Sample records for high-performance computing hpc

  1. High-Performance Computing Systems and Operations | Computational Science |

    Science.gov Websites

    NREL Systems and Operations High-Performance Computing Systems and Operations NREL operates high-performance computing (HPC) systems dedicated to advancing energy efficiency and renewable energy technologies. Capabilities NREL's HPC capabilities include: High-Performance Computing Systems We operate

  2. High-performance computing — an overview

    NASA Astrophysics Data System (ADS)

    Marksteiner, Peter

    1996-08-01

    An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.

  3. High-Performance Computing User Facility | Computational Science | NREL

    Science.gov Websites

    User Facility High-Performance Computing User Facility The High-Performance Computing User Facility technologies. Photo of the Peregrine supercomputer The High Performance Computing (HPC) User Facility provides Gyrfalcon Mass Storage System. Access Our HPC User Facility Learn more about these systems and how to access

  4. Integration of High-Performance Computing into Cloud Computing Services

    NASA Astrophysics Data System (ADS)

    Vouk, Mladen A.; Sills, Eric; Dreher, Patrick

    High-Performance Computing (HPC) projects span a spectrum of computer hardware implementations ranging from peta-flop supercomputers, high-end tera-flop facilities running a variety of operating systems and applications, to mid-range and smaller computational clusters used for HPC application development, pilot runs and prototype staging clusters. What they all have in common is that they operate as a stand-alone system rather than a scalable and shared user re-configurable resource. The advent of cloud computing has changed the traditional HPC implementation. In this article, we will discuss a very successful production-level architecture and policy framework for supporting HPC services within a more general cloud computing infrastructure. This integrated environment, called Virtual Computing Lab (VCL), has been operating at NC State since fall 2004. Nearly 8,500,000 HPC CPU-Hrs were delivered by this environment to NC State faculty and students during 2009. In addition, we present and discuss operational data that show that integration of HPC and non-HPC (or general VCL) services in a cloud can substantially reduce the cost of delivering cloud services (down to cents per CPU hour).

  5. Training | High-Performance Computing | NREL

    Science.gov Websites

    Training Training Find training resources for using NREL's high-performance computing (HPC) systems as well as related online tutorials. Upcoming Training HPC User Workshop - June 12th We will be Conference, a group meets to discuss Best Practices in HPC Training. This group developed a list of resources

  6. WinHPC System User Basics | High-Performance Computing | NREL

    Science.gov Websites

    guidance for starting to use this high-performance computing (HPC) system at NREL. Also see WinHPC policies ) when you are finished. Simply quitting Remote Desktop will keep your session active and using resources node). 2. Log in with your NREL.gov username/password. Remember to log out when finished. Mac 1. If you

  7. One-Time Password Tokens | High-Performance Computing | NREL

    Science.gov Websites

    One-Time Password Tokens One-Time Password Tokens For connecting to NREL's high-performance computing (HPC) systems, learn how to set up a one-time password (OTP) token for remote and privileged a one-time pass code from the HPC Operations team. At the sign-in screen Enter your HPC Username in

  8. WinHPC System | High-Performance Computing | NREL

    Science.gov Websites

    System WinHPC System NREL's WinHPC system is a computing cluster running the Microsoft Windows operating system. It allows users to run jobs requiring a Windows environment such as ANSYS and MATLAB

  9. birgHPC: creating instant computing clusters for bioinformatics and molecular dynamics.

    PubMed

    Chew, Teong Han; Joyce-Tan, Kwee Hong; Akma, Farizuwana; Shamsir, Mohd Shahir

    2011-05-01

    birgHPC, a bootable Linux Live CD has been developed to create high-performance clusters for bioinformatics and molecular dynamics studies using any Local Area Network (LAN)-networked computers. birgHPC features automated hardware and slots detection as well as provides a simple job submission interface. The latest versions of GROMACS, NAMD, mpiBLAST and ClustalW-MPI can be run in parallel by simply booting the birgHPC CD or flash drive from the head node, which immediately positions the rest of the PCs on the network as computing nodes. Thus, a temporary, affordable, scalable and high-performance computing environment can be built by non-computing-based researchers using low-cost commodity hardware. The birgHPC Live CD and relevant user guide are available for free at http://birg1.fbb.utm.my/birghpc.

  10. System Resource Allocations | High-Performance Computing | NREL

    Science.gov Websites

    Allocations System Resource Allocations To use NREL's high-performance computing (HPC) resources : Compute hours on NREL HPC Systems including Peregrine and Eagle Storage space (in Terabytes) on Peregrine , Eagle and Gyrfalcon. Allocations are principally done in response to an annual call for allocation

  11. Business Models of High Performance Computing Centres in Higher Education in Europe

    ERIC Educational Resources Information Center

    Eurich, Markus; Calleja, Paul; Boutellier, Roman

    2013-01-01

    High performance computing (HPC) service centres are a vital part of the academic infrastructure of higher education organisations. However, despite their importance for research and the necessary high capital expenditures, business research on HPC service centres is mostly missing. From a business perspective, it is important to find an answer to…

  12. RAPPORT: running scientific high-performance computing applications on the cloud.

    PubMed

    Cohen, Jeremy; Filippis, Ioannis; Woodbridge, Mark; Bauer, Daniela; Hong, Neil Chue; Jackson, Mike; Butcher, Sarah; Colling, David; Darlington, John; Fuchs, Brian; Harvey, Matt

    2013-01-28

    Cloud computing infrastructure is now widely used in many domains, but one area where there has been more limited adoption is research computing, in particular for running scientific high-performance computing (HPC) software. The Robust Application Porting for HPC in the Cloud (RAPPORT) project took advantage of existing links between computing researchers and application scientists in the fields of bioinformatics, high-energy physics (HEP) and digital humanities, to investigate running a set of scientific HPC applications from these domains on cloud infrastructure. In this paper, we focus on the bioinformatics and HEP domains, describing the applications and target cloud platforms. We conclude that, while there are many factors that need consideration, there is no fundamental impediment to the use of cloud infrastructure for running many types of HPC applications and, in some cases, there is potential for researchers to benefit significantly from the flexibility offered by cloud platforms.

  13. HPC: Rent or Buy

    ERIC Educational Resources Information Center

    Fredette, Michelle

    2012-01-01

    "Rent or buy?" is a question people ask about everything from housing to textbooks. It is also a question universities must consider when it comes to high-performance computing (HPC). With the advent of Amazon's Elastic Compute Cloud (EC2), Microsoft Windows HPC Server, Rackspace's OpenStack, and other cloud-based services, researchers now have…

  14. PREFACE: High Performance Computing Symposium 2011

    NASA Astrophysics Data System (ADS)

    Talon, Suzanne; Mousseau, Normand; Peslherbe, Gilles; Bertrand, François; Gauthier, Pierre; Kadem, Lyes; Moitessier, Nicolas; Rouleau, Guy; Wittig, Rod

    2012-02-01

    HPCS (High Performance Computing Symposium) is a multidisciplinary conference that focuses on research involving High Performance Computing and its application. Attended by Canadian and international experts and renowned researchers in the sciences, all areas of engineering, the applied sciences, medicine and life sciences, mathematics, the humanities and social sciences, it is Canada's pre-eminent forum for HPC. The 25th edition was held in Montréal, at the Université du Québec à Montréal, from 15-17 June and focused on HPC in Medical Science. The conference was preceded by tutorials held at Concordia University, where 56 participants learned about HPC best practices, GPU computing, parallel computing, debugging and a number of high-level languages. 274 participants from six countries attended the main conference, which involved 11 invited and 37 contributed oral presentations, 33 posters, and an exhibit hall with 16 booths from our sponsors. The work that follows is a collection of papers presented at the conference covering HPC topics ranging from computer science to bioinformatics. They are divided here into four sections: HPC in Engineering, Physics and Materials Science, HPC in Medical Science, HPC Enabling to Explore our World and New Algorithms for HPC. We would once more like to thank the participants and invited speakers, the members of the Scientific Committee, the referees who spent time reviewing the papers and our invaluable sponsors. To hear the invited talks and learn about 25 years of HPC development in Canada visit the Symposium website: http://2011.hpcs.ca/lang/en/conference/keynote-speakers/ Enjoy the excellent papers that follow, and we look forward to seeing you in Vancouver for HPCS 2012! Gilles Peslherbe Chair of the Scientific Committee Normand Mousseau Co-Chair of HPCS 2011 Suzanne Talon Chair of the Organizing Committee UQAM Sponsors The PDF also contains photographs from the conference banquet.

  15. High-performance computing with quantum processing units

    DOE PAGES

    Britt, Keith A.; Oak Ridge National Lab.; Humble, Travis S.; ...

    2017-03-01

    The prospects of quantum computing have driven efforts to realize fully functional quantum processing units (QPUs). Recent success in developing proof-of-principle QPUs has prompted the question of how to integrate these emerging processors into modern high-performance computing (HPC) systems. We examine how QPUs can be integrated into current and future HPC system architectures by accounting for func- tional and physical design requirements. We identify two integration pathways that are differentiated by infrastructure constraints on the QPU and the use cases expected for the HPC system. This includes a tight integration that assumes infrastructure bottlenecks can be overcome as well asmore » a loose integration that as- sumes they cannot. We find that the performance of both approaches is likely to depend on the quantum interconnect that serves to entangle multiple QPUs. As a result, we also identify several challenges in assessing QPU performance for HPC, and we consider new metrics that capture the interplay between system architecture and the quantum parallelism underlying computational performance.« less

  16. High-performance computing with quantum processing units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britt, Keith A.; Oak Ridge National Lab.; Humble, Travis S.

    The prospects of quantum computing have driven efforts to realize fully functional quantum processing units (QPUs). Recent success in developing proof-of-principle QPUs has prompted the question of how to integrate these emerging processors into modern high-performance computing (HPC) systems. We examine how QPUs can be integrated into current and future HPC system architectures by accounting for func- tional and physical design requirements. We identify two integration pathways that are differentiated by infrastructure constraints on the QPU and the use cases expected for the HPC system. This includes a tight integration that assumes infrastructure bottlenecks can be overcome as well asmore » a loose integration that as- sumes they cannot. We find that the performance of both approaches is likely to depend on the quantum interconnect that serves to entangle multiple QPUs. As a result, we also identify several challenges in assessing QPU performance for HPC, and we consider new metrics that capture the interplay between system architecture and the quantum parallelism underlying computational performance.« less

  17. Roy Fraley | NREL

    Science.gov Websites

    Roy Fraley Roy Fraley Professional II-Engineer Roy.Fraley@nrel.gov | 303-384-6468 Roy Fraley is the high-performance computing (HPC) data center engineer with the Computational Science Center's HPC

  18. User Account Passwords | High-Performance Computing | NREL

    Science.gov Websites

    Account Passwords User Account Passwords For NREL's high-performance computing (HPC) systems, learn about user account password requirements and how to set up, log in, and change passwords. Password Logging In the First Time After you request an HPC user account, you'll receive a temporary password. Set

  19. Data Security Policy | High-Performance Computing | NREL

    Science.gov Websites

    to use its high-performance computing (HPC) systems. NREL HPC systems are operated as research systems and may only contain data related to scientific research. These systems are categorized as low per sensitive or non-sensitive. One example of sensitive data would be personally identifiable information (PII

  20. Shared Storage Usage Policy | High-Performance Computing | NREL

    Science.gov Websites

    Shared Storage Usage Policy Shared Storage Usage Policy To use NREL's high-performance computing (HPC) systems, you must abide by the Shared Storage Usage Policy. /projects NREL HPC allocations include storage space in the /projects filesystem. However, /projects is a shared resource and project

  1. A simple grid implementation with Berkeley Open Infrastructure for Network Computing using BLAST as a model

    PubMed Central

    Pinthong, Watthanai; Muangruen, Panya

    2016-01-01

    Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software. PMID:27547555

  2. Connecting Performance Analysis and Visualization to Advance Extreme Scale Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bremer, Peer-Timo; Mohr, Bernd; Schulz, Martin

    2015-07-29

    The characterization, modeling, analysis, and tuning of software performance has been a central topic in High Performance Computing (HPC) since its early beginnings. The overall goal is to make HPC software run faster on particular hardware, either through better scheduling, on-node resource utilization, or more efficient distributed communication.

  3. High Performance Computing (HPC)-Enabled Computational Study on the Feasibility of using Shape Memory Alloys for Gas Turbine Blade Actuation

    DTIC Science & Technology

    2016-11-01

    Feasibility of using Shape Memory Alloys for Gas Turbine Blade Actuation by Kathryn Esham, Luis Bravo, Anindya Ghoshal, Muthuvel Murugan, and Michael...Computational Study on the Feasibility of using Shape Memory Alloys for Gas Turbine Blade Actuation by Luis Bravo, Anindya Ghoshal, Muthuvel...High Performance Computing (HPC)-Enabled Computational Study on the Feasibility of using Shape Memory Alloys for Gas Turbine Blade Actuation 5a

  4. Mixing HTC and HPC Workloads with HTCondor and Slurm

    NASA Astrophysics Data System (ADS)

    Hollowell, C.; Barnett, J.; Caramarcu, C.; Strecker-Kellogg, W.; Wong, A.; Zaytsev, A.

    2017-10-01

    Traditionally, the RHIC/ATLAS Computing Facility (RACF) at Brookhaven National Laboratory (BNL) has only maintained High Throughput Computing (HTC) resources for our HEP/NP user community. We’ve been using HTCondor as our batch system for many years, as this software is particularly well suited for managing HTC processor farm resources. Recently, the RACF has also begun to design/administrate some High Performance Computing (HPC) systems for a multidisciplinary user community at BNL. In this paper, we’ll discuss our experiences using HTCondor and Slurm in an HPC context, and our facility’s attempts to allow our HTC and HPC processing farms/clusters to make opportunistic use of each other’s computing resources.

  5. SCEAPI: A unified Restful Web API for High-Performance Computing

    NASA Astrophysics Data System (ADS)

    Rongqiang, Cao; Haili, Xiao; Shasha, Lu; Yining, Zhao; Xiaoning, Wang; Xuebin, Chi

    2017-10-01

    The development of scientific computing is increasingly moving to collaborative web and mobile applications. All these applications need high-quality programming interface for accessing heterogeneous computing resources consisting of clusters, grid computing or cloud computing. In this paper, we introduce our high-performance computing environment that integrates computing resources from 16 HPC centers across China. Then we present a bundle of web services called SCEAPI and describe how it can be used to access HPC resources with HTTP or HTTPs protocols. We discuss SCEAPI from several aspects including architecture, implementation and security, and address specific challenges in designing compatible interfaces and protecting sensitive data. We describe the functions of SCEAPI including authentication, file transfer and job management for creating, submitting and monitoring, and how to use SCEAPI in an easy-to-use way. Finally, we discuss how to exploit more HPC resources quickly for the ATLAS experiment by implementing the custom ARC compute element based on SCEAPI, and our work shows that SCEAPI is an easy-to-use and effective solution to extend opportunistic HPC resources.

  6. An Application-Based Performance Evaluation of NASAs Nebula Cloud Computing Platform

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Heistand, Steve; Jin, Haoqiang; Chang, Johnny; Hood, Robert T.; Mehrotra, Piyush; Biswas, Rupak

    2012-01-01

    The high performance computing (HPC) community has shown tremendous interest in exploring cloud computing as it promises high potential. In this paper, we examine the feasibility, performance, and scalability of production quality scientific and engineering applications of interest to NASA on NASA's cloud computing platform, called Nebula, hosted at Ames Research Center. This work represents the comprehensive evaluation of Nebula using NUTTCP, HPCC, NPB, I/O, and MPI function benchmarks as well as four applications representative of the NASA HPC workload. Specifically, we compare Nebula performance on some of these benchmarks and applications to that of NASA s Pleiades supercomputer, a traditional HPC system. We also investigate the impact of virtIO and jumbo frames on interconnect performance. Overall results indicate that on Nebula (i) virtIO and jumbo frames improve network bandwidth by a factor of 5x, (ii) there is a significant virtualization layer overhead of about 10% to 25%, (iii) write performance is lower by a factor of 25x, (iv) latency for short MPI messages is very high, and (v) overall performance is 15% to 48% lower than that on Pleiades for NASA HPC applications. We also comment on the usability of the cloud platform.

  7. Concept of a Cloud Service for Data Preparation and Computational Control on Custom HPC Systems in Application to Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Puzyrkov, Dmitry; Polyakov, Sergey; Podryga, Viktoriia; Markizov, Sergey

    2018-02-01

    At the present stage of computer technology development it is possible to study the properties and processes in complex systems at molecular and even atomic levels, for example, by means of molecular dynamics methods. The most interesting are problems related with the study of complex processes under real physical conditions. Solving such problems requires the use of high performance computing systems of various types, for example, GRID systems and HPC clusters. Considering the time consuming computational tasks, the need arises of software for automatic and unified monitoring of such computations. A complex computational task can be performed over different HPC systems. It requires output data synchronization between the storage chosen by a scientist and the HPC system used for computations. The design of the computational domain is also quite a problem. It requires complex software tools and algorithms for proper atomistic data generation on HPC systems. The paper describes the prototype of a cloud service, intended for design of atomistic systems of large volume for further detailed molecular dynamic calculations and computational management for this calculations, and presents the part of its concept aimed at initial data generation on the HPC systems.

  8. Using Performance Tools to Support Experiments in HPC Resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton, III, Thomas J; Boehm, Swen; Engelmann, Christian

    2014-01-01

    The high performance computing (HPC) community is working to address fault tolerance and resilience concerns for current and future large scale computing platforms. This is driving enhancements in the programming environ- ments, specifically research on enhancing message passing libraries to support fault tolerant computing capabilities. The community has also recognized that tools for resilience experimentation are greatly lacking. However, we argue that there are several parallels between performance tools and resilience tools . As such, we believe the rich set of HPC performance-focused tools can be extended (repurposed) to benefit the resilience community. In this paper, we describe the initialmore » motivation to leverage standard HPC per- formance analysis techniques to aid in developing diagnostic tools to assist fault tolerance experiments for HPC applications. These diagnosis procedures help to provide context for the system when the errors (failures) occurred. We describe our initial work in leveraging an MPI performance trace tool to assist in provid- ing global context during fault injection experiments. Such tools will assist the HPC resilience community as they extend existing and new application codes to support fault tolerances.« less

  9. Modular HPC I/O characterization with Darshan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Shane; Carns, Philip; Harms, Kevin

    2016-11-13

    Contemporary high-performance computing (HPC) applications encompass a broad range of distinct I/O strategies and are often executed on a number of different compute platforms in their lifetime. These large-scale HPC platforms employ increasingly complex I/O subsystems to provide a suitable level of I/O performance to applications. Tuning I/O workloads for such a system is nontrivial, and the results generally are not portable to other HPC systems. I/O profiling tools can help to address this challenge, but most existing tools only instrument specific components within the I/O subsystem that provide a limited perspective on I/O performance. The increasing diversity of scientificmore » applications and computing platforms calls for greater flexibililty and scope in I/O characterization.« less

  10. Perm State University HPC-hardware and software services: capabilities for aircraft engine aeroacoustics problems solving

    NASA Astrophysics Data System (ADS)

    Demenev, A. G.

    2018-02-01

    The present work is devoted to analyze high-performance computing (HPC) infrastructure capabilities for aircraft engine aeroacoustics problems solving at Perm State University. We explore here the ability to develop new computational aeroacoustics methods/solvers for computer-aided engineering (CAE) systems to handle complicated industrial problems of engine noise prediction. Leading aircraft engine engineering company, including “UEC-Aviadvigatel” JSC (our industrial partners in Perm, Russia), require that methods/solvers to optimize geometry of aircraft engine for fan noise reduction. We analysed Perm State University HPC-hardware resources and software services to use efficiently. The performed results demonstrate that Perm State University HPC-infrastructure are mature enough to face out industrial-like problems of development CAE-system with HPC-method and CFD-solvers.

  11. Performance measurement and modeling of component applications in a high performance computing environment : a case study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Robert C.; Ray, Jaideep; Malony, A.

    2003-11-01

    We present a case study of performance measurement and modeling of a CCA (Common Component Architecture) component-based application in a high performance computing environment. We explore issues peculiar to component-based HPC applications and propose a performance measurement infrastructure for HPC based loosely on recent work done for Grid environments. A prototypical implementation of the infrastructure is used to collect data for a three components in a scientific application and construct performance models for two of them. Both computational and message-passing performance are addressed.

  12. Faster than Real-Time Dynamic Simulation for Large-Size Power System with Detailed Dynamic Models using High-Performance Computing Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Renke; Jin, Shuangshuang; Chen, Yousu

    This paper presents a faster-than-real-time dynamic simulation software package that is designed for large-size power system dynamic simulation. It was developed on the GridPACKTM high-performance computing (HPC) framework. The key features of the developed software package include (1) faster-than-real-time dynamic simulation for a WECC system (17,000 buses) with different types of detailed generator, controller, and relay dynamic models, (2) a decoupled parallel dynamic simulation algorithm with optimized computation architecture to better leverage HPC resources and technologies, (3) options for HPC-based linear and iterative solvers, (4) hidden HPC details, such as data communication and distribution, to enable development centered on mathematicalmore » models and algorithms rather than on computational details for power system researchers, and (5) easy integration of new dynamic models and related algorithms into the software package.« less

  13. High-Performance Computing and Visualization | Energy Systems Integration

    Science.gov Websites

    Facility | NREL High-Performance Computing and Visualization High-Performance Computing and Visualization High-performance computing (HPC) and visualization at NREL propel technology innovation as a . Capabilities High-Performance Computing NREL is home to Peregrine-the largest high-performance computing system

  14. Comparative Implementation of High Performance Computing for Power System Dynamic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Shuangshuang; Huang, Zhenyu; Diao, Ruisheng

    Dynamic simulation for transient stability assessment is one of the most important, but intensive, computations for power system planning and operation. Present commercial software is mainly designed for sequential computation to run a single simulation, which is very time consuming with a single processer. The application of High Performance Computing (HPC) to dynamic simulations is very promising in accelerating the computing process by parallelizing its kernel algorithms while maintaining the same level of computation accuracy. This paper describes the comparative implementation of four parallel dynamic simulation schemes in two state-of-the-art HPC environments: Message Passing Interface (MPI) and Open Multi-Processing (OpenMP).more » These implementations serve to match the application with dedicated multi-processor computing hardware and maximize the utilization and benefits of HPC during the development process.« less

  15. High Productivity Computing Systems and Competitiveness Initiative

    DTIC Science & Technology

    2007-07-01

    planning committee for the annual, international Supercomputing Conference in 2004 and 2005. This is the leading HPC industry conference in the world. It...sector partnerships. Partnerships will form a key part of discussions at the 2nd High Performance Computing Users Conference, planned for July 13, 2005...other things an interagency roadmap for high-end computing core technologies and an accessibility improvement plan . Improving HPC Education and

  16. What Physicists Should Know About High Performance Computing - Circa 2002

    NASA Astrophysics Data System (ADS)

    Frederick, Donald

    2002-08-01

    High Performance Computing (HPC) is a dynamic, cross-disciplinary field that traditionally has involved applied mathematicians, computer scientists, and others primarily from the various disciplines that have been major users of HPC resources - physics, chemistry, engineering, with increasing use by those in the life sciences. There is a technological dynamic that is powered by economic as well as by technical innovations and developments. This talk will discuss practical ideas to be considered when developing numerical applications for research purposes. Even with the rapid pace of development in the field, the author believes that these concepts will not become obsolete for a while, and will be of use to scientists who either are considering, or who have already started down the HPC path. These principles will be applied in particular to current parallel HPC systems, but there will also be references of value to desktop users. The talk will cover such topics as: computing hardware basics, single-cpu optimization, compilers, timing, numerical libraries, debugging and profiling tools and the emergence of Computational Grids.

  17. Prediction and characterization of application power use in a high-performance computing environment

    DOE PAGES

    Bugbee, Bruce; Phillips, Caleb; Egan, Hilary; ...

    2017-02-27

    Power use in data centers and high-performance computing (HPC) facilities has grown in tandem with increases in the size and number of these facilities. Substantial innovation is needed to enable meaningful reduction in energy footprints in leadership-class HPC systems. In this paper, we focus on characterizing and investigating application-level power usage. We demonstrate potential methods for predicting power usage based on a priori and in situ characteristics. Lastly, we highlight a potential use case of this method through a simulated power-aware scheduler using historical jobs from a real scientific HPC system.

  18. RedThreads: An Interface for Application-Level Fault Detection/Correction Through Adaptive Redundant Multithreading

    DOE PAGES

    Hukerikar, Saurabh; Teranishi, Keita; Diniz, Pedro C.; ...

    2017-02-11

    In the presence of accelerated fault rates, which are projected to be the norm on future exascale systems, it will become increasingly difficult for high-performance computing (HPC) applications to accomplish useful computation. Due to the fault-oblivious nature of current HPC programming paradigms and execution environments, HPC applications are insufficiently equipped to deal with errors. We believe that HPC applications should be enabled with capabilities to actively search for and correct errors in their computations. The redundant multithreading (RMT) approach offers lightweight replicated execution streams of program instructions within the context of a single application process. Furthermore, the use of completemore » redundancy incurs significant overhead to the application performance.« less

  19. RedThreads: An Interface for Application-Level Fault Detection/Correction Through Adaptive Redundant Multithreading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hukerikar, Saurabh; Teranishi, Keita; Diniz, Pedro C.

    In the presence of accelerated fault rates, which are projected to be the norm on future exascale systems, it will become increasingly difficult for high-performance computing (HPC) applications to accomplish useful computation. Due to the fault-oblivious nature of current HPC programming paradigms and execution environments, HPC applications are insufficiently equipped to deal with errors. We believe that HPC applications should be enabled with capabilities to actively search for and correct errors in their computations. The redundant multithreading (RMT) approach offers lightweight replicated execution streams of program instructions within the context of a single application process. Furthermore, the use of completemore » redundancy incurs significant overhead to the application performance.« less

  20. Smart Sampling and HPC-based Probabilistic Look-ahead Contingency Analysis Implementation and its Evaluation with Real-world Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Etingov, Pavel V.; Ren, Huiying

    This paper describes a probabilistic look-ahead contingency analysis application that incorporates smart sampling and high-performance computing (HPC) techniques. Smart sampling techniques are implemented to effectively represent the structure and statistical characteristics of uncertainty introduced by different sources in the power system. They can significantly reduce the data set size required for multiple look-ahead contingency analyses, and therefore reduce the time required to compute them. High-performance-computing (HPC) techniques are used to further reduce computational time. These two techniques enable a predictive capability that forecasts the impact of various uncertainties on potential transmission limit violations. The developed package has been tested withmore » real world data from the Bonneville Power Administration. Case study results are presented to demonstrate the performance of the applications developed.« less

  1. Kevin Regimbal | NREL

    Science.gov Websites

    -275-4303 Kevin Regimbal oversees NREL's High Performance Computing (HPC) Systems & Operations , engineering, and operations. Kevin is interested in data center design and computing as well as data center integration and optimization. Professional Experience HPC oversight: program manager, project manager, center

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klitsner, Tom

    The recent Executive Order creating the National Strategic Computing Initiative (NSCI) recognizes the value of high performance computing for economic competitiveness and scientific discovery and commits to accelerate delivery of exascale computing. The HPC programs at Sandia –the NNSA ASC program and Sandia’s Institutional HPC Program– are focused on ensuring that Sandia has the resources necessary to deliver computation in the national interest.

  3. The Case for Modular Redundancy in Large-Scale High Performance Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelmann, Christian; Ong, Hong Hoe; Scott, Stephen L

    2009-01-01

    Recent investigations into resilience of large-scale high-performance computing (HPC) systems showed a continuous trend of decreasing reliability and availability. Newly installed systems have a lower mean-time to failure (MTTF) and a higher mean-time to recover (MTTR) than their predecessors. Modular redundancy is being used in many mission critical systems today to provide for resilience, such as for aerospace and command \\& control systems. The primary argument against modular redundancy for resilience in HPC has always been that the capability of a HPC system, and respective return on investment, would be significantly reduced. We argue that modular redundancy can significantly increasemore » compute node availability as it removes the impact of scale from single compute node MTTR. We further argue that single compute nodes can be much less reliable, and therefore less expensive, and still be highly available, if their MTTR/MTTF ratio is maintained.« less

  4. Running ANSYS Fluent on the WinHPC System | High-Performance Computing |

    Science.gov Websites

    . If you don't have one, see WinHPC system user basics. Check License Use Status Start > All Jason Lustbader. Run Using Fluent Launcher Start Fluent launcher by opening: Start > All Programs > . Available node groups can be found from HPC Job Manager. Start > All Programs > Microsoft HPC Pack

  5. High Performance Computing Innovation Service Portal Study (HPC-ISP)

    DTIC Science & Technology

    2009-04-01

    threatened by global competition. It is essential that these suppliers remain competitive and maintain their technological advantage . In this increasingly...place themselves, as well as customers who rely on them, in competitive jeopardy. Despite the potential competitive advantage associated with adopting...computing users into the HPC fold and to enable more entry-level users to exploit HPC more fully for competitive advantage . About half of the surveyed

  6. DOE High Performance Computing Operational Review (HPCOR): Enabling Data-Driven Scientific Discovery at HPC Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard; Allcock, William; Beggio, Chris

    2014-10-17

    U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at themore » DOE national laboratories. The report contains findings from that review.« less

  7. Cognitive Model Exploration and Optimization: A New Challenge for Computational Science

    DTIC Science & Technology

    2010-03-01

    the generation and analysis of computational cognitive models to explain various aspects of cognition. Typically the behavior of these models...computational scale of a workstation, so we have turned to high performance computing (HPC) clusters and volunteer computing for large-scale...computational resources. The majority of applications on the Department of Defense HPC clusters focus on solving partial differential equations (Post

  8. WinHPC System Software | High-Performance Computing | NREL

    Science.gov Websites

    Software WinHPC System Software Learn about the software applications, tools, toolchains, and for industrial applications. Intel Compilers Development Tool, Toolchain Suite featuring an industry

  9. Chip-scale integrated optical interconnects: a key enabler for future high-performance computing

    NASA Astrophysics Data System (ADS)

    Haney, Michael; Nair, Rohit; Gu, Tian

    2012-01-01

    High Performance Computing (HPC) systems are putting ever-increasing demands on the throughput efficiency of their interconnection fabrics. In this paper, the limits of conventional metal trace-based inter-chip interconnect fabrics are examined in the context of state-of-the-art HPC systems, which currently operate near the 1 GFLOPS/W level. The analysis suggests that conventional metal trace interconnects will limit performance to approximately 6 GFLOPS/W in larger HPC systems that require many computer chips to be interconnected in parallel processing architectures. As the HPC communications bottlenecks push closer to the processing chips, integrated Optical Interconnect (OI) technology may provide the ultra-high bandwidths needed at the inter- and intra-chip levels. With inter-chip photonic link energies projected to be less than 1 pJ/bit, integrated OI is projected to enable HPC architecture scaling to the 50 GFLOPS/W level and beyond - providing a path to Peta-FLOPS-level HPC within a single rack, and potentially even Exa-FLOPSlevel HPC for large systems. A new hybrid integrated chip-scale OI approach is described and evaluated. The concept integrates a high-density polymer waveguide fabric directly on top of a multiple quantum well (MQW) modulator array that is area-bonded to the Silicon computing chip. Grayscale lithography is used to fabricate 5 μm x 5 μm polymer waveguides and associated novel small-footprint total internal reflection-based vertical input/output couplers directly onto a layer containing an array of GaAs MQW devices configured to be either absorption modulators or photodetectors. An external continuous wave optical "power supply" is coupled into the waveguide links. Contrast ratios were measured using a test rider chip in place of a Silicon processing chip. The results suggest that sub-pJ/b chip-scale communication is achievable with this concept. When integrated into high-density integrated optical interconnect fabrics, it could provide a seamless interconnect fabric spanning the intra-

  10. High Performance Computing (HPC) Innovation Service Portal Pilots Cloud Computing (HPC-ISP Pilot Cloud Computing)

    DTIC Science & Technology

    2011-08-01

    5 Figure 4 Architetural diagram of running Blender on Amazon EC2 through Nimbis...classification of streaming data. Example input images (top left). All digit prototypes (cluster centers) found, with size proportional to frequency (top...Figure 4 Architetural diagram of running Blender on Amazon EC2 through Nimbis 1 http

  11. Computational Science News | Computational Science | NREL

    Science.gov Websites

    -Cooled High-Performance Computing Technology at the ESIF February 28, 2018 NREL Launches New Website for High-Performance Computing System Users The National Renewable Energy Laboratory (NREL) Computational Science Center has launched a revamped website for users of the lab's high-performance computing (HPC

  12. Economic Model For a Return on Investment Analysis of United States Government High Performance Computing (HPC) Research and Development (R & D) Investment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Earl C.; Conway, Steve; Dekate, Chirag

    This study investigated how high-performance computing (HPC) investments can improve economic success and increase scientific innovation. This research focused on the common good and provided uses for DOE, other government agencies, industry, and academia. The study created two unique economic models and an innovation index: 1 A macroeconomic model that depicts the way HPC investments result in economic advancements in the form of ROI in revenue (GDP), profits (and cost savings), and jobs. 2 A macroeconomic model that depicts the way HPC investments result in basic and applied innovations, looking at variations by sector, industry, country, and organization size. Amore » new innovation index that provides a means of measuring and comparing innovation levels. Key findings of the pilot study include: IDC collected the required data across a broad set of organizations, with enough detail to create these models and the innovation index. The research also developed an expansive list of HPC success stories.« less

  13. Low latency network and distributed storage for next generation HPC systems: the ExaNeSt project

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Cretaro, P.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Pisani, F.; Simula, F.; Vicini, P.; Navaridas, J.; Chaix, F.; Chrysos, N.; Katevenis, M.; Papaeustathiou, V.

    2017-10-01

    With processor architecture evolution, the HPC market has undergone a paradigm shift. The adoption of low-cost, Linux-based clusters extended the reach of HPC from its roots in modelling and simulation of complex physical systems to a broader range of industries, from biotechnology, cloud computing, computer analytics and big data challenges to manufacturing sectors. In this perspective, the near future HPC systems can be envisioned as composed of millions of low-power computing cores, densely packed — meaning cooling by appropriate technology — with a tightly interconnected, low latency and high performance network and equipped with a distributed storage architecture. Each of these features — dense packing, distributed storage and high performance interconnect — represents a challenge, made all the harder by the need to solve them at the same time. These challenges lie as stumbling blocks along the road towards Exascale-class systems; the ExaNeSt project acknowledges them and tasks itself with investigating ways around them.

