an ionic liquid 1-butyl-1-methyl pyrrolidinium bis(trifluoromethane sulfonyl)imide (BMPTFSI)), referred to as 'bucky gel', to be used as binderless electrodes in electrical double layer capacitors (EDLCs). The characteristics of gelled MWCNTs are compared with pristine MWCNTs using transmission electron microscopy, x-ray diffraction and Raman studies. A gel polymer electrolyte film consisting of a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and BMPTFSI, exhibiting a room temperature ionic conductivity of 1.5 × 10(-3) S cm(-1), shows its suitability as an electrolyte/separator in flexible EDLCs. The performance of EDLCs, assembled with bucky gel electrodes, using impedance spectroscopy, cyclic voltammetry and charge-discharge analyses, are compared with those fabricated with pristine MWCNT-electrodes. An improvement in specific capacitance (from 19.6 to 51.3 F g(-1)) is noted when pristine MWCNTs are replaced by gelled MWCNT-binderless electrodes. Although the rate performance of the EDLCs with gelled MWCNT-electrodes is reduced, the pulse power of the device is sufficiently high (~10.5 kW kg(-1)). The gelled electrodes offer improvements in energy and power densities from 2.8 to 8.0 Wh kg(-1) and 2.0 to 4.7 kW kg(-1), respectively. Studies indicate that the gel formation of MWCNTs with ionic liquid is an excellent route to obtain high-performance EDLCs.

  11. High Performance n-Type Carbon Nanotube Field-Effect Transistors with Chemically Doped Contacts

    NASA Astrophysics Data System (ADS)

    Javey, Ali; Tu, Ryan; Farmer, Damon B.; Guo, Jing; Gordon, Roy G.; Dai, Hongjie

    2005-02-01

    Short channel (~80 nm) n-type single-walled carbon nanotube (SWNT) field-effect transistors (FETs) with potassium (K) doped source and drain regions and high-k gate dielectrics (ALD HfO2) are obtained. For nanotubes with diameter ~ 1.6 nm and bandgap ~ 0.55 eV, we obtain n-MOSFET-like devices exhibiting high on-currents due to chemically suppressed Schottky barriers at the contacts, subthreshold swing of 70mV/decade, negligible ambipolar conduction and high on/off ratios up to 10^6 at a bias voltage of 0.5V. The results compare favorably with the state-of-the-art silicon n-MOSFETs and demonstrate the potential of SWNTs for future complementary electronics. The effects of doping level on the electrical characteristics of the nanotube devices are discussed.

  12. Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications.

    PubMed

    Wang, Chuan; Chien, Jun-Chau; Takei, Kuniharu; Takahashi, Toshitake; Nah, Junghyo; Niknejad, Ali M; Javey, Ali

    2012-03-14

    Solution-processed thin-films of semiconducting carbon nanotubes as the channel material for flexible electronics simultaneously offers high performance, low cost, and ambient stability, which significantly outruns the organic semiconductor materials. In this work, we report the use of semiconductor-enriched carbon nanotubes for high-performance integrated circuits on mechanically flexible substrates for digital, analog and radio frequency applications. The as-obtained thin-film transistors (TFTs) exhibit highly uniform device performance with on-current and transconductance up to 15 μA/μm and 4 μS/μm. By performing capacitance-voltage measurements, the gate capacitance of the nanotube TFT is precisely extracted and the corresponding peak effective device mobility is evaluated to be around 50 cm(2)V(-1)s(-1). Using such devices, digital logic gates including inverters, NAND, and NOR gates with superior bending stability have been demonstrated. Moreover, radio frequency measurements show that cutoff frequency of 170 MHz can be achieved in devices with a relatively long channel length of 4 μm, which is sufficient for certain wireless communication applications. This proof-of-concept demonstration indicates that our platform can serve as a foundation for scalable, low-cost, high-performance flexible electronics.

  13. Carbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities.

    PubMed

    Jin, Jiao; Fu, Liangjie; Yang, Huaming; Ouyang, Jing

    2015-07-23

    Hybrid nanotubes of carbon and halloysite nanotubes (HNTs) with different carbon:HNTs ratio were hydrothermally synthesized from natural halloysite and sucrose. The samples display uniformly cylindrical hollow tubular structure with different morphologies. These hybrid nanotubes were concluded to be promising medium for physisorption-based hydrogen storage. The hydrogen adsorption capacity of pristine HNTs was 0.35% at 2.65 MPa and 298 K, while that of carbon coated HNTs with the pre-set carbon:HNTs ratio of 3:1 (3C-HNTs) was 0.48% under the same condition. This carbon coated method could offer a new pattern for increasing the hydrogen adsorption capacity. It was also possible to enhance the hydrogen adsorption capacity through the spillover mechanism by incorporating palladium (Pd) in the samples of HNTs (Pd-HNTs) and 3C-HNTs (Pd-3C-HNTs and 3C-Pd-HNTs are the samples with different location of Pd nanoparticles). The hydrogen adsorption capacity of the Pd-HNTs was 0.50% at 2.65 MPa and 298 K, while those of Pd-3C-HNTs and 3C-Pd-HNTs were 0.58% and 0.63%, respectively. In particular, for this spillover mechanism of Pd-carbon-HNTs ternary system, the bidirectional transmission of atomic and molecular hydrogen (3C-Pd-HNTs) was concluded to be more effective than the unidirectional transmission (Pd-3C-HNTs) in this work for the first time.

  14. Carbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities.

    PubMed

    Jin, Jiao; Fu, Liangjie; Yang, Huaming; Ouyang, Jing

    2015-01-01

    Hybrid nanotubes of carbon and halloysite nanotubes (HNTs) with different carbon:HNTs ratio were hydrothermally synthesized from natural halloysite and sucrose. The samples display uniformly cylindrical hollow tubular structure with different morphologies. These hybrid nanotubes were concluded to be promising medium for physisorption-based hydrogen storage. The hydrogen adsorption capacity of pristine HNTs was 0.35% at 2.65 MPa and 298 K, while that of carbon coated HNTs with the pre-set carbon:HNTs ratio of 3:1 (3C-HNTs) was 0.48% under the same condition. This carbon coated method could offer a new pattern for increasing the hydrogen adsorption capacity. It was also possible to enhance the hydrogen adsorption capacity through the spillover mechanism by incorporating palladium (Pd) in the samples of HNTs (Pd-HNTs) and 3C-HNTs (Pd-3C-HNTs and 3C-Pd-HNTs are the samples with different location of Pd nanoparticles). The hydrogen adsorption capacity of the Pd-HNTs was 0.50% at 2.65 MPa and 298 K, while those of Pd-3C-HNTs and 3C-Pd-HNTs were 0.58% and 0.63%, respectively. In particular, for this spillover mechanism of Pd-carbon-HNTs ternary system, the bidirectional transmission of atomic and molecular hydrogen (3C-Pd-HNTs) was concluded to be more effective than the unidirectional transmission (Pd-3C-HNTs) in this work for the first time. PMID:26201827

  15. Carbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities

    NASA Astrophysics Data System (ADS)

    Jin, Jiao; Fu, Liangjie; Yang, Huaming; Ouyang, Jing

    2015-07-01

    Hybrid nanotubes of carbon and halloysite nanotubes (HNTs) with different carbon:HNTs ratio were hydrothermally synthesized from natural halloysite and sucrose. The samples display uniformly cylindrical hollow tubular structure with different morphologies. These hybrid nanotubes were concluded to be promising medium for physisorption-based hydrogen storage. The hydrogen adsorption capacity of pristine HNTs was 0.35% at 2.65 MPa and 298 K, while that of carbon coated HNTs with the pre-set carbon:HNTs ratio of 3:1 (3C-HNTs) was 0.48% under the same condition. This carbon coated method could offer a new pattern for increasing the hydrogen adsorption capacity. It was also possible to enhance the hydrogen adsorption capacity through the spillover mechanism by incorporating palladium (Pd) in the samples of HNTs (Pd-HNTs) and 3C-HNTs (Pd-3C-HNTs and 3C-Pd-HNTs are the samples with different location of Pd nanoparticles). The hydrogen adsorption capacity of the Pd-HNTs was 0.50% at 2.65 MPa and 298 K, while those of Pd-3C-HNTs and 3C-Pd-HNTs were 0.58% and 0.63%, respectively. In particular, for this spillover mechanism of Pd-carbon-HNTs ternary system, the bidirectional transmission of atomic and molecular hydrogen (3C-Pd-HNTs) was concluded to be more effective than the unidirectional transmission (Pd-3C-HNTs) in this work for the first time.

  16. High-performance partially aligned semiconductive single-walled carbon nanotube transistors achieved with a parallel technique.

    PubMed

    Wang, Yilei; Pillai, Suresh Kumar Raman; Chan-Park, Mary B

    2013-09-01

    Single-walled carbon nanotubes (SWNTs) are widely thought to be a strong contender for next-generation printed electronic transistor materials. However, large-scale solution-based parallel assembly of SWNTs to obtain high-performance transistor devices is challenging. SWNTs have anisotropic properties and, although partial alignment of the nanotubes has been theoretically predicted to achieve optimum transistor device performance, thus far no parallel solution-based technique can achieve this. Herein a novel solution-based technique, the immersion-cum-shake method, is reported to achieve partially aligned SWNT networks using semiconductive (99% enriched) SWNTs (s-SWNTs). By immersing an aminosilane-treated wafer into a solution of nanotubes placed on a rotary shaker, the repetitive flow of the nanotube solution over the wafer surface during the deposition process orients the nanotubes toward the fluid flow direction. By adjusting the nanotube concentration in the solution, the nanotube density of the partially aligned network can be controlled; linear densities ranging from 5 to 45 SWNTs/μm are observed. Through control of the linear SWNT density and channel length, the optimum SWNT-based field-effect transistor devices achieve outstanding performance metrics (with an on/off ratio of ~3.2 × 10(4) and mobility 46.5 cm(2) /Vs). Atomic force microscopy shows that the partial alignment is uniform over an area of 20 × 20 mm(2) and confirms that the orientation of the nanotubes is mostly along the fluid flow direction, with a narrow orientation scatter characterized by a full width at half maximum (FWHM) of <15° for all but the densest film, which is 35°. This parallel process is large-scale applicable and exploits the anisotropic properties of the SWNTs, presenting a viable path forward for industrial adoption of SWNTs in printed, flexible, and large-area electronics.

  17. Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films.

    PubMed

    Kanninen, Petri; Luong, Nguyen Dang; Sinh, Le Hoang; Anoshkin, Ilya V; Tsapenko, Alexey; Seppälä, Jukka; Nasibulin, Albert G; Kallio, Tanja

    2016-06-10

    Transparent and flexible energy storage devices have garnered great interest due to their suitability for display, sensor and photovoltaic applications. In this paper, we report the application of aerosol synthesized and dry deposited single-walled carbon nanotube (SWCNT) thin films as electrodes for an electrochemical double-layer capacitor (EDLC). SWCNT films exhibit extremely large specific capacitance (178 F g(-1) or 552 μF cm(-2)), high optical transparency (92%) and stability for 10 000 charge/discharge cycles. A transparent and flexible EDLC prototype is constructed with a polyethylene casing and a gel electrolyte. PMID:27122323

  18. Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Kanninen, Petri; Dang Luong, Nguyen; Hoang Sinh, Le; Anoshkin, Ilya V.; Tsapenko, Alexey; Seppälä, Jukka; Nasibulin, Albert G.; Kallio, Tanja

    2016-06-01

    Transparent and flexible energy storage devices have garnered great interest due to their suitability for display, sensor and photovoltaic applications. In this paper, we report the application of aerosol synthesized and dry deposited single-walled carbon nanotube (SWCNT) thin films as electrodes for an electrochemical double-layer capacitor (EDLC). SWCNT films exhibit extremely large specific capacitance (178 F g‑1 or 552 μF cm‑2), high optical transparency (92%) and stability for 10 000 charge/discharge cycles. A transparent and flexible EDLC prototype is constructed with a polyethylene casing and a gel electrolyte.

  19. High-performance carbon nanotube thin-film transistors on flexible paper substrates

    NASA Astrophysics Data System (ADS)

    Liu, Na; Yun, Ki Nam; Yu, Hyun-Yong; Shim, Joon Hyung; Lee, Cheol Jin

    2015-03-01

    Single-walled carbon nanotubes (SWCNTs) are promising materials as active channels for flexible transistors owing to their excellent electrical and mechanical properties. However, flexible SWCNT transistors have never been realized on paper substrates, which are widely used, inexpensive, and recyclable. In this study, we fabricated SWCNT thin-film transistors on photo paper substrates. The devices exhibited a high on/off current ratio of more than 106 and a field-effect mobility of approximately 3 cm2/V.s. The proof-of-concept demonstration indicates that SWCNT transistors on flexible paper substrates could be applied as low-cost and recyclable flexible electronics.

  20. High-performance carbon nanotube thin-film transistors on flexible paper substrates

    SciTech Connect

    Liu, Na; Yun, Ki Nam; Yu, Hyun-Yong; Lee, Cheol Jin; Shim, Joon Hyung

    2015-03-09

    Single-walled carbon nanotubes (SWCNTs) are promising materials as active channels for flexible transistors owing to their excellent electrical and mechanical properties. However, flexible SWCNT transistors have never been realized on paper substrates, which are widely used, inexpensive, and recyclable. In this study, we fabricated SWCNT thin-film transistors on photo paper substrates. The devices exhibited a high on/off current ratio of more than 10{sup 6} and a field-effect mobility of approximately 3 cm{sup 2}/V·s. The proof-of-concept demonstration indicates that SWCNT transistors on flexible paper substrates could be applied as low-cost and recyclable flexible electronics.

  1. High-performance carbon-nanotube-based complementary field-effect-transistors and integrated circuits with yttrium oxide

    SciTech Connect

    Liang, Shibo; Zhang, Zhiyong Si, Jia; Zhong, Donglai; Peng, Lian-Mao

    2014-08-11

    High-performance p-type carbon nanotube (CNT) transistors utilizing yttrium oxide as gate dielectric are presented by optimizing oxidization and annealing processes. Complementary metal-oxide-semiconductor (CMOS) field-effect-transistors (FETs) are then fabricated on CNTs, and the p- and n-type devices exhibit symmetrical high performances, especially with low threshold voltage near to zero. The corresponding CMOS CNT inverter is demonstrated to operate at an ultra-low supply voltage down to 0.2 V, while displaying sufficient voltage gain, high noise margin, and low power consumption. Yttrium oxide is proven to be a competitive gate dielectric for constructing high-performance CNT CMOS FETs and integrated circuits.

  2. Connecting carbon nanotubes to polyoxometalate clusters for engineering high-performance anode materials.

    PubMed

    Chen, Wei; Huang, Lujiang; Hu, Jun; Li, Tengfei; Jia, Feifei; Song, Yu-Fei

    2014-09-28

    Carbon nanotubes (CNTs) possess excellent structural and electronic properties and have been widely investigated as anode materials. Polyoxometalates (POMs) exhibit superior physical properties such as electronic versatility, redox characteristics and unique molecular structures. In this paper, we report the covalent modification of carbon nanotubes (CNTs) with organosilica-containing polyoxometalate (POM) of [Bu4N]4[SiW11O39{O(SiCH2CH2CH2NH2·HCl)2}] (SiW11-NH2) that leads to the formation of the nanocomposite material of CNTs-SiW11, which has been characterized by FT-IR, XRD, HR-TEM, XPS and Raman spectrum, etc. At a current density of 0.5 mA cm(-2), the application of CNTs-SiW11 nanocomposite as anode material in lithium batteries exhibits the first discharge capacity of 1189 mA h g(-1), and the second discharge capacity of 650 mA h g(-1), which remains stable up to 100 cycles. The CNTs-SiW11 nanocomposite exhibits high discharge capacity, good capacity retention and cycling stability.

  3. Polymer-sorted semiconducting carbon nanotube networks for high-performance ambipolar field-effect transistors.

    PubMed

    Schiessl, Stefan P; Fröhlich, Nils; Held, Martin; Gannott, Florentina; Schweiger, Manuel; Forster, Michael; Scherf, Ullrich; Zaumseil, Jana

    2015-01-14

    Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm(2)·V(-1)·s(-1), low ohmic contact resistance, steep subthreshold swings (0.12-0.14 V/dec) and high on/off ratios (10(6)) even for short channel lengths (<10 μm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61. PMID:25493421

  4. Polymer-Sorted Semiconducting Carbon Nanotube Networks for High-Performance Ambipolar Field-Effect Transistors

    PubMed Central

    2014-01-01

    Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm2·V–1·s–1, low ohmic contact resistance, steep subthreshold swings (0.12–0.14 V/dec) and high on/off ratios (106) even for short channel lengths (<10 μm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61. PMID:25493421

  5. Multiwalled carbon nanotubes anchored with maghemite nanocrystals for high-performance lithium storage

    SciTech Connect

    Wu, Ping Xie, Kongwei; Xu, Xiali; Li, Jianping; Tang, Yawen; Zhou, Yiming Lu, Tianhong

    2015-04-15

    Highlights: • γ-Fe{sub 2}O{sub 3} nanocrystals uniformly anchored on MWCNT via facile layer-by-layer technique. • The hybrid exhibits enhanced structural stability and charge transport capability. • Superior lithium storage performance by virtue of unique structural characteristics. - Abstract: In this paper, we have anchored maghemite (γ-Fe{sub 2}O{sub 3}) nanocrystals compactly and uniformly on multiwalled carbon nanotubes (MWCNT) via a polyelectrolyte-assisted layer-by-layer assembly approach based on electrostatic attraction. When evaluated as an anode for lithium-ion batteries (LIBs), the as-synthesized MWCNT-γ-Fe{sub 2}O{sub 3} nanohybrid displays high reversible capacities, remarkable cycling stability, and magnificent high rate capability, facilitating its application as an advanced anode for high-energy, long-life, and high-power LIBs.

  6. Inkjet printing of flexible high-performance carbon nanotube transparent conductive films by ``coffee ring effect''

    NASA Astrophysics Data System (ADS)

    Shimoni, Allon; Azoubel, Suzanna; Magdassi, Shlomo

    2014-09-01

    Transparent and flexible conductors are a major component in many modern optoelectronic devices, such as touch screens for smart phones, displays, and solar cells. Carbon nanotubes (CNTs) offer a good alternative to commonly used conductive materials, such as metal oxides (e.g. ITO) for flexible electronics. The production of transparent conductive patterns, and arrays composed of connected CNT ``coffee rings'' on a flexible substrate poly(ethylene terephthalate), has been reported. Direct patterning is achieved by inkjet printing of an aqueous dispersion of CNTs, which self-assemble at the rim of evaporating droplets. After post-printing treatment with hot nitric acid, the obtained TCFs are characterized by a sheet resistance of 156 Ω sq-1 and transparency of 81% (at 600 nm), which are the best reported values obtained by inkjet printing of conductive CNTs. This makes such films very promising as transparent conductors for various electronic devices, as demonstrated by using an electroluminescent device.

  7. High-performance flexible nanoporous Si-carbon nanotube paper anodes for micro-battery applications.

    PubMed

    Biserni, Erika; Scarpellini, Alice; Bassi, Andrea Li; Bruno, Paola; Zhou, Yun; Xie, Ming

    2016-06-17

    Nanoporous Si has been grown by pulsed laser deposition on a free-standing carbon nanotube (CNT) paper sheet for micro-battery anodes. The Si deposition shows conformal coverage on the CNT paper, and the Si-CNT paper anodes demonstrate high areal capacity of ∼1000 μAh cm(-2) at a current density of 54 μA cm(-2), while 69% of its initial capacity is preserved when the current density is increased by a factor 10. Excellent stability without capacity decay up to 1000 cycles at a current density of 1080 μA cm(-2) is also demonstrated. After bending along the diameter of the circular paper disc many times, the Si-CNT paper anodes preserve the same morphology and show promising electrochemical performance, indicating that nanoporous Si-CNT paper anodes can find application for flexible micro-batteries.

  8. High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes.

    PubMed

    Zhou, Ruifeng; Meng, Chuizhou; Zhu, Feng; Li, Qunqing; Liu, Changhong; Fan, Shoushan; Jiang, Kaili

    2010-08-27

    Nanoporous current collectors for supercapacitors have been fabricated by cross-stacking super-aligned carbon nanotube (SACNT) films as a replacement for heavy conventional metallic current collectors. The CNT-film current collectors have good conductivity, extremely low density (27 microg cm(-2)), high specific surface area, excellent flexibility and good electrochemical stability. Nanosized active materials such as NiO, Co(3)O(4) or Mn(2)O(3) nanoparticles can be directly synthesized on the SACNT films by a straightforward one-step, in situ decomposition strategy that is both efficient and environmentally friendly. These composite films can be integrated into a pseudo-capacitor that does not use metallic current collectors, but nevertheless shows very good performance, including high specific capacitance (approximately 500 F g(-1), including the current collector mass), reliable electrochemical stability (<4.5% degradation in 2500 cycles) and a very high rate capability (245 F g(-1) at 155 A g(-1)).

  9. High-performance flexible nanoporous Si-carbon nanotube paper anodes for micro-battery applications

    NASA Astrophysics Data System (ADS)

    Biserni, Erika; Scarpellini, Alice; Li Bassi, Andrea; Bruno, Paola; Zhou, Yun; Xie, Ming

    2016-06-01

    Nanoporous Si has been grown by pulsed laser deposition on a free-standing carbon nanotube (CNT) paper sheet for micro-battery anodes. The Si deposition shows conformal coverage on the CNT paper, and the Si-CNT paper anodes demonstrate high areal capacity of ˜1000 μAh cm-2 at a current density of 54 μA cm-2, while 69% of its initial capacity is preserved when the current density is increased by a factor 10. Excellent stability without capacity decay up to 1000 cycles at a current density of 1080 μA cm-2 is also demonstrated. After bending along the diameter of the circular paper disc many times, the Si-CNT paper anodes preserve the same morphology and show promising electrochemical performance, indicating that nanoporous Si-CNT paper anodes can find application for flexible micro-batteries.

  10. Low voltage, high performance inkjet printed carbon nanotube transistors with solution processed ZrO2 gate insulator

    NASA Astrophysics Data System (ADS)

    Kim, Bongjun; Jang, Seonpil; Prabhumirashi, Pradyumna L.; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth

    2013-08-01

    High-performance single-walled carbon nanotube (SWCNT) thin-film transistors are fabricated by single-pass inkjet printing of SWCNTs on high-κ solution-processed ZrO2 gate dielectric. We demonstrate that an ultraviolet ozone treatment of the ZrO2 substrate is critical in achieving a uniform dispersion of sorted SWCNTs in the semiconducting channel. The resulting devices exhibit excellent performance with mobility and on/off current ratio exceeding 30 cm2 V-1 s-1 and 105, respectively, at low operating voltages (<5 V). The single-pass inkjet printing process demonstrated in this letter shows great promise as a reliable and scalable method for SWCNT based high performance electronics.

  11. Synergistic Ultrathin Functional Polymer-Coated Carbon Nanotube Interlayer for High Performance Lithium-Sulfur Batteries.

    PubMed

    Kim, Joo Hyun; Seo, Jihoon; Choi, Junghyun; Shin, Donghyeok; Carter, Marcus; Jeon, Yeryung; Wang, Chengwei; Hu, Liangbing; Paik, Ungyu

    2016-08-10

    Lithium-sulfur (Li-S) batteries have been intensively investigated as a next-generation rechargeable battery due to their high energy density of 2600 W·h kg(-1) and low cost. However, the systemic issues of Li-S batteries, such as the polysulfide shuttling effect and low Coulombic efficiency, hinder the practical use in commercial rechargeable batteries. The introduction of a conductive interlayer between the sulfur cathode and separator is a promising approach that has shown the dramatic improvements in Li-S batteries. The previous interlayer work mainly focused on the physical confinement of polysulfides within the cathode part, without considering the further entrapment of the dissolved polysulfides. Here, we designed an ultrathin poly(acrylic acid) coated single-walled carbon nanotube (PAA-SWNT) film as a synergic functional interlayer to address the issues mentioned above. The designed interlayer not only lowers the charge transfer resistance by the support of the upper current collector but also localizes the dissolved polysulfides within the cathode part by the aid of a physical blocking and chemical bonding. With the synergic combination of PAA and SWNT, the sulfur cathode with a PAA-SWNT interlayer maintained higher capacity retention over 200 cycles and achieved better rate retention than the sulfur cathode with a SWNT interlayer. The proposed approach of combining a functional polymer and conductive support material can provide an optimiztic strategy to overcome the fundamental challenges underlying in Li-S batteries. PMID:27437758

  12. Synergistic Ultrathin Functional Polymer-Coated Carbon Nanotube Interlayer for High Performance Lithium-Sulfur Batteries.

    PubMed

    Kim, Joo Hyun; Seo, Jihoon; Choi, Junghyun; Shin, Donghyeok; Carter, Marcus; Jeon, Yeryung; Wang, Chengwei; Hu, Liangbing; Paik, Ungyu

    2016-08-10

    Lithium-sulfur (Li-S) batteries have been intensively investigated as a next-generation rechargeable battery due to their high energy density of 2600 W·h kg(-1) and low cost. However, the systemic issues of Li-S batteries, such as the polysulfide shuttling effect and low Coulombic efficiency, hinder the practical use in commercial rechargeable batteries. The introduction of a conductive interlayer between the sulfur cathode and separator is a promising approach that has shown the dramatic improvements in Li-S batteries. The previous interlayer work mainly focused on the physical confinement of polysulfides within the cathode part, without considering the further entrapment of the dissolved polysulfides. Here, we designed an ultrathin poly(acrylic acid) coated single-walled carbon nanotube (PAA-SWNT) film as a synergic functional interlayer to address the issues mentioned above. The designed interlayer not only lowers the charge transfer resistance by the support of the upper current collector but also localizes the dissolved polysulfides within the cathode part by the aid of a physical blocking and chemical bonding. With the synergic combination of PAA and SWNT, the sulfur cathode with a PAA-SWNT interlayer maintained higher capacity retention over 200 cycles and achieved better rate retention than the sulfur cathode with a SWNT interlayer. The proposed approach of combining a functional polymer and conductive support material can provide an optimiztic strategy to overcome the fundamental challenges underlying in Li-S batteries.

  13. Highly Conductive Aromatic Functionalized Multi-Walled Carbon Nanotube for Inkjet Printable High Performance Supercapacitor Electrodes

    PubMed Central

    Attri, Pankaj

    2015-01-01

    We report the functionalization of multiwalled carbon nanotubes (MWCNT) via the 1,3-dipolar [3+2] cycloaddition of aromatic azides, which resulted in a detangled CNT as shown by transmission electron microscopy (TEM). Carboxylic moieties (-COOH) on aromatic azide result in highly stable aqueous dispersion (max. conc. ~ 10 mg/mL H2O), making the suitable for inkjet printing. Printed patterns on polyethylene terephthalate (PET) flexible substrate exhibit low sheet resistivity ~65 Ω. cm, which is attributed to enhanced conductivity. Fabricated Supercapacitors (SC) assembled using these printed substrates exhibit good electrochemical performance in organic as well as aqueous electrolytes. High energy and power density (57.8 Wh/kg and 0.85 kW/kg) in 1M H2SO4 aqueous electrolyte demonstrate the excellent performance of the proposed supercapacitor. Capacitive retention varies from ~85–94% with columbic efficiency ~95% after 1000 charge/discharge cycles in different electrolytes, demonstrating the excellent potential of the device for futuristic power applications. PMID:26153688

  14. Lightweight, Flexible, High-Performance Carbon Nanotube Cables Made by Scalable Flow Coating.

    PubMed

    Mirri, Francesca; Orloff, Nathan D; Forster, Aaron M; Ashkar, Rana; Headrick, Robert J; Bengio, E Amram; Long, Christian J; Choi, April; Luo, Yimin; Walker, Angela R Hight; Butler, Paul; Migler, Kalman B; Pasquali, Matteo

    2016-02-01

    Coaxial cables for data transmission are ubiquitous in telecommunications, aerospace, automotive, and robotics industries. Yet, the metals used to make commercial cables are unsuitably heavy and stiff. These undesirable traits are particularly problematic in aerospace applications, where weight is at a premium and flexibility is necessary to conform with the distributed layout of electronic components in satellites and aircraft. The cable outer conductor (OC) is usually the heaviest component of modern data cables; therefore, exchanging the conventional metallic OC for lower weight materials with comparable transmission characteristics is highly desirable. Carbon nanotubes (CNTs) have recently been proposed to replace the metal components in coaxial cables; however, signal attenuation was too high in prototypes produced so far. Here, we fabricate the OC of coaxial data cables by directly coating a solution of CNTs in chlorosulfonic acid (CSA) onto the cable inner dielectric. This coating has an electrical conductivity that is approximately 2 orders of magnitude greater than the best CNT OC reported in the literature to date. This high conductivity makes CNT coaxial cables an attractive alternative to commercial cables with a metal (tin-coated copper) OC, providing comparable cable attenuation and mechanical durability with a 97% lower component mass. PMID:26791337

  15. Hierarchical, porous CuS microspheres integrated with carbon nanotubes for high-performance supercapacitors

    PubMed Central

    Lu, Yang; Liu, Xianming; Wang, Weixiao; Cheng, Jinbing; Yan, Hailong; Tang, Chengchun; Kim, Jang-Kyo; Luo, Yongsong

    2015-01-01

    Carbon nanotubes (CNTs) incorporated porous 3-dimensional (3D) CuS microspheres have been successfully synthesized via a simple refluxing method assisted by PVP. The composites are composed of flower-shaped CuS secondary microspheres, which in turn are assembled with primary nanosheets of 15–30 nm in thickness and fully integrated with CNT. The composites possess a large specific surface area of 189.6 m2 g−1 and a high conductivity of 0.471 S cm−1. As electrode materials for supercapacitors, the nanocomposites show excellent cyclability and rate capability and deliver an average reversible capacitance as high as 1960 F g−1 at a current density of 10 mA cm−2 over 10000 cycles. The high electrochemical performance can be attributed to the synergistic effect of CNTs and the unique microstructure of CuS. The CNTs serve as not only a conductive agent to accelerate the transfer of electrons in the composites, but also as a buffer matrix to restrain the volume change and stabilize the electrode structure during the charge/discharge process. The porous structure of CuS also helps to stabilize the electrode structure and facilitates the transport for electrons. PMID:26568518

  16. Lightweight, flexible, high-performance carbon nanotube cables made by scalable flow coating

    DOE PAGES

    Mirri, Francesca; Orloff, Nathan D.; Forser, Aaron M.; Ashkar, Rana; Headrick, Robert J.; Bengio, E. Amram; Long, Christian J.; Choi, April; Luo, Yimin; Hight Walker, Angela R.; et al

    2016-01-21

    Coaxial cables for data transmission are ubiquitous in telecommunications, aerospace, automotive, and robotics industries. Yet, the metals used to make commercial cables are unsuitably heavy and stiff. These undesirable traits are particularly problematic in aerospace applications, where weight is at a premium and flexibility is necessary to conform with the distributed layout of electronic components in satellites and aircraft. The cable outer conductor (OC) is usually the heaviest component of modern data cables; therefore, exchanging the conventional metallic OC for lower weight materials with comparable transmission characteristics is highly desirable. Carbon nanotubes (CNTs) have recently been proposed to replace themore » metal components in coaxial cables; however, signal attenuation was too high in prototypes produced so far. Here, we fabricate the OC of coaxial data cables by directly coating a solution of CNTs in chlorosulfonic acid (CSA) onto the cable inner dielectric. This coating has an electrical conductivity that is approximately 2 orders of magnitude greater than the best CNT OC reported in the literature to date. In conclusion, this high conductivity makes CNT coaxial cables an attractive alternative to commercial cables with a metal (tin-coated copper) OC, providing comparable cable attenuation and mechanical durability with a 97% lower component mass.« less

  17. Thermal conductivity of high performance carbon nanotube yarn-like fibers

    SciTech Connect

    Mayhew, Eric; Prakash, Vikas

    2014-05-07

    In the present paper, we present results of thermal conductivity measurements in free standing carbon nanotube (CNT) yarn-like fibers. The measurements are made using a T-type experimental configuration utilizing a Wollaston-wire hot probe inside a scanning electron microscope. In this technique, a suspended platinum wire is used both as a heater and a thermal sensor. A low frequency alternating current source is used to heat the probe wire while the third harmonic voltage across the wire is measured by a lock-in amplifier. The conductivity is deduced from an analytical model that relates the drop in the spatially averaged temperature of the wire to that of the sample. The average thermal conductivity of the neat CNT fibers and the CNT –polymer composite fibers is found to be 448 W/m-K and 225 W/m-K, respectively. These values for conductivity are amongst the highest measured for CNT yarn-like fibers fabricated using a dry spinning process from vertically aligned CNT arrays. The enhancement in thermal conductivity is understood to be due to an increase in the CNT fiber elastic stiffness during the draw and twist operations, lower CNT thermal contact resistance due to increase in CNT contact area, and better alignment of the CNT fibrils along the length of the fiber.

  18. Lightweight, Flexible, High-Performance Carbon Nanotube Cables Made by Scalable Flow Coating.

    PubMed

    Mirri, Francesca; Orloff, Nathan D; Forster, Aaron M; Ashkar, Rana; Headrick, Robert J; Bengio, E Amram; Long, Christian J; Choi, April; Luo, Yimin; Walker, Angela R Hight; Butler, Paul; Migler, Kalman B; Pasquali, Matteo

    2016-02-01

    Coaxial cables for data transmission are ubiquitous in telecommunications, aerospace, automotive, and robotics industries. Yet, the metals used to make commercial cables are unsuitably heavy and stiff. These undesirable traits are particularly problematic in aerospace applications, where weight is at a premium and flexibility is necessary to conform with the distributed layout of electronic components in satellites and aircraft. The cable outer conductor (OC) is usually the heaviest component of modern data cables; therefore, exchanging the conventional metallic OC for lower weight materials with comparable transmission characteristics is highly desirable. Carbon nanotubes (CNTs) have recently been proposed to replace the metal components in coaxial cables; however, signal attenuation was too high in prototypes produced so far. Here, we fabricate the OC of coaxial data cables by directly coating a solution of CNTs in chlorosulfonic acid (CSA) onto the cable inner dielectric. This coating has an electrical conductivity that is approximately 2 orders of magnitude greater than the best CNT OC reported in the literature to date. This high conductivity makes CNT coaxial cables an attractive alternative to commercial cables with a metal (tin-coated copper) OC, providing comparable cable attenuation and mechanical durability with a 97% lower component mass.

  19. Highly Conductive Aromatic Functionalized Multi-Walled Carbon Nanotube for Inkjet Printable High Performance Supercapacitor Electrodes.

    PubMed

    Ujjain, Sanjeev K; Bhatia, Rohit; Ahuja, Preety; Attri, Pankaj

    2015-01-01

    We report the functionalization of multiwalled carbon nanotubes (MWCNT) via the 1,3-dipolar [3+2] cycloaddition of aromatic azides, which resulted in a detangled CNT as shown by transmission electron microscopy (TEM). Carboxylic moieties (-COOH) on aromatic azide result in highly stable aqueous dispersion (max. conc. ~ 10 mg/mL H2O), making the suitable for inkjet printing. Printed patterns on polyethylene terephthalate (PET) flexible substrate exhibit low sheet resistivity ~65 Ω. cm, which is attributed to enhanced conductivity. Fabricated Supercapacitors (SC) assembled using these printed substrates exhibit good electrochemical performance in organic as well as aqueous electrolytes. High energy and power density (57.8 Wh/kg and 0.85 kW/kg) in 1M H2SO4 aqueous electrolyte demonstrate the excellent performance of the proposed supercapacitor. Capacitive retention varies from ~85-94% with columbic efficiency ~95% after 1000 charge/discharge cycles in different electrolytes, demonstrating the excellent potential of the device for futuristic power applications. PMID:26153688

  20. Omnidirectionally Stretchable High-Performance Supercapacitor Based on Isotropic Buckled Carbon Nanotube Films.

    PubMed

    Yu, Jiali; Lu, Weibang; Pei, Shaopeng; Gong, Ke; Wang, Liyun; Meng, Linghui; Huang, Yudong; Smith, Joseph P; Booksh, Karl S; Li, Qingwen; Byun, Joon-Hyung; Oh, Youngseok; Yan, Yushan; Chou, Tsu-Wei

    2016-05-24

    The emergence of stretchable electronic devices has attracted intensive attention. However, most of the existing stretchable electronic devices can generally be stretched only in one specific direction and show limited specific capacitance and energy density. Here, we report a stretchable isotropic buckled carbon nanotube (CNT) film, which is used as electrodes for supercapacitors with low sheet resistance, high omnidirectional stretchability, and electro-mechanical stability under repeated stretching. After acid treatment of the CNT film followed by electrochemical deposition of polyaniline (PANI), the resulting isotropic buckled acid treated CNT@PANI electrode exhibits high specific capacitance of 1147.12 mF cm(-2) at 10 mV s(-1). The supercapacitor possesses high energy density from 31.56 to 50.98 μWh cm(-2) and corresponding power density changing from 2.294 to 28.404 mW cm(-2) at the scan rate from 10 to 200 mV s(-1). Also, the supercapacitor can sustain an omnidirectional strain of 200%, which is twice the maximum strain of biaxially stretchable supercapacitors based on CNT assemblies reported in the literature. Moreover, the capacitive performance is even enhanced to 1160.43-1230.61 mF cm(-2) during uniaxial, biaxial, and omnidirectional elongations. PMID:27096412

  1. Toward high performance thermoset/carbon nanotube sheet nanocomposites via resistive heating assisted infiltration and cure.

    PubMed

    Kim, Jae-Woo; Sauti, Godfrey; Siochi, Emilie J; Smith, Joseph G; Wincheski, Russell A; Cano, Roberto J; Connell, John W; Wise, Kristopher E

    2014-11-12

    Thermoset/carbon nanotube (CNT) sheet nanocomposites were successfully fabricated by resistive heating assisted infiltration and cure (RHAIC) of the polymer matrix resin. Resistive heating takes advantage of the electrical and thermal conductivity of CNTs to rapidly and uniformly introduce heat into the CNT sheet. Heating the CNT sheet reduces the viscosity of the polymer resin due to localized temperature rise in close proximity to the resin, which enhances resin flow, penetration, and wetting of the CNT reinforcement. Once the resin infusion process is complete, the applied power is increased to raise the temperature of the CNT sheet, which rapidly cures the polymer matrix. Tensile tests were used to evaluate the mechanical properties of the processed thermoset/CNT sheet nanocomposites. The improved wetting and adhesion of the polymer resin to the CNT reinforcement yield significant improvement of thermoset/CNT nanocomposite mechanical properties. The highest specific tensile strength of bismaleimide(BMI)/CNT sheet nanocomposites was obtained to date was 684 MPa/(g/cm(3)), using 4 V (2 A) for resin infiltration, followed by precure at 10 V (6 A) for 10 min and post curing at 240 °C for 6 h in an oven. The highest specific Young's modulus of BMI/CNT sheet nanocomposite was 71 GPa/(g/cm(3)) using resistive heating infiltration at 8.3 V (4.7 A) for 3 min followed by resistive heating cure at 12.5 V (7 A) for 30 min. In both cases, the CNT sheets were stretched and held in tension to prevent relaxation of the aligned CNTs during the course of RHAIC.

  2. Self-assembled block copolymer micelles with silver-carbon nanotube hybrid fillers for high performance thermal conduction.

    PubMed

    Choi, Jae Ryung; Yu, Seunggun; Jung, Haejong; Hwang, Sun Kak; Kim, Richard Hahnkee; Song, Giyoung; Cho, Sung Hwan; Bae, Insung; Hong, Soon Man; Koo, Chong Min; Park, Cheolmin

    2015-02-01

    The development of polymer-filled composites with an extremely high thermal conductivity (TC) that is competitive with conventional metals is in great demand due to their cost-effective process, light weight, and easy shape-forming capability. A novel polymer composite with a large thermal conductivity of 153 W m(-1) K(-1) was prepared based on self-assembled block copolymer micelles containing two different fillers of micron-sized silver particles and multi-walled carbon nanotubes. Simple mechanical mixing of the components followed by conventional thermal compression at a low processing temperature of 160 °C produced a novel composite with both structural and thermal stability that is durable for high temperature operation up to 150 °C as well as multiple heating and cooling cycles of ΔT = 100 °C. The high performance in thermal conduction of our composite was mainly attributed to the facile deformation of Ag particles during the mixing in a viscous thermoplastic medium, combined with networked carbon nanotubes uniformly dispersed in the nanoscale structural matrix of block copolymer micelles responsible for its high temperature mechanical stability. Furthermore, micro-imprinting on the composite allowed for topographically periodic surface micropatterns, which offers broader suitability for numerous micro-opto-electronic systems. PMID:25526528

  3. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite.

    PubMed

    Inukai, Shigeki; Cruz-Silva, Rodolfo; Ortiz-Medina, Josue; Morelos-Gomez, Aaron; Takeuchi, Kenji; Hayashi, Takuya; Tanioka, Akihiko; Araki, Takumi; Tejima, Syogo; Noguchi, Toru; Terrones, Mauricio; Endo, Morinobu

    2015-09-03

    Clean water obtained by desalinating sea water or by purifying wastewater, constitutes a major technological objective in the so-called water century. In this work, a high-performance reverse osmosis (RO) composite thin membrane using multi-walled carbon nanotubes (MWCNT) and aromatic polyamide (PA), was successfully prepared by interfacial polymerization. The effect of MWCNT on the chlorine resistance, antifouling and desalination performances of the nanocomposite membranes were studied. We found that a suitable amount of MWCNT in PA, 15.5 wt.%, not only improves the membrane performance in terms of flow and antifouling, but also inhibits the chlorine degradation on these membranes. Therefore, the present results clearly establish a solid foundation towards more efficient large-scale water desalination and other water treatment processes.

  4. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite

    PubMed Central

    Inukai, Shigeki; Cruz-Silva, Rodolfo; Ortiz-Medina, Josue; Morelos-Gomez, Aaron; Takeuchi, Kenji; Hayashi, Takuya; Tanioka, Akihiko; Araki, Takumi; Tejima, Syogo; Noguchi, Toru; Terrones, Mauricio; Endo, Morinobu

    2015-01-01

    Clean water obtained by desalinating sea water or by purifying wastewater, constitutes a major technological objective in the so-called water century. In this work, a high-performance reverse osmosis (RO) composite thin membrane using multi-walled carbon nanotubes (MWCNT) and aromatic polyamide (PA), was successfully prepared by interfacial polymerization. The effect of MWCNT on the chlorine resistance, antifouling and desalination performances of the nanocomposite membranes were studied. We found that a suitable amount of MWCNT in PA, 15.5 wt.%, not only improves the membrane performance in terms of flow and antifouling, but also inhibits the chlorine degradation on these membranes. Therefore, the present results clearly establish a solid foundation towards more efficient large-scale water desalination and other water treatment processes. PMID:26333385

  5. Superacid-doped polybenzimidazole-decorated carbon nanotubes: a novel high-performance proton exchange nanocomposite membrane.

    PubMed

    Hasani-Sadrabadi, Mohammad Mahdi; Dashtimoghadam, Erfan; Majedi, Fatemeh Sadat; Moaddel, Homayoun; Bertsch, Arnaud; Renaud, Philippe

    2013-12-01

    Here we demonstrate design and electrochemical characterization of novel proton exchange membranes based on Nafion and superacid-doped polymer coated carbon nanotubes (CNTs). Polybenzimidazole-decorated CNT (PBI-CNT), a high-performance proton exchange nanostructure, was doped using phosphotungstic acid (PWA) as a super proton conductor. The engineered nanohybrid structure was shown to retain water molecules and provide high proton conduction at low humidity and elevated temperatures. The developed complex nanomaterial was then incorporated into the Nafion matrix to fabricate nanocomposite membranes. The acid-base interactions between imidazole groups of PBI and sulfonate groups of Nafion facilitate proton conductivity, especially at elevated temperatures. The improved characteristics of the membranes at the nanoscale result in enhanced fuel cell power generation capacity (386 mW cm(-2)) at elevated temperatures and low humidity (40% R.H.), which was found to be considerably higher than the commercial Nafion®117 membrane (73 mW cm(-2)). PMID:24108383

  6. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite

    NASA Astrophysics Data System (ADS)

    Inukai, Shigeki; Cruz-Silva, Rodolfo; Ortiz-Medina, Josue; Morelos-Gomez, Aaron; Takeuchi, Kenji; Hayashi, Takuya; Tanioka, Akihiko; Araki, Takumi; Tejima, Syogo; Noguchi, Toru; Terrones, Mauricio; Endo, Morinobu

    2015-09-01

    Clean water obtained by desalinating sea water or by purifying wastewater, constitutes a major technological objective in the so-called water century. In this work, a high-performance reverse osmosis (RO) composite thin membrane using multi-walled carbon nanotubes (MWCNT) and aromatic polyamide (PA), was successfully prepared by interfacial polymerization. The effect of MWCNT on the chlorine resistance, antifouling and desalination performances of the nanocomposite membranes were studied. We found that a suitable amount of MWCNT in PA, 15.5 wt.%, not only improves the membrane performance in terms of flow and antifouling, but also inhibits the chlorine degradation on these membranes. Therefore, the present results clearly establish a solid foundation towards more efficient large-scale water desalination and other water treatment processes.

  7. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite.

    PubMed

    Inukai, Shigeki; Cruz-Silva, Rodolfo; Ortiz-Medina, Josue; Morelos-Gomez, Aaron; Takeuchi, Kenji; Hayashi, Takuya; Tanioka, Akihiko; Araki, Takumi; Tejima, Syogo; Noguchi, Toru; Terrones, Mauricio; Endo, Morinobu

    2015-01-01

    Clean water obtained by desalinating sea water or by purifying wastewater, constitutes a major technological objective in the so-called water century. In this work, a high-performance reverse osmosis (RO) composite thin membrane using multi-walled carbon nanotubes (MWCNT) and aromatic polyamide (PA), was successfully prepared by interfacial polymerization. The effect of MWCNT on the chlorine resistance, antifouling and desalination performances of the nanocomposite membranes were studied. We found that a suitable amount of MWCNT in PA, 15.5 wt.%, not only improves the membrane performance in terms of flow and antifouling, but also inhibits the chlorine degradation on these membranes. Therefore, the present results clearly establish a solid foundation towards more efficient large-scale water desalination and other water treatment processes. PMID:26333385

  8. Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries.

    PubMed

    Xu, Gui-Liang; Chen, Zonghai; Zhong, Gui-Ming; Liu, Yuzi; Yang, Yong; Ma, Tianyuan; Ren, Yang; Zuo, Xiaobing; Wu, Xue-Hang; Zhang, Xiaoyi; Amine, Khalil

    2016-06-01

    Sodium-ion batteries are promising alternatives to lithium-ion batteries for large-scale applications. However, the low capacity and poor rate capability of existing anodes for sodium-ion batteries are bottlenecks for future developments. Here, we report a high performance nanostructured anode material for sodium-ion batteries that is fabricated by high energy ball milling to form black phosphorus/Ketjenblack-multiwalled carbon nanotubes (BPC) composite. With this strategy, the BPC composite with a high phosphorus content (70 wt %) could deliver a very high initial Coulombic efficiency (>90%) and high specific capacity with excellent cyclability at high rate of charge/discharge (∼1700 mAh g(-1) after 100 cycles at 1.3 A g(-1) based on the mass of P). In situ electrochemical impedance spectroscopy, synchrotron high energy X-ray diffraction, ex situ small/wide-angle X-ray scattering, high resolution transmission electronic microscopy, and nuclear magnetic resonance were further used to unravel its superior sodium storage performance. The scientific findings gained in this work are expected to serve as a guide for future design on high performance anode material for sodium-ion batteries. PMID:27222911

  9. Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries.

    PubMed

    Xu, Gui-Liang; Chen, Zonghai; Zhong, Gui-Ming; Liu, Yuzi; Yang, Yong; Ma, Tianyuan; Ren, Yang; Zuo, Xiaobing; Wu, Xue-Hang; Zhang, Xiaoyi; Amine, Khalil

    2016-06-01

    Sodium-ion batteries are promising alternatives to lithium-ion batteries for large-scale applications. However, the low capacity and poor rate capability of existing anodes for sodium-ion batteries are bottlenecks for future developments. Here, we report a high performance nanostructured anode material for sodium-ion batteries that is fabricated by high energy ball milling to form black phosphorus/Ketjenblack-multiwalled carbon nanotubes (BPC) composite. With this strategy, the BPC composite with a high phosphorus content (70 wt %) could deliver a very high initial Coulombic efficiency (>90%) and high specific capacity with excellent cyclability at high rate of charge/discharge (∼1700 mAh g(-1) after 100 cycles at 1.3 A g(-1) based on the mass of P). In situ electrochemical impedance spectroscopy, synchrotron high energy X-ray diffraction, ex situ small/wide-angle X-ray scattering, high resolution transmission electronic microscopy, and nuclear magnetic resonance were further used to unravel its superior sodium storage performance. The scientific findings gained in this work are expected to serve as a guide for future design on high performance anode material for sodium-ion batteries.

  10. First Principles Prediction of Nitrogen-doped Carbon Nanotubes as a High-Performance Cathode for Li-S Batteries

    SciTech Connect

    Wang, Zhiguo; Niu, Xinyue; Xiao, Jie; Wang, Chong M.; Liu, Jun; Gao, Fei

    2013-07-16

    The insulating nature of sulfur and the solubility of the polysulfide in organic electrolyte are two main factors that limit the application of lithium sulfur (Li-S) battery systems. Enhancement of Li conductivity, identification of a strong adsorption agent of polysulfides and the improvement of the whole sulfur-based electrode are of great technological importance. The diffusion of Li atoms on the outer-wall, inner-wall and inter-wall spaces in nitrogen-doped double-walled carbon nanotubes (CNTs) and penetrations of Li and S atoms through the walls are studied using density functional theory. We find that N-doping does not alternate the diffusion behaviors of Li atoms throughout the CNTs, but the energy barrier for Li atoms to penetrate the wall is greatly decreased by N-doping (from ~9.0 eV to ~ 1.0 eV). On the other hand, the energy barrier for S atoms to penetrate the wall remains very high, which is caused by the formation of the chemical bonds between the S and nearby N atoms. The results indicate that Li atoms are able to diffuse freely, whereas S atoms can be encapsulated inside the N-doped CNTs, suggesting that the N-doped CNTs can be potentially used in high performance Li-S batteries.

  11. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode

    NASA Astrophysics Data System (ADS)

    Cui, Hui-Fang; Du, Lin; Guo, Peng-Bo; Zhu, Bao; Luong, John H. T.

    2015-06-01

    Polyaniline (PANI) was electropolymerized on the surface of macroporous graphite felt (GF) followed by the electrophoretic deposition of carbon nanotubes (CNTs). The as-prepared macroporous material was characterized by scanning electron microscopy, water contact angle goniometry and electrochemical techniques. Upon the modification of PANI, a rough and nano-cilia containing film is coated on the surface of the graphite fibers, transforming the surface from hydrophobic to hydrophilic. The subsequent modification by CNTs increases the effective surface area and electrical conductivity of the resulting material. The power output of a mediator-free dual-chamber microbial fuel cell (MFC) constructed from the GF anode and an exoelectrogen Shewanella putrefaciens increases drastically with the CNT modification. The CNT/PANI/GF MFC attains an output voltage of 342 mV across an external resistor of 1.96 kΩ constant load, and a maximum power density of 257 mW m-2, increased by 343% and 186%, compared to that of the pristine GF MFC and the PANI/GF MFC, respectively. More bacteria are attached on the CNT/PANI/GF anode than on the PANI/GF anode during the working of the MFC. This strategy provides an easy scale-up, simple and controllable method for the preparation of high-performance and low-cost MFC anodes.

  12. Vacuum filtration based formation of liquid crystal films of semiconducting carbon nanotubes and high performance transistor devices.

    PubMed

    King, Benjamin; Panchapakesan, Balaji

    2014-05-01

    In this paper, we report ultra-thin liquid crystal films of semiconducting carbon nanotubes using a simple vacuum filtration process. Vacuum filtration of nanotubes in aqueous surfactant solution formed nematic domains on the filter membrane surface and exhibited local ordering. A 2D fast Fourier transform was used to calculate the order parameters from scanning electron microscopy images. The order parameter was observed to be sensitive to the filtration time demonstrating different regions of transformation namely nucleation of nematic domains, nanotube accumulation and large domain growth.Transmittance versus sheet resistance measurements of such films resulted in optical to dc conductivity of σ(opt)/σ(dc) = 9.01 indicative of purely semiconducting nanotube liquid crystal network.Thin films of nanotube liquid crystals with order parameters ranging from S = 0.1-0.5 were patterned into conducting channels of transistor devices which showed high I(on)/I(off) ratios from 10-19,800 and electron mobility values μ(e) = 0.3-78.8 cm(2) (V-s)(-1), hole mobility values μ(h) = 0.4-287 cm(2) (V-s)(-1). High I on/I off ratios were observed at low order parameters and film mass. A Schottky barrier transistor model is consistent with the observed transistor characteristics. Electron and hole mobilities were seen to increase with order parameters and carbon nanotube mass fractions. A fundamental tradeoff between decreasing on/off ratio and increasing mobility with increasing nanotube film mass and order parameter is therefore concluded. Increase in order parameters of nanotubes liquid crystals improved the electronic transport properties as witnessed by the increase in σ(dc)/σ(opt) values on macroscopic films and high mobilities in microscopic transistors. Liquid crystal networks of semiconducting nanotubes as demonstrated here are simple to fabricate, transparent, scalable and could find wide ranging device applications.

  13. Vacuum filtration based formation of liquid crystal films of semiconducting carbon nanotubes and high performance transistor devices

    NASA Astrophysics Data System (ADS)

    King, Benjamin; Panchapakesan, Balaji

    2014-05-01

    In this paper, we report ultra-thin liquid crystal films of semiconducting carbon nanotubes using a simple vacuum filtration process. Vacuum filtration of nanotubes in aqueous surfactant solution formed nematic domains on the filter membrane surface and exhibited local ordering. A 2D fast Fourier transform was used to calculate the order parameters from scanning electron microscopy images. The order parameter was observed to be sensitive to the filtration time demonstrating different regions of transformation namely nucleation of nematic domains, nanotube accumulation and large domain growth.Transmittance versus sheet resistance measurements of such films resulted in optical to dc conductivity of σ opt/σ dc = 9.01 indicative of purely semiconducting nanotube liquid crystal network.Thin films of nanotube liquid crystals with order parameters ranging from S = 0.1-0.5 were patterned into conducting channels of transistor devices which showed high I on/I off ratios from 10-19 800 and electron mobility values μ e = 0.3-78.8 cm2 (V-s)-1, hole mobility values μ h = 0.4-287 cm2 (V-s)-1. High I on/I off ratios were observed at low order parameters and film mass. A Schottky barrier transistor model is consistent with the observed transistor characteristics. Electron and hole mobilities were seen to increase with order parameters and carbon nanotube mass fractions. A fundamental tradeoff between decreasing on/off ratio and increasing mobility with increasing nanotube film mass and order parameter is therefore concluded. Increase in order parameters of nanotubes liquid crystals improved the electronic transport properties as witnessed by the increase in σ dc/σ opt values on macroscopic films and high mobilities in microscopic transistors. Liquid crystal networks of semiconducting nanotubes as demonstrated here are simple to fabricate, transparent, scalable and could find wide ranging device applications.