  14. Expanding HPC and Research Computing--The Sustainable Way

    ERIC Educational Resources Information Center

    Grush, Mary

    2009-01-01

    Increased demands for research and high-performance computing (HPC)--along with growing expectations for cost and environmental savings--are putting new strains on the campus data center. More and more, CIOs like the University of Notre Dame's (Indiana) Gordon Wishon are seeking creative ways to build more sustainable models for data center and…

  15. High-Performance Computing Data Center Warm-Water Liquid Cooling |

    Science.gov Websites

    Computational Science | NREL Warm-Water Liquid Cooling High-Performance Computing Data Center Warm-Water Liquid Cooling NREL's High-Performance Computing Data Center (HPC Data Center) is liquid water Liquid cooling technologies offer a more energy-efficient solution that also allows for effective

  16. On the Impact of Execution Models: A Case Study in Computational Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavarría-Miranda, Daniel; Halappanavar, Mahantesh; Krishnamoorthy, Sriram

    2015-05-25

    Efficient utilization of high-performance computing (HPC) platforms is an important and complex problem. Execution models, abstract descriptions of the dynamic runtime behavior of the execution stack, have significant impact on the utilization of HPC systems. Using a computational chemistry kernel as a case study and a wide variety of execution models combined with load balancing techniques, we explore the impact of execution models on the utilization of an HPC system. We demonstrate a 50 percent improvement in performance by using work stealing relative to a more traditional static scheduling approach. We also use a novel semi-matching technique for load balancingmore » that has comparable performance to a traditional hypergraph-based partitioning implementation, which is computationally expensive. Using this study, we found that execution model design choices and assumptions can limit critical optimizations such as global, dynamic load balancing and finding the correct balance between available work units and different system and runtime overheads. With the emergence of multi- and many-core architectures and the consequent growth in the complexity of HPC platforms, we believe that these lessons will be beneficial to researchers tuning diverse applications on modern HPC platforms, especially on emerging dynamic platforms with energy-induced performance variability.« less

  17. Algorithm for fast event parameters estimation on GEM acquired data

    NASA Astrophysics Data System (ADS)

    Linczuk, Paweł; Krawczyk, Rafał D.; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Wojeński, Andrzej; Chernyshova, Maryna; Czarski, Tomasz

    2016-09-01

    We present study of a software-hardware environment for developing fast computation with high throughput and low latency methods, which can be used as back-end in High Energy Physics (HEP) and other High Performance Computing (HPC) systems, based on high amount of input from electronic sensor based front-end. There is a parallelization possibilities discussion and testing on Intel HPC solutions with consideration of applications with Gas Electron Multiplier (GEM) measurement systems presented in this paper.

  18. Development of a SaaS application probe to the physical properties of the Earth's interior: An attempt at moving HPC to the cloud

    NASA Astrophysics Data System (ADS)

    Huang, Qian

    2014-09-01

    Scientific computing often requires the availability of a massive number of computers for performing large-scale simulations, and computing in mineral physics is no exception. In order to investigate physical properties of minerals at extreme conditions in computational mineral physics, parallel computing technology is used to speed up the performance by utilizing multiple computer resources to process a computational task simultaneously thereby greatly reducing computation time. Traditionally, parallel computing has been addressed by using High Performance Computing (HPC) solutions and installed facilities such as clusters and super computers. Today, it has been seen that there is a tremendous growth in cloud computing. Infrastructure as a Service (IaaS), the on-demand and pay-as-you-go model, creates a flexible and cost-effective mean to access computing resources. In this paper, a feasibility report of HPC on a cloud infrastructure is presented. It is found that current cloud services in IaaS layer still need to improve performance to be useful to research projects. On the other hand, Software as a Service (SaaS), another type of cloud computing, is introduced into an HPC system for computing in mineral physics, and an application of which is developed. In this paper, an overall description of this SaaS application is presented. This contribution can promote cloud application development in computational mineral physics, and cross-disciplinary studies.

  19. The impact of the U.S. supercomputing initiative will be global

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Dona

    2016-01-15

    Last July, President Obama issued an executive order that created a coordinated federal strategy for HPC research, development, and deployment called the U.S. National Strategic Computing Initiative (NSCI). However, this bold, necessary step toward building the next generation of supercomputers has inaugurated a new era for U.S. high performance computing (HPC).

  20. User Accounts | High-Performance Computing | NREL

    Science.gov Websites

    see information on user account policies. ACCOUNT PASSWORDS Logging in for the first time? Forgot your Accounts User Accounts Learn how to request an NREL HPC user account. Request an HPC Account To request an HPC account, please complete our request form. This form is provided using DocuSign. REQUEST

  1. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    ERIC Educational Resources Information Center

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  2. Towards New Metrics for High-Performance Computing Resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hukerikar, Saurabh; Ashraf, Rizwan A; Engelmann, Christian

    Ensuring the reliability of applications is becoming an increasingly important challenge as high-performance computing (HPC) systems experience an ever-growing number of faults, errors and failures. While the HPC community has made substantial progress in developing various resilience solutions, it continues to rely on platform-based metrics to quantify application resiliency improvements. The resilience of an HPC application is concerned with the reliability of the application outcome as well as the fault handling efficiency. To understand the scope of impact, effective coverage and performance efficiency of existing and emerging resilience solutions, there is a need for new metrics. In this paper, wemore » develop new ways to quantify resilience that consider both the reliability and the performance characteristics of the solutions from the perspective of HPC applications. As HPC systems continue to evolve in terms of scale and complexity, it is expected that applications will experience various types of faults, errors and failures, which will require applications to apply multiple resilience solutions across the system stack. The proposed metrics are intended to be useful for understanding the combined impact of these solutions on an application's ability to produce correct results and to evaluate their overall impact on an application's performance in the presence of various modes of faults.« less

  3. HPC in a HEP lab: lessons learned from setting up cost-effective HPC clusters

    NASA Astrophysics Data System (ADS)

    Husejko, Michal; Agtzidis, Ioannis; Baehler, Pierre; Dul, Tadeusz; Evans, John; Himyr, Nils; Meinhard, Helge

    2015-12-01

    In this paper we present our findings gathered during the evaluation and testing of Windows Server High-Performance Computing (Windows HPC) in view of potentially using it as a production HPC system for engineering applications. The Windows HPC package, an extension of Microsofts Windows Server product, provides all essential interfaces, utilities and management functionality for creating, operating and monitoring a Windows-based HPC cluster infrastructure. The evaluation and test phase was focused on verifying the functionalities of Windows HPC, its performance, support of commercial tools and the integration with the users work environment. We describe constraints imposed by the way the CERN Data Centre is operated, licensing for engineering tools and scalability and behaviour of the HPC engineering applications used at CERN. We will present an initial set of requirements, which were created based on the above constraints and requests from the CERN engineering user community. We will explain how we have configured Windows HPC clusters to provide job scheduling functionalities required to support the CERN engineering user community, quality of service, user- and project-based priorities, and fair access to limited resources. Finally, we will present several performance tests we carried out to verify Windows HPC performance and scalability.

  4. Connecting to HPC Systems | High-Performance Computing | NREL

    Science.gov Websites

    one of the following methods, which use multi-factor authentication. First, you will need to set up If you just need access to a command line on an HPC system, use one of the following methods

  5. Direct SSH Gateway Access to Peregrine | High Performance Computing |

    Science.gov Websites

    can access peregrine-ssh.nrel.gov, you must have: An active NREL HPC user account (see User Accounts ) An OTP Token (see One Time Password Tokens) Logging into peregrine-ssh.nrel.gov With your HPC account

  6. An Innovative Approach to Bridge a Skill Gap and Grow a Workforce Pipeline: The Computer System, Cluster, and Networking Summer Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connor, Carolyn Marie; Jacobson, Andree Lars; Bonnie, Amanda Marie

    Sustainable and effective computing infrastructure depends critically on the skills and expertise of domain scientists and of committed and well-trained advanced computing professionals. But, in its ongoing High Performance Computing (HPC) work, Los Alamos National Laboratory noted a persistent shortage of well-prepared applicants, particularly for entry-level cluster administration, file systems administration, and high speed networking positions. Further, based upon recruiting efforts and interactions with universities graduating students in related majors of interest (e.g., computer science (CS)), there has been a long standing skillset gap, as focused training in HPC topics is typically lacking or absent in undergraduate and in evenmore » many graduate programs. Given that the effective operation and use of HPC systems requires specialized and often advanced training, that there is a recognized HPC skillset gap, and that there is intense global competition for computing and computational science talent, there is a long-standing and critical need for innovative approaches to help bridge the gap and create a well-prepared, next generation HPC workforce. Our paper places this need in the context of the HPC work and workforce requirements at Los Alamos National Laboratory (LANL) and presents one such innovative program conceived to address the need, bridge the gap, and grow an HPC workforce pipeline at LANL. The Computer System, Cluster, and Networking Summer Institute (CSCNSI) completed its 10th year in 2016. The story of the CSCNSI and its evolution is detailed below with a description of the design of its Boot Camp, and a summary of its success and some key factors that have enabled that success.« less

  7. An Innovative Approach to Bridge a Skill Gap and Grow a Workforce Pipeline: The Computer System, Cluster, and Networking Summer Institute

    DOE PAGES

    Connor, Carolyn Marie; Jacobson, Andree Lars; Bonnie, Amanda Marie; ...

    2016-11-01

    Sustainable and effective computing infrastructure depends critically on the skills and expertise of domain scientists and of committed and well-trained advanced computing professionals. But, in its ongoing High Performance Computing (HPC) work, Los Alamos National Laboratory noted a persistent shortage of well-prepared applicants, particularly for entry-level cluster administration, file systems administration, and high speed networking positions. Further, based upon recruiting efforts and interactions with universities graduating students in related majors of interest (e.g., computer science (CS)), there has been a long standing skillset gap, as focused training in HPC topics is typically lacking or absent in undergraduate and in evenmore » many graduate programs. Given that the effective operation and use of HPC systems requires specialized and often advanced training, that there is a recognized HPC skillset gap, and that there is intense global competition for computing and computational science talent, there is a long-standing and critical need for innovative approaches to help bridge the gap and create a well-prepared, next generation HPC workforce. Our paper places this need in the context of the HPC work and workforce requirements at Los Alamos National Laboratory (LANL) and presents one such innovative program conceived to address the need, bridge the gap, and grow an HPC workforce pipeline at LANL. The Computer System, Cluster, and Networking Summer Institute (CSCNSI) completed its 10th year in 2016. The story of the CSCNSI and its evolution is detailed below with a description of the design of its Boot Camp, and a summary of its success and some key factors that have enabled that success.« less

  8. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-03-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3DMIP platform when a larger number of cores is available.

  9. Running Jobs on the Peregrine System | High-Performance Computing | NREL

    Science.gov Websites

    on the Peregrine high-performance computing (HPC) system. Running Different Types of Jobs Batch jobs scheduling policies - queue names, limits, etc. Requesting different node types Sample batch scripts

  10. Research | Computational Science | NREL

    Science.gov Websites

    Research Research NREL's computational science experts use advanced high-performance computing (HPC technologies, thereby accelerating the transformation of our nation's energy system. Enabling High-Impact Research NREL's computational science capabilities enable high-impact research. Some recent examples

  11. Enabling Diverse Software Stacks on Supercomputers using High Performance Virtual Clusters.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younge, Andrew J.; Pedretti, Kevin; Grant, Ryan

    While large-scale simulations have been the hallmark of the High Performance Computing (HPC) community for decades, Large Scale Data Analytics (LSDA) workloads are gaining attention within the scientific community not only as a processing component to large HPC simulations, but also as standalone scientific tools for knowledge discovery. With the path towards Exascale, new HPC runtime systems are also emerging in a way that differs from classical distributed com- puting models. However, system software for such capabilities on the latest extreme-scale DOE supercomputing needs to be enhanced to more appropriately support these types of emerging soft- ware ecosystems. In thismore » paper, we propose the use of Virtual Clusters on advanced supercomputing resources to enable systems to support not only HPC workloads, but also emerging big data stacks. Specifi- cally, we have deployed the KVM hypervisor within Cray's Compute Node Linux on a XC-series supercomputer testbed. We also use libvirt and QEMU to manage and provision VMs directly on compute nodes, leveraging Ethernet-over-Aries network emulation. To our knowledge, this is the first known use of KVM on a true MPP supercomputer. We investigate the overhead our solution using HPC benchmarks, both evaluating single-node performance as well as weak scaling of a 32-node virtual cluster. Overall, we find single node performance of our solution using KVM on a Cray is very efficient with near-native performance. However overhead increases by up to 20% as virtual cluster size increases, due to limitations of the Ethernet-over-Aries bridged network. Furthermore, we deploy Apache Spark with large data analysis workloads in a Virtual Cluster, ef- fectively demonstrating how diverse software ecosystems can be supported by High Performance Virtual Clusters.« less

  12. Automating NEURON Simulation Deployment in Cloud Resources.

    PubMed

    Stockton, David B; Santamaria, Fidel

    2017-01-01

    Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the OpenStack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon's proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model.

  13. Automating NEURON Simulation Deployment in Cloud Resources

    PubMed Central

    Santamaria, Fidel

    2016-01-01

    Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the Open-Stack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon’s proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model. PMID:27655341

  14. Trends in data locality abstractions for HPC systems

    DOE PAGES

    Unat, Didem; Dubey, Anshu; Hoefler, Torsten; ...

    2017-05-10

    The cost of data movement has always been an important concern in high performance computing (HPC) systems. It has now become the dominant factor in terms of both energy consumption and performance. Support for expression of data locality has been explored in the past, but those efforts have had only modest success in being adopted in HPC applications for various reasons. However, with the increasing complexity of the memory hierarchy and higher parallelism in emerging HPC systems, locality management has acquired a new urgency. Developers can no longer limit themselves to low-level solutions and ignore the potential for productivity andmore » performance portability obtained by using locality abstractions. Fortunately, the trend emerging in recent literature on the topic alleviates many of the concerns that got in the way of their adoption by application developers. Data locality abstractions are available in the forms of libraries, data structures, languages and runtime systems; a common theme is increasing productivity without sacrificing performance. Furthermore, this paper examines these trends and identifies commonalities that can combine various locality concepts to develop a comprehensive approach to expressing and managing data locality on future large-scale high-performance computing systems.« less

  15. Towards anatomic scale agent-based modeling with a massively parallel spatially explicit general-purpose model of enteric tissue (SEGMEnT_HPC).

    PubMed

    Cockrell, Robert Chase; Christley, Scott; Chang, Eugene; An, Gary

    2015-01-01

    Perhaps the greatest challenge currently facing the biomedical research community is the ability to integrate highly detailed cellular and molecular mechanisms to represent clinical disease states as a pathway to engineer effective therapeutics. This is particularly evident in the representation of organ-level pathophysiology in terms of abnormal tissue structure, which, through histology, remains a mainstay in disease diagnosis and staging. As such, being able to generate anatomic scale simulations is a highly desirable goal. While computational limitations have previously constrained the size and scope of multi-scale computational models, advances in the capacity and availability of high-performance computing (HPC) resources have greatly expanded the ability of computational models of biological systems to achieve anatomic, clinically relevant scale. Diseases of the intestinal tract are exemplary examples of pathophysiological processes that manifest at multiple scales of spatial resolution, with structural abnormalities present at the microscopic, macroscopic and organ-levels. In this paper, we describe a novel, massively parallel computational model of the gut, the Spatially Explicitly General-purpose Model of Enteric Tissue_HPC (SEGMEnT_HPC), which extends an existing model of the gut epithelium, SEGMEnT, in order to create cell-for-cell anatomic scale simulations. We present an example implementation of SEGMEnT_HPC that simulates the pathogenesis of ileal pouchitis, and important clinical entity that affects patients following remedial surgery for ulcerative colitis.

  16. Data Storage and Transfer | High-Performance Computing | NREL

    Science.gov Websites

    High-Performance Computing (HPC) systems. Photo of computer server wiring and lights, blurred to show data. WinSCP for Windows File Transfers Use to transfer files from a local computer to a remote computer. Robinhood for File Management Use this tool to manage your data files on Peregrine. Best

  17. Fingerprinting Communication and Computation on HPC Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peisert, Sean

    2010-06-02

    How do we identify what is actually running on high-performance computing systems? Names of binaries, dynamic libraries loaded, or other elements in a submission to a batch queue can give clues, but binary names can be changed, and libraries provide limited insight and resolution on the code being run. In this paper, we present a method for"fingerprinting" code running on HPC machines using elements of communication and computation. We then discuss how that fingerprint can be used to determine if the code is consistent with certain other types of codes, what a user usually runs, or what the user requestedmore » an allocation to do. In some cases, our techniques enable us to fingerprint HPC codes using runtime MPI data with a high degree of accuracy.« less

  18. 2013 R&D 100 Award: ‘Miniapps’ Bolster High Performance Computing

    ScienceCinema

    Belak, Jim; Richards, David

    2018-06-12

    Two Livermore computer scientists served on a Sandia National Laboratories-led team that developed Mantevo Suite 1.0, the first integrated suite of small software programs, also called "miniapps," to be made available to the high performance computing (HPC) community. These miniapps facilitate the development of new HPC systems and the applications that run on them. Miniapps (miniature applications) serve as stripped down surrogates for complex, full-scale applications that can require a great deal of time and effort to port to a new HPC system because they often consist of hundreds of thousands of lines of code. The miniapps are a prototype that contains some or all of the essentials of the real application but with many fewer lines of code, making the miniapp more versatile for experimentation. This allows researchers to more rapidly explore options and optimize system design, greatly improving the chances the full-scale application will perform successfully. These miniapps have become essential tools for exploring complex design spaces because they can reliably predict the performance of full applications.

  19. HPC enabled real-time remote processing of laparoscopic surgery

    NASA Astrophysics Data System (ADS)

    Ronaghi, Zahra; Sapra, Karan; Izard, Ryan; Duffy, Edward; Smith, Melissa C.; Wang, Kuang-Ching; Kwartowitz, David M.

    2016-03-01

    Laparoscopic surgery is a minimally invasive surgical technique. The benefit of small incisions has a disadvantage of limited visualization of subsurface tissues. Image-guided surgery (IGS) uses pre-operative and intra-operative images to map subsurface structures. One particular laparoscopic system is the daVinci-si robotic surgical system. The video streams generate approximately 360 megabytes of data per second. Real-time processing this large stream of data on a bedside PC, single or dual node setup, has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. We have implement and compared performance of compression, segmentation and registration algorithms on Clemson's Palmetto supercomputer using dual NVIDIA K40 GPUs per node. Our computing framework will also enable reliability using replication of computation. We will securely transfer the files to remote HPC clusters utilizing an OpenFlow-based network service, Steroid OpenFlow Service (SOS) that can increase performance of large data transfers over long-distance and high bandwidth networks. As a result, utilizing high-speed OpenFlow- based network to access computing clusters with GPUs will improve surgical procedures by providing real-time medical image processing and laparoscopic data.

  20. Additive Manufacturing and High-Performance Computing: a Disruptive Latent Technology

    NASA Astrophysics Data System (ADS)

    Goodwin, Bruce

    2015-03-01

    This presentation will discuss the relationship between recent advances in Additive Manufacturing (AM) technology, High-Performance Computing (HPC) simulation and design capabilities, and related advances in Uncertainty Quantification (UQ), and then examines their impacts upon national and international security. The presentation surveys how AM accelerates the fabrication process, while HPC combined with UQ provides a fast track for the engineering design cycle. The combination of AM and HPC/UQ almost eliminates the engineering design and prototype iterative cycle, thereby dramatically reducing cost of production and time-to-market. These methods thereby present significant benefits for US national interests, both civilian and military, in an age of austerity. Finally, considering cyber security issues and the advent of the ``cloud,'' these disruptive, currently latent technologies may well enable proliferation and so challenge both nuclear and non-nuclear aspects of international security.

  1. Contact Us | High-Performance Computing | NREL

    Science.gov Websites

    Select Peregrine Merlin WinHPC Allocation project handle (if requesting HPC account) Description of "SEND REQUEST" and nothing happens, it most likely means you forgot to provide information in a required field. You may need to scroll up to see what required information is missing

  2. WinHPC System Programming | High-Performance Computing | NREL

    Science.gov Websites

    Programming WinHPC System Programming Learn how to build and run an MPI (message passing interface (mpi.h) and library (msmpi.lib) are. To build from the command line, run... Start > Intel Software Development Tools > Intel C++ Compiler Professional... > C++ Build Environment for applications running

  3. HPC Annual Report 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennig, Yasmin

    Sandia National Laboratories has a long history of significant contributions to the high performance community and industry. Our innovative computer architectures allowed the United States to become the first to break the teraFLOP barrier—propelling us to the international spotlight. Our advanced simulation and modeling capabilities have been integral in high consequence US operations such as Operation Burnt Frost. Strong partnerships with industry leaders, such as Cray, Inc. and Goodyear, have enabled them to leverage our high performance computing (HPC) capabilities to gain a tremendous competitive edge in the marketplace. As part of our continuing commitment to providing modern computing infrastructuremore » and systems in support of Sandia missions, we made a major investment in expanding Building 725 to serve as the new home of HPC systems at Sandia. Work is expected to be completed in 2018 and will result in a modern facility of approximately 15,000 square feet of computer center space. The facility will be ready to house the newest National Nuclear Security Administration/Advanced Simulation and Computing (NNSA/ASC) Prototype platform being acquired by Sandia, with delivery in late 2019 or early 2020. This new system will enable continuing advances by Sandia science and engineering staff in the areas of operating system R&D, operation cost effectiveness (power and innovative cooling technologies), user environment and application code performance.« less

  4. Strengthening LLNL Missions through Laboratory Directed Research and Development in High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, D. K.

    2016-12-01

    High performance computing (HPC) has been a defining strength of Lawrence Livermore National Laboratory (LLNL) since its founding. Livermore scientists have designed and used some of the world’s most powerful computers to drive breakthroughs in nearly every mission area. Today, the Laboratory is recognized as a world leader in the application of HPC to complex science, technology, and engineering challenges. Most importantly, HPC has been integral to the National Nuclear Security Administration’s (NNSA’s) Stockpile Stewardship Program—designed to ensure the safety, security, and reliability of our nuclear deterrent without nuclear testing. A critical factor behind Lawrence Livermore’s preeminence in HPC ismore » the ongoing investments made by the Laboratory Directed Research and Development (LDRD) Program in cutting-edge concepts to enable efficient utilization of these powerful machines. Congress established the LDRD Program in 1991 to maintain the technical vitality of the Department of Energy (DOE) national laboratories. Since then, LDRD has been, and continues to be, an essential tool for exploring anticipated needs that lie beyond the planning horizon of our programs and for attracting the next generation of talented visionaries. Through LDRD, Livermore researchers can examine future challenges, propose and explore innovative solutions, and deliver creative approaches to support our missions. The present scientific and technical strengths of the Laboratory are, in large part, a product of past LDRD investments in HPC. Here, we provide seven examples of LDRD projects from the past decade that have played a critical role in building LLNL’s HPC, computer science, mathematics, and data science research capabilities, and describe how they have impacted LLNL’s mission.« less

  5. Webinar: Delivering Transformational HPC Solutions to Industry

    ScienceCinema

    Streitz, Frederick

    2018-01-16

    Dr. Frederick Streitz, director of the High Performance Computing Innovation Center, discusses Lawrence Livermore National Laboratory computational capabilities and expertise available to industry in this webinar.

  6. WinHPC System Policies | High-Performance Computing | NREL

    Science.gov Websites

    requiring high CPU utilization or large amounts of memory should be run on the worker nodes. WinHPC02 is not associated data are removed when NREL worker status is discontinued. Users should make arrangements to save other users. Licenses are returned to the license pool when other users close the application or after

  7. Performance Analysis of Ivshmem for High-Performance Computing in Virtual Machines

    NASA Astrophysics Data System (ADS)

    Ivanovic, Pavle; Richter, Harald

    2018-01-01

    High-Performance computing (HPC) is rarely accomplished via virtual machines (VMs). In this paper, we present a remake of ivshmem which can change this. Ivshmem was a shared memory (SHM) between virtual machines on the same server, with SHM-access synchronization included, until about 5 years ago when newer versions of Linux and its virtualization library libvirt evolved. We restored that SHM-access synchronization feature because it is indispensable for HPC and made ivshmem runnable with contemporary versions of Linux, libvirt, KVM, QEMU and especially MPICH, which is an implementation of MPI - the standard HPC communication library. Additionally, MPICH was transparently modified by us to get ivshmem included, resulting in a three to ten times performance improvement compared to TCP/IP. Furthermore, we have transparently replaced MPI_PUT, a single-side MPICH communication mechanism, by an own MPI_PUT wrapper. As a result, our ivshmem even surpasses non-virtualized SHM data transfers for block lengths greater than 512 KBytes, showing the benefits of virtualization. All improvements were possible without using SR-IOV.

  8. Computational Science and Innovation

    NASA Astrophysics Data System (ADS)

    Dean, D. J.

    2011-09-01

    Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.

  9. Towards Anatomic Scale Agent-Based Modeling with a Massively Parallel Spatially Explicit General-Purpose Model of Enteric Tissue (SEGMEnT_HPC)

    PubMed Central

    Cockrell, Robert Chase; Christley, Scott; Chang, Eugene; An, Gary

    2015-01-01

    Perhaps the greatest challenge currently facing the biomedical research community is the ability to integrate highly detailed cellular and molecular mechanisms to represent clinical disease states as a pathway to engineer effective therapeutics. This is particularly evident in the representation of organ-level pathophysiology in terms of abnormal tissue structure, which, through histology, remains a mainstay in disease diagnosis and staging. As such, being able to generate anatomic scale simulations is a highly desirable goal. While computational limitations have previously constrained the size and scope of multi-scale computational models, advances in the capacity and availability of high-performance computing (HPC) resources have greatly expanded the ability of computational models of biological systems to achieve anatomic, clinically relevant scale. Diseases of the intestinal tract are exemplary examples of pathophysiological processes that manifest at multiple scales of spatial resolution, with structural abnormalities present at the microscopic, macroscopic and organ-levels. In this paper, we describe a novel, massively parallel computational model of the gut, the Spatially Explicitly General-purpose Model of Enteric Tissue_HPC (SEGMEnT_HPC), which extends an existing model of the gut epithelium, SEGMEnT, in order to create cell-for-cell anatomic scale simulations. We present an example implementation of SEGMEnT_HPC that simulates the pathogenesis of ileal pouchitis, and important clinical entity that affects patients following remedial surgery for ulcerative colitis. PMID:25806784

  10. High Performance Proactive Digital Forensics

    NASA Astrophysics Data System (ADS)

    Alharbi, Soltan; Moa, Belaid; Weber-Jahnke, Jens; Traore, Issa

    2012-10-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  11. System-Level Virtualization Research at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Stephen L; Vallee, Geoffroy R; Naughton, III, Thomas J

    2010-01-01

    System-level virtualization is today enjoying a rebirth as a technique to effectively share what were then considered large computing resources to subsequently fade from the spotlight as individual workstations gained in popularity with a one machine - one user approach. One reason for this resurgence is that the simple workstation has grown in capability to rival that of anything available in the past. Thus, computing centers are again looking at the price/performance benefit of sharing that single computing box via server consolidation. However, industry is only concentrating on the benefits of using virtualization for server consolidation (enterprise computing) whereas ourmore » interest is in leveraging virtualization to advance high-performance computing (HPC). While these two interests may appear to be orthogonal, one consolidating multiple applications and users on a single machine while the other requires all the power from many machines to be dedicated solely to its purpose, we propose that virtualization does provide attractive capabilities that may be exploited to the benefit of HPC interests. This does raise the two fundamental questions of: is the concept of virtualization (a machine sharing technology) really suitable for HPC and if so, how does one go about leveraging these virtualization capabilities for the benefit of HPC. To address these questions, this document presents ongoing studies on the usage of system-level virtualization in a HPC context. These studies include an analysis of the benefits of system-level virtualization for HPC, a presentation of research efforts based on virtualization for system availability, and a presentation of research efforts for the management of virtual systems. The basis for this document was material presented by Stephen L. Scott at the Collaborative and Grid Computing Technologies meeting held in Cancun, Mexico on April 12-14, 2007.« less

  12. Data Transfer Study HPSS Archiving

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wynne, James; Parete-Koon, Suzanne T; Mitchell, Quinn

    2015-01-01

    The movement of the large amounts of data produced by codes run in a High Performance Computing (HPC) environment can be a bottleneck for project workflows. To balance filesystem capacity and performance requirements, HPC centers enforce data management policies to purge old files to make room for new computation and analysis results. Users at Oak Ridge Leadership Computing Facility (OLCF) and many other HPC user facilities must archive data to avoid data loss during purges, therefore the time associated with data movement for archiving is something that all users must consider. This study observed the difference in transfer speed frommore » the originating location on the Lustre filesystem to the more permanent High Performance Storage System (HPSS). The tests were done with a number of different transfer methods for files that spanned a variety of sizes and compositions that reflect OLCF user data. This data will be used to help users of Titan and other Cray supercomputers plan their workflow and data transfers so that they are most efficient for their project. We will also discuss best practice for maintaining data at shared user facilities.« less

  13. Parallel computing in genomic research: advances and applications

    PubMed Central

    Ocaña, Kary; de Oliveira, Daniel

    2015-01-01

    Today’s genomic experiments have to process the so-called “biological big data” that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities. PMID:26604801

  14. Parallel computing in genomic research: advances and applications.

    PubMed

    Ocaña, Kary; de Oliveira, Daniel

    2015-01-01

    Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities.

  15. NREL Evaluates Aquarius Liquid-Cooled High-Performance Computing Technology

    Science.gov Websites

    HPC and influence the modern data center designer towards adoption of liquid cooling. Our shared technology. Aquila and Sandia chose NREL's HPC Data Center for the initial installation and evaluation because the data center is configured for liquid cooling, along with the required instrumentation to

  16. HPC Aspects of Variable-Resolution Global Climate Modeling using a Multi-scale Convection Parameterization

    EPA Science Inventory

    High performance computing (HPC) requirements for the new generation variable grid resolution (VGR) global climate models differ from that of traditional global models. A VGR global model with 15 km grids over the CONUS stretching to 60 km grids elsewhere will have about ~2.5 tim...

  17. GraphMeta: Managing HPC Rich Metadata in Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Dong; Chen, Yong; Carns, Philip

    High-performance computing (HPC) systems face increasingly critical metadata management challenges, especially in the approaching exascale era. These challenges arise not only from exploding metadata volumes, but also from increasingly diverse metadata, which contains data provenance and arbitrary user-defined attributes in addition to traditional POSIX metadata. This ‘rich’ metadata is becoming critical to supporting advanced data management functionality such as data auditing and validation. In our prior work, we identified a graph-based model as a promising solution to uniformly manage HPC rich metadata due to its flexibility and generality. However, at the same time, graph-based HPC rich metadata anagement also introducesmore » significant challenges to the underlying infrastructure. In this study, we first identify the challenges on the underlying infrastructure to support scalable, high-performance rich metadata management. Based on that, we introduce GraphMeta, a graphbased engine designed for this use case. It achieves performance scalability by introducing a new graph partitioning algorithm and a write-optimal storage engine. We evaluate GraphMeta under both synthetic and real HPC metadata workloads, compare it with other approaches, and demonstrate its advantages in terms of efficiency and usability for rich metadata management in HPC systems.« less

  18. Havery Mudd 2014-2015 Computer Science Conduit Clinic Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aspesi, G; Bai, J; Deese, R

    2015-05-12

    Conduit, a new open-source library developed at Lawrence Livermore National Laboratories, provides a C++ application programming interface (API) to describe and access scientific data. Conduit’s primary use is for inmemory data exchange in high performance computing (HPC) applications. Our team tested and improved Conduit to make it more appealing to potential adopters in the HPC community. We extended Conduit’s capabilities by prototyping four libraries: one for parallel communication using MPI, one for I/O functionality, one for aggregating performance data, and one for data visualization.

  19. Getting ready for petaflop capacities and beyond: a utility perspective

    NASA Astrophysics Data System (ADS)

    Hamelin, J. F.; Berthou, J. Y.

    2008-07-01

    Why should EDF, the leading producer and marketer of electricity in Europe, start adding teraflops to its terawatt-hours and become involved in high-performance computing (HPC)? In this paper we answer this question through examples of major opportunities that HPC brings to our business today and, we hope well into the future of petaflop and exaflop computing. Five cases are presented dealing with nondestructive testing, nuclear fuel management, mechanical behavior of nuclear fuel assemblies, water management, and energy management. For each case we show the benefits brought by HPC, describe the current level of numerical simulation performance, and discuss the perspectives for future steps. We also present the general background that explains why EDF is moving to this technology and briefly comment on the development of user-oriented simulation platforms.

  20. Desktop supercomputer: what can it do?

    NASA Astrophysics Data System (ADS)

    Bogdanov, A.; Degtyarev, A.; Korkhov, V.

    2017-12-01

    The paper addresses the issues of solving complex problems that require using supercomputers or multiprocessor clusters available for most researchers nowadays. Efficient distribution of high performance computing resources according to actual application needs has been a major research topic since high-performance computing (HPC) technologies became widely introduced. At the same time, comfortable and transparent access to these resources was a key user requirement. In this paper we discuss approaches to build a virtual private supercomputer available at user's desktop: a virtual computing environment tailored specifically for a target user with a particular target application. We describe and evaluate possibilities to create the virtual supercomputer based on light-weight virtualization technologies, and analyze the efficiency of our approach compared to traditional methods of HPC resource management.

  1. SAME4HPC: A Promising Approach in Building a Scalable and Mobile Environment for High-Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karthik, Rajasekar

    2014-01-01

    In this paper, an architecture for building Scalable And Mobile Environment For High-Performance Computing with spatial capabilities called SAME4HPC is described using cutting-edge technologies and standards such as Node.js, HTML5, ECMAScript 6, and PostgreSQL 9.4. Mobile devices are increasingly becoming powerful enough to run high-performance apps. At the same time, there exist a significant number of low-end and older devices that rely heavily on the server or the cloud infrastructure to do the heavy lifting. Our architecture aims to support both of these types of devices to provide high-performance and rich user experience. A cloud infrastructure consisting of OpenStack withmore » Ubuntu, GeoServer, and high-performance JavaScript frameworks are some of the key open-source and industry standard practices that has been adopted in this architecture.« less

  2. Large-scale parallel genome assembler over cloud computing environment.

    PubMed

    Das, Arghya Kusum; Koppa, Praveen Kumar; Goswami, Sayan; Platania, Richard; Park, Seung-Jong

    2017-06-01

    The size of high throughput DNA sequencing data has already reached the terabyte scale. To manage this huge volume of data, many downstream sequencing applications started using locality-based computing over different cloud infrastructures to take advantage of elastic (pay as you go) resources at a lower cost. However, the locality-based programming model (e.g. MapReduce) is relatively new. Consequently, developing scalable data-intensive bioinformatics applications using this model and understanding the hardware environment that these applications require for good performance, both require further research. In this paper, we present a de Bruijn graph oriented Parallel Giraph-based Genome Assembler (GiGA), as well as the hardware platform required for its optimal performance. GiGA uses the power of Hadoop (MapReduce) and Giraph (large-scale graph analysis) to achieve high scalability over hundreds of compute nodes by collocating the computation and data. GiGA achieves significantly higher scalability with competitive assembly quality compared to contemporary parallel assemblers (e.g. ABySS and Contrail) over traditional HPC cluster. Moreover, we show that the performance of GiGA is significantly improved by using an SSD-based private cloud infrastructure over traditional HPC cluster. We observe that the performance of GiGA on 256 cores of this SSD-based cloud infrastructure closely matches that of 512 cores of traditional HPC cluster.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unat, Didem; Dubey, Anshu; Hoefler, Torsten

    The cost of data movement has always been an important concern in high performance computing (HPC) systems. It has now become the dominant factor in terms of both energy consumption and performance. Support for expression of data locality has been explored in the past, but those efforts have had only modest success in being adopted in HPC applications for various reasons. However, with the increasing complexity of the memory hierarchy and higher parallelism in emerging HPC systems, locality management has acquired a new urgency. Developers can no longer limit themselves to low-level solutions and ignore the potential for productivity andmore » performance portability obtained by using locality abstractions. Fortunately, the trend emerging in recent literature on the topic alleviates many of the concerns that got in the way of their adoption by application developers. Data locality abstractions are available in the forms of libraries, data structures, languages and runtime systems; a common theme is increasing productivity without sacrificing performance. Furthermore, this paper examines these trends and identifies commonalities that can combine various locality concepts to develop a comprehensive approach to expressing and managing data locality on future large-scale high-performance computing systems.« less

  4. System Resource Allocation Requests | High-Performance Computing | NREL

    Science.gov Websites

    Account to utilize the online allocation request system. If you need a HPC User Account, please request one online: Visit User Accounts. Click the green "Request Account" Button - this will direct . Follow the online instructions provided in the DocuSign form. Write "Need HPC User Account to use

  5. Exploiting HPC Platforms for Metagenomics: Challenges and Opportunities (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Canon, Shane

    2018-01-24

    DOE JGI's Zhong Wang, chair of the High-performance Computing session, gives a brief introduction before Berkeley Lab's Shane Canon talks about "Exploiting HPC Platforms for Metagenomics: Challenges and Opportunities" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  6. Appropriate Use Policy | High-Performance Computing | NREL

    Science.gov Websites

    users of the National Renewable Energy Laboratory (NREL) High Performance Computing (HPC) resources government agency, National Laboratory, University, or private entity, the intellectual property terms (if issued a multifactor token which may be a physical token or a virtual token used with one-time password

  7. A configurable distributed high-performance computing framework for satellite's TDI-CCD imaging simulation

    NASA Astrophysics Data System (ADS)

    Xue, Bo; Mao, Bingjing; Chen, Xiaomei; Ni, Guoqiang

    2010-11-01

    This paper renders a configurable distributed high performance computing(HPC) framework for TDI-CCD imaging simulation. It uses strategy pattern to adapt multi-algorithms. Thus, this framework help to decrease the simulation time with low expense. Imaging simulation for TDI-CCD mounted on satellite contains four processes: 1) atmosphere leads degradation, 2) optical system leads degradation, 3) electronic system of TDI-CCD leads degradation and re-sampling process, 4) data integration. Process 1) to 3) utilize diversity data-intensity algorithms such as FFT, convolution and LaGrange Interpol etc., which requires powerful CPU. Even uses Intel Xeon X5550 processor, regular series process method takes more than 30 hours for a simulation whose result image size is 1500 * 1462. With literature study, there isn't any mature distributing HPC framework in this field. Here we developed a distribute computing framework for TDI-CCD imaging simulation, which is based on WCF[1], uses Client/Server (C/S) layer and invokes the free CPU resources in LAN. The server pushes the process 1) to 3) tasks to those free computing capacity. Ultimately we rendered the HPC in low cost. In the computing experiment with 4 symmetric nodes and 1 server , this framework reduced about 74% simulation time. Adding more asymmetric nodes to the computing network, the time decreased namely. In conclusion, this framework could provide unlimited computation capacity in condition that the network and task management server are affordable. And this is the brand new HPC solution for TDI-CCD imaging simulation and similar applications.

  8. P43-S Computational Biology Applications Suite for High-Performance Computing (BioHPC.net)

    PubMed Central

    Pillardy, J.

    2007-01-01

    One of the challenges of high-performance computing (HPC) is user accessibility. At the Cornell University Computational Biology Service Unit, which is also a Microsoft HPC institute, we have developed a computational biology application suite that allows researchers from biological laboratories to submit their jobs to the parallel cluster through an easy-to-use Web interface. Through this system, we are providing users with popular bioinformatics tools including BLAST, HMMER, InterproScan, and MrBayes. The system is flexible and can be easily customized to include other software. It is also scalable; the installation on our servers currently processes approximately 8500 job submissions per year, many of them requiring massively parallel computations. It also has a built-in user management system, which can limit software and/or database access to specified users. TAIR, the major database of the plant model organism Arabidopsis, and SGN, the international tomato genome database, are both using our system for storage and data analysis. The system consists of a Web server running the interface (ASP.NET C#), Microsoft SQL server (ADO.NET), compute cluster running Microsoft Windows, ftp server, and file server. Users can interact with their jobs and data via a Web browser, ftp, or e-mail. The interface is accessible at http://cbsuapps.tc.cornell.edu/.

  9. Quantifying Scheduling Challenges for Exascale System Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondragon, Oscar; Bridges, Patrick G.; Jones, Terry R

    2015-01-01

    The move towards high-performance computing (HPC) ap- plications comprised of coupled codes and the need to dra- matically reduce data movement is leading to a reexami- nation of time-sharing vs. space-sharing in HPC systems. In this paper, we discuss and begin to quantify the perfor- mance impact of a move away from strict space-sharing of nodes for HPC applications. Specifically, we examine the po- tential performance cost of time-sharing nodes between ap- plication components, we determine whether a simple coor- dinated scheduling mechanism can address these problems, and we research how suitable simple constraint-based opti- mization techniques are for solvingmore » scheduling challenges in this regime. Our results demonstrate that current general- purpose HPC system software scheduling and resource al- location systems are subject to significant performance de- ciencies which we quantify for six representative applica- tions. Based on these results, we discuss areas in which ad- ditional research is needed to meet the scheduling challenges of next-generation HPC systems.« less

  10. On efficiency of fire simulation realization: parallelization with greater number of computational meshes

    NASA Astrophysics Data System (ADS)

    Valasek, Lukas; Glasa, Jan

    2017-12-01

    Current fire simulation systems are capable to utilize advantages of high-performance computer (HPC) platforms available and to model fires efficiently in parallel. In this paper, efficiency of a corridor fire simulation on a HPC computer cluster is discussed. The parallel MPI version of Fire Dynamics Simulator is used for testing efficiency of selected strategies of allocation of computational resources of the cluster using a greater number of computational cores. Simulation results indicate that if the number of cores used is not equal to a multiple of the total number of cluster node cores there are allocation strategies which provide more efficient calculations.

  11. Linux VPN Set Up | High-Performance Computing | NREL

    Science.gov Websites

    methods to connect to NREL's HPC systems via the HPC VPN: one using a simple command line, and a second UserID in place of the one in the example image. Connection name: hpcvpn Gateway: hpcvpn.nrel.gov User hpcvpn option as seen in the following screen shot. Screenshot image NetworkManager will present you with

  12. Active Flash: Out-of-core Data Analytics on Flash Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boboila, Simona; Kim, Youngjae; Vazhkudai, Sudharshan S

    2012-01-01

    Next generation science will increasingly come to rely on the ability to perform efficient, on-the-fly analytics of data generated by high-performance computing (HPC) simulations, modeling complex physical phenomena. Scientific computing workflows are stymied by the traditional chaining of simulation and data analysis, creating multiple rounds of redundant reads and writes to the storage system, which grows in cost with the ever-increasing gap between compute and storage speeds in HPC clusters. Recent HPC acquisitions have introduced compute node-local flash storage as a means to alleviate this I/O bottleneck. We propose a novel approach, Active Flash, to expedite data analysis pipelines bymore » migrating to the location of the data, the flash device itself. We argue that Active Flash has the potential to enable true out-of-core data analytics by freeing up both the compute core and the associated main memory. By performing analysis locally, dependence on limited bandwidth to a central storage system is reduced, while allowing this analysis to proceed in parallel with the main application. In addition, offloading work from the host to the more power-efficient controller reduces peak system power usage, which is already in the megawatt range and poses a major barrier to HPC system scalability. We propose an architecture for Active Flash, explore energy and performance trade-offs in moving computation from host to storage, demonstrate the ability of appropriate embedded controllers to perform data analysis and reduction tasks at speeds sufficient for this application, and present a simulation study of Active Flash scheduling policies. These results show the viability of the Active Flash model, and its capability to potentially have a transformative impact on scientific data analysis.« less

  13. High-Performance Computing Act of 1990: Report of the Senate Committee on Commerce, Science, and Transportation on S. 1067.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Commerce, Science, and Transportation.

    This committee report is intended to accompany S. 1067, a bill designed to provide for a coordinated federal research program in high-performance computing (HPC). The primary objective of the legislation is given as the acceleration of research, development, and application of the most advanced computing technology in research, education, and…

  14. Process for selecting NEAMS applications for access to Idaho National Laboratory high performance computing resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Pernice

    2010-09-01

    INL has agreed to provide participants in the Nuclear Energy Advanced Mod- eling and Simulation (NEAMS) program with access to its high performance computing (HPC) resources under sponsorship of the Enabling Computational Technologies (ECT) program element. This report documents the process used to select applications and the software stack in place at INL.

  15. Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments

    DOE PAGES

    Yim, Won Cheol; Cushman, John C.

    2017-07-22

    Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less

  16. Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yim, Won Cheol; Cushman, John C.

    Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less

  17. A Modular Environment for Geophysical Inversion and Run-time Autotuning using Heterogeneous Computing Systems

    NASA Astrophysics Data System (ADS)

    Myre, Joseph M.

    Heterogeneous computing systems have recently come to the forefront of the High-Performance Computing (HPC) community's interest. HPC computer systems that incorporate special purpose accelerators, such as Graphics Processing Units (GPUs), are said to be heterogeneous. Large scale heterogeneous computing systems have consistently ranked highly on the Top500 list since the beginning of the heterogeneous computing trend. By using heterogeneous computing systems that consist of both general purpose processors and special- purpose accelerators, the speed and problem size of many simulations could be dramatically increased. Ultimately this results in enhanced simulation capabilities that allows, in some cases for the first time, the execution of parameter space and uncertainty analyses, model optimizations, and other inverse modeling techniques that are critical for scientific discovery and engineering analysis. However, simplifying the usage and optimization of codes for heterogeneous computing systems remains a challenge. This is particularly true for scientists and engineers for whom understanding HPC architectures and undertaking performance analysis may not be primary research objectives. To enable scientists and engineers to remain focused on their primary research objectives, a modular environment for geophysical inversion and run-time autotuning on heterogeneous computing systems is presented. This environment is composed of three major components: 1) CUSH---a framework for reducing the complexity of programming heterogeneous computer systems, 2) geophysical inversion routines which can be used to characterize physical systems, and 3) run-time autotuning routines designed to determine configurations of heterogeneous computing systems in an attempt to maximize the performance of scientific and engineering codes. Using three case studies, a lattice-Boltzmann method, a non-negative least squares inversion, and a finite-difference fluid flow method, it is shown that this environment provides scientists and engineers with means to reduce the programmatic complexity of their applications, to perform geophysical inversions for characterizing physical systems, and to determine high-performing run-time configurations of heterogeneous computing systems using a run-time autotuner.

  18. JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing.

    PubMed

    Brown, David K; Penkler, David L; Musyoka, Thommas M; Bishop, Özlem Tastan

    2015-01-01

    Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS.

  19. JMS: An Open Source Workflow Management System and Web-Based Cluster Front-End for High Performance Computing

    PubMed Central

    Brown, David K.; Penkler, David L.; Musyoka, Thommas M.; Bishop, Özlem Tastan

    2015-01-01

    Complex computational pipelines are becoming a staple of modern scientific research. Often these pipelines are resource intensive and require days of computing time. In such cases, it makes sense to run them over high performance computing (HPC) clusters where they can take advantage of the aggregated resources of many powerful computers. In addition to this, researchers often want to integrate their workflows into their own web servers. In these cases, software is needed to manage the submission of jobs from the web interface to the cluster and then return the results once the job has finished executing. We have developed the Job Management System (JMS), a workflow management system and web interface for high performance computing (HPC). JMS provides users with a user-friendly web interface for creating complex workflows with multiple stages. It integrates this workflow functionality with the resource manager, a tool that is used to control and manage batch jobs on HPC clusters. As such, JMS combines workflow management functionality with cluster administration functionality. In addition, JMS provides developer tools including a code editor and the ability to version tools and scripts. JMS can be used by researchers from any field to build and run complex computational pipelines and provides functionality to include these pipelines in external interfaces. JMS is currently being used to house a number of bioinformatics pipelines at the Research Unit in Bioinformatics (RUBi) at Rhodes University. JMS is an open-source project and is freely available at https://github.com/RUBi-ZA/JMS. PMID:26280450

  20. Towards Portable Large-Scale Image Processing with High-Performance Computing.

    PubMed

    Huo, Yuankai; Blaber, Justin; Damon, Stephen M; Boyd, Brian D; Bao, Shunxing; Parvathaneni, Prasanna; Noguera, Camilo Bermudez; Chaganti, Shikha; Nath, Vishwesh; Greer, Jasmine M; Lyu, Ilwoo; French, William R; Newton, Allen T; Rogers, Baxter P; Landman, Bennett A

    2018-05-03

    High-throughput, large-scale medical image computing demands tight integration of high-performance computing (HPC) infrastructure for data storage, job distribution, and image processing. The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has constructed a large-scale image storage and processing infrastructure that is composed of (1) a large-scale image database using the eXtensible Neuroimaging Archive Toolkit (XNAT), (2) a content-aware job scheduling platform using the Distributed Automation for XNAT pipeline automation tool (DAX), and (3) a wide variety of encapsulated image processing pipelines called "spiders." The VUIIS CCI medical image data storage and processing infrastructure have housed and processed nearly half-million medical image volumes with Vanderbilt Advanced Computing Center for Research and Education (ACCRE), which is the HPC facility at the Vanderbilt University. The initial deployment was natively deployed (i.e., direct installations on a bare-metal server) within the ACCRE hardware and software environments, which lead to issues of portability and sustainability. First, it could be laborious to deploy the entire VUIIS CCI medical image data storage and processing infrastructure to another HPC center with varying hardware infrastructure, library availability, and software permission policies. Second, the spiders were not developed in an isolated manner, which has led to software dependency issues during system upgrades or remote software installation. To address such issues, herein, we describe recent innovations using containerization techniques with XNAT/DAX which are used to isolate the VUIIS CCI medical image data storage and processing infrastructure from the underlying hardware and software environments. The newly presented XNAT/DAX solution has the following new features: (1) multi-level portability from system level to the application level, (2) flexible and dynamic software development and expansion, and (3) scalable spider deployment compatible with HPC clusters and local workstations.

  1. Analysis of Application Power and Schedule Composition in a High Performance Computing Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmore, Ryan; Gruchalla, Kenny; Phillips, Caleb

    As the capacity of high performance computing (HPC) systems continues to grow, small changes in energy management have the potential to produce significant energy savings. In this paper, we employ an extensive informatics system for aggregating and analyzing real-time performance and power use data to evaluate energy footprints of jobs running in an HPC data center. We look at the effects of algorithmic choices for a given job on the resulting energy footprints, and analyze application-specific power consumption, and summarize average power use in the aggregate. All of these views reveal meaningful power variance between classes of applications as wellmore » as chosen methods for a given job. Using these data, we discuss energy-aware cost-saving strategies based on reordering the HPC job schedule. Using historical job and power data, we present a hypothetical job schedule reordering that: (1) reduces the facility's peak power draw and (2) manages power in conjunction with a large-scale photovoltaic array. Lastly, we leverage this data to understand the practical limits on predicting key power use metrics at the time of submission.« less

  2. In Situ Methods, Infrastructures, and Applications on High Performance Computing Platforms, a State-of-the-art (STAR) Report

    DOE PAGES

    Bethel, EW; Bauer, A; Abbasi, H; ...

    2016-06-10

    The considerable interest in the high performance computing (HPC) community regarding analyzing and visualization data without first writing to disk, i.e., in situ processing, is due to several factors. First is an I/O cost savings, where data is analyzed /visualized while being generated, without first storing to a filesystem. Second is the potential for increased accuracy, where fine temporal sampling of transient analysis might expose some complex behavior missed in coarse temporal sampling. Third is the ability to use all available resources, CPU’s and accelerators, in the computation of analysis products. This STAR paper brings together researchers, developers and practitionersmore » using in situ methods in extreme-scale HPC with the goal to present existing methods, infrastructures, and a range of computational science and engineering applications using in situ analysis and visualization.« less

  3. HPC Access Using KVM over IP

    DTIC Science & Technology

    2007-06-08

    Lightwave VDE /200 KVM-over-Fiber (Keyboard, Video and Mouse) devices installed throughout the TARDEC campus. Implementation of this system required...development effort through the pursuit of an Army-funded Phase-II Small Business Innovative Research (SBIR) effort with IP Video Systems (formerly known as...visualization capabilities of a DoD High- Performance Computing facility, many advanced features are necessary. TARDEC-HPC’s SBIR with IP Video Systems

  4. PuTTY | High-Performance Computing | NREL

    Science.gov Websites

    PuTTY PuTTY Learn how to use PuTTY to connect to NREL's high-performance computing (HPC) systems . Connecting When you start the PuTTY app, the program will display PuTTY's Configuration menu. When this comes . When prompted, type your password again followed by . Note: to increase

  5. Evolution of Embedded Processing for Wide Area Surveillance

    DTIC Science & Technology

    2014-01-01

    future vision . 15. SUBJECT TERMS Embedded processing; high performance computing; general-purpose graphical processing units (GPGPUs) 16. SECURITY...recon- naissance (ISR) mission capabilities. The capabilities these advancements are achieving include the ability to provide persistent all...fighters to support and positively affect their mission . Significant improvements in high-performance computing (HPC) technology make it possible to

  6. Construction of the energy matrix for complex atoms. Part VIII: Hyperfine structure HPC calculations for terbium atom

    NASA Astrophysics Data System (ADS)

    Elantkowska, Magdalena; Ruczkowski, Jarosław; Sikorski, Andrzej; Dembczyński, Jerzy

    2017-11-01

    A parametric analysis of the hyperfine structure (hfs) for the even parity configurations of atomic terbium (Tb I) is presented in this work. We introduce the complete set of 4fN-core states in our high-performance computing (HPC) calculations. For calculations of the huge hyperfine structure matrix, requiring approximately 5000 hours when run on a single CPU, we propose the methods utilizing a personal computer cluster or, alternatively a cluster of Microsoft Azure virtual machines (VM). These methods give a factor 12 performance boost, enabling the calculations to complete in an acceptable time.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth; Sewell, Christopher; Usher, William

    Here, one of the most critical challenges for high-performance computing (HPC) scientific visualization is execution on massively threaded processors. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Our current production scientific visualization software is not designed for these new types of architectures. To address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth; Sewell, Christopher; Usher, William

    Execution on massively threaded processors is one of the most critical challenges for high-performance computing (HPC) scientific visualization. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Moreover, our current production scientific visualization software is not designed for these new types of architectures. In order to address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.

  9. Multi-Core Processor Memory Contention Benchmark Analysis Case Study

    NASA Technical Reports Server (NTRS)

    Simon, Tyler; McGalliard, James

    2009-01-01

    Multi-core processors dominate current mainframe, server, and high performance computing (HPC) systems. This paper provides synthetic kernel and natural benchmark results from an HPC system at the NASA Goddard Space Flight Center that illustrate the performance impacts of multi-core (dual- and quad-core) vs. single core processor systems. Analysis of processor design, application source code, and synthetic and natural test results all indicate that multi-core processors can suffer from significant memory subsystem contention compared to similar single-core processors.

  10. The Convergence of High Performance Computing and Large Scale Data Analytics

    NASA Astrophysics Data System (ADS)

    Duffy, D.; Bowen, M. K.; Thompson, J. H.; Yang, C. P.; Hu, F.; Wills, B.

    2015-12-01

    As the combinations of remote sensing observations and model outputs have grown, scientists are increasingly burdened with both the necessity and complexity of large-scale data analysis. Scientists are increasingly applying traditional high performance computing (HPC) solutions to solve their "Big Data" problems. While this approach has the benefit of limiting data movement, the HPC system is not optimized to run analytics, which can create problems that permeate throughout the HPC environment. To solve these issues and to alleviate some of the strain on the HPC environment, the NASA Center for Climate Simulation (NCCS) has created the Advanced Data Analytics Platform (ADAPT), which combines both HPC and cloud technologies to create an agile system designed for analytics. Large, commonly used data sets are stored in this system in a write once/read many file system, such as Landsat, MODIS, MERRA, and NGA. High performance virtual machines are deployed and scaled according to the individual scientist's requirements specifically for data analysis. On the software side, the NCCS and GMU are working with emerging commercial technologies and applying them to structured, binary scientific data in order to expose the data in new ways. Native NetCDF data is being stored within a Hadoop Distributed File System (HDFS) enabling storage-proximal processing through MapReduce while continuing to provide accessibility of the data to traditional applications. Once the data is stored within HDFS, an additional indexing scheme is built on top of the data and placed into a relational database. This spatiotemporal index enables extremely fast mappings of queries to data locations to dramatically speed up analytics. These are some of the first steps toward a single unified platform that optimizes for both HPC and large-scale data analysis, and this presentation will elucidate the resulting and necessary exascale architectures required for future systems.

  11. Allocating Tactical High-Performance Computer (HPC) Resources to Offloaded Computation in Battlefield Scenarios

    DTIC Science & Technology

    2013-12-01

    authors present a Computing on Dissemination with predictable contacts ( pCoD ) algorithm, since it is impossible to reserve task execution time in advance...Computing While Charging DAG Directed Acyclic Graph 18 TTL Time-to-live pCoD Predictable contacts CoD Computing on Dissemination upCoD Unpredictable

  12. Final Report on the Proposal to Provide Asian Science and Technology Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahaner, David K.

    2003-07-23

    The Asian Technology Information Program (ATIP) conducted a seven-month Asian science and technology information program for the Office:of Energy Research (ER), U.S: Department of Energy (DOE.) The seven-month program consists of 1) monitoring, analyzing, and dissemiuating science and technology trends and developments associated with Asian high performance computing and communications (HPC), networking, and associated topics, 2) access to ATIP's annual series of Asian S&T reports for ER and HPC related personnel and, 3) supporting DOE and ER designated visits to Asia to study and assess Asian HPC.

  13. GPU Implementation of High Rayleigh Number Three-Dimensional Mantle Convection

    NASA Astrophysics Data System (ADS)

    Sanchez, D. A.; Yuen, D. A.; Wright, G. B.; Barnett, G. A.

    2010-12-01

    Although we have entered the age of petascale computing, many factors are still prohibiting high-performance computing (HPC) from infiltrating all suitable scientific disciplines. For this reason and others, application of GPU to HPC is gaining traction in the scientific world. With its low price point, high performance potential, and competitive scalability, GPU has been an option well worth considering for the last few years. Moreover with the advent of NVIDIA's Fermi architecture, which brings ECC memory, better double-precision performance, and more RAM to GPU, there is a strong message of corporate support for GPU in HPC. However many doubts linger concerning the practicality of using GPU for scientific computing. In particular, GPU has a reputation for being difficult to program and suitable for only a small subset of problems. Although inroads have been made in addressing these concerns, for many scientists GPU still has hurdles to clear before becoming an acceptable choice. We explore the applicability of GPU to geophysics by implementing a three-dimensional, second-order finite-difference model of Rayleigh-Benard thermal convection on an NVIDIA GPU using C for CUDA. Our code reaches sufficient resolution, on the order of 500x500x250 evenly-spaced finite-difference gridpoints, on a single GPU. We make extensive use of highly optimized CUBLAS routines, allowing us to achieve performance on the order of O( 0.1 ) µs per timestep*gridpoint at this resolution. This performance has allowed us to study high Rayleigh number simulations, on the order of 2x10^7, on a single GPU.

  14. Platform for Automated Real-Time High Performance Analytics on Medical Image Data.

    PubMed

    Allen, William J; Gabr, Refaat E; Tefera, Getaneh B; Pednekar, Amol S; Vaughn, Matthew W; Narayana, Ponnada A

    2018-03-01

    Biomedical data are quickly growing in volume and in variety, providing clinicians an opportunity for better clinical decision support. Here, we demonstrate a robust platform that uses software automation and high performance computing (HPC) resources to achieve real-time analytics of clinical data, specifically magnetic resonance imaging (MRI) data. We used the Agave application programming interface to facilitate communication, data transfer, and job control between an MRI scanner and an off-site HPC resource. In this use case, Agave executed the graphical pipeline tool GRAphical Pipeline Environment (GRAPE) to perform automated, real-time, quantitative analysis of MRI scans. Same-session image processing will open the door for adaptive scanning and real-time quality control, potentially accelerating the discovery of pathologies and minimizing patient callbacks. We envision this platform can be adapted to other medical instruments, HPC resources, and analytics tools.

  15. Accessible high performance computing solutions for near real-time image processing for time critical applications

    NASA Astrophysics Data System (ADS)

    Bielski, Conrad; Lemoine, Guido; Syryczynski, Jacek

    2009-09-01

    High Performance Computing (HPC) hardware solutions such as grid computing and General Processing on a Graphics Processing Unit (GPGPU) are now accessible to users with general computing needs. Grid computing infrastructures in the form of computing clusters or blades are becoming common place and GPGPU solutions that leverage the processing power of the video card are quickly being integrated into personal workstations. Our interest in these HPC technologies stems from the need to produce near real-time maps from a combination of pre- and post-event satellite imagery in support of post-disaster management. Faster processing provides a twofold gain in this situation: 1. critical information can be provided faster and 2. more elaborate automated processing can be performed prior to providing the critical information. In our particular case, we test the use of the PANTEX index which is based on analysis of image textural measures extracted using anisotropic, rotation-invariant GLCM statistics. The use of this index, applied in a moving window, has been shown to successfully identify built-up areas in remotely sensed imagery. Built-up index image masks are important input to the structuring of damage assessment interpretation because they help optimise the workload. The performance of computing the PANTEX workflow is compared on two different HPC hardware architectures: (1) a blade server with 4 blades, each having dual quad-core CPUs and (2) a CUDA enabled GPU workstation. The reference platform is a dual CPU-quad core workstation and the PANTEX workflow total computing time is measured. Furthermore, as part of a qualitative evaluation, the differences in setting up and configuring various hardware solutions and the related software coding effort is presented.

  16. IN13B-1660: Analytics and Visualization Pipelines for Big Data on the NASA Earth Exchange (NEX) and OpenNEX

    NASA Technical Reports Server (NTRS)

    Chaudhary, Aashish; Votava, Petr; Nemani, Ramakrishna R.; Michaelis, Andrew; Kotfila, Chris

    2016-01-01

    We are developing capabilities for an integrated petabyte-scale Earth science collaborative analysis and visualization environment. The ultimate goal is to deploy this environment within the NASA Earth Exchange (NEX) and OpenNEX in order to enhance existing science data production pipelines in both high-performance computing (HPC) and cloud environments. Bridging of HPC and cloud is a fairly new concept under active research and this system significantly enhances the ability of the scientific community to accelerate analysis and visualization of Earth science data from NASA missions, model outputs and other sources. We have developed a web-based system that seamlessly interfaces with both high-performance computing (HPC) and cloud environments, providing tools that enable science teams to develop and deploy large-scale analysis, visualization and QA pipelines of both the production process and the data products, and enable sharing results with the community. Our project is developed in several stages each addressing separate challenge - workflow integration, parallel execution in either cloud or HPC environments and big-data analytics or visualization. This work benefits a number of existing and upcoming projects supported by NEX, such as the Web Enabled Landsat Data (WELD), where we are developing a new QA pipeline for the 25PB system.

  17. Analytics and Visualization Pipelines for Big ­Data on the NASA Earth Exchange (NEX) and OpenNEX

    NASA Astrophysics Data System (ADS)

    Chaudhary, A.; Votava, P.; Nemani, R. R.; Michaelis, A.; Kotfila, C.

    2016-12-01

    We are developing capabilities for an integrated petabyte-scale Earth science collaborative analysis and visualization environment. The ultimate goal is to deploy this environment within the NASA Earth Exchange (NEX) and OpenNEX in order to enhance existing science data production pipelines in both high-performance computing (HPC) and cloud environments. Bridging of HPC and cloud is a fairly new concept under active research and this system significantly enhances the ability of the scientific community to accelerate analysis and visualization of Earth science data from NASA missions, model outputs and other sources. We have developed a web-based system that seamlessly interfaces with both high-performance computing (HPC) and cloud environments, providing tools that enable science teams to develop and deploy large-scale analysis, visualization and QA pipelines of both the production process and the data products, and enable sharing results with the community. Our project is developed in several stages each addressing separate challenge - workflow integration, parallel execution in either cloud or HPC environments and big-data analytics or visualization. This work benefits a number of existing and upcoming projects supported by NEX, such as the Web Enabled Landsat Data (WELD), where we are developing a new QA pipeline for the 25PB system.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingerfelt, Eric J; Endeve, Eirik; Hui, Yawei

    Improvements in scientific instrumentation allow imaging at mesoscopic to atomic length scales, many spectroscopic modes, and now--with the rise of multimodal acquisition systems and the associated processing capability--the era of multidimensional, informationally dense data sets has arrived. Technical issues in these combinatorial scientific fields are exacerbated by computational challenges best summarized as a necessity for drastic improvement in the capability to transfer, store, and analyze large volumes of data. The Bellerophon Environment for Analysis of Materials (BEAM) platform provides material scientists the capability to directly leverage the integrated computational and analytical power of High Performance Computing (HPC) to perform scalablemore » data analysis and simulation and manage uploaded data files via an intuitive, cross-platform client user interface. This framework delivers authenticated, "push-button" execution of complex user workflows that deploy data analysis algorithms and computational simulations utilizing compute-and-data cloud infrastructures and HPC environments like Titan at the Oak Ridge Leadershp Computing Facility (OLCF).« less

  19. Time-efficient simulations of tight-binding electronic structures with Intel Xeon PhiTM many-core processors

    NASA Astrophysics Data System (ADS)

    Ryu, Hoon; Jeong, Yosang; Kang, Ji-Hoon; Cho, Kyu Nam

    2016-12-01

    Modelling of multi-million atomic semiconductor structures is important as it not only predicts properties of physically realizable novel materials, but can accelerate advanced device designs. This work elaborates a new Technology-Computer-Aided-Design (TCAD) tool for nanoelectronics modelling, which uses a sp3d5s∗ tight-binding approach to describe multi-million atomic structures, and simulate electronic structures with high performance computing (HPC), including atomic effects such as alloy and dopant disorders. Being named as Quantum simulation tool for Advanced Nanoscale Devices (Q-AND), the tool shows nice scalability on traditional multi-core HPC clusters implying the strong capability of large-scale electronic structure simulations, particularly with remarkable performance enhancement on latest clusters of Intel Xeon PhiTM coprocessors. A review of the recent modelling study conducted to understand an experimental work of highly phosphorus-doped silicon nanowires, is presented to demonstrate the utility of Q-AND. Having been developed via Intel Parallel Computing Center project, Q-AND will be open to public to establish a sound framework of nanoelectronics modelling with advanced HPC clusters of a many-core base. With details of the development methodology and exemplary study of dopant electronics, this work will present a practical guideline for TCAD development to researchers in the field of computational nanoelectronics.

  20. The Design of a High Performance Earth Imagery and Raster Data Management and Processing Platform

    NASA Astrophysics Data System (ADS)

    Xie, Qingyun

    2016-06-01

    This paper summarizes the general requirements and specific characteristics of both geospatial raster database management system and raster data processing platform from a domain-specific perspective as well as from a computing point of view. It also discusses the need of tight integration between the database system and the processing system. These requirements resulted in Oracle Spatial GeoRaster, a global scale and high performance earth imagery and raster data management and processing platform. The rationale, design, implementation, and benefits of Oracle Spatial GeoRaster are described. Basically, as a database management system, GeoRaster defines an integrated raster data model, supports image compression, data manipulation, general and spatial indices, content and context based queries and updates, versioning, concurrency, security, replication, standby, backup and recovery, multitenancy, and ETL. It provides high scalability using computer and storage clustering. As a raster data processing platform, GeoRaster provides basic operations, image processing, raster analytics, and data distribution featuring high performance computing (HPC). Specifically, HPC features include locality computing, concurrent processing, parallel processing, and in-memory computing. In addition, the APIs and the plug-in architecture are discussed.

  1. User-level framework for performance monitoring of HPC applications

    NASA Astrophysics Data System (ADS)

    Hristova, R.; Goranov, G.

    2013-10-01

    HP-SEE is an infrastructure that links the existing HPC facilities in South East Europe in a common infrastructure. The analysis of the performance monitoring of the High-Performance Computing (HPC) applications in the infrastructure can be useful for the end user as diagnostic for the overall performance of his applications. The existing monitoring tools for HP-SEE provide to the end user only aggregated information for all applications. Usually, the user does not have permissions to select only the relevant information for him and for his applications. In this article we present a framework for performance monitoring of the HPC applications in the HP-SEE infrastructure. The framework provides standardized performance metrics, which every user can use in order to monitor his applications. Furthermore as a part of the framework a program interface is developed. The interface allows the user to publish metrics data from his application and to read and analyze gathered information. Publishing and reading through the framework is possible only with grid certificate valid for the infrastructure. Therefore the user is authorized to access only the data for his applications.

  2. Allocation Usage Tracking and Management | High-Performance Computing |

    Science.gov Websites

    NREL's high-performance computing (HPC) systems, learn how to track and manage your allocations. The alloc_tracker script (/usr/local/bin/alloc_tracker) may be used to see what allocations you have access to, how much of the allocation has been used, how much remains and how many node hours will be forfeited at the

  3. Data Services in Support of High Performance Computing-Based Distributed Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Horsburgh, J. S.; Dash, P. K.; Gichamo, T.; Yildirim, A. A.; Jones, N.

    2014-12-01

    We have developed web-based data services to support the application of hydrologic models on High Performance Computing (HPC) systems. The purposes of these services are to provide hydrologic researchers, modelers, water managers, and users access to HPC resources without requiring them to become HPC experts and understanding the intrinsic complexities of the data services, so as to reduce the amount of time and effort spent in finding and organizing the data required to execute hydrologic models and data preprocessing tools on HPC systems. These services address some of the data challenges faced by hydrologic models that strive to take advantage of HPC. Needed data is often not in the form needed by such models, requiring researchers to spend time and effort on data preparation and preprocessing that inhibits or limits the application of these models. Another limitation is the difficult to use batch job control and queuing systems used by HPC systems. We have developed a REST-based gateway application programming interface (API) for authenticated access to HPC systems that abstracts away many of the details that are barriers to HPC use and enhances accessibility from desktop programming and scripting languages such as Python and R. We have used this gateway API to establish software services that support the delineation of watersheds to define a modeling domain, then extract terrain and land use information to automatically configure the inputs required for hydrologic models. These services support the Terrain Analysis Using Digital Elevation Model (TauDEM) tools for watershed delineation and generation of hydrology-based terrain information such as wetness index and stream networks. These services also support the derivation of inputs for the Utah Energy Balance snowmelt model used to address questions such as how climate, land cover and land use change may affect snowmelt inputs to runoff generation. To enhance access to the time varying climate data used to drive hydrologic models, we have developed services to downscale and re-grid nationally available climate analysis data from systems such as NLDAS and MERRA. These cases serve as examples for how this approach can be extended to other models to enhance the use of HPC for hydrologic modeling.