  14. Four-layer tin-carbon nanotube yolk-shell materials for high-performance lithium-ion batteries.

    PubMed

    Chen, Peng; Wu, Fengdan; Wang, Yong

    2014-05-01

    All high-capacity anodes for lithium-ion (Li-ion) batteries, such as those based on tin (Sn) and silicon (Si), suffer from large volume changes during cycling with lithium ions, and their high capacities can be only achieved in the first few cycles. We design and synthesize a unique four-layer yolk-shell tin-carbon (Sn-C) nanotube array to address this problem. The shape and size of the exterior Sn nanotube@carbon core-shell layer, the encapsulated interior Sn nanowire@carbon nanotube core-shell layer, and the filling level of each layer can be all controlled by adjusting the experimental conditions. Such a nanostructure has not been reported for any metal or metal oxide-based material. Owing to the special design of the electrode structure, the four-layer hierarchical structure demonstrates excellent Li-ion storage properties in terms of high capacity, long cycle life, and high rate performance.

  15. In situ growth of carbon nanotube wrapped Si composites as anodes for high performance lithium ion batteries.

    PubMed

    Zhou, Jianbin; Lan, Yang; Zhang, Kailong; Xia, Guoliang; Du, Jin; Zhu, Yongchun; Qian, Yitai

    2016-03-01

    The composites of carbon nanotube wrapped Si particles (CNTWS) were synthesized in situ by using the catalytic chemical vapor deposition (CCVD) method. In this process, carbon nanotubes were produced in situ to wrap Si by the catalysis action of nascent Cu* under an acetylene atmosphere at a relatively low temperature of 400 °C, in which nascent Cu* was created by the reaction between Si particles and CuCl synchronously. The weight ratio of Si/C in CNTWS is 0.76/0.24. As anode materials for lithium ion batteries, the CNTWS composites exhibit a reversible discharge capacity of 1031.1 mA h g(-1) at 1.8 A g(-1) after 500 cycles, and 868.2 mA h g(-1) at 10.0 A g(-1). The high electrochemical performance of CNTWS composites is associated with the in situ formed carbon nanotubes. PMID:26875542

  16. In situ growth of carbon nanotube wrapped Si composites as anodes for high performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhou, Jianbin; Lan, Yang; Zhang, Kailong; Xia, Guoliang; Du, Jin; Zhu, Yongchun; Qian, Yitai

    2016-02-01

    The composites of carbon nanotube wrapped Si particles (CNTWS) were synthesized in situ by using the catalytic chemical vapor deposition (CCVD) method. In this process, carbon nanotubes were produced in situ to wrap Si by the catalysis action of nascent Cu* under an acetylene atmosphere at a relatively low temperature of 400 °C, in which nascent Cu* was created by the reaction between Si particles and CuCl synchronously. The weight ratio of Si/C in CNTWS is 0.76/0.24. As anode materials for lithium ion batteries, the CNTWS composites exhibit a reversible discharge capacity of 1031.1 mA h g-1 at 1.8 A g-1 after 500 cycles, and 868.2 mA h g-1 at 10.0 A g-1. The high electrochemical performance of CNTWS composites is associated with the in situ formed carbon nanotubes.The composites of carbon nanotube wrapped Si particles (CNTWS) were synthesized in situ by using the catalytic chemical vapor deposition (CCVD) method. In this process, carbon nanotubes were produced in situ to wrap Si by the catalysis action of nascent Cu* under an acetylene atmosphere at a relatively low temperature of 400 °C, in which nascent Cu* was created by the reaction between Si particles and CuCl synchronously. The weight ratio of Si/C in CNTWS is 0.76/0.24. As anode materials for lithium ion batteries, the CNTWS composites exhibit a reversible discharge capacity of 1031.1 mA h g-1 at 1.8 A g-1 after 500 cycles, and 868.2 mA h g-1 at 10.0 A g-1. The high electrochemical performance of CNTWS composites is associated with the in situ formed carbon nanotubes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08961a

  17. Fabrication of copper nanoparticles decorated multiwalled carbon nanotubes as a high performance electrochemical sensor for the detection of neotame.

    PubMed

    Bathinapatla, Ayyappa; Kanchi, Suvardhan; Singh, Parvesh; Sabela, Myalowenkosi I; Bisetty, Krishna

    2015-05-15

    A highly sensitive and novel electrochemical sensor for the detection of neotame using differential pulse voltammetry with a modified glassy carbon electrode is presented. The method was further customized by the fabrication of the electrode surface with copper nanoparticles-ammonium piperidine dithiocarbamate-mutiwalled carbon nanotubes assimilated with β-cyclodextrin. The multiwalled carbon nanotubes assimilated with β-cyclodextrin/glassy carbon electrode exhibited catalytic activity towards the oxidation of neotame at a potential of 1.3 V at pH 3.0. The transmission electron microscopy, thermogravimetric analysis, frontier transform infrared spectroscopy and cyclic voltammetry were employed to characterize the electrochemical sensor. The sensitivity and detection limits of the electrode increased two-fold in contrast to the β-CD-MWCNTs/GCE sensor. The developed method was successfully applied for the determination of neotame in food samples, with results similar to those achieved by our modified capillary electrophoresis method with a 96% confidence level.

  18. ‘Bucky gel’ of multiwalled carbon nanotubes as electrodes for high performance, flexible electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Singh, Manoj K.; Kumar, Yogesh; Hashmi, S. A.

    2013-11-01

    We report the preparation of a gelled form of multiwalled carbon nanotubes (MWCNTs) with an ionic liquid 1-butyl-1-methyl pyrrolidinium bis(trifluoromethane sulfonyl)imide (BMPTFSI)), referred to as ‘bucky gel’, to be used as binderless electrodes in electrical double layer capacitors (EDLCs). The characteristics of gelled MWCNTs are compared with pristine MWCNTs using transmission electron microscopy, x-ray diffraction and Raman studies. A gel polymer electrolyte film consisting of a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and BMPTFSI, exhibiting a room temperature ionic conductivity of 1.5 × 10-3 S cm-1, shows its suitability as an electrolyte/separator in flexible EDLCs. The performance of EDLCs, assembled with bucky gel electrodes, using impedance spectroscopy, cyclic voltammetry and charge-discharge analyses, are compared with those fabricated with pristine MWCNT-electrodes. An improvement in specific capacitance (from 19.6 to 51.3 F g-1) is noted when pristine MWCNTs are replaced by gelled MWCNT-binderless electrodes. Although the rate performance of the EDLCs with gelled MWCNT-electrodes is reduced, the pulse power of the device is sufficiently high (˜10.5 kW kg-1). The gelled electrodes offer improvements in energy and power densities from 2.8 to 8.0 Wh kg-1 and 2.0 to 4.7 kW kg-1, respectively. Studies indicate that the gel formation of MWCNTs with ionic liquid is an excellent route to obtain high-performance EDLCs.

  19. Manufacturing of high performance polymer nanocomposites containing carbon nanotubes and carbon nanofibers using ultrasound assisted extrusion process

    NASA Astrophysics Data System (ADS)

    Kumar, Rishi

    The major objective of this study was to investigate the effect of ultrasonic treatment on the state of dispersion and properties of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) in polymer matrices. In order to achieve this objective, an ultrasonic single screw extruder operating at a frequency of 20 kHz and an amplitude of upto 10 microm and an ultrasonic twin screw extruder operating at a frequency of 40 kHz and an amplitude of upto 6.0 microm, were used to process highly viscous materials and disperse these nanofillers homogeneously in a polymer matrix at residence times of order of seconds. High temperature thermoplastic resins including polyetherimide (PEI), liquid crystalline polymer (LCP) and polyetheretherketone (PEEK) were used. Multiwalled carbon nanotubes (MWNTs) and CNFs were used as reinforcing fillers. The effect of nanofiller loading and ultrasonic amplitudes on rheological, mechanical, electrical, thermal and morphological properties of the nanocomposites was studied. Ultrasonic treatment showed a tremendous decrease in die pressure. Morphological studies showed that ultrasonic treatment improved dispersion of CNFs and CNTs in polymer matrices. PEI/CNFs and PEI/MWNTs nanocomposites were prepared using ultrasound assisted single and twin screw extruder, respectively. A permanent increase in the viscosity, storage and loss modulus and decrease in tan delta was observed with ultrasonic treatment. Ultrasonically treated PEI/CNFs nanocomposites showed a decrease in electrical percolation threshold value as compared to the untreated ones. Breakage of CNFs was observed primarily due to extrusion process alone. In case of PEI/MWNTs nanocomposites, percolation threshold value was found to be between 1 and 2 wt% loading of CNTs for both treated and untreated samples. LCP/CNFs nanocomposites were prepared using ultrasound assisted twin screw extruder with separate feeding of CNFs in the polymer melt. In contrast to behavior of PEI/CNFs and PEI

  20. High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes.

    PubMed

    Fan, Yu; Zhang, Qing; Lu, Congxiang; Xiao, Qizhen; Wang, Xinghui; Tay, Beng Kang

    2013-02-21

    Core-shell Si nanowires are very promising anode materials. Here, we synthesize vertically aligned carbon nanotubes (CNTs) with relatively large diameters and large inter-wire spacing as core wires and demonstrate a CNT-Si core-shell wire composite as a lithium ion battery (LIB) anode. Owing to the rationally engineered core structure, the composite shows good capacity retention and rate performance. The excellent performance is superior to most core-shell nanowires previously reported.

  1. SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries

    SciTech Connect

    Sun, Hongyu; Ahmad, Mashkoor; Luo, Jun; Shi, Yingying; Shen, Wanci; Zhu, Jing

    2014-01-01

    Graphical abstract: The synthesized SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes hybrid structures exhibit large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS{sub 2} nanoflakes. - Highlights: • Synthesis of SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes hybrid structures. • Simple solution-phase approach. • Morphology feature of SnS{sub 2}. • Enhanced performance as Li-ion batteries. - Abstract: SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes (MWCNTs) hybrid structures are directly synthesized via a simple solution-phase approach. The as-prepared SnS{sub 2}/MWCNTs structures are investigated as anode materials for Li-ion batteries as compared with SnS{sub 2} nanoflakes. It has been found that the composite structure exhibit excellent lithium storage performance with a large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS{sub 2} nanoflakes. The first discharge and charge capacities have been found to be 1416 and 518 mA h g{sup −1} for SnS{sub 2}/MWCNTs composite electrodes at a current density of 100 mA g{sup −1} between 5 mV and 1.15 V versus Li/Li{sup +}. A stable reversible capacity of ∼510 mA h g{sup −1} is obtained for 50 cycles. The improved electrochemical performance may be attributed to the flake-morphology feature of SnS{sub 2} and the addition of MWCNTs that can hinder the agglomeration of the active materials and improve the conductivity of the composite electrode simultaneously.

  2. A high performance Ru-ZrO2/carbon nanotubes-Ni foam composite catalyst for selective CO methanation

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Dong, Xinfa; Song, Yibing; Dong, Yingchao

    2013-11-01

    A novel Ru-ZrO2/carbon nanotubes (CNTs)-Ni foam composite catalyst for selective CO methanation is prepared by using CNTs-Ni foam as support. This catalyst exhibits an improved performance of CO selectivity and excellent catalytic stability, which may be attributed to the high thermal conductivity and unique microstructure of the Ru-based CNTs-Ni foam composite. The SEM and XRD measurements reveal that amorphous Ru-ZrO2 particles with fine size (<20 nm) are well dispersed on the CNTs surface of the composite catalyst reduced at 350 °C, possibly leading to its high catalytic activity.

  3. Graphene-winged carbon nanotubes as high-performance lithium-ion batteries anode with super-long cycle life

    NASA Astrophysics Data System (ADS)

    Ye, Minghui; Hu, Chuangang; Lv, Lingxiao; Qu, Liangti

    2016-02-01

    Graphene-winged carbon nanotubes (G-CNTs) have been prepared by the well-controlled outer-wall peeling of the multi-walled carbon nanotubes (MWCNTs). The final hybrid structure features the few layers of graphene nanosheets attaching to the intact inner walls of CNTs. On one hand, the outer branched graphene nanosheets could suppress the aggregation of CNTs and introduce abundant defects and active-edges for easily accessible chemical interaction. On the other hand, the CNTs could bridge the graphene nanosheets for rapid electron transfer and mechanical robustness. As a result, the G-CNTs was used as the electrode materials exhibiting an extremely steady reversible capacity of 603 mAh g-1 over 2200 cycles at a current density of 1 A g-1 (the corresponding area capacity is 0.16 mAh cm-2 at a current density of 0.26 mA cm-2) and owning a high rate capability much superior to those of the pristine MWCNT-based counterparts. The hierarchical G-CNTs architecture provides a new material platform for development of advanced energy-storage devices.

  4. Chemically Functionalized, Well-Dispersed Carbon Nanotubes in Lithium-Doped Zinc Oxide for Low-Cost, High-Performance Thin-Film Transistors.

    PubMed

    Son, Gi-Cheol; Chee, Sang-Soo; Jun, Ji-Hyun; Son, Myungwoo; Lee, Sun Sook; Choi, Youngmin; Jeong, Sunho; Ham, Moon-Ho

    2016-04-13

    Surface-functionalized carbon nanotubes (CNTs) are introduced into lithium-doped ZnO thin-film transistors (TFTs) as an alternative to the conventional incorporation of an expensive element, indium. The crucial role of surface functionalization of CNTs is clarified with the demonstration of indium-free ZnO-based TFTs with a field-effect mobility of 28.6 cm(2) V(-1) s(-1) and an on/off current ratio of 9 × 10(6) for low-cost, high-performance electronics. PMID:26856958

  5. Chemically Functionalized, Well-Dispersed Carbon Nanotubes in Lithium-Doped Zinc Oxide for Low-Cost, High-Performance Thin-Film Transistors.

    PubMed

    Son, Gi-Cheol; Chee, Sang-Soo; Jun, Ji-Hyun; Son, Myungwoo; Lee, Sun Sook; Choi, Youngmin; Jeong, Sunho; Ham, Moon-Ho

    2016-04-13

    Surface-functionalized carbon nanotubes (CNTs) are introduced into lithium-doped ZnO thin-film transistors (TFTs) as an alternative to the conventional incorporation of an expensive element, indium. The crucial role of surface functionalization of CNTs is clarified with the demonstration of indium-free ZnO-based TFTs with a field-effect mobility of 28.6 cm(2) V(-1) s(-1) and an on/off current ratio of 9 × 10(6) for low-cost, high-performance electronics.

  6. Mildly reduced less defective graphene oxide/sulfur/carbon nanotube composite films for high-performance lithium-sulfur batteries.

    PubMed

    Li, Rui; Zhang, Miao; Li, Yingru; Chen, Ji; Yao, Bowen; Yu, Mingpeng; Shi, Gaoquan

    2016-04-28

    The microstructures and properties of the carbonaceous matrices in the cathodes of lithium-sulfur (Li-S) batteries have strong effects on their performances. We prepared a ternary composite cathode of mildly reduced less defective graphene oxide (mrLGO), sulfur, and carbon nanotubes (CNTs) by filtration for Li-S batteries. This battery showed a high initial specific capacity of 1219 mA h g(-1) at 0.2 C and a stable specific capacity of around 1000 mA h g(-1) after 200 cycles with a coulombic efficiency of 99%. Its excellent performance is mainly attributed to the good conductivity and residual oxygen containing groups of mrLGO, and the three-dimensional (3D) framework constructed using mrLGO sheets and CNTs. PMID:27049434

  7. A Free-Standing Sulfur/Nitrogen-Doped Carbon Nanotube Electrode for High-Performance Lithium/Sulfur Batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yin, Fuxing; Zhang, Yongguang; Zhang, Chengwei; Mentbayeva, Almagul; Umirov, Nurzhan; Xie, Hongxian; Bakenov, Zhumabay

    2015-11-01

    A free-standing sulfur/nitrogen-doped carbon nanotube (S/N-CNT) composite prepared via a simple solution method was first studied as a cathode material for lithium/sulfur batteries. By taking advantage of the self-weaving behavior of N-CNT, binders and current collectors are rendered unnecessary in the cathode, thereby simplifying its manufacturing and increasing the sulfur weight ratio in the electrode. Transmission electronic microscopy showed the formation of a highly developed core-shell tubular structure consisting of S/N-CNT composite with uniform sulfur coating on the surface of N-CNT. As a core in the composite, the N-CNT with N functionalization provides a highly conductive and mechanically flexible framework, enhancing the electronic conductivity and consequently the rate capability of the material.

  8. A Free-Standing Sulfur/Nitrogen-Doped Carbon Nanotube Electrode for High-Performance Lithium/Sulfur Batteries.

    PubMed

    Zhao, Yan; Yin, Fuxing; Zhang, Yongguang; Zhang, Chengwei; Mentbayeva, Almagul; Umirov, Nurzhan; Xie, Hongxian; Bakenov, Zhumabay

    2015-12-01

    A free-standing sulfur/nitrogen-doped carbon nanotube (S/N-CNT) composite prepared via a simple solution method was first studied as a cathode material for lithium/sulfur batteries. By taking advantage of the self-weaving behavior of N-CNT, binders and current collectors are rendered unnecessary in the cathode, thereby simplifying its manufacturing and increasing the sulfur weight ratio in the electrode. Transmission electronic microscopy showed the formation of a highly developed core-shell tubular structure consisting of S/N-CNT composite with uniform sulfur coating on the surface of N-CNT. As a core in the composite, the N-CNT with N functionalization provides a highly conductive and mechanically flexible framework, enhancing the electronic conductivity and consequently the rate capability of the material.

  9. Carbon dots-decorated multiwalled carbon nanotubes nanocomposites as a high-performance electrochemical sensor for detection of H2O2 in living cells.

    PubMed

    Bai, Jing; Sun, Chunhe; Jiang, Xiue

    2016-07-01

    A novel enzyme-free hydrogen peroxide sensor composed of carbon dots (CDs) and multi-walled carbon nanotubes (MWCNTs) was prepared. It was found that the carbon dots-decorated multi-walled carbon nanotubes nanocomposites (CDs/MWCNTs) modified glassy carbon (GC) electrode (CDs/MWCNTs/GCE) exhibited a significant synergistic electrocatalytic activity towards hydrogen peroxide reduction as compared to carbon dots or multi-walled carbon nanotubes alone, and the CDs/MWCNTs/GCE has shown a low detection limit as well as excellent stability, selectivity, and reproducibility. These remarkable analytical advantages enable the practical application of CDs/MWCNTs/GCE for the real-time tracking of hydrogen peroxide (H2O2) released from human cervical cancer cells with satisfactory results. The enhanced electrochemical activity can be assigned to the edge plane-like defective sites and lattice oxygen in the CDs/MWCNTs nanocomposites due to the small amount of decoration of carbon dots on the multi-walled carbon nanotubes. Based on a facile preparation method and with good electrochemical properties, the CDs/MWCNTs nanocomposites represent a new class of carbon electrode for electrochemical sensor applications. Graphical Abstract CDs/MWCNTs exhibited good electrocatalytic activity and stability to H2O2 reduction and can be used for real-time detection of H2O2 released from living cells.

  10. Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Lingyan; Zhuo, Linhai; Cheng, Haiyang; Zhang, Chao; Zhao, Fengyu

    2015-06-01

    Generally, the fast ion/electron transport and structural stability dominate the superiority in lithium-storage applications. In this work, porous carbon nanotubes decorated with nanosized CoFe2O4 particles (p-CNTs@CFO) have been rationally designed and synthesized by the assistance of supercritical carbon dioxide (scCO2). When tested as anode materials for lithium-ion batteries, the p-CNTs@CFO composite exhibits outstanding electrochemical behavior with high lithium-storage capacity (1077 mAh g-1 after 100 cycles) and rate capability (694 mAh g-1 at 3 A g-1). These outstanding electrochemical performances are attributed to the synergistic effect of porous p-CNTs and nanosized CFO. Compared to pristine CNTs, the p-CNTs with substantial pores in the tubes possess largely increased specific surface area and rich oxygen-containing functional groups. The porous structure can not only accommodate the volume change during lithiation/delithiation processes, but also provide bicontinuous electron/ion pathways and large electrode/electrolyte interface, which facilitate the ion diffusion kinetics, improving the rate performance. Moreover, the CFO particles are bonded strongly to the p-CNTs through metal-oxygen bridges, which facilitate the electron fast capture from p-CNTs to CFO, and thus resulting in a high reversible capacity and excellent rate performance. Overall, the porous p-CNTs provide an efficient way for ion diffusion and continuous electron transport as anode materials.

  11. A facile approach to prepare porous cup-stacked carbon nanotube with high performance in adsorption of methylene blue.

    PubMed

    Gong, Jiang; Liu, Jie; Jiang, Zhiwei; Wen, Xin; Mijowska, Ewa; Tang, Tao; Chen, Xuecheng

    2015-05-01

    Novel porous cup-stacked carbon nanotube (P-CSCNT) with special stacked morphology consisting of many truncated conical graphene layers was synthesized by KOH activating CSCNT from polypropylene. The morphology, microstructure, textural property, phase structure, surface element composition and thermal stability of P-CSCNT were investigated by field-emission scanning electron microscope, transmission electron microscope (TEM), high-resolution TEM, N2 sorption, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and thermal gravimetric analysis. A part of oblique graphitic layers were etched by KOH, and many holes with a diameter of several to a doze of nanometers connecting inner tube with outside were formed, which endowed P-CSCNT with high specific surface area (558.7 m(2)/g), large pore volume (1.993 cm(3)/g) and abundant surface functional groups. Subsequently, P-CSCNT was used for adsorption of methylene blue (MB) from wastewater. Langmuir model closely fitted the adsorption results, and the maximum adsorption capacity of P-CSCNT was as high as 319.1mg/g. This was ascribed to multiple adsorption mechanisms including pore filling, hydrogen bonding, π-π and electrostatic interactions. Pseudo second-order kinetic model was more valid to describe the adsorption behavior. Besides, P-CSCNT showed good recyclablity and reusability. These results demonstrated that P-CSCNT had potential application in wastewater treatment.

  12. Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing.

    PubMed

    Choi, Taejin; Kim, Soo Hyeon; Lee, Chang Wan; Kim, Hangil; Choi, Sang-Kyung; Kim, Soo-Hyun; Kim, Eunkyoung; Park, Jusang; Kim, Hyungjun

    2015-01-15

    A useful strategy has been developed to fabricate carbon-nanotube-nickel (CNT-Ni) nanocomposites through atomic layer deposition (ALD) of Ni and chemical vapor deposition (CVD) of functionalized CNTs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), were used to characterize the morphology and the structure of as-prepared samples. It was confirmed that the products possess uniform Ni nanoparticles that are constructed by finely controlled deposition of Ni onto oxygen or bromine functionalized CNT surface. Electrochemical studies indicate that the CNT-Ni nanocomposites exhibit high electrocatalytic activity for glucose oxidation in alkaline solutions, which enables the products to be used in enzyme-free electrochemical sensors for glucose determination. It was demonstrated that the CNT-Ni nanocomposite-based glucose biosensor offers a variety of merits, such as a wide linear response window for glucose concentrations of 5 μM-2 mM, short response time (3 s), a low detection limit (2 μM), high sensitivity (1384.1 μA mM(-1) cm(-2)), and good selectivity and repeatability.

  13. Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing.

    PubMed

    Choi, Taejin; Kim, Soo Hyeon; Lee, Chang Wan; Kim, Hangil; Choi, Sang-Kyung; Kim, Soo-Hyun; Kim, Eunkyoung; Park, Jusang; Kim, Hyungjun

    2015-01-15

    A useful strategy has been developed to fabricate carbon-nanotube-nickel (CNT-Ni) nanocomposites through atomic layer deposition (ALD) of Ni and chemical vapor deposition (CVD) of functionalized CNTs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), were used to characterize the morphology and the structure of as-prepared samples. It was confirmed that the products possess uniform Ni nanoparticles that are constructed by finely controlled deposition of Ni onto oxygen or bromine functionalized CNT surface. Electrochemical studies indicate that the CNT-Ni nanocomposites exhibit high electrocatalytic activity for glucose oxidation in alkaline solutions, which enables the products to be used in enzyme-free electrochemical sensors for glucose determination. It was demonstrated that the CNT-Ni nanocomposite-based glucose biosensor offers a variety of merits, such as a wide linear response window for glucose concentrations of 5 μM-2 mM, short response time (3 s), a low detection limit (2 μM), high sensitivity (1384.1 μA mM(-1) cm(-2)), and good selectivity and repeatability. PMID:25113051

  14. Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Sun, Li; Wang, Datao; Luo, Yufeng; Wang, Ke; Kong, Weibang; Wu, Yang; Zhang, Lina; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan

    2016-01-26

    Sulfur-porous carbon nanotube (S-PCNT) composites are proposed as cathode materials for advanced lithium-sulfur (Li-S) batteries. Abundant mesopores are introduced to superaligned carbon nanotubes (SACNTs) through controlled oxidation in air to obtain porous carbon nanotubes (PCNTs). Compared to original SACNTs, improved dispersive behavior, enhanced conductivity, and higher mechanical strength are demonstrated in PCNTs. Meanwhile, high flexibility and sufficient intertube interaction are preserved in PCNTs to support binder-free and flexible electrodes. Additionally, several attractive features, including high surface area and abundant adsorption points on tubes, are introduced, which allow high sulfur loading, provide dual protection to sulfur cathode materials, and consequently alleviate the capacity fade especially during slow charge/discharge processes. When used as cathodes for Li-S batteries, a high sulfur loading of 60 wt % is achieved, with excellent reversible capacities of 866 and 526 mAh g(-1) based on the weights of sulfur and electrode, respectively, after 100 cycles at a slow charge/discharge rate of 0.1C, revealing efficient suppression of polysulfide dissolution. Even with a high sulfur loading of 70 wt %, the S-PCNT composite maintains capacities of 760 and 528 mAh g(-1) based on the weights of sulfur and electrode, respectively, after 100 cycles at 0.1C, outperforming the current state-of-the-art sulfur cathodes. Improved high-rate capability is also delivered by the S-PCNT composites, revealing their potentials as high-performance carbon-sulfur composite cathodes for Li-S batteries.

  15. 3D porous and ultralight carbon hybrid nanostructure fabricated from carbon foam covered by monolayer of nitrogen-doped carbon nanotubes for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    He, Shuijian; Hou, Haoqing; Chen, Wei

    2015-04-01

    3D porous and self-supported carbon hybrids are promising electrode materials for supercapacitor application attributed to their prominent properties such as binder-free electrode fabrication process, excellent electric conductivity and high power density etc. We present here a facile chemical vapor deposition method to fabricate a novel 3D flexible carbon hybrid nanostructure by growing a monolayer of nitrogen-doped carbon nanotubes on the skeleton of carbon foam (N-CNTs/CF) with Fe nanoparticle as catalyst. With such 3D porous, flexible and ultralight carbon nanostructure as binder-free electrode material, large surface area is available and fast ionic transport is facilitated. Moreover, the carbon-based network can provide excellent electronic conductivity. The electrochemical studies demonstrate that the supercapacitor constructed from the N-CNTs/CF hybrid exhibit high power density of 69.3 kW kg-1 and good stability with capacitance retention ration above 95% after cycled at 50 A g-1 for 5000 cycles. Therefore, the prepared porous N-CNTs/CF nanostructure is expected to be a type of excellent electrode material for electrical double layer capacitors.

  16. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode.

    PubMed

    Mink, Justine E; Hussain, Muhammad Mustafa

    2013-08-27

    Microbial fuel cells (MFCs) are a promising alternative energy source that both generates electricity and cleans water. Fueled by liquid wastes such as wastewater or industrial wastes, the microbial fuel cell converts waste into energy. Microsized MFCs are essentially miniature energy harvesters that can be used to power on-chip electronics, lab-on-a-chip devices, and/or sensors. As MFCs are a relatively new technology, microsized MFCs are also an important rapid testing platform for the comparison and introduction of new conditions or materials into macroscale MFCs, especially nanoscale materials that have high potential for enhanced power production. Here we report a 75 μL microsized MFC on silicon using CMOS-compatible processes and employ a novel nanomaterial with exceptional electrochemical properties, multiwalled carbon nanotubes (MWCNTs), as the on-chip anode. We used this device to compare the usage of the more commonly used but highly expensive anode material gold, as well as a more inexpensive substitute, nickel. This is the first anode material study done using the most sustainably designed microsized MFC to date, which utilizes ambient oxygen as the electron acceptor with an air cathode instead of the chemical ferricyanide and without a membrane. Ferricyanide is unsustainable, as the chemical must be continuously refilled, while using oxygen, naturally found in air, makes the device mobile and is a key step in commercializing this for portable technology such as lab-on-a-chip for point-of-care diagnostics. At 880 mA/m(2) and 19 mW/m(2) the MWCNT anode outperformed the others in both current and power densities with between 6 and 20 times better performance. All devices were run for over 15 days, indicating a stable and high-endurance energy harvester already capable of producing enough power for ultra-low-power electronics and able to consistently power them over time. PMID:23899322

  17. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode.

    PubMed

    Mink, Justine E; Hussain, Muhammad Mustafa

    2013-08-27

    Microbial fuel cells (MFCs) are a promising alternative energy source that both generates electricity and cleans water. Fueled by liquid wastes such as wastewater or industrial wastes, the microbial fuel cell converts waste into energy. Microsized MFCs are essentially miniature energy harvesters that can be used to power on-chip electronics, lab-on-a-chip devices, and/or sensors. As MFCs are a relatively new technology, microsized MFCs are also an important rapid testing platform for the comparison and introduction of new conditions or materials into macroscale MFCs, especially nanoscale materials that have high potential for enhanced power production. Here we report a 75 μL microsized MFC on silicon using CMOS-compatible processes and employ a novel nanomaterial with exceptional electrochemical properties, multiwalled carbon nanotubes (MWCNTs), as the on-chip anode. We used this device to compare the usage of the more commonly used but highly expensive anode material gold, as well as a more inexpensive substitute, nickel. This is the first anode material study done using the most sustainably designed microsized MFC to date, which utilizes ambient oxygen as the electron acceptor with an air cathode instead of the chemical ferricyanide and without a membrane. Ferricyanide is unsustainable, as the chemical must be continuously refilled, while using oxygen, naturally found in air, makes the device mobile and is a key step in commercializing this for portable technology such as lab-on-a-chip for point-of-care diagnostics. At 880 mA/m(2) and 19 mW/m(2) the MWCNT anode outperformed the others in both current and power densities with between 6 and 20 times better performance. All devices were run for over 15 days, indicating a stable and high-endurance energy harvester already capable of producing enough power for ultra-low-power electronics and able to consistently power them over time.

  18. DNA-assisted assembly of carbon nanotubes and MnO2 nanospheres as electrodes for high-performance asymmetric supercapacitors.

    PubMed

    Guo, Chun Xian; Chitre, Amey Anil; Lu, Xianmao

    2014-03-14

    A DNA-assisted assembly approach is developed to fabricate a capacitor-type electrode material, DNA-functionalized carbon nanotubes (CNTs@DNA), and a battery-type electrode material, DNA@CNTs-bridged MnO2 spheres (CNTs@DNA-MnO2), for asymmetric supercapacitors. An energy density of 11.6 W h kg(-1) is achieved at a power density of 185.5 W kg(-1) with a high MnO2 mass loading of 4.2 mg cm(-2). It is found that DNA assembly plays a critical role in the enhanced supercapacitor performance. This is because while DNA molecules functionalize carbon nanotubes (CNTs) via π-π stacking, their hydrophilic sugar-phosphate backbones also promote the dispersion of CNTs. The resultant CNTs@DNA chains can link multiple MnO2 spheres to form a networked architecture that facilitates charge transfer and effective MnO2 utilization. The improved performance of the asymmetric supercapacitors indicates that DNA-assisted assembly offers a promising approach to the fabrication of high-performance energy storage devices. PMID:24469241

  19. Tunable core-shell single-walled carbon nanotube-Cu2S networked nanocomposites as high-performance cathodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Meng, Xiangbo; Riha, Shannon C.; Libera, Joseph A.; Wu, Qingliu; Wang, Hsien-Hau; Martinson, Alex B. F.; Elam, Jeffrey W.

    2015-04-01

    In this study, nanoscale copper(I) sulfide (n-Cu2S) was deposited over networks of single-walled carbon nanotubes (SWCNTs) by atomic layer deposition (ALD). This synthetic route provides a high degree of control for tuning the materials properties. The resulting core-shell SWCNT-n-Cu2S composite structure ensures an intimate contact between the two components while maintaining a high porosity for efficient transport of charges. Indeed, electrochemical testing demonstrates that these nanocomposites are promising as cathodes in lithium-ion batteries (LIBs), exhibiting excellent stability over 200 discharge-charge cycles with a sustainable, high capacity of 260 mAh g-1 (92% of the theoretical value in terms of Cu2S) and >99% Coulombic efficiency. This work establishes a general strategy for developing high-performance nanoscale electrode materials.

  20. Hierarchical porous nanocomposite architectures from multi-wall carbon nanotube threaded mesoporous NaTi2(PO4)3 nanocrystals for high-performance sodium electrodes

    NASA Astrophysics Data System (ADS)

    Xu, G. B.; Yang, L. W.; Wei, X. L.; Ding, J. W.; Zhong, J. X.; Chu, P. K.

    2016-09-01

    Rational design and self-assembly of nanostructured electrode materials for high-performance energy-storage devices is highly desirable but still challenging. Herein, we design and synthesize hierarchical porous nanocomposite architectures consisting of mesoporous NaTi2(PO4)3 (MNTP) nanocrystals (NCs) with a pore size of about 10 nm and multi-wall carbon nanotube (MWCNT) networks for high-performance sodium ion batteries (SIBs). Our strategy is based on the hetero-assembly of MWCNTs and nanostructured building units by utilizing the screening effect of electrostatic repulsion in a solution engineered ionic strength using highly soluble ammonium salt to form three-dimensional hierarchical assemblies of MWCNT networks and packed MNTP NCs. Subsequent freeze-drying and calcination convert the assemblies into robust hierarchical porous MWCNTs-threaded particles. Calcination of residual ammonium salt introduces nitrogen into the MWCNTs. Such nanoarchitecture enhances electron/ion conductivity and structural stability as anode materials for SIBs. The nanocomposite has high initial Coulombic efficiency of 99%, high rate capability of 74.0 mAhg-1 at 50C, as well as long-term cycling stability with capacity retention of 74.3 mAhg-1 after 2000 cycles with only 0.012% loss per cycle at 10C. The results provide a general and scalable hetero-assembly approach to different types of nanocomposites for high-performance energy storage devices such as LIBs and SIBs.

  1. Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Li; Kong, Weibang; Wu, Hengcai; Wu, Yang; Wang, Datao; Zhao, Fei; Jiang, Kaili; Li, Qunqing; Wang, Jiaping; Fan, Shoushan

    2015-12-01

    Mesoporous lithium titanate (LTO) nanoclusters are in situ synthesized in a network of super aligned carbon nanotubes (SACNTs) via a solution-based method followed by heat treatment in air. In the LTO-CNT composite, SACNTs not only serve as the skeleton to support a binder-free electrode, but also render the composite with high conductivity, flexibility, and mechanical strength. The homogeneously dispersed LTO nanoclusters among the SACNTs allow each LTO grain to effectively access the electrolyte and the conductive network, benefiting both ion and electron transport. By the incorporation of LTO into the CNT network, mechanical reinforcement is also achieved. When serving as a negative electrode for lithium ion batteries, such a robust composite-network architecture provides the electrodes with effective charge transport and structural integrity, leading to high-performance flexible electrodes with high capacity, high rate capability, and excellent cycling stability.Mesoporous lithium titanate (LTO) nanoclusters are in situ synthesized in a network of super aligned carbon nanotubes (SACNTs) via a solution-based method followed by heat treatment in air. In the LTO-CNT composite, SACNTs not only serve as the skeleton to support a binder-free electrode, but also render the composite with high conductivity, flexibility, and mechanical strength. The homogeneously dispersed LTO nanoclusters among the SACNTs allow each LTO grain to effectively access the electrolyte and the conductive network, benefiting both ion and electron transport. By the incorporation of LTO into the CNT network, mechanical reinforcement is also achieved. When serving as a negative electrode for lithium ion batteries, such a robust composite-network architecture provides the electrodes with effective charge transport and structural integrity, leading to high-performance flexible electrodes with high capacity, high rate capability, and excellent cycling stability. Electronic supplementary information

  2. Applications of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ajayan, Pulickel M.; Zhou, Otto Z.

    Carbon nanotubes have attracted the fancy of many scientists worldwide. The small dimensions, strength and the remarkable physical properties of these structures make them a very unique material with a whole range of promising applications. In this review we describe some of the important materials science applications of carbon nanotubes. Specifically we discuss the electronic and electrochemical applications of nanotubes, nanotubes as mechanical reinforcements in high performance composites, nanotube-based field emitters, and their use as nanoprobes in metrology and biological and chemical investigations, and as templates for the creation of other nanostructures. Electronic properties and device applications of nanotubes are treated elsewhere in the book. The challenges that ensue in realizing some of these applications are also discussed from the point of view of manufacturing, processing, and cost considerations.

  3. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3 O4 and NiO nanoparticles.

    PubMed

    Su, Fenghua; Lv, Xiaoming; Miao, Menghe

    2015-02-18

    Yarn supercapacitors are promising power sources for flexible electronic applications that require conventional fabric-like durability and wearer comfort. Carbon nanotube (CNT) yarn is an attractive choice for constructing yarn supercapacitors used in wearable textiles because of its high strength and flexibility. However, low capacitance and energy density limits the use of pure CNT yarn in wearable high-energy density devices. Here, transitional metal oxide pseudocapacitive materials NiO and Co3 O4 are deposited on as-spun CNT yarn surface using a simple electrodeposition process. The Co3 O4 deposited on the CNT yarn surface forms a uniform hybridized CNT@Co3 O4 layer. The two-ply supercapacitors formed from the CNT@Co3 O4 composite yarns display excellent electrochemical properties with very high capacitance of 52.6 mF cm(-2) and energy density of 1.10 μWh cm(-2) . The high performance two-ply CNT@Co3 O4 yarn supercapacitors are mechanically and electrochemically robust to meet the high performance requirements of power sources for wearable electronics.

  4. Synergistic effect of carbon nanofiber/nanotube composite catalyst on carbon felt electrode for high-performance all-vanadium redox flow battery.

    PubMed

    Park, Minjoon; Jung, Yang-jae; Kim, Jungyun; Lee, Ho il; Cho, Jeaphil

    2013-10-01

    Carbon nanofiber/nanotube (CNF/CNT) composite catalysts grown on carbon felt (CF), prepared from a simple way involving the thermal decomposition of acetylene gas over Ni catalysts, are studied as electrode materials in a vanadium redox flow battery. The electrode with the composite catalyst prepared at 700 °C (denoted as CNF/CNT-700) demonstrates the best electrocatalytic properties toward the V(2+)/V(3+) and VO(2+)/VO2(+) redox couples among the samples prepared at 500, 600, 700, and 800 °C. Moreover, this composite electrode in the full cell exhibits substantially improved discharge capacity and energy efficiency by ~64% and by ~25% at 40 mA·cm(-2) and 100 mA·cm(-2), respectively, compared to untreated CF electrode. This outstanding performance is due to the enhanced surface defect sites of exposed edge plane in CNF and a fast electron transfer rate of in-plane side wall of the CNT.

  5. Coating of α-MoO3 on nitrogen-doped carbon nanotubes by electrodeposition as a high-performance cathode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Liu, Xiaojiang; Wang, Ruilin; Mi, Rui; Li, Shaomin; Cui, Yanhua; Deng, Yafeng; Mei, Jun; Liu, Hao

    2015-01-01

    In this work, α-MoO3 nanoparticles are grown on the surface of nitrogen doped carbon nanotubes (N-CNTs) via a facile electrodeposition method. The morphology of as-prepared nanocomposite shows that the interconnected α-MoO3 nanoparticles are homogeneously distributed on the surface of N-CNTs. When investigated as a cathode material for lithium ion batteries, the nanocomposite reveals a high reversible discharge capacity of 250 mA h g-1 at a current density of 30 mA g-1, simultaneously with good cycling performance and excellent rate capability compared with pristine MoO3 powder. Kinetics of this process is investigated by electrochemical impedance spectroscopy to understand the difference in electrochemical performance and the interface properties between the α-MoO3/N-CNTs nanocomposite and pristine MoO3 powder electrode. The correlation between the unique structural features of α-MoO3/N-CNTs nanocomposite and its excellent electrochemical performance is also discussed. The excellent performance makes the as-prepared α-MoO3/N-CNTs nanocomposite a promising cathode material for high-performance lithium ion batteries.

  6. Designing electrochemical interfaces with functionalized magnetic nanoparticles and wrapped carbon nanotubes as platforms for the construction of high-performance bienzyme biosensors.

    PubMed

    Eguílaz, Marcos; Villalonga, Reynaldo; Yáñez-Sedeño, Paloma; Pingarrón, José M

    2011-10-15

    The design of a novel biosensing electrode surface, combining the advantages of magnetic ferrite nanoparticles (MNPs) functionalized with glutaraldehyde (GA) and poly(diallyldimethylammonium chloride) (PDDA)-coated multiwalled carbon nanotubes (MWCNTs) as platforms for the construction of high-performance multienzyme biosensors, is reported in this work. Before the immobilization of enzymes, GA-MNP/PDDA/MWCNT composites were prepared by wrapping of carboxylated MWCNTs with positively charged PDDA and interaction with GA-functionalized MNPs. The nanoconjugates were characterized by scanning electron microscopy (SEM) and electrochemistry. The electrode platform was used to construct a bienzyme biosensor for the determination of cholesterol, which implied coimmobilization of cholesterol oxidase (ChOx) and peroxidase (HRP) and the use of hydroquinone as redox mediator. Optimization of all variables involved in the preparation and analytical performance of the bienzyme electrode was accomplished. At an applied potential of -0.05 V, a linear calibration graph for cholesterol was obtained in the 0.01-0.95 mM concentration range. The detection limit (0.85 μM), the apparent Michaelis-Menten constant (1.57 mM), the stability of the biosensor, and the calculated activation energy can be advantageously compared with the analytical characteristics of other CNT-based cholesterol biosensors reported in the literature. Analysis of human serum spiked with cholesterol at different concentration levels yielded recoveries between 100% and 103%

  7. Carbon nanotubes-reinforced hollow fibre solid-phase microextraction coupled with high performance liquid chromatography for the determination of carbamate pesticides in apples.

    PubMed

    Song, Xin-Yue; Shi, Yan-Ping; Chen, Juan

    2013-08-15

    An effective and sensitive method to determinate five carbamate pesticides in apples was developed by using carbon nanotubes-reinforced hollow fibre solid-phase microextraction (CNTs-HF-SPME) combined with high performance liquid chromatography-photodiode array detection (HPLC-DAD). The CNTs were dispersed in water via adding surfactant, and then were held in the pores of HF supported by capillary forces and sonification. The SPME device, which was wetted with 1-octanol, was placed in a stirred apple samples to extract target analytes. After extraction, analytes were desorbed and analyzed using HPLC-DAD. Under the optimized extraction conditions, the enrichment factors were achieved in the range from 49 to 308 with good inter-fibre repeatability and batch-to-batch reproducibility, while good linearity ranges and recoveries were obtained. The limits of detection ranged from 0.09 to 6.00 ng/g. Therefore, the results demonstrated that this novel method was an efficient pretreatment and enrichment procedure for the determination of trace carbamate pesticides in apples.

  8. A layer-nanostructured assembly of PbS quantum dot/multiwalled carbon nanotube for a high-performance photoswitch

    PubMed Central

    Feng, Wei; Qin, Chengqun; Shen, Yongtao; Li, Yu; Luo, Wen; An, Haoran; Feng, Yiyu

    2014-01-01

    A layered nanostructure of a lead sulfide (PbS) quantum dot (QD)/multi-walled carbon nanotube (MWNT) hybrid was prepared by the electrostatic assembly after the phase transfer of PbS QDs from an organic to an aqueous phase. Well-crystallized PbS QDs with a narrow diameter (5.5 nm) was mono-dispersed on the sidewalls of MWNT by the electrostatic adsorption. Near-infrared absorption of PbS/MWNT nanostructures was improved and controlled by the packing density of PbS QDs. Efficient charge transfer between PbS and MWNT at the interface resulted in a remarkable quenching of photoluminescence up to 28.6% and a blue-shift of emission band by 300 nm. This feature was facilitated by band energy levels based on the intimate contact through the electrostatic interaction. Two-terminal devices using PbS/MWNT nanostructures showed an excellent on/off switching photocurrent and good stability during 20 cycles under light illumination due to electron transfer from PbS to MWNT. The photoswitch exhibited a high photo sensitivity up to 31.3% with the photocurrent of 18.3 μA under the light of 3.85 mW/cm2, which outperformed many QD/carbon-based nanocomposites. Results indicate that the electrostatic layered assembly of QD/MWNT nanostructure is an excellent platform for the fabrication of high-performance optoelectronic devices. PMID:24445285

  9. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film.

    PubMed

    Shrestha, Bishnu Kumar; Ahmad, Rafiq; Mousa, Hamouda M; Kim, In-Gi; Kim, Jeong In; Neupane, Madhav Prasad; Park, Chan Hee; Kim, Cheol Sang

    2016-11-15

    A highly electroactive bio-nanohybrid film of polypyrrole (PPy)-Nafion (Nf)-functionalized multi-walled carbon nanotubes (fMWCNTs) nanocomposite was prepared on the glassy carbon electrode (GCE) by a facile one-step electrochemical polymerization technique followed by chitosan-glucose oxidase (CH-GOx) immobilization on its surface to achieve a high-performance glucose biosensor. The as-fabricated nanohybrid composite provides high surface area for GOx immobilization and thus enhances the enzyme-loading efficiency. The structural characterization revealed that the PPy-Nf-fMWCNTs nanocomposite films were uniformly formed on GCE and after GOx immobilization, the surface porosities of the film were decreased due to enzyme encapsulation inside the bio-nanohybrid composite materials. The electrochemical behavior of the fabricated biosensor was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry measurements. The results indicated an excellent catalytic property of bio-nanohybrid film for glucose detection with improved sensitivity of 2860.3μAmM(-1)cm(-2), the linear range up to 4.7mM (R(2)=0.9992), and a low detection limit of 5μM under a signal/noise (S/N) ratio of 3. Furthermore, the resulting biosensor presented reliable selectivity, better long-term stability, good repeatability, reproducibility, and acceptable measurement of glucose concentration in real serum samples. Thus, this fabricated biosensor provides an efficient and highly sensitive platform for glucose sensing and can open up new avenues for clinical applications. PMID:27485503

  10. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film.

    PubMed

    Shrestha, Bishnu Kumar; Ahmad, Rafiq; Mousa, Hamouda M; Kim, In-Gi; Kim, Jeong In; Neupane, Madhav Prasad; Park, Chan Hee; Kim, Cheol Sang

    2016-11-15

    A highly electroactive bio-nanohybrid film of polypyrrole (PPy)-Nafion (Nf)-functionalized multi-walled carbon nanotubes (fMWCNTs) nanocomposite was prepared on the glassy carbon electrode (GCE) by a facile one-step electrochemical polymerization technique followed by chitosan-glucose oxidase (CH-GOx) immobilization on its surface to achieve a high-performance glucose biosensor. The as-fabricated nanohybrid composite provides high surface area for GOx immobilization and thus enhances the enzyme-loading efficiency. The structural characterization revealed that the PPy-Nf-fMWCNTs nanocomposite films were uniformly formed on GCE and after GOx immobilization, the surface porosities of the film were decreased due to enzyme encapsulation inside the bio-nanohybrid composite materials. The electrochemical behavior of the fabricated biosensor was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry measurements. The results indicated an excellent catalytic property of bio-nanohybrid film for glucose detection with improved sensitivity of 2860.3μAmM(-1)cm(-2), the linear range up to 4.7mM (R(2)=0.9992), and a low detection limit of 5μM under a signal/noise (S/N) ratio of 3. Furthermore, the resulting biosensor presented reliable selectivity, better long-term stability, good repeatability, reproducibility, and acceptable measurement of glucose concentration in real serum samples. Thus, this fabricated biosensor provides an efficient and highly sensitive platform for glucose sensing and can open up new avenues for clinical applications.

  11. Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@MnO2 perfect core-shell nanostructures for high-performance flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Jinyuan; Zhao, Hao; Mu, Xuemei; Chen, Jiayi; Zhang, Peng; Wang, Yaling; He, Yongmin; Zhang, Zhenxing; Pan, Xiaojun; Xie, Erqing

    2015-08-01

    This study reports the preparation of 3D hierarchical carbon nanotube (CNT) @MnO2 core-shell nanostructures under the assistance of polypyrrole (PPy). The as-prepared CNT@PPy@MnO2 core-shell structures show a perfect coating of MnO2 on each CNT and, more importantly, a robust bush-like pseudocapacitive shell to effectively increase the specific surface area and enhance the ion accessibility. As expected, a high specific capacity of 490-530 F g-1 has been achieved from CNT@PPy@MnO2 single electrodes. And about 98.5% of the capacity is retained after 1000 charge/discharge cycles at a current density of 5 A g-1. Furthermore, the assembled asymmetric CNT@PPy@MnO2//AC capacitors show the maximum energy density of 38.42 W h kg-1 (2.24 mW h cm-3) at a power density of 100 W kg-1 (5.83 mW cm-3), and they maintain 59.52% of the initial value at 10 000 W kg-1 (0.583 W cm-3). In addition, the assembled devices show high cycling stabilities (89.7% after 2000 cycles for asymmetric and 87.2% for symmetric), and a high bending stability (64.74% after 200 bending tests). This ability to obtain high energy densities at high power rates while maintaining high cycling stability demonstrates that this well-designed structure could be a promising electrode material for high-performance supercapacitors.This study reports the preparation of 3D hierarchical carbon nanotube (CNT) @MnO2 core-shell nanostructures under the assistance of polypyrrole (PPy). The as-prepared CNT@PPy@MnO2 core-shell structures show a perfect coating of MnO2 on each CNT and, more importantly, a robust bush-like pseudocapacitive shell to effectively increase the specific surface area and enhance the ion accessibility. As expected, a high specific capacity of 490-530 F g-1 has been achieved from CNT@PPy@MnO2 single electrodes. And about 98.5% of the capacity is retained after 1000 charge/discharge cycles at a current density of 5 A g-1. Furthermore, the assembled asymmetric CNT@PPy@MnO2//AC capacitors show the

  12. High performance ultracapacitors with carbon nanomaterials and ionic liquids

    DOEpatents

    Lu, Wen; Henry, Kent Douglas

    2012-10-09

    The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

  13. A simple L-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries.

    PubMed

    Park, Seung-Keun; Yu, Seung-Ho; Woo, Seunghee; Quan, Bo; Lee, Dong-Chan; Kim, Min Kun; Sung, Yung-Eun; Piao, Yuanzhe

    2013-02-21

    We introduce a simple process to synthesize few-layered MoS(2) nanosheets supported on coaxial carbon nanotubes through an L-cysteine-assisted hydrothermal route, in which L-cysteine, a cheap and ordinary amino acid, plays a fundamental role in controlling the morphology of the hybrid material and the binder to help the growth of MoS(2) nanosheets on the surface of the carbon nanotubes. It is also demonstrated that the polypeptide formed by L-cysteine can be transformed into amorphous carbon by heat treatment under an inert atmosphere. The materials exhibit high capacity and excellent cycling performance when used as anode materials for lithium ion batteries. The specific capacity of a composite with 1 : 4 molar ratio of MoS(2) to carbon nanotubes is 736.5 mAh g(-1) after the first cycle, increased for several initial cycles, and remains at 823.4 mAh g(-1) even after 30 cycles, when cycled at a current density of 100 mA g(-1). At a very high current density of 1600 mA g(-1), the material shows a stable capacity of approximately 530 mAh g(-1) after 30 cycles. The noteworthy improvement in the electrochemical performance of the material can be attributed to their unique structure and the synergistic effects of amorphous carbon and few-layered MoS(2).

  14. Carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  15. Facile synthesis of 3D silicon/carbon nanotube capsule composites as anodes for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yue, Xinyang; Sun, Wang; Zhang, Jing; Wang, Fang; Sun, Kening

    2016-10-01

    Carbon nanotubes have attracted widespread attention as ideal materials for Lithium-ion batteries (LIBs) due to their excellent conductivity, mechanical flexibility, chemical stability and extremely large surface area. Here, three-dimensional (3D) silicon/carbon nanotube capsule composites (Si/CNCs) are firstly prepared via water-in-oil (W/O) emulsion technique with more than 75 wt% loading amount of silicon. CNCs with unique hollow sphere structure act as a 3D interconnected conductive network skeleton, and the cross-linked carbon nanotubes (CNTs) of CNCs can effectively enhance the strength, flexibility and conductivity of the electrode. This Si/CNCs can not only alleviate the volume expansion, but also effectively improve the electrochemical performance of the LIBs. Such Si/CNCs electrode with the unique structure achieves a high initial discharge specific capacity of 2950 mAh g-1 and retains 1226 mAh g-1 after 100 cycles at 0.5 A g-1, as well as outstanding rate performance of 547 mAh g-1 at 10 A g-1.

  16. Multiwalled-carbon-nanotubes-based matrix solid-phase dispersion extraction coupled with high-performance liquid chromatography for the determination of honokiol and magnolol in Magnoliae Cortex.

    PubMed

    Zhang, Qi; Hong, Bo; Liu, Jianhua; Mu, Guangze; Cong, Huan; Li, Gang; Cai, Defu

    2014-06-01

    In this paper, multiwalled-carbon-nanotube-based matrix solid-phase dispersion coupled to HPLC with diode array detection was used to extract and determine honokiol and magnolol from Magnoliae Cortex. The extraction efficiency of the multiwalled-carbon-nanotube-based matrix solid-phase dispersion was studied and optimized as a function of the amount of dispersing sorbent, volume of elution solvent, and flow rate of elution solvent, with the aid of response surface methodology. An amount of 0.06 g of carboxyl-modified multiwalled carbon nanotubes and 1.5 mL of methanol at a flow rate of 1.1 mL/min were selected. The method obtained good linearity (r(2) > 0.9992) and precision (RSD < 4.7%) for honokiol and magnolol, with limits of detection of 0.045 and 0.087 μg/mL, respectively. The recoveries obtained from analyzing in triplicate spiked samples were determined to be from 90.23 to 101.10% and the RSDs from 3.5 to 4.8%. The proposed method that required less samples and reagents was simpler and faster than Soxhlet and maceration extraction methods. The optimized method was applied for analyzing five real samples collected from different cultivated areas.

  17. High-performance printed carbon nanotube thin-film transistors array fabricated by a nonlithography technique using hafnium oxide passivation layer and mask.

    PubMed

    Pillai, Suresh Kumar Raman; Chan-Park, Mary B

    2012-12-01

    The large-scale application of semiconducting single-walled carbon nanotubes (s-SWCNTs) for printed electronics requires scalable, repeateable, as well as noncontaminating assembly techniques. Previously explored nanotube deposition methods include serial methods such as inkjet printing and parallel methods such as spin-coating with photolithography. The serial methods are usually slow, whereas the photolithography-related parallel methods result in contamination of the nanotubes. In this paper, we report a reliable clean parallel method for fabrication of arrays of carbon nanotube-based field effect transistors (CNTFETs) involving shadow mask patterning of a passivating layer of Hafnium oxide (HfO(2)) over the nanotube (CNT) active channel regions and plasma etching of the unprotected nanotubes. Pure (99%) semiconducting SWCNTs are first sprayed over the entire surface of a wafer substrate followed by a two-step shadow masking procedure to first deposit metal electrodes and then a HfO(2) isolation/passivation layer over the device channel region. The exposed SWCNT network outside the HfO(2) protected area is removed with oxygen plasma etching. The HfO(2) thus serves as both the device isolation mask during the plasma etching and as a protective passivating layer in subsequent use. The fabricated devices on SiO(2)/Si substrate exhibit good device performance metrics, with on/off ratio ranging from 1 × 10(1) to 3 × 10(5) and mobilities of 4 to 23 cm(2)/(V s). The HfO(2)/Si devices show excellent performance with on/off ratios of 1 × 10(2) to 2 × 10(4) and mobilities of 8 to 56 cm(2)/(V s). The optimum devices (on HfO(2)/Si) have an on/off ratio of 1 × 10(4) and mobility as high as 46 cm(2)/(V s). This HfO(2)-based patterning method enables large scale fabrication of CNTFETs with no resist residue or other contamination on the device channel. Further, shadow masking circumvents the need for expensive and area-limited lithography patterning process. The device

  18. Facile stripping voltammetric determination of haloperidol using a high performance magnetite/carbon nanotube paste electrode in pharmaceutical and biological samples.

    PubMed

    Bagheri, Hasan; Afkhami, Abbas; Panahi, Yunes; Khoshsafar, Hosein; Shirzadmehr, Ali

    2014-04-01

    Multi-walled carbon nanotubes decorated with Fe3O4 nanoparticles were prepared to construct a novel sensor for the determination of haloperidol (Hp) by voltammetric methods. The morphology and properties of electrode surface were characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy. This modified sensor was used as a selective electrochemical sensor for the determination of trace amounts of Hp. The peak currents of differential pulse and square wave voltammograms of Hp increased linearly with its concentration in the ranges of 1.2×10(-3)-0.52 and 6.5×10(-4)-0.52μmol L(-1), respectively. The detection limits for Hp were 7.02×10(-4) and 1.33×10(-4)μmol L(-1) for differential pulse and square wave voltammetric methods, respectively. The results show that the combination of multi-walled carbon nanotubes and Fe3O4 nanoparticles causes a dramatic enhancement in the sensitivity of Hp quantification. This sensor was successfully applied to determine Hp in pharmaceutical samples and biological fluids. The fabricated electrode showed excellent reproducibility, repeatability and stability.

  19. Sulfur-impregnated 3D hierarchical porous nitrogen-doped aligned carbon nanotubes as high-performance cathode for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Deng, Weina; Hu, Aiping; Chen, Xiaohua; Zhang, Shiying; Tang, Qunli; Liu, Zheng; Fan, Binbin; Xiao, Kuikui

    2016-08-01

    A rational 3D hierarchical porous nitrogen-doped aligned carbon nanotubes (HPNACNTs) with well-directed 1D conductive electron paths is designed as scaffold to load sulfur. The HPNACNTs have abundant micropores, mesopores and macropores with a relatively high specific surface area and a large total pore volume. The sulfur-HPNACNTs composite is synthesized for lithium-sulfur batteries by a melt-diffusion of sulfur powders into HPNACNTs scaffolds. Electrochemical tests reveal that the sulfur-HPNACNTs (68.8 wt% sulfur) composite exhibits a high initial discharge capacity of 1340 mAh g-1 at 0.1 C and retains as high as 979 mAh g-1 at 0.2 C after 200 cycles. More importantly, it shows high reversible capacity at high rates (817 mAh g-1 at 5 C). Its enhanced electrochemical performance can be attributed to the excellent electrical conductivity of aligned carbon nanotubes, the synergetic effect of its hierarchical porosity and the restraint of the shuttle effect due to the SxLi … N interactions via the N lone-pair electron.

  20. Carbon nanotube nanoelectrode arrays

    DOEpatents

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  1. Growth of ultrathin MoS₂ nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes.

    PubMed

    Zhang, Shen; Yu, Xianbo; Yu, Hailong; Chen, Yujin; Gao, Peng; Li, Chunyan; Zhu, Chunling

    2014-12-24

    A hydrothermal method was developed to grow ultrathin MoS2 nanosheets, with an expanded spacing of the (002) planes, on carbon nanotubes. When used as a sodium-ion battery anode, the composite exhibited a specific capacity of 495.9 mAh g(-1), and 84.8% of the initial capacity was retained after 80 cycles, even at a current density of 200 mA g(-1). X-ray diffraction analyses show that the sodiation/desodiation mechanismis based on a conversion reaction. The high capacity and long-term stability at a high current ate demonstrate that the composite is a very promising candidate for use as an anode material in sodium-ion batteries.

  2. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.

    PubMed

    Vinayan, B P; Ramaprabhu, S

    2013-06-01

    The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications.

  3. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.

    PubMed

    Vinayan, B P; Ramaprabhu, S

    2013-06-01

    The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications. PMID:23644681

  4. Nonmagnetic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lipert, Kamil; Kretzschmar, Florian; Ritschel, Manfred; Leonhardt, Albrecht; Klingeler, Rüdiger; Büchner, Bernd

    2009-03-01

    We have synthesized by chemical vapor deposition (CVD) single-, double-, and multiwalled carbon nanotubes without magnetic impurities. In particular, we have applied a rhenium-based CVD technique yielding nonmagnetic carbon nanotubes with diamagnetic Re particles. In addition, carbon nanotubes prepared with iron as catalyst particles are annealed at very high temperatures in which the catalyst material is completely vaporized, while the carbon nanotubes are structurally preserved. Detailed magnetic studies show for both approaches a clear diamagnetic behavior typical for pure carbon nanotubes but no indication of ferromagnetic or paramagnetic material.

  5. Facile synthesis of high quality multi-walled carbon nanotubes on novel 3D KIT-6: application in high performance dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Balamurugan, Jayaraman; Pandurangan, Arumugam; Kim, Nam Hoon; Lee, Joong Hee

    2014-12-01

    A novel hard templating strategy for the synthesis of high quality multi-walled carbon nanotubes (MWCNTs) with a uniform diameter was developed. MWCNTs were successfully synthesized through chemical vapour deposition (CVD) using acetylene by employing 3D bicontinuous mesoporous silica (KIT-6) as a hard template and used as the counter electrode in dye-sensitized solar cells (DSSCs). Here, we report that Ni-Cr-KIT-6 and Co-Cr-KIT-6 systems are the most suitable catalysts for the growth of MWCNTs. Raman spectroscopy and TEM analysis revealed that the synthesized MWCNTs were of high quality and well graphitized. Impressively, DSSCs with a MWCNT counter electrode demonstrated high power conversion efficiencies (PCEs) of up to 10.53%, which was significantly higher than that of 9.87% obtained for a DSSC with a conventional Pt counter electrode. Moreover, MWCNTs had a charge transfer resistance (Rct) of only 0.74 Ω cm2 towards the I3-/I- electrolyte commonly applied in DSSCs, which is several orders of magnitude lower than that of a typical Pt electrode (2.78 Ω cm2). These results indicate that the synthesized MWCNT counter electrodes are versatile candidates that can increase the power conversion efficiency (PCE) of DSSCs.A novel hard templating strategy for the synthesis of high quality multi-walled carbon nanotubes (MWCNTs) with a uniform diameter was developed. MWCNTs were successfully synthesized through chemical vapour deposition (CVD) using acetylene by employing 3D bicontinuous mesoporous silica (KIT-6) as a hard template and used as the counter electrode in dye-sensitized solar cells (DSSCs). Here, we report that Ni-Cr-KIT-6 and Co-Cr-KIT-6 systems are the most suitable catalysts for the growth of MWCNTs. Raman spectroscopy and TEM analysis revealed that the synthesized MWCNTs were of high quality and well graphitized. Impressively, DSSCs with a MWCNT counter electrode demonstrated high power conversion efficiencies (PCEs) of up to 10.53%, which was

  6. In Situ Carbon-Doped Mo(Se0.85 S0.15 )2 Hierarchical Nanotubes as Stable Anodes for High-Performance Sodium-Ion Batteries.

    PubMed

    Shi, Zheng-Tian; Kang, Wenpei; Xu, Jun; Sun, Lian-Ling; Wu, Chunyan; Wang, Li; Yu, Yong-Qiang; Yu, Denis Y W; Zhang, Wenjun; Lee, Chun-Sing

    2015-11-11

    Sodium-ion batteries (SIBs) are promising energy storage devices, but suffer from poor cycling stability and low rate capability. In this work, carbon doped Mo(Se0.85 S0.15 )2 (i.e., Mo(Se0.85 S0.15 )2 :C) hierarchical nanotubes have been synthesized for the first time and serve as a robust and high-performance anode material. The hierarchical nanotubes with diameters of 300 nm and wall thicknesses of 50 nm consist of numerous 2D layered nanosheets, and can act as a robust host for sodiation/desodiation cycling. The Mo(Se0.85 S0.15 )2 :C hierarchical nanotubes deliver a discharge capacity of 360 mAh g(-1) at a high current density of 2000 mA g(-1) and keep a 81.8% capacity retention compared to that at a current density of 50 mA g(-1) , showing superior rate capability. Comparing with the second cycle discharge capacities, the nanotube anode can maintain capacities of 102.2%, 101.9%, and 97.8% after 100 cycles at current densities of 200, 500, and 1000 mA g(-1) , respectively. This work demonstrates the best cycling performance and high-rate sodium storage capabilities of MoSe2 for SIBs to date. The hollow interior, hierarchical organization, layered structure, and carbon doping are beneficial for fast Na(+) -ion and electron kinetics and are responsible for the stable cycling performance and high rate capabilities.

  7. High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique

    PubMed Central

    2014-01-01

    To obtain low sheet resistance, high optical transmittance, small open spaces in conductive networks, and enhanced adhesion of flexible transparent conductive films, a carbon nanotube (CNT)/silver nanowire (AgNW)-PET hybrid film was fabricated by mechanical pressing-transfer process at room temperature. The morphology and structure were characterized by scanning electron microscope (SEM) and atomic force microscope (AFM), the optical transmittance and sheet resistance were tested by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer and four-point probe technique, and the adhesion was also measured by 3M sticky tape. The results indicate that in this hybrid nanostructure, AgNWs form the main conductive networks and CNTs as assistant conductive networks are filled in the open spaces of AgNWs networks. The sheet resistance of the hybrid films can reach approximately 20.9 to 53.9 Ω/□ with the optical transmittance of approximately 84% to 91%. The second mechanical pressing step can greatly reduce the surface roughness of the hybrid film and enhance the adhesion force between CNTs, AgNWs, and PET substrate. This process is hopeful for large-scale production of high-end flexible transparent conductive films. PMID:25386105

  8. A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Chunli; Zheng, Xuan; Liu, Hai; Wang, Guangjin; Cheng, Fan; Zheng, Genwen; Wen, Sheng; Law, Wing-Cheung; Tsui, Chi-Pong; Tang, Chak-Yin

    2016-09-01

    Remarkable progress has been made on the use of polymer electrolyte membranes (PEMs) for renewable-energy-related research. In particular, carbon nanotubes (CNTs) have emerged as versatile nanomaterials to modify PEMs. However, the inert ionic conduction ability and possible short-circuiting risk are the two major obstacles to their further development. In this work, CNTs are firstly functionalized with an inorganic proton conductor, boron phosphate (BPO4), using a facile polydopamine-assisted sol-gel method to yield BPO4@CNTs. This new additive is then used to modify sulfonated poly(ether ether ketone) (SPEEK). Polydopamine coating layer can act as an extraordinary glue to homogeneously adhere BPO4 nanoparticles on CNTs, thereby not only reducing the risk of short-circuiting, but also fabricating new proton-conducting pathways in the composite membranes. A comprehensive characterization reveals that the thermal stability, tensile properties, and dimensional stability of PEMs are significantly improved. Compared with pure SPEEK, the proton conductivity of SPEEK/BPO4@CNTs-2 is improved by 45% and 150% at 20 °C and at 80 °C, respectively. Furthermore, the H2/O2 cell performance of SPEEK/BPO4@CNTs-2 membrane exhibits a peak power density of 340.7 mW cm-2 at 70 °C, which is significantly better than that of pure SPEEK (254.2 mW cm-2), demonstrating the great potential of proton conductors-functionalized CNTs in PEMs.

  9. BaFe12O19-chitosan Schiff-base Ag (I) complexes embedded in carbon nanotube networks for high-performance electromagnetic materials

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Xie, Yu; Guan, Dongsheng; Hua, Helin; Zhong, Rong; Qin, Yuancheng; Fang, Jing; Liu, Huilong; Chen, Junhong

    2015-07-01

    The multiwalled carbon nanotubes/BaFe12O19-chitosan (MCNTs/BF-CS) Schiff base Ag (I) complex composites were synthesized successfully by a chemical bonding method. The morphology and structures of the composites were characterized with electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction techniques. Their conductive properties were measured using a four-probe conductivity tester at room temperature, and their magnetic properties were tested by a vibrating sample magnetometer. The results show that the BF-CS Schiff base Ag (I) complexes are embedded into MCNT networks. When the mass ratio of MCNTs and BF-CS Schiff base is 0.95:1, the conductivity, Ms (saturation magnetization), Mr (residual magnetization), and Hc (coercivity) of the BF-CS Schiff base composites reach 1.908 S cm-1, 28.20 emu g-1, 16.66 emu g-1 and 3604.79 Oe, respectively. Finally, a possible magnetic mechanism of the composites has also been proposed.

  10. Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Sun, Li; Kong, Weibang; Li, Mengya; Wu, Hengcai; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan

    2016-02-01

    Cross-stacked carbon nanotube (CNT) film is proposed as an additional built-in current collector and adsorption layer in sulfur cathodes for advanced lithium sulfur (Li-S) batteries. On one hand, the CNT film with high conductivity, microstructural rough surface, high flexibility and mechanical durability retains stable and direct electronic contact with the sulfur cathode materials, therefore decreasing internal resistivity and suppressing polarization of the cathode. On the other hand, the highly porous structure and the high surface area of the CNT film provide abundant adsorption points to support and confine sulfur cathode materials, alleviate their aggregation and promote high sulfur utilization. Moreover, the lightweight and compact structure of the CNT film adds no extra weight or volume to the sulfur cathode, benefitting the improvement of energy densities. Based on these characteristics, the sulfur cathode with a 100-layer cross-stacked CNT film presents excellent rate performances with capacities of 986, 922 and 874 mAh g-1 at cycling rates of 0.2C, 0.5C and 1C for sulfur loading of 60 wt%, corresponding to an improvement of 52%, 109% and 146% compared to that without a CNT film. Promising cycling performances are also demonstrated, offering great potential for scaled-up production of sulfur cathodes for Li-S batteries.

  11. Engineered Molecular Chain Ordering in Single-Walled Carbon Nanotubes/Polyaniline Composite Films for High-Performance Organic Thermoelectric Materials.

    PubMed

    Wang, Liming; Yao, Qin; Xiao, Juanxiu; Zeng, Kaiyang; Qu, Sanyin; Shi, Wei; Wang, Qun; Chen, Lidong

    2016-06-21

    Single-walled carbon nanotubes (SWNTs)/polyaniline (PANI) composite films with enhanced thermoelectric properties were prepared by combining in situ polymerization and solution processing. Conductive atomic force microscopy and X-ray diffraction measurements confirmed that solution processing and strong π-π interactions between the PANI and SWNTs induced the PANI molecules to form a highly ordered structure. The improved degree of order of the PANI molecular arrangement increased the carrier mobility and thereby enhanced the electrical transport properties of PANI. The maximum in-plane electrical conductivity and power factor of the SWNTs/PANI composite films reached 1.44×10(3)  S cm(-1) and 217 μW m(-1)  K(-2) , respectively, at room temperature. Furthermore, a thermoelectric generator fabricated with the SWNTs/PANI composite films showed good electric generation ability and stability. A high power density of 10.4 μW cm(-2)  K(-1) was obtained, which is superior to most reported results obtained in organic thermoelectric modules. PMID:27123885

  12. Engineered Molecular Chain Ordering in Single-Walled Carbon Nanotubes/Polyaniline Composite Films for High-Performance Organic Thermoelectric Materials.

    PubMed

    Wang, Liming; Yao, Qin; Xiao, Juanxiu; Zeng, Kaiyang; Qu, Sanyin; Shi, Wei; Wang, Qun; Chen, Lidong

    2016-06-21

    Single-walled carbon nanotubes (SWNTs)/polyaniline (PANI) composite films with enhanced thermoelectric properties were prepared by combining in situ polymerization and solution processing. Conductive atomic force microscopy and X-ray diffraction measurements confirmed that solution processing and strong π-π interactions between the PANI and SWNTs induced the PANI molecules to form a highly ordered structure. The improved degree of order of the PANI molecular arrangement increased the carrier mobility and thereby enhanced the electrical transport properties of PANI. The maximum in-plane electrical conductivity and power factor of the SWNTs/PANI composite films reached 1.44×10(3)  S cm(-1) and 217 μW m(-1)  K(-2) , respectively, at room temperature. Furthermore, a thermoelectric generator fabricated with the SWNTs/PANI composite films showed good electric generation ability and stability. A high power density of 10.4 μW cm(-2)  K(-1) was obtained, which is superior to most reported results obtained in organic thermoelectric modules.

  13. BaFe12O19-chitosan Schiff-base Ag (I) complexes embedded in carbon nanotube networks for high-performance electromagnetic materials

    PubMed Central

    Zhao, Jie; Xie, Yu; Guan, Dongsheng; Hua, Helin; Zhong, Rong; Qin, Yuancheng; Fang, Jing; Liu, Huilong; Chen, Junhong

    2015-01-01

    The multiwalled carbon nanotubes/BaFe12O19-chitosan (MCNTs/BF-CS) Schiff base Ag (I) complex composites were synthesized successfully by a chemical bonding method. The morphology and structures of the composites were characterized with electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction techniques. Their conductive properties were measured using a four-probe conductivity tester at room temperature, and their magnetic properties were tested by a vibrating sample magnetometer. The results show that the BF-CS Schiff base Ag (I) complexes are embedded into MCNT networks. When the mass ratio of MCNTs and BF-CS Schiff base is 0.95:1, the conductivity, Ms (saturation magnetization), Mr (residual magnetization), and Hc (coercivity) of the BF-CS Schiff base composites reach 1.908 S cm−1, 28.20 emu g−1, 16.66 emu g−1 and 3604.79 Oe, respectively. Finally, a possible magnetic mechanism of the composites has also been proposed. PMID:26218269

  14. Facile synthesis of high quality multi-walled carbon nanotubes on novel 3D KIT-6: application in high performance dye-sensitized solar cells.

    PubMed

    Balamurugan, Jayaraman; Pandurangan, Arumugam; Kim, Nam Hoon; Lee, Joong Hee

    2015-01-14

    A novel hard templating strategy for the synthesis of high quality multi-walled carbon nanotubes (MWCNTs) with a uniform diameter was developed. MWCNTs were successfully synthesized through chemical vapour deposition (CVD) using acetylene by employing 3D bicontinuous mesoporous silica (KIT-6) as a hard template and used as the counter electrode in dye-sensitized solar cells (DSSCs). Here, we report that Ni-Cr-KIT-6 and Co-Cr-KIT-6 systems are the most suitable catalysts for the growth of MWCNTs. Raman spectroscopy and TEM analysis revealed that the synthesized MWCNTs were of high quality and well graphitized. Impressively, DSSCs with a MWCNT counter electrode demonstrated high power conversion efficiencies (PCEs) of up to 10.53%, which was significantly higher than that of 9.87% obtained for a DSSC with a conventional Pt counter electrode. Moreover, MWCNTs had a charge transfer resistance (Rct) of only 0.74 Ω cm(2) towards the I3(-)/I(-) electrolyte commonly applied in DSSCs, which is several orders of magnitude lower than that of a typical Pt electrode (2.78 Ω cm(2)). These results indicate that the synthesized MWCNT counter electrodes are versatile candidates that can increase the power conversion efficiency (PCE) of DSSCs. PMID:25429647

  15. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications

    NASA Astrophysics Data System (ADS)

    Vinayan, B. P.; Ramaprabhu, S.

    2013-05-01

    The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications.The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene

  16. Effervescence and graphitized multi-walled carbon nanotubes assisted microextraction for natural antioxidants by ultra high performance liquid chromatography with electrochemical detection and quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Wang, Shu-Ling; Pang, Xiao-Qing; Cao, Jun; Cao, Wan; Xu, Jing-Jing; Zhu, Qiong-Yao; Zhang, Qian-Yun; Peng, Li-Qing

    2015-10-30

    In this article, effervescence and graphitized multi-walled carbon nanotubes assisted microextraction was first developed for the extraction of antioxidants in hawthorn samples. The use of an effervescent tablet composed of sodium dihydrogen phosphate, sodium carbonate and micro-scale carboxyl graphitized multi-walled carbon nanotubes (extraction sorbent) was the core of the method. In this study, ultra high performance liquid chromatography coupled with electrochemical detection and quadrupole time-of-flight tandem mass spectrometry was performed for qualitative and quantitative analyses of target analytes in hawthorn foodstuffs. Several experimental factors, such as amount of effervescent salts, the sorbent, elution time and elution solvent, were systematically assessed. Under the optimized conditions, a good linearity with R values better than 0.9980 was obtained. The detection limits estimated at a signal-to-noise ratio of 3:1 were ranging from 0.01 to 0.18ng/mL. These results suggested that the proposed method could be an alternative and promising sample preparation tool in future food analysis.

  17. Functionalized Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Lebron, Marisabel; Mintz, Eric; Meador, Michael A.; Hull, David R.; Scheiman, Daniel A.; Willis, Peter; Smalley, Richard E.

    2001-01-01

    Carbon nanotubes have created a great deal of excitement in the Materials Science community because of their outstanding mechanical, electrical, and thermal properties. Use of carbon nanotubes as reinforcements for polymers could lead to a new class of composite materials with properties, durability, and performance far exceeding that of conventional fiber reinforced composites. Organized arrays of carbon nanotubes, e.g., nanotube monolayers, could find applications as thermal management materials, light emitting devices, and sensor arrays. Carbon nanotubes could also be used as templates upon which nanotubes from other materials could be constructed. Successful use of carbon nanotubes in any of these potential applications requires the ability to control the interactions of nanotubes with each other and with other materials, e.g., a polymer matrix. One approach to achieving this control is to attach certain chemical groups to the ends and/or side-walls of the nanotubes. The nature of these chemical groups can be varied to achieve the desired result, such as better adhesion between the nanotubes and a polymer. Under a joint program between NASA Glenn, Clark Atlanta University, and Rice University researchers are working on developing a chemistry "tool-kit" that will enable the functionalization of carbon nanotubes with a variety of chemical groups. Recent results of this effort will be discussed.

  18. High performance pitch-based carbon fiber

    SciTech Connect

    Tadokoro, Hiroyuki; Tsuji, Nobuyuki; Shibata, Hirotaka; Furuyama, Masatoshi

    1996-12-31

    The high performance pitch-based carbon fiber with smaller diameter, six micro in developed by Nippon Graphite Fiber Corporation. This fiber possesses high tensile modulus, high tensile strength, excellent yarn handle ability, low thermal expansion coefficient, and high thermal conductivity which make it an ideal material for space applications such as artificial satellites. Performance of this fiber as a reinforcement of composites was sufficient. With these characteristics, this pitch-based carbon fiber is expected to find wide variety of possible applications in space structures, industrial field, sporting goods and civil infrastructures.

  19. Reinforced Carbon Nanotubes.

    SciTech Connect

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  20. NiCo2S4 nanotube arrays grown on flexible nitrogen-doped carbon foams as three-dimensional binder-free integrated anodes for high-performance lithium-ion batteries.

    PubMed

    Wu, Xiaoyu; Li, Songmei; Wang, Bo; Liu, Jianhua; Yu, Mei

    2016-02-14

    Binary metal sulfides, especially NiCo2S4, hold great promise as anode materials for high-performance lithium-ion batteries because of their excellent electronic conductivity and high capacity compared to mono-metal sulfides and oxides. Here, NiCo2S4 nanotube arrays are successfully grown on flexible nitrogen-doped carbon foam (NDCF) substrates with robust adhesion via a facile surfactant-assisted hydrothermal route and the subsequent sulfurization treatment. The obtained NiCo2S4/NDCF composites show unique three-dimensional architectures, in which NiCo2S4 nanotubes of ∼5 μm in length and 100 nm in width are uniformly grown on the NDCF skeletons to form arrays. When used directly as integrated anodes for lithium-ion batteries without any conductive additives and binders, the NiCo2S4/NDCF composites exhibit a high reversible capacity of 1721 mA h g(-1) at a high current density of 500 mA g(-1), enhanced cycling performance with the capacity maintained at 1182 mA h g(-1) after 100 cycles, and a remarkable rate capability. The excellent lithium storage performances of the composites could be attributed to the unique material composition, a rationally designed hollow nanostructure and an integrated smart architecture, which offer fast electron transport and ion diffusion, enhanced material/-electrolyte contact area and facile accommodation of strains during the lithium insertion and extraction process.

  1. Determination of type A trichothecenes in coix seed by magnetic solid-phase extraction based on magnetic multi-walled carbon nanotubes coupled with ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Dong, Maofeng; Si, Wenshuai; Wang, Weimin; Bai, Bing; Nie, Dongxia; Song, Weiguo; Zhao, Zhihui; Guo, Yirong; Han, Zheng

    2016-09-01

    Magnetic solid-phase extraction (m-SPE) is a promising sample preparation approach due to its convenience, speed, and simplicity. For the first time, a rapid and reliable m-SPE approach using magnetic multi-walled carbon nanotubes (m-MWCNTs) as the adsorbent was proposed for purification of type A trichothecenes including T-2 toxins (T2), HT-2 toxins (HT-2), diacetoxyscirpenol (DAS), and neosolaniol (NEO) in coix seed. The m-MWCNTs were synthesized by assembling the magnetic nanoparticles (Fe3O4) with MWCNTs by sonication through an aggregation wrap mechanism, and characterized by transmission electron microscope. Several key parameters affecting the performance of the procedure were extensively investigated including extraction solutions, desorption solvents, and m-MWCNT amounts. Under the optimal sample preparation conditions followed by analysis with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), high sensitivity (limit of quantification in the range of 0.3-1.5 μg kg(-1)), good linearity (R (2) > 0.99), satisfactory recovery (73.6-90.6 %), and acceptable precision (≤2.5 %) were obtained. The analytical performance of the developed method has also been successfully evaluated in real coix seed samples. Graphical Abstract Flow chart of determination of type A trichothecenes in coix seed by magnetic solid-phase extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry.

  2. Naturally produced carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Velasco-Santos, C.; Martínez-Hernández, A. L.; Consultchi, A.; Rodríguez, R.; Castaño, V. M.

    2003-05-01

    Carbon nanotubes represent an impressive kind of materials with diverse unexpected properties, and different methods to artificially produce them have been developed. Recently, they have also been synthesized at low temperatures, demonstrating that these materials might exist in fluids or carbon rocks of the Earth's crust. A new type of natural encapsulated carbon nanotubes found in a coal-petroleum mix is presented. These findings show that all allotropic carbon forms known up to date can be produced in Nature, where pressure, catalysts particles, shear stress and parameters other than exclusively very high temperature, seem to play an important role for producing nanotubes.

  3. Hemotoxicity of carbon nanotubes.

    PubMed

    Bussy, Cyrill; Methven, Laura; Kostarelos, Kostas

    2013-12-01

    Carbon nanotubes may enter into the bloodstream and interact with blood components indirectly via translocation following unintended exposure or directly after an intended administration for biomedical purposes. Once introduced into systemic circulation, nanotubes will encounter various proteins, biomolecules or cells which have specific roles in the homeostasis of the circulatory system. It is therefore essential to determine whether those interactions will lead to adverse effects or not. Advances in the understanding of how carbon nanotubes interact with blood proteins, the complement system, red blood cells and the hemostatic system are reviewed in this article. While many studies on carbon nanotube health risk assessment and their biomedical applications have appeared in the last few years, reports on the hemocompatibility of these nanomaterials remain surprisingly limited. Yet, defining the hemotoxicological profile is a mandatory step toward the development of clinically-relevant medications or contrast agents based on carbon nanotubes.

  4. Comparison between magnetic and non magnetic multi-walled carbon nanotubes-dispersive solid-phase extraction combined with ultra-high performance liquid chromatography for the determination of sulfonamide antibiotics in water samples.

    PubMed

    Herrera-Herrera, Antonio V; Hernández-Borges, Javier; Afonso, María M; Palenzuela, J Antonio; Rodríguez-Delgado, Miguel Ángel

    2013-11-15

    In this manuscript, a new method based on the use of off-line dispersive solid-phase extraction (dSPE) combined with ultra-high performance liquid chromatography with diode-array detection was developed to determine 11 sulfonamide antibiotics (sulfanilamide, sulfacetamide, sulfadiazine, sulfathiazole, sulfamerazine, sulfadimidin, sulfamethoxypyridazine, sulfadoxine, sulfamethoxazole, sulfisoxazole and sulfadimethoxine) in mineral waters with different mineral content. For this purpose, pristine multi-walled carbon nanotubes (MWCNTs) and magnetic-MWCNTs (m-MWCNTs) were used as sorbents. Magnetic nanoparticles were synthesized by means of a solvothermal process, assembled onto CNTs through an "aggregation wrap" mechanism and characterized by scanning electron microscopy. Parameters affecting the extraction such as volume and pH of the sample, amount of sorbent and type and volume of eluent were optimized. Once optimum extraction conditions (250 mL of water at pH 6.0 and elution with 25 mL of MeOH) were obtained, the extraction efficiency of the different carbon nanomaterials was compared. Results demonstrated the higher extraction capacity of pristine MWCNTs with recoveries between 61 and 110% (except for sulfacetamide which ranged between 40 and 53%) and between 22 and 77% for m-MWCNTs. Limits of detection lower than 32 ng/L were achieved for all of the analyzed samples.

  5. Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe2O3/multi-walled carbon nanotube (MWCNT)

    NASA Astrophysics Data System (ADS)

    Zhang, Tianfu; Ma, Zhuang; Li, Guoping; Wang, Zhen; Zhao, Benbo; Luo, Yunjun

    2016-05-01

    Electrostatic self-assembly in organic solvent without intensively oxidative or corrosive environments, was adopted to prepare Al/Fe2O3/MWCNT nanostructured energetic materials as an energy generating material. The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe2O3 (oxide) nanoparticles. This spontaneous assembly method without any surfactant chemistry or other chemical and biological moieties decreased the aggregation of the same nanoparticles largely, moreover, the poor interfacial contact between the Al (fuel) and Fe2O3 (oxide) nanoparticles was improved significantly, which was the key characteristic of high performance nanostructured energetic materials. In addition, the assembly process was confirmed as Diffusion-Limited Aggregation. The assembled Al/Fe2O3/MWCNT nanostructured energetic materials showed excellent performance with heat release of 2400 J/g, peak pressure of 0.42 MPa and pressurization rate of 105.71 MPa/s, superior to that in the control group Al/Fe2O3 nanostructured energetic materials prepared by sonication with heat release of 1326 J/g, peak pressure of 0.19 MPa and pressurization rate of 33.33 MPa/s. Therefore, the approach, which is facile, opens a promising route to the high performance nanostructured energetic materials.

  6. Carbon Nanotube Memory Elements

    SciTech Connect

    Meunier, Vincent; Sumpter, Bobby G

    2010-01-01

    Carbon nanotubes are among the most cited prototypical materials for nanoelectronics and information storage devices, a dominant position that originates from their intrinsic structural and electronic properties. In this chapter we review the developments in memory elements that directly exploit the unique properties of carbon nanotubes. Fundamental operational principles and characteristics are examined for the different types of carbon nanotube-based memory devices along with the current status of experimental fabrication and scalability. These include memory elements based on carbon nanotube field-effect transistors (CNFET), nanoelectromechanical systems (NEMS), and electromigration. Many of these devices show tremendous promise for providing enhanced densities, lower power requirements, more efficient read/write processes, and non-volatility of data.

  7. Transport in Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Datta, S.; Xue, Yong-Qinag; Anantram, M. P.; Saini, Subhash (Technical Monitor)

    1999-01-01

    This presentation discusses coupling between carbon nanotubes (CNT), simple metals (FEG) and a graphene sheet. The graphene sheet did not couple well with FEG, but the combination of a graphene strip and CNT did couple well with most simple metals.

  8. Carbon nanotubes: Fibrillar pharmacology

    NASA Astrophysics Data System (ADS)

    Kostarelos, Kostas

    2010-10-01

    The mechanisms by which chemically functionalized carbon nanotubes flow in blood and are excreted through the kidneys illustrate the unconventional behaviour of these fibrillar nanostructures, and the opportunities they offer as components for the design of advanced delivery vehicles.

  9. Nanotube composite carbon fibers

    NASA Astrophysics Data System (ADS)

    Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R. C.

    1999-08-01

    Single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties. We find that the tensile strength, modulus, and electrical conductivity of a pitch composite fiber with 5 wt % loading of purified SWNTs are enhanced by ˜90%, ˜150%, and 340% respectively, as compared to the corresponding values in unmodified isotropic pitch fibers. These results serve to highlight the potential that exits for developing a spectrum of material properties through the selection of the matrix, nanotube dispersion, alignment, and interfacial bonding.

  10. Determination of pyrazole and pyrrole pesticides in environmental water samples by solid-phase extraction using multi-walled carbon nanotubes as adsorbent coupled with high-performance liquid chromatography.

    PubMed

    Ma, Jiping; Lu, Xi; Xia, Yan; Yan, Fengli

    2015-02-01

    A solid-phase extraction (SPE) method using multi-walled carbon nanotubes as adsorbent coupled with high-performance liquid chromatography was developed for the determination of four pyrazole and pyrrole pesticides (fenpyroximate, chlorfenapyr, fipronil and flusilazole) in environmental water samples. Several parameters, such as extraction adsorbent, elution solvent and volume and sample loading flow rate were optimized to obtain high SPE recoveries and extraction efficiency. The calibration curves for the pesticides extracted were linear in the range of 0.05-10 μg L(-1) for chlorfenapyr and fenpyroximate and 0.05-20 μg L(-1) for fipronil and flusilazole, with the correlation coefficients (r(2)) between 0.9966 and 0.9990. The method gave good precisions (relative standard deviation %) from 2.9 to 10.1% for real spiked samples from reservoir water and seawater; method recoveries ranged 92.2-105.9 and 98.5-103.9% for real spiked samples from reservoir water and seawater, respectively. Limits of detection (S/N = 3) for the method were determined to be 8-19 ng L(-1). The optimized method was successfully applied to the determination of four pesticides of pyrazoles and pyrroles in real environmental water samples.

  11. Simultaneous determination of polar and apolar compounds in environmental samples by a polyaniline/hydroxyl multi-walled carbon nanotubes composite-coated stir bar sorptive extraction coupled with high performance liquid chromatography.

    PubMed

    Hu, Cong; He, Man; Chen, Beibei; Hu, Bin

    2015-05-15

    Developing novel coatings for stir bar sorptive extraction (SBSE) is essential for extending the application of SBSE. Herein, a polyaniline/hydroxyl multi-walled carbon nanotubes (PANi/MWCNTs-OH) composite-coated stir bar was prepared via the adhesion technique for the simultaneous extraction of polar and apolar compounds, and a novel method of PANi/MWCNTs-OH-coated SBSE coupled with high performance liquid chromatography-ultraviolet detection (HPLC-UV) was proposed. To test the extraction performance of PANi/MWCNTs-OH-coated stir bar, phenols, non-steroidal anti-inflammatory drugs, and polychlorinated biphenyls were selected as representatives for polar, semi-polar and apolar compounds, respectively. High enrichment factors (EFs) ranged from 20.4 to 60.4-fold (theoretical EF, 100-fold) for target analytes were achieved, indicating that the proposed method is applicable in simultaneous analysis of the compounds with different polarities. The prepared PANi/MWCNTs-OH-coated stir bar has a good preparation reproducibility and can be reused for 20 times. The limits of detection (LODs, S/N=3) were found to be in the range of 0.09-0.81μg/L. To validate the applicability, the proposed method was successfully applied to the analysis of eight target analytes in Yangtze River water after filtration and in the extract from sediment samples.

  12. Ultra high performance liquid chromatography with mass spectrometry method for the simultaneous determination of phenolic constituents in honey from various floral sources using multiwalled carbon nanotubes as extraction sorbents.

    PubMed

    Wabaidur, Saikh Mohammad; Ahmed, Yacine Badjah Hadj; Alothman, Zeid Abdullah; Obbed, Munir Saeed; AL-Harbi, Nasser Mohamed; AL-Turki, Turki Mohammad

    2015-08-01

    An ultra high performance liquid chromatography with mass spectrometry method has been developed for the simultaneous separation, identification and determination of 22 phenolic constituents in honey from various floral sources from Yemen. Solid-phase extraction was used for extraction of the target phenolic constituents from honey samples, while multiwalled carbon nanotubes were used as solid-phase adsorbent. The chromatographic separation of all phenolic constituents was performed on a BEH C18 column using a linear gradient elution with a binary mobile phase mixture of aqueous 0.1% formic acid and methanol. The quantitation was carried out in selected ion reaction monitoring acquisition mode. The total amount of phenolic acids, flavonoids and other phenols in each analyzed honey was found in the range of 338-3312, 122-5482 and 2.4-1342 μg/100 g of honey, respectively. 4-Hydroxybenzoic acid was found to be the major phenolic acid. The main detected flavonoid was chrysin, while cinnamic acid was found to be the major other phenol compound. The regeneration of solid phase adsorbent to be reused and recovery results confirm that the proposed method could be potentially used for the routine analysis of phenolic constituents in honey extract.

  13. Determination of six sulfonylurea herbicides in environmental water samples by magnetic solid-phase extraction using multi-walled carbon nanotubes as adsorbents coupled with high-performance liquid chromatography.

    PubMed

    Ma, Jiping; Jiang, Lianhua; Wu, Gege; Xia, Yan; Lu, Wenhui; Li, Jinhua; Chen, Lingxin

    2016-09-30

    Magnetic solid-phase extraction (MSPE) using magnetic multi-walled carbon nanotubes (mag-MWCNTs) as adsorbents, coupled with high-performance liquid chromatography-diode-array detector (HPLC-DAD), was developed for the simultaneous separation and determination of six types of sulfonylurea herbicides (SUs) in environmental water samples. Several variables affecting MSPE efficiency were systematically investigated, including the type and volume of desorption solvent, sample solution pH, salt concentration, amount of mag-MWCNTs, and extraction and desorption time. Response surface was employed to assist in the MSPE optimization. Under optimized conditions, excellent linearity was achieved in the range of 0.05-5.0μg/L for all six SUs, with coefficients of correlation r>0.9994, and preconcentration factors ranging from 178 to 210. Limits of detection and quantification were 0.01-0.04μg/L and 0.03-0.13μg/L, respectively. The intra-day and inter-day precision (relative standard deviations, n=6, %) at three spiked levels were 2.0-11.0% and 2.1-12.9% in terms of peak area, respectively. The method recoveries at three fortified concentrations were obtained within 76.7-106.9% for reservoir water samples and 78.2-105.4% for tap water samples. The developed MSPE-HPLC method demonstrated high sensitivity, repeatability, simplicity, rapidity, and excellent practical applicability. PMID:27590086

  14. Simultaneous determination of copper, cobalt, and mercury ions in water samples by solid-phase extraction using carbon nanotube sponges as adsorbent after chelating with sodium diethyldithiocarbamate prior to high performance liquid chromatography.

    PubMed

    Wang, Lei; Zhou, Jia-Bin; Wang, Xia; Wang, Zhen-Hua; Zhao, Ru-Song

    2016-06-01

    Recently, a sponge-like material called carbon nanotube sponges (CNT sponges) has drawn considerable attention because it can remove large-area oil, nanoparticles, and organic dyes from water. In this paper, the feasibility of CNT sponges as a novel solid-phase extraction (SPE) adsorbent for the enrichment and determination of heavy metal ions (Co(2+), Cu(2+), and Hg(2+)) was investigated for the first time. Sodium diethyldithiocarbamate (DDTC) was used as the chelating agent and high performance liquid chromatography (HPLC) for the final analysis. Important factors which may influence extraction efficiency of SPE were optimized, such as the kind and volume of eluent, volume of DDTC, sample pH, flow rate, etc. Under the optimized conditions, wide range of linearity (0.5-400 μg L(-1)), low limits of detection (0.089~0.690 μg L(-1); 0.018~0.138 μg), and good repeatability (1.27~3.60 %, n = 5) were obtained. The developed method was applied for the analysis of the three metal ions in real water samples, and satisfactory results were achieved. All of these findings demonstrated that CNT sponges will be a good choice for the enrichment and determination of target ions at trace levels in the future. PMID:27108287

  15. Multi-walled carbon nanotubes as solid-phase extraction sorbents for simultaneous determination of type A trichothecenes in maize, wheat and rice by ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Dong, Maofeng; Si, Wenshuai; Jiang, Keqiu; Nie, Dongxia; Wu, Yongjiang; Zhao, Zhihui; De Saeger, Sarah; Han, Zheng

    2015-12-01

    A solid-phase extraction (SPE) procedure using multi-walled carbon nanotubes (MWCNTs) as sorbents coupled with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for simultaneous determination of four type A trichothecenes in maize, wheat and rice for the first time. Several key parameters including the composition of sample loading solutions, washing and elution solvents were thoroughly investigated to achieve optimal SPE recoveries and efficiency. Performance of the MWCNTs materials was significantly affected by pH, and after optimization, n-hexane and 5% methanol aqueous solution as the washing solutions and methanol containing 1% formic acid as the elution solvent presented an excellent purification efficiency for the four targets in the different matrices. The method was validated by determining the linearity (R(2)≥0.992), recovery (73.4-113.7%), precision (1.2-17.1%) and sensitivity (limit of quantification in the range of 0.02-0.10μg/kg), and was further applied for simultaneous determination of type A trichothecenes in 30 samples. Although low contamination levels of type A trichothecenes in wheat, maize and rice were observed revealing mitigated risks to consumers in Shanghai, China, the developed method has proven to be a valuable tool for type A trichothecenes monitoring in complex crop matrices.

  16. Amino modified multi-walled carbon nanotubes/polydimethylsiloxane coated stir bar sorptive extraction coupled to high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental samples.

    PubMed

    Hu, Cong; Chen, Beibei; He, Man; Hu, Bin

    2013-07-26

    In this work, amino modified multi-walled carbon nanotubes/polydimethylsiloxane (multi-walled carbon nanotubes-4,4'-diaminodiphenylmethane/polydimethylsiloxane, MWCNTs-DDM/PDMS) was synthesized, and utilized as a novel coating for stir bar sorptive extraction (SBSE) of seven phenols (phenol, 2-chlorophenol, 2-nitrophenol, 4-nitrophenol, 2,4-dimethylphenol, p-choro-m-cresol and 2,4,6-trichlorphenol) in environmental water and soil samples, followed by high performance liquid chromatography-ultraviolet detection (HPLC-UV). The prepared MWCNTs-DDM/PDMS coated stir bar was characterized and good preparation reproducibility was obtained with the relative standard deviations (RSDs) ranging from 4.7% to 11.3% (n=9) in one batch, and from 4.8% to 13.9% (n=8) among different batches. Several parameters affecting the extraction of seven target phenols by MWCNTs-DDM/PDMS-SBSE including extraction time, stirring rate, pH, ionic strength, desorption solvent and desorption time were investigated. Under the optimal experimental conditions, the limits of detection (LODs, S/N=3) were found to be in the range of 0.14μg/L (2-nitrophenol) to 1.76μg/L (phenol) and the limits of quantification (LOQs, S/N=10) were found to be in the range of 0.46μg/L (2-nitrophenol) to 5.8μg/L (phenol). The linear range was 5-1000μg/L for phenol and 4-nitrophenol, 1-1000μg/L for 2-nitrophenol and 2-1000μg/L for other phenols, respectively. The RSDs of the developed method were in the range of 6.2-11.6% (n=8, c=10μg/L) and the enrichment factors were from 6.5 to 62.8-fold (theoretical enrichment factor was 100-fold). The proposed method was successfully applied to the analysis of phenols in environmental water and soil samples, and good recoveries were obtained for the spiked samples. The proposed method is simple, highly sensitive and suitable for the analysis of trace phenols in environmental samples with complex matrix.

  17. Cutting and sharpening carbon nanotubes using a carbon nanotube 'nanoknife'

    NASA Astrophysics Data System (ADS)

    Wei, Xian Long; Chen, Qing; Liu, Yang; Mao Peng, Lian

    2007-05-01

    A new method has been developed to precisely cut and to sharpen carbon nanotubes using a 'nanoknife', which is a short carbon nanotube adhered to a metal tip. The mechanism for the cutting and the sharpening was proposed to be local vaporization of carbon caused by Joule heating. The 'nanoknife' was also found useful to cut other nanotubes and nanowires. The cutting process was also found useful to construct complex carbon nanotube structures.

  18. Carbon nanotube array based sensor

    DOEpatents

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  19. Templated Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  20. Purification of Carbon Nanotubes: Alternative Methods

    NASA Technical Reports Server (NTRS)

    Files, Bradley; Scott, Carl; Gorelik, Olga; Nikolaev, Pasha; Hulse, Lou; Arepalli, Sivaram

    2000-01-01

    Traditional carbon nanotube purification process involves nitric acid refluxing and cross flow filtration using surfactant TritonX. This is believed to result in damage to nanotubes and surfactant residue on nanotube surface. Alternative purification procedures involving solvent extraction, thermal zone refining and nitric acid refiuxing are used in the current study. The effect of duration and type of solvent to dissolve impurities including fullerenes and P ACs (polyaromatic compounds) are monitored by nuclear magnetic reasonance, high performance liquid chromatography, and thermogravimetric analysis. Thermal zone refining yielded sample areas rich in nanotubes as seen by scanning electric microscopy. Refluxing in boiling nitric acid seem to improve the nanotube content. Different procedural steps are needed to purify samples produced by laser process compared to arc process. These alternative methods of nanotube purification will be presented along with results from supporting analytical techniques.

  1. Composite Semiconductor Material of Carbon Nanotubes and Poly[5,5'-bis(3-dodecyl-2-thienyl)-2,2'-bithiophene] for High-Performance Organic Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Derry, Cameron; Wu, Yiliang; Zhu, Shiping; Deen, Jamal

    2013-12-01

    A nonpercolating network of non-covalently functionalized single-walled carbon nanotubes was embedded within air-stable poly[5,5'-bis(3-dodecyl-2-thienyl)-2,2'-bithiophene] (PQT-12) thin films for the purpose of enhancing the field-effect mobility in thin-film transistors. The host polymer was used to stabilize the nanotubes in suspension through π-orbital overlap caused by simple application of ultrasonication. The stable nanotube suspension was cast into two different device architectures, both of which exhibited excellent on/off ratios ranging from 105 to 106 and dramatically improved mobilities compared with pristine PQT-12 semiconductor. A single-layer film with nanotubes embedded throughout was easy to fabricate and had mobility up to 0.34 cm2/Vs, an enhancement of over 3× compared with PQT-12. Placing the nanotubes closer to the dielectric surface in a dual-layer approach resulted in a mobility improvement of up to six times (0.58 cm2/Vs). The effects of the nanotube content on the polymer interaction within the suspension, film morphology, and electrical properties were investigated as well.

  2. Carbon Nanotubes for Supercapacitor

    NASA Astrophysics Data System (ADS)

    Pan, Hui; Li, Jianyi; Feng, Yuan Ping

    2010-03-01

    As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs) and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage.

  3. Carbon Nanotubes for Supercapacitor

    PubMed Central

    2010-01-01

    As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs) and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage. PMID:20672061

  4. Simultaneous determination of nickel, cobalt and mercury ions in water samples by solid phase extraction using multiwalled carbon nanotubes as adsorbent after chelating with sodium diethyldithiocarbamate prior to high performance liquid chromatography.

    PubMed

    Zhou, Qingxiang; Xing, An; Zhao, Kuifu

    2014-09-19

    Multiwalled carbon nanotubes (MWNTs) have been widely used for the enrichment of trace important pollutants in environment because of its large specific surface area, high extraction efficiency, and easy operation. In this study, a solid phase extraction method was established to determine nickel (Ni(2+)), cobalt (Co(2+)) and mercury (Hg(2+)) ions using MWNTs as the adsorbent and sodium diethyldithiocarbamate (DDTC) as the chelating agent. The final analysis was performed on a high performance liquid chromatography (HPLC). The factors that may influence the extraction efficiency were optimized in detail including the type and volume of elution solvent, sample pH, volume of chelating agent solution, and volume of sample solution, etc. The experimental results indicated that good linear relationship between peak area and the concentration of the ions was achieved in the range of 0.1-100μgL(-1), 0.1-50μgL(-1), and 2.7-300μgL(-1) for Ni(2+), Co(2+), and Hg(2+), respectively. The precision was determined by calculating the relative standard deviation (R.S.D.) values that were in the range of 6.2-11.7% under the optimal conditions. The detection limits of Ni(2+), Co(2+), and Hg(2+) were in the range of 0.04-0.9μgL(-1) (S/N=3). The presented method was applied for the determination of the metal ions mentioned above in real water samples, and satisfied results were achieved. All these indicated that proposed method will be a good alternative tool for monitoring the target ions in environmental samples in the future.

  5. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  6. Coated carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2006-12-12

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  7. Horizontal carbon nanotube alignment.

    PubMed

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  8. Horizontal carbon nanotube alignment.

    PubMed

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies.

  9. Toward High-Performance Hematite Nanotube Photoanodes: Charge-Transfer Engineering at Heterointerfaces.

    PubMed

    Kim, Do Hong; Andoshe, Dinsefa M; Shim, Young-Seok; Moon, Cheon-Woo; Sohn, Woonbae; Choi, Seokhoon; Kim, Taemin Ludvic; Lee, Migyoung; Park, Hoonkee; Hong, Kootak; Kwon, Ki Chang; Suh, Jun Min; Kim, Jin-Sang; Lee, Jong-Heun; Jang, Ho Won

    2016-09-14

    Vertically ordered hematite nanotubes are considered to be promising photoactive materials for high-performance water-splitting photoanodes. However, the synthesis of hematite nanotubes directly on conducting substrates such as fluorine-doped tin oxide (FTO)/glass is difficult to be achieved because of the poor adhesion between hematite nanotubes and FTO/glass. Here, we report the synthesis of hematite nanotubes directly on FTO/glass substrate and high-performance photoelectrochemical properties of the nanotubes with NiFe cocatalysts. The hematite nanotubes are synthesized by a simple electrochemical anodization method. The adhesion of the hematite nanotubes to the FTO/glass substrate is drastically improved by dipping them in nonpolar cyclohexane prior to postannealing. Bare hematite nanotubes show a photocurrent density of 1.3 mA/cm(2) at 1.23 V vs a reversible hydrogen electrode, while hematite nanotubes with electrodeposited NiFe cocatalysts exhibit 2.1 mA/cm(2) at 1.23 V which is the highest photocurrent density reported for hematite nanotubes-based photoanodes for solar water splitting. Our work provides an efficient platform to obtain high-performance water-splitting photoanodes utilizing earth-abundant hematite and noble-metal-free cocatalysts.

  10. Toward High-Performance Hematite Nanotube Photoanodes: Charge-Transfer Engineering at Heterointerfaces.

    PubMed

    Kim, Do Hong; Andoshe, Dinsefa M; Shim, Young-Seok; Moon, Cheon-Woo; Sohn, Woonbae; Choi, Seokhoon; Kim, Taemin Ludvic; Lee, Migyoung; Park, Hoonkee; Hong, Kootak; Kwon, Ki Chang; Suh, Jun Min; Kim, Jin-Sang; Lee, Jong-Heun; Jang, Ho Won

    2016-09-14

    Vertically ordered hematite nanotubes are considered to be promising photoactive materials for high-performance water-splitting photoanodes. However, the synthesis of hematite nanotubes directly on conducting substrates such as fluorine-doped tin oxide (FTO)/glass is difficult to be achieved because of the poor adhesion between hematite nanotubes and FTO/glass. Here, we report the synthesis of hematite nanotubes directly on FTO/glass substrate and high-performance photoelectrochemical properties of the nanotubes with NiFe cocatalysts. The hematite nanotubes are synthesized by a simple electrochemical anodization method. The adhesion of the hematite nanotubes to the FTO/glass substrate is drastically improved by dipping them in nonpolar cyclohexane prior to postannealing. Bare hematite nanotubes show a photocurrent density of 1.3 mA/cm(2) at 1.23 V vs a reversible hydrogen electrode, while hematite nanotubes with electrodeposited NiFe cocatalysts exhibit 2.1 mA/cm(2) at 1.23 V which is the highest photocurrent density reported for hematite nanotubes-based photoanodes for solar water splitting. Our work provides an efficient platform to obtain high-performance water-splitting photoanodes utilizing earth-abundant hematite and noble-metal-free cocatalysts. PMID:27551887

  11. Copper-philic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Belgamwar, Sachin U.; Sharma, Niti Nipun

    2016-04-01

    Carbon nanotube is having poor wet-ability with copper metal. Wet-ability of carbon nanotube was improved by exposing and creating more active sites on the surface of carbon nanotube. Carbon nanotubes were subjected to the prolong ultrasonication treatment of 20×103 Hz and 500W, which helped in disentanglement of carbon nanotube agglomerates and in breaking the weak bonds like pentagonal or heptagonal structure on the surface and on the CNT cap. Disentanglement of the carbon nanotube, resulted in exposing the defective sites on the surface and breaking of weak bonds, which assisted in creating the new defects on the surface. This process results in generates more active sites on the surface and it helps in improving the wet-ability of the carbon nanotube in copper.

  12. Carbon nanotube filters

    NASA Astrophysics Data System (ADS)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  13. Carbon nanotubes for microelectronics?