  4. Final Report Extreme Computing and U.S. Competitiveness DOE Award. DE-FG02-11ER26087/DE-SC0008764

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mustain, Christopher J.

    The Council has acted on each of the grant deliverables during the funding period. The deliverables are: (1) convening the Council’s High Performance Computing Advisory Committee (HPCAC) on a bi-annual basis; (2) broadening public awareness of high performance computing (HPC) and exascale developments; (3) assessing the industrial applications of extreme computing; and (4) establishing a policy and business case for an exascale economy.

  5. Role of HPC in Advancing Computational Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2004-01-01

    On behalf of the High Performance Computing and Modernization Program (HPCMP) and NASA Advanced Supercomputing Division (NAS) a study is conducted to assess the role of supercomputers on computational aeroelasticity of aerospace vehicles. The study is mostly based on the responses to a web based questionnaire that was designed to capture the nuances of high performance computational aeroelasticity, particularly on parallel computers. A procedure is presented to assign a fidelity-complexity index to each application. Case studies based on major applications using HPCMP resources are presented.

  6. Coupled hydro-meteorological modelling on a HPC platform for high-resolution extreme weather impact study

    NASA Astrophysics Data System (ADS)

    Zhu, Dehua; Echendu, Shirley; Xuan, Yunqing; Webster, Mike; Cluckie, Ian

    2016-11-01

    Impact-focused studies of extreme weather require coupling of accurate simulations of weather and climate systems and impact-measuring hydrological models which themselves demand larger computer resources. In this paper, we present a preliminary analysis of a high-performance computing (HPC)-based hydrological modelling approach, which is aimed at utilizing and maximizing HPC power resources, to support the study on extreme weather impact due to climate change. Here, four case studies are presented through implementation on the HPC Wales platform of the UK mesoscale meteorological Unified Model (UM) with high-resolution simulation suite UKV, alongside a Linux-based hydrological model, Hydrological Predictions for the Environment (HYPE). The results of this study suggest that the coupled hydro-meteorological model was still able to capture the major flood peaks, compared with the conventional gauge- or radar-driving forecast, but with the added value of much extended forecast lead time. The high-resolution rainfall estimation produced by the UKV performs similarly to that of radar rainfall products in the first 2-3 days of tested flood events, but the uncertainties particularly increased as the forecast horizon goes beyond 3 days. This study takes a step forward to identify how the online mode approach can be used, where both numerical weather prediction and the hydrological model are executed, either simultaneously or on the same hardware infrastructures, so that more effective interaction and communication can be achieved and maintained between the models. But the concluding comments are that running the entire system on a reasonably powerful HPC platform does not yet allow for real-time simulations, even without the most complex and demanding data simulation part.

  7. Development of a HIPAA-compliant environment for translational research data and analytics.

    PubMed

    Bradford, Wayne; Hurdle, John F; LaSalle, Bernie; Facelli, Julio C

    2014-01-01

    High-performance computing centers (HPC) traditionally have far less restrictive privacy management policies than those encountered in healthcare. We show how an HPC can be re-engineered to accommodate clinical data while retaining its utility in computationally intensive tasks such as data mining, machine learning, and statistics. We also discuss deploying protected virtual machines. A critical planning step was to engage the university's information security operations and the information security and privacy office. Access to the environment requires a double authentication mechanism. The first level of authentication requires access to the university's virtual private network and the second requires that the users be listed in the HPC network information service directory. The physical hardware resides in a data center with controlled room access. All employees of the HPC and its users take the university's local Health Insurance Portability and Accountability Act training series. In the first 3 years, researcher count has increased from 6 to 58.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    East, D. R.; Sexton, J.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and IBM TJ Watson Research Center to research, assess feasibility and develop an implementation plan for a High Performance Computing Innovation Center (HPCIC) in the Livermore Valley Open Campus (LVOC). The ultimate goal of this work was to help advance the State of California and U.S. commercial competitiveness in the arena of High Performance Computing (HPC) by accelerating the adoption of computational science solutions, consistent with recent DOE strategy directives. The desired result of this CRADA was a well-researched,more » carefully analyzed market evaluation that would identify those firms in core sectors of the US economy seeking to adopt or expand their use of HPC to become more competitive globally, and to define how those firms could be helped by the HPCIC with IBM as an integral partner.« less

  9. The NCI High Performance Computing (HPC) and High Performance Data (HPD) Platform to Support the Analysis of Petascale Environmental Data Collections

    NASA Astrophysics Data System (ADS)

    Evans, B. J. K.; Pugh, T.; Wyborn, L. A.; Porter, D.; Allen, C.; Smillie, J.; Antony, J.; Trenham, C.; Evans, B. J.; Beckett, D.; Erwin, T.; King, E.; Hodge, J.; Woodcock, R.; Fraser, R.; Lescinsky, D. T.

    2014-12-01

    The National Computational Infrastructure (NCI) has co-located a priority set of national data assets within a HPC research platform. This powerful in-situ computational platform has been created to help serve and analyse the massive amounts of data across the spectrum of environmental collections - in particular the climate, observational data and geoscientific domains. This paper examines the infrastructure, innovation and opportunity for this significant research platform. NCI currently manages nationally significant data collections (10+ PB) categorised as 1) earth system sciences, climate and weather model data assets and products, 2) earth and marine observations and products, 3) geosciences, 4) terrestrial ecosystem, 5) water management and hydrology, and 6) astronomy, social science and biosciences. The data is largely sourced from the NCI partners (who include the custodians of many of the national scientific records), major research communities, and collaborating overseas organisations. By co-locating these large valuable data assets, new opportunities have arisen by harmonising the data collections, making a powerful transdisciplinary research platformThe data is accessible within an integrated HPC-HPD environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large scale and high-bandwidth Lustre filesystems. New scientific software, cloud-scale techniques, server-side visualisation and data services have been harnessed and integrated into the platform, so that analysis is performed seamlessly across the traditional boundaries of the underlying data domains. Characterisation of the techniques along with performance profiling ensures scalability of each software component, all of which can either be enhanced or replaced through future improvements. A Development-to-Operations (DevOps) framework has also been implemented to manage the scale of the software complexity alone. This ensures that software is both upgradable and maintainable, and can be readily reused with complexly integrated systems and become part of the growing global trusted community tools for cross-disciplinary research.

  10. NREL's Building-Integrated Supercomputer Provides Heating and Efficient Computing (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    NREL's Energy Systems Integration Facility (ESIF) is meant to investigate new ways to integrate energy sources so they work together efficiently, and one of the key tools to that investigation, a new supercomputer, is itself a prime example of energy systems integration. NREL teamed with Hewlett-Packard (HP) and Intel to develop the innovative warm-water, liquid-cooled Peregrine supercomputer, which not only operates efficiently but also serves as the primary source of building heat for ESIF offices and laboratories. This innovative high-performance computer (HPC) can perform more than a quadrillion calculations per second as part of the world's most energy-efficient HPC datamore » center.« less

  11. Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Shuangshuang; Chen, Yousu; Wu, Di

    2015-12-09

    Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Messagemore » Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.« less

  12. First experience with particle-in-cell plasma physics code on ARM-based HPC systems

    NASA Astrophysics Data System (ADS)

    Sáez, Xavier; Soba, Alejandro; Sánchez, Edilberto; Mantsinen, Mervi; Mateo, Sergi; Cela, José M.; Castejón, Francisco

    2015-09-01

    In this work, we will explore the feasibility of porting a Particle-in-cell code (EUTERPE) to an ARM multi-core platform from the Mont-Blanc project. The used prototype is based on a system-on-chip Samsung Exynos 5 with an integrated GPU. It is the first prototype that could be used for High-Performance Computing (HPC), since it supports double precision and parallel programming languages.

  13. System Connection via SSH Gateway | High-Performance Computing | NREL

    Science.gov Websites

    ;@peregrine.hpc.nrel.gov First time logging in? If this is the first time you've logged in with your new account, you will password. You will be prompted to enter it a second time, then you will be logged off. Just reconnect with your HPC password at any time, you can simply use the passwd command. Remote Users If you're connecting

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Hameed; Malik, Saif Ur Rehman; Hameed, Abdul

    An efficient resource allocation is a fundamental requirement in high performance computing (HPC) systems. Many projects are dedicated to large-scale distributed computing systems that have designed and developed resource allocation mechanisms with a variety of architectures and services. In our study, through analysis, a comprehensive survey for describing resource allocation in various HPCs is reported. The aim of the work is to aggregate under a joint framework, the existing solutions for HPC to provide a thorough analysis and characteristics of the resource management and allocation strategies. Resource allocation mechanisms and strategies play a vital role towards the performance improvement ofmore » all the HPCs classifications. Therefore, a comprehensive discussion of widely used resource allocation strategies deployed in HPC environment is required, which is one of the motivations of this survey. Moreover, we have classified the HPC systems into three broad categories, namely: (a) cluster, (b) grid, and (c) cloud systems and define the characteristics of each class by extracting sets of common attributes. All of the aforementioned systems are cataloged into pure software and hybrid/hardware solutions. The system classification is used to identify approaches followed by the implementation of existing resource allocation strategies that are widely presented in the literature.« less

  15. VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures

    DOE PAGES

    Moreland, Kenneth; Sewell, Christopher; Usher, William; ...

    2016-05-09

    Here, one of the most critical challenges for high-performance computing (HPC) scientific visualization is execution on massively threaded processors. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Our current production scientific visualization software is not designed for these new types of architectures. To address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.

  16. VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures

    DOE PAGES

    Moreland, Kenneth; Sewell, Christopher; Usher, William; ...

    2016-05-09

    Execution on massively threaded processors is one of the most critical challenges for high-performance computing (HPC) scientific visualization. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Moreover, our current production scientific visualization software is not designed for these new types of architectures. In order to address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.

  17. High-Performance Happy

    ERIC Educational Resources Information Center

    O'Hanlon, Charlene

    2007-01-01

    Traditionally, the high-performance computing (HPC) systems used to conduct research at universities have amounted to silos of technology scattered across the campus and falling under the purview of the researchers themselves. This article reports that a growing number of universities are now taking over the management of those systems and…

  18. New Challenges of the Computation of Multiple Sequence Alignments in the High-Throughput Era (2010 JGI/ANL HPC Workshop)

    ScienceCinema

    Notredame, Cedric

    2018-05-02

    Cedric Notredame from the Centre for Genomic Regulation gives a presentation on New Challenges of the Computation of Multiple Sequence Alignments in the High-Throughput Era at the JGI/Argonne HPC Workshop on January 26, 2010.

  19. Computational Environments and Analysis methods available on the NCI High Performance Computing (HPC) and High Performance Data (HPD) Platform

    NASA Astrophysics Data System (ADS)

    Evans, B. J. K.; Foster, C.; Minchin, S. A.; Pugh, T.; Lewis, A.; Wyborn, L. A.; Evans, B. J.; Uhlherr, A.

    2014-12-01

    The National Computational Infrastructure (NCI) has established a powerful in-situ computational environment to enable both high performance computing and data-intensive science across a wide spectrum of national environmental data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress in addressing harmonisation of the underlying data collections for future transdisciplinary research that enable accurate climate projections. NCI makes available 10+ PB major data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the national scientific records), major research communities, and collaborating overseas organisations. The data is accessible within an integrated HPC-HPD environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large scale and high-bandwidth Lustre filesystems. This computational environment supports a catalogue of integrated reusable software and workflows from earth system and ecosystem modelling, weather research, satellite and other observed data processing and analysis. To enable transdisciplinary research on this scale, data needs to be harmonised so that researchers can readily apply techniques and software across the corpus of data available and not be constrained to work within artificial disciplinary boundaries. Future challenges will involve the further integration and analysis of this data across the social sciences to facilitate the impacts across the societal domain, including timely analysis to more accurately predict and forecast future climate and environmental state.

  20. A framework for graph-based synthesis, analysis, and visualization of HPC cluster job data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, Jackson R.; Kegelmeyer, W. Philip, Jr.; Wong, Matthew H.

    The monitoring and system analysis of high performance computing (HPC) clusters is of increasing importance to the HPC community. Analysis of HPC job data can be used to characterize system usage and diagnose and examine failure modes and their effects. This analysis is not straightforward, however, due to the complex relationships that exist between jobs. These relationships are based on a number of factors, including shared compute nodes between jobs, proximity of jobs in time, etc. Graph-based techniques represent an approach that is particularly well suited to this problem, and provide an effective technique for discovering important relationships in jobmore » queuing and execution data. The efficacy of these techniques is rooted in the use of a semantic graph as a knowledge representation tool. In a semantic graph job data, represented in a combination of numerical and textual forms, can be flexibly processed into edges, with corresponding weights, expressing relationships between jobs, nodes, users, and other relevant entities. This graph-based representation permits formal manipulation by a number of analysis algorithms. This report presents a methodology and software implementation that leverages semantic graph-based techniques for the system-level monitoring and analysis of HPC clusters based on job queuing and execution data. Ontology development and graph synthesis is discussed with respect to the domain of HPC job data. The framework developed automates the synthesis of graphs from a database of job information. It also provides a front end, enabling visualization of the synthesized graphs. Additionally, an analysis engine is incorporated that provides performance analysis, graph-based clustering, and failure prediction capabilities for HPC systems.« less

  1. Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges.

    PubMed

    Yin, Zekun; Lan, Haidong; Tan, Guangming; Lu, Mian; Vasilakos, Athanasios V; Liu, Weiguo

    2017-01-01

    The last decade has witnessed an explosion in the amount of available biological sequence data, due to the rapid progress of high-throughput sequencing projects. However, the biological data amount is becoming so great that traditional data analysis platforms and methods can no longer meet the need to rapidly perform data analysis tasks in life sciences. As a result, both biologists and computer scientists are facing the challenge of gaining a profound insight into the deepest biological functions from big biological data. This in turn requires massive computational resources. Therefore, high performance computing (HPC) platforms are highly needed as well as efficient and scalable algorithms that can take advantage of these platforms. In this paper, we survey the state-of-the-art HPC platforms for big biological data analytics. We first list the characteristics of big biological data and popular computing platforms. Then we provide a taxonomy of different biological data analysis applications and a survey of the way they have been mapped onto various computing platforms. After that, we present a case study to compare the efficiency of different computing platforms for handling the classical biological sequence alignment problem. At last we discuss the open issues in big biological data analytics.

  2. Playable Serious Games for Studying and Programming Computational STEM and Informatics Applications of Distributed and Parallel Computer Architectures

    ERIC Educational Resources Information Center

    Amenyo, John-Thones

    2012-01-01

    Carefully engineered playable games can serve as vehicles for students and practitioners to learn and explore the programming of advanced computer architectures to execute applications, such as high performance computing (HPC) and complex, inter-networked, distributed systems. The article presents families of playable games that are grounded in…

  3. RELIABILITY, AVAILABILITY, AND SERVICEABILITY FOR PETASCALE HIGH-END COMPUTING AND BEYOND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chokchai "Box" Leangsuksun

    2011-05-31

    Our project is a multi-institutional research effort that adopts interplay of RELIABILITY, AVAILABILITY, and SERVICEABILITY (RAS) aspects for solving resilience issues in highend scientific computing in the next generation of supercomputers. results lie in the following tracks: Failure prediction in a large scale HPC; Investigate reliability issues and mitigation techniques including in GPGPU-based HPC system; HPC resilience runtime & tools.

  4. Opportunities for nonvolatile memory systems in extreme-scale high-performance computing

    DOE PAGES

    Vetter, Jeffrey S.; Mittal, Sparsh

    2015-01-12

    For extreme-scale high-performance computing systems, system-wide power consumption has been identified as one of the key constraints moving forward, where DRAM main memory systems account for about 30 to 50 percent of a node's overall power consumption. As the benefits of device scaling for DRAM memory slow, it will become increasingly difficult to keep memory capacities balanced with increasing computational rates offered by next-generation processors. However, several emerging memory technologies related to nonvolatile memory (NVM) devices are being investigated as an alternative for DRAM. Moving forward, NVM devices could offer solutions for HPC architectures. Researchers are investigating how to integratemore » these emerging technologies into future extreme-scale HPC systems and how to expose these capabilities in the software stack and applications. In addition, current results show several of these strategies could offer high-bandwidth I/O, larger main memory capacities, persistent data structures, and new approaches for application resilience and output postprocessing, such as transaction-based incremental checkpointing and in situ visualization, respectively.« less

  5. [Design and study of parallel computing environment of Monte Carlo simulation for particle therapy planning using a public cloud-computing infrastructure].

    PubMed

    Yokohama, Noriya

    2013-07-01

    This report was aimed at structuring the design of architectures and studying performance measurement of a parallel computing environment using a Monte Carlo simulation for particle therapy using a high performance computing (HPC) instance within a public cloud-computing infrastructure. Performance measurements showed an approximately 28 times faster speed than seen with single-thread architecture, combined with improved stability. A study of methods of optimizing the system operations also indicated lower cost.

  6. Exploiting Parallel R in the Cloud with SPRINT

    PubMed Central

    Piotrowski, M.; McGilvary, G.A.; Sloan, T. M.; Mewissen, M.; Lloyd, A.D.; Forster, T.; Mitchell, L.; Ghazal, P.; Hill, J.

    2012-01-01

    Background Advances in DNA Microarray devices and next-generation massively parallel DNA sequencing platforms have led to an exponential growth in data availability but the arising opportunities require adequate computing resources. High Performance Computing (HPC) in the Cloud offers an affordable way of meeting this need. Objectives Bioconductor, a popular tool for high-throughput genomic data analysis, is distributed as add-on modules for the R statistical programming language but R has no native capabilities for exploiting multi-processor architectures. SPRINT is an R package that enables easy access to HPC for genomics researchers. This paper investigates: setting up and running SPRINT-enabled genomic analyses on Amazon’s Elastic Compute Cloud (EC2), the advantages of submitting applications to EC2 from different parts of the world and, if resource underutilization can improve application performance. Methods The SPRINT parallel implementations of correlation, permutation testing, partitioning around medoids and the multi-purpose papply have been benchmarked on data sets of various size on Amazon EC2. Jobs have been submitted from both the UK and Thailand to investigate monetary differences. Results It is possible to obtain good, scalable performance but the level of improvement is dependent upon the nature of algorithm. Resource underutilization can further improve the time to result. End-user’s location impacts on costs due to factors such as local taxation. Conclusions: Although not designed to satisfy HPC requirements, Amazon EC2 and cloud computing in general provides an interesting alternative and provides new possibilities for smaller organisations with limited funds. PMID:23223611

  7. Exploiting parallel R in the cloud with SPRINT.

    PubMed

    Piotrowski, M; McGilvary, G A; Sloan, T M; Mewissen, M; Lloyd, A D; Forster, T; Mitchell, L; Ghazal, P; Hill, J

    2013-01-01

    Advances in DNA Microarray devices and next-generation massively parallel DNA sequencing platforms have led to an exponential growth in data availability but the arising opportunities require adequate computing resources. High Performance Computing (HPC) in the Cloud offers an affordable way of meeting this need. Bioconductor, a popular tool for high-throughput genomic data analysis, is distributed as add-on modules for the R statistical programming language but R has no native capabilities for exploiting multi-processor architectures. SPRINT is an R package that enables easy access to HPC for genomics researchers. This paper investigates: setting up and running SPRINT-enabled genomic analyses on Amazon's Elastic Compute Cloud (EC2), the advantages of submitting applications to EC2 from different parts of the world and, if resource underutilization can improve application performance. The SPRINT parallel implementations of correlation, permutation testing, partitioning around medoids and the multi-purpose papply have been benchmarked on data sets of various size on Amazon EC2. Jobs have been submitted from both the UK and Thailand to investigate monetary differences. It is possible to obtain good, scalable performance but the level of improvement is dependent upon the nature of the algorithm. Resource underutilization can further improve the time to result. End-user's location impacts on costs due to factors such as local taxation. Although not designed to satisfy HPC requirements, Amazon EC2 and cloud computing in general provides an interesting alternative and provides new possibilities for smaller organisations with limited funds.

  8. NCI's High Performance Computing (HPC) and High Performance Data (HPD) Computing Platform for Environmental and Earth System Data Science

    NASA Astrophysics Data System (ADS)

    Evans, Ben; Allen, Chris; Antony, Joseph; Bastrakova, Irina; Gohar, Kashif; Porter, David; Pugh, Tim; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2015-04-01

    The National Computational Infrastructure (NCI) has established a powerful and flexible in-situ petascale computational environment to enable both high performance computing and Data-intensive Science across a wide spectrum of national environmental and earth science data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress so far to harmonise the underlying data collections for future interdisciplinary research across these large volume data collections. NCI has established 10+ PBytes of major national and international data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the major Australian national-scale scientific collections), leading research communities, and collaborating overseas organisations. New infrastructures created at NCI mean the data collections are now accessible within an integrated High Performance Computing and Data (HPC-HPD) environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large-scale high-bandwidth Lustre filesystems. The hardware was designed at inception to ensure that it would allow the layered software environment to flexibly accommodate the advancement of future data science. New approaches to software technology and data models have also had to be developed to enable access to these large and exponentially increasing data volumes at NCI. Traditional HPC and data environments are still made available in a way that flexibly provides the tools, services and supporting software systems on these new petascale infrastructures. But to enable the research to take place at this scale, the data, metadata and software now need to evolve together - creating a new integrated high performance infrastructure. The new infrastructure at NCI currently supports a catalogue of integrated, reusable software and workflows from earth system and ecosystem modelling, weather research, satellite and other observed data processing and analysis. One of the challenges for NCI has been to support existing techniques and methods, while carefully preparing the underlying infrastructure for the transition needed for the next class of Data-intensive Science. In doing so, a flexible range of techniques and software can be made available for application across the corpus of data collections available, and to provide a new infrastructure for future interdisciplinary research.

  9. Data Provenance Hybridization Supporting Extreme-Scale Scientific WorkflowApplications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsethagen, Todd O.; Stephan, Eric G.; Raju, Bibi

    As high performance computing (HPC) infrastructures continue to grow in capability and complexity, so do the applications that they serve. HPC and distributed-area computing (DAC) (e.g. grid and cloud) users are looking increasingly toward workflow solutions to orchestrate their complex application coupling, pre- and post-processing needs To gain insight and a more quantitative understanding of a workflow’s performance our method includes not only the capture of traditional provenance information, but also the capture and integration of system environment metrics helping to give context and explanation for a workflow’s execution. In this paper, we describe IPPD’s provenance management solution (ProvEn) andmore » its hybrid data store combining both of these data provenance perspectives.« less

  10. Leveraging the Power of High Performance Computing for Next Generation Sequencing Data Analysis: Tricks and Twists from a High Throughput Exome Workflow

    PubMed Central

    Wonczak, Stephan; Thiele, Holger; Nieroda, Lech; Jabbari, Kamel; Borowski, Stefan; Sinha, Vishal; Gunia, Wilfried; Lang, Ulrich; Achter, Viktor; Nürnberg, Peter

    2015-01-01

    Next generation sequencing (NGS) has been a great success and is now a standard method of research in the life sciences. With this technology, dozens of whole genomes or hundreds of exomes can be sequenced in rather short time, producing huge amounts of data. Complex bioinformatics analyses are required to turn these data into scientific findings. In order to run these analyses fast, automated workflows implemented on high performance computers are state of the art. While providing sufficient compute power and storage to meet the NGS data challenge, high performance computing (HPC) systems require special care when utilized for high throughput processing. This is especially true if the HPC system is shared by different users. Here, stability, robustness and maintainability are as important for automated workflows as speed and throughput. To achieve all of these aims, dedicated solutions have to be developed. In this paper, we present the tricks and twists that we utilized in the implementation of our exome data processing workflow. It may serve as a guideline for other high throughput data analysis projects using a similar infrastructure. The code implementing our solutions is provided in the supporting information files. PMID:25942438

  11. The Use of High Performance Computing (HPC) to Strengthen the Development of Army Systems

    DTIC Science & Technology

    2011-11-01

    accurately predicting the supersonic magus effect about spinning cones, ogive- cylinders , and boat-tailed afterbodies. This work led to the successful...successful computer model of the proposed product or system, one can then build prototypes on the computer and study the effects on the performance of...needed. The NRC report discusses the requirements for effective use of such computing power. One needs “models, algorithms, software, hardware

  12. Personalized cloud-based bioinformatics services for research and education: use cases and the elasticHPC package

    PubMed Central

    2012-01-01

    Background Bioinformatics services have been traditionally provided in the form of a web-server that is hosted at institutional infrastructure and serves multiple users. This model, however, is not flexible enough to cope with the increasing number of users, increasing data size, and new requirements in terms of speed and availability of service. The advent of cloud computing suggests a new service model that provides an efficient solution to these problems, based on the concepts of "resources-on-demand" and "pay-as-you-go". However, cloud computing has not yet been introduced within bioinformatics servers due to the lack of usage scenarios and software layers that address the requirements of the bioinformatics domain. Results In this paper, we provide different use case scenarios for providing cloud computing based services, considering both the technical and financial aspects of the cloud computing service model. These scenarios are for individual users seeking computational power as well as bioinformatics service providers aiming at provision of personalized bioinformatics services to their users. We also present elasticHPC, a software package and a library that facilitates the use of high performance cloud computing resources in general and the implementation of the suggested bioinformatics scenarios in particular. Concrete examples that demonstrate the suggested use case scenarios with whole bioinformatics servers and major sequence analysis tools like BLAST are presented. Experimental results with large datasets are also included to show the advantages of the cloud model. Conclusions Our use case scenarios and the elasticHPC package are steps towards the provision of cloud based bioinformatics services, which would help in overcoming the data challenge of recent biological research. All resources related to elasticHPC and its web-interface are available at http://www.elasticHPC.org. PMID:23281941

  13. Personalized cloud-based bioinformatics services for research and education: use cases and the elasticHPC package.

    PubMed

    El-Kalioby, Mohamed; Abouelhoda, Mohamed; Krüger, Jan; Giegerich, Robert; Sczyrba, Alexander; Wall, Dennis P; Tonellato, Peter

    2012-01-01

    Bioinformatics services have been traditionally provided in the form of a web-server that is hosted at institutional infrastructure and serves multiple users. This model, however, is not flexible enough to cope with the increasing number of users, increasing data size, and new requirements in terms of speed and availability of service. The advent of cloud computing suggests a new service model that provides an efficient solution to these problems, based on the concepts of "resources-on-demand" and "pay-as-you-go". However, cloud computing has not yet been introduced within bioinformatics servers due to the lack of usage scenarios and software layers that address the requirements of the bioinformatics domain. In this paper, we provide different use case scenarios for providing cloud computing based services, considering both the technical and financial aspects of the cloud computing service model. These scenarios are for individual users seeking computational power as well as bioinformatics service providers aiming at provision of personalized bioinformatics services to their users. We also present elasticHPC, a software package and a library that facilitates the use of high performance cloud computing resources in general and the implementation of the suggested bioinformatics scenarios in particular. Concrete examples that demonstrate the suggested use case scenarios with whole bioinformatics servers and major sequence analysis tools like BLAST are presented. Experimental results with large datasets are also included to show the advantages of the cloud model. Our use case scenarios and the elasticHPC package are steps towards the provision of cloud based bioinformatics services, which would help in overcoming the data challenge of recent biological research. All resources related to elasticHPC and its web-interface are available at http://www.elasticHPC.org.

  14. Bioinformatics and Astrophysics Cluster (BinAc)

    NASA Astrophysics Data System (ADS)

    Krüger, Jens; Lutz, Volker; Bartusch, Felix; Dilling, Werner; Gorska, Anna; Schäfer, Christoph; Walter, Thomas

    2017-09-01

    BinAC provides central high performance computing capacities for bioinformaticians and astrophysicists from the state of Baden-Württemberg. The bwForCluster BinAC is part of the implementation concept for scientific computing for the universities in Baden-Württemberg. Community specific support is offered through the bwHPC-C5 project.

  15. Enabling parallel simulation of large-scale HPC network systems

    DOE PAGES

    Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.; ...

    2016-04-07

    Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks usedmore » in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations« less

  16. Enabling parallel simulation of large-scale HPC network systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.

    Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks usedmore » in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations« less

  17. Performance of high performance concrete (HPC) in low pH and sulfate environment : [technical summary].

    DOT National Transportation Integrated Search

    2013-01-01

    High-performance concrete (HPC) refers to any concrete formulation with enhanced characteristics, compared to normal concrete. One might think this refers to strength, but in Florida, the HPC standard emphasizes withstanding aggressive environments, ...

  18. OCCAM: a flexible, multi-purpose and extendable HPC cluster

    NASA Astrophysics Data System (ADS)

    Aldinucci, M.; Bagnasco, S.; Lusso, S.; Pasteris, P.; Rabellino, S.; Vallero, S.

    2017-10-01

    The Open Computing Cluster for Advanced data Manipulation (OCCAM) is a multipurpose flexible HPC cluster designed and operated by a collaboration between the University of Torino and the Sezione di Torino of the Istituto Nazionale di Fisica Nucleare. It is aimed at providing a flexible, reconfigurable and extendable infrastructure to cater to a wide range of different scientific computing use cases, including ones from solid-state chemistry, high-energy physics, computer science, big data analytics, computational biology, genomics and many others. Furthermore, it will serve as a platform for R&D activities on computational technologies themselves, with topics ranging from GPU acceleration to Cloud Computing technologies. A heterogeneous and reconfigurable system like this poses a number of challenges related to the frequency at which heterogeneous hardware resources might change their availability and shareability status, which in turn affect methods and means to allocate, manage, optimize, bill, monitor VMs, containers, virtual farms, jobs, interactive bare-metal sessions, etc. This work describes some of the use cases that prompted the design and construction of the HPC cluster, its architecture and resource provisioning model, along with a first characterization of its performance by some synthetic benchmark tools and a few realistic use-case tests.

  19. Exploring the capabilities of support vector machines in detecting silent data corruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subasi, Omer; Di, Sheng; Bautista-Gomez, Leonardo

    As the exascale era approaches, the increasing capacity of high-performance computing (HPC) systems with targeted power and energy budget goals introduces significant challenges in reliability. Silent data corruptions (SDCs), or silent errors, are one of the major sources that corrupt the execution results of HPC applications without being detected. Here in this paper, we explore a set of novel SDC detectors – by leveraging epsilon-insensitive support vector machine regression – to detect SDCs that occur in HPC applications. The key contributions are threefold. (1) Our exploration takes temporal, spatial, and spatiotemporal features into account and analyzes different detectors based onmore » different features. (2) We provide an in-depth study on the detection ability and performance with different parameters, and we optimize the detection range carefully. (3) Experiments with eight real-world HPC applications show that support-vector-machine-based detectors can achieve detection sensitivity (i.e., recall) up to 99% yet suffer a less than 1% false positive rate for most cases. Our detectors incur low performance overhead, 5% on average, for all benchmarks studied in this work.« less

  20. Exploring the capabilities of support vector machines in detecting silent data corruptions

    DOE PAGES

    Subasi, Omer; Di, Sheng; Bautista-Gomez, Leonardo; ...

    2018-02-01

    As the exascale era approaches, the increasing capacity of high-performance computing (HPC) systems with targeted power and energy budget goals introduces significant challenges in reliability. Silent data corruptions (SDCs), or silent errors, are one of the major sources that corrupt the execution results of HPC applications without being detected. Here in this paper, we explore a set of novel SDC detectors – by leveraging epsilon-insensitive support vector machine regression – to detect SDCs that occur in HPC applications. The key contributions are threefold. (1) Our exploration takes temporal, spatial, and spatiotemporal features into account and analyzes different detectors based onmore » different features. (2) We provide an in-depth study on the detection ability and performance with different parameters, and we optimize the detection range carefully. (3) Experiments with eight real-world HPC applications show that support-vector-machine-based detectors can achieve detection sensitivity (i.e., recall) up to 99% yet suffer a less than 1% false positive rate for most cases. Our detectors incur low performance overhead, 5% on average, for all benchmarks studied in this work.« less

  1. PerSEUS: Ultra-Low-Power High Performance Computing for Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Doxas, I.; Andreou, A.; Lyon, J.; Angelopoulos, V.; Lu, S.; Pritchett, P. L.

    2017-12-01

    Peta-op SupErcomputing Unconventional System (PerSEUS) aims to explore the use for High Performance Scientific Computing (HPC) of ultra-low-power mixed signal unconventional computational elements developed by Johns Hopkins University (JHU), and demonstrate that capability on both fluid and particle Plasma codes. We will describe the JHU Mixed-signal Unconventional Supercomputing Elements (MUSE), and report initial results for the Lyon-Fedder-Mobarry (LFM) global magnetospheric MHD code, and a UCLA general purpose relativistic Particle-In-Cell (PIC) code.

  2. A Framework for Debugging Geoscience Projects in a High Performance Computing Environment

    NASA Astrophysics Data System (ADS)

    Baxter, C.; Matott, L.

    2012-12-01

    High performance computing (HPC) infrastructure has become ubiquitous in today's world with the emergence of commercial cloud computing and academic supercomputing centers. Teams of geoscientists, hydrologists and engineers can take advantage of this infrastructure to undertake large research projects - for example, linking one or more site-specific environmental models with soft computing algorithms, such as heuristic global search procedures, to perform parameter estimation and predictive uncertainty analysis, and/or design least-cost remediation systems. However, the size, complexity and distributed nature of these projects can make identifying failures in the associated numerical experiments using conventional ad-hoc approaches both time- consuming and ineffective. To address these problems a multi-tiered debugging framework has been developed. The framework allows for quickly isolating and remedying a number of potential experimental failures, including: failures in the HPC scheduler; bugs in the soft computing code; bugs in the modeling code; and permissions and access control errors. The utility of the framework is demonstrated via application to a series of over 200,000 numerical experiments involving a suite of 5 heuristic global search algorithms and 15 mathematical test functions serving as cheap analogues for the simulation-based optimization of pump-and-treat subsurface remediation systems.

  3. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Transport Protocol (Transmission Control Protocol/User Datagram Protocol [TCP/UDP]) Analysis

    DTIC Science & Technology

    2015-09-01

    the network Mac8 Medium Access Control ( Mac ) (Ethernet) address observed as destination for outgoing packets subsessionid8 Zero-based index of...15. SUBJECT TERMS tactical networks, data reduction, high-performance computing, data analysis, big data 16. SECURITY CLASSIFICATION OF: 17...Integer index of row cts_deid Device (instrument) Identifier where observation took place cts_collpt Collection point or logical observation point on

  4. Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers

    NASA Astrophysics Data System (ADS)

    Dreher, Patrick; Scullin, William; Vouk, Mladen

    2015-09-01

    Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers.

  5. Use of Massive Parallel Computing Libraries in the Context of Global Gravity Field Determination from Satellite Data

    NASA Astrophysics Data System (ADS)

    Brockmann, J. M.; Schuh, W.-D.