    PubMed

    Graham, Andrew P; Duesberg, Georg S; Seidel, Robert V; Liebau, Maik; Unger, Eugen; Pamler, Werner; Kreupl, Franz; Hoenlein, Wolfgang

    2005-04-01

    Despite all prophecies of its end, silicon-based microelectronics still follows Moore's Law and continues to develop rapidly. However, the inherent physical limits will eventually be reached. Carbon nanotubes offer the potential for further miniaturization as long as it is possible to selectively deposit them with defined properties.

  14. Nitrogen doping in carbon nanotubes.

    PubMed

    Ewels, C P; Glerup, M

    2005-09-01

    Nitrogen doping of single and multi-walled carbon nanotubes is of great interest both fundamentally, to explore the effect of dopants on quasi-1D electrical conductors, and for applications such as field emission tips, lithium storage, composites and nanoelectronic devices. We present an extensive review of the current state of the art in nitrogen doping of carbon nanotubes, including synthesis techniques, and comparison with nitrogen doped carbon thin films and azofullerenes. Nitrogen doping significantly alters nanotube morphology, leading to compartmentalised 'bamboo' nanotube structures. We review spectroscopic studies of nitrogen dopants using techniques such as X-ray photoemission spectroscopy, electron energy loss spectroscopy and Raman studies, and associated theoretical models. We discuss the role of nanotube curvature and chirality (notably whether the nanotubes are metallic or semiconducting), and the effect of doping on nanotube surface chemistry. Finally we review the effect of nitrogen on the transport properties of carbon nanotubes, notably its ability to induce negative differential resistance in semiconducting tubes.

  15. Carbon nanotube actuators

    PubMed

    Baughman; Cui; Zakhidov; Iqbal; Barisci; Spinks; Wallace; Mazzoldi; De Rossi D; Rinzler; Jaschinski; Roth; Kertesz

    1999-05-21

    Electromechanical actuators based on sheets of single-walled carbon nanotubes were shown to generate higher stresses than natural muscle and higher strains than high-modulus ferroelectrics. Like natural muscles, the macroscopic actuators are assemblies of billions of individual nanoscale actuators. The actuation mechanism (quantum chemical-based expansion due to electrochemical double-layer charging) does not require ion intercalation, which limits the life and rate of faradaic conducting polymer actuators. Unlike conventional ferroelectric actuators, low operating voltages of a few volts generate large actuator strains. Predictions based on measurements suggest that actuators using optimized nanotube sheets may eventually provide substantially higher work densities per cycle than any previously known technology.

  16. The Toxicology of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Donaldson, Ken; Poland, Craig; Duffin, Rodger; Bonner, James

    2012-06-01

    1. Carbon nanotube structure, synthesis and applications C. Singh and W. Song; 2. The aerodynamic behaviour and pulmonary deposition of carbon nanotubes A. Buckley, R. Smith and R Maynard; 3. Utilising the concept of the biologically effective dose to define the particle and fibre hazards of carbon nanotubes K. Donaldson, R. Duffin, F. Murphy and C. Poland; 4. CNT, biopersistence and the fibre paradigm D. Warheit and M. DeLorme; 5. Length-dependent retention of fibres in the pleural space C. Poland, F. Murphy and K. Donaldson; 6. Experimental carcinogenicity of carbon nanotubes in the context of other fibres K. Unfried; 7. Fate and effects of carbon nanotubes following inhalation J. Ryman-Rasmussen, M. Andersen and J. Bonner; 8. Responses to pulmonary exposure to carbon nanotubes V. Castranova and R. Mercer; 9. Genotoxicity of carbon nanotubes R. Schins, C. Albrecht, K. Gerloff and D. van Berlo; 10. Carbon nanotube-cellular interactions; macrophages, epithelial and mesothelial cells V. Stone, M. Boyles, A. Kermanizadeh, J. Varet and H. Johnston; 11. Systemic health effects of carbon nanotubes following inhalation J. McDonald; 12. Dosimetry and metrology of carbon nanotubes L. Tran, L. MacCalman and R. Aitken; Index.

  17. Carbon Nanotube Purification and Functionalization

    NASA Technical Reports Server (NTRS)

    Lebron, Marisabel; Mintz, Eric; Smalley, Richard E.; Meador, Michael A.

    2003-01-01

    Carbon nanotubes have the potential to significantly enhance the mechanical, thermal, and electrical properties of polymers. However, dispersion of carbon nanotubes in a polymer matrix is hindered by the electrostatic forces that cause them to agglomerate. Chemical modification of the nanotubes is necessary to minimize these electrostatic forces and promote adhesion between the nanotubes and the polymer matrix. In a collaborative research program between Clark Atlanta University, Rice University, and NASA Glenn Research Center several approaches are being explored to chemically modify carbon nanotubes. The results of this research will be presented.

  18. Role of carbon nanotubes in electroanalytical chemistry: a review.

    PubMed

    Agüí, Lourdes; Yáñez-Sedeño, Paloma; Pingarrón, José M

    2008-08-01

    This review covers recent advances in the development of new designs of electrochemical sensors and biosensors that make use of electrode surfaces modification with carbon nanotubes. Applications based on carbon nanotubes-driven electrocatalytic effects, and the construction and analytical usefulness of new hybrid materials with polymers or other nanomaterials will be treated. Moreover, electrochemical detection using carbon nanotubes-modified electrodes as detecting systems in separation techniques such as high performance liquid chromatography (HPLC) or capillary electrophoresis (CE) will be also considered. Finally, the preparation of electrochemical biosensors, including enzyme electrodes, immunosensors and DNA biosensors, in which carbon nanotubes play a significant role in their sensing performance will be separately considered.

  19. Carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

    2002-03-26

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  20. Method of manufacturing carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M. (Inventor); Leidecker, Henning W. (Inventor); Frazier, Jeffrey (Inventor)

    2004-01-01

    A process for manufacturing carbon nanotubes, including a step of inducing electrical current through a carbon anode and a carbon cathode under conditions effective to produce the carbon nanotubes, wherein the carbon cathode is larger than the carbon anode. Preferably, a welder is used to induce the electrical current via an arc welding process. Preferably, an exhaust hood is placed on the anode, and the process does not require a closed or pressurized chamber. The process provides high-quality, single-walled carbon nanotubes, while eliminating the need for a metal catalyst.

  1. Carbon nanotube plane fastener

    NASA Astrophysics Data System (ADS)

    Hirahara, Kaori; Ajioka, Shoichi; Nakayama, Yoshikazu

    2011-12-01

    We report a feature of carbon nanotubes (CNTs) that arises when the surfaces of two vertically-aligned CNT brushes are pressed together. Adhesion between the CNTs creates a plane fastener-like device. Observations from scanning electron microscopy and measurements of adhesion properties indicate a device-dependence on CNT density and shape near the tip region. Among other applications, such fasteners have the potential to attach small components onto micron-sized electronic devices.

  2. Carbon nanotube network varactor

    NASA Astrophysics Data System (ADS)

    Generalov, A. A.; Anoshkin, I. V.; Erdmanis, M.; Lioubtchenko, D. V.; Ovchinnikov, V.; Nasibulin, A. G.; Räisänen, A. V.

    2015-01-01

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling.

  3. Carbon nanotube network varactor.

    PubMed

    Generalov, A A; Anoshkin, I V; Erdmanis, M; Lioubtchenko, D V; Ovchinnikov, V; Nasibulin, A G; Räisänen, A V

    2015-01-30

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling.

  4. Carbon nanotube IR detectors (SV)

    SciTech Connect

    Leonard, F. L.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  5. Fabrication of high performance bioanode based on fruitful association of dendrimer and carbon nanotube used for design O2/glucose membrane-less biofuel cell with improved bilirubine oxidase biocathode.

    PubMed

    Korani, Aazam; Salimi, Abdollah

    2013-12-15

    In this study, the preparation of an integrated modified electrode based on the covalent attachment of glucose dehydrogenase (GDH) enzyme and safranin O to amine-derivative multiwalled carbon nanotubes (MWCNTs-NH2) modified glassy carbon (GC) electrode using G2.5-carboxylated PAMAM dendrimer (Den) as linking agent is reported. The obtained results indicated that the proposed system has effective bioelectrocatalytic activity toward glucose oxidation at 100 mV with onset potential of -130 mV (vs. Ag/AgCl). The performance of the prepared hybrid system of GC/MWCNTs-NH2/Den/GDH/Safranin as anode in a membraneless enzyme-based glucose/O2 biofuel cell is further evaluated. The biocathode in this system was composed of bilirubin oxidase (BOX) enzyme immobilized onto a bilirubin modified carbon nanotube GC electrode. Immobilized BOX onto CNTs/bilirubin not only show direct electron transfer but also it has excellent electrocatalytic activity toward oxygen reduction at a positive potential of 610 mV. The open circuit voltage of the cell was 590 mV. The maximum current density was 0.5 mA cm(-2), while maximum power density of 108 μW cm(-2) was achieved at voltage of 330 mV. The immobilized enzymes in anode and cathode are very stable and output power of the BFC is approximately constant after 12 h continues operation.

  6. Carbon nanotube Archimedes screws.

    PubMed

    Oroszlány, László; Zólyomi, Viktor; Lambert, Colin J

    2010-12-28

    Recently, nanomechanical devices composed of a long stationary inner carbon nanotube and a shorter, slowly rotating outer tube have been fabricated. In this paper, we study the possibility of using such devices as nanoscale transducers of motion into electricity. When the outer tube is chiral, we show that such devices act like quantum Archimedes screws, which utilize mechanical energy to pump electrons between reservoirs. We calculate the pumped charge from one end of the inner tube to the other, driven by the rotation of a chiral outer nanotube. We show that the pumped charge can be greater than one electron per 360° rotation, and consequently, such a device operating with a rotational frequency of 10 MHz, for example, would deliver a current of ≈1 pAmp.

  7. “Brick-like” N-doped graphene/carbon nanotube structure forming three-dimensional films as high performance metal-free counter electrodes in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Li, Cheng; Yu, Fei; Chen, Junhong

    2015-01-01

    The "brick-like" N-doped graphene-carbon nanotube (NGC) composites are designed by mechanically grinding the filtration films, which are fabricated to form a three-dimensional structure film as a counter electrode (CE). The N-doped graphene/carbon nanotube films with a three-dimensional "brick-like" structure can provide numerous vertical active edge sites. The excellent electrochemical catalytic activities of CE can be obtained by adjusting the different ratio of graphene to CNTs to control the size and N-doping content of breaking particles. NGC17 CE based dye-sensitized solar cells (DSSC) have reached a high efficiency (6.74%) close to platinum-based cells (6.89%). The excellent efficiency may be attributed to the following factors: a) the ΔEP of NGC17 (304 mV) is lower than that of the Pt electrode (389 mV); b) the charge transfer resistance (Rct) at the NGC17-CE/electrolyte interface was 1.78 Ω cm-2, which is lower than that of a Pt-CE/electrolyte interface (8.97 Ω cm-2).

  8. Teslaphoresis of Carbon Nanotubes.

    PubMed

    Bornhoeft, Lindsey R; Castillo, Aida C; Smalley, Preston R; Kittrell, Carter; James, Dustin K; Brinson, Bruce E; Rybolt, Thomas R; Johnson, Bruce R; Cherukuri, Tonya K; Cherukuri, Paul

    2016-04-26

    This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale. PMID:27074626

  9. Studies of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Caneba, Gerard T.

    2005-01-01

    The fellowship experience for this summer for 2004 pertains to carbon nanotube coatings for various space-related applications. They involve the following projects: (a) EMI protection films from HiPco-polymers, and (b) Thermal protection nanosilica materials. EMI protection films are targeted to be eventually applied onto casings of laptop computers. These coatings are composites of electrically-conductive SWNTs and compatible polymers. The substrate polymer will be polycarbonate, since computer housings are typically made of carbon composites of this type of polymer. A new experimental copolymer was used last year to generate electrically-conductive and thermal films with HiPco at 50/50 wt/wt composition. This will be one of the possible formulations. Reference films will be base polycarbonate and neat HiPco onto polycarbonate films. Other coating materials that will be tried will be based on HiPco composites with commercial enamels (polyurethane, acrylic, polyester), which could be compatible with the polycarbonate substrate. Nanosilica fibers are planned for possible use as thermal protection tiles on the shuttle orbiter. Right now, microscale silica is used. Going to the nanoscale will increase the surface-volume-per-unit-area of radiative heat dissipation. Nanoscale carbon fibers/nanotubes can be used as templates for the generation of nanosilica. A sol-gel operation is employed for this purpose.

  10. Silicon Encapsulated Carbon Nanotubes

    PubMed Central

    2010-01-01

    A dual stage process of depositing bamboo-like carbon nanotubes (BCNTs) by hot filament chemical vapor deposition (HFCVD) and coating Si using Radio frequency sputtering (RFS) technique. The films were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron field emission studies (EFE). SEM results suggest a dense network of homogeneous silicon-coated BCNTs. From the comprehensive analysis of the results provided by these techniques emerges the picture of Si encapsulated BCNTs. PMID:20652067

  11. Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2, or F2, or CnHm) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec.

  12. Functionalization of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H.sub.2 or F.sub.2 or C.sub.nH.sub.m) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec.

  13. Carbon Nanotube Interconnect

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2006-01-01

    Method and system for fabricating an electrical interconnect capable of supporting very high current densities ( 10(exp 6)-10(exp 10) Amps/sq cm), using an array of one or more carbon nanotubes (CNTs). The CNT array is grown in a selected spaced apart pattern, preferably with multi-wall CNTs, and a selected insulating material, such as SiOw, or SiuNv is deposited using CVD to encapsulate each CNT in the array. An exposed surface of the insulating material is planarized to provide one or more exposed electrical contacts for one or more CNTs.

  14. Carbon Nanotubes for Space Applications

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya

    2000-01-01

    The potential of nanotube technology for NASA missions is significant and is properly recognized by NASA management. Ames has done much pioneering research in the last five years on carbon nanotube growth, characterization, atomic force microscopy, sensor development and computational nanotechnology. NASA Johnson Space Center has focused on laser ablation production of nanotubes and composites development. These in-house efforts, along with strategic collaboration with academia and industry, are geared towards meeting the agency's mission requirements. This viewgraph presentation (including an explanation for each slide) outlines the research focus for Ames nanotechnology, including details on carbon nanotubes' properties, applications, and synthesis.

  15. Carbon nanotube array actuators

    NASA Astrophysics Data System (ADS)

    Geier, S.; Mahrholz, T.; Wierach, P.; Sinapius, M.

    2013-09-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750-2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs.

  16. Carbon nanotube biosensors

    PubMed Central

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  17. Carbon Nanotube Biosensors

    NASA Astrophysics Data System (ADS)

    Tilmaciu, Carmen-Mihaela; Morris, May

    2015-10-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular Carbon Nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we will describe their structural and physical properties, discuss functionalization and cellular uptake, biocompatibility and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.

  18. Method for synthesizing carbon nanotubes

    DOEpatents

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  19. Carbon nanotubes in hyperthermia therapy

    PubMed Central

    Singh, Ravi; Torti, Suzy V.

    2013-01-01

    Thermal tumor ablation therapies are being developed with a variety of nanomaterials, including single-and multiwalled carbon nanotubes. Carbon nanotubes (CNTs) have attracted interest due to their potential for simultaneous imaging and therapy. In this review, we highlight in vivo applications of carbon nanotube-mediated thermal therapy (CNMTT) and examine the rationale for use of this treatment in recurrent tumors or those resistant to conventional cancer therapies. Additionally, we discuss strategies to localize and enhance the cancer selectivity of this treatment and briefly examine issues relating the toxicity and long term fate of CNTs. PMID:23933617

  20. Carbon nanotubes in hyperthermia therapy.

    PubMed

    Singh, Ravi; Torti, Suzy V

    2013-12-01

    Thermal tumor ablation therapies are being developed with a variety of nanomaterials, including single- and multiwalled carbon nanotubes. Carbon nanotubes (CNTs) have attracted interest due to their potential for simultaneous imaging and therapy. In this review, we highlight in vivo applications of carbon nanotube-mediated thermal therapy (CNMTT) and examine the rationale for use of this treatment in recurrent tumors or those resistant to conventional cancer therapies. Additionally, we discuss strategies to localize and enhance the cancer selectivity of this treatment and briefly examine issues relating the toxicity and long term fate of CNTs.

  1. Carbon nanotubes as vaccine scaffolds

    PubMed Central

    Scheinberg, David A.; McDevitt, Michael R.; Dao, Tao; Mulvey, Justin J.; Feinberg, Evan; Alidori, Simone

    2013-01-01

    Carbon nanotubes display characteristics that are potentially useful in their development as scaffolds for vaccine compositions. These features include stability in vivo, lack of intrinsic immunogenicity, low toxicity, and the ability to be appended with multiple copies of antigens. In addition, the particulate nature of carbon nanotubes and their unusual properties of rapid entry into antigen-presenting cells, such as dendritic cells, make them especially useful as carriers of antigens. Early attempts demonstrating carbon nanotube-based vaccines can be used in both infectious disease settings and cancer are promising. PMID:23899863

  2. Method for producing carbon nanotubes

    DOEpatents

    Phillips, Jonathan; Perry, William L.; Chen, Chun-Ku

    2006-02-14

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  3. All About Chlorinated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Erbahar, Dogan; Berber, Savas

    2011-03-01

    The halogens are viable alternatives to harsher chemicals in the post-process of purification of carbon nanotube production. However the chlorine is known to bind less agresively to carbon nanotubes than fluorine and hydrogen. Therefore, in principle the residual Cl left after the halogen gas treatment of the nanotubes can be removed without damaging the nanotube walls easier. We report ab initio density functional calculation results about pure and defective carbon nanotubes of various diameters interacting with single and multiple chlorine atoms. We first focus on pure nanotubes and investigate the adsorption of additional Cl atoms near the first adsorbtion site, investigate the clustering tendency and most favourable configurations. We report the energetics results as well as the alteration of electronic properties. We then focus on monovacancy and divacancy defects on carbon nanotubes. It is a known fact that the defective site to be more active in this case. We apply the same procedure as in the pure nanotubes but also investigate the effect of chlorination on reconstruction process and also electronic transport properties. Supported by TUBITAK Grant No 108T740.

  4. Carbon Nanotube Electron Gun

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  5. Carbon nanotube electron gun

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2010-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  6. Carbon nanotube optical mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas

    2015-01-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes (CNT) embedded in an epoxy matrix. CNT/epoxy is a multifunctional composite material that has sensing capabilities and can be made to incorporate self-actuation. Moreover, as the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and three-dimensional printing. Therefore, the technology holds promise for the development of a new generation of lightweight, compact "smart" telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics, active optics experiments, and numerical modeling. We discuss possible paths for future development.

  7. Dispersible carbon nanotubes.

    PubMed

    Soulié-Ziakovic, Corinne; Nicolaÿ, Renaud; Prevoteau, Alexandre; Leibler, Ludwik

    2014-01-27

    A method is proposed to produce nanoparticles dispersible and recyclable in any class of solvents, and the concept is illustrated with the carbon nanotubes. Classically, dispersions of CNTs can be achieved through steric stabilization induced by adsorbed or grafted polymer chains. Yet, the surface modification of CNTs surfaces is irreversible, and the chemical nature of the polymer chains imposes the range of solvents in which CNTs can be dispersed. To address this limitation, supramolecular bonds can be used to attach and to detach polymer chains from the surface of CNTs. The reversibility of supramolecular bonds offers an easy way to recycle CNTs as well as the possibility to disperse the same functional CNTs in any type of solvent, by simply adapting the chemical nature of the stabilizing chains to the dispersing medium. The concept of supramolecular functionalization can be applied to other particles, for example, silica or metal oxides, as well as to dispersing in polymer melts, films or coatings.

  8. Carbon nanotube biconvex microcavities

    SciTech Connect

    Butt, Haider Ahmed, Rajib; Yetisen, Ali K.; Yun, Seok Hyun; Dai, Qing

    2015-03-23

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2–3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  9. Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2009-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

  10. Cantilevered carbon nanotube hygrometer

    NASA Astrophysics Data System (ADS)

    Kuroyanagi, Toshinori; Terada, Yuki; Takei, Kuniharu; Akita, Seiji; Arie, Takayuki

    2014-05-01

    We investigate the effects of humidity on the vibrations of carbon nanotubes (CNTs) using two types of CNT cantilevers: open-ended and close-ended CNT cantilevers. As the humidity increases, the resonant frequency of the open-ended CNT cantilever decreases due to the adsorption of water molecules onto the CNT tip, whereas that of the close-ended CNT cantilever increases probably due to the change in the viscosity of the air surrounding the CNT cantilever, which is negatively correlated with the humidity of air. Our findings suggest that a close-ended CNT cantilever is more suitable for a quick-response and ultrasensitive hygrometer because it continuously reads the viscosity change of moist air in the vicinity of the CNT.

  11. Carbon nanotube biconvex microcavities

    NASA Astrophysics Data System (ADS)

    Butt, Haider; Yetisen, Ali K.; Ahmed, Rajib; Yun, Seok Hyun; Dai, Qing

    2015-03-01

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2-3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  12. Oscillating carbon nanotori along carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hilder, Tamsyn A.; Hill, James M.

    2007-03-01

    The discovery of carbon nanostructures, such as nanotubes and C60 fullerenes, has given rise to a number of potential nanoscale devices. One such device is the gigahertz oscillator, comprising an inner shell sliding inside an outer shell of a multiwalled carbon nanotube, and which, at least theoretically, generates oscillatory frequencies in the gigahertz range. Following the concept of these gigahertz oscillators and the recent discovery of “fullerene crop circles,” here we propose the notion of a nanotorus-nanotube oscillator comprising a carbon nanotorus which is sucked by the van der Waals force onto the carbon nanotube, and subsequently oscillates along the nanotube axis due to the equal and opposite pulselike forces acting at either end of the nanotube. Assuming a continuum approach, where the interatomic interactions are replaced by uniform atomic surface densities, and assuming that the geometry of the nanotube and nanotorus is such that the nanotorus always remains symmetrically situated around the nanotube, we present the basic mechanics of such a system, including the determination of the suction and acceptance energies, and the frequency of the resulting oscillatory motion. In contrast to the previously studied gigahertz nanoscale oscillators, here the oscillatory frequencies are shown to be in the megahertz range. Our study, although purely theoretical must necessarily precede any experimental implementation of such oscillatory systems.

  13. PECVD Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    McAninch, Ian; Arnold, James O. (Technical Monitor)

    2001-01-01

    Plasma enhanced chemical vapor deposition (PECVD), using inductively coupled plasma, has been used to grow carbon nanotubes (CNTs) and graphitic carbon fibers (GCF) on substrates sputtered with aluminum and iron catalyst. The capacitive plasma's power has been shown to cause a transition from nanotubes to nanofibers, depending on the strength of the plasma. The temperature, placement, and other factors have been shown to affect the height and density of the tube and fiber growth.

  14. Selective functionalization of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  15. High-performance liquid chromatography analysis of phenolic acid, flavonoid, and phenol contents in various natural Yemeni honeys using multi-walled carbon nanotubes as a solid-phase extraction adsorbent.

    PubMed

    Badjah Hadj Ahmed, A Y; Obbed, Munir S; Wabaidur, Saikh M; AlOthman, Zeid A; Al-Shaalan, Nora H

    2014-06-18

    A simple method has been described for simultaneous determination of phenolic acid, flavonoid, and other phenol contents in various natural honey samples collected from various regions of Yemen. Multi-walled carbon nanotubes were used as a solid-phase adsorbent for extraction of the polyphenols from honey samples. The total contents of phenolic acids, flavonoids, and phenolic components of the 12 different samples were found in the range of 363-2658, 261-1646, and 224-1355 μg/100 g of honey samples, respectively. The major phenolic acid, flavonoid, and phenolic compound in these samples were found to be 4-hydroxybenzoic acid (1410 μg/100 g), chrysin (850 μg/100 g), and cinnamic acid (1336 μg/100 g), respectively. A total of 25 compounds (10 phenolic acids, 9 flavonoids, and 6 phenols) were analyzed, and a total of 24 were detected, while only 23 compounds were determined quantitatively in the honey samples. The developed method showed potential usefulness for the analysis of honey and was used for the determination of polyphenols in honey extracts.

  16. Ex situ electrochemical sodiation/desodiation observation of Co₃O₄ anchored carbon nanotubes: a high performance sodium-ion battery anode produced by pulsed plasma in a liquid.

    PubMed

    Rahman, Md Mokhlesur; Sultana, Irin; Chen, Zhiqiang; Srikanth, Mateti; Li, Lu Hua; Dai, Xiujuan J; Chen, Ying

    2015-08-14

    Liquid plasma, produced by nanosecond pulses, provides an efficient and simple way to fabricate a nanocomposite architecture of Co3O4/CNTs from carbon nanotubes (CNTs) and clusters of Co3O4 nanoparticles in deionized water. The crucial feature of the composite's structure is that Co3O4 nanoparticle clusters are uniformly dispersed and anchored to CNT networks in which Co3O4 guarantees high electrochemical reactivity towards sodium, and CNTs provide conductivity and stabilize the anode structure. We demonstrated that the Co3O4/CNT nanocomposite is capable of delivering a stable and high capacity of 403 mA h g(-1) at 50 mA g(-1) after 100 cycles where the sodium uptake/extract is confirmed in the way of reversible conversion reaction by adopting ex situ techniques. The rate capability of the composite is significantly improved and its reversible capacity is measured to be 212 mA h g(-1) at 1.6 A g(-1) and 190 mA h g(-1) at 3.2 A g(-1), respectively. Due to the simple synthesis technique with high electrochemical performance, Co3O4/CNT nanocomposites have great potential as anode materials for sodium-ion batteries. PMID:26176997

  17. Nanotechnology with Carbon Nanotubes: Mechanics, Chemistry, and Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak

    2003-01-01

    This viewgraph presentation reviews the Nanotechnology of carbon nanotubes. The contents include: 1) Nanomechanics examples; 2) Experimental validation of nanotubes in composites; 3) Anisotropic plastic collapse; 4) Spatio-temporal scales, yielding single-wall nanotubes; 5) Side-wall functionalization of nanotubes; 6) multi-wall Y junction carbon nanotubes; 7) Molecular electronics with Nanotube junctions; 8) Single-wall carbon nanotube junctions; welding; 9) biomimetic dendritic neurons: Carbon nanotube, nanotube electronics (basics), and nanotube junctions for Devices,

  18. Controlled growth of carbon nanotubes.

    PubMed

    Vajtai, R; Wei, B Q; Ajayan, P M

    2004-10-15

    Carbon nanotubes have extraordinary mechanical and electronic properties and hold great promise for future applications. The most important aspects of this structure are its low density, high aspect ratio, one dimensionality, high mechanical strength and high electrical and thermal conductivity. We present a short, state-of-the-art account of tailored nanotube growth. To provide these properties in real devices there exists a need for producing nanotubes on substrates. The challenge in the creation of mesoscale nanotube-based architectures and tailored nanotube networks consisting of thousands of tubes in a predefined order is obviously great. Currently, chemical vapour deposition (CVD) appears to be the most powerful method for achieving such required structures. We describe our work on a new synthesis method, based on catalytic CVD using mainly gas-phase catalyst delivery. Gas-phase catalyst delivery allows us to assemble single-walled and multi-walled carbon nanotubes in predetermined multiple orientations on substrates to build one- to three-dimensional architectures. We are able to control, to a large extent, the types of nanotubes produced, their lengths, locations and their orientations. The ability to make mesoscale architectures with nanotubes should lead us to develop applications in areas such as nano-electromechanical systems.

  19. Carbon nanotube computer.

    PubMed

    Shulaker, Max M; Hills, Gage; Patil, Nishant; Wei, Hai; Chen, Hong-Yu; Wong, H-S Philip; Mitra, Subhasish

    2013-09-26

    The miniaturization of electronic devices has been the principal driving force behind the semiconductor industry, and has brought about major improvements in computational power and energy efficiency. Although advances with silicon-based electronics continue to be made, alternative technologies are being explored. Digital circuits based on transistors fabricated from carbon nanotubes (CNTs) have the potential to outperform silicon by improving the energy-delay product, a metric of energy efficiency, by more than an order of magnitude. Hence, CNTs are an exciting complement to existing semiconductor technologies. Owing to substantial fundamental imperfections inherent in CNTs, however, only very basic circuit blocks have been demonstrated. Here we show how these imperfections can be overcome, and demonstrate the first computer built entirely using CNT-based transistors. The CNT computer runs an operating system that is capable of multitasking: as a demonstration, we perform counting and integer-sorting simultaneously. In addition, we implement 20 different instructions from the commercial MIPS instruction set to demonstrate the generality of our CNT computer. This experimental demonstration is the most complex carbon-based electronic system yet realized. It is a considerable advance because CNTs are prominent among a variety of emerging technologies that are being considered for the next generation of highly energy-efficient electronic systems.

  20. Carbon Nanotube Purification

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor); Delzeit, Clement J. (Inventor)

    2005-01-01

    A method for cleaning or otherwise removing amorphous carbon and other residues that arise in growth of a carbon nanotube (CNT) array. The CNT array is exposed to a plurality of hydroxyls or hydrogen, produced from a selected vapor or liquid source such as H2O or H2O2. and the hydroxyls or hydrogen (neutral or electrically charged) react with the residues to produce partly or fully dissolved or hydrogenated or hydroxylizated products that can be removed or separated from the CNT array. The hydroxyls or hydrogen can be produced by heating the CNT array, residue and selected vapor or liquid source or by application of an electromagnetic excitation signal with a selected frequency or range of frequencies to dissociate the selected vapor or liquid. The excitation frequency can be chirped to cover a selected range of frequencies corresponding to dissociation of the selected vapor or liquid. Sonication may be uscd to supplement dissociation of the H2O and/or H2O2.

  1. Carbon Nanotubes for Polymer Photovoltaics

    NASA Astrophysics Data System (ADS)

    Anctil, Annick; Dileo, Roberta; Schauerman, Chris; Landi, Brian; Raffaelle, Ryne

    2007-03-01

    Carbon nanotubes are being investigated for optical absorption, exciton dissociation, and carrier transport in polymer photovoltaic devices. In the present work, single wall carbon nanotubes (SWNTs) were synthesized by an Alexandrite pulsed laser vaporization reactor at standard conditions and purified based upon our previously reported TOP procedure. The SWNTs were dispersed in polymer composites for pure MEH-PPV, pure P3HT, and [C60]-PCBM-P3HT (1:1 by weight) as a function of nanotube weight loading (0.1 -- 5% w/w). The AM0 current-voltage measurements for structures sandwiched between PEDOT/PSS coated ITO substrates and an evaporated aluminum contact demonstrate the dramatic effect of SWNT content on the short circuit current density, with conversions efficiencies consistently greater than 1%. The temperature coefficient for nanotube-containing polymer photovoltaics has been compared to conventional PCBM-P3HT devices, and the general relationship of increasing efficiency with increasing temperature is observed. However, the necessity to control nanotube percolation to prevent device shunting has led to recent developments which focus on controlling nanotube length through oxidative cutting, the deposition of intrinsic polymer layers, and the use of aligned carbon nanotube arrays for preferential charge transport.

  2. Printed Carbon Nanotube Electronics and Sensor Systems.

    PubMed

    Chen, Kevin; Gao, Wei; Emaminejad, Sam; Kiriya, Daisuke; Ota, Hiroki; Nyein, Hnin Yin Yin; Takei, Kuniharu; Javey, Ali

    2016-06-01

    Printing technologies offer large-area, high-throughput production capabilities for electronics and sensors on mechanically flexible substrates that can conformally cover different surfaces. These capabilities enable a wide range of new applications such as low-cost disposable electronics for health monitoring and wearables, extremely large format electronic displays, interactive wallpapers, and sensing arrays. Solution-processed carbon nanotubes have been shown to be a promising candidate for such printing processes, offering stable devices with high performance. Here, recent progress made in printed carbon nanotube electronics is discussed in terms of materials, processing, devices, and applications. Research challenges and opportunities moving forward from processing and system-level integration points of view are also discussed for enabling practical applications.

  3. Printed Carbon Nanotube Electronics and Sensor Systems.

    PubMed

    Chen, Kevin; Gao, Wei; Emaminejad, Sam; Kiriya, Daisuke; Ota, Hiroki; Nyein, Hnin Yin Yin; Takei, Kuniharu; Javey, Ali

    2016-06-01

    Printing technologies offer large-area, high-throughput production capabilities for electronics and sensors on mechanically flexible substrates that can conformally cover different surfaces. These capabilities enable a wide range of new applications such as low-cost disposable electronics for health monitoring and wearables, extremely large format electronic displays, interactive wallpapers, and sensing arrays. Solution-processed carbon nanotubes have been shown to be a promising candidate for such printing processes, offering stable devices with high performance. Here, recent progress made in printed carbon nanotube electronics is discussed in terms of materials, processing, devices, and applications. Research challenges and opportunities moving forward from processing and system-level integration points of view are also discussed for enabling practical applications. PMID:26880046

  4. Carbon nanotube reinforced hollow fiber solid/liquid phase microextraction: a novel extraction technique for the measurement of caffeic acid in Echinacea purpurea herbal extracts combined with high-performance liquid chromatography.

    PubMed

    Es'haghi, Zarrin; Golsefidi, Mazyar Ahmadi; Saify, Ali; Tanha, Ali Akbar; Rezaeifar, Zohre; Alian-Nezhadi, Zahra

    2010-04-23

    A new design of hollow fiber solid-liquid phase microextraction (HF-SLPME) was developed for the determination of caffeic acid in medicinal plants samples as Echinacea purpure. The membrane extraction with sorbent interface used in this research is a three-phase supported liquid membrane consisting of an aqueous (donor phase), organic solvent/nano sorbent (membrane) and aqueous (acceptor phase) system operated in direct immersion sampling mode. The multi-walled carbon nanotube dispersed in the organic solvent is held in the pores of a porous membrane supported by capillary forces and sonification. It is in contact with two aqueous phases: the donor phase, which is the aqueous sample, and the acceptor phase, usually an aqueous buffer. All microextraction experiments were supported using an Accurel Q3/2 polypropylene hollow fiber membrane (600 microm I.D., 200 microm wall thicknesses, and 0.2 microm pore size). The experimental setup is very simple and highly affordable. The hollow fiber is disposable, so single use of the fiber reduces the risk of cross-contamination and carry-over problems. The proposed method allows the very effective and enriched recuperation of an acidic analyte into one single extract. In order to obtain high enrichment and extraction efficiency of the analyte using this novel technique, the main parameters were optimized. Under the optimized extraction conditions, the method showed good linearity (0.0001-50 microg/L), repeatability, low limits of detection (0.00005 microg/L) and excellent enrichment (EF=2108). PMID:20227700

  5. Probing Photosensitization by Functionalized Carbon Nanotubes

    EPA Science Inventory

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  6. Occupational Exposure to Carbon Nanotubes and Nanofibers

    MedlinePlus

    ... Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers Recommend on Facebook Tweet Share Compartir ... composed of engineered nanoparticles, such as metal oxides, nanotubes, nanowires, quantum dots, and carbon fullerenes (buckyballs), among ...

  7. Single carbon nanotube photovoltaic device

    NASA Astrophysics Data System (ADS)

    Barkelid, M.; Zwiller, V.

    2013-10-01

    Here we present photocurrent measurements on a single suspended carbon nanotube p-n junction. The p-n junction was induced by electrostatic doping by local gates, and the E11 and E22 resonances in the nanotube could be probed using photocurrent spectroscopy. Current-voltage characteristics were recorded, revealing an enhanced optoelectronic response on resonance. The internal power conversion efficiency for the nanotube diode was extracted on and off resonance with the E11 and E22, and a large internal power conversion efficiency was observed. An internal efficiency of up to 23% is reported for the E11, showing the potential of carbon nanotubes to be used as the active element in photovoltaic devices. Finally, a photovoltaic device is proposed which exploits this enhanced efficiency.

  8. Carbon Nanotube Based Molecular Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  9. Multiscale Modeling with Carbon Nanotubes

    SciTech Connect

    Maiti, A

    2006-02-21

    Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites.

  10. EDITORIAL: Focus on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    2003-09-01

    The study of carbon nanotubes, since their discovery by Iijima in 1991, has become a full research field with significant contributions from all areas of research in solid-state and molecular physics and also from chemistry. This Focus Issue in New Journal of Physics reflects this active research, and presents articles detailing significant advances in the production of carbon nanotubes, the study of their mechanical and vibrational properties, electronic properties and optical transitions, and electrical and transport properties. Fundamental research, both theoretical and experimental, represents part of this progress. The potential applications of nanotubes will rely on the progress made in understanding their fundamental physics and chemistry, as presented here. We believe this Focus Issue will be an excellent guide for both beginners and experts in the research field of carbon nanotubes. It has been a great pleasure to edit the many excellent contributions from Europe, Japan, and the US, as well from a number of other countries, and to witness the remarkable effort put into the manuscripts by the contributors. We thank all the authors and referees involved in the process. In particular, we would like to express our gratitude to Alexander Bradshaw, who invited us put together this Focus Issue, and to Tim Smith and the New Journal of Physics staff for their extremely efficient handling of the manuscripts. Focus on Carbon Nanotubes Contents <;A article="1367-2630/5/1/117">Transport theory of carbon nanotube Y junctions R Egger, B Trauzettel, S Chen and F Siano The tubular conical helix of graphitic boron nitride F F Xu, Y Bando and D Golberg Formation pathways for single-wall carbon nanotube multiterminal junctions Inna Ponomareva, Leonid A Chernozatonskii, Antonis N Andriotis and Madhu Menon Synthesis and manipulation of carbon nanotubes J W Seo, E Couteau

  11. EDITORIAL: Focus on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    2003-09-01

    The study of carbon nanotubes, since their discovery by Iijima in 1991, has become a full research field with significant contributions from all areas of research in solid-state and molecular physics and also from chemistry. This Focus Issue in New Journal of Physics reflects this active research, and presents articles detailing significant advances in the production of carbon nanotubes, the study of their mechanical and vibrational properties, electronic properties and optical transitions, and electrical and transport properties. Fundamental research, both theoretical and experimental, represents part of this progress. The potential applications of nanotubes will rely on the progress made in understanding their fundamental physics and chemistry, as presented here. We believe this Focus Issue will be an excellent guide for both beginners and experts in the research field of carbon nanotubes. It has been a great pleasure to edit the many excellent contributions from Europe, Japan, and the US, as well from a number of other countries, and to witness the remarkable effort put into the manuscripts by the contributors. We thank all the authors and referees involved in the process. In particular, we would like to express our gratitude to Alexander Bradshaw, who invited us put together this Focus Issue, and to Tim Smith and the New Journal of Physics staff for their extremely efficient handling of the manuscripts. Focus on Carbon Nanotubes Contents Transport theory of carbon nanotube Y junctions R Egger, B Trauzettel, S Chen and F Siano The tubular conical helix of graphitic boron nitride F F Xu, Y Bando and D Golberg Formation pathways for single-wall carbon nanotube multiterminal junctions Inna Ponomareva, Leonid A Chernozatonskii, Antonis N Andriotis and Madhu Menon Synthesis and manipulation of carbon nanotubes J W Seo, E Couteau, P Umek, K Hernadi, P Marcoux, B Lukic, Cs Mikó, M Milas, R Gaál and L Forró Transitional behaviour in the transformation from active end

  12. Large-Scale Processing of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Finn, John; Sridhar, K. R.; Meyyappan, M.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Scale-up difficulties and high energy costs are two of the more important factors that limit the availability of various types of nanotube carbon. While several approaches are known for producing nanotube carbon, the high-powered reactors typically produce nanotubes at rates measured in only grams per hour and operate at temperatures in excess of 1000 C. These scale-up and energy challenges must be overcome before nanotube carbon can become practical for high-consumption structural and mechanical applications. This presentation examines the issues associated with using various nanotube production methods at larger scales, and discusses research being performed at NASA Ames Research Center on carbon nanotube reactor technology.

  13. Microscopy of single-layer carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Su; Zhou, Dan

    1994-07-01

    Single-layer carbon nanotubes produced with yttrium carbide as catalyst have been studied with high-resolution transmission electron microscopy (HRTEM). The morphology, condition of iamging and the method of measurement to determine the actual diameter of a single-layer carbon nanotube have been detailed and the growth mechanism of single-layer carbon nanotubes has been discussed in this research.

  14. Dispersions of Carbon nanotubes in Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  15. Carbon nanotube-polymer composite actuators

    DOEpatents

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  16. Carbon nanotube: the inside story.

    PubMed

    Ando, Yoshinori

    2010-06-01

    Carbon nanotubes (CNTs) were serendipitously discovered as a byproduct of fullerenes by direct current (DC) arc discharge; and today this is the most-wanted material in the nanotechnology research. In this brief review, I begin with the history of the discovery of CNTs and focus on CNTs produced by arc discharge in hydrogen atmosphere, which is little explored outside my laboratory. DC arc discharge evaporation of pure graphite rod in pure hydrogen gas results in multi-walled carbon nanotubes (MWCNTs) of high crystallinity in the cathode deposit. As-grown MWCNTs have very narrow inner diameter. Raman spectra of these MWCNTs show high-intensity G-band, unusual high-frequency radial breathing mode at 570 cm(-1), and a new characteristic peak near 1850 cm(-1). Exciting carbon nanowires (CNWs), consisting of a linear carbon chain in the center of MWCNTs are also produced. Arc evaporation of graphite rod containing metal catalysts results in single-wall carbon nanotubes (SWCNTs) in the whole chamber like macroscopic webs. Two kinds of arc method have been developed to produce SWCNTs: Arc plasma jet (APJ) and Ferrum-Hydrogen (FH) arc methods. Some new purification methods for as-produced SWCNTs are reviewed. Finally, double-walled carbon nanotubes (DWCNTs) are also described.

  17. Gears Based on Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Han, Jie; Globus, Al; Deardorff, Glenn

    2005-01-01

    Gears based on carbon nanotubes (see figure) have been proposed as components of an emerging generation of molecular- scale machines and sensors. In comparison with previously proposed nanogears based on diamondoid and fullerene molecules, the nanotube-based gears would have simpler structures and are more likely to be realizable by practical fabrication processes. The impetus for the practical development of carbon-nanotube- based gears arises, in part, from rapid recent progress in the fabrication of carbon nanotubes with prescribed diameters, lengths, chiralities, and numbers of concentric shells. The shafts of the proposed gears would be made from multiwalled carbon nanotubes. The gear teeth would be rigid molecules (typically, benzyne molecules), bonded to the nanotube shafts at atomically precise positions. For fabrication, it may be possible to position the molecular teeth by use of scanning tunneling microscopy (STM) or other related techniques. The capability to position individual organic molecules at room temperature by use of an STM tip has already been demonstrated. Routes to the chemical synthesis of carbon-nanotube-based gears are also under investigation. Chemical and physical aspects of the synthesis of molecular scale gears based on carbon nanotubes and related molecules, and dynamical properties of nanotube- based gears, have been investigated by computational simulations using established methods of quantum chemistry and molecular dynamics. Several particularly interesting and useful conclusions have been drawn from the dynamical simulations performed thus far: The forces acting on the gears would be more sensitive to local molecular motions than to gross mechanical motions of the overall gears. Although no breakage of teeth or of chemical bonds is expected at temperatures up to at least 3,000 K, the gears would not work well at temperatures above a critical range from about 600 to about 1,000 K. Gear temperature could probably be controlled by

  18. CMOS Integrated Carbon Nanotube Sensor

    SciTech Connect

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-05-23

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  19. Photodetector based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pavlov, A.; Kitsyuk, E.; Ryazanov, R.; Timoshenkov, V.; Adamov, Y.

    2015-09-01

    Photodetector based on carbon nanotubes (CNT) was investigated. Sensors were done on quartz and silicon susbtrate. Samples of photodetectors sensors were produced by planar technology. This technology included deposition of first metal layer (Al), lithography for pads formation, etching, and formation of local catalyst area by inverse lithography. Vertically-aligned multi-wall carbon nanotubes were directly synthesized on substrate by PECVD method. I-V analysis and spectrum sensitivity of photodetector were investigated for 0.4 μm - 1.2 μm wavelength. Resistivity of CNT layers over temperature was detected in the range of -20°C to 100°C.

  20. All carbon nanotubes are not created equal

    SciTech Connect

    Geohegan, David B; Puretzky, Alexander A; Rouleau, Christopher M

    2010-01-01

    This chapter presents the various factors that enter into consideration when choosing the source of carbon nanotubes for a specific application. Carbon nanotubes are giant molecules made of pure carbon. They have captured the imagination of the scientific community by the unique structure that provides superior physical, chemical, and electrical properties. However, a surprisingly wide disparity exists between the intrinsic properties determined under ideal conditions and the properties that carbon nanotubes exhibit in real world situations. The lack of uniformity in carbon nanotube properties is likely to be the main obstacle holding back the development of carbon nanotube applications. This tutorial addresses the nonuniformity of carbon nanotube properties from the synthesis standpoint. This synthesis-related nonuniformity is on top of the intrinsic chirality distribution that gives the ~1:2 ratio of metallic to semiconducting nanotubes. From the standpoint of carbon bonding chemistry the variation in the quality and reproducibility of carbon nanotube materials is not unexpected. It is an intrinsic feature that is related to the metastability of carbon structures. The extent to which this effect is manifested in carbon nanotube formation is governed by the type and the kinetics of the carbon nanotube synthesis reaction. Addressing this variation is critical if nanotubes are to live up to the potential already demonstrated by their phenomenal physical properties.

  1. Biomedical applications of carbon-nanotube composites.

    PubMed

    Meredith, Jay Russell; Jin, Chunming; Narayan, Roger J; Aggarwal, Ravi

    2013-01-01

    The unique physical, chemical and mechanical properties of carbon nanotubes make them attractive for a variety of biomedical applications. Carbon nanotubes have been used to modify conventional biomedical materials to enhance mechanical properties, biocompatibility, or to impart other functionalities. New multifunctional composite materials using carbon nanotubes have been developed by combining them with inorganic, polymeric or biological materials. The biomedical applications for which novel carbon nanotube composites have been investigated include antimicrobial coatings, neural implants, tissue engineering scaffolds and electrochemical biosensors. In this paper, research on development and application of carbon nanotube composites for biomedical applications has been reviewed. PMID:23277017

  2. Synthesis of carbon nanotubes and nanotube forests on copper catalyst

    NASA Astrophysics Data System (ADS)

    Kruszka, Bartosz; Terzyk, Artur P.; Wiśniewski, Marek; Gauden, Piotr A.; Szybowicz, Mirosław

    2014-09-01

    The growth of carbon nanotubes on bulk copper is studied. We show for the first time, that super growth chemical vapor deposition method can be successfully applied for preparation of nanotubes on copper catalyst, and the presence of hydrogen is necessary. Next, different methods of copper surface activation are studied, to improve catalyst efficiency. Among them, applied for the first time for copper catalyst in nanotubes synthesis, sulfuric acid activation is the most promising. Among tested samples the surface modified for 10 min is the most active, causing the growth of vertically aligned carbon nanotube forests. Obtained results have potential importance in application of nanotubes and copper in electronic chips and nanodevices.

  3. Modified carbon nanotubes and methods of forming carbon nanotubes

    DOEpatents

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  4. Effect of Carbon Nanotubes on Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Chen, Michelle; Ahmed, Asma; Black, Melanie; Kawamoto, Nicole; Lucas, Jessica; Pagala, Armie; Pham, Tram; Stankiewicz, Sara; Chen, Howard

    2010-03-01

    Carbon Nanotubes possess extraordinary electrical, mechanical, and thermal properties. Research on applying the carbon nanotubes for ultrasensitive detection, disease diagnosis, and drug delivery is rapidly developing. While the fundamental and technological findings on carbon nanotubes show great promise, it is extremely important to investigate the effect of the carbon nanotubes on human health. In our experiments, we introduce purified carbon nanotubes in suspension to ovary cells cultured from Hamsters. These cells are chosen since they show robust morphological changes associated with cytotoxicity that can easily be observed under a light microscope. We will discuss the toxicity of carbon nanotubes by characterizing the cell morphology and viability as a function of time and the concentration of carbon nanotube suspension.

  5. Carbon Nanotube Material Quality Assessment

    NASA Technical Reports Server (NTRS)

    Yowell, Leonard; Arepalli, Sivaram; Sosa, Edward; Niolaev, Pavel; Gorelik, Olga

    2006-01-01

    The nanomaterial activities at NASA Johnson Space Center focus on carbon nanotube production, characterization and their applications for aerospace systems. Single wall carbon nanotubes are produced by arc and laser methods. Characterization of the nanotube material is performed using the NASA JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. A possible addition of other techniques such as XPS, and ICP to the existing protocol will be discussed. Changes in the quality of the material collected in different regions of the arc and laser production chambers is assessed using the original JSC protocol. The observed variations indicate different growth conditions in different regions of the production chambers.

  6. Plasma CVD of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Cruden, B.; Hash, D.; Meyyappan, M.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Carbon nanotubes(CNT) exhibit remarkable mechanical and unique electronic properties and thus have created excitement in the research community about their potential in electronics, computing, sensor and structural applications. Realization of these applications critically depends on the ability to control the properties(such as diameter, chirality) as well purity. We have investigated CNT growth using an inductively coupled plasma(ICP) process using hydrocarbon feedstock. The catalyst required for nanotube growth consists of thin sputtered layers of aluminum and iron(10 nm each) and aligned carbon nanotubes have been obtained. Optical emission diagnostics as well as a plasma modeling effort have been undertaken to understand growth mechanisms. This presentation will discuss growth characteristics under various pressure, power and feedgas compositions and our understanding from modeling and diagnostics.

  7. Conductance Oscillations in Squashed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Mehrez, H.; Anantram, M. P.; Svizhenko, A.

    2003-01-01

    A combination of molecular dynamics and electrical conductance calculations are used to probe the electromechanical properties of squashed metallic carbon nanotubes. We find that the conductance and bandgap of armchair nanotubes show oscillations upon squashing. The physical origin of these oscillations is attributed to interaction of carbon atoms with a fourth neighbor. Squashing of armchair and zigzag nanotubes ultimately leads to metallic behavior.

  8. Supported lipid bilayer/carbon nanotube hybrids

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Moran-Mirabal, Jose M.; Craighead, Harold G.; McEuen, Paul L.

    2007-03-01

    Carbon nanotube transistors combine molecular-scale dimensions with excellent electronic properties, offering unique opportunities for chemical and biological sensing. Here, we form supported lipid bilayers over single-walled carbon nanotube transistors. We first study the physical properties of the nanotube/supported lipid bilayer structure using fluorescence techniques. Whereas lipid molecules can diffuse freely across the nanotube, a membrane-bound protein (tetanus toxin) sees the nanotube as a barrier. Moreover, the size of the barrier depends on the diameter of the nanotube-with larger nanotubes presenting bigger obstacles to diffusion. We then demonstrate detection of protein binding (streptavidin) to the supported lipid bilayer using the nanotube transistor as a charge sensor. This system can be used as a platform to examine the interactions of single molecules with carbon nanotubes and has many potential applications for the study of molecular recognition and other biological processes occurring at cell membranes.

  9. Conductance of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Datta, Supriyo; Anatram, M. P.

    1998-01-01

    The recent report of quantized conductance in a 4 m long multiwalled nanotube (MWNT) raises the exciting possibility of ballistic transport at room temperature over relatively long distances. We argue that this is made possible by the special symmetry of the eigenstates of the lowest propagating modes in metallic nanotubes which suppresses backscattering. This unusual effect is absent for the higher propagating modes so that transport is not ballistic once the bias exceeds the cut-off energy for the higher modes, which is estimated to be approximately 75 meV for nanotubes of diameter approximately 15 nm. Also, we show that the symmetry of the eigenstates can significantly affect their coupling to the reservoir and hence the contact resistance. A simple model is presented that can be used to understand the observed conductance-voltage characteristics.

  10. Can nitrones functionalize carbon nanotubes?

    PubMed

    Ghini, Giacomo; Luconi, Lapo; Rossin, Andrea; Bianchini, Claudio; Giambastiani, Giuliano; Cicchi, Stefano; Lascialfari, Luisa; Brandi, Alberto; Giannasi, Alessandra

    2010-01-14

    An unprecedented functionalization of multi-walled carbon nanotubes (MWCNTs) has been conveniently achieved by the 1,3-dipolar cycloaddition of a cyclic nitrone. This organic functionalization yields materials with a great solubility in DMF (close to 10 mg per mL of DMF) preferentially occurring at the defects of the MWCNT sp(2) network. PMID:20024342

  11. Terahertz detection and carbon nanotubes

    SciTech Connect

    Leonard, Francois

    2014-06-11

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  12. Thermoelectrics: Carbon nanotubes get high

    NASA Astrophysics Data System (ADS)

    Crispin, Xavier

    2016-04-01

    Waste heat can be converted to electricity by thermoelectric generators, but their development is hindered by the lack of cheap materials with good thermoelectric properties. Now, carbon-nanotube-based materials are shown to have improved properties when purified to contain only semiconducting species and then doped.

  13. Terahertz detection and carbon nanotubes

    ScienceCinema

    Leonard, Francois

    2016-07-12

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  14. Carbon Nanotubes and Human Cells?

    ERIC Educational Resources Information Center

    King, G. Angela

    2005-01-01

    Single-walled carbon nanotubes that were chemically altered to be water soluble are shown to enter fibroblasts, T cells, and HL60 cells. Nanoparticles adversely affect immortalized HaCaT human keratinocyte cultures, indicating that they may enter cells.

  15. Nitrated carbon nanoblisters for high-performance glucose dehydrogenase bioanodes.

    PubMed

    de Souza, João C P; Iost, Rodrigo M; Crespilho, Frank N

    2016-03-15

    Recently, many strategies are being explored for efficiently wiring glucose dehydrogenase (GDh) enzymes capable of glucose (fuel) oxidation. For instance, the use of GDh NAD(+)-dependent for glucose oxidation is of great interest in biofuel cell technology because the enzyme are unaffected by the presence of molecular oxygen commonly present in electrolyte. Here we present the fabrication of flexible carbon fibers modified with nitrated carbon nanoblisters and their application as high-performance GDh bioanodes. These bioelectrodes could electro-oxidize glucose at -360 mV (vs. Ag/AgClsat) in the presence of a molecular oxygen saturated electrolyte with current densities higher than 1.0 mAcm(-2) at 0.0 V. It is corroborated by open circuit potential, where a potential stabilization occurs at -150 mV in a long term stability current-transient experiment. This value is in agreement with the quasi-steady current obtained at very low scan rate (0.1 mVs(-1)), where the onset potential for glucose oxidation is -180 mV. X-ray photoelectron spectroscopy and scanning electron microscopy revealed that the nitrated blisters and edge-like carbon structures, enabling highly efficient enzyme immobilization and low overpotential for electron transfer, allowing for glucose oxidation with potential values close to the thermodynamic cofactor. PMID:26516686

  16. Nitrated carbon nanoblisters for high-performance glucose dehydrogenase bioanodes.

    PubMed

    de Souza, João C P; Iost, Rodrigo M; Crespilho, Frank N

    2016-03-15

    Recently, many strategies are being explored for efficiently wiring glucose dehydrogenase (GDh) enzymes capable of glucose (fuel) oxidation. For instance, the use of GDh NAD(+)-dependent for glucose oxidation is of great interest in biofuel cell technology because the enzyme are unaffected by the presence of molecular oxygen commonly present in electrolyte. Here we present the fabrication of flexible carbon fibers modified with nitrated carbon nanoblisters and their application as high-performance GDh bioanodes. These bioelectrodes could electro-oxidize glucose at -360 mV (vs. Ag/AgClsat) in the presence of a molecular oxygen saturated electrolyte with current densities higher than 1.0 mAcm(-2) at 0.0 V. It is corroborated by open circuit potential, where a potential stabilization occurs at -150 mV in a long term stability current-transient experiment. This value is in agreement with the quasi-steady current obtained at very low scan rate (0.1 mVs(-1)), where the onset potential for glucose oxidation is -180 mV. X-ray photoelectron spectroscopy and scanning electron microscopy revealed that the nitrated blisters and edge-like carbon structures, enabling highly efficient enzyme immobilization and low overpotential for electron transfer, allowing for glucose oxidation with potential values close to the thermodynamic cofactor.