    2011-07-01

    The estimation of the global Earth's gravity field parametrized as a finite spherical harmonic series is computationally demanding. The computational effort depends on the one hand on the maximal resolution of the spherical harmonic expansion (i.e. the number of parameters to be estimated) and on the other hand on the number of observations (which are several millions for e.g. observations from the GOCE satellite missions). To circumvent these restrictions, a massive parallel software based on high-performance computing (HPC) libraries as ScaLAPACK, PBLAS and BLACS was designed in the context of GOCE HPF WP6000 and the GOCO consortium. A prerequisite for the use of these libraries is that all matrices are block-cyclic distributed on a processor grid comprised by a large number of (distributed memory) computers. Using this set of standard HPC libraries has the benefit that once the matrices are distributed across the computer cluster, a huge set of efficient and highly scalable linear algebra operations can be used.

  6. High Performance Computing Operations Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cupps, Kimberly C.

    2013-12-19

    The High Performance Computing Operations Review (HPCOR) meeting—requested by the ASC and ASCR program headquarters at DOE—was held November 5 and 6, 2013, at the Marriott Hotel in San Francisco, CA. The purpose of the review was to discuss the processes and practices for HPC integration and its related software and facilities. Experiences and lessons learned from the most recent systems deployed were covered in order to benefit the deployment of new systems.

  7. Clearing your Desk! Software and Data Services for Collaborative Web Based GIS Analysis

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D. P.; Goodall, J. L.; Band, L. E.; Merwade, V.; Couch, A.; Hooper, R. P.; Maidment, D. R.; Dash, P. K.; Stealey, M.; Yi, H.; Gan, T.; Gichamo, T.; Yildirim, A. A.; Liu, Y.

    2015-12-01

    Can your desktop computer crunch the large GIS datasets that are becoming increasingly common across the geosciences? Do you have access to or the know-how to take advantage of advanced high performance computing (HPC) capability? Web based cyberinfrastructure takes work off your desk or laptop computer and onto infrastructure or "cloud" based data and processing servers. This talk will describe the HydroShare collaborative environment and web based services being developed to support the sharing and processing of hydrologic data and models. HydroShare supports the upload, storage, and sharing of a broad class of hydrologic data including time series, geographic features and raster datasets, multidimensional space-time data, and other structured collections of data. Web service tools and a Python client library provide researchers with access to HPC resources without requiring them to become HPC experts. This reduces the time and effort spent in finding and organizing the data required to prepare the inputs for hydrologic models and facilitates the management of online data and execution of models on HPC systems. This presentation will illustrate the use of web based data and computation services from both the browser and desktop client software. These web-based services implement the Terrain Analysis Using Digital Elevation Model (TauDEM) tools for watershed delineation, generation of hydrology-based terrain information, and preparation of hydrologic model inputs. They allow users to develop scripts on their desktop computer that call analytical functions that are executed completely in the cloud, on HPC resources using input datasets stored in the cloud, without installing specialized software, learning how to use HPC, or transferring large datasets back to the user's desktop. These cases serve as examples for how this approach can be extended to other models to enhance the use of web and data services in the geosciences.

  8. Towards Cloud-based Asynchronous Elasticity for Iterative HPC Applications

    NASA Astrophysics Data System (ADS)

    da Rosa Righi, Rodrigo; Facco Rodrigues, Vinicius; André da Costa, Cristiano; Kreutz, Diego; Heiss, Hans-Ulrich

    2015-10-01

    Elasticity is one of the key features of cloud computing. It allows applications to dynamically scale computing and storage resources, avoiding over- and under-provisioning. In high performance computing (HPC), initiatives are normally modeled to handle bag-of-tasks or key-value applications through a load balancer and a loosely-coupled set of virtual machine (VM) instances. In the joint-field of Message Passing Interface (MPI) and tightly-coupled HPC applications, we observe the need of rewriting source codes, previous knowledge of the application and/or stop-reconfigure-and-go approaches to address cloud elasticity. Besides, there are problems related to how profit this new feature in the HPC scope, since in MPI 2.0 applications the programmers need to handle communicators by themselves, and a sudden consolidation of a VM, together with a process, can compromise the entire execution. To address these issues, we propose a PaaS-based elasticity model, named AutoElastic. It acts as a middleware that allows iterative HPC applications to take advantage of dynamic resource provisioning of cloud infrastructures without any major modification. AutoElastic provides a new concept denoted here as asynchronous elasticity, i.e., it provides a framework to allow applications to either increase or decrease their computing resources without blocking the current execution. The feasibility of AutoElastic is demonstrated through a prototype that runs a CPU-bound numerical integration application on top of the OpenNebula middleware. The results showed the saving of about 3 min at each scaling out operations, emphasizing the contribution of the new concept on contexts where seconds are precious.

  9. An interactive physics-based unmanned ground vehicle simulator leveraging open source gaming technology: progress in the development and application of the virtual autonomous navigation environment (VANE) desktop

    NASA Astrophysics Data System (ADS)

    Rohde, Mitchell M.; Crawford, Justin; Toschlog, Matthew; Iagnemma, Karl D.; Kewlani, Guarav; Cummins, Christopher L.; Jones, Randolph A.; Horner, David A.

    2009-05-01

    It is widely recognized that simulation is pivotal to vehicle development, whether manned or unmanned. There are few dedicated choices, however, for those wishing to perform realistic, end-to-end simulations of unmanned ground vehicles (UGVs). The Virtual Autonomous Navigation Environment (VANE), under development by US Army Engineer Research and Development Center (ERDC), provides such capabilities but utilizes a High Performance Computing (HPC) Computational Testbed (CTB) and is not intended for on-line, real-time performance. A product of the VANE HPC research is a real-time desktop simulation application under development by the authors that provides a portal into the HPC environment as well as interaction with wider-scope semi-automated force simulations (e.g. OneSAF). This VANE desktop application, dubbed the Autonomous Navigation Virtual Environment Laboratory (ANVEL), enables analysis and testing of autonomous vehicle dynamics and terrain/obstacle interaction in real-time with the capability to interact within the HPC constructive geo-environmental CTB for high fidelity sensor evaluations. ANVEL leverages rigorous physics-based vehicle and vehicle-terrain interaction models in conjunction with high-quality, multimedia visualization techniques to form an intuitive, accurate engineering tool. The system provides an adaptable and customizable simulation platform that allows developers a controlled, repeatable testbed for advanced simulations. ANVEL leverages several key technologies not common to traditional engineering simulators, including techniques from the commercial video-game industry. These enable ANVEL to run on inexpensive commercial, off-the-shelf (COTS) hardware. In this paper, the authors describe key aspects of ANVEL and its development, as well as several initial applications of the system.

  10. Secure Enclaves: An Isolation-centric Approach for Creating Secure High Performance Computing Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aderholdt, Ferrol; Caldwell, Blake A.; Hicks, Susan Elaine

    High performance computing environments are often used for a wide variety of workloads ranging from simulation, data transformation and analysis, and complex workflows to name just a few. These systems may process data at various security levels but in so doing are often enclaved at the highest security posture. This approach places significant restrictions on the users of the system even when processing data at a lower security level and exposes data at higher levels of confidentiality to a much broader population than otherwise necessary. The traditional approach of isolation, while effective in establishing security enclaves poses significant challenges formore » the use of shared infrastructure in HPC environments. This report details current state-of-the-art in virtualization, reconfigurable network enclaving via Software Defined Networking (SDN), and storage architectures and bridging techniques for creating secure enclaves in HPC environments.« less

  11. Distributed Accounting on the Grid

    NASA Technical Reports Server (NTRS)

    Thigpen, William; Hacker, Thomas J.; McGinnis, Laura F.; Athey, Brian D.

    2001-01-01

    By the late 1990s, the Internet was adequately equipped to move vast amounts of data between HPC (High Performance Computing) systems, and efforts were initiated to link together the national infrastructure of high performance computational and data storage resources together into a general computational utility 'grid', analogous to the national electrical power grid infrastructure. The purpose of the Computational grid is to provide dependable, consistent, pervasive, and inexpensive access to computational resources for the computing community in the form of a computing utility. This paper presents a fully distributed view of Grid usage accounting and a methodology for allocating Grid computational resources for use on a Grid computing system.

  12. FLAME: A platform for high performance computing of complex systems, applied for three case studies

    DOE PAGES

    Kiran, Mariam; Bicak, Mesude; Maleki-Dizaji, Saeedeh; ...

    2011-01-01

    FLAME allows complex models to be automatically parallelised on High Performance Computing (HPC) grids enabling large number of agents to be simulated over short periods of time. Modellers are hindered by complexities of porting models on parallel platforms and time taken to run large simulations on a single machine, which FLAME overcomes. Three case studies from different disciplines were modelled using FLAME, and are presented along with their performance results on a grid.

  13. Performance Analysis Tool for HPC and Big Data Applications on Scientific Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wucherl; Koo, Michelle; Cao, Yu

    Big data is prevalent in HPC computing. Many HPC projects rely on complex workflows to analyze terabytes or petabytes of data. These workflows often require running over thousands of CPU cores and performing simultaneous data accesses, data movements, and computation. It is challenging to analyze the performance involving terabytes or petabytes of workflow data or measurement data of the executions, from complex workflows over a large number of nodes and multiple parallel task executions. To help identify performance bottlenecks or debug the performance issues in large-scale scientific applications and scientific clusters, we have developed a performance analysis framework, using state-ofthe-more » art open-source big data processing tools. Our tool can ingest system logs and application performance measurements to extract key performance features, and apply the most sophisticated statistical tools and data mining methods on the performance data. It utilizes an efficient data processing engine to allow users to interactively analyze a large amount of different types of logs and measurements. To illustrate the functionality of the big data analysis framework, we conduct case studies on the workflows from an astronomy project known as the Palomar Transient Factory (PTF) and the job logs from the genome analysis scientific cluster. Our study processed many terabytes of system logs and application performance measurements collected on the HPC systems at NERSC. The implementation of our tool is generic enough to be used for analyzing the performance of other HPC systems and Big Data workows.« less

  14. Running R Statistical Computing Environment Software on the Peregrine

    Science.gov Websites

    for the development of new statistical methodologies and enjoys a large user base. Please consult the distribution details. Natural language support but running in an English locale R is a collaborative project programming paradigms to better leverage modern HPC systems. The CRAN task view for High Performance Computing

  15. Large-scale optimization-based non-negative computational framework for diffusion equations: Parallel implementation and performance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.

    It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less

  16. Large-scale optimization-based non-negative computational framework for diffusion equations: Parallel implementation and performance studies

    DOE PAGES

    Chang, Justin; Karra, Satish; Nakshatrala, Kalyana B.

    2016-07-26

    It is well-known that the standard Galerkin formulation, which is often the formulation of choice under the finite element method for solving self-adjoint diffusion equations, does not meet maximum principles and the non-negative constraint for anisotropic diffusion equations. Recently, optimization-based methodologies that satisfy maximum principles and the non-negative constraint for steady-state and transient diffusion-type equations have been proposed. To date, these methodologies have been tested only on small-scale academic problems. The purpose of this paper is to systematically study the performance of the non-negative methodology in the context of high performance computing (HPC). PETSc and TAO libraries are, respectively, usedmore » for the parallel environment and optimization solvers. For large-scale problems, it is important for computational scientists to understand the computational performance of current algorithms available in these scientific libraries. The numerical experiments are conducted on the state-of-the-art HPC systems, and a single-core performance model is used to better characterize the efficiency of the solvers. Furthermore, our studies indicate that the proposed non-negative computational framework for diffusion-type equations exhibits excellent strong scaling for real-world large-scale problems.« less

  17. SharP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkata, Manjunath Gorentla; Aderholdt, William F

    The pre-exascale systems are expected to have a significant amount of hierarchical and heterogeneous on-node memory, and this trend of system architecture in extreme-scale systems is expected to continue into the exascale era. along with hierarchical-heterogeneous memory, the system typically has a high-performing network ad a compute accelerator. This system architecture is not only effective for running traditional High Performance Computing (HPC) applications (Big-Compute), but also for running data-intensive HPC applications and Big-Data applications. As a consequence, there is a growing desire to have a single system serve the needs of both Big-Compute and Big-Data applications. Though the system architecturemore » supports the convergence of the Big-Compute and Big-Data, the programming models and software layer have yet to evolve to support either hierarchical-heterogeneous memory systems or the convergence. A programming abstraction to address this problem. The programming abstraction is implemented as a software library and runs on pre-exascale and exascale systems supporting current and emerging system architecture. Using distributed data-structures as a central concept, it provides (1) a simple, usable, and portable abstraction for hierarchical-heterogeneous memory and (2) a unified programming abstraction for Big-Compute and Big-Data applications.« less

  18. An efficient framework for Java data processing systems in HPC environments

    NASA Astrophysics Data System (ADS)

    Fries, Aidan; Castañeda, Javier; Isasi, Yago; Taboada, Guillermo L.; Portell de Mora, Jordi; Sirvent, Raül

    2011-11-01

    Java is a commonly used programming language, although its use in High Performance Computing (HPC) remains relatively low. One of the reasons is a lack of libraries offering specific HPC functions to Java applications. In this paper we present a Java-based framework, called DpcbTools, designed to provide a set of functions that fill this gap. It includes a set of efficient data communication functions based on message-passing, thus providing, when a low latency network such as Myrinet is available, higher throughputs and lower latencies than standard solutions used by Java. DpcbTools also includes routines for the launching, monitoring and management of Java applications on several computing nodes by making use of JMX to communicate with remote Java VMs. The Gaia Data Processing and Analysis Consortium (DPAC) is a real case where scientific data from the ESA Gaia astrometric satellite will be entirely processed using Java. In this paper we describe the main elements of DPAC and its usage of the DpcbTools framework. We also assess the usefulness and performance of DpcbTools through its performance evaluation and the analysis of its impact on some DPAC systems deployed in the MareNostrum supercomputer (Barcelona Supercomputing Center).

  19. HPC USER WORKSHOP - JUNE 12TH | High-Performance Computing | NREL

    Science.gov Websites

    to CentOS 7, changes to modules management, Singularity and containers on Peregrine, and using of changes, with the remaining two hours dedicated to demos and one-on-one interaction as needed

  20. Using the Eclipse Parallel Tools Platform to Assist Earth Science Model Development and Optimization on High Performance Computers

    NASA Astrophysics Data System (ADS)

    Alameda, J. C.

    2011-12-01

    Development and optimization of computational science models, particularly on high performance computers, and with the advent of ubiquitous multicore processor systems, practically on every system, has been accomplished with basic software tools, typically, command-line based compilers, debuggers, performance tools that have not changed substantially from the days of serial and early vector computers. However, model complexity, including the complexity added by modern message passing libraries such as MPI, and the need for hybrid code models (such as openMP and MPI) to be able to take full advantage of high performance computers with an increasing core count per shared memory node, has made development and optimization of such codes an increasingly arduous task. Additional architectural developments, such as many-core processors, only complicate the situation further. In this paper, we describe how our NSF-funded project, "SI2-SSI: A Productive and Accessible Development Workbench for HPC Applications Using the Eclipse Parallel Tools Platform" (WHPC) seeks to improve the Eclipse Parallel Tools Platform, an environment designed to support scientific code development targeted at a diverse set of high performance computing systems. Our WHPC project to improve Eclipse PTP takes an application-centric view to improve PTP. We are using a set of scientific applications, each with a variety of challenges, and using PTP to drive further improvements to both the scientific application, as well as to understand shortcomings in Eclipse PTP from an application developer perspective, to drive our list of improvements we seek to make. We are also partnering with performance tool providers, to drive higher quality performance tool integration. We have partnered with the Cactus group at Louisiana State University to improve Eclipse's ability to work with computational frameworks and extremely complex build systems, as well as to develop educational materials to incorporate into computational science and engineering codes. Finally, we are partnering with the lead PTP developers at IBM, to ensure we are as effective as possible within the Eclipse community development. We are also conducting training and outreach to our user community, including conference BOF sessions, monthly user calls, and an annual user meeting, so that we can best inform the improvements we make to Eclipse PTP. With these activities we endeavor to encourage use of modern software engineering practices, as enabled through the Eclipse IDE, with computational science and engineering applications. These practices include proper use of source code repositories, tracking and rectifying issues, measuring and monitoring code performance changes against both optimizations as well as ever-changing software stacks and configurations on HPC systems, as well as ultimately encouraging development and maintenance of testing suites -- things that have become commonplace in many software endeavors, but have lagged in the development of science applications. We view that the challenge with the increased complexity of both HPC systems and science applications demands the use of better software engineering methods, preferably enabled by modern tools such as Eclipse PTP, to help the computational science community thrive as we evolve the HPC landscape.

  1. Toward performance portability of the Albany finite element analysis code using the Kokkos library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.

    Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less

  2. Toward performance portability of the Albany finite element analysis code using the Kokkos library

    DOE PAGES

    Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.; ...

    2018-02-05

    Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less

  3. Using NERSC High-Performance Computing (HPC) systems for high-energy nuclear physics applications with ALICE

    NASA Astrophysics Data System (ADS)

    Fasel, Markus

    2016-10-01

    High-Performance Computing Systems are powerful tools tailored to support large- scale applications that rely on low-latency inter-process communications to run efficiently. By design, these systems often impose constraints on application workflows, such as limited external network connectivity and whole node scheduling, that make more general-purpose computing tasks, such as those commonly found in high-energy nuclear physics applications, more difficult to carry out. In this work, we present a tool designed to simplify access to such complicated environments by handling the common tasks of job submission, software management, and local data management, in a framework that is easily adaptable to the specific requirements of various computing systems. The tool, initially constructed to process stand-alone ALICE simulations for detector and software development, was successfully deployed on the NERSC computing systems, Carver, Hopper and Edison, and is being configured to provide access to the next generation NERSC system, Cori. In this report, we describe the tool and discuss our experience running ALICE applications on NERSC HPC systems. The discussion will include our initial benchmarks of Cori compared to other systems and our attempts to leverage the new capabilities offered with Cori to support data-intensive applications, with a future goal of full integration of such systems into ALICE grid operations.

  4. KITTEN Lightweight Kernel 0.1 Beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedretti, Kevin; Levenhagen, Michael; Kelly, Suzanne

    2007-12-12

    The Kitten Lightweight Kernel is a simplified OS (operating system) kernel that is intended to manage a compute node's hardware resources. It provides a set of mechanisms to user-level applications for utilizing hardware resources (e.g., allocating memory, creating processes, accessing the network). Kitten is much simpler than general-purpose OS kernels, such as Linux or Windows, but includes all of the esssential functionality needed to support HPC (high-performance computing) MPI, PGAS and OpenMP applications. Kitten provides unique capabilities such as physically contiguous application memory, transparent large page support, and noise-free tick-less operation, which enable HPC applications to obtain greater efficiency andmore » scalability than with general purpose OS kernels.« less

  5. A new deadlock resolution protocol and message matching algorithm for the extreme-scale simulator

    DOE PAGES

    Engelmann, Christian; Naughton, III, Thomas J.

    2016-03-22

    Investigating the performance of parallel applications at scale on future high-performance computing (HPC) architectures and the performance impact of different HPC architecture choices is an important component of HPC hardware/software co-design. The Extreme-scale Simulator (xSim) is a simulation toolkit for investigating the performance of parallel applications at scale. xSim scales to millions of simulated Message Passing Interface (MPI) processes. The overhead introduced by a simulation tool is an important performance and productivity aspect. This paper documents two improvements to xSim: (1)~a new deadlock resolution protocol to reduce the parallel discrete event simulation overhead and (2)~a new simulated MPI message matchingmore » algorithm to reduce the oversubscription management overhead. The results clearly show a significant performance improvement. The simulation overhead for running the NAS Parallel Benchmark suite was reduced from 102% to 0% for the embarrassingly parallel (EP) benchmark and from 1,020% to 238% for the conjugate gradient (CG) benchmark. xSim offers a highly accurate simulation mode for better tracking of injected MPI process failures. Furthermore, with highly accurate simulation, the overhead was reduced from 3,332% to 204% for EP and from 37,511% to 13,808% for CG.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duro, Francisco Rodrigo; Blas, Javier Garcia; Isaila, Florin

    The increasing volume of scientific data and the limited scalability and performance of storage systems are currently presenting a significant limitation for the productivity of the scientific workflows running on both high-performance computing (HPC) and cloud platforms. Clearly needed is better integration of storage systems and workflow engines to address this problem. This paper presents and evaluates a novel solution that leverages codesign principles for integrating Hercules—an in-memory data store—with a workflow management system. We consider four main aspects: workflow representation, task scheduling, task placement, and task termination. As a result, the experimental evaluation on both cloud and HPC systemsmore » demonstrates significant performance and scalability improvements over existing state-of-the-art approaches.« less

  7. Providing a parallel and distributed capability for JMASS using SPEEDES

    NASA Astrophysics Data System (ADS)

    Valinski, Maria; Driscoll, Jonathan; McGraw, Robert M.; Meyer, Bob

    2002-07-01

    The Joint Modeling And Simulation System (JMASS) is a Tri-Service simulation environment that supports engineering and engagement-level simulations. As JMASS is expanded to support other Tri-Service domains, the current set of modeling services must be expanded for High Performance Computing (HPC) applications by adding support for advanced time-management algorithms, parallel and distributed topologies, and high speed communications. By providing support for these services, JMASS can better address modeling domains requiring parallel computationally intense calculations such clutter, vulnerability and lethality calculations, and underwater-based scenarios. A risk reduction effort implementing some HPC services for JMASS using the SPEEDES (Synchronous Parallel Environment for Emulation and Discrete Event Simulation) Simulation Framework has recently concluded. As an artifact of the JMASS-SPEEDES integration, not only can HPC functionality be brought to the JMASS program through SPEEDES, but an additional HLA-based capability can be demonstrated that further addresses interoperability issues. The JMASS-SPEEDES integration provided a means of adding HLA capability to preexisting JMASS scenarios through an implementation of the standard JMASS port communication mechanism that allows players to communicate.

  8. NASA Center for Climate Simulation (NCCS) Advanced Technology AT5 Virtualized Infiniband Report

    NASA Technical Reports Server (NTRS)

    Thompson, John H.; Bledsoe, Benjamin C.; Wagner, Mark; Shakshober, John; Fromkin, Russ

    2013-01-01

    The NCCS is part of the Computational and Information Sciences and Technology Office (CISTO) of Goddard Space Flight Center's (GSFC) Sciences and Exploration Directorate. The NCCS's mission is to enable scientists to increase their understanding of the Earth, the solar system, and the universe by supplying state-of-the-art high performance computing (HPC) solutions. To accomplish this mission, the NCCS (https://www.nccs.nasa.gov) provides high performance compute engines, mass storage, and network solutions to meet the specialized needs of the Earth and space science user communities

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fadika, Zacharia; Dede, Elif; Govindaraju, Madhusudhan

    MapReduce is increasingly becoming a popular framework, and a potent programming model. The most popular open source implementation of MapReduce, Hadoop, is based on the Hadoop Distributed File System (HDFS). However, as HDFS is not POSIX compliant, it cannot be fully leveraged by applications running on a majority of existing HPC environments such as Teragrid and NERSC. These HPC environments typicallysupport globally shared file systems such as NFS and GPFS. On such resourceful HPC infrastructures, the use of Hadoop not only creates compatibility issues, but also affects overall performance due to the added overhead of the HDFS. This paper notmore » only presents a MapReduce implementation directly suitable for HPC environments, but also exposes the design choices for better performance gains in those settings. By leveraging inherent distributed file systems' functions, and abstracting them away from its MapReduce framework, MARIANE (MApReduce Implementation Adapted for HPC Environments) not only allows for the use of the model in an expanding number of HPCenvironments, but also allows for better performance in such settings. This paper shows the applicability and high performance of the MapReduce paradigm through MARIANE, an implementation designed for clustered and shared-disk file systems and as such not dedicated to a specific MapReduce solution. The paper identifies the components and trade-offs necessary for this model, and quantifies the performance gains exhibited by our approach in distributed environments over Apache Hadoop in a data intensive setting, on the Magellan testbed at the National Energy Research Scientific Computing Center (NERSC).« less

  10. Connecting to HPC VPN | High-Performance Computing | NREL

    Science.gov Websites

    and password will match your NREL network account login/password. From OS X or Linux, open a terminal finalized. Open a Remote Desktop connection using server name WINHPC02 (this is the login node). Mac Mac

  11. Develop feedback system for intelligent dynamic resource allocation to improve application performance.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentile, Ann C.; Brandt, James M.; Tucker, Thomas

    2011-09-01

    This report provides documentation for the completion of the Sandia Level II milestone 'Develop feedback system for intelligent dynamic resource allocation to improve application performance'. This milestone demonstrates the use of a scalable data collection analysis and feedback system that enables insight into how an application is utilizing the hardware resources of a high performance computing (HPC) platform in a lightweight fashion. Further we demonstrate utilizing the same mechanisms used for transporting data for remote analysis and visualization to provide low latency run-time feedback to applications. The ultimate goal of this body of work is performance optimization in the facemore » of the ever increasing size and complexity of HPC systems.« less

  12. Implementation of the NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael A.; Schultz, Matthew; Jin, Haoqiang; Yan, Jerry; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Several features make Java an attractive choice for High Performance Computing (HPC). In order to gauge the applicability of Java to Computational Fluid Dynamics (CFD), we have implemented the NAS (NASA Advanced Supercomputing) Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would position Java closer to Fortran in the competition for CFD applications.

  13. System-Level Virtualization for High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallee, Geoffroy R; Naughton, III, Thomas J; Engelmann, Christian

    2008-01-01

    System-level virtualization has been a research topic since the 70's but regained popularity during the past few years because of the availability of efficient solution such as Xen and the implementation of hardware support in commodity processors (e.g. Intel-VT, AMD-V). However, a majority of system-level virtualization projects is guided by the server consolidation market. As a result, current virtualization solutions appear to not be suitable for high performance computing (HPC) which is typically based on large-scale systems. On another hand there is significant interest in exploiting virtual machines (VMs) within HPC for a number of other reasons. By virtualizing themore » machine, one is able to run a variety of operating systems and environments as needed by the applications. Virtualization allows users to isolate workloads, improving security and reliability. It is also possible to support non-native environments and/or legacy operating environments through virtualization. In addition, it is possible to balance work loads, use migration techniques to relocate applications from failing machines, and isolate fault systems for repair. This document presents the challenges for the implementation of a system-level virtualization solution for HPC. It also presents a brief survey of the different approaches and techniques to address these challenges.« less

  14. Self-service for software development projects and HPC activities

    NASA Astrophysics Data System (ADS)

    Husejko, M.; Høimyr, N.; Gonzalez, A.; Koloventzos, G.; Asbury, D.; Trzcinska, A.; Agtzidis, I.; Botrel, G.; Otto, J.

    2014-05-01

    This contribution describes how CERN has implemented several essential tools for agile software development processes, ranging from version control (Git) to issue tracking (Jira) and documentation (Wikis). Running such services in a large organisation like CERN requires many administrative actions both by users and service providers, such as creating software projects, managing access rights, users and groups, and performing tool-specific customisation. Dealing with these requests manually would be a time-consuming task. Another area of our CERN computing services that has required dedicated manual support has been clusters for specific user communities with special needs. Our aim is to move all our services to a layered approach, with server infrastructure running on the internal cloud computing infrastructure at CERN. This contribution illustrates how we plan to optimise the management of our of services by means of an end-user facing platform acting as a portal into all the related services for software projects, inspired by popular portals for open-source developments such as Sourceforge, GitHub and others. Furthermore, the contribution will discuss recent activities with tests and evaluations of High Performance Computing (HPC) applications on different hardware and software stacks, and plans to offer a dynamically scalable HPC service at CERN, based on affordable hardware.

  15. Performance of hybrid programming models for multiscale cardiac simulations: preparing for petascale computation.

    PubMed

    Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias

    2011-10-01

    Future multiscale and multiphysics models that support research into human disease, translational medical science, and treatment can utilize the power of high-performance computing (HPC) systems. We anticipate that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message-passing processes [e.g., the message-passing interface (MPI)] with multithreading (e.g., OpenMP, Pthreads). The objective of this study is to compare the performance of such hybrid programming models when applied to the simulation of a realistic physiological multiscale model of the heart. Our results show that the hybrid models perform favorably when compared to an implementation using only the MPI and, furthermore, that OpenMP in combination with the MPI provides a satisfactory compromise between performance and code complexity. Having the ability to use threads within MPI processes enables the sophisticated use of all processor cores for both computation and communication phases. Considering that HPC systems in 2012 will have two orders of magnitude more cores than what was used in this study, we believe that faster than real-time multiscale cardiac simulations can be achieved on these systems.

  16. OpenTopography: Addressing Big Data Challenges Using Cloud Computing, HPC, and Data Analytics

    NASA Astrophysics Data System (ADS)

    Crosby, C. J.; Nandigam, V.; Phan, M.; Youn, C.; Baru, C.; Arrowsmith, R.

    2014-12-01

    OpenTopography (OT) is a geoinformatics-based data facility initiated in 2009 for democratizing access to high-resolution topographic data, derived products, and tools. Hosted at the San Diego Supercomputer Center (SDSC), OT utilizes cyberinfrastructure, including large-scale data management, high-performance computing, and service-oriented architectures to provide efficient Web based access to large, high-resolution topographic datasets. OT collocates data with processing tools to enable users to quickly access custom data and derived products for their application. OT's ongoing R&D efforts aim to solve emerging technical challenges associated with exponential growth in data, higher order data products, as well as user base. Optimization of data management strategies can be informed by a comprehensive set of OT user access metrics that allows us to better understand usage patterns with respect to the data. By analyzing the spatiotemporal access patterns within the datasets, we can map areas of the data archive that are highly active (hot) versus the ones that are rarely accessed (cold). This enables us to architect a tiered storage environment consisting of high performance disk storage (SSD) for the hot areas and less expensive slower disk for the cold ones, thereby optimizing price to performance. From a compute perspective, OT is looking at cloud based solutions such as the Microsoft Azure platform to handle sudden increases in load. An OT virtual machine image in Microsoft's VM Depot can be invoked and deployed quickly in response to increased system demand. OT has also integrated SDSC HPC systems like the Gordon supercomputer into our infrastructure tier to enable compute intensive workloads like parallel computation of hydrologic routing on high resolution topography. This capability also allows OT to scale to HPC resources during high loads to meet user demand and provide more efficient processing. With a growing user base and maturing scientific user community comes new requests for algorithms and processing capabilities. To address this demand, OT is developing an extensible service based architecture for integrating community-developed software. This "plugable" approach to Web service deployment will enable new processing and analysis tools to run collocated with OT hosted data.

  17. High Performance Concrete in Washington State SR 18/SR 516 Overcrossing: Interim Report on Girder Monitoring

    DOT National Transportation Integrated Search

    2000-04-01

    In the mid 1990s the Federal Highway Administration (FHWA) established a High Performance Concrete (HPC) program aimed at demonstrating the positive effects of utilizing HPC in bridges. Research on the benefits of using HPC for bridges has shown a nu...

  18. High performance concrete in Washington state SR 18/SR 516 overcrossing : interim report on materials tests

    DOT National Transportation Integrated Search

    2000-04-01

    In the mid 1990s the Federal Highway Administration (FHWA) established a High Performance Concrete (HPC) program aimed at demonstrating the positive effects of utilizing HPC in bridges. Research on the benefits of using HPC for bridges has shown a nu...

  19. Hierarchical parallelisation of functional renormalisation group calculations - hp-fRG

    NASA Astrophysics Data System (ADS)

    Rohe, Daniel

    2016-10-01

    The functional renormalisation group (fRG) has evolved into a versatile tool in condensed matter theory for studying important aspects of correlated electron systems. Practical applications of the method often involve a high numerical effort, motivating the question in how far High Performance Computing (HPC) can leverage the approach. In this work we report on a multi-level parallelisation of the underlying computational machinery and show that this can speed up the code by several orders of magnitude. This in turn can extend the applicability of the method to otherwise inaccessible cases. We exploit three levels of parallelisation: Distributed computing by means of Message Passing (MPI), shared-memory computing using OpenMP, and vectorisation by means of SIMD units (single-instruction-multiple-data). Results are provided for two distinct High Performance Computing (HPC) platforms, namely the IBM-based BlueGene/Q system JUQUEEN and an Intel Sandy-Bridge-based development cluster. We discuss how certain issues and obstacles were overcome in the course of adapting the code. Most importantly, we conclude that this vast improvement can actually be accomplished by introducing only moderate changes to the code, such that this strategy may serve as a guideline for other researcher to likewise improve the efficiency of their codes.

  20. Near Real-Time Probabilistic Damage Diagnosis Using Surrogate Modeling and High Performance Computing

    NASA Technical Reports Server (NTRS)

    Warner, James E.; Zubair, Mohammad; Ranjan, Desh

    2017-01-01

    This work investigates novel approaches to probabilistic damage diagnosis that utilize surrogate modeling and high performance computing (HPC) to achieve substantial computational speedup. Motivated by Digital Twin, a structural health management (SHM) paradigm that integrates vehicle-specific characteristics with continual in-situ damage diagnosis and prognosis, the methods studied herein yield near real-time damage assessments that could enable monitoring of a vehicle's health while it is operating (i.e. online SHM). High-fidelity modeling and uncertainty quantification (UQ), both critical to Digital Twin, are incorporated using finite element method simulations and Bayesian inference, respectively. The crux of the proposed Bayesian diagnosis methods, however, is the reformulation of the numerical sampling algorithms (e.g. Markov chain Monte Carlo) used to generate the resulting probabilistic damage estimates. To this end, three distinct methods are demonstrated for rapid sampling that utilize surrogate modeling and exploit various degrees of parallelism for leveraging HPC. The accuracy and computational efficiency of the methods are compared on the problem of strain-based crack identification in thin plates. While each approach has inherent problem-specific strengths and weaknesses, all approaches are shown to provide accurate probabilistic damage diagnoses and several orders of magnitude computational speedup relative to a baseline Bayesian diagnosis implementation.