  17. Carbon nanotubes by the metallocene route

    NASA Astrophysics Data System (ADS)

    Sen, Rahul; Govindaraj, A.; Rao, C. N. R.

    1997-03-01

    Pyrolysis of metallocenes such as ferrocene, cobaltocene and nickelocene, is shown to yield carbon nanotubes and metal-filled onion-like structures. Pyrolysis of benzene in the presence of a metallocene gives high yields of nanotubes, the wall thickness of the nanotubes depending on the metallocene content. Pyrolysis of benzene in the absence of any metal however gives monodispersed nanospheres of carbon rather than nanotubes.

  18. Endohedral impurities in carbon nanotubes.

    PubMed

    Clougherty, Dennis P

    2003-01-24

    A generalization of the Anderson model that includes pseudo-Jahn-Teller impurity coupling is proposed to describe distortions of an endohedral impurity in a carbon nanotube. Within mean-field theory, spontaneous axial symmetry breaking is found when the vibronic coupling strength g exceeds a critical value. The effective potential is found to have O(2) symmetry, in agreement with numerical calculations. For metallic zigzag nanotubes endohedrally doped with transition metals in the dilute limit, the low-energy properties of the system may display two-channel Kondo behavior; however, strong vibronic coupling is seen to exponentially suppress the Kondo energy scale. PMID:12570507

  19. Endohedral Impurities in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.

    2003-01-01

    A generalization of the Anderson model that includes pseudo-Jahn-Teller impurity coupling is proposed to describe distortions of an endohedral impurity in a carbon nanotube. Within mean-field theory, spontaneous axial symmetry breaking is found when the vibronic coupling strength g exceeds a critical value. The effective potential is found to have O(2) symmetry, in agreement with numerical calculations. For metallic zigzag nanotubes endohedrally doped with transition metals in the dilute limit, the low-energy properties of the system may display two-channel Kondo behavior; however, strong vibronic coupling is seen to exponentially suppress the Kondo energy scale.

  20. In silico assembly and nanomechanical characterization of carbon nanotube buckypaper.

    PubMed

    Cranford, Steven W; Buehler, Markus J

    2010-07-01

    Carbon nanotube sheets or films, also known as 'buckypaper', have been proposed for use in actuating, structural and filtration systems, based in part on their unique and robust mechanical properties. Computational modeling of such a fibrous nanostructure is hindered by both the random arrangement of the constituent elements as well as the time- and length-scales accessible to atomistic level molecular dynamics modeling. Here we present a novel in silico assembly procedure based on a coarse-grain model of carbon nanotubes, used to attain a representative mesoscopic buckypaper model that circumvents the need for probabilistic approaches. By variation in assembly parameters, including the initial nanotube density and ratio of nanotube type (single- and double-walled), the porosity of the resulting buckypaper can be varied threefold, from approximately 0.3 to 0.9. Further, through simulation of nanoindentation, the Young's modulus is shown to be tunable through manipulation of nanotube type and density over a range of approximately 0.2-3.1 GPa, in good agreement with experimental findings of the modulus of assembled carbon nanotube films. In addition to carbon nanotubes, the coarse-grain model and assembly process can be adapted for other fibrous nanostructures such as electrospun polymeric composites, high performance nonwoven ballistic materials, or fibrous protein aggregates, facilitating the development and characterization of novel nanomaterials and composites as well as the analysis of biological materials such as protein fiber films and bulk structures.

  1. From carbon nanotubes to carbon atomic chains

    NASA Astrophysics Data System (ADS)

    Casillas García, Gilberto; Zhang, Weijia; José-Yacamán, Miguel

    2010-10-01

    Carbyne is a linear allotrope of carbon. It is formed by a linear arrangement of carbon atoms with sp-hybridization. We present a reliable and reproducible experiment to obtain these carbon atomic chains using few-layer-graphene (FLG) sheets and a HRTEM. First the FLG sheets were synthesized from worm-like exfoliated graphite and then drop-casted on a lacey-carbon copper grid. Once in the TEM, two holes are opened near each other in a FLG sheet by focusing the electron beam into a small spot. Due to the radiation, the carbon atoms rearrange themselves between the two holes and form carbon fibers. The beam is concentrated on the carbon fibers in order excite the atoms and induce a tension until multi wall carbon nanotube (MWCNT) is formed. As the radiation continues the MWCNT breaks down until there is only a single wall carbon nanotube (SWCNT). Then, when the SWCNT breaks, an atomic carbon chain is formed, lasts for several seconds under the radiation and finally breaks. This demonstrates the stability of this carbon structure.

  2. Pulsed laser deposition of carbon nanotube and polystyrene-carbon nanotube composite thin films

    NASA Astrophysics Data System (ADS)

    Stramel, A. A.; Gupta, M. C.; Lee, H. R.; Yu, J.; Edwards, W. C.

    2010-12-01

    In this work, we report on the fabrication of carbon nanotube thin films via pulsed laser deposition using a pulsed, diode pumped, Tm:Ho:LuLF laser with 2 μm wavelength. The thin films were deposited on silicon substrates using pure carbon nanotube targets and polystyrene-carbon nanotube composite targets. Raman spectra, scanning electron micrographs, and transmission electron micrographs show that carbon nanotubes are present in the deposited thin films, and that the pulsed laser deposition process causes minimal degradation to the quality of the nanotubes when using pure carbon nanotube targets.

  3. Carbon-Nanotube Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Wong, Eric; Schlecht, Erich; Hunt, Brian; Siegel, Peter

    2006-01-01

    Schottky diodes based on semiconducting single-walled carbon nanotubes are being developed as essential components of the next generation of submillimeter-wave sensors and sources. Initial performance predictions have shown that the performance characteristics of these devices can exceed those of the state-of-the-art solid-state Schottky diodes that have been the components of choice for room-temperature submillimeter-wave sensors for more than 50 years. For state-of-the-art Schottky diodes used as detectors at frequencies above a few hundred gigahertz, the inherent parasitic capacitances associated with their semiconductor junction areas and the resistances associated with low electron mobilities limit achievable sensitivity. The performance of such a detector falls off approximately exponentially with frequency above 500 GHz. Moreover, when used as frequency multipliers for generating signals, state-of-the-art solid-state Schottky diodes exhibit extremely low efficiencies, generally putting out only micro-watts of power at frequencies up to 1.5 THz. The shortcomings of the state-of-the-art solid-state Schottky diodes can be overcome by exploiting the unique electronic properties of semiconducting carbon nanotubes. A single-walled carbon nanotube can be metallic or semiconducting, depending on its chirality, and exhibits high electron mobility (recently reported to be approx.= 2x10(exp 5)sq cm/V-s) and low parasitic capacitance. Because of the narrowness of nanotubes, Schottky diodes based on carbon nanotubes have ultra-small junction areas (of the order of a few square nanometers) and consequent junction capacitances of the order of 10(exp -18) F, which translates to cutoff frequency >5 THz. Because the turn-on power levels of these devices are very low (of the order of nano-watts), the input power levels needed for pumping local oscillators containing these devices should be lower than those needed for local oscillators containing state-of-the-art solid

  4. Bloch oscillations in carbon nanotubes.

    PubMed

    Jódar, Esther; Pérez-Garrido, Antonio; Rojas, Fernando

    2009-05-27

    Bloch oscillations arise when electrons are in a one-dimensional linear chain of atoms under a constant electric field. In this paper we show numerically that electrons in different types of carbon nanotubes show oscillations with a Bloch frequency proportional to the constant electric field applied along the nanotube axis. We show these oscillations, calculating the quadratic displacement as a function of the electric field. Because of the double periodicity of the nanotubes' geometry (the lattice constant and the lines of atoms) two frequencies appear, one twice the value of the other. These frequencies coincide perfectly with those predicted for a linear chain of atoms, taking into account the periodicity considered in each case.

  5. Quantum transport in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.; Grove-Rasmussen, Kasper; Nygârd, Jesper; Flensberg, Karsten; Kouwenhoven, Leo P.

    2015-07-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike in conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and valley freedom. The interplay between the two is the focus of this review. The energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are explained, together with their consequences for transport measurements through nanotube quantum dots. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behavior. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, open questions for the field are also clearly stated. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a low level.

  6. Carbon nanotube coatings as chemical absorbers

    DOEpatents

    Tillotson, Thomas M.; Andresen, Brian D.; Alcaraz, Armando

    2004-06-15

    Airborne or aqueous organic compound collection using carbon nanotubes. Exposure of carbon nanotube-coated disks to controlled atmospheres of chemical warefare (CW)-related compounds provide superior extraction and retention efficiencies compared to commercially available airborne organic compound collectors. For example, the carbon nanotube-coated collectors were four (4) times more efficient toward concentrating dimethylmethyl-phosphonate (DMMP), a CW surrogate, than Carboxen, the optimized carbonized polymer for CW-related vapor collections. In addition to DMMP, the carbon nanotube-coated material possesses high collection efficiencies for the CW-related compounds diisopropylaminoethanol (DIEA), and diisopropylmethylphosphonate (DIMP).

  7. Twisting Graphene into Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kit, Oleg O.; Tallinen, Tuomas; Mahadevan, L.; Timonen, Jussi; Koskinen, Pekka

    2012-02-01

    Carbon nanotubes are usually described as being rolled up from graphene sheets; this process, however, have never been realized experimentally. We showed that graphene can indeed be transformed into nanotube by twisting [1]. Further, we showed that tube formation can be well-explained within classical theory of elasticity---in fact the very mechanism of tube formation can be observed by twisting a strap from one's backpack (try now!). Furthermore, we showed that nanotube chirality may not only be predicted, but can also be controlled externally. The quantum molecular dynamic simulations at T=300K were achieved thanks to the revised periodic boundary conditions (RPBC) approach [2-3]. The structures similar to simulated have been recently observed experimentally [4]. This novel rote for nanotube formation opens new opportunities in nanomaterial manipulation not restricted to carbon alone. In the presentation, I will describe tube formation, as well as outline the easy and efficient technique for distorted nanostructures simulation, the RPBC approach. [4pt] [1] O. O. Kit et al. arXiv:1108.0048[0pt] [2] P. Koskinen & O. O. Kit PRL 105, 106401 (2010)[0pt] [3] O. O. Kit, L. Pastewka, P. Koskinen PRB 84, 155431 (2011)[0pt] [4] A. Chuvilin et al. Nature Materials 10, 687 (2011)

  8. Synthesis, assembly, and applications of single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Ryu, Koungmin

    This dissertation presents the synthesis and assembly of aligned carbon nanotubes, and their applications in both nano-electronics such as transistor and integrated circuits and macro-electronics in energy conversion devices as transparent conducting electrodes. Also, the high performance chemical sensor using metal oxide nanowire has been demonstrated. Chapter 1 presents a brief introduction of carbon nanotube, followed by discussion of a new synthesis technique using nanosphere lithography to grow highly aligned single-walled carbon nanotubes atop quartz and sapphire substrates. This method offers great potential to produce carbon nanotube arrays with simultaneous control over the nanotube orientation, position, density, diameter and even chirality. Chapter 3 introduces the wafer-scale integration and assembly of aligned carbon nanotubes, including full-wafer scale synthesis and transfer of massively aligned carbon nanotube arrays, and nanotube device fabrication on 4 inch Si/SiO2 wafer to yield submicron channel transistors with high on-current density ˜ 20 muA/mum and good on/off ratio and CMOS integrated circuits. In addition, various chemical doping methods for n-type nanotube transistors are studied to fabricate CMOS integrated nanotube circuits such as inverter, NAND and NOR logic devices. Furthermore, defect-tolerant circuit design for NAND and NOR is proposed and demonstrated to guarantee the correct operation of logic circuit, regardless of the presence of mis-aligned or mis-positioned nanotubes. Carbon nanotube flexible electronics and smart textiles for ubiquitous computing and sensing are demonstrated in chapter 4. A facile transfer printing technique has been introduced to transfer massively aligned single-walled carbon nanotubes from the original sapphire/quartz substrates to virtually any other substrates, including glass, silicon, polymer sheets, and even fabrics. The characterization of transferred nanotubes reveals that the transferred

  9. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors

    PubMed Central

    Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao

    2015-01-01

    Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m2 g−1 present high specific capacities of the 308 and 200 F g−1 in KOH electrolyte at current densities of 0.1 and 10 A g−1, respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g−1 at 0.1 A g−1 and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry. PMID:26472144

  10. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Fan, Li-Zhen; Chen, Tian-Tian; Song, Wei-Li; Li, Xiaogang; Zhang, Shichao

    2015-10-01

    Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1 mol%) along with low surface area 285 m2 g-1 present high specific capacities of the 308 and 200 F g-1 in KOH electrolyte at current densities of 0.1 and 10 A g-1, respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220 F g-1 at 0.1 A g-1 and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry.

  11. Use of nanoparticles and nanotubes for the development of high-performance nanoresins and nanocomposites

    NASA Astrophysics Data System (ADS)

    Gudapati, Vamshi

    2011-12-01

    In this study, a brittle epoxy polymer resin has successfully been toughened and strengthened by very small concentrations of diamond and SiC nanoparticles as well as Nanodiamonds (collectively called "nanoparticles" here). The tensile stress-strain response (based on the ASTM tensile tests for polymers) and the fracture energy release rate, GIC, (based on the ASTM Single-Edge-Notched-Bending, SENB, tests for polymers) of neat and nano-reinforced epoxy polymer were characterized over a range of "nanoparticle" concentrations. In addition to the large-scale improvements in mechanical properties, the nanoresins developed in this work also showed other superior multifunctional performances such as structural damping and acoustic properties. In the later part of this study, horizontally (in-plane, i.e., completely parallel to the surface) aligned multi-walled carbon nanotube (MWCNT with diameters of less than 100 nm) nanocarpet-nanotapes are developed as reinforcements to enhance the overall performance of resins, adhesives, and composites, globally (when it is interleaved within the composites to cover or "carpet" the entire surface of the parts) or locally (when it is used to locally reinforce the locations of joints, cut-outs, holes, etc, where stress concentrations exist). In addition to large scale improvements in mechanical properties, the nanocomposites developed in this work also showed enhanced multifunctional performance such as damping, electro-magnetic interference shielding (EMI), coefficient of thermal expansion (CTE), and Thermal Conductivity. Finally, we report the use of chemically modified vertically aligned carbon nanotube nanoforest nanofilm directly assembled on carbon paper as Gas Diffusion Layers (GDLs) for fuel cells. GDLs enhance the delivery of gases to the catalyst layers by controlling the water in the pore channels while simultaneously completing the electrical and electronic circuits needed to deliver the power generated by the Proton

  12. Dispersion of carbon nanotubes using organic solvents.

    PubMed

    Dumonteil, S; Demortier, A; Detriche, S; Raes, C; Fonseca, A; Rühle, M; Nagy, J B

    2006-05-01

    Phenyl ethyl alcohol was used for fast and stable dispersion of carbon nanotubes. This solvent, more effective than ethanol and toluene, allows easy dispersion of carbon nanotubes for TEM characterization. For TEM grids prepared at high dilution, it is possible to observe each tube separately. Applying that solvent, it was possible to measure the length, the diameter and the solubility of different carbon nanotubes samples.

  13. Method of making carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  14. Multilayer Film Assembly of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Meyyappan, M.; Han, Jie; Arnold, J. (Technical Monitor)

    2000-01-01

    An approach to assemble multilayers of carbon nanotubes on a substrate is presented. Chemical vapor deposition using a transition metal catalyst formulation is used to grow the nanotubes. Results show a bilayer assembly of nanotubes each with a different density of tubes.

  15. Torsional Carbon Nanotube Artificial Muscles

    NASA Astrophysics Data System (ADS)

    Foroughi, Javad; Spinks, Geoffrey M.; Wallace, Gordon G.; Oh, Jiyoung; Kozlov, Mikhail E.; Fang, Shaoli; Mirfakhrai, Tissaphern; Madden, John D. W.; Shin, Min Kyoon; Kim, Seon Jeong; Baughman, Ray H.

    2011-10-01

    Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.

  16. Ballistic Fracturing of Carbon Nanotubes.

    PubMed

    Ozden, Sehmus; Machado, Leonardo D; Tiwary, ChandraSekhar; Autreto, Pedro A S; Vajtai, Robert; Barrera, Enrique V; Galvao, Douglas S; Ajayan, Pulickel M

    2016-09-21

    Advanced materials with multifunctional capabilities and high resistance to hypervelocity impact are of great interest to the designers of aerospace structures. Carbon nanotubes (CNTs) with their lightweight and high strength properties are alternative to metals and/or metallic alloys conventionally used in aerospace applications. Here we report a detailed study on the ballistic fracturing of CNTs for different velocity ranges. Our results show that the highly energetic impacts cause bond breakage and carbon atom rehybridizations, and sometimes extensive structural reconstructions were also observed. Experimental observations show the formation of nanoribbons, nanodiamonds, and covalently interconnected nanostructures, depending on impact conditions. Fully atomistic reactive molecular dynamics simulations were also carried out in order to gain further insights into the mechanism behind the transformation of CNTs. The simulations show that the velocity and relative orientation of the multiple colliding nanotubes are critical to determine the impact outcome. PMID:27564421

  17. Ballistic Fracturing of Carbon Nanotubes.

    PubMed

    Ozden, Sehmus; Machado, Leonardo D; Tiwary, ChandraSekhar; Autreto, Pedro A S; Vajtai, Robert; Barrera, Enrique V; Galvao, Douglas S; Ajayan, Pulickel M

    2016-09-21

    Advanced materials with multifunctional capabilities and high resistance to hypervelocity impact are of great interest to the designers of aerospace structures. Carbon nanotubes (CNTs) with their lightweight and high strength properties are alternative to metals and/or metallic alloys conventionally used in aerospace applications. Here we report a detailed study on the ballistic fracturing of CNTs for different velocity ranges. Our results show that the highly energetic impacts cause bond breakage and carbon atom rehybridizations, and sometimes extensive structural reconstructions were also observed. Experimental observations show the formation of nanoribbons, nanodiamonds, and covalently interconnected nanostructures, depending on impact conditions. Fully atomistic reactive molecular dynamics simulations were also carried out in order to gain further insights into the mechanism behind the transformation of CNTs. The simulations show that the velocity and relative orientation of the multiple colliding nanotubes are critical to determine the impact outcome.

  18. Carbon Nanotubes: Molecular Electronic Components

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1997-01-01

    The carbon Nanotube junctions have recently emerged as excellent candidates for use as the building blocks in the formation of nanoscale molecular electronic networks. While the simple joint of two dissimilar tubes can be generated by the introduction of a pair of heptagon-pentagon defects in an otherwise perfect hexagonal graphene sheet, more complex joints require other mechanisms. In this work we explore structural characteristics of complex 3-point junctions of carbon nanotubes using a generalized tight-binding molecular-dynamics scheme. The study of pi-electron local densities of states (LDOS) of these junctions reveal many interesting features, most prominent among them being the defect-induced states in the gap.

  19. From carbon nanobells to nickel nanotubes

    NASA Astrophysics Data System (ADS)

    Ma, S.; Srikanth, V. V. S. S.; Maik, D.; Zhang, G. Y.; Staedler, T.; Jiang, X.

    2009-01-01

    A generic strategy is proposed to prepare one dimensional (1D) metallic nanotubes by using 1D carbon nanostructures as the initial templates. Following the strategy, nickel (Ni) nanotubes are prepared by using carbon nanobells (CNBs) as the initial templates. CNBs are first prepared by microwave plasma enhanced chemical vapor deposition technique. Carbon/nickel core/shell structures are then prepared by electroplating the CNBs in a nickel-Watts electrolytic cell. In the final step, the carbon core is selectively removed by employing hydrogen plasma etching to obtain Ni nanotubes. The mechanism leading to Ni nanotubes is briefly discussed.

  20. From carbon nanobells to nickel nanotubes

    SciTech Connect

    Ma, S.; Srikanth, V. V. S. S.; Maik, D.; Zhang, G. Y.; Staedler, T.; Jiang, X.

    2009-01-05

    A generic strategy is proposed to prepare one dimensional (1D) metallic nanotubes by using 1D carbon nanostructures as the initial templates. Following the strategy, nickel (Ni) nanotubes are prepared by using carbon nanobells (CNBs) as the initial templates. CNBs are first prepared by microwave plasma enhanced chemical vapor deposition technique. Carbon/nickel core/shell structures are then prepared by electroplating the CNBs in a nickel-Watts electrolytic cell. In the final step, the carbon core is selectively removed by employing hydrogen plasma etching to obtain Ni nanotubes. The mechanism leading to Ni nanotubes is briefly discussed.

  1. LDRD final report on carbon nanotube composites

    SciTech Connect

    Cahill, P.A.; Rand, P.B.

    1997-04-01

    Carbon nanotubes and their composites were examined using computational and experimental techniques in order to modify the mechanical and electrical properties of resins. Single walled nanotubes were the focus of the first year effort; however, sufficient quantities of high purity single walled nanotubes could not be obtained for mechanical property investigations. The unusually high electrical conductivity of composites loaded with <1% of multiwalled nanotubes is useful, and is the focus of continuing, externally funded, research.

  2. Engineering carbon nanotubes and nanotube circuits using electrical breakdown.

    PubMed

    Collins, P G; Arnold, M S; Avouris, P

    2001-04-27

    Carbon nanotubes display either metallic or semiconducting properties. Both large, multiwalled nanotubes (MWNTs), with many concentric carbon shells, and bundles or "ropes" of aligned single-walled nanotubes (SWNTs), are complex composite conductors that incorporate many weakly coupled nanotubes that each have a different electronic structure. Here we demonstrate a simple and reliable method for selectively removing single carbon shells from MWNTs and SWNT ropes to tailor the properties of these composite nanotubes. We can remove shells of MWNTs stepwise and individually characterize the different shells. By choosing among the shells, we can convert a MWNT into either a metallic or a semiconducting conductor, as well as directly address the issue of multiple-shell transport. With SWNT ropes, similar selectivity allows us to generate entire arrays of nanoscale field-effect transistors based solely on the fraction of semiconducting SWNTs.

  3. Improved Process for Fabricating Carbon Nanotube Probes

    NASA Technical Reports Server (NTRS)

    Stevens, R.; Nguyen, C.; Cassell, A.; Delzeit, L.; Meyyappan, M.; Han, Jie

    2003-01-01

    An improved process has been developed for the efficient fabrication of carbon nanotube probes for use in atomic-force microscopes (AFMs) and nanomanipulators. Relative to prior nanotube tip production processes, this process offers advantages in alignment of the nanotube on the cantilever and stability of the nanotube's attachment. A procedure has also been developed at Ames that effectively sharpens the multiwalled nanotube, which improves the resolution of the multiwalled nanotube probes and, combined with the greater stability of multiwalled nanotube probes, increases the effective resolution of these probes, making them comparable in resolution to single-walled carbon nanotube probes. The robust attachment derived from this improved fabrication method and the natural strength and resiliency of the nanotube itself produces an AFM probe with an extremely long imaging lifetime. In a longevity test, a nanotube tip imaged a silicon nitride surface for 15 hours without measurable loss of resolution. In contrast, the resolution of conventional silicon probes noticeably begins to degrade within minutes. These carbon nanotube probes have many possible applications in the semiconductor industry, particularly as devices are approaching the nanometer scale and new atomic layer deposition techniques necessitate a higher resolution characterization technique. Previously at Ames, the use of nanotube probes has been demonstrated for imaging photoresist patterns with high aspect ratio. In addition, these tips have been used to analyze Mars simulant dust grains, extremophile protein crystals, and DNA structure.

  4. Highly Efficient Oxygen Reduction Electrocatalysts based on Winged Carbon Nanotubes

    PubMed Central

    Cheng, Yingwen; Zhang, Hongbo; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Developing electrocatalysts with both high selectivity and efficiency for the oxygen reduction reaction (ORR) is critical for several applications including fuel cells and metal-air batteries. In this work we developed high performance electrocatalysts based on unique winged carbon nanotubes. We found that the outer-walls of a special type of carbon nanotubes/nanofibers, when selectively oxidized, unzipped and exfoliated, form graphene wings strongly attached to the inner tubes. After doping with nitrogen, the winged nanotubes exhibited outstanding activity toward catalyzing the ORR through the four-electron pathway with excellent stability and methanol/carbon monoxide tolerance. While the doped graphene wings with high active site density bring remarkable catalytic activity, the inner tubes remain intact and conductive to facilitate electron transport during electrocatalysis. PMID:24217312

  5. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity.

    PubMed

    Behabtu, Natnael; Young, Colin C; Tsentalovich, Dmitri E; Kleinerman, Olga; Wang, Xuan; Ma, Anson W K; Bengio, E Amram; ter Waarbeek, Ron F; de Jong, Jorrit J; Hoogerwerf, Ron E; Fairchild, Steven B; Ferguson, John B; Maruyama, Benji; Kono, Junichiro; Talmon, Yeshayahu; Cohen, Yachin; Otto, Marcin J; Pasquali, Matteo

    2013-01-11

    Broader applications of carbon nanotubes to real-world problems have largely gone unfulfilled because of difficult material synthesis and laborious processing. We report high-performance multifunctional carbon nanotube (CNT) fibers that combine the specific strength, stiffness, and thermal conductivity of carbon fibers with the specific electrical conductivity of metals. These fibers consist of bulk-grown CNTs and are produced by high-throughput wet spinning, the same process used to produce high-performance industrial fibers. These scalable CNT fibers are positioned for high-value applications, such as aerospace electronics and field emission, and can evolve into engineered materials with broad long-term impact, from consumer electronics to long-range power transmission. PMID:23307737

  6. Lipid bilayers covalently anchored to carbon nanotubes.

    PubMed

    Dayani, Yasaman; Malmstadt, Noah

    2012-05-29

    The unique physical and electrical properties of carbon nanotubes make them an exciting material for applications in various fields such as bioelectronics and biosensing. Due to the poor water solubility of carbon nanotubes, functionalization for such applications has been a challenge. Of particular need are functionalization methods for integrating carbon nanotubes with biomolecules and constructing novel hybrid nanostructures for bionanoelectronic applications. We present a novel method for the fabrication of dispersible, biocompatible carbon nanotube-based materials. Multiwalled carbon nanotubes (MWCNTs) are covalently modified with primary amine-bearing phospholipids in a carbodiimide-activated reaction. These modified carbon nanotubes have good dispersibility in nonpolar solvents. Fourier transform infrared (FTIR) spectroscopy shows peaks attributable to the formation of amide bonds between lipids and the nanotube surface. Simple sonication of lipid-modified nanotubes with other lipid molecules leads to the formation of a uniform lipid bilayer coating the nanotubes. These bilayer-coated nanotubes are highly dispersible and stable in aqueous solution. Confocal fluorescence microscopy shows labeled lipids on the surface of bilayer-modified nanotubes. Transmission electron microscopy (TEM) shows the morphology of dispersed bilayer-coated MWCNTs. Fluorescence quenching of lipid-coated MWCNTs confirms the bilayer configuration of the lipids on the nanotube surface, and fluorescence anisotropy measurements show that the bilayer is fluid above the gel-to-liquid transition temperature. The membrane protein α-hemolysin spontaneously inserts into the MWCNT-supported bilayer, confirming the biomimetic membrane structure. These biomimetic nanostructures are a promising platform for the integration of carbon nanotube-based materials with biomolecules.

  7. Plasticity and Kinky Chemistry of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Dzegilenko, Fedor

    2000-01-01

    Since their discovery in 1991, carbon nanotubes have been the subject of intense research interest based on early predictions of their unique mechanical, electronic, and chemical properties. Materials with the predicted unique properties of carbon nanotubes are of great interest for use in future generations of aerospace vehicles. For their structural properties, carbon nanotubes could be used as reinforcing fibers in ultralight multifunctional composites. For their electronic properties, carbon nanotubes offer the potential of very high-speed, low-power computing elements, high-density data storage, and unique sensors. In a continuing effort to model and predict the properties of carbon nanotubes, Ames accomplished three significant results during FY99. First, accurate values of the nanomechanics and plasticity of carbon nanotubes based on quantum molecular dynamics simulations were computed. Second, the concept of mechanical deformation catalyzed-kinky-chemistry as a means to control local chemistry of nanotubes was discovered. Third, the ease of nano-indentation of silicon surfaces with carbon nanotubes was established. The elastic response and plastic failure mechanisms of single-wall nanotubes were investigated by means of quantum molecular dynamics simulations.

  8. CARBON NANOTUBES: PROPERTIES AND APPLICATIONS

    SciTech Connect

    Fischer, John, E.

    2009-07-24

    Carbon nanotubes were discovered in 1991 as a minority byproduct of fullerene synthesis. Remarkable progress has been made in the ensuing years, including the discovery of two basic types of nanotubes (single-wall and multi-wall), great strides in synthesis and purification, elucidation of many fundamental physical properties, and important steps towards practical applications. Both the underlying science and technological potential of SWNT can profitably be studied at the scale of individual tubes and on macroscopic assemblies such as fibers. Experiments on single tubes directly reveal many of the predicted quantum confinement and mechanical properties. Semiconductor nanowires have many features in common with nanotubes, and many of the same fundamental and practical issues are in play – quantum confinement and its effect on properties; possible device structures and circuit architectures; thermal management; optimal synthesis, defect morphology and control, etc. In 2000 we began a small effort in this direction, conducted entirely by undergraduates with minimal consumables support from this grant. With DOE-BES approval, this grew into a project in parallel with the carbon nanotube work, in which we studied of inorganic semiconductor nanowire growth, characterization and novel strategies for electronic and electromechanical device fabrication. From the beginnings of research on carbon nanotubes, one of the major applications envisioned was hydrogen storage for fuel-cell powered cars and trucks. Subsequent theoretical models gave mixed results, the most pessimistic indicating that the fundamental H2-SWNT interaction was similar to flat graphite (physisorption) with only modest binding energies implying cryogenic operation at best. New material families with encouraging measured properties have emerged, and materials modeling has gained enormously in predictive power, sophistication, and the ability to treat a realistically representative number of atoms. One of

  9. A Tunable Carbon Nanotube Oscillator

    NASA Astrophysics Data System (ADS)

    Sazonova, Vera

    2005-03-01

    Nanoelectromechanical systems (NEMS) hold promise for a number of scientific and technological applications. Carbon nanotubes (NT) are perhaps the ultimate material for realizing a NEMS device as they are the stiffest material known, have low density, ultrasmall cross sections and can be defect-free. Equally important, a nanotube can act as a transistor and thus is able to sense its own motion. Here, we report the electrical actuation and detection of the guitar-string oscillation modes of doubly-clamped NT oscillators. We observed resonance frequencies in the 5MHz to 150MHz range with quality factors in the 50 to 100 range. We showed that the resonance frequencies can be widely tuned by a gate voltage. We also report on the temperature dependence of the quality factor and present a discussion of possible loss mechanisms.

  10. Longitudinal solitons in carbon nanotubes

    SciTech Connect

    Astakhova, T. Yu.; Gurin, O. D.; Menon, M.; Vinogradov, G. A.

    2001-07-15

    We present results on soliton excitations in carbon nanotubes (CNT's) using Brenner's many-body potential. Our numerical simulations demonstrate high soliton stability in (10,10) CNT's. The interactions of solitons and solitary excitation with CNT defect are found to be inelastic if the excitations and defects length scales are comparable, resulting in a substantial part of soliton energy being distributed inhomogeneously over the defect bonds. In these solitary-excitation--cap collisions the local energy of a few bonds in the cap can exceed the average energy by an order of magnitude and more. This phenomenon, denoted the ''Tsunami effect,'' can contribute dynamically to the recently proposed ''kinky chemistry.'' We also present results of changes in the local density of states and variations in the atomic partial charges estimated at different time instants of the solitary-excitation Tsunami at the nanotube cap.

  11. An anticorrosive magnesium/carbon nanotube composite

    NASA Astrophysics Data System (ADS)

    Endo, M.; Hayashi, T.; Itoh, I.; Kim, Y. A.; Shimamoto, D.; Muramatsu, H.; Shimizu, Y.; Morimoto, S.; Terrones, M.; Iinou, S.; Koide, S.

    2008-02-01

    Here, we report a drastically improved anticorrosive characteristic of magnesium alloy composites with the introduction of multiwalled carbon nanotubes. Highly depressed corrosion of nanotube-filled magnesium composite in salt water is due to the formation of stable oxide films along the grain boundaries of magnesium. Our results indicate that carbon nanotube acted as effective multifunctional filler to improve both mechanical and anticorrosive performances of magnesium alloy.

  12. Covalent Sidewall Functionalization of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Chiang, I.W.; Saini, R. K.; Mickelson, E. T.; Billups, W. E.; Hauge, R. H.; Margrave, J. L.

    2001-01-01

    Progress of fluorination of single-wall carbon nanotubes is being reported. Covalent attachment of alkyl groups including methyl, n-butyl and n-hexyl groups to the sidewalls of single wall carbon nanotubes (SWNTs) has been achieved. Quantitative measurement of the alkylation was done by thermal gravimetric analysis. FTIR, Raman and UV-Vis-NIR were used to characterize these alkylated SWNTs. Application of these nanotubes are being investigated-fibers, composites, batteries, lubricants, etc.

  13. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    NASA Technical Reports Server (NTRS)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  14. Carbon nanotubes for thermal interface materials in microelectronic packaging

    NASA Astrophysics Data System (ADS)

    Lin, Wei

    As the integration scale of transistors/devices in a chip/system keeps increasing, effective cooling has become more and more important in microelectronics. To address the thermal dissipation issue, one important solution is to develop thermal interface materials with higher performance. Carbon nanotubes, given their high intrinsic thermal and mechanical properties, and their high thermal and chemical stabilities, have received extensive attention from both academia and industry as a candidate for high-performance thermal interface materials. The thesis is devoted to addressing some challenges related to the potential application of carbon nanotubes as thermal interface materials in microelectronics. These challenges include: 1) controlled synthesis of vertically aligned carbon nanotubes on various bulk substrates via chemical vapor deposition and the fundamental understanding involved; 2) development of a scalable annealing process to improve the intrinsic properties of synthesized carbon nanotubes; 3) development of a state-of-art assembling process to effectively implement high-quality vertically aligned carbon nanotubes into a flip-chip assembly; 4) a reliable thermal measurement of intrinsic thermal transport property of vertically aligned carbon nanotube films; 5) improvement of interfacial thermal transport between carbon nanotubes and other materials. The major achievements are summarized. 1. Based on the fundamental understanding of catalytic chemical vapor deposition processes and the growth mechanism of carbon nanotube, fast synthesis of high-quality vertically aligned carbon nanotubes on various bulk substrates (e.g., copper, quartz, silicon, aluminum oxide, etc.) has been successfully achieved. The synthesis of vertically aligned carbon nanotubes on the bulk copper substrate by the thermal chemical vapor deposition process has set a world record. In order to functionalize the synthesized carbon nanotubes while maintaining their good vertical alignment

  15. Polymer Self-assembly on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Giulianini, Michele; Motta, Nunzio

    This chapter analyses the poly(3-hexylthiophene) self-assembly on carbon nanotubes and the interaction between the two materials forming a new hybrid nanostructure. The chapter starts with a review of the several studies investigating polymers and biomolecules self-assembled on nanotubes. Then conducting polymers and polythiophenes are briefly introduced. Accordingly, carbon nanotube structure and properties are reported in Sect. 3. The experimental section starts with the bulk characterisation of polymer thin films with the inclusion of uniformly distributed carbon nanotubes. By using volume film analysis techniques (AFM, TEM, UV-Vis and Raman), we show how the polymer's higher degree of order is a direct consequence of interaction with carbon nanotubes. Nevertheless, it is through the use of nanoscale analysis and molecular dynamic simulations that the self-assembly of the polymer on the nanotube surface can be clearly evidenced and characterised. In Sect. 6, the effect of the carbon templating structure on the P3HT organisation on the surface is investigated, showing the chirality-driven polymer assembly on the carbon nanotube surface. The interaction between P3HT and CNTs brings also to charge transfer, with the modification of physical properties for both species. In particular, the alteration of the polymer electronic properties and the modification of the nanotube mechanical structure are a direct consequence of the P3HT π-π stacking on the nanotube surface. Finally, some considerations based on molecular dynamics studies are reported in order to confirm and support the experimental results discussed.

  16. Ophthalmologial Applications of Carbon Nanotube Nanotechology

    NASA Technical Reports Server (NTRS)

    Loftus, David; Girten, Beverly (Technical Monitor)

    2002-01-01

    The development of an implantable device consisting of an array of carbon nanotubes on a silicon chip for restoration of vision in patients with macular degeneration and other retinal disorders is presented. The use of carbon nanotube bucky paper for retinal cell transplantation is proposed. This paper is in viewgraph form.

  17. Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes

    PubMed Central

    2016-01-01

    The ability to select and enrich semiconducting single-walled carbon nanotubes (SWNT) with high purity has led to a fast rise of solution-processed nanotube network field-effect transistors (FETs) with high carrier mobilities and on/off current ratios. However, it remains an open question whether it is best to use a network of only one nanotube species (monochiral) or whether a mix of purely semiconducting nanotubes but with different bandgaps is sufficient for high performance FETs. For a range of different polymer-sorted semiconducting SWNT networks, we demonstrate that a very small amount of narrow bandgap nanotubes within a dense network of large bandgap nanotubes can dominate the transport and thus severely limit on-currents and effective carrier mobility. Using gate-voltage-dependent electroluminescence, we spatially and spectrally reveal preferential charge transport that does not depend on nominal network density but on the energy level distribution within the network and carrier density. On the basis of these results, we outline rational guidelines for the use of mixed SWNT networks to obtain high performance FETs while reducing the cost for purification. PMID:26867006

  18. Formation of ordered ice nanotubes inside carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Koga, Kenichiro; Gao, G. T.; Tanaka, Hideki; Zeng, X. C.

    2001-08-01

    Following their discovery, carbon nanotubes have attracted interest not only for their unusual electrical and mechanical properties, but also because their hollow interior can serve as a nanometre-sized capillary, mould or template in material fabrication. The ability to encapsulate a material in a nanotube also offers new possibilities for investigating dimensionally confined phase transitions. Particularly intriguing is the conjecture that matter within the narrow confines of a carbon nanotube might exhibit a solid-liquid critical point beyond which the distinction between solid and liquid phases disappears. This unusual feature, which cannot occur in bulk material, would allow for the direct and continuous transformation of liquid matter into a solid. Here we report simulations of the behaviour of water encapsulated in carbon nanotubes that suggest the existence of a variety of new ice phases not seen in bulk ice, and of a solid-liquid critical point. Using carbon nanotubes with diameters ranging from 1.1nm to 1.4nm and applied axial pressures of 50MPa to 500MPa, we find that water can exhibit a first-order freezing transition to hexagonal and heptagonal ice nanotubes, and a continuous phase transformation into solid-like square or pentagonal ice nanotubes.

  19. Nanocapillarity and chemistry in carbon nanotubes

    SciTech Connect

    Ugarte, D.; Chatelain, A.; Heer, W.A. de

    1996-12-13

    Open carbon nanotubes were filled with molten silver nitrate by capillary forces. Only those tubes with inner diameters of 4 nanometers or more were filled, suggesting a capillarity size dependence as a result of the lowering of the nanotube-salt interface energy with increasing curvature of the nanotube walls. Nanotube cavities should also be less chemically reactive than graphite and may serve as nanosize test tubes. This property has been illustrated by monitoring the decomposition of silver nitrate within nanotubes in situ in an electron microscope, which produced chains of silver nanobeads separated by high-pressure gas pockets. 32 refs., 3 figs.

  20. Supported Lipid Bilayer/Carbon Nanotube Hybrids

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Moran-Mirabal, Jose; Craighead, Harold; McEuen, Paul

    2007-03-01

    We form supported lipid bilayers on single-walled carbon nanotubes and use this hybrid structure to probe the properties of lipid membranes and their functional constituents. We first demonstrate membrane continuity and lipid diffusion over the nanotube. A membrane-bound tetanus toxin protein, on the other hand, sees the nanotube as a diffusion barrier whose strength depends on the diameter of the nanotube. Finally, we present results on the electrical detection of specific binding of streptavidin to biotinylated lipids with nanotube field effect transistors. Possible techniques to extract dynamic information about the protein binding events will also be discussed.

  1. Atomic Entanglement in Carbon Nanotubes.

    NASA Astrophysics Data System (ADS)

    Bondarev, Igor; Vlahovic, Branislav

    2006-03-01

    The development of materials that may host quantum coherent states is a critical research problem for the nearest future. Recent progress in the growth of centimeter-long small-diameter single-walled carbon nanotubes (CNs)[1] and successful experiments on the encapsulation of single atoms into CNs[2], stimulate the study of dynamical quantum processes in atomically doped CN systems. We have recently shown[3] that atomic states may be strongly coupled to vacuum surface photonic modes in the CN, thus forming quasi-1D cavity polaritons similar to those observed for quantum dots in semiconductor nanocavities[4], which were recently suggested to be a possible way to produce the excitonic qubit entanglement[5]. Here, we show that, being strongly coupled to the (resonator-like) cylindrical nanotube environment, the two atomic quasi-1D polaritons can be easily entangled as well, thus challenging a novel alternative approach towards quantum information transfer over centimeter-long distances. [1]L.X.Zheng et al, Proc. Nanotech 2005 (May 8-12, 2005, Anaheim, CA, USA), vol.3, p.126. [2]G.-H.Jeong et al, Phys. Rev. B68,075410(2003). [3]I.V.Bondarev and Ph.Lambin, in: Trends in Nanotubes Reasearch (NovaScience, NY, 2005); Phys. Rev. B70,035407(2004); Phys. Rev. B72,035451(2005). [4]T.Yoshie et al, Nature 432,200(2004). [5]S.Hughes, Phys. Rev. Lett.94,227402(2005).

  2. Endohedral Impurities in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis

    2003-03-01

    A generalization of the Anderson model that includes pseudo-Jahn-Teller impurity coupling is proposed to describe distortions of an endohedral impurity in a carbon nanotube. Treating the distortion within mean-field theory, spontaneous axial symmetry breaking is found when the vibronic coupling strength g exceeds a critical value g_c. The effective potential in the symmetry-broken state is found to have O(2) symmetry, in agreement with numerical calculations. The consequences of such a distortion on electronic transport will be discussed.

  3. Carbon nanotube growth density control

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (CNT) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.

  4. Towards chirality-pure carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Yani; Zheng, Lianxi

    2010-10-01

    Current as-grown single-walled carbon nanotubes vary in diameter and chirality, which results in variations in their electronic and optical properties. Two approaches have been intensively studied to obtain chirality-pure nanotube structures and thus uniform properties for advanced applications. The first approach involves the post-synthesis separation according to the nanotubes' chiral vectors (n, m), and the second one involves direct synthes of carbon nanotubes with the same (n, m). This paper reviews the efforts along these two directions, with emphasis on the most recent progress of post-synthesis separation and the perspectives of controllable synthesis.

  5. Carbon nanotube materials characterization and devices design

    NASA Astrophysics Data System (ADS)

    Li, Weifeng

    The objective of this research is to characterize the electrical and mechanical properties of Carbon Nanotube (CNT) materials, and explore possible device applications for these materials. In order to achieve this goal, different forms of Carbon Nanotube materials---including Carbon Nanotubes, Carbon Nanotube Arrays, Carbon Nanotube Ribbon, Carbon Nanotube Thread, and sub-micrometer Carbon Nanotube Thread---were tested under a Scanning Electron Microscope (SEM) using a Micromanipulator (MM). Video and sound recording of the testing in the microscope provided new understanding how thread is formed and how nanotube materials fail. As-produced and thermally treated nanotubes were also tested. The main electrical parameters measured were electrical resistivity and maximum current density. The main mechanical property measured was strength. Together, these parameters are helping to determine the strongest and most conductive forms of CNT material. Putting nanotube materials into application is the ultimate goal of this continuing research. Several aggressive application ideas were investigated in a preliminary way in this work. In biomedical applications, a bundle of CNTs was formed for use as an electrode for accurate biosensing. A simple robot was designed using CNT electrical fiber. The robot was powered by two solenoids and could act as an in-body sensor and actuator to perform some impossible tasks from the viewpoint of current medical technology. In aerospace engineering, CNT materials could replace copper wire to reduce the weight of aircraft. Based on the excellent mechanical properties of CNT materials, a challenging idea is to use CNT material to build elevators to move payloads to outer space without using rockets. This dissertation makes contributions in the characterization of nanotube materials and in the design of miniature electromagnetic devices.

  6. Carbon nanotubes on carbon fibers: Synthesis, structures and properties

    NASA Astrophysics Data System (ADS)

    Zhang, Qiuhong

    The interface between carbon fibers (CFs) and the resin matrix in traditional high performance composites is characterized by a large discontinuity in mechanical, electrical, and thermal properties which can cause inefficient energy transfer. Due to the exceptional properties of carbon nanotubes (CNTs), their growth at the surface of carbon fibers is a promising approach to controlling interfacial interactions and achieving the enhanced bulk properties. However, the reactive conditions used to grow carbon nanotubes also have the potential to introduce defects that can degrade the mechanical properties of the carbon fiber (CF) substrate. In this study, using thermal chemical vapor deposition (CVD) method, high density multi-wall carbon nanotubes have been successfully synthesized directly on PAN-based CF surface without significantly compromising tensile properties. The influence of CVD growth conditions on the single CF tensile properties and carbon nanotube (CNT) morphology was investigated. The experimental results revealed that under high temperature growth conditions, the tensile strength of CF was greatly decreased at the beginning of CNT growth process with the largest decrease observed for sized CFs. However, the tensile strength of unsized CFs with CNT was approximately the same as the initial CF at lower growth temperature. The interfacial shear strength of CNT coated CF (CNT/CF) in epoxy was studied by means of the single-fiber fragmentation test. Results of the test indicate an improvement in interfacial shear strength with the addition of a CNT coating. This improvement can most likely be attributed to an increase in the interphase yield strength as well as an improvement in interfacial adhesion due to the presence of the nanotubes. CNT/CF also offers promise as stress and strain sensors in CF reinforced composite materials. This study investigates fundamental mechanical and electrical properties of CNT/CF using nanoindentation method by designed

  7. Development of Carbon-Nanotube/Polymer Composites

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas A.

    2005-01-01

    A report presents a short discussion of one company's effort to develop composites of carbon nanotubes in epoxy and other polymer matrices. The focus of the discussion is on the desirability of chemically modifying carbon nanotubes to overcome their inherent chemical nonreactivity and thereby enable the formation of strong chemical bonds between nanotubes and epoxies (or other polymeric matrix materials or their monomeric precursors). The chemical modification is effected in a process in which discrete functional groups are covalently attached to the nanotube surfaces. The functionalization process was proposed by the company and demonstrated in practice for the first time during this development effort. The covalently attached functional groups are capable of reacting with the epoxy or other matrix resin to form covalent bonds. Furthermore, the company uses this process to chemically modify the nanotube surfaces, affording tunable adhesion to polymers and solubility in select solvents. Flat-sheet composites containing functionalized nanotubes demonstrate significantly improved mechanical, thermal, and electrical properties.

  8. Cutting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ziegler, Kirk J.; Gu, Zhenning; Shaver, Jonah; Chen, Zheyi; Flor, Erica L.; Schmidt, Daniel J.; Chan, Candace; Hauge, Robert H.; Smalley, Richard E.

    2005-07-01

    A two-step process is utilized for cutting single-walled carbon nanotubes (SWNTs). The first step requires the breakage of carbon-carbon bonds in the lattice while the second step is aimed at etching at these damage sites to create short, cut nanotubes. To achieve monodisperse lengths from any cutting strategy requires control of both steps. Room-temperature piranha and ammonium persulfate solutions have shown the ability to exploit the damage sites and etch SWNTs in a controlled manner. Despite the aggressive nature of these oxidizing solutions, the etch rate for SWNTs is relatively slow and almost no new sidewall damage is introduced. Carbon-carbon bond breakage can be introduced through fluorination to ~C2F, and subsequent etching using piranha solutions has been shown to be very effective in cutting nanotubes. The final average length of the nanotubes is approximately 100 nm with carbon yields as high as 70-80%.

  9. Liquid surface model for carbon nanotube energetics.

    PubMed

    Solov'yov, Ilia A; Mathew, Maneesh; Solov'yov, Andrey V; Greiner, Walter

    2008-11-01

    In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms are known. The parameters of the liquid surface model and its potential applications are discussed. The model has been suggested for open end and capped nanotubes. The influence of the catalytic nanoparticle, atop which nanotubes grow, on the nanotube stability is also discussed. The suggested model gives an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions.

  10. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes.

    PubMed

    Yang, Peihua; Ding, Yong; Lin, Ziyin; Chen, Zhongwei; Li, Yuzhi; Qiang, Pengfei; Ebrahimi, Masood; Mai, Wenjie; Wong, Ching Ping; Wang, Zhong Lin

    2014-02-12

    A low-cost high-performance solid-state flexible asymmetric supercapacitor (ASC) with α-MnO2 nanowires and amorphous Fe2O3 nanotubes grown on flexible carbon fabric is first designed and fabricated. The assembled novel flexible ASC device with an extended operating voltage window of 1.6 V exhibits excellent performance such as a high energy density of 0.55 mWh/cm(3) and good rate capability. The ASC devices can find numerous applications as effective power sources, such as powering color-switchable sun glasses and smart windows. PMID:24382331

  11. Characterization of Carbon Nanotube Reinforced Nickel

    NASA Technical Reports Server (NTRS)

    Gill, Hansel; Hudson, Steve; Bhat, Biliyar; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Carbon nanotubes are cylindrical molecules composed of carbon atoms in a regular hexagonal arrangement. If nanotubes can be uniformly dispersed in a supporting matrix to form structural materials, the resulting structures could be significantly lighter and stronger than current aerospace materials. Work is currently being done to develop an electrolyte-based self-assembly process that produces a Carbon Nanotube/Nickel composite material with high specific strength. This process is expected to produce a lightweight metal matrix composite material, which maintains it's thermal and electrical conductivities, and is potentially suitable for applications such as advanced structures, space based optics, and cryogenic tanks.

  12. Methods for producing reinforced carbon nanotubes

    SciTech Connect

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2008-10-28

    Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  13. Carbon nanotube fiber spun from wetted ribbon

    SciTech Connect

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  14. Lipid nanoscaffolds in carbon nanotube arrays.

    PubMed

    Paukner, Catharina; Koziol, Krzysztof K K; Kulkarni, Chandrashekhar V

    2013-10-01

    We present the fabrication of lipid nanoscaffolds inside carbon nanotube arrays by employing the nanostructural self-assembly of lipid molecules. The nanoscaffolds are finely tunable into model biomembrane-like architectures (planar), soft nanochannels (cylindrical) or 3-dimensionally ordered continuous bilayer structures (cubic). Carbon nanotube arrays hosting the above nanoscaffolds are formed by packing of highly oriented multiwalled carbon nanotubes which facilitate the alignment of lipid nanostructures without requiring an external force. Furthermore, the lipid nanoscaffolds can be created under both dry and hydrated conditions. We show their direct application in reconstitution of egg proteins. Such nanoscaffolds find enormous potential in bio- and nano-technological fields.

  15. Microcapsule carbon nanotube devices for therapeutic applications

    NASA Astrophysics Data System (ADS)

    Kulamarva, Arun; Raja, Pavan M. V.; Bhathena, Jasmine; Chen, Hongmei; Talapatra, Saikat; Ajayan, Pulickel M.; Nalamasu, Omkaram; Prakash, Satya

    2009-01-01

    Carbon nanotubes are a new class of nanomaterials that have immense potential in the field of biomedicine. Their ability to carry large quantities of therapeutic molecules makes them prime candidates for providing targeted delivery of therapeutics for use in various diseases. However, their utility is limited due to the problems faced during their delivery to target sites. This article for the first time describes the design of a novel microcapsule carbon nanotube targeted delivery device. This device has potential in the targeted delivery of carbon nanotubes in suitable membranes along with their cargo, safely and effectively to the target loci.

  16. Defect-Free Carbon Nanotube Coils.

    PubMed

    Shadmi, Nitzan; Kremen, Anna; Frenkel, Yiftach; Lapin, Zachary J; Machado, Leonardo D; Legoas, Sergio B; Bitton, Ora; Rechav, Katya; Popovitz-Biro, Ronit; Galvão, Douglas S; Jorio, Ado; Novotny, Lukas; Kalisky, Beena; Joselevich, Ernesto

    2016-04-13

    Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting. Here we demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize the structure, formation mechanism, and electrical properties of these coils by different microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes, but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables tunneling between the turns. Although this behavior does not yet enable the performance of these nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this study represents a major step toward the production of many different nanotube coil devices, including inductors, electromagnets, transformers, and dynamos.

  17. Carbon Nanotubes for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Files, Brad; Yowell, Leonard

    2003-01-01

    Single-wall carbon nanotubes offer the promise of a new class of revolutionary materials for space applications. The Carbon Nanotube Project at NASA Johnson Space Center has been actively researching this new technology by investigating nanotube production methods (arc, laser, and HiPCO) and gaining a comprehensive understanding of raw and purified material using a wide range of characterization techniques. After production and purification, single wall carbon nanotubes are processed into composites for the enhancement of mechanical, electrical, and thermal properties. This "cradle-to-grave" approach to nanotube composites has given our team unique insights into the impact of post-production processing and dispersion on the resulting material properties. We are applying our experience and lessons-learned to developing new approaches toward nanotube material characterization, structural composite fabrication, and are also making advances in developing thermal management materials and electrically conductive materials in various polymer-nanotube systems. Some initial work has also been conducted with the goal of using carbon nanotubes in the creation of new ceramic materials for high temperature applications in thermal protection systems. Human space flight applications such as advanced life support and fuel cell technologies are also being investigated. This discussion will focus on the variety of applications under investigation.

  18. Defect-Free Carbon Nanotube Coils.

    PubMed

    Shadmi, Nitzan; Kremen, Anna; Frenkel, Yiftach; Lapin, Zachary J; Machado, Leonardo D; Legoas, Sergio B; Bitton, Ora; Rechav, Katya; Popovitz-Biro, Ronit; Galvão, Douglas S; Jorio, Ado; Novotny, Lukas; Kalisky, Beena; Joselevich, Ernesto

    2016-04-13

    Carbon nanotubes are promising building blocks for various nanoelectronic components. A highly desirable geometry for such applications is a coil. However, coiled nanotube structures reported so far were inherently defective or had no free ends accessible for contacting. Here we demonstrate the spontaneous self-coiling of single-wall carbon nanotubes into defect-free coils of up to more than 70 turns with identical diameter and chirality, and free ends. We characterize the structure, formation mechanism, and electrical properties of these coils by different microscopies, molecular dynamics simulations, Raman spectroscopy, and electrical and magnetic measurements. The coils are highly conductive, as expected for defect-free carbon nanotubes, but adjacent nanotube segments in the coil are more highly coupled than in regular bundles of single-wall carbon nanotubes, owing to their perfect crystal momentum matching, which enables tunneling between the turns. Although this behavior does not yet enable the performance of these nanotube coils as inductive devices, it does point a clear path for their realization. Hence, this study represents a major step toward the production of many different nanotube coil devices, including inductors, electromagnets, transformers, and dynamos. PMID:26708150

  19. The electrical conduction variation in stained carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sun, Shih-Jye; Wei Fan, Jun; Lin, Chung-Yi

    2012-01-01

    Carbon nanotubes become stained from coupling with foreign molecules, especially from adsorbing gas molecules. The charge exchange, which is due to the orbital hybridization, occurred in the stained carbon nanotube induces electrical dipoles that consequently vary the electrical conduction of the nanotube. We propose a microscopic model to evaluate the electrical current variation produced by the induced electrical dipoles in a stained zigzag carbon nanotube. It is found that stronger orbital hybridization strengths and larger orbital energy differences between the carbon nanotube and the gas molecules help increasing the induced electrical dipole moment. Compared with the stain-free carbon nanotube, the induced electrical dipoles suppress the current in the nanotube. In the carbon nanotubes with induced dipoles the current increases as a result of increasing orbital energy dispersion via stronger hybridization couplings. In particular, at a fixed hybridization coupling, the current increases with the bond length for the donor-carbon nanotube but reversely for the acceptor-carbon nanotube.

  20. Covalent enzyme immobilization onto carbon nanotubes using a membrane reactor

    NASA Astrophysics Data System (ADS)

    Voicu, Stefan Ioan; Nechifor, Aurelia Cristina; Gales, Ovidiu; Nechifor, Gheorghe

    2011-05-01

    Composite porous polysulfone-carbon nanotubes membranes were prepared by dispersing carbon nanotubes into a polysulfone solution followed by the membrane formation by phase inversion-immersion precipitation technique. The carbon nanotubes with amino groups on surface were functionalized with different enzymes (carbonic anhydrase, invertase, diastase) using cyanuric chloride as linker between enzyme and carbon nanotube. The composite membrane was used as a membrane reactor for a better dispersion of carbon nanotubes and access to reaction centers. The membrane also facilitates the transport of enzymes to active carbon nanotubes centers for functionalization (amino groups). The functionalized carbon nanotubes are isolated by dissolving the membranes after the end of reaction. Carbon nanotubes with covalent immobilized enzymes are used for biosensors fabrications. The obtained membranes were characterized by Scanning Electron Microscopy, Thermal analysis, FT-IR Spectroscopy, Nuclear Magnetic Resonance, and functionalized carbon nanotubes were characterized by FT-IR spectroscopy.

  1. High performance supercapacitor using porous carbon nanomaterial from corn cob

    NASA Astrophysics Data System (ADS)

    Sharma, Nallin; Mishra, Neeraj; Sharon, Madhuri; Sharon, Maheshwar

    2013-06-01

    Carbon synthesized from corn-cob has been used as an electrode in Electrochemical Double Layer Capacitor (EDLC). Dried Corn Cobs, soaked in 1N KOH, 1N HCl or 5% ZnCl2 at 10 0°C for 24 hr, were pyrolyzed in presence of Ar using Co as catalyst at 700-900 °C having dwell time of 60-180 min. The morphology of thus obtained carbon was studied under SEM that showed it to be porous carbon. All the carbon samples synthesized using different parameters were used as electrode for EDLC. Cyclic Voltammetry was used to measure the capacitance. Carbon synthesized from corn cobs pre-treated with 5% ZnCl2 using Co as catalyst pyrolyzed at 700°C for a dwell time of 120 min gave higher Specific capacitance of 270 F/g at scan rate of 5 mV/s. Moreover, this carbon, as observed under SEM, exhibited larger pore size.

  2. Dissymmetric carbon nanotubes by bipolar electrochemistry.

    PubMed

    Warakulwit, Chompunuch; Nguyen, Thi; Majimel, Jérome; Delville, Marie-Hélène; Lapeyre, Véronique; Garrigue, Patrick; Ravaine, Valérie; Limtrakul, Jumras; Kuhn, Alexander

    2008-02-01

    Short carbon nanotubes have been modified selectively on one end with metal using a bulk technique based on bipolar electrochemistry. A stabilized suspension of nanotubes is introduced in a capillary containing an aqueous metal salt solution, and a high electric field is applied to orientate and polarize the individual tubes. During their transport through the capillary under sufficient polarization (30 kV), each nanotube is the site of water oxidation on one end and the site of metal ion reduction on the other end with the size of the formed metal cluster being proportional to the potential drop along the nanotube.

  3. Quantum conductance of carbon nanotube peapods

    SciTech Connect

    Yoon, Young-Gui; Mazzoni, Mario S.C.; Louie, Steven G.

    2003-08-01

    We present a first-principles study of the quantum conductance of hybrid nanotube systems consisting of single-walled carbon nanotubes (SWCNTs) encapsulating either an isolated single C60 molecule or a chain of C60 molecules (nanotube peapods). The calculations show a rather weak bonding interaction between the fullerenes and the SWCNTs. The conductance of a (10,10) SWCNT with a single C60 molecule is virtually unaffected at the Fermi level, but exhibits quantized resonant reductions at the molecular levels. The nanotube peapod arrangement gives rise to high density of states for the fullerene highest occupied molecular orbital and lowest unoccupied molecular orbital bands.

  4. Flightweight Carbon Nanotube Magnet Technology

    NASA Technical Reports Server (NTRS)

    Chapman, J. N.; Schmidt, H. J.; Ruoff, R. S.; Chandrasekhar, V.; Dikin, D. A.; Litchford, R. J.

    2003-01-01

    Virtually all plasma-based systems for advanced airborne/spaceborne propulsion and power depend upon the future availability of flightweight magnet technology. Unfortunately, current technology for resistive and superconducting magnets yields system weights that tend to counteract the performance advantages normally associated with advanced plasma-based concepts. The ongoing nanotechnology revolution and the continuing development of carbon nanotubes (CNT), however, may ultimately relieve this limitation in the near future. Projections based on recent research indicate that CNTs may achieve current densities at least three orders of magnitude larger than known superconductors and mechanical strength two orders of magnitude larger than steel. In fact, some published work suggests that CNTs are superconductors. Such attributes imply a dramatic increase in magnet performance-to-weight ratio and offer real hope for the construction of true flightweight magnets. This Technical Publication reviews the technology status of CNTs with respect to potential magnet applications and discusses potential techniques for using CNT wires and ropes as a winding material and as an integral component of the containment structure. The technology shortfalls are identified and a research and technology strategy is described that addresses the following major issues: (1) Investigation and verification of mechanical and electrical properties, (2) development of tools for manipulation and fabrication on the nanoscale, (3) continuum/molecular dynamics analysis of nanotube behavior when exposed to practical bending and twisting loads, and (4) exploration of innovative magnet fabrication techniques that exploit the natural attributes of CNTs.

  5. Microfabricated electroactive carbon nanotube actuators

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Arti; Baughman, Ray H.; De Rossi, Danilo; Mazzoldi, Alberto; Tesconi, Mario; Tognetti, Alessandro; Vozzi, Giovanni

    2001-07-01

    A variety of microfabrication techniques have been developed at the University of Pisa. They are based either on pressure or piston actuated microsyringes or modified ink-jet printers. This work present the results of a study aimed at fabricating carbon nanotube (NT) actuators using micro-syringes. In order to prevent the nanotubes from aggregating into clumps, they were enclosed in a partially cross-linked polyvinylalcohol - polyallylamine matrix. After sonication the solution remained homogenously dispersed for about 40 minutes, which was sufficient time for deposition. Small strips of NT, about 5 mm across and 15 mm long were deposited. Following deposition, the films were baked at 80 degree(s)C and their thickness, impedance and mechanical resistance measured. The results indicate that 50 minutes of baking time is sufficient to give a constant resistivity of 1.12 x 10-2 (Omega) m per layer similar to a typical semiconductor, and each layer has a thickness of about 6 micrometers .

  6. Carbon nanotube transistors, sensors, and beyond

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian

    Carbon nanotubes are tiny hollow cylinders, made from a single graphene sheet, that possess many amazing properties. Another reason why nanotubes have generated intense research activities from scientists of various disciplines is they represent a new class of materials for the study of one-dimensional physics. In this thesis we investigate the electrical transport of semiconducting single-walled carbon nanotubes and their potential applications as biological sensors. Electrons have been predicted, by theoretical physicists, to go through nanotubes without much resistance. But this has not been properly quantified experimentally, and the origin of the routinely observed large resistance in nanotubes is not clear. In this thesis we show that in moderate long high quality nanotubes the electrical transport is limited by electron-phonon scattering. Systematic studies are carried out using many devices of different diameters at various temperatures. The resistance and inverse of peak mobility are observed to decrease linearly with temperature, indicating the influence of phonons. The conductance and peak mobility scales with nanotube diameters also, in a linear fashion and quadratic fashion respectively. Based on electron-phonon scattering, a theory model is developed that can not only predict how the resistance changes with gate voltage but also explain the observed temperature and diameter dependence. This work clarifies the nature of electrical transport in nanotubes and sets a performance limit of nanotube devices in diffusive regime. The electrical transport in nanotubes is extremely sensitive to local electrostatic environment due to their small size, large surface to volume ratio and high mobility, making nanotubes ideal key elements in biological sensors. In the second part of this thesis, we integrate nanotubes with supported lipid bilayers, mimic structures of cell membranes, and use this platform as a way to introduce biomolecules into the vicinity of

  7. Three-dimensional nanotube electrode arrays for hierarchical tubular structured high-performance pseudocapacitors.

    PubMed

    Gao, Yuan; Lin, Yuanjing; Chen, Jiaqi; Lin, Qingfeng; Wu, Yue; Su, Wenjun; Wang, Wenli; Fan, Zhiyong

    2016-07-21

    Ordered three-dimensional (3-D) tubular arrays are highly attractive candidates for high performance pseudocapacitor electrodes. Here, we report 3-D fluorine doped tin oxide (FTO) tubular arrays fabricated by a cost-effective ultrasonic spray pyrolysis (USP) method in anodic aluminum oxide (AAO) channels with high uniformity. The large surface area of such a structure leads to remarkable surface area enhancement up to 51.8 times compared to a planar structure. Combining with electrochemically deposited manganese dioxide (MnO2) nanoflakes on the inner side wall of the FTO nanotubes, the unique hierarchical tubular structured pseudocapacitor electrode demonstrated the highest areal capacitance of 193.8 mF cm(-2) at the scan rate of 5 mV s(-1) and 184 mF cm(-2) at the discharge current density of 0.6 mA cm(-2), which is 18.5 times that of a planar electrode. And it also showed a volumetric capacitance of 112.6 F cm(-3) at the scan rate of 5 mV s(-1) and 108.8 F cm(-3) at the discharge current density of 0.6 mA cm(-2). In addition, the cyclic stability test also indicated that a nanostructured pseudocapacitive electrode has a much larger capacitance retention after 3000 cycles of the charge-discharge process compared with a planar electrode, primarily due to the mechanical stability of the nanostructure. Moreover, pseudocapacitor device fabrication based on such electrodes shows the volumetric capacitance of 17.5 F cm(-3), and the highest specific energy of 1.56 × 10(-3) Wh cm(-3). With the merit of facile fabrication procedures and largely enhanced electrochemical performance, such a 3-D structure has high potency for energy storage systems for a wide range of practical applications. PMID:27337295

  8. High photoresponse in hybrid graphene-carbon nanotube infrared detectors.

    PubMed

    Lu, Rongtao; Christianson, Caleb; Weintrub, Ben; Wu, Judy Z

    2013-11-27

    Efficient exciton dissociation is crucial to obtaining high photonic response in photodetectors. This work explores implementation of a novel exciton dissociation mechanism through heterojunctions self-assembled at the graphene/MWCNT (multiwall carbon nanotube) interfaces in graphene/MWCNT nanohybrids. Significantly enhanced near-infrared photoresponsivity by nearly an order of magnitude has been achieved on the graphene/MWCNT nanohybrids as compared to the best achieved so far on carbon nanotube (CNT) only infrared (IR) detectors. This leads to a high detectivity up to 1.5 × 10(7) cm·Hz(1/2)·W(-1) in the graphene/MWCNT nanohybrid, which represents a 500% improvement over the best D* achieved on MWCNT film IR detectors and may be further improved with optimization on the interfacial heterojunctions. This approach of the self-assembly of graphene/CNT nanohybrids provides a pathway toward high-performance and low-cost carbon nanostructure IR detectors.

  9. Carbon Nanotube Composites: Strongest Engineering Material Ever?

    NASA Technical Reports Server (NTRS)

    Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.

  10. Deconvoluting hepatic processing of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry; Romin, Yevgeniy; Barlas, Afsar; Mulvey, J. Justin; Fujisawa, Sho; Xu, Ke; Ruggiero, Alessandro; Riabov, Vladimir; Thorek, Daniel L. J.; Ulmert, Hans David S.; Brea, Elliott J.; Behling, Katja; Kzhyshkowska, Julia; Manova-Todorova, Katia; Scheinberg, David A.; McDevitt, Michael R.

    2016-07-01

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans.

  11. Photonics based on carbon nanotubes

    PubMed Central

    2013-01-01

    Among direct-bandgap semiconducting nanomaterials, single-walled carbon nanotubes (SWCNT) exhibit strong quasi-one-dimensional excitonic optical properties, which confer them a great potential for their integration in future photonics devices as an alternative solution to conventional inorganic semiconductors. In this paper, we will highlight SWCNT optical properties for passive as well as active applications in future optical networking. For passive applications, we directly compare the efficiency and power consumption of saturable absorbers (SAs) based on SWCNT with SA based on conventional multiple quantum wells. For active applications, exceptional photoluminescence properties of SWCNT, such as excellent light-emission stabilities with temperature and excitation power, hold these nanometer-scale materials as prime candidates for future active photonics devices with superior performances. PMID:23803293

  12. Functionalized carbon nanotubes: biomedical applications

    PubMed Central

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity. PMID:23091380

  13. Carbon Nanotube Based Light Sensor

    NASA Technical Reports Server (NTRS)

    Wincheski, russell A. (Inventor); Smits, Jan M. (Inventor); Jordan, Jeffrey D. (Inventor); Watkins, Anthony Neal (Inventor); Ingram, JoAnne L. (Inventor)

    2006-01-01

    A light sensor substrate comprises a base made from a semi-conductive material and topped with a layer of an electrically non-conductive material. A first electrode and a plurality of carbon nanotube (CNT)-based conductors are positioned on the layer of electrically non-conductive material with the CNT-based conductors being distributed in a spaced apart fashion about a periphery of the first electrode. Each CNT-based conductor is coupled on one end thereof to the first electrode and extends away from the first electrode to terminate at a second free end. A second or gate electrode is positioned on the non-conductive material layer and is spaced apart from the second free end of each CNT-based conductor. Coupled to the first and second electrode is a device for detecting electron transfer along the CNT-based conductors resulting from light impinging on the CNT-based conductors.

  14. Targeting carbon nanotubes against cancer.

    PubMed

    Fabbro, Chiara; Ali-Boucetta, Hanene; Da Ros, Tatiana; Kostarelos, Kostas; Bianco, Alberto; Prato, Maurizio

    2012-04-25

    The use of carbon nanotubes (CNTs) as polyvalent tools for cancer treatment is progressing at a very fast pace. The most promising approach is the targeted delivery of drugs, designed to selectively direct the therapeutic treatment towards the tumours. CNTs may offer several advantages to overcome one of the main limitations of most existing anticancer therapies, namely the lack of selectivity. Herein, an account of the existing literature on CNT-based nanomedicine for cancer treatment is given. The most significant results obtained so far in the field of drug delivery are presented for many anticancer chemotherapeutics (doxorubicin, methotrexate, taxanes, platinum analogues, camptothecine and gemcitabine), but also for immunotherapeutics and nucleic acids. Moreover, the alternative anticancer therapies based on thermal ablation and radiotherapy are discussed. The attention throughout the review is focused on the different targeting strategies proposed so far, mainly based on antibodies, but also on other specifically recognised molecules or on the application of an external magnetic field.

  15. Carbon nanotube heat-exchange systems

    DOEpatents

    Hendricks, Terry Joseph; Heben, Michael J.

    2008-11-11

    A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).

  16. Carbon nanotube polymer composition and devices

    DOEpatents

    Liu, Gao; Johnson, Stephen; Kerr, John B.; Minor, Andrew M.; Mao, Samuel S.

    2011-06-14

    A thin film device and compound having an anode, a cathode, and at least one light emitting layer between the anode and cathode, the at least one light emitting layer having at least one carbon nanotube and a conductive polymer.

  17. Electrically engineered polymer-carbon hybrid heterojunction for high-performance printed transistors

    NASA Astrophysics Data System (ADS)

    Kim, Do Hwan; Kang, Gyu Won; Shin, Hyeon-Jin; Kim, Woo-Jae

    2014-10-01

    Molecularly hybridized materials composed of polymer semiconductors (PSCs) and single-walled carbon nanotubes (SWNTs) may provide a new platform to exploit an advantageous combination of semiconductors, which yields electrical properties that are not available in a single component system. In this talk, we demonstrate high-performance ink-jet printed hybrid transistors with an electrically engineered heterostructure by using specially designed PSCs and semiconducting SWNTs (sc-SWNTs) whose system achieved a high mobility of 0.23 cm2V-1s-1, no Von shift, a low off-current, and good bias-stability. We also revealed that binding energy between PSCs and sc-SWNT was strongly affected by side-chain length of PSCs, leading to the formation of homogeneous nanohybrid film. Eventually, understanding of electrostatic interactions in the heterostructure and experimental results suggest criteria for the design of nanohybrid heterostructures. Acknowledgement. This work was supported by a grant (Code No. 2011-0031628) from the Center for Advanced Soft Electronics under the Global Frontier Research Program of the Ministry of Science, ICT and Future Planning, Korea. The authors acknowledge Prof. Kilwon Cho for collaboration on the analysis of x-ray diffraction.

  18. Engineering molecular chains in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chamberlain, Thomas W.; Pfeiffer, Rudolf; Howells, Jonathan; Peterlik, Herwig; Kuzmany, Hans; Kräutler, Bernhard; da Ros, Tatiana; Melle-Franco, Manuel; Zerbetto, Francesco; Milić, Dragana; Khlobystov, Andrei N.

    2012-11-01

    A range of mono- and bis-functionalised fullerenes have been synthesised and inserted into single-walled carbon nanotubes. The effect of the size and shape of the functional groups of the fullerenes on the resultant 1D arrays formed within the nanotubes was investigated by high resolution transmission electron microscopy and X-ray diffraction. The addition of non-planar, sterically bulky chains to the fullerene cage results in highly ordered 1D structures in which the fullerenes are evenly spaced along the internal nanotube cavity. Theoretical calculations reveal that the functional groups interact with neighbouring fullerene cages to space the fullerenes evenly within the confines of the nanotube. The addition of two functional groups to opposite sides of the fullerene cages results in a further increase in the separation of the fullerene cages within the nanotubes at the cost of lower nanotube filling rates.A range of mono- and bis-functionalised fullerenes have been synthesised and inserted into single-walled carbon nanotubes. The effect of the size and shape of the functional groups of the fullerenes on the resultant 1D arrays formed within the nanotubes was investigated by high resolution transmission electron microscopy and X-ray diffraction. The addition of non-planar, sterically bulky chains to the fullerene cage results in highly ordered 1D structures in which the fullerenes are evenly spaced along the internal nanotube cavity. Theoretical calculations reveal that the functional groups interact with neighbouring fullerene cages to space the fullerenes evenly within the confines of the nanotube. The addition of two functional groups to opposite sides of the fullerene cages results in a further increase in the separation of the fullerene cages within the nanotubes at the cost of lower nanotube filling rates. Electronic supplementary information (ESI) available: HRTEM images of 4@SWNT, space filling models of 1-6@SWNT structures and crystal packing

  19. A monolithic functional film of nanotubes/cellulose/ionic liquid for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Basiricò, Lucia; Lanzara, Giulia

    2014-12-01

    A novel monolithic, pre-fabricated, fully functional film made of a nanostructured free-standing layer is presented for a new and competitive class of easy-to-assemble flexible supercapacitors whose design is in-between the all solid state and the traditional liquid electrolyte. The film is made of two vertically aligned multi-walled carbon nanotube (VANT) electrodes that store ions, embedded-in, and monolithically interspaced by a solution of microcrystalline cellulose in a room temperature ionic liquid (RTIL) electrolyte (1-ethyl-3-methylimidazolium acetate-EMIM Ac). The fine tuning of VANTs length and electrolyte/cellulose amount leads, in a sole and continuous block, to ions storage and physical separation between the electrodes without the need of the additional separator layer that is typically used in supercapacitors. Thus, physical discontinuities that can induce disturbances to ions mobility, are fully eliminated significantly reducing the equivalent series resistance and increasing the knee frequency, hence outclassing the best supercapacitors based on VANTs and non-aqueous electrolytes. The excellent electrochemical response can also be addressed to the chosen electrolyte that, not only has the advantage of leading to a significantly simpler and more affordable fabrication procedure, but has higher ionic conductivity, lower viscosity and higher ions mobility than other electrolytes capable of dissolving cellulose.

  20. Ultralong single-wall carbon nanotubes.

    PubMed

    Zheng, L X; O'Connell, M J; Doorn, S K; Liao, X Z; Zhao, Y H; Akhadov, E A; Hoffbauer, M A; Roop, B J; Jia, Q X; Dye, R C; Peterson, D E; Huang, S M; Liu, J; Zhu, Y T

    2004-10-01

    Since the discovery of carbon nanotubes in 1991 by Iijima, there has been great interest in creating long, continuous nanotubes for applications where their properties coupled with extended lengths will enable new technology developments. For example, ultralong nanotubes can be spun into fibres that are more than an order of magnitude stronger than any current structural material, allowing revolutionary advances in lightweight, high-strength applications. Long metallic nanotubes will enable new types of micro-electromechanical systems such as micro-electric motors, and can also act as a nanoconducting cable for wiring micro-electronic devices. Here we report the synthesis of 4-cm-long individual single-wall carbon nanotubes (SWNTs) at a high growth rate of 11 microm s(-1) by catalytic chemical vapour deposition. Our results suggest the possibility of growing SWNTs continuously without any apparent length limitation.

  1. Physically unclonable cryptographic primitives using self-assembled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hu, Zhaoying; Comeras, Jose Miguel M. Lobez; Park, Hongsik; Tang, Jianshi; Afzali, Ali; Tulevski, George S.; Hannon, James B.; Liehr, Michael; Han, Shu-Jen

    2016-06-01

    Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO2 trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size.

  2. Physically unclonable cryptographic primitives using self-assembled carbon nanotubes.

    PubMed

    Hu, Zhaoying; Comeras, Jose Miguel M Lobez; Park, Hongsik; Tang, Jianshi; Afzali, Ali; Tulevski, George S; Hannon, James B; Liehr, Michael; Han, Shu-Jen

    2016-06-01

    Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO2 trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size. PMID:26900757

  3. Carbon nanotube temperature and pressure sensors

    DOEpatents

    Ivanov, Ilia N.; Geohegan, David B.

    2016-10-25

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  4. Carbon nanotube temperature and pressure sensors

    DOEpatents

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  5. Controlled Deposition and Alignment of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Patry, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2012-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  6. [Hygienic evaluation of multilayer carbon nanotubes].

    PubMed

    Haliullin, T O; Zalyalov, R R; Shvedova, A A; Tkachov, A G

    2015-01-01

    The authors demonstrate that traditional methods evaluating work conditions on contemporary innovative enterprises producing nanomaterials assess these conditions as harmless and safe. At the same time, special investigation methods enable to reveal new hazards for workers' health: the study results prove that workers engaged into multilayer carbon nanotubes production are exposed to multilayer carbon nanotubes aerosols in concentrations exceeding internationally acceptable levels of 1 μg/ml (NIOSH)--that can harm the workers' health.

  7. Controlled Deposition and Alignment of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Ingram, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2009-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the . substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carver liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to The CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  8. Carbon nanotube superlattices in a magnetic field

    NASA Astrophysics Data System (ADS)

    Jaskólski, W.; Pelc, M.

    The influence of magnetic field on the band structure of carbon nanotube superlattices is investigated. In particular, we study superlattices built of finite sections of (6,6) and (12,0) tubes connected by pentagon/heptagon topological defects. Magnetic field is parallel to the axis of the superlattice. We demonstrate that the superlattice band structure does not show periodicity with the flux quantum, which is typical for pure carbon nanotubes.

  9. Analysis of Carbon Nanotube Field-Effect-Transistors (FETs)

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    1999-01-01

    This five page presentation is grouped into 11 numbered viewgraphs, most of which contain one or more diagrams. Some of the diagrams are accompanied by captions, including: 2) Nanotube FET by Delft, IBM; 3) Nanotube FET/Standard MOSFET; 5) Saturation with carrier-carrier; 7) Electronic properties of carbon nanotube; 8) Theoretical nanotube FET characteristics; 11) Summary: Delft and IBM nanotube FET analysis.

  10. Interfaces Between Carbon Nanotubes and Nickel Nanoparticles in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Bai; Liu, Lirui

    2013-12-01

    Carbon nanotubes (CNTs) filled with metals can be used in capacitors, sensors, rechargeable batteries, and so on. Their interface significantly affects the properties of the composites. Here, we show that three kinds of interfaces between crystalline Ni and CNTs exist, namely, ordered, distorted, and disordered. They presented lattice states of Ni atoms near the interface, whereas the (111)Ni plane was parallel to the CNTs' surface and appeared apart in a smaller or bigger angle. The coherent face-centered cubic (f.c.c)/hexagonal close-packed structure (h.c.p) boundary was formed between the crystalline Ni and CNTs at the ordered interface, in which the match was (111)Ni//(0001)Carbon. We suggested a dislocation model for the coherent interface. The model explained why the angle between (200)Ni and the CNTs' inner surface was 52.9° rather than the theoretical value of 54.75°. The (1)/(2)[11\\bar {1}] dislocation was formed to fit the coherent relationship. Thus, Ni lattice shrinkage occurred. Further study indicated that the formation mechanism of crystalline Ni in CNTs was through heterogeneous nucleation on the inner wall surface and growth of the crystal nucleus.

  11. Pumpkin-Derived Porous Carbon for Supercapacitors with High Performance.

    PubMed

    Bai, Suying; Tan, Guangqun; Li, Xiaoqin; Zhao, Qian; Meng, Yan; Wang, Yujue; Zhang, Yongzhi; Xiao, Dan

    2016-06-21

    Pumpkin has been employed for the first time as a renewable, low-cost precursor for the preparation of porous carbon materials with excellent performance. Unlike most other precursors, pumpkin is rich in sugars and starch, and it has advantageous properties for large-scale production. The as-prepared materials adopted a unique morphology that consisted of numerous fused sphere-like carbon grains with a high specific surface area (2968 m(2)  g(-1) ), abundant micro and mesopores, and excellent electrochemical properties. The pumpkin-derived activated carbon (PAC) material not only exhibited a high specific capacitance of 419 F g(-1) , but also showed considerable cycling stability, with 93.6 % retention after 10 000 cycles. Moreover, a symmetrical supercapacitor that was based on PAC showed a high energy density of 22.1 W h kg(-1) in aqueous electrolyte. These superior properties demonstrate that PAC holds great promise for applications in electrochemical energy-storage devices. PMID:27124360

  12. Filling of carbon nanotubes and nanofibres

    PubMed Central

    Gately, Reece D

    2015-01-01

    Summary The reliable production of carbon nanotubes and nanofibres is a relatively new development, and due to their unique structure, there has been much interest in filling their hollow interiors. In this review, we provide an overview of the most common approaches for filling these carbon nanostructures. We highlight that filled carbon nanostructures are an emerging material for biomedical applications. PMID:25821693

  13. Method for manufacturing high quality carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M. (Inventor)

    2006-01-01

    A non-catalytic process for the production of carbon nanotubes includes supplying an electric current to a carbon anode and a carbon cathode which have been securely positioned in the open atmosphere with a gap between them. The electric current creates an electric arc between the carbon anode and the carbon cathode, which causes carbon to be vaporized from the carbon anode and a carbonaceous residue to be deposited on the carbon cathode. Inert gas is pumped into the gap to flush out oxygen, thereby preventing interference with the vaporization of carbon from the anode and preventing oxidation of the carbonaceous residue being deposited on the cathode. The anode and cathode are cooled while electric current is being supplied thereto. When the supply of electric current is terminated, the carbonaceous residue is removed from the cathode and is purified to yield carbon nanotubes.

  14. Method for nano-pumping using carbon nanotubes

    DOEpatents

    Insepov, Zeke; Hassanein, Ahmed

    2009-12-15

    The present invention relates generally to the field of nanotechnology, carbon nanotubes and, more specifically, to a method and system for nano-pumping media through carbon nanotubes. One preferred embodiment of the invention generally comprises: method for nano-pumping, comprising the following steps: providing one or more media; providing one or more carbon nanotubes, the one or more nanotubes having a first end and a second end, wherein said first end of one or more nanotubes is in contact with the media; and creating surface waves on the carbon nanotubes, wherein at least a portion of the media is pumped through the nanotube.

  15. Tobacco Stem-Based Activated Carbons for High Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohong; Liu, Hongbo; Shi, Lei; He, Yuede

    2012-09-01

    Tobacco stem-based activated carbons (TS-ACs) were prepared by simple KOH activation and their application as electrodes in the electrical double layer capacitor (EDLC) performed successfully. The BET surface area, pore volume, and pore size distribution of the TS-ACs were evaluated based on N2 adsorption isotherms at 77 K. The surface area of the obtained activated carbons varies over a wide range (1472.8-3326.7 m2/g) and the mesoporosity was enhanced significantly as the ratio of KOH to tobacco stem (TS) increased. The electrochemical behaviors of series TS-ACs were characterized by means of galvanostatic charging/discharging, cyclic voltammetry, and impedance spectroscopy. The correlation between electrochemical properties and pore structure was investigated. A high specific capacitance value as 190 F/g at 1 mA/cm2 was obtained in 1 M LiPF6-EC/DMC/DEC electrolyte solution. Furthermore, good performance is also achieved even at high current densities. A development of new use for TS into a valuable energy storage material is explored.

  16. Nitrogen-doped mesoporous carbons for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Liu, Qiming

    2016-08-01

    The mesoporous carbons have been synthesized by using α-D(+)-Glucose, D-Glucosamine hydrochloride or their mixture as carbon precursors and mesoporous silicas (SBA-15 or MCF) as hard templates. The as-prepared products show a large pore volume (0.59-0.97 cm3 g-1), high surface areas (352.72-1152.67 m2 g-1) and rational nitrogen content (ca. 2.5-3.9 wt.%). The results of electrochemical tests demonstrate that both heteroatom doping and suitable pore structure play a decisive role in the performance of supercapacitors. The representative sample of SBA-15 replica obtained using D-Glucosamine hydrochloride only exhibits high specific capacitance (212.8 F g-1 at 0.5 A g-1) and good cycle durability (86.1% of the initial capacitance after 2000 cycles) in 6 M KOH aqueous electrolyte, which is attributed to the contribution of double layer capacitance and pseudo-capacitance. The excellent electrochemical performance makes it a promising electrode material for supercapacitors.

  17. Fast readout of carbon nanotube mechanical resonators

    NASA Astrophysics Data System (ADS)

    Meerwaldt, Harold; Singh, Vibhor; Schneider, Ben; Schouten, Raymond; van der Zant, Herre; Steele, Gary

    2013-03-01

    We perform fast readout measurements of carbon nanotube mechanical resonators. Using an electronic mixing scheme, we can detect the amplitude of the mechanical motion with an intermediate frequency (IF) of 46 MHz and a timeconstant of 1 us, up to 5 orders of magnitude faster than before. Previous measurements suffered from a low bandwidth due to the combination of the high resistance of the carbon nanotube and a large stray capacitance. We have increased the bandwidth significantly by using a high-impedance, close-proximity HEMT amplifier. The increased bandwidth should allow us to observe the nanotube's thermal motion and its transient response, approaching the regime of real-time detection of the carbon nanotube's mechanical motion.

  18. Carbon Nanotube Based Microfluidic Elements for Filtration and Concentration

    SciTech Connect

    Bakajin, O; Ben-Barak, N; Peng, J; Noy, A

    2003-06-25

    We have developed a method for integration of patterned arrays of carbon nanotubes or the ''nanotube mesh'' into microfabricated channels. The method includes standard lithographic methods for patterning and etching the substrate, followed by catalyst patterning, CVD deposition of nanotubes, and anodic bonding of coverslip top. We will describe a carbon nanotube filtering device fabricated using this method and discuss the use of carbon nanotube arrays as molecular concentration and separation media.

  19. Polymerization initated at sidewalls of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  20. Modeling of carbon nanotubes and carbon nanotube-polymer composites

    NASA Astrophysics Data System (ADS)

    Pal, G.; Kumar, S.

    2016-01-01

    In order to meet stringent environmental, safety and performance requirements from respective regulatory bodies, various technology-based industries are promoting the use of advanced carbon nanotube (CNT) reinforced lightweight and high strength polymer nanocomposites (PNCs) as a substitute to conventional materials both in structural and non-structural applications. The superior mechanical properties of PNCs made up of CNTs or bundles of CNTs can be attributed to the interfacial interaction between the CNTs and matrix, CNT's morphologies and to their uniform dispersion in the matrix. In PNCs, CNTs physically bond with polymeric matrix at a level where the assumption of continuum level interactions is not applicable. Modeling and prediction of mechanical response and failure behavior of CNTs and their composites becomes a complex task and is dealt with the help of up-scale modeling strategies involving multiple spatial and temporal scales in hierarchical or concurrent manner. Firstly, the article offers an insight into various modeling techniques in studying the mechanical response of CNTs; namely, equivalent continuum approach, quasi-continuum approach and molecular dynamics (MD) simulation. In the subsequent steps, these approaches are combined with analytical and numerical micromechanics models in a multiscale framework to predict the average macroscopic response of PNCs. The review also discusses the implementation aspects of these computational approaches, their current status and associated challenges with a future outlook.

  1. Flexible symmetric supercapacitors based on vertical TiO2 and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chien, C. J.; Chang, Pai-Chun; Lu, Jia G.

    2010-03-01

    Highly conducting and porous carbon nanotubes are widely used as electrodes in double-layer-effect supercapacitors. In this presentation, vertical TiO2 nanotube array is fabricated by anodization process and used as supercapacitor electrode utilizing its compact density, high surface area and porous structure. By spin coating carbon nanotube networks on vertical TiO2 nanotube array as electrodes with 1M H2SO4 electrolyte in between, the specific capacitance can be enhanced by 30% compared to using pure carbon nanotube network alone because of the combination of double layer effect and redox reaction from metal oxide materials. Based on cyclic voltammetry and galvanostatic charge-discharge measurements, this type of hybrid electrode has proven to be suitable for high performance supercapacitor application and maintain desirable cycling stability. The electrochemical impedance spectroscopy technique shows that the electrode has good electrical conductivity. Furthermore, we will discuss the prospect of extending this energy storage approach in flexible electronics.

  2. Three-dimensional nanotube electrode arrays for hierarchical tubular structured high-performance pseudocapacitors

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Lin, Yuanjing; Chen, Jiaqi; Lin, Qingfeng; Wu, Yue; Su, Wenjun; Wang, Wenli; Fan, Zhiyong

    2016-07-01

    Ordered three-dimensional (3-D) tubular arrays are highly attractive candidates for high performance pseudocapacitor electrodes. Here, we report 3-D fluorine doped tin oxide (FTO) tubular arrays fabricated by a cost-effective ultrasonic spray pyrolysis (USP) method in anodic aluminum oxide (AAO) channels with high uniformity. The large surface area of such a structure leads to remarkable surface area enhancement up to 51.8 times compared to a planar structure. Combining with electrochemically deposited manganese dioxide (MnO2) nanoflakes on the inner side wall of the FTO nanotubes, the unique hierarchical tubular structured pseudocapacitor electrode demonstrated the highest areal capacitance of 193.8 mF cm-2 at the scan rate of 5 mV s-1 and 184 mF cm-2 at the discharge current density of 0.6 mA cm-2, which is 18.5 times that of a planar electrode. And it also showed a volumetric capacitance of 112.6 F cm-3 at the scan rate of 5 mV s-1 and 108.8 F cm-3 at the discharge current density of 0.6 mA cm-2. In addition, the cyclic stability test also indicated that a nanostructured pseudocapacitive electrode has a much larger capacitance retention after 3000 cycles of the charge-discharge process compared with a planar electrode, primarily due to the mechanical stability of the nanostructure. Moreover, pseudocapacitor device fabrication based on such electrodes shows the volumetric capacitance of 17.5 F cm-3, and the highest specific energy of 1.56 × 10-3 Wh cm-3. With the merit of facile fabrication procedures and largely enhanced electrochemical performance, such a 3-D structure has high potency for energy storage systems for a wide range of practical applications.Ordered three-dimensional (3-D) tubular arrays are highly attractive candidates for high performance pseudocapacitor electrodes. Here, we report 3-D fluorine doped tin oxide (FTO) tubular arrays fabricated by a cost-effective ultrasonic spray pyrolysis (USP) method in anodic aluminum oxide (AAO) channels with

  3. Carbon nanotube biocompatibility with cardiac muscle cells

    NASA Astrophysics Data System (ADS)

    Garibaldi, Silvano; Brunelli, Claudio; Bavastrello, Valter; Ghigliotti, Giorgio; Nicolini, Claudio

    2006-01-01

    Purified carbon nanotubes are new carbon allotropes, sharing similarities with graphite, that have recently been proposed for their potential use with biological systems as probes for in vitro research and for diagnostic and clinical purposes. However the biocompatibility of carbon nanotubes with cells represents an important problem that, so far, remains largely uninvestigated. The objective of this in vitro study is to explore the cytocompatibility properties of purified carbon nanofibres with cardiomyocytes. Cardiac muscle cells from a rat heart cell line H9c2 (2-1) have been used. Highly purified single-walled nanotubes (SWNTs) were suspended at the concentration of 0.2 mg ml-1 by ultrasound in complete Dulbecco's modified Eagle's medium, and administered to cells to evaluate cell proliferation and shape changes by light microscopy, cell viability by trypan blue exclusion, and apoptosis, determined flow cytometrically by annexin/PI staining. Microscopic observation evidenced that carbon nanotubes bind to the cell membrane, causing a slight modification in cell shape and in cell count only after three days of treatment. Cell viability was not affected by carbon nanotubes in the first three days of culture, while after this time, cell death was slightly higher in nanotube-treated cells (p = ns). Accordingly, nanotube treatment induced little and non-significant change in the apoptotic cell number at day 1 and 3. The effect of nanotubes bound to cells was tested by reseeding treated cardiomyocytes. Cells from a trypsinized nanotube-treated sample showed a limited ability to proliferate, and a definite difference in shape, with a high degree of cell death: compared to reseeded untreated ones, in SWNT-treated samples the annexin-positive/PI-negative cells increased from 2.9% to 9.3% in SWNT (p<0.05, where p<0.05 defines a statistically significant difference with a probability above 95%), and the annexin-positive/PI-positive cells increased from 5.2% to 18.7% (p<0

  4. Splitting and joining in carbon nanotube/nanoribbon/nanotetrahedron growth.

    PubMed

    Hasegawa, Takayuki; Kohno, Hideo

    2015-02-01

    We report a novel phenomenon for carbon nanotube growth that results in a new carbon nanotube morphology. A carbon nanotube grown via metal nanoparticle-catalyzed chemical vapor deposition splits into two flattened nanotubes during growth and the two flattened nanotubes merge to form a ring of carbon nanotube/nanoribbon. This novel process is revealed by transmission electron microscopy observations of the carbon nanostructures. We propose that the splitting-and-joining process involves only one metal catalyst nanoparticle and a self-folding mechanism that we have named the origami mechanism to explain the process and the formation of nanoribbons and nanotetrahedra. PMID:25559588

  5. Carbon nanotube ecotoxicity in amphibians: assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes.

    PubMed

    Mouchet, Florence; Landois, Perine; Puech, Pascal; Pinelli, Eric; Flahaut, Emmanuel; Gauthier, Laury

    2010-08-01

    The potential impact of industrial multiwalled carbon nanotubes (MWNTs) was investigated under normalized laboratory conditions according to the International Standard micronucleus assay ISO 21427-1 for 12 days of half-static exposure to 0.1, 1, 10 and 50 mg/l of MWNTs in water. Three different end points were carried out for 12 days of exposure: mortality, growth inhibition and micronuclei induction in erythrocytes of the circulating blood of larvae. Raman spectroscopy analysis was used to study the presence of carbon nanotubes in the biological samples. Considering the high diversity of carbon nanotubes according to their different characteristics, MWNTs were analyzed in Xenopus larvae, comparatively to double-walled carbon nanotubes used in a previous study in similar conditions. Growth inhibition in larvae exposed to 50 mg/l of MWNTs was evidenced; however, no genetoxicity (micronucleus assay) was noticed, at any concentration. Carbon nanotube localization in the larvae leads to different possible hypothesis of mechanisms explaining toxicity in Xenopus.

  6. Carbon Nanotube-Based Synthetic Gecko Tapes

    NASA Astrophysics Data System (ADS)

    Dhinojwala, Ali

    2008-03-01

    Wall-climbing geckos have unique ability to attach to different surfaces without the use of any viscoelastic glues. On coming in contact with any surface, the micron-size gecko foot-hairs deform, enabling molecular contact over large areas, thus translating weak van der Waals (vdW) interactions into enormous shear forces. We will present our recent results on the development of synthetic gecko tape using aligned carbon nanotubes to mimic the keratin hairs found on gecko feet. The patterned carbon nanotube-based gecko tape can support a shear stress (36 N/cm^2) nearly four times higher than the gecko foot and sticks to a variety of surfaces, including Teflon. Both the micron-size setae (replicated by nanotube bundles) and nanometer-size spatulas (individual nanotubes) are necessary to achieve macroscopic shear adhesion and to translate the weak vdW interactions into high shear forces. The carbon nanotube based tape offers an excellent synthetic option as a dry conductive reversible adhesive in microelectronics, robotics and space applications. The mechanism behind these large shear forces and self-cleaning properties of these carbon nanotube based synthetic gecko tapes will be discussed. This work was performed in collaboration with graduate students Liehui Ge, and Sunny Sethi, and collaborators from RPI; Lijie Ci and Professor Pulickel Ajayan.

  7. Physical removal of metallic carbon nanotubes from nanotube network devices using a thermal and fluidic process.

    PubMed

    Ford, Alexandra C; Shaughnessy, Michael; Wong, Bryan M; Kane, Alexander A; Kuznetsov, Oleksandr V; Krafcik, Karen L; Billups, W Edward; Hauge, Robert H; Léonard, François

    2013-03-15

    Electronic and optoelectronic devices based on thin films of carbon nanotubes are currently limited by the presence of metallic nanotubes. Here we present a novel approach based on nanotube alkyl functionalization to physically remove the metallic nanotubes from such network devices. The process relies on preferential thermal desorption of the alkyls from the semiconducting nanotubes and the subsequent dissolution and selective removal of the metallic nanotubes in chloroform. The approach is versatile and is applied to devices post-fabrication.

  8. Selective Functionalization of Carbon Nanotubes: Part II

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Khare, Bishun

    2010-01-01

    An alternative method of low-temperature plasma functionalization of carbon nanotubes provides for the simultaneous attachment of molecular groups of multiple (typically two or three) different species or different mixtures of species to carbon nanotubes at different locations within the same apparatus. This method is based on similar principles, and involves the use of mostly the same basic apparatus, as those of the methods described in "Low-Temperature Plasma Functionalization of Carbon Nanotubes" (ARC-14661-1), NASA Tech Briefs, Vol. 28, No. 5 (May 2004), page 45. The figure schematically depicts the basic apparatus used in the aforementioned method, with emphasis on features that distinguish the present alternative method from the other. In this method, one exploits the fact that the composition of the deposition plasma changes as the plasma flows from its source in the precursor chamber toward the nanotubes in the target chamber. As a result, carbon nanotubes mounted in the target chamber at different flow distances (d1, d2, d3 . . .) from the precursor chamber become functionalized with different species or different mixtures of species. In one series of experiments to demonstrate this method, N2 was used as the precursor gas. After the functionalization process, the carbon nanotubes from three different positions in the target chamber were examined by Fourier-transform infrared spectroscopy to identify the molecular groups that had become attached. On carbon nanotubes from d1 = 1 cm, the attached molecular groups were found to be predominantly C-N and C=N. On carbon nanotubes from d2 = 2.5 cm, the attached molecular groups were found to be predominantly C-(NH)2 and/or C=NH2. (The H2 was believed to originate as residual hydrogen present in the nanotubes.) On carbon nanotubes from d3 = 7 cm no functionalization could be detected - perhaps, it was conjectured, because this distance is downstream of the plasma source, all of the free ions and free radicals of

  9. Carbon Nanotube Reinforced Polymers for Radiation Shielding Applications

    NASA Technical Reports Server (NTRS)

    Thibeault, S. (Technical Monitor); Vaidyanathan, Ranji

    2004-01-01

    This viewgraph presentation provides information on the use of Extrusion Freeform Fabrication (EEF) for the fabrication of carbon nanotubes. The presentation addresses TGA analysis, Raman spectroscopy, radiation tests, and mechanical properties of the carbon nanotubes.

  10. Release characteristics of selected carbon nanotube polymer composites

    EPA Science Inventory

    Multi-walled carbon nanotubes (MWCNTs) are commonly used in polymer formulations to improve strength, conductivity, and other attributes. A developing concern is the potential for carbon nanotube polymer nanocomposites to release nanoparticles into the environment as the polymer ...

  11. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  12. A carbon nanotube wall membrane for water treatment.

    PubMed

    Lee, Byeongho; Baek, Youngbin; Lee, Minwoo; Jeong, Dae Hong; Lee, Hong H; Yoon, Jeyong; Kim, Yong Hyup

    2015-05-14

    Various forms of carbon nanotubes have been utilized in water treatment applications. The unique characteristics of carbon nanotubes, however, have not been fully exploited for such applications. Here we exploit the characteristics and corresponding attributes of carbon nanotubes to develop a millimetre-thick ultrafiltration membrane that can provide a water permeability that approaches 30,000 l m(-2) h(-1) bar(-1), compared with the best water permeability of 2,400 l m(-2) h(-1) bar(-1) reported for carbon nanotube membranes. The developed membrane consists only of vertically aligned carbon nanotube walls that provide 6-nm-wide inner pores and 7-nm-wide outer pores that form between the walls of the carbon nanotubes when the carbon nanotube forest is densified. The experimental results reveal that the permeance increases as the pore size decreases. The carbon nanotube walls of the membrane are observed to impede bacterial adhesion and resist biofilm formation.

  13. Carbon nanotube-based synthetic gecko tapes.

    PubMed

    Ge, Liehui; Sethi, Sunny; Ci, Lijie; Ajayan, Pulickel M; Dhinojwala, Ali

    2007-06-26

    We have developed a synthetic gecko tape by transferring micropatterned carbon nanotube arrays onto flexible polymer tape based on the hierarchical structure found on the foot of a gecko lizard. The gecko tape can support a shear stress (36 N/cm(2)) nearly four times higher than the gecko foot and sticks to a variety of surfaces, including Teflon. Both the micrometer-size setae (replicated by nanotube bundles) and nanometer-size spatulas (individual nanotubes) are necessary to achieve macroscopic shear adhesion and to translate the weak van der Waals interactions into high shear forces. We have demonstrated for the first time a macroscopic flexible patch that can be used repeatedly with peeling and adhesive properties better than the natural gecko foot. The carbon nanotube-based tape offers an excellent synthetic option as a dry conductive reversible adhesive in microelectronics, robotics, and space applications.

  14. Carbon Nanotube-Based Permeable Membranes

    SciTech Connect

    Holt, J K; Park, H G; Bakajin, O; Noy, A; Huser, T; Eaglesham, D

    2004-04-06

    A membrane of multiwalled carbon nanotubes embedded in a silicon nitride matrix was fabricated for use in studying fluid mechanics on the nanometer scale. Characterization by fluorescent tracer diffusion and scanning electron microscopy suggests that the membrane is void-free near the silicon substrate on which it rests, implying that the hollow core of the nanotube is the only conduction path for molecular transport. Assuming Knudsen diffusion through this nanotube membrane, a maximum helium transport rate (for a pressure drop of 1 atm) of 0.25 cc/sec is predicted. Helium flow measurements of a nanoporous silicon nitride membrane, fabricated by sacrificial removal of carbon, give a flow rate greater than 1x10{sup -6} cc/sec. For viscous, laminar flow conditions, water is estimated to flow across the nanotube membrane (under a 1 atm pressure drop) at up to 2.8x10{sup -5} cc/sec (1.7 {micro}L/min).

  15. Carbon Nanotube Tower-Based Supercapacitor

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya (Inventor)

    2012-01-01

    A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.

  16. Electrical switching in metallic carbon nanotubes

    SciTech Connect

    Son, Young-Woo; Ihm, Jisoon; Cohen, Marvin L.; Louie, Steven G.; Choi, Hyoung Joon

    2005-04-15

    We present first-principles calculations of quantumtransport that show that the resistance of metallic carbon nanotubes canbe changed dramatically with homogeneous transverse electric fields ifthe nanotubes have impurities or defects. The change of the resistance ispredicted to range over more than 2 orders of magnitude withexperimentally attainable electric fields. This novel property has itsorigin that backscattering of conduction electrons by impurities ordefects in the nanotubes is strongly dependent on the strength and/ordirection of the applied electric fields. We expect this property to opena path to new device applications of metallic carbonnanotubes.

  17. Agglomeration defects on irradiated carbon nanotubes

    SciTech Connect

    Steini Moura, Cassio; Balzaretti, Naira Maria; Amaral, Livio; Gribel Lacerda, Rodrigo; Pimenta, Marcos A.

    2012-03-15

    Aligned carbon nanotubes (CNT) were irradiated in the longitudinal and perpendicular directions, with low energy carbon and helium ions in order to observe the formation of defects in the atomic structure. Analysis through Raman spectroscopy and scanning electron microscopy indicated bundle rupture and ion track formation on nanotube bundles. Aligned CNT presented a kind of defect comprising ravine formation and tube agglomeration on top of the substrate. The latter structure is possibly caused by static charge accumulation induced by the incoming ions. Fluence plays a role on the short range order. Higher fluence irradiation transforms CNT into amorphous carbon nanowires.

  18. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries.

    PubMed

    Jia, Xilai; Chen, Zheng; Cui, Xia; Peng, Yiting; Wang, Xiaolei; Wang, Ge; Wei, Fei; Lu, Yunfeng

    2012-11-27

    Design and fabrication of effective electrode structure is essential but is still a challenge for current lithium-ion battery technology. Herein we report the design and fabrication of a class of high-performance robust nanocomposites based on iron oxide spheres and carbon nanotubes (CNTs). An efficient aerosol spray process combined with vacuum filtration was used to synthesize such composite architecture, where oxide nanocrystals were assembled into a continuous carbon skeleton and entangled in porous CNT networks. This material architecture offers many critical features that are required for high-performance anodes, including efficient ion transport, high conductivity, and structure durability, therefore enabling an electrode with outstanding lithium storage performance. For example, such an electrode with a thickness of ∼35 μm could deliver a specific capacity of 994 mA h g(-1) (based on total electrode weight) and high recharging rates. This effective strategy can be extended to construct many other composite electrodes for high-performance lithium-ion batteries.

  19. Does water dope carbon nanotubes?

    SciTech Connect

    Bell, Robert A.; Payne, Michael C.; Mostofi, Arash A.

    2014-10-28

    We calculate the long-range perturbation to the electronic charge density of carbon nanotubes (CNTs) as a result of the physisorption of a water molecule. We find that the dominant effect is a charge redistribution in the CNT due to polarisation caused by the dipole moment of the water molecule. The charge redistribution is found to occur over a length-scale greater than 30 Å, highlighting the need for large-scale simulations. By comparing our fully first-principles calculations to ones in which the perturbation due to a water molecule is treated using a classical electrostatic model, we estimate that the charge transfer between CNT and water is negligible (no more than 10{sup −4} e per water molecule). We therefore conclude that water does not significantly dope CNTs, a conclusion that is consistent with the poor alignment of the relevant energy levels of the water molecule and CNT. Previous calculations that suggest water n-dopes CNTs are likely due to the misinterpretation of Mulliken charge partitioning in small supercells.

  20. Bending fracture in carbon nanotubes.

    PubMed

    Kuo, Wen-Shyong; Lu, Hsin-Fang

    2008-12-10

    A novel approach was adopted to incur bending fracture in carbon nanotubes (CNTs). Expanded graphite (EG) was made by intercalating and exfoliating natural graphite flakes. The EG was deposited with nickel particles, from which CNTs were grown by chemical vapor deposition. The CNTs were tip-grown, and their roots were fixed on the EG flakes. The EG flakes were compressed, and many CNTs on the surface were fragmented due to the compression-induced bending. Two major modes of the bending fracture were observed: cone-shaped and shear-cut. High-resolution scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the crack growth within the graphene layers. The bending fracture is characterized by two-region crack growth. An opening crack first appears around the outer-tube due to the bending-induced tensile stress. The crack then branches to grow along an inclined direction toward the inner-tube due to the presence of the shear stress in between graphene layers. An inner-tube pullout with inclined side surface is formed. The onset and development of the crack in these two regions are discussed. PMID:21730690

  1. Thermal Transport in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Christman, Jeremy; Moore, Andrew; Khatun, Mahfuza

    2011-10-01

    Recent advances in nanostructure technology have made it possible to create small devices at the nanoscale. Carbon nanotubes (CNT's) are among the most exciting building blocks of nanotechnology. Their versatility and extremely desirable properties for electronic and other devices have driven intense research and development efforts in recent years. A review of electrical and thermal conduction of the structures will be presented. The theoretical investigation is mainly based on molecular dynamics. Green Kubo relation is used for the study of thermal conductivity. Results include kinetic energy, potential energy, heat flux autocorrelation function, and heat conduction of various CNT structures. Most of the computation and simulation has been conducted on the Beowulf cluster at Ball State University. Various software packages and tools such as Visual Molecular Dynamics (VMD), Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), and NanoHUB, the open online resource at Purdue University have been used for the research. The work has been supported by the Indiana Academy of Science Research Fund, 2010-2011.