  1. Performance Analysis, Modeling and Scaling of HPC Applications and Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatele, Abhinav

    2016-01-13

    E cient use of supercomputers at DOE centers is vital for maximizing system throughput, mini- mizing energy costs and enabling science breakthroughs faster. This requires complementary e orts along several directions to optimize the performance of scienti c simulation codes and the under- lying runtimes and software stacks. This in turn requires providing scalable performance analysis tools and modeling techniques that can provide feedback to physicists and computer scientists developing the simulation codes and runtimes respectively. The PAMS project is using time allocations on supercomputers at ALCF, NERSC and OLCF to further the goals described above by performing research alongmore » the following fronts: 1. Scaling Study of HPC applications; 2. Evaluation of Programming Models; 3. Hardening of Performance Tools; 4. Performance Modeling of Irregular Codes; and 5. Statistical Analysis of Historical Performance Data. We are a team of computer and computational scientists funded by both DOE/NNSA and DOE/ ASCR programs such as ECRP, XStack (Traleika Glacier, PIPER), ExaOSR (ARGO), SDMAV II (MONA) and PSAAP II (XPACC). This allocation will enable us to study big data issues when analyzing performance on leadership computing class systems and to assist the HPC community in making the most e ective use of these resources.« less

  2. Resilience Design Patterns - A Structured Approach to Resilience at Extreme Scale (version 1.0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hukerikar, Saurabh; Engelmann, Christian

    Reliability is a serious concern for future extreme-scale high-performance computing (HPC) systems. Projections based on the current generation of HPC systems and technology roadmaps suggest that very high fault rates in future systems. The errors resulting from these faults will propagate and generate various kinds of failures, which may result in outcomes ranging from result corruptions to catastrophic application crashes. Practical limits on power consumption in HPC systems will require future systems to embrace innovative architectures, increasing the levels of hardware and software complexities. The resilience challenge for extreme-scale HPC systems requires management of various hardware and software technologies thatmore » are capable of handling a broad set of fault models at accelerated fault rates. These techniques must seek to improve resilience at reasonable overheads to power consumption and performance. While the HPC community has developed various solutions, application-level as well as system-based solutions, the solution space of HPC resilience techniques remains fragmented. There are no formal methods and metrics to investigate and evaluate resilience holistically in HPC systems that consider impact scope, handling coverage, and performance & power eciency across the system stack. Additionally, few of the current approaches are portable to newer architectures and software ecosystems, which are expected to be deployed on future systems. In this document, we develop a structured approach to the management of HPC resilience based on the concept of resilience-based design patterns. A design pattern is a general repeatable solution to a commonly occurring problem. We identify the commonly occurring problems and solutions used to deal with faults, errors and failures in HPC systems. The catalog of resilience design patterns provides designers with reusable design elements. We define a design framework that enhances our understanding of the important constraints and opportunities for solutions deployed at various layers of the system stack. The framework may be used to establish mechanisms and interfaces to coordinate flexible fault management across hardware and software components. The framework also enables optimization of the cost-benefit trade-os among performance, resilience, and power consumption. The overall goal of this work is to enable a systematic methodology for the design and evaluation of resilience technologies in extreme-scale HPC systems that keep scientific applications running to a correct solution in a timely and cost-ecient manner in spite of frequent faults, errors, and failures of various types.« less

  3. Application of the Linux cluster for exhaustive window haplotype analysis using the FBAT and Unphased programs.

    PubMed

    Mishima, Hiroyuki; Lidral, Andrew C; Ni, Jun

    2008-05-28

    Genetic association studies have been used to map disease-causing genes. A newly introduced statistical method, called exhaustive haplotype association study, analyzes genetic information consisting of different numbers and combinations of DNA sequence variations along a chromosome. Such studies involve a large number of statistical calculations and subsequently high computing power. It is possible to develop parallel algorithms and codes to perform the calculations on a high performance computing (HPC) system. However, most existing commonly-used statistic packages for genetic studies are non-parallel versions. Alternatively, one may use the cutting-edge technology of grid computing and its packages to conduct non-parallel genetic statistical packages on a centralized HPC system or distributed computing systems. In this paper, we report the utilization of a queuing scheduler built on the Grid Engine and run on a Rocks Linux cluster for our genetic statistical studies. Analysis of both consecutive and combinational window haplotypes was conducted by the FBAT (Laird et al., 2000) and Unphased (Dudbridge, 2003) programs. The dataset consisted of 26 loci from 277 extended families (1484 persons). Using the Rocks Linux cluster with 22 compute-nodes, FBAT jobs performed about 14.4-15.9 times faster, while Unphased jobs performed 1.1-18.6 times faster compared to the accumulated computation duration. Execution of exhaustive haplotype analysis using non-parallel software packages on a Linux-based system is an effective and efficient approach in terms of cost and performance.

  4. Application of the Linux cluster for exhaustive window haplotype analysis using the FBAT and Unphased programs

    PubMed Central

    Mishima, Hiroyuki; Lidral, Andrew C; Ni, Jun

    2008-01-01

    Background Genetic association studies have been used to map disease-causing genes. A newly introduced statistical method, called exhaustive haplotype association study, analyzes genetic information consisting of different numbers and combinations of DNA sequence variations along a chromosome. Such studies involve a large number of statistical calculations and subsequently high computing power. It is possible to develop parallel algorithms and codes to perform the calculations on a high performance computing (HPC) system. However, most existing commonly-used statistic packages for genetic studies are non-parallel versions. Alternatively, one may use the cutting-edge technology of grid computing and its packages to conduct non-parallel genetic statistical packages on a centralized HPC system or distributed computing systems. In this paper, we report the utilization of a queuing scheduler built on the Grid Engine and run on a Rocks Linux cluster for our genetic statistical studies. Results Analysis of both consecutive and combinational window haplotypes was conducted by the FBAT (Laird et al., 2000) and Unphased (Dudbridge, 2003) programs. The dataset consisted of 26 loci from 277 extended families (1484 persons). Using the Rocks Linux cluster with 22 compute-nodes, FBAT jobs performed about 14.4–15.9 times faster, while Unphased jobs performed 1.1–18.6 times faster compared to the accumulated computation duration. Conclusion Execution of exhaustive haplotype analysis using non-parallel software packages on a Linux-based system is an effective and efficient approach in terms of cost and performance. PMID:18541045

  5. Template Interfaces for Agile Parallel Data-Intensive Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Lavanya; Gunter, Daniel; Pastorello, Gilerto Z.

    Tigres provides a programming library to compose and execute large-scale data-intensive scientific workflows from desktops to supercomputers. DOE User Facilities and large science collaborations are increasingly generating large enough data sets that it is no longer practical to download them to a desktop to operate on them. They are instead stored at centralized compute and storage resources such as high performance computing (HPC) centers. Analysis of this data requires an ability to run on these facilities, but with current technologies, scaling an analysis to an HPC center and to a large data set is difficult even for experts. Tigres ismore » addressing the challenge of enabling collaborative analysis of DOE Science data through a new concept of reusable "templates" that enable scientists to easily compose, run and manage collaborative computational tasks. These templates define common computation patterns used in analyzing a data set.« less

  6. DCL System Using Deep Learning Approaches for Land-based or Ship-based Real-Time Recognition and Localization of Marine Mammals

    DTIC Science & Technology

    2012-09-30

    platform (HPC) was developed, called the HPC-Acoustic Data Accelerator, or HPC-ADA for short. The HPC-ADA was designed based on fielded systems [1-4...software (Detection cLassificaiton for MAchine learning - High Peformance Computing). The software package was designed to utilize parallel and...Sedna [7] and is designed using a parallel architecture2, allowing existing algorithms to distribute to the various processing nodes with minimal changes

  7. Software Issues in High-Performance Computing and a Framework for the Development of HPC Applications

    DTIC Science & Technology

    1995-01-01

    possible to determine communication points. For this version, a C program spawning Posix threads and using semaphores to synchronize would have to...performance such as the time required for network communication and synchronization as well as issues of asynchrony and memory hierarchy. For example...enhances reusability. Process (or task) parallel computations can also be succinctly expressed with a small set of process creation and synchronization

  8. Implementation of NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Schultz, Matthew; Jin, Hao-Qiang; Yan, Jerry

    2000-01-01

    A number of features make Java an attractive but a debatable choice for High Performance Computing (HPC). In order to gauge the applicability of Java to the Computational Fluid Dynamics (CFD) we have implemented NAS Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would move Java closer to Fortran in the competition for CFD applications.

  9. A Heterogeneous High-Performance System for Computational and Computer Science

    DTIC Science & Technology

    2016-11-15

    Patents Submitted Patents Awarded Awards Graduate Students Names of Post Doctorates Names of Faculty Supported Names of Under Graduate students supported...team of research faculty from the departments of computer science and natural science at Bowie State University. The supercomputer is not only to...accelerated HPC systems. The supercomputer is also ideal for the research conducted in the Department of Natural Science, as research faculty work on

  10. Unmet needs for analyzing biological big data: A survey of 704 NSF principal investigators.

    PubMed

    Barone, Lindsay; Williams, Jason; Micklos, David

    2017-10-01

    In a 2016 survey of 704 National Science Foundation (NSF) Biological Sciences Directorate principal investigators (BIO PIs), nearly 90% indicated they are currently or will soon be analyzing large data sets. BIO PIs considered a range of computational needs important to their work, including high performance computing (HPC), bioinformatics support, multistep workflows, updated analysis software, and the ability to store, share, and publish data. Previous studies in the United States and Canada emphasized infrastructure needs. However, BIO PIs said the most pressing unmet needs are training in data integration, data management, and scaling analyses for HPC-acknowledging that data science skills will be required to build a deeper understanding of life. This portends a growing data knowledge gap in biology and challenges institutions and funding agencies to redouble their support for computational training in biology.

  11. ATLAS computing on CSCS HPC

    NASA Astrophysics Data System (ADS)

    Filipcic, A.; Haug, S.; Hostettler, M.; Walker, R.; Weber, M.

    2015-12-01

    The Piz Daint Cray XC30 HPC system at CSCS, the Swiss National Supercomputing centre, was the highest ranked European system on TOP500 in 2014, also featuring GPU accelerators. Event generation and detector simulation for the ATLAS experiment have been enabled for this machine. We report on the technical solutions, performance, HPC policy challenges and possible future opportunities for HEP on extreme HPC systems. In particular a custom made integration to the ATLAS job submission system has been developed via the Advanced Resource Connector (ARC) middleware. Furthermore, a partial GPU acceleration of the Geant4 detector simulations has been implemented.

  12. Climate Science Performance, Data and Productivity on Titan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Benjamin W; Worley, Patrick H; Gaddis, Abigail L

    2015-01-01

    Climate Science models are flagship codes for the largest of high performance computing (HPC) resources, both in visibility, with the newly launched Department of Energy (DOE) Accelerated Climate Model for Energy (ACME) effort, and in terms of significant fractions of system usage. The performance of the DOE ACME model is captured with application level timers and examined through a sizeable run archive. Performance and variability of compute, queue time and ancillary services are examined. As Climate Science advances in the use of HPC resources there has been an increase in the required human and data systems to achieve programs goals.more » A description of current workflow processes (hardware, software, human) and planned automation of the workflow, along with historical and projected data in motion and at rest data usage, are detailed. The combination of these two topics motivates a description of future systems requirements for DOE Climate Modeling efforts, focusing on the growth of data storage and network and disk bandwidth required to handle data at an acceptable rate.« less

  13. Workload Characterization of a Leadership Class Storage Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Youngjae; Gunasekaran, Raghul; Shipman, Galen M

    2010-01-01

    Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the scientific workloads of the world s fastest HPC (High Performance Computing) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). Spider provides an aggregate bandwidth of over 240 GB/s with over 10 petabytes of RAID 6 formatted capacity. OLCFs flagship petascale simulation platform, Jaguar, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize themore » system utilization, the demands of reads and writes, idle time, and the distribution of read requests to write requests for the storage system observed over a period of 6 months. From this study we develop synthesized workloads and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution.« less

  14. An Approach to Integrate a Space-Time GIS Data Model with High Performance Computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dali; Zhao, Ziliang; Shaw, Shih-Lung

    2011-01-01

    In this paper, we describe an approach to integrate a Space-Time GIS data model on a high performance computing platform. The Space-Time GIS data model has been developed on a desktop computing environment. We use the Space-Time GIS data model to generate GIS module, which organizes a series of remote sensing data. We are in the process of porting the GIS module into an HPC environment, in which the GIS modules handle large dataset directly via parallel file system. Although it is an ongoing project, authors hope this effort can inspire further discussions on the integration of GIS on highmore » performance computing platforms.« less

  15. High Energy Physics Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and High Energy Physics, June 10-12, 2015, Bethesda, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Salman; Roser, Robert; Gerber, Richard

    The U.S. Department of Energy (DOE) Office of Science (SC) Offices of High Energy Physics (HEP) and Advanced Scientific Computing Research (ASCR) convened a programmatic Exascale Requirements Review on June 10–12, 2015, in Bethesda, Maryland. This report summarizes the findings, results, and recommendations derived from that meeting. The high-level findings and observations are as follows. Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude — and in some cases greatermore » — than that available currently. The growth rate of data produced by simulations is overwhelming the current ability of both facilities and researchers to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. Data rates and volumes from experimental facilities are also straining the current HEP infrastructure in its ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. A close integration of high-performance computing (HPC) simulation and data analysis will greatly aid in interpreting the results of HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. Long-range planning between HEP and ASCR will be required to meet HEP’s research needs. To best use ASCR HPC resources, the experimental HEP program needs (1) an established, long-term plan for access to ASCR computational and data resources, (2) the ability to map workflows to HPC resources, (3) the ability for ASCR facilities to accommodate workflows run by collaborations potentially comprising thousands of individual members, (4) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, (5) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.« less

  16. Understanding I/O workload characteristics of a Peta-scale storage system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Youngjae; Gunasekaran, Raghul

    2015-01-01

    Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the I/O workloads of scientific applications of one of the world s fastest high performance computing (HPC) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). OLCF flagship petascale simulation platform, Titan, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize the system utilization, the demands of reads and writes, idle time, storage space utilization,more » and the distribution of read requests to write requests for the Peta-scale Storage Systems. From this study, we develop synthesized workloads, and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution. We also study the I/O load imbalance problems using I/O performance data collected from the Spider storage system.« less

  17. Exploiting opportunistic resources for ATLAS with ARC CE and the Event Service

    NASA Astrophysics Data System (ADS)

    Cameron, D.; Filipčič, A.; Guan, W.; Tsulaia, V.; Walker, R.; Wenaus, T.; ATLAS Collaboration

    2017-10-01

    With ever-greater computing needs and fixed budgets, big scientific experiments are turning to opportunistic resources as a means to add much-needed extra computing power. These resources can be very different in design from those that comprise the Grid computing of most experiments, therefore exploiting them requires a change in strategy for the experiment. They may be highly restrictive in what can be run or in connections to the outside world, or tolerate opportunistic usage only on condition that tasks may be terminated without warning. The Advanced Resource Connector Computing Element (ARC CE) with its nonintrusive architecture is designed to integrate resources such as High Performance Computing (HPC) systems into a computing Grid. The ATLAS experiment developed the ATLAS Event Service (AES) primarily to address the issue of jobs that can be terminated at any point when opportunistic computing capacity is needed by someone else. This paper describes the integration of these two systems in order to exploit opportunistic resources for ATLAS in a restrictive environment. In addition to the technical details, results from deployment of this solution in the SuperMUC HPC centre in Munich are shown.

  18. An Integrated Software Package to Enable Predictive Simulation Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Fitzhenry, Erin B.; Jin, Shuangshuang

    The power grid is increasing in complexity due to the deployment of smart grid technologies. Such technologies vastly increase the size and complexity of power grid systems for simulation and modeling. This increasing complexity necessitates not only the use of high-performance-computing (HPC) techniques, but a smooth, well-integrated interplay between HPC applications. This paper presents a new integrated software package that integrates HPC applications and a web-based visualization tool based on a middleware framework. This framework can support the data communication between different applications. Case studies with a large power system demonstrate the predictive capability brought by the integrated software package,more » as well as the better situational awareness provided by the web-based visualization tool in a live mode. Test results validate the effectiveness and usability of the integrated software package.« less

  19. High Performance Computing and Storage Requirements for Nuclear Physics: Target 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard; Wasserman, Harvey

    2014-04-30

    In April 2014, NERSC, ASCR, and the DOE Office of Nuclear Physics (NP) held a review to characterize high performance computing (HPC) and storage requirements for NP research through 2017. This review is the 12th in a series of reviews held by NERSC and Office of Science program offices that began in 2009. It is the second for NP, and the final in the second round of reviews that covered the six Office of Science program offices. This report is the result of that review

  20. Evolving Storage and Cyber Infrastructure at the NASA Center for Climate Simulation

    NASA Technical Reports Server (NTRS)

    Salmon, Ellen; Duffy, Daniel; Spear, Carrie; Sinno, Scott; Vaughan, Garrison; Bowen, Michael

    2018-01-01

    This talk will describe recent developments at the NASA Center for Climate Simulation, which is funded by NASAs Science Mission Directorate, and supports the specialized data storage and computational needs of weather, ocean, and climate researchers, as well as astrophysicists, heliophysicists, and planetary scientists. To meet requirements for higher-resolution, higher-fidelity simulations, the NCCS augments its High Performance Computing (HPC) and storage retrieval environment. As the petabytes of model and observational data grow, the NCCS is broadening data services offerings and deploying and expanding virtualization resources for high performance analytics.

  1. Self-desiccation mechanism of high-performance concrete.

    PubMed

    Yang, Quan-Bing; Zhang, Shu-Qing

    2004-12-01

    Investigations on the effects of W/C ratio and silica fume on the autogenous shrinkage and internal relative humidity of high performance concrete (HPC), and analysis of the self-desiccation mechanisms of HPC showed that the autogenous shrinkage and internal relative humidity of HPC increases and decreases with the reduction of W/C respectively; and that these phenomena were amplified by the addition of silica fume. Theoretical analyses indicated that the reduction of RH in HPC was not due to shortage of water, but due to the fact that the evaporable water in HPC was not evaporated freely. The reduction of internal relative humidity or the so-called self-desiccation of HPC was chiefly caused by the increase in mole concentration of soluble ions in HPC and the reduction of pore size or the increase in the fraction of micro-pore water in the total evaporable water (T(r)/T(te) ratio).

  2. Innovative HPC architectures for the study of planetary plasma environments

    NASA Astrophysics Data System (ADS)

    Amaya, Jorge; Wolf, Anna; Lembège, Bertrand; Zitz, Anke; Alvarez, Damian; Lapenta, Giovanni

    2016-04-01

    DEEP-ER is an European Commission founded project that develops a new type of High Performance Computer architecture. The revolutionary system is currently used by KU Leuven to study the effects of the solar wind on the global environments of the Earth and Mercury. The new architecture combines the versatility of Intel Xeon computing nodes with the power of the upcoming Intel Xeon Phi accelerators. Contrary to classical heterogeneous HPC architectures, where it is customary to find CPU and accelerators in the same computing nodes, in the DEEP-ER system CPU nodes are grouped together (Cluster) and independently from the accelerator nodes (Booster). The system is equipped with a state of the art interconnection network, a highly scalable and fast I/O and a fail recovery resiliency system. The final objective of the project is to introduce a scalable system that can be used to create the next generation of exascale supercomputers. The code iPic3D from KU Leuven is being adapted to this new architecture. This particle-in-cell code can now perform the computation of the electromagnetic fields in the Cluster while the particles are moved in the Booster side. Using fast and scalable Xeon Phi accelerators in the Booster we can introduce many more particles per cell in the simulation than what is possible in the current generation of HPC systems, allowing to calculate fully kinetic plasmas with very low interpolation noise. The system will be used to perform fully kinetic, low noise, 3D simulations of the interaction of the solar wind with the magnetosphere of the Earth and Mercury. Preliminary simulations have been performed in other HPC centers in order to compare the results in different systems. In this presentation we show the complexity of the plasma flow around the planets, including the development of hydrodynamic instabilities at the flanks, the presence of the collision-less shock, the magnetosheath, the magnetopause, reconnection zones, the formation of the plasma sheet and the magnetotail, and the variation of ion/electron plasma flows when crossing these frontiers. The simulations also give access to detailed information about the particle dynamics and their velocity distribution at locations that can be used for comparison with satellite data.

  3. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Time Tagging the Data

    DTIC Science & Technology

    2015-09-01

    this report made use of posttest processing techniques to provide packet-level time tagging with an accuracy close to 3 µs relative to Coordinated...h set of test records. The process described herein made use of posttest processing techniques to provide packet-level time tagging with an accuracy

  4. 2011 Computation Directorate Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, D L

    2012-04-11

    From its founding in 1952 until today, Lawrence Livermore National Laboratory (LLNL) has made significant strategic investments to develop high performance computing (HPC) and its application to national security and basic science. Now, 60 years later, the Computation Directorate and its myriad resources and capabilities have become a key enabler for LLNL programs and an integral part of the effort to support our nation's nuclear deterrent and, more broadly, national security. In addition, the technological innovation HPC makes possible is seen as vital to the nation's economic vitality. LLNL, along with other national laboratories, is working to make supercomputing capabilitiesmore » and expertise available to industry to boost the nation's global competitiveness. LLNL is on the brink of an exciting milestone with the 2012 deployment of Sequoia, the National Nuclear Security Administration's (NNSA's) 20-petaFLOP/s resource that will apply uncertainty quantification to weapons science. Sequoia will bring LLNL's total computing power to more than 23 petaFLOP/s-all brought to bear on basic science and national security needs. The computing systems at LLNL provide game-changing capabilities. Sequoia and other next-generation platforms will enable predictive simulation in the coming decade and leverage industry trends, such as massively parallel and multicore processors, to run petascale applications. Efficient petascale computing necessitates refining accuracy in materials property data, improving models for known physical processes, identifying and then modeling for missing physics, quantifying uncertainty, and enhancing the performance of complex models and algorithms in macroscale simulation codes. Nearly 15 years ago, NNSA's Accelerated Strategic Computing Initiative (ASCI), now called the Advanced Simulation and Computing (ASC) Program, was the critical element needed to shift from test-based confidence to science-based confidence. Specifically, ASCI/ASC accelerated the development of simulation capabilities necessary to ensure confidence in the nuclear stockpile-far exceeding what might have been achieved in the absence of a focused initiative. While stockpile stewardship research pushed LLNL scientists to develop new computer codes, better simulation methods, and improved visualization technologies, this work also stimulated the exploration of HPC applications beyond the standard sponsor base. As LLNL advances to a petascale platform and pursues exascale computing (1,000 times faster than Sequoia), ASC will be paramount to achieving predictive simulation and uncertainty quantification. Predictive simulation and quantifying the uncertainty of numerical predictions where little-to-no data exists demands exascale computing and represents an expanding area of scientific research important not only to nuclear weapons, but to nuclear attribution, nuclear reactor design, and understanding global climate issues, among other fields. Aside from these lofty goals and challenges, computing at LLNL is anything but 'business as usual.' International competition in supercomputing is nothing new, but the HPC community is now operating in an expanded, more aggressive climate of global competitiveness. More countries understand how science and technology research and development are inextricably linked to economic prosperity, and they are aggressively pursuing ways to integrate HPC technologies into their native industrial and consumer products. In the interest of the nation's economic security and the science and technology that underpins it, LLNL is expanding its portfolio and forging new collaborations. We must ensure that HPC remains an asymmetric engine of innovation for the Laboratory and for the U.S. and, in doing so, protect our research and development dynamism and the prosperity it makes possible. One untapped area of opportunity LLNL is pursuing is to help U.S. industry understand how supercomputing can benefit their business. Industrial investment in HPC applications has historically been limited by the prohibitive cost of entry, the inaccessibility of software to run the powerful systems, and the years it takes to grow the expertise to develop codes and run them in an optimal way. LLNL is helping industry better compete in the global market place by providing access to some of the world's most powerful computing systems, the tools to run them, and the experts who are adept at using them. Our scientists are collaborating side by side with industrial partners to develop solutions to some of industry's toughest problems. The goal of the Livermore Valley Open Campus High Performance Computing Innovation Center is to allow American industry the opportunity to harness the power of supercomputing by leveraging the scientific and computational expertise at LLNL in order to gain a competitive advantage in the global economy.« less

  5. GridKit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peles, Slaven

    2016-11-06

    GridKit is a software development kit for interfacing power systems and power grid application software with high performance computing (HPC) libraries developed at National Labs and academia. It is also intended as interoperability layer between different numerical libraries. GridKit is not a standalone application, but comes with a suite of test examples illustrating possible usage.

  6. Resilience Design Patterns - A Structured Approach to Resilience at Extreme Scale (version 1.1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hukerikar, Saurabh; Engelmann, Christian

    Reliability is a serious concern for future extreme-scale high-performance computing (HPC) systems. Projections based on the current generation of HPC systems and technology roadmaps suggest the prevalence of very high fault rates in future systems. The errors resulting from these faults will propagate and generate various kinds of failures, which may result in outcomes ranging from result corruptions to catastrophic application crashes. Therefore the resilience challenge for extreme-scale HPC systems requires management of various hardware and software technologies that are capable of handling a broad set of fault models at accelerated fault rates. Also, due to practical limits on powermore » consumption in HPC systems future systems are likely to embrace innovative architectures, increasing the levels of hardware and software complexities. As a result the techniques that seek to improve resilience must navigate the complex trade-off space between resilience and the overheads to power consumption and performance. While the HPC community has developed various resilience solutions, application-level techniques as well as system-based solutions, the solution space of HPC resilience techniques remains fragmented. There are no formal methods and metrics to investigate and evaluate resilience holistically in HPC systems that consider impact scope, handling coverage, and performance & power efficiency across the system stack. Additionally, few of the current approaches are portable to newer architectures and software environments that will be deployed on future systems. In this document, we develop a structured approach to the management of HPC resilience using the concept of resilience-based design patterns. A design pattern is a general repeatable solution to a commonly occurring problem. We identify the commonly occurring problems and solutions used to deal with faults, errors and failures in HPC systems. Each established solution is described in the form of a pattern that addresses concrete problems in the design of resilient systems. The complete catalog of resilience design patterns provides designers with reusable design elements. We also define a framework that enhances a designer's understanding of the important constraints and opportunities for the design patterns to be implemented and deployed at various layers of the system stack. This design framework may be used to establish mechanisms and interfaces to coordinate flexible fault management across hardware and software components. The framework also supports optimization of the cost-benefit trade-offs among performance, resilience, and power consumption. The overall goal of this work is to enable a systematic methodology for the design and evaluation of resilience technologies in extreme-scale HPC systems that keep scientific applications running to a correct solution in a timely and cost-efficient manner in spite of frequent faults, errors, and failures of various types.« less

  7. Experimental evaluation of a flexible I/O architecture for accelerating workflow engines in ultrascale environments

    DOE PAGES

    Duro, Francisco Rodrigo; Blas, Javier Garcia; Isaila, Florin; ...

    2016-10-06

    The increasing volume of scientific data and the limited scalability and performance of storage systems are currently presenting a significant limitation for the productivity of the scientific workflows running on both high-performance computing (HPC) and cloud platforms. Clearly needed is better integration of storage systems and workflow engines to address this problem. This paper presents and evaluates a novel solution that leverages codesign principles for integrating Hercules—an in-memory data store—with a workflow management system. We consider four main aspects: workflow representation, task scheduling, task placement, and task termination. As a result, the experimental evaluation on both cloud and HPC systemsmore » demonstrates significant performance and scalability improvements over existing state-of-the-art approaches.« less

  8. Comparative performance of conventional OPC concrete and HPC designed by densified mixture design algorithm

    NASA Astrophysics Data System (ADS)

    Huynh, Trong-Phuoc; Hwang, Chao-Lung; Yang, Shu-Ti

    2017-12-01

    This experimental study evaluated the performance of normal ordinary Portland cement (OPC) concrete and high-performance concrete (HPC) that were designed by the conventional method (ACI) and densified mixture design algorithm (DMDA) method, respectively. Engineering properties and durability performance of both the OPC and HPC samples were studied using the tests of workability, compressive strength, water absorption, ultrasonic pulse velocity, and electrical surface resistivity. Test results show that the HPC performed good fresh property and further showed better performance in terms of strength and durability as compared to the OPC.

  9. Arc4nix: A cross-platform geospatial analytical library for cluster and cloud computing

    NASA Astrophysics Data System (ADS)

    Tang, Jingyin; Matyas, Corene J.

    2018-02-01

    Big Data in geospatial technology is a grand challenge for processing capacity. The ability to use a GIS for geospatial analysis on Cloud Computing and High Performance Computing (HPC) clusters has emerged as a new approach to provide feasible solutions. However, users lack the ability to migrate existing research tools to a Cloud Computing or HPC-based environment because of the incompatibility of the market-dominating ArcGIS software stack and Linux operating system. This manuscript details a cross-platform geospatial library "arc4nix" to bridge this gap. Arc4nix provides an application programming interface compatible with ArcGIS and its Python library "arcpy". Arc4nix uses a decoupled client-server architecture that permits geospatial analytical functions to run on the remote server and other functions to run on the native Python environment. It uses functional programming and meta-programming language to dynamically construct Python codes containing actual geospatial calculations, send them to a server and retrieve results. Arc4nix allows users to employ their arcpy-based script in a Cloud Computing and HPC environment with minimal or no modification. It also supports parallelizing tasks using multiple CPU cores and nodes for large-scale analyses. A case study of geospatial processing of a numerical weather model's output shows that arcpy scales linearly in a distributed environment. Arc4nix is open-source software.

  10. An Optimizing Compiler for Petascale I/O on Leadership-Class Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandemir, Mahmut Taylan; Choudary, Alok; Thakur, Rajeev

    In high-performance computing (HPC), parallel I/O architectures usually have very complex hierarchies with multiple layers that collectively constitute an I/O stack, including high-level I/O libraries such as PnetCDF and HDF5, I/O middleware such as MPI-IO, and parallel file systems such as PVFS and Lustre. Our DOE project explored automated instrumentation and compiler support for I/O intensive applications. Our project made significant progress towards understanding the complex I/O hierarchies of high-performance storage systems (including storage caches, HDDs, and SSDs), and designing and implementing state-of-the-art compiler/runtime system technology that targets I/O intensive HPC applications that target leadership class machine. This final reportmore » summarizes the major achievements of the project and also points out promising future directions Two new sections in this report compared to the previous report are IOGenie and SSD/NVM-specific optimizations.« less

  11. High throughput computing: a solution for scientific analysis

    USGS Publications Warehouse

    O'Donnell, M.

    2011-01-01

    handle job failures due to hardware, software, or network interruptions (obviating the need to manually resubmit the job after each stoppage); be affordable; and most importantly, allow us to complete very large, complex analyses that otherwise would not even be possible. In short, we envisioned a job-management system that would take advantage of unused FORT CPUs within a local area network (LAN) to effectively distribute and run highly complex analytical processes. What we found was a solution that uses High Throughput Computing (HTC) and High Performance Computing (HPC) systems to do exactly that (Figure 1).

  12. Biomass Waste Inspired Highly Porous Carbon for High Performance Lithium/Sulfur Batteries

    PubMed Central

    Zhao, Yan; Ren, Jun; Tan, Taizhe; Babaa, Moulay-Rachid; Bakenov, Zhumabay; Liu, Ning; Zhang, Yongguang

    2017-01-01

    The synthesis of highly porous carbon (HPC) materials from poplar catkin by KOH chemical activation and hydrothermal carbonization as a conductive additive to a lithium-sulfur cathode is reported. Elemental sulfur was composited with as-prepared HPC through a melt diffusion method to form a S/HPC nanocomposite. Structure and morphology characterization revealed a hierarchically sponge-like structure of HPC with high pore volume (0.62 cm3∙g−1) and large specific surface area (1261.7 m2∙g−1). When tested in Li/S batteries, the resulting compound demonstrated excellent cycling stability, delivering a second-specific capacity of 1154 mAh∙g−1 as well as presenting 74% retention of value after 100 cycles at 0.1 C. Therefore, the porous structure of HPC plays an important role in enhancing electrochemical properties, which provides conditions for effective charge transfer and effective trapping of soluble polysulfide intermediates, and remarkably improves the electrochemical performance of S/HPC composite cathodes. PMID:28878149

  13. Shifter: Containers for HPC

    NASA Astrophysics Data System (ADS)

    Gerhardt, Lisa; Bhimji, Wahid; Canon, Shane; Fasel, Markus; Jacobsen, Doug; Mustafa, Mustafa; Porter, Jeff; Tsulaia, Vakho

    2017-10-01

    Bringing HEP computing to HPC can be difficult. Software stacks are often very complicated with numerous dependencies that are difficult to get installed on an HPC system. To address this issue, NERSC has created Shifter, a framework that delivers Docker-like functionality to HPC. It works by extracting images from native formats and converting them to a common format that is optimally tuned for the HPC environment. We have used Shifter to deliver the CVMFS software stack for ALICE, ATLAS, and STAR on the supercomputers at NERSC. As well as enabling the distribution multi-TB sized CVMFS stacks to HPC, this approach also offers performance advantages. Software startup times are significantly reduced and load times scale with minimal variation to 1000s of nodes. We profile several successful examples of scientists using Shifter to make scientific analysis easily customizable and scalable. We will describe the Shifter framework and several efforts in HEP and NP to use Shifter to deliver their software on the Cori HPC system.

  14. Petascale computation performance of lightweight multiscale cardiac models using hybrid programming models.

    PubMed

    Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias

    2011-01-01

    Future multiscale and multiphysics models must use the power of high performance computing (HPC) systems to enable research into human disease, translational medical science, and treatment. Previously we showed that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message passing processes (e.g. the message passing interface (MPI)) with multithreading (e.g. OpenMP, POSIX pthreads). The objective of this work is to compare the performance of such hybrid programming models when applied to the simulation of a lightweight multiscale cardiac model. Our results show that the hybrid models do not perform favourably when compared to an implementation using only MPI which is in contrast to our results using complex physiological models. Thus, with regards to lightweight multiscale cardiac models, the user may not need to increase programming complexity by using a hybrid programming approach. However, considering that model complexity will increase as well as the HPC system size in both node count and number of cores per node, it is still foreseeable that we will achieve faster than real time multiscale cardiac simulations on these systems using hybrid programming models.

  15. Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale

    DOE PAGES

    Engelmann, Christian; Hukerikar, Saurabh

    2017-09-01

    Reliability is a serious concern for future extreme-scale high-performance computing (HPC) systems. Projections based on the current generation of HPC systems and technology roadmaps suggest the prevalence of very high fault rates in future systems. While the HPC community has developed various resilience solutions, application-level techniques as well as system-based solutions, the solution space remains fragmented. There are no formal methods and metrics to integrate the various HPC resilience techniques into composite solutions, nor are there methods to holistically evaluate the adequacy and efficacy of such solutions in terms of their protection coverage, and their performance \\& power efficiency characteristics.more » Additionally, few of the current approaches are portable to newer architectures and software environments that will be deployed on future systems. In this paper, we develop a structured approach to the design, evaluation and optimization of HPC resilience using the concept of design patterns. A design pattern is a general repeatable solution to a commonly occurring problem. We identify the problems caused by various types of faults, errors and failures in HPC systems and the techniques used to deal with these events. Each well-known solution that addresses a specific HPC resilience challenge is described in the form of a pattern. We develop a complete catalog of such resilience design patterns, which may be used by system architects, system software and tools developers, application programmers, as well as users and operators as essential building blocks when designing and deploying resilience solutions. We also develop a design framework that enhances a designer's understanding the opportunities for integrating multiple patterns across layers of the system stack and the important constraints during implementation of the individual patterns. It is also useful for defining mechanisms and interfaces to coordinate flexible fault management across hardware and software components. The resilience patterns and the design framework also enable exploration and evaluation of design alternatives and support optimization of the cost-benefit trade-offs among performance, protection coverage, and power consumption of resilience solutions. Here, the overall goal of this work is to establish a systematic methodology for the design and evaluation of resilience technologies in extreme-scale HPC systems that keep scientific applications running to a correct solution in a timely and cost-efficient manner despite frequent faults, errors, and failures of various types.« less

  16. Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelmann, Christian; Hukerikar, Saurabh

    Reliability is a serious concern for future extreme-scale high-performance computing (HPC) systems. Projections based on the current generation of HPC systems and technology roadmaps suggest the prevalence of very high fault rates in future systems. While the HPC community has developed various resilience solutions, application-level techniques as well as system-based solutions, the solution space remains fragmented. There are no formal methods and metrics to integrate the various HPC resilience techniques into composite solutions, nor are there methods to holistically evaluate the adequacy and efficacy of such solutions in terms of their protection coverage, and their performance \\& power efficiency characteristics.more » Additionally, few of the current approaches are portable to newer architectures and software environments that will be deployed on future systems. In this paper, we develop a structured approach to the design, evaluation and optimization of HPC resilience using the concept of design patterns. A design pattern is a general repeatable solution to a commonly occurring problem. We identify the problems caused by various types of faults, errors and failures in HPC systems and the techniques used to deal with these events. Each well-known solution that addresses a specific HPC resilience challenge is described in the form of a pattern. We develop a complete catalog of such resilience design patterns, which may be used by system architects, system software and tools developers, application programmers, as well as users and operators as essential building blocks when designing and deploying resilience solutions. We also develop a design framework that enhances a designer's understanding the opportunities for integrating multiple patterns across layers of the system stack and the important constraints during implementation of the individual patterns. It is also useful for defining mechanisms and interfaces to coordinate flexible fault management across hardware and software components. The resilience patterns and the design framework also enable exploration and evaluation of design alternatives and support optimization of the cost-benefit trade-offs among performance, protection coverage, and power consumption of resilience solutions. Here, the overall goal of this work is to establish a systematic methodology for the design and evaluation of resilience technologies in extreme-scale HPC systems that keep scientific applications running to a correct solution in a timely and cost-efficient manner despite frequent faults, errors, and failures of various types.« less

  17. A high performance scientific cloud computing environment for materials simulations

    NASA Astrophysics Data System (ADS)

    Jorissen, K.; Vila, F. D.; Rehr, J. J.

    2012-09-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.

  18. Advances in Parallel Computing and Databases for Digital Pathology in Cancer Research

    DTIC Science & Technology

    2016-11-13

    these technologies and how we have used them in the past. We are interested in learning more about the needs of clinical pathologists as we continue to...such as image processing and correlation. Further, High Performance Computing (HPC) paradigms such as the Message Passing Interface (MPI) have been...Defense for Research and Engineering. such as pMatlab [4], or bcMPI [5] can significantly reduce the need for deep knowledge of parallel computing. In

  19. Scalable Energy Efficiency with Resilience for High Performance Computing Systems: A Quantitative Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Li; Chen, Zizhong; Song, Shuaiwen

    2016-01-18

    Energy efficiency and resilience are two crucial challenges for HPC systems to reach exascale. While energy efficiency and resilience issues have been extensively studied individually, little has been done to understand the interplay between energy efficiency and resilience for HPC systems. Decreasing the supply voltage associated with a given operating frequency for processors and other CMOS-based components can significantly reduce power consumption. However, this often raises system failure rates and consequently increases application execution time. In this work, we present an energy saving undervolting approach that leverages the mainstream resilience techniques to tolerate the increased failures caused by undervolting.

  20. Investigating the Interplay between Energy Efficiency and Resilience in High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Li; Song, Shuaiwen; Wu, Panruo

    2015-05-29

    Energy efficiency and resilience are two crucial challenges for HPC systems to reach exascale. While energy efficiency and resilience issues have been extensively studied individually, little has been done to understand the interplay between energy efficiency and resilience for HPC systems. Decreasing the supply voltage associated with a given operating frequency for processors and other CMOS-based components can significantly reduce power consumption. However, this often raises system failure rates and consequently increases application execution time. In this work, we present an energy saving undervolting approach that leverages the mainstream resilience techniques to tolerate the increased failures caused by undervolting.

  1. Scalable Energy Efficiency with Resilience for High Performance Computing Systems: A Quantitative Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Li; Chen, Zizhong; Song, Shuaiwen Leon

    2015-11-16

    Energy efficiency and resilience are two crucial challenges for HPC systems to reach exascale. While energy efficiency and resilience issues have been extensively studied individually, little has been done to understand the interplay between energy efficiency and resilience for HPC systems. Decreasing the supply voltage associated with a given operating frequency for processors and other CMOS-based components can significantly reduce power consumption. However, this often raises system failure rates and consequently increases application execution time. In this work, we present an energy saving undervolting approach that leverages the mainstream resilience techniques to tolerate the increased failures caused by undervolting.

  2. Toward Transparent Data Management in Multi-layer Storage Hierarchy for HPC Systems

    DOE PAGES

    Wadhwa, Bharti; Byna, Suren; Butt, Ali R.

    2018-04-17

    Upcoming exascale high performance computing (HPC) systems are expected to comprise multi-tier storage hierarchy, and thus will necessitate innovative storage and I/O mechanisms. Traditional disk and block-based interfaces and file systems face severe challenges in utilizing capabilities of storage hierarchies due to the lack of hierarchy support and semantic interfaces. Object-based and semantically-rich data abstractions for scientific data management on large scale systems offer a sustainable solution to these challenges. Such data abstractions can also simplify users involvement in data movement. Here, we take the first steps of realizing such an object abstraction and explore storage mechanisms for these objectsmore » to enhance I/O performance, especially for scientific applications. We explore how an object-based interface can facilitate next generation scalable computing systems by presenting the mapping of data I/O from two real world HPC scientific use cases: a plasma physics simulation code (VPIC) and a cosmology simulation code (HACC). Our storage model stores data objects in different physical organizations to support data movement across layers of memory/storage hierarchy. Our implementation sclaes well to 16K parallel processes, and compared to the state of the art, such as MPI-IO and HDF5, our object-based data abstractions and data placement strategy in multi-level storage hierarchy achieves up to 7 X I/O performance improvement for scientific data.« less

  3. Toward Transparent Data Management in Multi-layer Storage Hierarchy for HPC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadhwa, Bharti; Byna, Suren; Butt, Ali R.

    Upcoming exascale high performance computing (HPC) systems are expected to comprise multi-tier storage hierarchy, and thus will necessitate innovative storage and I/O mechanisms. Traditional disk and block-based interfaces and file systems face severe challenges in utilizing capabilities of storage hierarchies due to the lack of hierarchy support and semantic interfaces. Object-based and semantically-rich data abstractions for scientific data management on large scale systems offer a sustainable solution to these challenges. Such data abstractions can also simplify users involvement in data movement. Here, we take the first steps of realizing such an object abstraction and explore storage mechanisms for these objectsmore » to enhance I/O performance, especially for scientific applications. We explore how an object-based interface can facilitate next generation scalable computing systems by presenting the mapping of data I/O from two real world HPC scientific use cases: a plasma physics simulation code (VPIC) and a cosmology simulation code (HACC). Our storage model stores data objects in different physical organizations to support data movement across layers of memory/storage hierarchy. Our implementation sclaes well to 16K parallel processes, and compared to the state of the art, such as MPI-IO and HDF5, our object-based data abstractions and data placement strategy in multi-level storage hierarchy achieves up to 7 X I/O performance improvement for scientific data.« less

  4. SoAx: A generic C++ Structure of Arrays for handling particles in HPC codes

    NASA Astrophysics Data System (ADS)

    Homann, Holger; Laenen, Francois

    2018-03-01

    The numerical study of physical problems often require integrating the dynamics of a large number of particles evolving according to a given set of equations. Particles are characterized by the information they are carrying such as an identity, a position other. There are generally speaking two different possibilities for handling particles in high performance computing (HPC) codes. The concept of an Array of Structures (AoS) is in the spirit of the object-oriented programming (OOP) paradigm in that the particle information is implemented as a structure. Here, an object (realization of the structure) represents one particle and a set of many particles is stored in an array. In contrast, using the concept of a Structure of Arrays (SoA), a single structure holds several arrays each representing one property (such as the identity) of the whole set of particles. The AoS approach is often implemented in HPC codes due to its handiness and flexibility. For a class of problems, however, it is known that the performance of SoA is much better than that of AoS. We confirm this observation for our particle problem. Using a benchmark we show that on modern Intel Xeon processors the SoA implementation is typically several times faster than the AoS one. On Intel's MIC co-processors the performance gap even attains a factor of ten. The same is true for GPU computing, using both computational and multi-purpose GPUs. Combining performance and handiness, we present the library SoAx that has optimal performance (on CPUs, MICs, and GPUs) while providing the same handiness as AoS. For this, SoAx uses modern C++ design techniques such template meta programming that allows to automatically generate code for user defined heterogeneous data structures.

  5. Computational Aspects of Data Assimilation and the ESMF

    NASA Technical Reports Server (NTRS)

    daSilva, A.

    2003-01-01

    The scientific challenge of developing advanced data assimilation applications is a daunting task. Independently developed components may have incompatible interfaces or may be written in different computer languages. The high-performance computer (HPC) platforms required by numerically intensive Earth system applications are complex, varied, rapidly evolving and multi-part systems themselves. Since the market for high-end platforms is relatively small, there is little robust middleware available to buffer the modeler from the difficulties of HPC programming. To complicate matters further, the collaborations required to develop large Earth system applications often span initiatives, institutions and agencies, involve geoscience, software engineering, and computer science communities, and cross national borders.The Earth System Modeling Framework (ESMF) project is a concerted response to these challenges. Its goal is to increase software reuse, interoperability, ease of use and performance in Earth system models through the use of a common software framework, developed in an open manner by leaders in the modeling community. The ESMF addresses the technical and to some extent the cultural - aspects of Earth system modeling, laying the groundwork for addressing the more difficult scientific aspects, such as the physical compatibility of components, in the future. In this talk we will discuss the general philosophy and architecture of the ESMF, focussing on those capabilities useful for developing advanced data assimilation applications.

  6. Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing.

    PubMed

    Trudgian, David C; Mirzaei, Hamid

    2012-12-07

    We have extended the functionality of the Central Proteomics Facilities Pipeline (CPFP) to allow use of remote cloud and high performance computing (HPC) resources for shotgun proteomics data processing. CPFP has been modified to include modular local and remote scheduling for data processing jobs. The pipeline can now be run on a single PC or server, a local cluster, a remote HPC cluster, and/or the Amazon Web Services (AWS) cloud. We provide public images that allow easy deployment of CPFP in its entirety in the AWS cloud. This significantly reduces the effort necessary to use the software, and allows proteomics laboratories to pay for compute time ad hoc, rather than obtaining and maintaining expensive local server clusters. Alternatively the Amazon cloud can be used to increase the throughput of a local installation of CPFP as necessary. We demonstrate that cloud CPFP allows users to process data at higher speed than local installations but with similar cost and lower staff requirements. In addition to the computational improvements, the web interface to CPFP is simplified, and other functionalities are enhanced. The software is under active development at two leading institutions and continues to be released under an open-source license at http://cpfp.sourceforge.net.

  7. Investigation into shrinkage of high-performance concrete used for Iowa bridge decks and overlays.

    DOT National Transportation Integrated Search

    2013-09-01

    High-performance concrete (HPC) overlays have been used increasingly as an effective and economical method for bridge decks in Iowa and other states. However, due to its high cementitious material content, HPC often displays high shrinkage cracking p...

  8. Peregrine Transition from CentOS6 to CentOS7 | High-Performance Computing |

    Science.gov Websites

    ). Users should consider them primarily as examples, which they can copy and modify for their own use with HPC environments. This can permit one-step access to pre-existing complex software stacks, or /projects. This is not a highly suggested mechanism, but might serve for one-time needs. In the unlikely

  9. Design and performance of crack-free environmentally friendly concrete "crack-free eco-crete".

    DOT National Transportation Integrated Search

    2014-08-01

    High-performance concrete (HPC) is characterized by high content of cement and supplementary cementitious materials (SCMs). : Using high binder content, low water-to-cementitious material ratio (w/cm), and various chemical admixtures in the HPC can r...

  10. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE PAGES

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  11. Adaptation of a Multi-Block Structured Solver for Effective Use in a Hybrid CPU/GPU Massively Parallel Environment

    NASA Astrophysics Data System (ADS)

    Gutzwiller, David; Gontier, Mathieu; Demeulenaere, Alain

    2014-11-01

    Multi-Block structured solvers hold many advantages over their unstructured counterparts, such as a smaller memory footprint and efficient serial performance. Historically, multi-block structured solvers have not been easily adapted for use in a High Performance Computing (HPC) environment, and the recent trend towards hybrid GPU/CPU architectures has further complicated the situation. This paper will elaborate on developments and innovations applied to the NUMECA FINE/Turbo solver that have allowed near-linear scalability with real-world problems on over 250 hybrid GPU/GPU cluster nodes. Discussion will focus on the implementation of virtual partitioning and load balancing algorithms using a novel meta-block concept. This implementation is transparent to the user, allowing all pre- and post-processing steps to be performed using a simple, unpartitioned grid topology. Additional discussion will elaborate on developments that have improved parallel performance, including fully parallel I/O with the ADIOS API and the GPU porting of the computationally heavy CPUBooster convergence acceleration module. Head of HPC and Release Management, Numeca International.

  12. Data Retention Policy | High-Performance Computing | NREL

    Science.gov Websites

    HPC Data Retention Policy. File storage areas on Peregrine and Gyrfalcon are either user-centric to reclaim storage. We can make special arrangements for permanent storage, if needed. User-Centric > is 3 months after the last project ends. During this retention period, the user may log in to

  13. Peregrine Software Toolchains | High-Performance Computing | NREL

    Science.gov Websites

    toolchain is an open-source alternative against which many technical applications are natively developed and tested. The Portland Group compilers are not fully supported, but are available to the HPC community. Use Group (PGI) C/C++ and Fortran (partially supported) The PGI Accelerator compilers include NVIDIA GPU

  14. Spatial Support Vector Regression to Detect Silent Errors in the Exascale Era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subasi, Omer; Di, Sheng; Bautista-Gomez, Leonardo

    As the exascale era approaches, the increasing capacity of high-performance computing (HPC) systems with targeted power and energy budget goals introduces significant challenges in reliability. Silent data corruptions (SDCs) or silent errors are one of the major sources that corrupt the executionresults of HPC applications without being detected. In this work, we explore a low-memory-overhead SDC detector, by leveraging epsilon-insensitive support vector machine regression, to detect SDCs that occur in HPC applications that can be characterized by an impact error bound. The key contributions are three fold. (1) Our design takes spatialfeatures (i.e., neighbouring data values for each data pointmore » in a snapshot) into training data, such that little memory overhead (less than 1%) is introduced. (2) We provide an in-depth study on the detection ability and performance with different parameters, and we optimize the detection range carefully. (3) Experiments with eight real-world HPC applications show thatour detector can achieve the detection sensitivity (i.e., recall) up to 99% yet suffer a less than 1% of false positive rate for most cases. Our detector incurs low performance overhead, 5% on average, for all benchmarks studied in the paper. Compared with other state-of-the-art techniques, our detector exhibits the best tradeoff considering the detection ability and overheads.« less

  15. Large Scale Computing and Storage Requirements for High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard A.; Wasserman, Harvey

    2010-11-24

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility for the Department of Energy's Office of Science, providing high-performance computing (HPC) resources to more than 3,000 researchers working on about 400 projects. NERSC provides large-scale computing resources and, crucially, the support and expertise needed for scientists to make effective use of them. In November 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of High Energy Physics (HEP) held a workshop to characterize the HPC resources needed at NERSC to support HEP research through the next three to five years. Themore » effort is part of NERSC's legacy of anticipating users needs and deploying resources to meet those demands. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. The chief findings: (1) Science teams need access to a significant increase in computational resources to meet their research goals; (2) Research teams need to be able to read, write, transfer, store online, archive, analyze, and share huge volumes of data; (3) Science teams need guidance and support to implement their codes on future architectures; and (4) Projects need predictable, rapid turnaround of their computational jobs to meet mission-critical time constraints. This report expands upon these key points and includes others. It also presents a number of case studies as representative of the research conducted within HEP. Workshop participants were asked to codify their requirements in this case study format, summarizing their science goals, methods of solution, current and three-to-five year computing requirements, and software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report includes a section that describes efforts already underway or planned at NERSC that address requirements collected at the workshop. NERSC has many initiatives in progress that address key workshop findings and are aligned with NERSC's strategic plans.« less

  16. BOWS (bioinformatics open web services) to centralize bioinformatics tools in web services.

    PubMed

    Velloso, Henrique; Vialle, Ricardo A; Ortega, J Miguel

    2015-06-02

    Bioinformaticians face a range of difficulties to get locally-installed tools running and producing results; they would greatly benefit from a system that could centralize most of the tools, using an easy interface for input and output. Web services, due to their universal nature and widely known interface, constitute a very good option to achieve this goal. Bioinformatics open web services (BOWS) is a system based on generic web services produced to allow programmatic access to applications running on high-performance computing (HPC) clusters. BOWS intermediates the access to registered tools by providing front-end and back-end web services. Programmers can install applications in HPC clusters in any programming language and use the back-end service to check for new jobs and their parameters, and then to send the results to BOWS. Programs running in simple computers consume the BOWS front-end service to submit new processes and read results. BOWS compiles Java clients, which encapsulate the front-end web service requisitions, and automatically creates a web page that disposes the registered applications and clients. Bioinformatics open web services registered applications can be accessed from virtually any programming language through web services, or using standard java clients. The back-end can run in HPC clusters, allowing bioinformaticians to remotely run high-processing demand applications directly from their machines.

  17. Quantifying effectiveness of failure prediction and response in HPC systems : methodology and example.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, Jackson R.; Chen, Frank Xiaoxiao; Pebay, Philippe Pierre

    2010-06-01

    Effective failure prediction and mitigation strategies in high-performance computing systems could provide huge gains in resilience of tightly coupled large-scale scientific codes. These gains would come from prediction-directed process migration and resource servicing, intelligent resource allocation, and checkpointing driven by failure predictors rather than at regular intervals based on nominal mean time to failure. Given probabilistic associations of outlier behavior in hardware-related metrics with eventual failure in hardware, system software, and/or applications, this paper explores approaches for quantifying the effects of prediction and mitigation strategies and demonstrates these using actual production system data. We describe context-relevant methodologies for determining themore » accuracy and cost-benefit of predictors. While many research studies have quantified the expected impact of growing system size, and the associated shortened mean time to failure (MTTF), on application performance in large-scale high-performance computing (HPC) platforms, there has been little if any work to quantify the possible gains from predicting system resource failures with significant but imperfect accuracy. This possibly stems from HPC system complexity and the fact that, to date, no one has established any good predictors of failure in these systems. Our work in the OVIS project aims to discover these predictors via a variety of data collection techniques and statistical analysis methods that yield probabilistic predictions. The question then is, 'How good or useful are these predictions?' We investigate methods for answering this question in a general setting, and illustrate them using a specific failure predictor discovered on a production system at Sandia.« less

  18. Performance of high performance concrete (HPC) in low pH and sulfate environment.

    DOT National Transportation Integrated Search

    2013-05-01

    The goal of this research is to determine the impact of low pH and sulfate environment on high-performance concrete (HPC) and if the current structural and materials specifications provide adequate protections for concrete structures to meet the 75-y...

  19. HPC AND GRID COMPUTING FOR INTEGRATIVE BIOMEDICAL RESEARCH

    PubMed Central

    Kurc, Tahsin; Hastings, Shannon; Kumar, Vijay; Langella, Stephen; Sharma, Ashish; Pan, Tony; Oster, Scott; Ervin, David; Permar, Justin; Narayanan, Sivaramakrishnan; Gil, Yolanda; Deelman, Ewa; Hall, Mary; Saltz, Joel

    2010-01-01

    Integrative biomedical research projects query, analyze, and integrate many different data types and make use of datasets obtained from measurements or simulations of structure and function at multiple biological scales. With the increasing availability of high-throughput and high-resolution instruments, the integrative biomedical research imposes many challenging requirements on software middleware systems. In this paper, we look at some of these requirements using example research pattern templates. We then discuss how middleware systems, which incorporate Grid and high-performance computing, could be employed to address the requirements. PMID:20107625

  20. Facilitating Co-Design for Extreme-Scale Systems Through Lightweight Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelmann, Christian; Lauer, Frank

    This work focuses on tools for investigating algorithm performance at extreme scale with millions of concurrent threads and for evaluating the impact of future architecture choices to facilitate the co-design of high-performance computing (HPC) architectures and applications. The approach focuses on lightweight simulation of extreme-scale HPC systems with the needed amount of accuracy. The prototype presented in this paper is able to provide this capability using a parallel discrete event simulation (PDES), such that a Message Passing Interface (MPI) application can be executed at extreme scale, and its performance properties can be evaluated. The results of an initial prototype aremore » encouraging as a simple 'hello world' MPI program could be scaled up to 1,048,576 virtual MPI processes on a four-node cluster, and the performance properties of two MPI programs could be evaluated at up to 16,384 virtual MPI processes on the same system.« less

  1. Drug repurposing: translational pharmacology, chemistry, computers and the clinic.

    PubMed

    Issa, Naiem T; Byers, Stephen W; Dakshanamurthy, Sivanesan

    2013-01-01

    The process of discovering a pharmacological compound that elicits a desired clinical effect with minimal side effects is a challenge. Prior to the advent of high-performance computing and large-scale screening technologies, drug discovery was largely a serendipitous endeavor, as in the case of thalidomide for erythema nodosum leprosum or cancer drugs in general derived from flora located in far-reaching geographic locations. More recently, de novo drug discovery has become a more rationalized process where drug-target-effect hypotheses are formulated on the basis of already known compounds/protein targets and their structures. Although this approach is hypothesis-driven, the actual success has been very low, contributing to the soaring costs of research and development as well as the diminished pharmaceutical pipeline in the United States. In this review, we discuss the evolution in computational pharmacology as the next generation of successful drug discovery and implementation in the clinic where high-performance computing (HPC) is used to generate and validate drug-target-effect hypotheses completely in silico. The use of HPC would decrease development time and errors while increasing productivity prior to in vitro, animal and human testing. We highlight approaches in chemoinformatics, bioinformatics as well as network biopharmacology to illustrate potential avenues from which to design clinically efficacious drugs. We further discuss the implications of combining these approaches into an integrative methodology for high-accuracy computational predictions within the context of drug repositioning for the efficient streamlining of currently approved drugs back into clinical trials for possible new indications.

  2. BrainFrame: a node-level heterogeneous accelerator platform for neuron simulations

    NASA Astrophysics Data System (ADS)

    Smaragdos, Georgios; Chatzikonstantis, Georgios; Kukreja, Rahul; Sidiropoulos, Harry; Rodopoulos, Dimitrios; Sourdis, Ioannis; Al-Ars, Zaid; Kachris, Christoforos; Soudris, Dimitrios; De Zeeuw, Chris I.; Strydis, Christos

    2017-12-01

    Objective. The advent of high-performance computing (HPC) in recent years has led to its increasing use in brain studies through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a homogeneous acceleration platform to effectively address the complete array of modeling requirements. Approach. In this paper we propose and build BrainFrame, a heterogeneous acceleration platform that incorporates three distinct acceleration technologies, an Intel Xeon-Phi CPU, a NVidia GP-GPU and a Maxeler Dataflow Engine. The PyNN software framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different experiment instances of a state-of-the-art neuron model, representing the inferior-olivary nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal-network dimensions but also different network-connectivity densities, which can drastically affect the workload’s performance characteristics. Main results. The combined use of different HPC technologies demonstrates that BrainFrame is better able to cope with the modeling diversity encountered in realistic experiments while at the same time running on significantly lower energy budgets. Our performance analysis clearly shows that the model directly affects performance and all three technologies are required to cope with all the model use cases. Significance. The BrainFrame framework is designed to transparently configure and select the appropriate back-end accelerator technology for use per simulation run. The PyNN integration provides a familiar bridge to the vast number of models already available. Additionally, it gives a clear roadmap for extending the platform support beyond the proof of concept, with improved usability and directly useful features to the computational-neuroscience community, paving the way for wider adoption.

  3. BrainFrame: a node-level heterogeneous accelerator platform for neuron simulations.

    PubMed

    Smaragdos, Georgios; Chatzikonstantis, Georgios; Kukreja, Rahul; Sidiropoulos, Harry; Rodopoulos, Dimitrios; Sourdis, Ioannis; Al-Ars, Zaid; Kachris, Christoforos; Soudris, Dimitrios; De Zeeuw, Chris I; Strydis, Christos

    2017-12-01

    The advent of high-performance computing (HPC) in recent years has led to its increasing use in brain studies through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a homogeneous acceleration platform to effectively address the complete array of modeling requirements. In this paper we propose and build BrainFrame, a heterogeneous acceleration platform that incorporates three distinct acceleration technologies, an Intel Xeon-Phi CPU, a NVidia GP-GPU and a Maxeler Dataflow Engine. The PyNN software framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different experiment instances of a state-of-the-art neuron model, representing the inferior-olivary nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal-network dimensions but also different network-connectivity densities, which can drastically affect the workload's performance characteristics. The combined use of different HPC technologies demonstrates that BrainFrame is better able to cope with the modeling diversity encountered in realistic experiments while at the same time running on significantly lower energy budgets. Our performance analysis clearly shows that the model directly affects performance and all three technologies are required to cope with all the model use cases. The BrainFrame framework is designed to transparently configure and select the appropriate back-end accelerator technology for use per simulation run. The PyNN integration provides a familiar bridge to the vast number of models already available. Additionally, it gives a clear roadmap for extending the platform support beyond the proof of concept, with improved usability and directly useful features to the computational-neuroscience community, paving the way for wider adoption.

  4. Lightweight Provenance Service for High-Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Dong; Chen, Yong; Carns, Philip

    Provenance describes detailed information about the history of a piece of data, containing the relationships among elements such as users, processes, jobs, and workflows that contribute to the existence of data. Provenance is key to supporting many data management functionalities that are increasingly important in operations such as identifying data sources, parameters, or assumptions behind a given result; auditing data usage; or understanding details about how inputs are transformed into outputs. Despite its importance, however, provenance support is largely underdeveloped in highly parallel architectures and systems. One major challenge is the demanding requirements of providing provenance service in situ. Themore » need to remain lightweight and to be always on often conflicts with the need to be transparent and offer an accurate catalog of details regarding the applications and systems. To tackle this challenge, we introduce a lightweight provenance service, called LPS, for high-performance computing (HPC) systems. LPS leverages a kernel instrument mechanism to achieve transparency and introduces representative execution and flexible granularity to capture comprehensive provenance with controllable overhead. Extensive evaluations and use cases have confirmed its efficiency and usability. We believe that LPS can be integrated into current and future HPC systems to support a variety of data management needs.« less

  5. Climate simulations and services on HPC, Cloud and Grid infrastructures

    NASA Astrophysics Data System (ADS)

    Cofino, Antonio S.; Blanco, Carlos; Minondo Tshuma, Antonio

    2017-04-01

    Cloud, Grid and High Performance Computing have changed the accessibility and availability of computing resources for Earth Science research communities, specially for Climate community. These paradigms are modifying the way how climate applications are being executed. By using these technologies the number, variety and complexity of experiments and resources are increasing substantially. But, although computational capacity is increasing, traditional applications and tools used by the community are not good enough to manage this large volume and variety of experiments and computing resources. In this contribution, we evaluate the challenges to run climate simulations and services on Grid, Cloud and HPC infrestructures and how to tackle them. The Grid and Cloud infrastructures provided by EGI's VOs ( esr , earth.vo.ibergrid and fedcloud.egi.eu) will be evaluated, as well as HPC resources from PRACE infrastructure and institutional clusters. To solve those challenges, solutions using DRM4G framework will be shown. DRM4G provides a good framework to manage big volume and variety of computing resources for climate experiments. This work has been supported by the Spanish National R&D Plan under projects WRF4G (CGL2011-28864), INSIGNIA (CGL2016-79210-R) and MULTI-SDM (CGL2015-66583-R) ; the IS-ENES2 project from the 7FP of the European Commission (grant agreement no. 312979); the European Regional Development Fund—ERDF and the Programa de Personal Investigador en Formación Predoctoral from Universidad de Cantabria and Government of Cantabria.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aderholdt, Ferrol; Caldwell, Blake A.; Hicks, Susan Elaine

    High performance computing environments are often used for a wide variety of workloads ranging from simulation, data transformation and analysis, and complex workflows to name just a few. These systems may process data at various security levels but in so doing are often enclaved at the highest security posture. This approach places significant restrictions on the users of the system even when processing data at a lower security level and exposes data at higher levels of confidentiality to a much broader population than otherwise necessary. The traditional approach of isolation, while effective in establishing security enclaves poses significant challenges formore » the use of shared infrastructure in HPC environments. This report details current state-of-the-art in reconfigurable network enclaving through Software Defined Networking (SDN) and Network Function Virtualization (NFV) and their applicability to secure enclaves in HPC environments. SDN and NFV methods are based on a solid foundation of system wide virtualization. The purpose of which is very straight forward, the system administrator can deploy networks that are more amenable to customer needs, and at the same time achieve increased scalability making it easier to increase overall capacity as needed without negatively affecting functionality. The network administration of both the server system and the virtual sub-systems is simplified allowing control of the infrastructure through well-defined APIs (Application Programming Interface). While SDN and NFV technologies offer significant promise in meeting these goals, they also provide the ability to address a significant component of the multi-tenant challenge in HPC environments, namely resource isolation. Traditional HPC systems are built upon scalable high-performance networking technologies designed to meet specific application requirements. Dynamic isolation of resources within these environments has remained difficult to achieve. SDN and NFV methodology provide us with relevant concepts and available open standards based APIs that isolate compute and storage resources within an otherwise common networking infrastructure. Additionally, the integration of the networking APIs within larger system frameworks such as OpenStack provide the tools necessary to establish isolated enclaves dynamically allowing the benefits of HPC while providing a controlled security structure surrounding these systems.« less

  7. Test plan : Branson TRIP travel time/data accuracy

    DOT National Transportation Integrated Search

    2000-04-01

    In the mid 1990's the FHWA established a High Performance Concrete (HPC) program aimed at demonstrating the positive effects of utilizing HPC in bridges. Research on the benefits of using high performance concrete for bridges has shown a number of be...

  8. Intracranial meningeal hemangiopericytoma: Recurrences at the initial and distant intracranial sites and extraneural metastases to multiple organs

    PubMed Central

    WEI, GUANGQUAN; KANG, XIAOWEI; LIU, XIANPING; TANG, XING; LI, QINLONG; HAN, JUNTAO; YIN, HONG

    2015-01-01

    Regardless of the controversial pathogenesis, intracranial meningeal hemangiopericytoma (M-HPC) is a rare, highly cellular and vascularized mesenchymal tumor that is characterized by a high tendency for recurrence and extraneural metastasis, despite radical excision and postoperative radiotherapy. M-HPC shares similar clinical manifestations and radiological findings with meningioma, which causes difficulty in differentiation of this entity from those prognostically favorable mimics prior to surgery. Treatment of M-HPC, particularly in metastatic settings, remains a challenge. A case is described of primary M-HPC with recurrence at the initial and distant intracranial sites and extraneural multiple-organ metastases in a 36-year-old female. The metastasis of M-HPC was extremely extensive, and to the best of our knowledge this is the first case of M-HPC with delayed metastasis to the bilateral kidneys. The data suggests that preoperative computed tomography and magnetic resonance imaging could provide certain diagnostic clues and useful information for more optimal treatment planning. The results may imply that novel drugs, such as temozolomide and bevacizumab, as a component of multimodality therapy of M-HPC may deserve further investigation. PMID:26171177

  9. Peregrine System User Basics | High-Performance Computing | NREL

    Science.gov Websites

    peregrine.hpc.nrel.gov or to one of the login nodes. Example commands to access Peregrine from a Linux or Mac OS X system Code Example Create a file called hello.F90 containing the following code: program hello write(6 information by enclosing it in brackets < >. For example: $ ssh -Y

  10. Implementation of BT, SP, LU, and FT of NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Schultz, Matthew; Frumkin, Michael; Jin, Hao-Qiang; Yan, Jerry

    2000-01-01

    A number of Java features make it an attractive but a debatable choice for High Performance Computing. We have implemented benchmarks working on single structured grid BT,SP,LU and FT in Java. The performance and scalability of the Java code shows that a significant improvement in Java compiler technology and in Java thread implementation are necessary for Java to compete with Fortran in HPC applications.

  11. Economical and crack-free high-performance concrete for pavement and transportation infrastructure construction.

    DOT National Transportation Integrated Search

    2017-05-01

    The main objective of this research is to develop and validate the behavior of a new class of environmentally friendly and costeffective : high-performance concrete (HPC) referred to herein as Eco-HPC. The proposed project aimed at developing two cla...

  12. Position Paper - pFLogger: The Parallel Fortran Logging framework for HPC Applications

    NASA Technical Reports Server (NTRS)

    Clune, Thomas L.; Cruz, Carlos A.

    2017-01-01

    In the context of high performance computing (HPC), software investments in support of text-based diagnostics, which monitor a running application, are typically limited compared to those for other types of IO. Examples of such diagnostics include reiteration of configuration parameters, progress indicators, simple metrics (e.g., mass conservation, convergence of solvers, etc.), and timers. To some degree, this difference in priority is justifiable as other forms of output are the primary products of a scientific model and, due to their large data volume, much more likely to be a significant performance concern. In contrast, text-based diagnostic content is generally not shared beyond the individual or group running an application and is most often used to troubleshoot when something goes wrong. We suggest that a more systematic approach enabled by a logging facility (or logger) similar to those routinely used by many communities would provide significant value to complex scientific applications. In the context of high-performance computing, an appropriate logger would provide specialized support for distributed and shared-memory parallelism and have low performance overhead. In this paper, we present our prototype implementation of pFlogger a parallel Fortran-based logging framework, and assess its suitability for use in a complex scientific application.

  13. POSITION PAPER - pFLogger: The Parallel Fortran Logging Framework for HPC Applications

    NASA Technical Reports Server (NTRS)

    Clune, Thomas L.; Cruz, Carlos A.

    2017-01-01

    In the context of high performance computing (HPC), software investments in support of text-based diagnostics, which monitor a running application, are typically limited compared to those for other types of IO. Examples of such diagnostics include reiteration of configuration parameters, progress indicators, simple metrics (e.g., mass conservation, convergence of solvers, etc.), and timers. To some degree, this difference in priority is justifiable as other forms of output are the primary products of a scientific model and, due to their large data volume, much more likely to be a significant performance concern. In contrast, text-based diagnostic content is generally not shared beyond the individual or group running an application and is most often used to troubleshoot when something goes wrong. We suggest that a more systematic approach enabled by a logging facility (or 'logger') similar to those routinely used by many communities would provide significant value to complex scientific applications. In the context of high-performance computing, an appropriate logger would provide specialized support for distributed and shared-memory parallelism and have low performance overhead. In this paper, we present our prototype implementation of pFlogger - a parallel Fortran-based logging framework, and assess its suitability for use in a complex scientific application.

  14. Self curing admixture performance report.

    DOT National Transportation Integrated Search

    2012-02-01

    The Oregon Department of Transportation (ODOT) has experienced early age cracking of newly placed high performance : concrete (HPC) bridge decks. The silica fume contained in the HPC requires immediate and proper curing application after : placement ...