  2. Elastomer Reinforced with Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Hudson, Jared L.; Krishnamoorti, Ramanan

    2009-01-01

    Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.

  3. Electrical properties of multiwalled carbon nanotube film

    SciTech Connect

    Antonenko, S. V. Malinovskaya, O. S.; Mal'tsev, S. N.

    2007-07-15

    The multiwalled carbon nanotube films examined in this study are produced by two methods: current annealing of carbon paper and dc magnetron sputtering. The conductivity and the temperature dependence of resistance of the samples are measured. The thermal conductivity of the film-substrate system is evaluated.

  4. Bio-functionalization of multi-walled carbon nanotubes.

    PubMed

    Majumder, Anindya; Khazaee, Maryam; Opitz, Jörg; Beyer, Eckhard; Baraban, Larysa; Cuniberti, Gianaurelio

    2013-10-28

    Here we present a hybrid approach to functionalize multi-walled carbon nanotubes in aqueous solution, exploring a non-covalent binding strategy. We focus on formation of hybrid complexes consisting of carbon nanotubes decorated by single stranded DNA, non-covalently attached using surfactants as intermediate layers. Unlike single walled carbon nanotubes, revealing easy side wall wrapping of DNA, we observe that wrapping of nucleic acids around multi-walled carbon nanotubes is diameter dependent. PMID:24013382

  5. Chemical reactions confined within carbon nanotubes.

    PubMed

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.

  6. Different Technical Applications of Carbon Nanotubes.

    PubMed

    Abdalla, S; Al-Marzouki, F; Al-Ghamdi, Ahmed A; Abdel-Daiem, A

    2015-12-01

    Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact.

  7. Different Technical Applications of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, Ahmed A.; Abdel-Daiem, A.

    2015-09-01

    Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact.

  8. Different Technical Applications of Carbon Nanotubes.

    PubMed

    Abdalla, S; Al-Marzouki, F; Al-Ghamdi, Ahmed A; Abdel-Daiem, A

    2015-12-01

    Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact. PMID:26377211

  9. Co(OH)2/RGO/NiO sandwich-structured nanotube arrays with special surface and synergistic effects as high-performance positive electrodes for asymmetric supercapacitors.

    PubMed

    Xu, Han; Zhang, Chi; Zhou, Wen; Li, Gao-Ren

    2015-10-28

    High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (∼1470 F g(-1) at 5 mV s(-1)) and excellent cycling stability with ∼98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and special synergistic effects among Co(OH)2, RGO, and NiO. The high-performance ASCs are assembled using Co(OH)2/RGO/NiO SNTAs as positive electrodes and active carbon (AC) as negative electrodes, and they exhibit a high energy density (115 Wh kg(-1)), a high power density (27.5 kW kg(-1)) and an excellent cycling stability (less 5% Csp loss after 10 000 cycles). This study shows an important breakthrough in the design and fabrication of multi-walled hybrid nanotube arrays as positive electrodes for ASCs.

  10. Co(OH)2/RGO/NiO sandwich-structured nanotube arrays with special surface and synergistic effects as high-performance positive electrodes for asymmetric supercapacitors.

    PubMed

    Xu, Han; Zhang, Chi; Zhou, Wen; Li, Gao-Ren

    2015-10-28

    High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (∼1470 F g(-1) at 5 mV s(-1)) and excellent cycling stability with ∼98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and special synergistic effects among Co(OH)2, RGO, and NiO. The high-performance ASCs are assembled using Co(OH)2/RGO/NiO SNTAs as positive electrodes and active carbon (AC) as negative electrodes, and they exhibit a high energy density (115 Wh kg(-1)), a high power density (27.5 kW kg(-1)) and an excellent cycling stability (less 5% Csp loss after 10 000 cycles). This study shows an important breakthrough in the design and fabrication of multi-walled hybrid nanotube arrays as positive electrodes for ASCs. PMID:26416358

  11. Recent advances in molecular electronics based on carbon nanotubes.

    PubMed

    Bourgoin, Jean-Philippe; Campidelli, Stéphane; Chenevier, Pascale; Derycke, Vincent; Filoramo, Arianna; Goffman, Marcelo F

    2010-01-01

    Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: (i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties, (ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes, and (iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we outline the main issues concerning the development of carbon nanotubes based electronics applications and review our recent results in the field.

  12. Measurement Challenges for Carbon Nanotube Material

    NASA Technical Reports Server (NTRS)

    Sosa, Edward; Arepalli, Sivaram; Nikolaev, Pasha; Gorelik, Olga; Yowell, Leonard

    2006-01-01

    The advances in large scale applications of carbon nanotubes demand a reliable supply of raw and processed materials. It is imperative to have a consistent quality control of these nanomaterials to distinguish material inconsistency from the modifications induced by processing of nanotubes for any application. NASA Johnson Space Center realized this need five years back and started a program to standardize the characterization methods. The JSC team conducted two workshops (2003 and 2005) in collaboration with NIST focusing on purity and dispersion measurement issues of carbon nanotubes [1]. In 2004, the NASA-JSC protocol was developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA [2]. This protocol is routinely used by several researchers across the world as a first step in characterizing raw and purified carbon nanotubes. A suggested practice guide consisting of detailed chapters on TGA, Raman, electron microscopy and NIR absorption is in the final stages and is undergoing revisions with input from the nanotube community [3]. The possible addition of other techniques such as XPS, and ICP to the existing protocol will be presented. Recent activities at ANSI and ISO towards implementing these protocols as nanotube characterization standards will be discussed.

  13. Bulk Cutting of Carbon Nanotubes Using Electron Beam Irradiation

    NASA Technical Reports Server (NTRS)

    Ziegler, Kirk J. (Inventor); Rauwald, Urs (Inventor); Hauge, Robert H. (Inventor); Schmidt, Howard K. (Inventor); Smalley, Richard E. (Inventor); Kittrell, W. Carter (Inventor); Gu, Zhenning (Inventor)

    2013-01-01

    According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.

  14. Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS2/Nanotube Composite Lithium Ion Battery Electrodes.

    PubMed

    Liu, Yuping; He, Xiaoyun; Hanlon, Damien; Harvey, Andrew; Khan, Umar; Li, Yanguang; Coleman, Jonathan N

    2016-06-28

    Advances in lithium ion batteries would facilitate technological developments in areas from electrical vehicles to mobile communications. While two-dimensional systems like MoS2 are promising electrode materials due to their potentially high capacity, their poor rate capability and low cycle stability are severe handicaps. Here, we study the electrical, mechanical, and lithium storage properties of solution-processed MoS2/carbon nanotube anodes. Nanotube addition gives up to 10(10)-fold and 40-fold increases in electrical conductivity and mechanical toughness, respectively. The increased conductivity results in up to a 100× capacity enhancement to ∼1200 mAh/g (∼3000 mAh/cm(3)) at 0.1 A/g, while the improved toughness significantly boosts cycle stability. Composites with 20 wt % nanotubes combine high reversible capacity with excellent cycling stability (e.g., ∼950 mAh/g after 500 cycles at 2 A/g) and high rate capability (∼600 mAh/g at 20 A/g). The conductivity, toughness, and capacity scale with nanotube content according to percolation theory, while the stability increases sharply at the mechanical percolation threshold. We believe that the improvements in conductivity and toughness obtained after addition of nanotubes can be transferred to other electrode materials, such as silicon nanoparticles. PMID:27203558

  15. Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS2/Nanotube Composite Lithium Ion Battery Electrodes.

    PubMed

    Liu, Yuping; He, Xiaoyun; Hanlon, Damien; Harvey, Andrew; Khan, Umar; Li, Yanguang; Coleman, Jonathan N

    2016-06-28

    Advances in lithium ion batteries would facilitate technological developments in areas from electrical vehicles to mobile communications. While two-dimensional systems like MoS2 are promising electrode materials due to their potentially high capacity, their poor rate capability and low cycle stability are severe handicaps. Here, we study the electrical, mechanical, and lithium storage properties of solution-processed MoS2/carbon nanotube anodes. Nanotube addition gives up to 10(10)-fold and 40-fold increases in electrical conductivity and mechanical toughness, respectively. The increased conductivity results in up to a 100× capacity enhancement to ∼1200 mAh/g (∼3000 mAh/cm(3)) at 0.1 A/g, while the improved toughness significantly boosts cycle stability. Composites with 20 wt % nanotubes combine high reversible capacity with excellent cycling stability (e.g., ∼950 mAh/g after 500 cycles at 2 A/g) and high rate capability (∼600 mAh/g at 20 A/g). The conductivity, toughness, and capacity scale with nanotube content according to percolation theory, while the stability increases sharply at the mechanical percolation threshold. We believe that the improvements in conductivity and toughness obtained after addition of nanotubes can be transferred to other electrode materials, such as silicon nanoparticles.

  16. A comparative study on the lithium-ion storage performances of carbon nanotubes and tube-in-tube carbon nanotubes.

    PubMed

    Xu, Yi-Jun; Liu, Xi; Cui, Guanglei; Zhu, Bo; Weinberg, Gisela; Schlögl, Robert; Maier, Joachim; Su, Dang Sheng

    2010-03-22

    A comparative study of the electrochemical performances of carbon nanotubes and tube-in-tube carbon nanotubes reveals a dependence effect of lithium-ion storage behavior on the detailed nanostructure of carbon nanotubes. In particular, the impurity that graphitic particles or graphene fragments inherently present in carbon nanotubes plays a crucial role in the lithium-ion storage capacity of the carbon nanotubes. Compared to acid-washed carbon nanotubes, the assembly of graphitic impurity fragments in the tube-in-tube structures hinders lithium-ion diffusion, thus drastically decreasing the rate performance of lithium-ion storage. Significantly, our results indicate that the lithium-ion storage capacity of carbon nanotubes as anode electrodes can be improved or controlled by optimizing the microstructure composition of impurity graphitic nanoparticles or graphene fragments in the matrix of the carbon nanotubes.

  17. Purification Procedures for Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Gorelik, Olga P.; Nikolaev, Pavel; Arepalli, Sivaram

    2001-01-01

    This report summarizes the comparison of a variety of procedures used to purify carbon nanotubes. Carbon nanotube material is produced by the arc process and laser oven process. Most of the procedures are tested using laser-grown, single-wall nanotube (SWNT) material. The material is characterized at each step of the purification procedures by using different techniques including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), Raman, X-ray diffractometry (XRD), thermogravimetric analysis (TGA), nuclear magnetic resonance (NMR), and high-performance liquid chromatography (HPLC). The identified impurities are amorphous and graphitic carbon, catalyst particle aggregates, fullerenes, and hydrocarbons. Solvent extraction and low-temperature annealing are used to reduce the amount of volatile hydrocarbons and dissolve fullerenes. Metal catalysts and amorphous as well as graphitic carbon are oxidized by reflux in acids including HCl, HNO3 and HF and other oxidizers such as H2O2. High-temperature annealing in vacuum and in inert atmosphere helps to improve the quality of SWNTs by increasing crystallinity and reducing intercalation.

  18. High-performance all-carbon yarn micro-supercapacitor for an integrated energy system.

    PubMed

    Meng, Qinghai; Wu, Haiping; Meng, Yuena; Xie, Ke; Wei, Zhixiang; Guo, Zhengxiao

    2014-06-25

    Single-walled carbon nanotubes and chitosan composite yarn is prepared using a wet-spinning method. After thermal treatment, mesoporous all-carbon yarn is obtained. Based on this material, flexible all-solid-state yarn micro-supercapacitors are fabricated. Electrochemical results show high specific capacitance and energy density, good rate capability and stable cycling life. Results of this research offer prospect for application in portable and wearable electronics. PMID:24692229

  19. Formation of Carbon Nanotubes in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2001-01-01

    Even though nanotube science has become one of the worlds most rapidly advancing areas of research, very little is known about the processes involved in nanotube synthesis. To study the formation of carbon nanotubes in an environment unhindered by the buoyancy induced flows generated by the high temperatures necessary to vaporize carbon and grow nanotubes, we have designed a miniature carbon arc apparatus that can produce carbon nanotubes under microgravity conditions. During the first phase of this project, we designed, built, and successfully tested the mini carbon arc in both 1g and 2.2 sec drop tower microgravity conditions. We have demonstrated that microgravity can eliminate the strong convective flows from the carbon arc and we have successfully produced single-walled carbon nanotubes in microgravity. We believe that microgravity processing will allow us to better understand the nanotube formation process and eventually allow us to grow nanotubes that are superior to ground-based production.

  20. Effects of single-walled carbon nanotubes on lysozyme gelation.

    PubMed

    Tardani, Franco; La Mesa, Camillo

    2014-09-01

    The possibility to disperse carbon nanotubes in biocompatible matrices has got substantial interest from the scientific community. Along this research line, the inclusion of single walled carbon nanotubes in lysozyme-based hydrogels was investigated. Experiments were performed at different nanotube/lysozyme weight ratios. Carbon nanotubes were dispersed in protein solutions, in conditions suitable for thermal gelation. The state of the dispersions was determined before and after thermal treatment. Rheology, dynamic light scattering and different microscopies investigated the effect that carbon nanotubes exert on gelation. The gelation kinetics and changes in gelation temperature were determined. The effect of carbon and lysozyme content on the gel properties was, therefore, determined. At fixed lysozyme content, moderate amounts of carbon nanotubes do not disturb the properties of hydrogel composites. At moderately high volume fractions in carbon nanotubes, the gels become continuous in both lysozyme and nanotubes. This is because percolating networks are presumably formed. Support to the above statements comes by rheology.

  1. Mechanics of Carbon Nanotubes and their Polymer Composites

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Cho, K. J.; Srivastava, Deepak; Tang, Harry (Technical Monitor)

    2002-01-01

    Contents include the folloving: carbon nanotube (CNT): structures, application of carbon nanotubes, simulation method, Elastic properties of carbon nanotubes, yield strain of CNT, yielding under tensile stress, yielding: strain-rate and temperature dependence, yield strain under tension, yielding at realistic conditions, nano fibers, polymer CNT composite, force field, density dependency on temperature, diffusion coefficients, young modulus, and conclusions.

  2. Interaction of pristine and functionalized carbon nanotubes with lipid membranes.

    PubMed

    Baoukina, Svetlana; Monticelli, Luca; Tieleman, D Peter

    2013-10-10

    Carbon nanotubes are widely used in a growing number of applications. Their interactions with biological materials, cell membranes in particular, is of interest in applications including drug delivery and for understanding the toxicity of carbon nanotubes. We use extensive molecular dynamics simulations with the MARTINI model to study the interactions of model nanotubes of different thickness, length, and patterns of chemical modification with model membranes. In addition, we characterize the interactions of small bundles of carbon nanotubes with membrane models. Short pristine carbon nanotubes readily insert into membranes and adopt an orientation parallel to the plane of the membrane in the center of the membrane. Larger aggregates and functionalized nanotubes exhibit a range of possible interactions. The distribution and orientation of carbon nanotubes can be controlled by functionalizing the nanotubes. Free energy calculations provide thermodynamic insight into the preferred orientations of different nanotubes and quantify structural defects in the lipid matrix.

  3. Carbon nanotube suspensions, dispersions, & composites

    NASA Astrophysics Data System (ADS)

    Simmons, Trevor John

    Carbon Nanotubes (CNTs) are amazing structures that hold the potential to revolutionize many areas of scientific research. CNTs can be behave both as semiconductors and metals, can be grown in highly ordered arrays and patterns or in random orientation, and can be comprised of one graphene cylinder (single wall nanotube, SWNT) or several concentric graphene cylinders (multi-wall nanotube, MWNT). Although these structures are usually only a few nanometers wide, they can be grown up to centimeter lengths, and in massive quantities. CNTs can be produced in a variety of processes ranging from repeated combustion of organic material such as dried grass, arc-discharge with graphite electrodes, laser ablation of a graphitic target, to sophisticated chemical vapor deposition (CVD) techniques. CNTs are stronger than steel but lighter than aluminum, and can be more conductive than copper or semiconducting like silicon. This variety of properties has been matched by the wide variety of applications that have been developed for CNTs. Many of these applications have been limited by the inability of researchers to tame these structures, and incorporating CNTs into existing technologies can be exceedingly difficult and prohibitively expensive. It is therefore the aim of the current study to develop strategies for the solution processing and deposition of CNTs and CNT-composites, which will enable the use of CNTs in existing and emerging technologies. CNTs are not easily suspended in polar solvents and are extremely hydrophobic materials, which has limited much of the solution processing to organic solvents, which also cannot afford high quality dispersions of CNTs. The current study has developed a variety of aqueous CNT solutions that employ surfactants, water-soluble polymers, or both to create suspensions of CNTs. These CNT 'ink' solutions were deposited with a variety of techniques that have afforded many interesting structures, both randomly oriented as well as highly

  4. Graphene-carbon nanotube hybrid materials and use as electrodes

    DOEpatents

    Tour, James M.; Zhu, Yu; Li, Lei; Yan, Zheng; Lin, Jian

    2016-09-27

    Provided are methods of making graphene-carbon nanotube hybrid materials. Such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. The grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In addition, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. The one or more junctions may include seven-membered carbon rings. Also provided are the formed graphene-carbon nanotube hybrid materials.

  5. A review on protein functionalized carbon nanotubes.

    PubMed

    Nagaraju, Kathyayini; Reddy, Roopa; Reddy, Narendra

    2015-01-01

    Carbon nanotubes (CNTs) have been widely recognized and used for controlled drug delivery and in various other fields due to their unique properties and distinct advantages. Both single-walled carbon nanotubes (SWCNTs) and multiwalled (MWCNTs) carbon nanotubes are used and/or studied for potential applications in medical, energy, textile, composite, and other areas. Since CNTs are chemically inert and are insoluble in water or other organic solvents, they are functionalized or modified to carry payloads or interact with biological molecules. CNTs have been preferably functionalized with proteins because CNTs are predominantly used for medical applications such as delivery of drugs, DNA and genes, and also for biosensing. Extensive studies have been conducted to understand the interactions, cytotoxicity, and potential applications of protein functionalized CNTs but contradicting results have been published on the cytotoxicity of the functionalized CNTs. This paper provides a brief review of CNTs functionalized with proteins, methods used to functionalize the CNTs, and their potential applications. PMID:26660626

  6. Carbon nanotubes in neuroregeneration and repair.

    PubMed

    Fabbro, Alessandra; Prato, Maurizio; Ballerini, Laura

    2013-12-01

    In the last decade, we have experienced an increasing interest and an improved understanding of the application of nanotechnology to the nervous system. The aim of such studies is that of developing future strategies for tissue repair to promote functional recovery after brain damage. In this framework, carbon nanotube based technologies are emerging as particularly innovative tools due to the outstanding physical properties of these nanomaterials together with their recently documented ability to interface neuronal circuits, synapses and membranes. This review will discuss the state of the art in carbon nanotube technology applied to the development of devices able to drive nerve tissue repair; we will highlight the most exciting findings addressing the impact of carbon nanotubes in nerve tissue engineering, focusing in particular on neuronal differentiation, growth and network reconstruction. PMID:23856411

  7. A review on protein functionalized carbon nanotubes.

    PubMed

    Nagaraju, Kathyayini; Reddy, Roopa; Reddy, Narendra

    2015-12-18

    Carbon nanotubes (CNTs) have been widely recognized and used for controlled drug delivery and in various other fields due to their unique properties and distinct advantages. Both single-walled carbon nanotubes (SWCNTs) and multiwalled (MWCNTs) carbon nanotubes are used and/or studied for potential applications in medical, energy, textile, composite, and other areas. Since CNTs are chemically inert and are insoluble in water or other organic solvents, they are functionalized or modified to carry payloads or interact with biological molecules. CNTs have been preferably functionalized with proteins because CNTs are predominantly used for medical applications such as delivery of drugs, DNA and genes, and also for biosensing. Extensive studies have been conducted to understand the interactions, cytotoxicity, and potential applications of protein functionalized CNTs but contradicting results have been published on the cytotoxicity of the functionalized CNTs. This paper provides a brief review of CNTs functionalized with proteins, methods used to functionalize the CNTs, and their potential applications.

  8. Detection of gas atoms with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Arash, B.; Wang, Q.

    2013-05-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  9. Boron-Filled Hybrid Carbon Nanotubes.

    PubMed

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-27

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  10. Boron-Filled Hybrid Carbon Nanotubes

    PubMed Central

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  11. Boron-Filled Hybrid Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  12. Refoldable Peptide Barrel -- Carbon Nanotube Junctions

    NASA Astrophysics Data System (ADS)

    Titov, Alexey; Wang, Boyang; Kral, Petr

    2008-03-01

    We design hybrid bio-nano-junctions formed by cylindrical peptide structures covalently attached to carbon nanotubes. The cylinders are composed of 5 pairs of antiparallel peptide strands that are ``one-to-one'' matched and covalently bonded through ester and amide bonds to the terminal C atoms in two (20,0) carbon nanotubes. The remaining terminal carbons in the CNTs are replaced by nitrogens, forming embedded quinoline-like structures. The used peptide strands are composed of charged amino acids that form cylindrical patterns with preferred stable configurations. By applying a torque to the nanotubes, we can reversibly fold and control the overall structure of the peptide barrels. The junctions might allow the collection and delivery of drugs and activation of biological molecules attached to them.

  13. Boron-Filled Hybrid Carbon Nanotubes.

    PubMed

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  14. Carbon Nanotubes Synthesis Through Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Tirado, Pablo; Garcia, Rafael; Montes, Jorge; Melendrez, Rodrigo; Barboza, Marcelino; Contreras, Oscar

    2015-03-01

    Carbon nanotubes show a great potential of applications since there discovery by Iijima in 1991[1] due to their numerous physical-chemical properties such as their high weight to strength relationship, which make them ideal to use in high resistance compound materials, and in many other applications[2] In this work, a novel method for the synthesis of carbon nanotubes is presented, starting from an ultra-thin sheet of graphite synthesized by the chemical vapor decomposition technique (CVD), using ultra high purity methane and hydrogen at 1200°C in a horizontal quartz reactor. For the synthesis of carbon nanotubes, the graphite sheets were exposed to different doses of radiation, with the objective of breaking the graphite bonds and form carbon nanotubes; a Gammacell equipment model 220 Excel was used for the purpose, which counts with a radiation source of cobalt 60, and a current radiation rate of 0.9 Gy/seconds. The time of exposure to radiation was varied in each sample, according to the desired dose of radiation in each case, afterwards the samples were characterized using the Raman spectroscopy and TEM microscopy techniques with the objective of observing the kind of nanotubes formed, their morphology and their number of defects. Results will be shown during the poster session.

  15. Orientational Growth of Carbon Nanotube for Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Cochrane, J. C.; Lehoczky, S.; Cui, Y.; Burger, A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Since the superior properties of multi-wall carbon nanotubes (MWCNT) could improve numerous devices such as electronics and sensors, many efforts have been made in investigating the growth mechanism of MWCNT to synthesize high quality MWCNT. Most applications require uniform aligned CNT. In this presentation, a directional growth of CNT will be reported. Carbon nanotubes are synthesized using thermal chemical vapor deposition. Temperature and pressure are two important growth parameters for fabricating carbon nanotubes. It is found that the nanotube diameter distribution mainly depends on the growth-temperature. With the substrate surface normal either along or against the gravity vector, different growth orientations of MWCNT are observed by scanning electron microscopy although the Raman spectra are similar for samples synthesized at different locations. The sizes of these carbon nanotubes in each sample are quite uniform and the length of the tube is up to several tens of micrometers. These results suggest the gravitation effects in the growth of long and small diameter CNT.

  16. Lipid nanoscaffolds in carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Paukner, Catharina; Koziol, Krzysztof K. K.; Kulkarni, Chandrashekhar V.

    2013-09-01

    We present the fabrication of lipid nanoscaffolds inside carbon nanotube arrays by employing the nanostructural self-assembly of lipid molecules. The nanoscaffolds are finely tunable into model biomembrane-like architectures (planar), soft nanochannels (cylindrical) or 3-dimensionally ordered continuous bilayer structures (cubic). Carbon nanotube arrays hosting the above nanoscaffolds are formed by packing of highly oriented multiwalled carbon nanotubes which facilitate the alignment of lipid nanostructures without requiring an external force. Furthermore, the lipid nanoscaffolds can be created under both dry and hydrated conditions. We show their direct application in reconstitution of egg proteins. Such nanoscaffolds find enormous potential in bio- and nano-technological fields.We present the fabrication of lipid nanoscaffolds inside carbon nanotube arrays by employing the nanostructural self-assembly of lipid molecules. The nanoscaffolds are finely tunable into model biomembrane-like architectures (planar), soft nanochannels (cylindrical) or 3-dimensionally ordered continuous bilayer structures (cubic). Carbon nanotube arrays hosting the above nanoscaffolds are formed by packing of highly oriented multiwalled carbon nanotubes which facilitate the alignment of lipid nanostructures without requiring an external force. Furthermore, the lipid nanoscaffolds can be created under both dry and hydrated conditions. We show their direct application in reconstitution of egg proteins. Such nanoscaffolds find enormous potential in bio- and nano-technological fields. Electronic supplementary information (ESI) available: Additional wide angle X-ray scattering (WAXS) data on the alignment of lipid nanostructures, control and time resolved 2-d images of egg ovalbumin encapsulation and a summary picture of the present work. See DOI: 10.1039/c3nr02068a

  17. Carbon nanotubes as actuators in smart structures

    NASA Astrophysics Data System (ADS)

    Monner, Hans P.; Muehle, Stefan; Wierach, Peter

    2003-08-01

    Carbon Nanotubes have diameters in nanometer scale, are up to tens of microns long and can be single- or multi-walled (SWNT and MWNT). Compared with carbon fibers, which typically have a Young's modulus of up to 750 GPa, the elastic modulus of Carbon Nanotubes has been measured to be approximately 1-2 TPa. The strength of Carbon Nanotubes has been reported to be about two order of magnitude higher than current high strength carbon fibers. Additionally especially SWNT show excellent actuator behaviour. Electromechanical actuators based on sheets of SWNT show to generate higher stress than natural muscles and higher strains than ferroelectrics like PZT. Unlike conventional ferroelectric actuators, low operating voltages of a few volts generate large actuator strains. Thus, this paper will give a brief overview of the current activities within this field and show some recent results of the Carbon Nanotube actuator development at the DLR-Institute of Structural Mechanic suggesting that optimized SWNT sheets may eventually provide substantially higher work densities per cycle than any previously known material.

  18. High Performance Bulk Thermoelectric Materials

    SciTech Connect

    Ren, Zhifeng

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  19. Ultralight multiwalled carbon nanotube aerogel.

    PubMed

    Zou, Jianhua; Liu, Jianhua; Karakoti, Ajay Singh; Kumar, Amit; Joung, Daeha; Li, Qiang; Khondaker, Saiful I; Seal, Sudipta; Zhai, Lei

    2010-12-28

    Ultralight multiwalled carbon nanotube (MWCNT) aerogel is fabricated from a wet gel of well-dispersed pristine MWCNTs. On the basis of a theoretical prediction that increasing interaction potential between CNTs lowers their critical concentration to form an infinite percolation network, poly(3-(trimethoxysilyl) propyl methacrylate) (PTMSPMA) is used to disperse and functionalize MWCNTs where the subsequent hydrolysis and condensation of PTMSPMA introduces strong and permanent chemical bonding between MWCNTs. The interaction is both experimentally and theoretically proven to facilitate the formation of a MWCNT percolation network, which leads to the gelation of MWCNT dispersion at ultralow MWCNT concentration. After removing the liquid component from the MWCNT wet gel, the lightest ever free-standing MWCNT aerogel monolith with a density of 4 mg/cm(3) is obtained. The MWCNT aerogel has an ordered macroporous honeycomb structure with straight and parallel voids in 50-150 μm separated by less than 100 nm thick walls. The entangled MWCNTs generate mesoporous structures on the honeycomb walls, creating aerogels with a surface area of 580 m(2)/g which is much higher than that of pristine MWCNTs (241 m(2)/g). Despite the ultralow density, the MWCNT aerogels have an excellent compression recoverable property as demonstrated by the compression test. The aerogels have an electrical conductivity of 3.2 × 10(-2) S·cm(-1) that can be further increased to 0.67 S·cm(-1) by a high-current pulse method without degrading their structures. The excellent compression recoverable property, hierarchically porous structure with large surface area, and high conductivity grant the MWCNT aerogels exceptional pressure and chemical vapor sensing capabilities. PMID:21090673

  20. A carbon nanotube optical rectenna

    NASA Astrophysics Data System (ADS)

    Sharma, Asha; Singh, Virendra; Bougher, Thomas L.; Cola, Baratunde A.

    2015-12-01

    An optical rectenna—a device that directly converts free-propagating electromagnetic waves at optical frequencies to direct current—was first proposed over 40 years ago, yet this concept has not been demonstrated experimentally due to fabrication challenges at the nanoscale. Realizing an optical rectenna requires that an antenna be coupled to a diode that operates on the order of 1 PHz (switching speed on the order of 1 fs). Diodes operating at these frequencies are feasible if their capacitance is on the order of a few attofarads, but they remain extremely difficult to fabricate and to reliably couple to a nanoscale antenna. Here we demonstrate an optical rectenna by engineering metal-insulator-metal tunnel diodes, with a junction capacitance of ˜2 aF, at the tip of vertically aligned multiwalled carbon nanotubes (˜10 nm in diameter), which act as the antenna. Upon irradiation with visible and infrared light, we measure a d.c. open-circuit voltage and a short-circuit current that appear to be due to a rectification process (we account for a very small but quantifiable contribution from thermal effects). In contrast to recent reports of photodetection based on hot electron decay in a plasmonic nanoscale antenna, a coherent optical antenna field appears to be rectified directly in our devices, consistent with rectenna theory. Finally, power rectification is observed under simulated solar illumination, and there is no detectable change in diode performance after numerous current-voltage scans between 5 and 77 °C, indicating a potential for robust operation.

  1. A tunable carbon nanotube electromechanical oscillator

    NASA Astrophysics Data System (ADS)

    Sazonova, Vera; Yaish, Yuval; Üstünel, Hande; Roundy, David; Arias, Tomás A.; McEuen, Paul L.

    2004-09-01

    Nanoelectromechanical systems (NEMS) hold promise for a number of scientific and technological applications. In particular, NEMS oscillators have been proposed for use in ultrasensitive mass detection, radio-frequency signal processing, and as a model system for exploring quantum phenomena in macroscopic systems. Perhaps the ultimate material for these applications is a carbon nanotube. They are the stiffest material known, have low density, ultrasmall cross-sections and can be defect-free. Equally important, a nanotube can act as a transistor and thus may be able to sense its own motion. In spite of this great promise, a room-temperature, self-detecting nanotube oscillator has not been realized, although some progress has been made. Here we report the electrical actuation and detection of the guitar-string-like oscillation modes of doubly clamped nanotube oscillators. We show that the resonance frequency can be widely tuned and that the devices can be used to transduce very small forces.

  2. Laser ablative synthesis of carbon nanotubes

    DOEpatents

    Smith, Michael W.; Jordan, Kevin; Park, Cheol

    2010-03-02

    An improved method for the production of single walled carbon nanotubes that utilizes an RF-induction heated side-pumped synthesis chamber for the production of such. Such a method, while capable of producing large volumes of carbon nanotubes, concurrently permits the use of a simplified apparatus that allows for greatly reduced heat up and cool down times and flexible flowpaths that can be readily modified for production efficiency optimization. The method of the present invention utilizes a free electron laser operating at high average and peak fluence to illuminate a rotating and translating graphite/catalyst target to obtain high yields of SWNTs without the use of a vacuum chamber.

  3. Carbon Nanotube-Enhanced Carbon-Phenenolic Ablator Material

    NASA Technical Reports Server (NTRS)

    Kikolaev, P.; Stackpoole, M.; Fan, W.; Cruden, B. A.; Waid, M.; Moloney, P.; Arepalli, S.; Arnold, J.; Partridge, H.; Yowell, L.

    2006-01-01

    This viewgraph presentation reviews the use of PICA (phenolic impregnated carbon ablator) as the selected material for heat shielding for future earth return vehicles. It briefly reviews the manufacturing of PICA and the advantages for the use of heat shielding, and then explains the reason for using Carbon Nanotubes to improve strength of phenolic resin that binds carbon fibers together. It reviews the work being done to create a carbon nanotube enhanced PICA. Also shown are various micrographic images of the various PICA materials.

  4. Computational Nanomechanics of Carbon Nanotubes and Composites

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Wei, Chenyu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Nanomechanics of individual carbon and boron-nitride nanotubes and their application as reinforcing fibers in polymer composites has been reviewed with interplay of theoretical modeling, computer simulations and experimental observations. The emphasis in this work is on elucidating the multi-length scales of the problems involved, and of different simulation techniques that are needed to address specific characteristics of individual nanotubes and nanotube polymer-matrix interfaces. Classical molecular dynamics simulations are shown to be sufficient to describe the generic behavior such as strength and stiffness modulus but are inadequate to describe elastic limit and nature of plastic buckling at large strength. Quantum molecular dynamics simulations are shown to bring out explicit atomic nature dependent behavior of these nanoscale materials objects that are not accessible either via continuum mechanics based descriptions or through classical molecular dynamics based simulations. As examples, we discus local plastic collapse of carbon nanotubes under axial compression and anisotropic plastic buckling of boron-nitride nanotubes. Dependence of the yield strain on the strain rate is addressed through temperature dependent simulations, a transition-state-theory based model of the strain as a function of strain rate and simulation temperature is presented, and in all cases extensive comparisons are made with experimental observations. Mechanical properties of nanotube-polymer composite materials are simulated with diverse nanotube-polymer interface structures (with van der Waals interaction). The atomistic mechanisms of the interface toughening for optimal load transfer through recycling, high-thermal expansion and diffusion coefficient composite formation above glass transition temperature, and enhancement of Young's modulus on addition of nanotubes to polymer are discussed and compared with experimental observations.

  5. The Use of Plasma Vortexes in Creating Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Leith, Alexander; Alexander Leith Collaboration

    2016-03-01

    Carbon nanotubes have been created in a variety of ways such as arc discharge, laser ablation, and chemical vapor deposition (CVD). Each of these techniques has been proven to produce carbon nanotubes in small quantities in a lab setting. This is the problem that we have been addressing. Over the course of 16 months, we have been working on a new method of carbon nanotube production that is based around fluid dynamics and plasma. We have created the basic components to test this new way to produce carbon nanotubes. This research will ideally provide a new avenue for carbon nanotube production. Worked with Dr. Randal Tagg of the University of Colorado Denver.

  6. Titania carbon nanotube composites for enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Pyrgiotakis, Georgios

    Photocatalytic composites have been used for the past few decades in a wide range of applications. The most common application is the purification of air and water by removing toxic compounds. There is limited use however towards biocidal applications. Despite their high efficiency, photocatalytic materials are not comparable to the effectiveness of conventional biocidal compounds such as chlorine and alcoholic disinfectants. On the other hand, nearly a decade ago with the discovery of the carbon nanotubes a new vibrant scientific field emerged. Nanotubes are unique structures of carbon that posse amazing electrical, mechanical and thermal properties. In this research carbon nanotubes are used as photocatalytic enhancers. They were coated with anatase titania to form a composite material. Two different types of nanotubes (metallic versus non-metallic) were used and the photocatalytic activity was measured. The metallic tubes demonstrated exceptional photocatalytic properties, while non-metallic tubes had low photocatalytic efficiency. The reason for that difference was investigated and was the major focus of this research. The research concluded that the reasons for the high efficiency of the carbon nanotubes were (i) the metallic nature of the tubes and (ii) the possible bond between the titania coating and the underlying graphite layers (C-O-Ti). Since both composites had the same indications regarding the C-O-Ti bond, the metallic nature of the carbon nanotubes is believed to be the most dominant factor contributing to the enhancement of the photocatalysis. The composite material may have other potential applications such as for sensing and photovoltaic uses.

  7. Exciton-Polariton Dynamics in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Bondarev, Igor

    2007-03-01

    This work addresses theoretically the nonlinear response of phonon-coupled excitons[1] in carbon nanotubes to an external electromagnetic field. The photon Green's function approach developed recently to quantize the electromagnetic field in the presence of quasi-1D absorbing bodies[2],[3] is being used to study the dynamics of phonon-coupled excitonic states interacting with the surface photonic modes excited by the external electromagnetic field in semiconductor carbon nanotubes. The formation of the new elementary excitations, exciton-polaritons, representing the eigen states of the full photon-matter Hamiltonian has been studied for small-diameter nanotubes under strong exciton-photon coupling. Time-resolved simulations have been performed of the coherent exciton- polariton dynamics with the exciton-phonon interactions taken into account. The criteria for the coherent control of the excitonic states population in optically excited carbon nanotubes have been formulated. [1]F.Plentz et al, Phys. Rev. Lett. 95, 247401 (2005). [2]I.V.Bondarev and Ph.Lambin, Phys. Rev. B 72, 035451 (2005). [3]I.V.Bondarev and Ph.Lambin, in: Trends in Nanotubes Reasearch (NovaScience, New York, 2006), p.139.

  8. Compressed carbon nanotubes: a family of new multifunctional carbon allotropes.

    PubMed

    Hu, Meng; Zhao, Zhisheng; Tian, Fei; Oganov, Artem R; Wang, Qianqian; Xiong, Mei; Fan, Changzeng; Wen, Bin; He, Julong; Yu, Dongli; Wang, Hui-Tian; Xu, Bo; Tian, Yongjun

    2013-01-01

    The exploration of novel functional carbon polymorphs is an enduring topic of scientific investigations. In this paper, we present simulations demonstrating metastable carbon phases as the result of pressure induced carbon nanotube polymerization. The configuration, bonding, electronic, and mechanical characteristics of carbon polymers strongly depend on the imposed hydrostatic/non-hydrostatic pressure, as well as on the geometry of the raw carbon nanotubes including diameter, chirality, stacking manner, and wall number. Especially, transition processes under hydrostatic/non-hydrostatic pressure are investigated, revealing unexpectedly low transition barriers and demonstrating sp(2)→sp(3) bonding changes as well as peculiar oscillations of electronic property (e.g., semiconducting→metallic→semiconducting transitions). These polymerized nanotubes show versatile and superior physical properties, such as superhardness, high tensile strength and ductility, and tunable electronic properties (semiconducting or metallic).

  9. Facile fabrication of self-assembled polyaniline nanotubes doped with D-tartaric acid for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Mu, Jingjing; Ma, Guofu; Peng, Hui; Li, Jiajia; Sun, Kanjun; Lei, Ziqiang

    2013-11-01

    Polyaniline (PANI) nanotubes with outstanding electrochemical properties have been successfully synthesized via a simple chemical template-free method in the presence of D-tartaric acid (D-TA) as the dopant, and ammonium persulfate ((NH4)2S2O8) as the oxidant. The morphologies and structures of PANI-(D-TA) with different [D-TA]/[aniline] molar ratios are characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD). To assess the electrochemical properties of PANI-(D-TA) materials, cyclic voltammetry (CV) and galvanostatic charging-discharging measurements are performed. The PANI-(D-TA) nanotubes electrode, with [D-TA]/[aniline] molar ratio of 1:1, exhibits larger specific capacitance (as high as 625 F g-1 at 1 A g-1) and higher capacitance retention (77% of its initial capacitance after 500 cycles) in 1 M H2SO4 aqueous solution. The remarkable electrochemical characteristics of PANI-(D-TA) are mainly attributed to their unique nanotubular structures, which provide a high electrode/electrolyte contact area and short ions diffusion path. These novel PANI-(D-TA) nanotubes will be promising electrode materials for high-performance supercapacitors.

  10. Carbon nanotubes as optical biomedical sensors.

    PubMed

    Kruss, Sebastian; Hilmer, Andrew J; Zhang, Jingqing; Reuel, Nigel F; Mu, Bin; Strano, Michael S

    2013-12-01

    Biosensors are important tools in biomedical research. Moreover, they are becoming an essential part of modern healthcare. In the future, biosensor development will become even more crucial due to the demand for personalized-medicine, point-of care devices and cheaper diagnostic tools. Substantial advances in sensor technology are often fueled by the advent of new materials. Therefore, nanomaterials have motivated a large body of research and such materials have been implemented into biosensor devices. Among these new materials carbon nanotubes (CNTs) are especially promising building blocks for biosensors due to their unique electronic and optical properties. Carbon nanotubes are rolled-up cylinders of carbon monolayers (graphene). They can be chemically modified in such a way that biologically relevant molecules can be detected with high sensitivity and selectivity. In this review article we will discuss how carbon nanotubes can be used to create biosensors. We review the latest advancements of optical carbon nanotube based biosensors with a special focus on near-infrared (NIR)-fluorescence, Raman-scattering and fluorescence quenching.

  11. Improved Method of Purifying Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D.

    2004-01-01

    An improved method of removing the residues of fabrication from carbon nanotubes has been invented. These residues comprise amorphous carbon and metal particles that are produced during the growth process. Prior methods of removing the residues include a variety of processes that involved the use of halogens, oxygen, or air in both thermal and plasma processes. Each of the prior methods entails one or more disadvantages, including non-selectivity (removal or damage of nanotubes in addition to removal of the residues), the need to dispose of toxic wastes, and/or processing times as long as 24 hours or more. In contrast, the process described here does not include the use of toxic chemicals, the generation of toxic wastes, causes little or no damage to the carbon nanotubes, and involves processing times of less than 1 hour. In the improved method, purification is accomplished by flowing water vapor through the reaction chamber at elevated temperatures and ambient pressures. The impurities are converted to gaseous waste products by the selective hydrogenation and hydroxylation by the water in a reaction chamber. This process could be performed either immediately after growth or in a post-growth purification process. The water used needs to be substantially free of oxygen and can be obtained by a repeated freeze-pump-thaw process. The presence of oxygen will non-selectively attach the carbon nanotubes in addition to the amorphous carbon.

  12. Carbon Nanotube Membranes: Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration

    SciTech Connect

    2010-03-01

    Broad Funding Opportunity Announcement Project: Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today’s carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera’s carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

  13. Coupling of carbon and peptide nanotubes.

    PubMed

    Montenegro, Javier; Vázquez-Vázquez, Carlos; Kalinin, Arseny; Geckeler, Kurt E; Granja, Juan R

    2014-02-12

    Two of the main types of nanotubular architectures are the single-walled carbon nanotubes (SWCNTs) and the self-assembling cyclic peptide nanotubes (SCPNs). We here report the preparation of the dual composite resulting from the ordered combination of both tubular motifs. In the resulting architecture, the SWCNTs can act as templates for the assembly of SCPNs that engage the carbon nanotubes noncovalently via pyrene "paddles", each member of the resulting hybrid stabilizing the other in aqueous solution. The particular hybrids obtained in the present study formed highly ordered oriented arrays and display complementary properties such as electrical conductivity. Furthermore, a self-sorting of the cyclic peptides toward semiconducting rather than metallic SWCNTs is also observed in the aqueous dispersions. It is envisaged that a broad range of exploitable properties may be achieved and/or controlled by varying the cyclic peptide components of similar SWCNT/SCPN hybrids.

  14. Exciton Hierarchies in Gapped Carbon Nanotubes

    SciTech Connect

    Konik, R.M.

    2011-04-01

    We present evidence that the strong electron-electron (e-e) interactions in gapped carbon nanotubes lead to finite hierarchies of excitons within a given nanotube subband. We study these hierarchies by employing a field theoretic reduction of the gapped carbon nanotube permitting e-e interactions to be treated exactly. We analyze this reduction by employing a Wilsonian-like numerical renormalization group. We are so able to determine the gap ratios of the one-photon excitons as a function of the effective strength of interactions. We also determine within the same subband the gaps of the two-photon excitons, the single particle gaps, as well as a subset of the dark excitons. The strong e-e interactions in addition lead to strongly renormalized dispersion relations where the consequences of spin-charge separation can be readily observed.

  15. Exciton hierarchies in gapped carbon nanotubes.

    PubMed

    Konik, Robert M

    2011-04-01

    We present evidence that the strong electron-electron (e-e) interactions in gapped carbon nanotubes lead to finite hierarchies of excitons within a given nanotube subband. We study these hierarchies by employing a field theoretic reduction of the gapped carbon nanotube permitting e-e interactions to be treated exactly. We analyze this reduction by employing a Wilsonian-like numerical renormalization group. We are so able to determine the gap ratios of the one-photon excitons as a function of the effective strength of interactions. We also determine within the same subband the gaps of the two-photon excitons, the single particle gaps, as well as a subset of the dark excitons. The strong e-e interactions in addition lead to strongly renormalized dispersion relations where the consequences of spin-charge separation can be readily observed.

  16. CARBON NANOTUBES IN MICROWAVE ENVIRONMENT-IGNITION AND RECONSTRUCTION

    EPA Science Inventory

    The unusual property of single-walled carbon nanotubes (SWNT), multi-wall (MWNT) nanotubes and Buckminsterfullerene (C-60) is observed upon exposure to microwave-assisted ignition. Carbon nanotubes known for a range of mechanical and electronic properties because of their unique...

  17. Collective mechanochemical growth of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bedewy, Mostafa M. K. M. A.

    Hierarchically ordered carbon nanotubes (CNTs) are promising for integration in high-performance structural composites, electrical interconnects, thermal interfaces, and filtration membranes. These and other applications require CNTs that are monodisperse, well aligned, and densely packed. Moreover, because more than 1 billion CNTs per square centimeter grow simultaneously in a typical chemical vapor deposition (CVD) process, understanding the collective chemical and mechanical effects of growth is key to engineering the properties of CNT-based materials. This dissertation presents tailored synthesis processes, characterization techniques, and mathematical models that enable improved control of the morphology of as-grown CNT "forests.". First, a comprehensive characterization methodology, combining synchrotron X-ray scattering and attenuation with real-time height kinetics, enabled mapping the spatiotemporal evolution of CNT diameter distribution, alignment and density. By this method, the forest mass kinetics were measured and found to follow the S-shaped Gompertz curve of population growth. Dividing a forest into subpopulations revealed size-dependent activation-deactivation competition. Additionally, in situ transmission electron microscopy (TEM) showed that the kinetics of CNT nucleation are S-shaped. Based on these findings, a collective growth model is proposed, wherein randomly oriented CNTs first nucleate then self-organize and lift-off during a crowding stage, followed by a density decay stage until self-termination when the density drops below the self-supporting threshold. Next, further X-ray data analysis enabled modeling the mechanics of entangled CNTs and proved that mechanical coupling is not only responsible for the self-organization into the aligned morphology, but is also an important limiting mechanism as significant forces ensue from diameter-dependent CNT growth rates. A custom-built CVD system was used for mechanical manipulation of growing

  18. Deconvoluting hepatic processing of carbon nanotubes

    PubMed Central

    Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry; Romin, Yevgeniy; Barlas, Afsar; Mulvey, J. Justin; Fujisawa, Sho; Xu, Ke; Ruggiero, Alessandro; Riabov, Vladimir; Thorek, Daniel L. J.; Ulmert, Hans David S.; Brea, Elliott J.; Behling, Katja; Kzhyshkowska, Julia; Manova-Todorova, Katia; Scheinberg, David A.; McDevitt, Michael R.

    2016-01-01

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans. PMID:27468684

  19. Deconvoluting hepatic processing of carbon nanotubes.

    PubMed

    Alidori, Simone; Bowman, Robert L; Yarilin, Dmitry; Romin, Yevgeniy; Barlas, Afsar; Mulvey, J Justin; Fujisawa, Sho; Xu, Ke; Ruggiero, Alessandro; Riabov, Vladimir; Thorek, Daniel L J; Ulmert, Hans David S; Brea, Elliott J; Behling, Katja; Kzhyshkowska, Julia; Manova-Todorova, Katia; Scheinberg, David A; McDevitt, Michael R

    2016-01-01

    Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans. PMID:27468684

  20. Probing Photosensitization by Functionalized Carbon Nanotubes.

    PubMed

    Chen, Chia-Ying; Zepp, Richard G

    2015-12-01

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that may damage organisms by biomembrane oxidation or mediate environmental transformations of CNTs. Photosensitization by derivatized carbon nanotubes from various synthetic methods, and thus with different intrinsic characteristics (e.g., diameter and electronic properties), has been investigated under environmentally relevant aquatic conditions. We used the CNT-sensitized photoisomerization of sorbic acid ((2E,4E)-hexa-2,4-dienoic acid) and singlet oxygen formation to quantify the triplet states ((3)CNT*) formed upon irradiation of selected single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs). The CNTs used in our studies were derivatized by carboxyl groups to facilitate their dispersion in water. Results indicate that high-defect-density (thus well-stabilized), small-diameter, and semiconducting-rich CNTs have higher-measured excited triplet state formation and therefore singlet oxygen ((1)O2) yield. Derivatized SWCNTs were significantly more photoreactive than derivatized MWCNTs. Moreover, addition of sodium chloride resulted in increased aggregation and small increases in (1)O2 production of CNTs. The most photoreactive CNTs exhibited comparable photoreactivity (in terms of (3)CNT* formation and (1)O2 yield) to reference natural organic matter (NOM) under sunlight irradiation with the same mass-based concentration. Selected reference NOM could therefore be useful in evaluating environmental photoreactivity or intended antibacterial applications of CNTs.

  1. Chemistry of Carbon Nanotubes for Everyone

    ERIC Educational Resources Information Center

    Basu-Dutt, Sharmistha; Minus, Marilyn L.; Jain, Rahul; Nepal, Dhriti; Kumar, Satish

    2012-01-01

    Carbon nanotubes (CNTs) have the extraordinary potential to change our lives by improving existing products and enabling new ones. Current and future research and industrial workforce professionals are very likely to encounter some aspects of nanotechnology including CNT science and technology in their education or profession. The simple structure…

  2. In-line manufacture of carbon nanotubes

    DOEpatents

    Brambilla, Nicol Michele; Signorelli, Riccardo; Martini, Fabrizio; Corripio Luna, Oscar Enrique

    2015-04-28

    Mass production of carbon nanotubes (CNT) are facilitated by methods and apparatus disclosed herein. Advantageously, the methods and apparatus make use of a single production unit, and therefore provide for uninterrupted progress in a fabrication process. Embodiments of control systems for a variety of CNT production apparatus are included.

  3. Multiwall carbon nanotubes reinforced epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    The emergence of carbon nanotubes (CNTs) has led to myriad possibilities for structural polymer composites with superior specific modulus, strength, and toughness. While the research activities in carbon nanotube reinforced polymer composites (NRPs) have made enormous progress towards fabricating next-generation advanced structural materials with added thermal, optical, and electrical advantages, questions concerning the filler dispersion, interface, and CNT alignment in these composites remain partially addressed. In this dissertation, the key technical challenges related to the synthesis, processing, and reinforcing mechanics governing the effective mechanical properties of NRPs were introduced and reviewed in the first two chapters. Subsequently, issues on the dispersion, interface control, hierarchical structure, and multi-functionality of NRPs were addressed based on functionalized multi-walled carbon nanotube reinforced DGEBA epoxy systems (NREs). In chapter 3, NREs with enhanced flexural properties were discussed in the context of improved dispersion and in-situ formation of covalent bonds at the interface. In chapter 4, NREs with controlled interface and tailored thermomechanical properties were demonstrated through the judicious choice of surface functionality and resin chemistry. In chapter 5, processing-condition-induced CNT organization in hierarchical epoxy nanocomposites was analyzed. In Chapter 6, possibilities were explored for multi-functional NREs for underwater acoustic structural applications. Finally, the findings of this dissertation were concluded and future research was proposed for ordered carbon nanotube array reinforced nanocomposites in the last chapter. Four journal publications resulted from this work are listed in Appendix.

  4. Short Channel Field-Effect-Transistors with Inkjet-Printed Semiconducting Carbon Nanotubes.

    PubMed

    Jang, Seonpil; Kim, Bongjun; Geier, Michael L; Hersam, Mark C; Dodabalapur, Ananth

    2015-11-01

    Short channel field-effect-transistors with inkjet-printed semiconducting carbon nanotubes are fabricated using a novel strategy to minimize material consumption, confining the inkjet droplet into the active channel area. This fabrication approach is compatible with roll-to-roll processing and enables the formation of high-performance short channel device arrays based on inkjet printing. PMID:26312458

  5. Heat Transport in Liquid Polyester Resin with Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Vales-Pinzón, C.; Quiñones-Weiss, G.; Alvarado-Gil, J. J.; Medina-Esquivel, R. A.

    2015-11-01

    Carbon nanotubes represent one of the most important materials in nanoscience and nanotechnology, due to their outstanding structural, mechanical, electrical, and thermal properties. It has been shown that when incorporated in a polymeric matrix, carbon nanotubes can improve its physical properties. In this work, thermal-diffusivity measurements of composite materials, prepared by mixing carbon nanotubes in liquid polyester resin, were performed by means of the thermal-wave resonant cavity. The results show an increase of the thermal diffusivity when the volume fraction of carbon nanotubes grows. It is also shown that this increase depends strongly on the diameter of the nanotubes.

  6. Li2S Nanocrystals Confined in Free-Standing Carbon Paper for High Performance Lithium-Sulfur Batteries.

    PubMed

    Wu, Min; Cui, Yi; Fu, Yongzhu

    2015-09-30

    Lithium sulfide (Li2S) with a high theoretical capacity of 1166 mAh g(-1) is a promising cathode material for Li-S batteries as it allows for the use of lithium-free anodes. However, a large overpotential (~1 V) is usually needed to activate microsized Li2S particles due to their low electronic and ionic conductivities. Here, nano-Li2S/carbon paper electrodes are developed via a simple Li2S solution filtration method. Li2S nanocrystals with a size less than 10 nm are formed uniformly in the pores of carbon paper network. These electrodes show an unprecedented low potential difference (0.1 V) in the first and following charges, also show high discharge capacities, good rate capability, and excellent cycling performance. More specifically, the nano-Li2S/carbon nanotube paper electrodes show a reversible capacity of 634 mAh g(-1) with a capacity retention of 92.4% at 1C rate from the 4th to 100th cycle, corresponding to a low capacity fading rate of 0.078% per cycle. These results demonstrate a facile and scalable electrode fabrication process for making high performance nano-Li2S/carbon paper electrodes, and the superior performance makes them promising for use with lithium metal-free anodes in rechargeable Li-S batteries for practical applications. PMID:26349017

  7. Exploring the Immunotoxicity of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, Yanmei; Zhang, Qiu; Mu, Qingxin; Zhang, Bin; Yan, Bing

    2008-08-01

    Mass production of carbon nanotubes (CNTs) and their applications in nanomedicine lead to the increased exposure risk of nanomaterials to human beings. Although reports on toxicity of nanomaterials are rapidly growing, there is still a lack of knowledge on the potential toxicity of such materials to immune systems. This article reviews some existing studies assessing carbon nanotubes’ toxicity to immune system and provides the potential mechanistic explanation.

  8. Pure carbon nanoscale devices: Nanotube heterojunctions

    SciTech Connect

    Chico, L.; Crespi, V.H.; Benedict, L.X.; Louie, S.G.; Cohen, M.L. |

    1996-02-01

    Introduction of pentagon-heptagon pair defects into the hexagonal network of a single carbon nanotube can change the helicity of the tube and alter its electronic structure. Using a tight-binding method to calculate the electronic structure of such systems we show that they behave as nanoscale metal/semiconductor or semiconductor/semiconductor junctions. These junctions could be the building blocks of nanoscale electronic devices made entirely of carbon. {copyright} {ital 1996 The American Physical Society.}

  9. Atomic nanotube welders: boron interstitials triggering connections in double-walled carbon nanotubes.

    PubMed

    Endo, Morinobu; Muramatsu, Hiroyuki; Hayashi, Takuya; Kim, Yoong-Ahm; Van Lier, Gregory; Charlier, Jean-Christophe; Terrones, Humberto; Terrones, Mauricio; Dresselhaus, Mildred S

    2005-06-01

    Here we demonstrate that the incorporation of boron (B) atoms between double-walled carbon nanotubes (DWNTs) during thermal annealing (1400-1600 degrees C) results in covalent nanotube "Y" junctions, DWNT coalescence, and the formation of flattened multiwalled carbon nanotubes (MWNTs). These processes occur via the merging of adjacent tubes, which is triggered by B interstitial atoms. We observe that B atom interstitials between DWNTs are responsible for the rapid establishment of covalent connections between neighboring tubes (polymerization), thereby resulting in the fast annealing of the carbon cylinders with B atoms embedded in the newly created carbon nanotube network. Once B is in the lattice, tube faceting (polygonization) starts to occur, and the electronic properties are expected to change dramatically. Therefore, B atoms indeed act as atomic nanotube fusers (or welders), and this process could now be used in assembling novel electronic nanotube devices, nanotube networks, carbon nanofoams and heterojunctions exhibiting p-type electronic properties.

  10. Carbon nanotubes on a spider silk scaffold

    PubMed Central

    Steven, Eden; Saleh, Wasan R.; Lebedev, Victor; Acquah, Steve F. A.; Laukhin, Vladimir; Alamo, Rufina G.; Brooks, James S.

    2013-01-01

    Understanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications. Spider silk is tough, but becomes soft when exposed to water. Here we report a strong affinity of amine-functionalised multi-walled carbon nanotubes for spider silk, with coating assisted by a water and mechanical shear method. The nanotubes adhere uniformly and bond to the silk fibre surface to produce tough, custom-shaped, flexible and electrically conducting fibres after drying and contraction. The conductivity of coated silk fibres is reversibly sensitive to strain and humidity, leading to proof-of-concept sensor and actuator demonstrations. PMID:24022336

  11. Carbon nanotubes on a spider silk scaffold.

    PubMed

    Steven, Eden; Saleh, Wasan R; Lebedev, Victor; Acquah, Steve F A; Laukhin, Vladimir; Alamo, Rufina G; Brooks, James S

    2013-01-01

    Understanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications. Spider silk is tough, but becomes soft when exposed to water. Here we report a strong affinity of amine-functionalised multi-walled carbon nanotubes for spider silk, with coating assisted by a water and mechanical shear method. The nanotubes adhere uniformly and bond to the silk fibre surface to produce tough, custom-shaped, flexible and electrically conducting fibres after drying and contraction. The conductivity of coated silk fibres is reversibly sensitive to strain and humidity, leading to proof-of-concept sensor and actuator demonstrations.

  12. Carbon nanotubes on a spider silk scaffold

    NASA Astrophysics Data System (ADS)

    Steven, Eden; Saleh, Wasan R.; Lebedev, Victor; Acquah, Steve F. A.; Laukhin, Vladimir; Alamo, Rufina G.; Brooks, James S.

    2013-09-01

    Understanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications. Spider silk is tough, but becomes soft when exposed to water. Here we report a strong affinity of amine-functionalised multi-walled carbon nanotubes for spider silk, with coating assisted by a water and mechanical shear method. The nanotubes adhere uniformly and bond to the silk fibre surface to produce tough, custom-shaped, flexible and electrically conducting fibres after drying and contraction. The conductivity of coated silk fibres is reversibly sensitive to strain and humidity, leading to proof-of-concept sensor and actuator demonstrations.

  13. Template-Free Synthesis of Ruthenium Oxide Nanotubes for High-Performance Electrochemical Capacitors.

    PubMed

    Kim, Ji-Young; Kim, Kwang-Heon; Kim, Hyun-Kyung; Park, Sang-Hoon; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-08-01

    One-dimensional, hydrous ruthenium oxide nanotubes (RuO2·1.84H2O) have been successfully achieved using a template-free, microwave-hydrothermal process. These were found to be amorphous in nature and have a large specific surface area of 250 m(2)·g(-1), producing a specific and volumetric capacitance of 511 F·g(-1) and 531 F·cm(-3), respectively, at a discharging current density of 0.5 A·g(-1). When used as an electrode material in an electrochemical capacitor or ultracapacitor, they produced a significant improvement in capacitance, rate capability, and cyclability that can be attributed to the hollow nature of tubes allowing greater contact between the active surface of the electrode and the electrolyte.

  14. Transmission Through Carbon Nanotubes with Polyhedral Caps

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Govindan, T. R.

    1999-01-01

    We study electron transport between capped carbon nanotubes and a substrate, and relate this transport to the local density of states in the cap. Our results show that that the transmission probability mimics the behavior of the density of states at all energies except those that correspond to localized states. For a capped carbon nanotube that is not connected to a substrate, the localized states do not couple to the coexisting continuum states. However, close proximity of a substrate causes hybridization between these states. As a result, new transmission paths open from substrate states to nanotube continuum states via the localized states in the cap. We show that the interference between various paths gives rise to transmission antiresonances with the minimum equal to zero at the energy of the localized state. The presence of defects in the tube places close to the cap transforms antiresonances into resonances. Depending on the spatial position of defects, these resonant states are capable of carrying a large current. The results of this paper are of relevance to carbon nanotube based studies on molecular electronics and probe tip applications.

  15. Functionalization of vertically aligned carbon nanotubes

    PubMed Central

    Snyders, Rony; Colomer, Jean-François

    2013-01-01

    Summary This review focuses and summarizes recent studies on the functionalization of carbon nanotubes oriented perpendicularly to their substrate, so-called vertically aligned carbon nanotubes (VA-CNTs). The intrinsic properties of individual nanotubes make the VA-CNTs ideal candidates for integration in a wide range of devices, and many potential applications have been envisaged. These applications can benefit from the unidirectional alignment of the nanotubes, the large surface area, the high carbon purity, the outstanding electrical conductivity, and the uniformly long length. However, practical uses of VA-CNTs are limited by their surface characteristics, which must be often modified in order to meet the specificity of each particular application. The proposed approaches are based on the chemical modifications of the surface by functionalization (grafting of functional chemical groups, decoration with metal particles or wrapping of polymers) to bring new properties or to improve the interactions between the VA-CNTs and their environment while maintaining the alignment of CNTs. PMID:23504581

  16. Fabrication and field emission properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Peng

    Research on the area of the fabrication of carbon nanotubes is fundamental and critical to the entire subject of carbon nanotubes. This dissertation describes an experiment to fabricate carbon nanotubes by the method of Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) and the electron field emission properties of carbon nanotubes. A MPECVD system was built and used to fabricate the vertical aligned carbon nanotube film. Scanning electron microscope (SEM), Raman spectroscopy and transmission electron microscopy (TEM) were used to characterize the as-grown carbon nanotube samples. By using a metal-containing diblock copolymer catalyst, carbon nanotubes with a diameter of 4 to 7 nm were synthesized. The effect of growth parameters was studied and these parameters were optimized. The growth of high density (˜ 109/cm2) and large coverage area (˜ 1 cm2) carbon nanotube film on glass substrate at low growth temperature was realized. Based on a series of experiments, the effects of oxygen atoms and Ti/N underlayer on the growth were studied. A series of experiments were evaluated to characterize the field emission properties of the various carbon nanotube cathodes. A simple technique of scratching the pattern surface by a cotton swab was found effective to activate more carbon nanotubes to emit. By using the techniques of photolithography and shadow mask, various carbon nanotube patterns were achieved in order to obtain high emission current density and a low threshold electric field. The lowest threshold electric field was found to be 2.3 V/um. The highest current density was found to be 2.2 mA/cm2 when the electric field was 4.7 V/um. Our work shows that it is feasible to provide greater control over the fabrication of carbon nanotubes so that more obstacles in the broad application of carbon nanotubes can be overcome.

  17. A promising pathway to make multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Setlur, A. A.; Doherty, S. P.; Dai, J. Y.; Chang, R. P. H.

    2000-05-01

    Current theories for multiwalled nanotube growth (without metal catalysts) describe the growth of multiwalled nanotubes by the addition of carbon atoms, ions, or small molecules to an open ended nanotube nucleus. In this letter, we describe a method to make carbon nanotubes similar in quality to those found on the cathode deposit of the carbon arc by manipulating the heat treatment of various nongraphitizable carbon precursors. It is proposed that this method of making nanotubes via heat treatments is analogous to a graphitization process, where aromatic/graphitic fragments in disordered carbons assemble into three-dimensional graphitic structures. In addition, we have demonstrated that simple precursors, such as sucrose, can be used as starting materials. These experiments offer new opportunities to understand nanotube growth and could lead to scalable methods to make multiwalled nanotubes.

  18. A promising pathway to make multiwalled carbon nanotubes

    SciTech Connect

    Setlur, A. A.; Doherty, S. P.; Dai, J. Y.; Chang, R. P. H.

    2000-05-22

    Current theories for multiwalled nanotube growth (without metal catalysts) describe the growth of multiwalled nanotubes by the addition of carbon atoms, ions, or small molecules to an open ended nanotube nucleus. In this letter, we describe a method to make carbon nanotubes similar in quality to those found on the cathode deposit of the carbon arc by manipulating the heat treatment of various nongraphitizable carbon precursors. It is proposed that this method of making nanotubes via heat treatments is analogous to a graphitization process, where aromatic/graphitic fragments in disordered carbons assemble into three-dimensional graphitic structures. In addition, we have demonstrated that simple precursors, such as sucrose, can be used as starting materials. These experiments offer new opportunities to understand nanotube growth and could lead to scalable methods to make multiwalled nanotubes. (c) 2000 American Institute of Physics.

  19. Adsorption of Gases on Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Mbaye, Mamadou Thiao

    This research focus in studying the interaction between various classical and quantum gases with novel carbon nanostructures, mainly carbon nanotubes (CNTs). Since their discovery by the Japanese physicist Sumio Iijima [1] carbon nanotubes have, experimentally and theoretically, been subjected to many scientific investigation. Studies of adsorption on CNTs are particularly directed toward their better usage in gas storage, gas separation, catalyst, drug delivery, and water purification. We explore the adsorption of different gases entrapped in a single, double, or multi-bundles of CNTs using computer simulations. The first system we investigate consists of Ar and Kr films adsorbed on zigzag or armchair nanotubes. Our simulations revealed that Kr atoms on intermediate size zigzag NTs undergo two phase transitions: A liquid-vapor (L→V), and liquid-commensurate (L→CS) with a fractional coverage of one Kr atoms adsorbed for every four carbon atoms. For Ar on zigzag and armchair NTs, the only transition observed is a L→V. In the second problem, we explore the adsorption of CO2 molecules in a nanotube bundle and calculate the isosteric heat of adsorption of the entrapped molecules within the groove. We observed that the lower the temperature, the higher the isosteric of adsorption. Last, we investigate the adsorption of hydrogen, Helium, and Neon gases on the groove site of two parallel nanotubes. At low temperature, the transverse motion on the plane perpendicular to the tubes' axis is frozen out and as a consequence, the heat capacity is reduced to 1/2. At high temperature, the atoms gain more degree of freedom and as a consequence the heat capacity is 5/2.

  20. Diffusion through Carbon Nanotube Semipermeable membranes

    SciTech Connect

    Bakajin, O

    2006-02-13

    The goal of this project is to measure transport through CNTs and study effects of confinement at molecular scale. This work is motivated by several simulation papers in high profile journals that predict significantly higher transport rates of gases and liquids through carbon nanotubes as compared with similarly-sized nanomaterials (e.g. zeolites). The predictions are based on the effects of confinement, atomically smooth pore walls and high pore density. Our work will provide the first measurements that would compare to and hopefully validate the simulations. Gas flux is predicted to be >1000X greater for SWNTs versus zeolitesi. A high flux of 6-30 H2O/NT/ns {approx} 8-40 L/min for a 1cm{sup 2} membrane is also predicted. Neutron diffraction measurements indicate existence of a 1D water chain within a cylindrical ice sheet inside carbon nanotubes, which is consistent with the predictions of the simulation. The enabling experimental platform that we are developing is a semipermeable membrane made out of vertically aligned carbon nanotubes with gaps between nanotubes filled so that the transport occurs through the nanotubes. The major challenges of this project included: (1) Growth of CNTs in the suitable vertically aligned configuration, especially the single wall carbon nanotubes; (2) Development of a process for void-free filling gaps between CNTs; and (3) Design of the experiments that will probe the small amounts of analyte that go through. Knowledge of the behavior of water upon nanometer-scale confinement is key to understanding many biological processes. For example, the protein folding process is believed to involve water confined in a hydrophobic environment. In transmembrane proteins such as aquaporins, water transport occurs under similar conditions. And in fields as far removed as oil recovery and catalysis, an understanding of the nanoscale molecular transport occurring within the nanomaterials used (e.g. zeolites) is the key to process optimization

  1. Nanosystems of Polymerized Fullerenes and Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Scharff, Peter; Cui, Shen

    Nanosystems based on polymerized fullerenes and carbon-nanotubes begin to play an important role in the field of nanotechnology. Nanotubes can be used as molecular wires, and can even figure as building elements for molecular electronics. Furthermore nanotubes can be used as amplifiers in composite materials, as a result of their unique mechanical properties. Many other applications, as for example as electron emitters for flat screens, are currently under development. Fullerens are known to be strong electron acceptors, which enables them to support the electron-hole pair separation in polymer based photovoltaic cells. The use of fulleren chains instead of fullerenes could improve the anisotropic electronic conductivity in the contained polymer layer, and therefore enhance their performance.

  2. Spin-based Optomechanics with Carbon Nanotubes

    PubMed Central

    Li, Jin-Jin; Zhu, Ka-Di

    2012-01-01

    A simple scheme for determination of spin-orbit coupling strength in spinbased optomechanics with carbon nanotubes is introduced, under the control of a strong pump field and a weak signal field. The physical mechanism comes from the phonon induced transparency (PIT), by relying on the coherent coupling of electron spin to vibrational motion of the nanotube, which is analogous to electromagnetically induced transparency (EIT) effect in atom systems. Based on this spin-nanotube optomechanical system, we also conceptually design a single photon router and a quantum microwave transistor, with ultralow pump power (~ pW) and tunable switching time, which should provide a unique platform for the study of spin-based microwave quantum optics and quantum information processing. PMID:23198093

  3. Carbon nanotube photo-thermo-mechanical actuator.

    PubMed

    Nagar, Rupali; Teki, Ranganath; Srivastava, Iti; Singh, Jitendra P; Koratkar, Nikhil

    2011-02-01

    Carbon nanotubes show a remarkable tendency for direct (rapid) temperature increase of the order of hundreds of degrees when exposed to near infra-red light. The reason is local confinement of the heat wave in their 1D structure which generates rapid temperature rise. Here we demonstrate that these high temperatures can be exploited to generate large deformation and force output by anchoring the nanotubes to a substrate. We report energy density (i.e., work done per unit mass) of the nanotube actuator as approximately 4268 J/Kg which is significantly larger than piezoceramic (approximately 4.25 J/Kg), magnetostrictive (approximately 21.6 J/Kg), lead-zinc-niobate/lead-titanate single-crystals (approximately 131 J/Kg), polyvinylidene fluoride trifluoro-ethylene copolymers (approximately 160 J/Kg) and shape memory alloys (approximately 1337 J/Kg).

  4. Carbon Nanotubes: Measuring Dispersion and Length

    SciTech Connect

    Fagan, Jeffrey A.; Bauer, Barry J.; Hobbie, Erik K.; Becker, Matthew L.; Hight-Walker, Angela; Simpson, Jeffrey R.; Chun, Jaehun; Obrzut, Jan; Bajpai, Vardhan; Phelan, Fred R.; Simien, Daneesh; Yeon Huh, Ji; Migler, Kalman B.

    2011-03-01

    Advanced technological uses of single-wall carbon nanotubes (SWCNTs) rely on the production of single length and chirality populations that are currently only available through liquid phase post processing. The foundation of all of these processing steps is the attainment of individualized nanotube dispersion in solution; an understanding of the collodial properties of the dispersed SWCNTs can then be used to designed appropriate conditions for separations. In many instances nanotube size, particularly length, is especially active in determining the achievable properties from a given population, and thus there is a critical need for measurement technologies for both length distribution and effective separation techniques. In this Progress Report, we document the current state of the art for measuring dispersion and length populations, including separations, and use examples to demonstrate the desirability of addressing these parameters.

  5. Purification of Carbon Nanotubes by Proton Irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Euikwoun; Lee, Jeonggil; Lee, Younman; Jeon, Jaekyun; Kim, Jae-Yong; Kim, Jeongha; Shin, Kwanwoo; Youn, Sang-Pil; Kim, Kyeryung

    2007-10-01

    Carbon nanotubes (CNTs) exhibit variety of superior physical properties including well-defined nanodimensional structure, high electrical and thermal conductivity, and good mechanical stability against external irradiations. Further, a large specific surface area per unit weight suggests that carbon nanotubes could be excellent candidates for gas storage, purification, and separation. However, the practical application of CNTs is limited mainly due to the metallic impurities that were used as a catalyst during the fabrication process. Here, we irradiated CNTs by using high energy proton beams (35.7 MeV at the Bragg Peak). Interestingly, metallic impurities such as Fe, Ni, Co and chunk of amorphous carbon that were attached on the surface of CNTs were completely removed after the irradiation. The mechanism of such the purification process is not understood. The possible speculation will be demonstrated combined with the changes of physical properties including the appearance of the magnetism after the irradiation.

  6. Co(OH)2/RGO/NiO sandwich-structured nanotube arrays with special surface and synergistic effects as high-performance positive electrodes for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Han; Zhang, Chi; Zhou, Wen; Li, Gao-Ren

    2015-10-01

    High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (~1470 F g-1 at 5 mV s-1) and excellent cycling stability with ~98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and special synergistic effects among Co(OH)2, RGO, and NiO. The high-performance ASCs are assembled using Co(OH)2/RGO/NiO SNTAs as positive electrodes and active carbon (AC) as negative electrodes, and they exhibit a high energy density (115 Wh kg-1), a high power density (27.5 kW kg-1) and an excellent cycling stability (less 5% Csp loss after 10 000 cycles). This study shows an important breakthrough in the design and fabrication of multi-walled hybrid nanotube arrays as positive electrodes for ASCs.High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (~1470 F g-1 at 5 mV s-1) and excellent cycling stability with ~98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and

  7. Ag-catalysed cutting of multi-walled carbon nanotubes.

    PubMed

    La Torre, A; Rance, G A; Miners, S A; Herreros Lucas, C; Smith, E F; Fay, M W; Zoberbier, T; Giménez-López, M C; Kaiser, U; Brown, P D; Khlobystov, A N

    2016-04-29

    In this work, the cutting of carbon nanotubes is investigated using silver nanoparticles deposited on arc discharge multi-walled carbon nanotubes. The composite is subsequently heated in air to fabricate shortened multi-walled nanotubes. Complementary transmission electron microscopy and spectroscopy techniques shed light on the cutting mechanism. The nanotube cutting is catalysed by the fundamental mechanism based on the coordination of the silver atoms to the π-bonds of carbon nanotubes. As a result of the metal coordination, the strength of the carbon-carbon bond is reduced, promoting the oxidation of carbon at lower temperature when heated in air, or lowering the activation energy required for the removal of carbon atoms by electron beam irradiation, assuring in both cases the cutting of the nanotubes.

  8. Ag-catalysed cutting of multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    La Torre, A.; Rance, G. A.; Miners, S. A.; Herreros Lucas, C.; Smith, E. F.; Fay, M. W.; Zoberbier, T.; Giménez-López, M. C.; Kaiser, U.; Brown, P. D.; Khlobystov, A. N.

    2016-04-01

    In this work, the cutting of carbon nanotubes is investigated using silver nanoparticles deposited on arc discharge multi-walled carbon nanotubes. The composite is subsequently heated in air to fabricate shortened multi-walled nanotubes. Complementary transmission electron microscopy and spectroscopy techniques shed light on the cutting mechanism. The nanotube cutting is catalysed by the fundamental mechanism based on the coordination of the silver atoms to the π-bonds of carbon nanotubes. As a result of the metal coordination, the strength of the carbon-carbon bond is reduced, promoting the oxidation of carbon at lower temperature when heated in air, or lowering the activation energy required for the removal of carbon atoms by electron beam irradiation, assuring in both cases the cutting of the nanotubes.

  9. Carbon Nanotubes for Space Photovoltaic Applications

    NASA Technical Reports Server (NTRS)

    Efstathiadis, Harry; Haldar, Pradeep; Landi, Brian J.; Denno, Patrick L.; DiLeo, Roberta A.; VanDerveer, William; Raffaelle, Ryne P.

    2007-01-01

    Carbon nanotubes (CNTs) can be envisioned as an individual graphene sheet rolled into a seamless cylinder (single-walled, SWNT), or concentric sheets as in the case of a multi-walled carbon nanotube (MWNT) (1). The role-up vector will determine the hexagonal arrangement and "chirality" of the graphene sheet, which will establish the nanotube to be metallic or semiconducting. The optoelectronic properties will depend directly on this chiral angle and the diameter of the SWNT, with semiconductor types exhibiting a band gap energy (2). Characteristic of MWNTs are the concentric graphene layers spaced 0.34 nm apart, with diameters from 10-200 nm and lengths up to hundreds of microns (2). In the case of SWNTs, the diameters range from 0.4 - 2 nm and lengths have been reported up to 1.5 cm (3). SWNTs have the distinguishable property of "bundling" together due to van der Waal's attractions to form "ropes." A comparison of these different structural types is shown in Figure 1. The use of SWNTS in space photovoltaic (PV) applications is attractive for a variety of reasons. Carbon nanotubes as a class of materials exhibit unprecedented optical, electrical, mechanical properties, with the added benefit of being nanoscale in size which fosters ideal interaction in nanomaterial-based devices like polymeric solar cells. The optical bandgap of semiconducting SWNTs can be varied from approx. 0.4 - 1.5 eV, with this property being inversely proportional to the nanotube diameter. Recent work at GE Global Research has shown where a single nanotube device can behave as an "ideal" pn diode (5). The SWNT was bridged over a SiO2 channel between Mo contacts and exhibited an ideality factor of 1, based on a fit of the current-voltage data using the diode equation. The measured PV efficiency under a 0.8 eV monochromatic illumination showed a power conversion efficiency of 0.2 %. However, the projected efficiency of these junctions is estimated to be > 5 %, especially when one considers the

  10. Electrochemical Characterization of Carbon Nanotubes for Fuel Cell MEA's

    NASA Technical Reports Server (NTRS)

    Panagaris, Jael; Loyselle, Patricia

    2004-01-01

    Single-walled and multi-walled carbon nanotubes from different sources have been evaluated before and after sonication to identify structural differences and evaluate electrochemical performance. Raman spectral analysis and cyclic voltammetry in situ with QCM were the principle means of evaluating the tubes. The raman data indicates that sonication in toluene modifies the structural properties of the nanotubes. Sonication also affects the electrochemical performance of single-walled nanotubes and the multi-walled tubes differently. The characterization of different types of carbon nanotubes leads up to identifying a potential candidate for incorporating carbon nanotubes for fuel cell MEA structures.

  11. Sagnac interference in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bishara, Waheb; Refael, Gil; Bockrath, Marc

    2008-10-01

    The Sagnac interference mode arises when two interfering counterpropogating beams traverse a loop, but with their velocities detuned by a small amount 2u , with vR/L=vF±u . In this paper we perform a perturbative nonequilibrium calculation of Sagnac interference in single-channel wires as well as armchair nanotube loops. We study the dependence of the Sagnac conductance oscillations on temperature and interactions. We find that the Sagnac interference is not destroyed by strong interactions, but becomes weakly dependent on the velocity detuning u . In armchairs nanotubes with typical interaction strength, 0.25≤g≤0.5 , we find that the necessary temperature for observing the interference effect, TSAG is also only weakly dependent on the interaction, and is enhanced by a factor of 8 relative to the temperature necessary for observing Fabry-Pérot interference in the same system, TFP .

  12. Carbon nanotube materials from hydrogen storage

    SciTech Connect

    Dillon, A.C.; Bekkedahl, T.A.; Cahill, A.F.

    1995-09-01

    The lack of convenient and cost-effective hydrogen storage is a major impediment to wide scale use of hydrogen in the United States energy economy. Improvements in the energy densities of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted systems are required before viable hydrogen energy use pathways can be established. Carbon-based hydrogen adsorption materials hold particular promise for meeting and exceeding the U.S. Department of Energy hydrogen storage energy density targets for transportation if concurrent increases in hydrogen storage capacity and carbon density can be achieved. These two goals are normally in conflict for conventional porous materials, but may be reconciled by the design and synthesis of new adsorbent materials with tailored pore size distributions and minimal macroporosity. Carbon nanotubes offer the possibility to explore new designs for adsorbents because they can be fabricated with small size distributions, and naturally tend to self-assemble by van der Waals forces. This year we report heats of adsorption for hydrogen on nanotube materials that are 2 and 3 times greater than for hydrogen on activated carbon. The hydrogen which is most strongly bound to these materials remains on the carbon surface to temperatures greater than 285 K. These results suggest that nanocapillary forces are active in stabilizing hydrogen on the surfaces of carbon nanotubes, and that optimization of the adsorbent will lead to effective storage at higher temperatures. In this paper we will also report on our activities which are targeted at understanding and optimizing the nucleation and growth of single wall nanotubes. These experiments were made possible by the development of a unique feedback control circuit which stabilized the plasma-arc during a synthesis run.

  13. Sub-10 nm carbon nanotube transistor.

    PubMed

    Franklin, Aaron D; Luisier, Mathieu; Han, Shu-Jen; Tulevski, George; Breslin, Chris M; Gignac, Lynne; Lundstrom, Mark S; Haensch, Wilfried

    2012-02-01

    Although carbon nanotube (CNT) transistors have been promoted for years as a replacement for silicon technology, there is limited theoretical work and no experimental reports on how nanotubes will perform at sub-10 nm channel lengths. In this manuscript, we demonstrate the first sub-10 nm CNT transistor, which is shown to outperform the best competing silicon devices with more than four times the diameter-normalized current density (2.41 mA/μm) at a low operating voltage of 0.5 V. The nanotube transistor exhibits an impressively small inverse subthreshold slope of 94 mV/decade-nearly half of the value expected from a previous theoretical study. Numerical simulations show the critical role of the metal-CNT contacts in determining the performance of sub-10 nm channel length transistors, signifying the need for more accurate theoretical modeling of transport between the metal and nanotube. The superior low-voltage performance of the sub-10 nm CNT transistor proves the viability of nanotubes for consideration in future aggressively scaled transistor technologies.

  14. Mesoscale mechanics of twisting carbon nanotube yarns.

    PubMed

    Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J

    2015-03-12

    Fabricating continuous macroscopic carbon nanotube (CNT) yarns with mechanical properties close to individual CNTs remains a major challenge. Spinning CNT fibers and ribbons for enhancing the weak interactions between the nanotubes is a simple and efficient method for fabricating high-strength and tough continuous yarns. Here we investigate the mesoscale mechanics of twisting CNT yarns using full atomistic and coarse grained molecular dynamics simulations, considering concurrent mechanisms at multiple length-scales. To investigate the mechanical response of such a complex structure without losing insights into the molecular mechanism, we applied a multiscale strategy. The full atomistic results are used for training a coarse grained model for studying larger systems consisting of several CNTs. The mesoscopic model parameters are updated as a function of the twist angle, based on the full atomistic results, in order to incorporate the atomistic scale deformation mechanisms in larger scale simulations. By bridging across two length scales, our model is capable of accurately predicting the mechanical behavior of twisted yarns while the atomistic level deformations in individual nanotubes are integrated into the model by updating the parameters. Our results focused on studying a bundle of close packed nanotubes provide novel mechanistic insights into the spinning of CNTs. Our simulations reveal how twisting a bundle of CNTs improves the shear interaction between the nanotubes up to a certain level due to increasing the interaction surface. Furthermore, twisting the bundle weakens the intertube interactions due to excessive deformation in the cross sections of individual CNTs in the bundle. PMID:25732328

  15. Coupling of Carbon Nanotubes to Metallic Contacts

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Datta, S.; Xue, Yong-Xiang; Govindan, T. R. (Technical Monitor)

    1999-01-01

    The modeling of carbon nanotube-metal contacts is important from both basic and applied view points. For many applications, it is important to design contacts such that the transmission is dictated by intrinsic properties of the nanotube rather than by details of the contact. In this paper, we calculate the electron transmission probability from a nanotube to a free electron metal, which is side-contacted. If the metal-nanotube interface is sufficiently ordered, we find that k-vector conservation plays an important role in determining the coupling, with the physics depending on the area of contact, tube diameter, and chirality. The main results of this paper are: (1) conductance scales with contact length, a phenomena that has been observed in experiments and (2) in the case of uniform coupling between metal and nanotube, the threshold value of the metal Fermi wave vector (below which coupling is insignificant) depends on chirality. Disorder and small phase coherence length relax the need for k-vector conservation, thereby making the coupling stronger.

  16. A Structural Transition of Carbon Nanotubes?

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Cochrane, J. C.; Lehoczky, S.; Cui, Y.; Burger, A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The superior properties of carbon nanotubes (CNT) are good for many applications. A possible temperature-related structural transition is found in the CNT, which may suggest new applications of CNT. CNT materials have been synthesized on Si substrates by pulsed laser vaporization in various temperatures and pressures. Raman spectroscopy and scanning electron microscopy are used to determine the CNT structure and morphology. It is found that the formation of nanotubes depends strongly on the growth temperatures and high quality multi-wall and single-wall nanotubes were produced at 700 and 990 C, respectively. The radial breath modes of Raman spectra measured in the range of 50 cm(exp -1) to 300 cm(exp -1), indicate that one of samples grown at 700 C is to be dependent on the excitation intensity. The spectra of the sample suggest that the structure is similar to that of multi-wall nanotubes at low excitation intensity (2.5 kW per square centimeter) and it converts to the structure of single-wall nanotubes at higher intensity (25 kW per square centimeter). Measurements taken while cycling the light intensity suggests a reversible transition.

  17. Osmotic water transport through carbon nanotube membranes

    PubMed Central

    Kalra, Amrit; Garde, Shekhar; Hummer, Gerhard

    2003-01-01

    We use molecular dynamics simulations to study osmotically driven transport of water molecules through hexagonally packed carbon nanotube membranes. Our simulation setup comprises two such semipermeable membranes separating compartments of pure water and salt solution. The osmotic force drives water flow from the pure-water to the salt-solution compartment. Monitoring the flow at molecular resolution reveals several distinct features of nanoscale flows. In particular, thermal fluctuations become significant at the nanoscopic length scales, and as a result, the flow is stochastic in nature. Further, the flow appears frictionless and is limited primarily by the barriers at the entry and exit of the nanotube pore. The observed flow rates are high (5.8 water molecules per nanosecond and nanotube), comparable to those through the transmembrane protein aquaporin-1, and are practically independent of the length of the nanotube, in contrast to predictions of macroscopic hydrodynamics. All of these distinct characteristics of nanoscopic water flow can be modeled quantitatively by a 1D continuous-time random walk. At long times, the pure-water compartment is drained, and the net flow of water is interrupted by the formation of structured solvation layers of water sandwiched between two nanotube membranes. Structural and thermodynamic aspects of confined water monolayers are studied. PMID:12878724

  18. Mesoscale mechanics of twisting carbon nanotube yarns

    NASA Astrophysics Data System (ADS)

    Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J.

    2015-03-01

    Fabricating continuous macroscopic carbon nanotube (CNT) yarns with mechanical properties close to individual CNTs remains a major challenge. Spinning CNT fibers and ribbons for enhancing the weak interactions between the nanotubes is a simple and efficient method for fabricating high-strength and tough continuous yarns. Here we investigate the mesoscale mechanics of twisting CNT yarns using full atomistic and coarse grained molecular dynamics simulations, considering concurrent mechanisms at multiple length-scales. To investigate the mechanical response of such a complex structure without losing insights into the molecular mechanism, we applied a multiscale strategy. The full atomistic results are used for training a coarse grained model for studying larger systems consisting of several CNTs. The mesoscopic model parameters are updated as a function of the twist angle, based on the full atomistic results, in order to incorporate the atomistic scale deformation mechanisms in larger scale simulations. By bridging across two length scales, our model is capable of accurately predicting the mechanical behavior of twisted yarns while the atomistic level deformations in individual nanotubes are integrated into the model by updating the parameters. Our results focused on studying a bundle of close packed nanotubes provide novel mechanistic insights into the spinning of CNTs. Our simulations reveal how twisting a bundle of CNTs improves the shear interaction between the nanotubes up to a certain level due to increasing the interaction surface. Furthermore, twisting the bundle weakens the intertube interactions due to excessive deformation in the cross sections of individual CNTs in the bundle.

  19. High-Performance Supercapacitor Electrode Based on Cobalt Oxide-Manganese Dioxide-Nickel Oxide Ternary 1D Hybrid Nanotubes.

    PubMed

    Singh, Ashutosh K; Sarkar, Debasish; Karmakar, Keshab; Mandal, Kalyan; Khan, Gobinda Gopal

    2016-08-17

    We report a facile method to design Co3O4-MnO2-NiO ternary hybrid 1D nanotube arrays for their application as active material for high-performance supercapacitor electrodes. This as-prepared novel supercapacitor electrode can store charge as high as ∼2020 C/g (equivalent specific capacitance ∼2525 F/g) for a potential window of 0.8 V and has long cycle stability (nearly 80% specific capacitance retains after successive 5700 charge/discharge cycles), significantly high Coulombic efficiency, and fast response time (∼0.17s). The remarkable electrochemical performance of this unique electrode material is the outcome of its enormous reaction platform provided by its special nanostructure morphology and conglomeration of the electrochemical properties of three highly redox active materials in a single unit. PMID:27430868

  20. Synthesis of Carbon Nanotubes Using Sol Gel Route

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Tarek

    2002-12-01

    Since 1990, carbon nanotubes were discovered and they have been the object of intense scientific study ever since. A carbon nanotube is a honeycomb lattice rolled into a cylinder. The diameter of a carbon nanotube is of nanometer size and the length is in the range of micrometer. Many of the extraordinary properties attributed to nanotubes, such as tensile strength and thermal stability, have inspired predictions of microscopic robots, dent-resistant car bodies and earthquake-resistant buildings. The first products to use nanotubes were electrical. Some General Motors cars already include plastic parts to which nanotubes were added; such plastic can be electrified during painting so that the paint will stick more readily. Two nanotube-based lighting and display products are well on their way to market. In the long term, perhaps the most valuable applications will take further advantage of nanotubes' unique electronic properties. Carbon nanotubes can in principle play the same role as silicon does in electronic circuits, but at a molecular scale where silicon and other standard semiconductors cease to work. There are several routes to synthesize carbon nanotubes; laser vaporization, carbon arc and vapor growth. We have applied a different route using sol gel chemistry to obtain carbon nanotubes. This work is patent-pending.

  1. Spectroscopic study of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Curran, Seamus; Weldon, Declan N.; Blau, Werner J.; Zandbergen, Henny W.; Kastner, J.; Kuzmany, Hans

    1994-11-01

    We present a comprehensive experimental study of the vibrational spectra of nanotubes. There are two main lines observed in the Raman spectrum, one positioned at 1350 cm-1, the D line, and the other at 1580 cm-1, the G line. Both these lines are very similar to those seen with disordered graphite. The disorder induced D line is very weak compared to the G line which is indicative of high crystalline materials. The position and intensity of the D line strongly depends on the energy of the exciting laser. This dispersion effect was also observed for graphitic particles and may be explained by a photoselective resonance process of nanotubes with different sizes. There are two optically active modes in the Infrared spectrum for highly orientated polycrystalline graphite which are the E1u and A2u modes. The E1u mode is positioned at 1587 cm-1 while the A2u mode is positioned at 868 cm-1. The Infrared spectrum of the nanotubes shows both modes although the E1u mode is downshifted to 1575 cm-1.

  2. Giant Surface Conductivity Enhancement in a Carbon Nanotube Composite by Ultraviolet Light Exposure.

    PubMed

    Long, Christian J; Orloff, Nathan D; Twedt, Kevin A; Lam, Thomas; Vargas-Lara, Fernando; Zhao, Minhua; Natarajan, Bharath; Scott, Keana C; Marksz, Eric; Nguyen, Tinh; Douglas, Jack F; McClelland, Jabez; Garboczi, Edward; Obrzut, Jan; Liddle, J Alexander

    2016-09-01

    Carbon nanotube composites are lightweight, multifunctional materials with readily adjustable mechanical and electrical properties-relevant to the aerospace, automotive, and sporting goods industries as high-performance structural materials. Here, we combine well-established and newly developed characterization techniques to demonstrate that ultraviolet (UV) light exposure provides a controllable means to enhance the electrical conductivity of the surface of a commercial carbon nanotube-epoxy composite by over 5 orders of magnitude. Our observations, combined with theory and simulations, reveal that the increase in conductivity is due to the formation of a concentrated layer of nanotubes on the composite surface. Our model implies that contacts between nanotube-rich microdomains dominate the conductivity of this layer at low UV dose, while tube-tube transport dominates at high UV dose. Further, we use this model to predictably pattern conductive traces with a UV laser, providing a facile approach for direct integration of lightweight conductors on nanocomposite surfaces.

  3. Giant Surface Conductivity Enhancement in a Carbon Nanotube Composite by Ultraviolet Light Exposure.

    PubMed

    Long, Christian J; Orloff, Nathan D; Twedt, Kevin A; Lam, Thomas; Vargas-Lara, Fernando; Zhao, Minhua; Natarajan, Bharath; Scott, Keana C; Marksz, Eric; Nguyen, Tinh; Douglas, Jack F; McClelland, Jabez; Garboczi, Edward; Obrzut, Jan; Liddle, J Alexander

    2016-09-01

    Carbon nanotube composites are lightweight, multifunctional materials with readily adjustable mechanical and electrical properties-relevant to the aerospace, automotive, and sporting goods industries as high-performance structural materials. Here, we combine well-established and newly developed characterization techniques to demonstrate that ultraviolet (UV) light exposure provides a controllable means to enhance the electrical conductivity of the surface of a commercial carbon nanotube-epoxy composite by over 5 orders of magnitude. Our observations, combined with theory and simulations, reveal that the increase in conductivity is due to the formation of a concentrated layer of nanotubes on the composite surface. Our model implies that contacts between nanotube-rich microdomains dominate the conductivity of this layer at low UV dose, while tube-tube transport dominates at high UV dose. Further, we use this model to predictably pattern conductive traces with a UV laser, providing a facile approach for direct integration of lightweight conductors on nanocomposite surfaces. PMID:27468781

  4. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  5. 77 FR 39236 - Nanomaterial Case Study: A Comparison of Multiwalled Carbon Nanotubes and Decabromodiphenyl Ether...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... AGENCY Nanomaterial Case Study: A Comparison of Multiwalled Carbon Nanotubes and Decabromodiphenyl Ether... Study: A Comparison of Multiwalled Carbon Nanotubes and Decabromodiphenyl Ether Flame-Retardant Coatings... ``Nanomaterial Case Study: A Comparison of Multiwalled Carbon Nanotubes and Decabromodiphenyl Ether...

  6. Remote Joule heating by a carbon nanotube

    NASA Astrophysics Data System (ADS)

    Baloch, Kamal H.; Voskanian, Norvik; Bronsgeest, Merijntje; Cumings, John

    2012-05-01

    Minimizing Joule heating remains an important goal in the design of electronic devices. The prevailing model of Joule heating relies on a simple semiclassical picture in which electrons collide with the atoms of a conductor, generating heat locally and only in regions of non-zero current density, and this model has been supported by most experiments. Recently, however, it has been predicted that electric currents in graphene and carbon nanotubes can couple to the vibrational modes of a neighbouring material, heating it remotely. Here, we use in situ electron thermal microscopy to detect the remote Joule heating of a silicon nitride substrate by a single multiwalled carbon nanotube. At least 84% of the electrical power supplied to the nanotube is dissipated directly into the substrate, rather than in the nanotube itself. Although it has different physical origins, this phenomenon is reminiscent of induction heating or microwave dielectric heating. Such an ability to dissipate waste energy remotely could lead to improved thermal management in electronic devices.

  7. Spectroscopy of Optical Excitations in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ma, Yingzhong

    2006-03-01

    Understanding the optical spectra and electronic excited state dynamics of carbon naotubes is important both for fundamental research and a wide variety of potential applications. In this presentation, we will report the results of a systematic study on semiconducting single-walled carbon nanotubes (SWNTs) obtained by utilizing complementary femtosecond spectroscopic techniques, including fluorescence up-conversion, frequency-resolved transient absorption, and three-pulse photon echo peakshift (3PEPS) spectroscopy. Our efforts have focused on optically selective detection of the spectra and dynamics associated with structurally distinct semiconducting SWNT species. Using individual nanotube enriched micelle-dispersed SWNT preparations, in combination with resonant excitation and detection, has enabled us to independently access selected species, such as the (8,3), (6,5), (7,5), (11,0), (7,6) and (9,5) nanotubes. We will discuss the following topics: (1) the excitonic nature of the elementary excitation and its unambiguous identification from direct determination of the exciton binding energy for a selected semiconducting nanotube, the (8,3) tube; (2) the spectroscopic and dynamical signatures of exciton-exciton annihilation and its predominant role in governing ultrafast excited state relaxation; (3) the annihilation-concomitant exciton dissociation and the spectroscopic and dynamic features of the resulting electron-hole continuum; (4) timescales characterizing the ultrafast thermalization processes. In addition, we will demonstrate the power of 3PEPS spectroscopy to elucidate the spectral properties and dynamics of SWNTs. This work was supported by the NSF.

  8. Developing Carbon Nanotube Standards at NASA

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pasha; Arepalli, Sivaram; Sosa, Edward; Gorelik, Olga; Yowell, Leonard

    2007-01-01

    Single wall carbon nanotubes (SWCNTs) are currently being produced and processed by several methods. Many researchers are continuously modifying existing methods and developing new methods to incorporate carbon nanotubes into other materials and utilize the phenomenal properties of SWCNTs. These applications require availability of SWCNTs with known properties and there is a need to characterize these materials in a consistent manner. In order to monitor such progress, it is critical to establish a means by which to define the quality of SWCNT material and develop characterization standards to evaluate of nanotube quality across the board. Such characterization standards should be applicable to as-produced materials as well as processed SWCNT materials. In order to address this issue, NASA Johnson Space Center has developed a protocol for purity and dispersion characterization of SWCNTs. The NASA JSC group is currently working with NIST, ANSI and ISO to establish purity and dispersion standards for SWCNT material. A practice guide for nanotube characterization is being developed in cooperation with NIST. Furthermore, work is in progress to incorporate additional characterization methods for electrical, mechanical, thermal, optical and other properties of SWCNTs.

  9. Developing Carbon Nanotube Standards at NASA

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pasha; Arepalli, Sivaram; Sosa, Edward; Gorelik, Olga; Yowell, Leonard

    2007-01-01

    Single wall carbon nanotubes (SWCNTs) are currently being produced and processed by several methods. Many researchers are continuously modifying existing methods and developing new methods to incorporate carbon nanotubes into other materials and utilize the phenomenal properties of SWCNTs. These applications require availability of SWCNTs with known properties and there is a need to characterize these materials in a consistent manner. In order to monitor such progress, it is critical to establish a means by which to define the quality of SWCNT material and develop characterization standards to evaluate of nanotube quality across the board. Such characterization standards should be applicable to as-produced materials as well as processed SWCNT materials. In order to address this issue, NASA Johnson Space Center has developed a protocol for purity and dispersion characterization of SWCNTs (Ref.1). The NASA JSC group is currently working with NIST, ANSI and ISO to establish purity and dispersion standards for SWCNT material. A practice guide for nanotube characterization is being developed in cooperation with NIST (Ref.2). Furthermore, work is in progress to incorporate additional characterization methods for electrical, mechanical, thermal, optical and other properties of SWCNTs.

  10. Graphene nanoribbons production from flat carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Melo, W. S.; Guerini, S.; Diniz, E. M.

    2015-11-01

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons.

  11. Graphene nanoribbons production from flat carbon nanotubes

    SciTech Connect

    Melo, W. S.; Guerini, S.; Diniz, E. M.

    2015-11-14

    Graphene nanoribbons are of great interest for pure and applied sciences due to their unique properties which depend on the nanoribbon edges, as, for example, energy gap and antiferromagnetic coupling. Nevertheless, the synthesis of nanoribbons with well-defined edges remains a challenge. To collaborate with this subject, here we propose a new route for the production of graphene nanoribbons from flat carbon nanotubes filled with a one-dimensional chain of Fe atoms by first principles calculations based on density functional theory. Our results show that Fe-filled flat carbon nanotubes are energetically more stable than non flattened geometries. Also we find that by hydrogenation or oxygenation of the most curved region of the Fe-filled flat armchair carbon nanotube, it occurred a spontaneous production of zigzag graphene nanoribbons which have metallic or semiconducting behavior depending on the edge and size of the graphene nanoribbon. Such findings can be used to create a new method of synthesis of regular-edge carbon nanoribbons.

  12. Method of making carbon nanotubes on a substrate

    DOEpatents

    Gao, Yufei; Liu, Jun

    2006-03-14

    The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

  13. Automated circuit fabrication and direct characterization of carbon nanotube vibrations

    PubMed Central

    Zeevi, G.; Shlafman, M.; Tabachnik, T.; Rogachevsky, Z.; Rechnitz, S.; Goldshtein, I.; Shlafman, S.; Gordon, N.; Alchanati, G.; Itzhak, M.; Moshe, Y.; Hajaj, E. M.; Nir, H.; Milyutin, Y.; Izraeli, T. Y.; Razin, A.; Shtempluck, O.; Kotchtakov, V.; Yaish, Y. E.

    2016-01-01

    Since their discovery, carbon nanotubes have fascinated many researchers due to their unprecedented properties. However, a major drawback in utilizing carbon nanotubes for practical applications is the difficulty in positioning or growing them at specific locations. Here we present a simple, rapid, non-invasive and scalable technique that enables optical imaging of carbon nanotubes. The carbon nanotube scaffold serves as a seed for nucleation and growth of small size, optically visible nanocrystals. After imaging the molecules can be removed completely, leaving the surface intact, and thus the carbon nanotube electrical and mechanical properties are preserved. The successful and robust optical imaging allowed us to develop a dedicated image processing algorithm through which we are able to demonstrate a fully automated circuit design resulting in field effect transistors and inverters. Moreover, we demonstrate that this imaging method allows not only to locate carbon nanotubes but also, as in the case of suspended ones, to study their dynamic mechanical motion. PMID:27396506

  14. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications.

    PubMed

    Yan, Yibo; Miao, Jianwei; Yang, Zhihong; Xiao, Fang-Xing; Yang, Hong Bin; Liu, Bin; Yang, Yanhui

    2015-05-21

    Carbon nanotubes are promising materials for various applications. In recent years, progress in manufacturing and functionalizing carbon nanotubes has been made to achieve the control of bulk and surface properties including the wettability, acid-base properties, adsorption, electric conductivity and capacitance. In order to gain the optimal benefit of carbon nanotubes, comprehensive understanding on manufacturing and functionalizing carbon nanotubes ought to be systematically developed. This review summarizes methodologies of manufacturing carbon nanotubes via arc discharge, laser ablation and chemical vapor deposition and functionalizing carbon nanotubes through surface oxidation and activation, doping of heteroatoms, halogenation, sulfonation, grafting, polymer coating, noncovalent functionalization and nanoparticle attachment. The characterization techniques detecting the bulk nature and surface properties as well as the effects of various functionalization approaches on modifying the surface properties for specific applications in catalysis including heterogeneous catalysis, photocatalysis, photoelectrocatalysis and electrocatalysis are highlighted. PMID:25855947

  15. Automated circuit fabrication and direct characterization of carbon nanotube vibrations.

    PubMed

    Zeevi, G; Shlafman, M; Tabachnik, T; Rogachevsky, Z; Rechnitz, S; Goldshtein, I; Shlafman, S; Gordon, N; Alchanati, G; Itzhak, M; Moshe, Y; Hajaj, E M; Nir, H; Milyutin, Y; Izraeli, T Y; Razin, A; Shtempluck, O; Kotchtakov, V; Yaish, Y E

    2016-01-01

    Since their discovery, carbon nanotubes have fascinated many researchers due to their unprecedented properties. However, a major drawback in utilizing carbon nanotubes for practical applications is the difficulty in positioning or growing them at specific locations. Here we present a simple, rapid, non-invasive and scalable technique that enables optical imaging of carbon nanotubes. The carbon nanotube scaffold serves as a seed for nucleation and growth of small size, optically visible nanocrystals. After imaging the molecules can be removed completely, leaving the surface intact, and thus the carbon nanotube electrical and mechanical properties are preserved. The successful and robust optical imaging allowed us to develop a dedicated image processing algorithm through which we are able to demonstrate a fully automated circuit design resulting in field effect transistors and inverters. Moreover, we demonstrate that this imaging method allows not only to locate carbon nanotubes but also, as in the case of suspended ones, to study their dynamic mechanical motion. PMID:27396506

  16. Lipid/Polyelectrolyte coatings to control carbon nanotubes intracellular distribution.

    PubMed

    Romero, G; Estrela-Lopis, I; Rojas, E; Llarena, I; Donath, E; Moya, S E

    2012-06-01

    Carbon Nanotubes have been functionalized with a layer of poly (sulfopropyl methacrylate) synthesized from silane initiators attached to the walls of the Carbon nanotubes. On top of the poly sulfo propyl methacrylate, lipid vesicles composed of 75% 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine and 25% 1,2-Dioleoyl-sn-Glycero-3-[Phospho-L-Serine] were assembled. The surface modification of the Carbon Nanotubes and lipid assembly were followed by TEM. Confocal Raman Microscopy was used to study the uptake and localization of the surface modified Carbon Nanotubes in the HepG2 cell line. The localization of the Carbon Nanotubes in the cells was affected by the surface coating. It was found that poly (sulfopropyl methacrylate) and lipid modified Carbon Nanotubes were present in the region of the lipid bodies in the cytoplasm.

  17. Automated circuit fabrication and direct characterization of carbon nanotube vibrations

    NASA Astrophysics Data System (ADS)

    Zeevi, G.; Shlafman, M.; Tabachnik, T.; Rogachevsky, Z.; Rechnitz, S.; Goldshtein, I.; Shlafman, S.; Gordon, N.; Alchanati, G.; Itzhak, M.; Moshe, Y.; Hajaj, E. M.; Nir, H.; Milyutin, Y.; Izraeli, T. Y.; Razin, A.; Shtempluck, O.; Kotchtakov, V.; Yaish, Y. E.

    2016-07-01

    Since their discovery, carbon nanotubes have fascinated many researchers due to their unprecedented properties. However, a major drawback in utilizing carbon nanotubes for practical applications is the difficulty in positioning or growing them at specific locations. Here we present a simple, rapid, non-invasive and scalable technique that enables optical imaging of carbon nanotubes. The carbon nanotube scaffold serves as a seed for nucleation and growth of small size, optically visible nanocrystals. After imaging the molecules can be removed completely, leaving the surface intact, and thus the carbon nanotube electrical and mechanical properties are preserved. The successful and robust optical imaging allowed us to develop a dedicated image processing algorithm through which we are able to demonstrate a fully automated circuit design resulting in field effect transistors and inverters. Moreover, we demonstrate that this imaging method allows not only to locate carbon nanotubes but also, as in the case of suspended ones, to study their dynamic mechanical motion.

  18. Process for derivatizing carbon nanotubes with diazonium species

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications and sensor devices. The methods of derivatization include electrochemical induced reactions thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes ##STR00001##.

  19. Hexagonal silicon nanotube confined inside a carbon nanotube: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zhu, Weijuan; Yan, Xiaohong; Xiao, Yang

    2008-02-01

    We studied the stability, geometrical structures and electronic energy band of hexagonal silicon nanotube (SiNT) confined inside carbon nanotubes based on first-principle calculations. The results show that the encapsulating process of SiNT is exothermic in ( 9,9) carbon nanotube while endothermic in ( 8,8) and ( 7,7) carbon nanotubes. When the SiNT is inserted into ( 9,9) carbon nanotube, the insertion energy is about 0.09 eV. Energy band of SiNT@( 9,9) nanotube is not distorted greatly compared with the superposition of bands of isolated SiNT and ( 9,9) carbon nanotube. Especially, a parabolic band occurs near the Fermi level of energy band in SiNT@( 7,7) nanotube. Such a band could be a nearly free electronic state originating from carbon nanotube. Moreover, we discuss the variation of total energy as the SiNT rotates around its axis inside carbon nanotubes.

  20. Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution.

    PubMed

    Zhang, Feng; Hou, Peng-Xiang; Liu, Chang; Wang, Bing-Wei; Jiang, Hua; Chen, Mao-Lin; Sun, Dong-Ming; Li, Jin-Cheng; Cong, Hong-Tao; Kauppinen, Esko I; Cheng, Hui-Ming

    2016-01-01

    The growth of high-quality semiconducting single-wall carbon nanotubes with a narrow band-gap distribution is crucial for the fabrication of high-performance electronic devices. However, the single-wall carbon nanotubes grown from traditional metal catalysts usually have diversified structures and properties. Here we design and prepare an acorn-like, partially carbon-coated cobalt nanoparticle catalyst with a uniform size and structure by the thermal reduction of a [Co(CN)6](3-) precursor adsorbed on a self-assembled block copolymer nanodomain. The inner cobalt nanoparticle functions as active catalytic phase for carbon nanotube growth, whereas the outer carbon layer prevents the aggregation of cobalt nanoparticles and ensures a perpendicular growth mode. The grown single-wall carbon nanotubes have a very narrow diameter distribution centred at 1.7 nm and a high semiconducting content of >95%. These semiconducting single-wall carbon nanotubes have a very small band-gap difference of ∼0.08 eV and show excellent thin-film transistor performance.