  15. Freestanding hierarchically porous carbon framework decorated by polyaniline as binder-free electrodes for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Miao, Fujun; Shao, Changlu; Li, Xinghua; Wang, Kexin; Lu, Na; Liu, Yichun

    2016-10-01

    Freestanding hierarchically porous carbon electrode materials with favorable features of large surface areas, hierarchical porosity and continuous conducting pathways are very attractive for practical applications in electrochemical devices. Herein, three-dimensional freestanding hierarchically porous carbon (HPC) materials have been fabricated successfully mainly by the facile phase separation method. In order to further improve the energy storage ability, polyaniline (PANI) with high pseudocapacitance has been decorated on HPC through in situ chemical polymerization of aniline monomers. Benefiting from the synergistic effects between HPC and PANI, the resulting HPC/PANI composites as electrode materials present dramatic electrochemical performance with high specific capacitance up to 290 F g-1 at 0.5 A g-1 and good rate capability with ∼86% (248 F g-1) capacitance retention at 64 A g-1 of initial capacitance in three-electrode configuration. Moreover, the as-assembled symmetric supercapacitor based on HPC/PANI composites also demonstrates good capacitive properties with high energy density of 9.6 Wh kg-1 at 223 W kg-1 and long-term cycling stability with 78% capacitance retention after 10 000 cycles. Therefore, this work provides a new approach for designing high-performance electrodes with exceptional electrochemical performance, which are very promising for practical application in the energy storage field.

  16. Computational challenges in atomic, molecular and optical physics.

    PubMed

    Taylor, Kenneth T

    2002-06-15

    Six challenges are discussed. These are the laser-driven helium atom; the laser-driven hydrogen molecule and hydrogen molecular ion; electron scattering (with ionization) from one-electron atoms; the vibrational and rotational structure of molecules such as H(3)(+) and water at their dissociation limits; laser-heated clusters; and quantum degeneracy and Bose-Einstein condensation. The first four concern fundamental few-body systems where use of high-performance computing (HPC) is currently making possible accurate modelling from first principles. This leads to reliable predictions and support for laboratory experiment as well as true understanding of the dynamics. Important aspects of these challenges addressable only via a terascale facility are set out. Such a facility makes the last two challenges in the above list meaningfully accessible for the first time, and the scientific interest together with the prospective role for HPC in these is emphasized.

  17. Experience Paper: Software Engineering and Community Codes Track in ATPESC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, Anshu; Riley, Katherine M.

    Argonne Training Program in Extreme Scale Computing (ATPESC) was started by the Argonne National Laboratory with the objective of expanding the ranks of better prepared users of high performance computing (HPC) machines. One of the unique aspects of the program was inclusion of software engineering and community codes track. The inclusion was motivated by the observation that the projects with a good scientific and software process were better able to meet their scientific goals. In this paper we present our experience of running the software track from the beginning of the program until now. We discuss the motivations, the reception,more » and the evolution of the track over the years. We welcome discussion and input from the community to enhance the track in ATPESC, and also to facilitate inclusion of similar tracks in other HPC oriented training programs.« less

  18. The OptIPuter microscopy demonstrator: enabling science through a transatlantic lightpath

    PubMed Central

    Ellisman, M.; Hutton, T.; Kirkland, A.; Lin, A.; Lin, C.; Molina, T.; Peltier, S.; Singh, R.; Tang, K.; Trefethen, A.E.; Wallom, D.C.H.; Xiong, X.

    2009-01-01

    The OptIPuter microscopy demonstrator project has been designed to enable concurrent and remote usage of world-class electron microscopes located in Oxford and San Diego. The project has constructed a network consisting of microscopes and computational and data resources that are all connected by a dedicated network infrastructure using the UK Lightpath and US Starlight systems. Key science drivers include examples from both materials and biological science. The resulting system is now a permanent link between the Oxford and San Diego microscopy centres. This will form the basis of further projects between the sites and expansion of the types of systems that can be remotely controlled, including optical, as well as electron, microscopy. Other improvements will include the updating of the Microsoft cluster software to the high performance computing (HPC) server 2008, which includes the HPC basic profile implementation that will enable the development of interoperable clients. PMID:19487201

  19. The OptIPuter microscopy demonstrator: enabling science through a transatlantic lightpath.

    PubMed

    Ellisman, M; Hutton, T; Kirkland, A; Lin, A; Lin, C; Molina, T; Peltier, S; Singh, R; Tang, K; Trefethen, A E; Wallom, D C H; Xiong, X

    2009-07-13

    The OptIPuter microscopy demonstrator project has been designed to enable concurrent and remote usage of world-class electron microscopes located in Oxford and San Diego. The project has constructed a network consisting of microscopes and computational and data resources that are all connected by a dedicated network infrastructure using the UK Lightpath and US Starlight systems. Key science drivers include examples from both materials and biological science. The resulting system is now a permanent link between the Oxford and San Diego microscopy centres. This will form the basis of further projects between the sites and expansion of the types of systems that can be remotely controlled, including optical, as well as electron, microscopy. Other improvements will include the updating of the Microsoft cluster software to the high performance computing (HPC) server 2008, which includes the HPC basic profile implementation that will enable the development of interoperable clients.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madduri, Kamesh; Im, Eun-Jin; Ibrahim, Khaled Z.

    The next decade of high-performance computing (HPC) systems will see a rapid evolution and divergence of multi- and manycore architectures as power and cooling constraints limit increases in microprocessor clock speeds. Understanding efficient optimization methodologies on diverse multicore designs in the context of demanding numerical methods is one of the greatest challenges faced today by the HPC community. In this paper, we examine the efficient multicore optimization of GTC, a petascale gyrokinetic toroidal fusion code for studying plasma microturbulence in tokamak devices. For GTC’s key computational components (charge deposition and particle push), we explore efficient parallelization strategies across a broadmore » range of emerging multicore designs, including the recently-released Intel Nehalem-EX, the AMD Opteron Istanbul, and the highly multithreaded Sun UltraSparc T2+. We also present the first study on tuning gyrokinetic particle-in-cell (PIC) algorithms for graphics processors, using the NVIDIA C2050 (Fermi). Our work discusses several novel optimization approaches for gyrokinetic PIC, including mixed-precision computation, particle binning and decomposition strategies, grid replication, SIMDized atomic floating-point operations, and effective GPU texture memory utilization. Overall, we achieve significant performance improvements of 1.3–4.7× on these complex PIC kernels, despite the inherent challenges of data dependency and locality. Finally, our work also points to several architectural and programming features that could significantly enhance PIC performance and productivity on next-generation architectures.« less

  1. Sepsis reconsidered: Identifying novel metrics for behavioral landscape characterization with a high-performance computing implementation of an agent-based model.

    PubMed

    Cockrell, Chase; An, Gary

    2017-10-07

    Sepsis affects nearly 1 million people in the United States per year, has a mortality rate of 28-50% and requires more than $20 billion a year in hospital costs. Over a quarter century of research has not yielded a single reliable diagnostic test or a directed therapeutic agent for sepsis. Central to this insufficiency is the fact that sepsis remains a clinical/physiological diagnosis representing a multitude of molecularly heterogeneous pathological trajectories. Advances in computational capabilities offered by High Performance Computing (HPC) platforms call for an evolution in the investigation of sepsis to attempt to define the boundaries of traditional research (bench, clinical and computational) through the use of computational proxy models. We present a novel investigatory and analytical approach, derived from how HPC resources and simulation are used in the physical sciences, to identify the epistemic boundary conditions of the study of clinical sepsis via the use of a proxy agent-based model of systemic inflammation. Current predictive models for sepsis use correlative methods that are limited by patient heterogeneity and data sparseness. We address this issue by using an HPC version of a system-level validated agent-based model of sepsis, the Innate Immune Response ABM (IIRBM), as a proxy system in order to identify boundary conditions for the possible behavioral space for sepsis. We then apply advanced analysis derived from the study of Random Dynamical Systems (RDS) to identify novel means for characterizing system behavior and providing insight into the tractability of traditional investigatory methods. The behavior space of the IIRABM was examined by simulating over 70 million sepsis patients for up to 90 days in a sweep across the following parameters: cardio-respiratory-metabolic resilience; microbial invasiveness; microbial toxigenesis; and degree of nosocomial exposure. In addition to using established methods for describing parameter space, we developed two novel methods for characterizing the behavior of a RDS: Probabilistic Basins of Attraction (PBoA) and Stochastic Trajectory Analysis (STA). Computationally generated behavioral landscapes demonstrated attractor structures around stochastic regions of behavior that could be described in a complementary fashion through use of PBoA and STA. The stochasticity of the boundaries of the attractors highlights the challenge for correlative attempts to characterize and classify clinical sepsis. HPC simulations of models like the IIRABM can be used to generate approximations of the behavior space of sepsis to both establish "boundaries of futility" with respect to existing investigatory approaches and apply system engineering principles to investigate the general dynamic properties of sepsis to provide a pathway for developing control strategies. The issues that bedevil the study and treatment of sepsis, namely clinical data sparseness and inadequate experimental sampling of system behavior space, are fundamental to nearly all biomedical research, manifesting in the "Crisis of Reproducibility" at all levels. HPC-augmented simulation-based research offers an investigatory strategy more consistent with that seen in the physical sciences (which combine experiment, theory and simulation), and an opportunity to utilize the leading advances in HPC, namely deep machine learning and evolutionary computing, to form the basis of an iterative scientific process to meet the full promise of Precision Medicine (right drug, right patient, right time). Copyright © 2017. Published by Elsevier Ltd.

  2. A Parallel Neuromorphic Text Recognition System and Its Implementation on a Heterogeneous High-Performance Computing Cluster

    DTIC Science & Technology

    2013-01-01

    M. Ahmadi, and M. Shridhar, “ Handwritten Numeral Recognition with Multiple Features and Multistage Classifiers,” Proc. IEEE Int’l Symp. Circuits...ARTICLE (Post Print) 3. DATES COVERED (From - To) SEP 2011 – SEP 2013 4. TITLE AND SUBTITLE A PARALLEL NEUROMORPHIC TEXT RECOGNITION SYSTEM AND ITS...research in computational intelligence has entered a new era. In this paper, we present an HPC-based context-aware intelligent text recognition

  3. Research of aerohydrodynamic and aeroelastic processes on PNRPU HPC system

    NASA Astrophysics Data System (ADS)

    Modorskii, V. Ya.; Shevelev, N. A.

    2016-10-01

    Research of aerohydrodynamic and aeroelastic processes with the High Performance Computing Complex in PNIPU is actively conducted within the university priority development direction "Aviation engine and gas turbine technology". Work is carried out in two areas: development and use of domestic software and use of well-known foreign licensed applied software packets. In addition, the third direction associated with the verification of computational experiments - physical modeling, with unique proprietary experimental installations is being developed.

  4. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Packet-Level Analysis

    DTIC Science & Technology

    2015-09-01

    with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS . 1...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES) Technical and Project Engineering, LLC QED Systems, LLC Alexandria, VA...AND ADDRESS (ES) US Army Research Laboratory ATTN: RDRL-CIH-C Aberdeen Proving Ground, MD 21005 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR

  5. AutoCNet: A Python library for sparse multi-image correspondence identification for planetary data

    NASA Astrophysics Data System (ADS)

    Laura, Jason; Rodriguez, Kelvin; Paquette, Adam C.; Dunn, Evin

    2018-01-01

    In this work we describe the AutoCNet library, written in Python, to support the application of computer vision techniques for n-image correspondence identification in remotely sensed planetary images and subsequent bundle adjustment. The library is designed to support exploratory data analysis, algorithm and processing pipeline development, and application at scale in High Performance Computing (HPC) environments for processing large data sets and generating foundational data products. We also present a brief case study illustrating high level usage for the Apollo 15 Metric camera.

  6. Towards real-time remote processing of laparoscopic video

    NASA Astrophysics Data System (ADS)

    Ronaghi, Zahra; Duffy, Edward B.; Kwartowitz, David M.

    2015-03-01

    Laparoscopic surgery is a minimally invasive surgical technique where surgeons insert a small video camera into the patient's body to visualize internal organs and small tools to perform surgical procedures. However, the benefit of small incisions has a drawback of limited visualization of subsurface tissues, which can lead to navigational challenges in the delivering of therapy. Image-guided surgery (IGS) uses images to map subsurface structures and can reduce the limitations of laparoscopic surgery. One particular laparoscopic camera system of interest is the vision system of the daVinci-Si robotic surgical system (Intuitive Surgical, Sunnyvale, CA, USA). The video streams generate approximately 360 megabytes of data per second, demonstrating a trend towards increased data sizes in medicine, primarily due to higher-resolution video cameras and imaging equipment. Processing this data on a bedside PC has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second (fps) rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. The ability to acquire, process and visualize data in real-time is essential for performance of complex tasks as well as minimizing risk to the patient. As a result, utilizing high-speed networks to access computing clusters will lead to real-time medical image processing and improve surgical experiences by providing real-time augmented laparoscopic data. We aim to develop a medical video processing system using an OpenFlow software defined network that is capable of connecting to multiple remote medical facilities and HPC servers.

  7. Atlas : A library for numerical weather prediction and climate modelling

    NASA Astrophysics Data System (ADS)

    Deconinck, Willem; Bauer, Peter; Diamantakis, Michail; Hamrud, Mats; Kühnlein, Christian; Maciel, Pedro; Mengaldo, Gianmarco; Quintino, Tiago; Raoult, Baudouin; Smolarkiewicz, Piotr K.; Wedi, Nils P.

    2017-11-01

    The algorithms underlying numerical weather prediction (NWP) and climate models that have been developed in the past few decades face an increasing challenge caused by the paradigm shift imposed by hardware vendors towards more energy-efficient devices. In order to provide a sustainable path to exascale High Performance Computing (HPC), applications become increasingly restricted by energy consumption. As a result, the emerging diverse and complex hardware solutions have a large impact on the programming models traditionally used in NWP software, triggering a rethink of design choices for future massively parallel software frameworks. In this paper, we present Atlas, a new software library that is currently being developed at the European Centre for Medium-Range Weather Forecasts (ECMWF), with the scope of handling data structures required for NWP applications in a flexible and massively parallel way. Atlas provides a versatile framework for the future development of efficient NWP and climate applications on emerging HPC architectures. The applications range from full Earth system models, to specific tools required for post-processing weather forecast products. The Atlas library thus constitutes a step towards affordable exascale high-performance simulations by providing the necessary abstractions that facilitate the application in heterogeneous HPC environments by promoting the co-design of NWP algorithms with the underlying hardware.

  8. Highly Efficient Parallel Multigrid Solver For Large-Scale Simulation of Grain Growth Using the Structural Phase Field Crystal Model

    NASA Astrophysics Data System (ADS)

    Guan, Zhen; Pekurovsky, Dmitry; Luce, Jason; Thornton, Katsuyo; Lowengrub, John

    The structural phase field crystal (XPFC) model can be used to model grain growth in polycrystalline materials at diffusive time-scales while maintaining atomic scale resolution. However, the governing equation of the XPFC model is an integral-partial-differential-equation (IPDE), which poses challenges in implementation onto high performance computing (HPC) platforms. In collaboration with the XSEDE Extended Collaborative Support Service, we developed a distributed memory HPC solver for the XPFC model, which combines parallel multigrid and P3DFFT. The performance benchmarking on the Stampede supercomputer indicates near linear strong and weak scaling for both multigrid and transfer time between multigrid and FFT modules up to 1024 cores. Scalability of the FFT module begins to decline at 128 cores, but it is sufficient for the type of problem we will be examining. We have demonstrated simulations using 1024 cores, and we expect to achieve 4096 cores and beyond. Ongoing work involves optimization of MPI/OpenMP-based codes for the Intel KNL Many-Core Architecture. This optimizes the code for coming pre-exascale systems, in particular many-core systems such as Stampede 2.0 and Cori 2 at NERSC, without sacrificing efficiency on other general HPC systems.

  9. Performance testing of HPC on Sunshine Bridge.

    DOT National Transportation Integrated Search

    2009-09-01

    The deck of the Sunshine Bridge overpass, located westbound on Interstate 40 (I-40) near Winslow, Arizona, was : replaced on August 24, 2005. The original deteriorated concrete deck was replaced using high performance : concrete (HPC), reinforced wit...

  10. Scalability improvements to NRLMOL for DFT calculations of large molecules

    NASA Astrophysics Data System (ADS)

    Diaz, Carlos Manuel

    Advances in high performance computing (HPC) have provided a way to treat large, computationally demanding tasks using thousands of processors. With the development of more powerful HPC architectures, the need to create efficient and scalable code has grown more important. Electronic structure calculations are valuable in understanding experimental observations and are routinely used for new materials predictions. For the electronic structure calculations, the memory and computation time are proportional to the number of atoms. Memory requirements for these calculations scale as N2, where N is the number of atoms. While the recent advances in HPC offer platforms with large numbers of cores, the limited amount of memory available on a given node and poor scalability of the electronic structure code hinder their efficient usage of these platforms. This thesis will present some developments to overcome these bottlenecks in order to study large systems. These developments, which are implemented in the NRLMOL electronic structure code, involve the use of sparse matrix storage formats and the use of linear algebra using sparse and distributed matrices. These developments along with other related development now allow ground state density functional calculations using up to 25,000 basis functions and the excited state calculations using up to 17,000 basis functions while utilizing all cores on a node. An example on a light-harvesting triad molecule is described. Finally, future plans to further improve the scalability will be presented.

  11. Integrating Reconfigurable Hardware-Based Grid for High Performance Computing

    PubMed Central

    Dondo Gazzano, Julio; Sanchez Molina, Francisco; Rincon, Fernando; López, Juan Carlos

    2015-01-01

    FPGAs have shown several characteristics that make them very attractive for high performance computing (HPC). The impressive speed-up factors that they are able to achieve, the reduced power consumption, and the easiness and flexibility of the design process with fast iterations between consecutive versions are examples of benefits obtained with their use. However, there are still some difficulties when using reconfigurable platforms as accelerator that need to be addressed: the need of an in-depth application study to identify potential acceleration, the lack of tools for the deployment of computational problems in distributed hardware platforms, and the low portability of components, among others. This work proposes a complete grid infrastructure for distributed high performance computing based on dynamically reconfigurable FPGAs. Besides, a set of services designed to facilitate the application deployment is described. An example application and a comparison with other hardware and software implementations are shown. Experimental results show that the proposed architecture offers encouraging advantages for deployment of high performance distributed applications simplifying development process. PMID:25874241

  12. HPC Insights, Fall 2011

    DTIC Science & Technology

    2011-01-01

    Simulating Satellite Tracking Using Parallel Computing By Andrew Lindstrom ,University of Hawaii at Hilo — Mentors: Carl Holmberg, Maui High Performance...RDECOM) and his management team, RDECOM Deputy Director Gary Martin ; ARL Director John Miller; Communications- Electronics Research, Development...Saves Resources By Mike Knowles, ARL DSRC Site Lead, Lockheed Martin mode instead of full power down. The first phase of the EAS effort is an attempt

  13. AHPCRC - Army High Performance Computing Research Center

    DTIC Science & Technology

    2008-01-01

    University) Birds and insects use complex flapping and twisting wing motions to maneuver, hover, avoid obstacles, and maintain or regain their...vehicles for use in sensing, surveillance, and wireless communications. HPC simulations examine plunging, pitching, and twisting motions of aeroelastic...wings, to optimize the amplitudes and frequencies of flapping and twisting motions for the maximum amount of thrust. Several methods of calculation

  14. Using ANSYS Fluent on the Peregrine System | High-Performance Computing |

    Science.gov Websites

    two ways to run ANSYS CFD interactively on NREL HPC systems. When graphics rendering is not a critical when used as above is quite low (e.g., windows take a long time to come up). For small tasks, it may be , go to Category/Connection/SSH, and check off the box "enable compression". When graphics

  15. Hierarchically Porous Carbon Materials for CO 2 Capture: The Role of Pore Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estevez, Luis; Barpaga, Dushyant; Zheng, Jian

    2018-01-17

    With advances in porous carbon synthesis techniques, hierarchically porous carbon (HPC) materials are being utilized as relatively new porous carbon sorbents for CO2 capture applications. These HPC materials were used as a platform to prepare samples with differing textural properties and morphologies to elucidate structure-property relationships. It was found that high microporous content, rather than overall surface area was of primary importance for predicting good CO2 capture performance. Two HPC materials were analyzed, each with near identical high surface area (~2700 m2/g) and colossally high pore volume (~10 cm3/g), but with different microporous content and pore size distributions, which ledmore » to dramatically different CO2 capture performance. Overall, large pore volumes obtained from distinct mesopores were found to significantly impact adsorption performance. From these results, an optimized HPC material was synthesized that achieved a high CO2 capacity of ~3.7 mmol/g at 25°C and 1 bar.« less

  16. Re-Form: FPGA-Powered True Codesign Flow for High-Performance Computing In The Post-Moore Era

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappello, Franck; Yoshii, Kazutomo; Finkel, Hal

    Multicore scaling will end soon because of practical power limits. Dark silicon is becoming a major issue even more than the end of Moore’s law. In the post-Moore era, the energy efficiency of computing will be a major concern. FPGAs could be a key to maximizing the energy efficiency. In this paper we address severe challenges in the adoption of FPGA in HPC and describe “Re-form,” an FPGA-powered codesign flow.

  17. Sandia QIS Capabilities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Richard P.

    2017-07-01

    Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.

  18. Programming for 1.6 Millon cores: Early experiences with IBM's BG/Q SMP architecture

    NASA Astrophysics Data System (ADS)

    Glosli, James

    2013-03-01

    With the stall in clock cycle improvements a decade ago, the drive for computational performance has continues along a path of increasing core counts on a processor. The multi-core evolution has been expressed in both a symmetric multi processor (SMP) architecture and cpu/GPU architecture. Debates rage in the high performance computing (HPC) community which architecture best serves HPC. In this talk I will not attempt to resolve that debate but perhaps fuel it. I will discuss the experience of exploiting Sequoia, a 98304 node IBM Blue Gene/Q SMP at Lawrence Livermore National Laboratory. The advantages and challenges of leveraging the computational power BG/Q will be detailed through the discussion of two applications. The first application is a Molecular Dynamics code called ddcMD. This is a code developed over the last decade at LLNL and ported to BG/Q. The second application is a cardiac modeling code called Cardioid. This is a code that was recently designed and developed at LLNL to exploit the fine scale parallelism of BG/Q's SMP architecture. Through the lenses of these efforts I'll illustrate the need to rethink how we express and implement our computational approaches. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Development and construction of low-cracking high-performance concrete (LC-HPC) bridge decks : free shrinkage, moisture optimization and concrete production : final report.

    DOT National Transportation Integrated Search

    2009-08-01

    The development and evaluation of low-cracking high-performance concrete (LC-HPC) for use in bridge decks : is described based on laboratory test results and experience gained during the construction of 14 bridges. This report : emphasizes the materi...

  20. Development and construction of low-cracking high-performance concrete (LC-HPC) bridge decks : free shrinkage, moisture optimization and concrete production : summary report.

    DOT National Transportation Integrated Search

    2009-08-01

    The development and evaluation of low-cracking high-performance concrete (LC-HPC) for use in bridge decks : is described based on laboratory test results and experience gained during the construction of 14 bridges. This report : emphasizes the materi...

  1. Scheduling Operations for Massive Heterogeneous Clusters

    NASA Technical Reports Server (NTRS)

    Humphrey, John; Spagnoli, Kyle

    2013-01-01

    High-performance computing (HPC) programming has become increasingly difficult with the advent of hybrid supercomputers consisting of multicore CPUs and accelerator boards such as the GPU. Manual tuning of software to achieve high performance on this type of machine has been performed by programmers. This is needlessly difficult and prone to being invalidated by new hardware, new software, or changes in the underlying code. A system was developed for task-based representation of programs, which when coupled with a scheduler and runtime system, allows for many benefits, including higher performance and utilization of computational resources, easier programming and porting, and adaptations of code during runtime. The system consists of a method of representing computer algorithms as a series of data-dependent tasks. The series forms a graph, which can be scheduled for execution on many nodes of a supercomputer efficiently by a computer algorithm. The schedule is executed by a dispatch component, which is tailored to understand all of the hardware types that may be available within the system. The scheduler is informed by a cluster mapping tool, which generates a topology of available resources and their strengths and communication costs. Software is decoupled from its hardware, which aids in porting to future architectures. A computer algorithm schedules all operations, which for systems of high complexity (i.e., most NASA codes), cannot be performed optimally by a human. The system aids in reducing repetitive code, such as communication code, and aids in the reduction of redundant code across projects. It adds new features to code automatically, such as recovering from a lost node or the ability to modify the code while running. In this project, the innovators at the time of this reporting intend to develop two distinct technologies that build upon each other and both of which serve as building blocks for more efficient HPC usage. First is the scheduling and dynamic execution framework, and the second is scalable linear algebra libraries that are built directly on the former.

  2. CyberShake: Running Seismic Hazard Workflows on Distributed HPC Resources

    NASA Astrophysics Data System (ADS)

    Callaghan, S.; Maechling, P. J.; Graves, R. W.; Gill, D.; Olsen, K. B.; Milner, K. R.; Yu, J.; Jordan, T. H.

    2013-12-01

    As part of its program of earthquake system science research, the Southern California Earthquake Center (SCEC) has developed a simulation platform, CyberShake, to perform physics-based probabilistic seismic hazard analysis (PSHA) using 3D deterministic wave propagation simulations. CyberShake performs PSHA by simulating a tensor-valued wavefield of Strain Green Tensors, and then using seismic reciprocity to calculate synthetic seismograms for about 415,000 events per site of interest. These seismograms are processed to compute ground motion intensity measures, which are then combined with probabilities from an earthquake rupture forecast to produce a site-specific hazard curve. Seismic hazard curves for hundreds of sites in a region can be used to calculate a seismic hazard map, representing the seismic hazard for a region. We present a recently completed PHSA study in which we calculated four CyberShake seismic hazard maps for the Southern California area to compare how CyberShake hazard results are affected by different SGT computational codes (AWP-ODC and AWP-RWG) and different community velocity models (Community Velocity Model - SCEC (CVM-S4) v11.11 and Community Velocity Model - Harvard (CVM-H) v11.9). We present our approach to running workflow applications on distributed HPC resources, including systems without support for remote job submission. We show how our approach extends the benefits of scientific workflows, such as job and data management, to large-scale applications on Track 1 and Leadership class open-science HPC resources. We used our distributed workflow approach to perform CyberShake Study 13.4 on two new NSF open-science HPC computing resources, Blue Waters and Stampede, executing over 470 million tasks to calculate physics-based hazard curves for 286 locations in the Southern California region. For each location, we calculated seismic hazard curves with two different community velocity models and two different SGT codes, resulting in over 1100 hazard curves. We will report on the performance of this CyberShake study, four times larger than previous studies. Additionally, we will examine the challenges we face applying these workflow techniques to additional open-science HPC systems and discuss whether our workflow solutions continue to provide value to our large-scale PSHA calculations.

  3. Using CyberShake Workflows to Manage Big Seismic Hazard Data on Large-Scale Open-Science HPC Resources

    NASA Astrophysics Data System (ADS)

    Callaghan, S.; Maechling, P. J.; Juve, G.; Vahi, K.; Deelman, E.; Jordan, T. H.

    2015-12-01

    The CyberShake computational platform, developed by the Southern California Earthquake Center (SCEC), is an integrated collection of scientific software and middleware that performs 3D physics-based probabilistic seismic hazard analysis (PSHA) for Southern California. CyberShake integrates large-scale and high-throughput research codes to produce probabilistic seismic hazard curves for individual locations of interest and hazard maps for an entire region. A recent CyberShake calculation produced about 500,000 two-component seismograms for each of 336 locations, resulting in over 300 million synthetic seismograms in a Los Angeles-area probabilistic seismic hazard model. CyberShake calculations require a series of scientific software programs. Early computational stages produce data used as inputs by later stages, so we describe CyberShake calculations using a workflow definition language. Scientific workflow tools automate and manage the input and output data and enable remote job execution on large-scale HPC systems. To satisfy the requests of broad impact users of CyberShake data, such as seismologists, utility companies, and building code engineers, we successfully completed CyberShake Study 15.4 in April and May 2015, calculating a 1 Hz urban seismic hazard map for Los Angeles. We distributed the calculation between the NSF Track 1 system NCSA Blue Waters, the DOE Leadership-class system OLCF Titan, and USC's Center for High Performance Computing. This study ran for over 5 weeks, burning about 1.1 million node-hours and producing over half a petabyte of data. The CyberShake Study 15.4 results doubled the maximum simulated seismic frequency from 0.5 Hz to 1.0 Hz as compared to previous studies, representing a factor of 16 increase in computational complexity. We will describe how our workflow tools supported splitting the calculation across multiple systems. We will explain how we modified CyberShake software components, including GPU implementations and migrating from file-based communication to MPI messaging, to greatly reduce the I/O demands and node-hour requirements of CyberShake. We will also present performance metrics from CyberShake Study 15.4, and discuss challenges that producers of Big Data on open-science HPC resources face moving forward.

  4. Modeling Cardiac Electrophysiology at the Organ Level in the Peta FLOPS Computing Age

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Lawrence; Bishop, Martin; Hoetzl, Elena

    2010-09-30

    Despite a steep increase in available compute power, in-silico experimentation with highly detailed models of the heart remains to be challenging due to the high computational cost involved. It is hoped that next generation high performance computing (HPC) resources lead to significant reductions in execution times to leverage a new class of in-silico applications. However, performance gains with these new platforms can only be achieved by engaging a much larger number of compute cores, necessitating strongly scalable numerical techniques. So far strong scalability has been demonstrated only for a moderate number of cores, orders of magnitude below the range requiredmore » to achieve the desired performance boost.In this study, strong scalability of currently used techniques to solve the bidomain equations is investigated. Benchmark results suggest that scalability is limited to 512-4096 cores within the range of relevant problem sizes even when systems are carefully load-balanced and advanced IO strategies are employed.« less

  5. 1001 Ways to run AutoDock Vina for virtual screening

    NASA Astrophysics Data System (ADS)

    Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D.

    2016-03-01

    Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.

  6. 1001 Ways to run AutoDock Vina for virtual screening.

    PubMed

    Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D

    2016-03-01

    Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.

  7. Establishing Linux Clusters for High-Performance Computing (HPC) at NPS

    DTIC Science & Technology

    2004-09-01

    52 e. Intel Roll..................................................................................53 f. Area51 Roll...results of generating md5summ for Area51 roll. All the file information is available. This number can be used to be checked against the number that the...vendor provides fro the particular piece of software. ......51 Figure 22 The given md5summ for Area51 roll form the download site. This number can

  8. AHPCRC (Army High Performance Computing Research Center) Bulletin. Volume 3, Issue 1

    DTIC Science & Technology

    2011-01-01

    release; distribution is unlimited. Multiscale Modeling of Materials The rotating reflector antenna associated with airport traffic control systems is...batteries and phased-array antennas . Power and efficiency studies evaluate on-board HPC systems and advanced image processing applications. 2010 marked...giving way in some applications to a newer technology called the phased array antenna system (sometimes called a beamformer, example shown at right

  9. Selecting a Benchmark Suite to Profile High-Performance Computing (HPC) Machines

    DTIC Science & Technology

    2014-11-01

    architectures. Machines now contain central processing units (CPUs), graphics processing units (GPUs), and many integrated core ( MIC ) architecture all...evaluate the feasibility and applicability of a new architecture just released to the market . Researchers are often unsure how available resources will...architectures. Having a suite of programs running on different architectures, such as GPUs, MICs , and CPUs, adds complexity and technical challenges

  10. Direct numerical simulation of reactor two-phase flows enabled by high-performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.

    Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent researchmore » progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.« less

  11. Gyrokinetic particle-in-cell optimization on emerging multi- and manycore platforms

    DOE PAGES

    Madduri, Kamesh; Im, Eun-Jin; Ibrahim, Khaled Z.; ...

    2011-03-02

    The next decade of high-performance computing (HPC) systems will see a rapid evolution and divergence of multi- and manycore architectures as power and cooling constraints limit increases in microprocessor clock speeds. Understanding efficient optimization methodologies on diverse multicore designs in the context of demanding numerical methods is one of the greatest challenges faced today by the HPC community. In this paper, we examine the efficient multicore optimization of GTC, a petascale gyrokinetic toroidal fusion code for studying plasma microturbulence in tokamak devices. For GTC’s key computational components (charge deposition and particle push), we explore efficient parallelization strategies across a broadmore » range of emerging multicore designs, including the recently-released Intel Nehalem-EX, the AMD Opteron Istanbul, and the highly multithreaded Sun UltraSparc T2+. We also present the first study on tuning gyrokinetic particle-in-cell (PIC) algorithms for graphics processors, using the NVIDIA C2050 (Fermi). Our work discusses several novel optimization approaches for gyrokinetic PIC, including mixed-precision computation, particle binning and decomposition strategies, grid replication, SIMDized atomic floating-point operations, and effective GPU texture memory utilization. Overall, we achieve significant performance improvements of 1.3–4.7× on these complex PIC kernels, despite the inherent challenges of data dependency and locality. Finally, our work also points to several architectural and programming features that could significantly enhance PIC performance and productivity on next-generation architectures.« less

  12. Evaluation of FPGA to PC feedback loop

    NASA Astrophysics Data System (ADS)

    Linczuk, Pawel; Zabolotny, Wojciech M.; Wojenski, Andrzej; Krawczyk, Rafal D.; Pozniak, Krzysztof T.; Chernyshova, Maryna; Czarski, Tomasz; Gaska, Michal; Kasprowicz, Grzegorz; Kowalska-Strzeciwilk, Ewa; Malinowski, Karol

    2017-08-01

    The paper presents the evaluation study of the performance of the data transmission subsystem which can be used in High Energy Physics (HEP) and other High-Performance Computing (HPC) systems. The test environment consisted of Xilinx Artix-7 FPGA and server-grade PC connected via the PCIe 4xGen2 bus. The DMA engine was based on the Xilinx DMA for PCI Express Subsystem1 controlled by the modified Xilinx XDMA kernel driver.2 The research is focused on the influence of the system configuration on achievable throughput and latency of data transfer.

  13. HPC on Competitive Cloud Resources

    NASA Astrophysics Data System (ADS)

    Bientinesi, Paolo; Iakymchuk, Roman; Napper, Jeff

    Computing as a utility has reached the mainstream. Scientists can now easily rent time on large commercial clusters that can be expanded and reduced on-demand in real-time. However, current commercial cloud computing performance falls short of systems specifically designed for scientific applications. Scientific computing needs are quite different from those of the web applications that have been the focus of cloud computing vendors. In this chapter we demonstrate through empirical evaluation the computational efficiency of high-performance numerical applications in a commercial cloud environment when resources are shared under high contention. Using the Linpack benchmark as a case study, we show that cache utilization becomes highly unpredictable and similarly affects computation time. For some problems, not only is it more efficient to underutilize resources, but the solution can be reached sooner in realtime (wall-time). We also show that the smallest, cheapest (64-bit) instance on the studied environment is the best for price to performance ration. In light of the high-contention we witness, we believe that alternative definitions of efficiency for commercial cloud environments should be introduced where strong performance guarantees do not exist. Concepts like average, expected performance and execution time, expected cost to completion, and variance measures--traditionally ignored in the high-performance computing context--now should complement or even substitute the standard definitions of efficiency.

  14. HPC Software Stack Testing Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garvey, Cormac

    The HPC Software stack testing framework (hpcswtest) is used in the INL Scientific Computing Department to test the basic sanity and integrity of the HPC Software stack (Compilers, MPI, Numerical libraries and Applications) and to quickly discover hard failures, and as a by-product it will indirectly check the HPC infrastructure (network, PBS and licensing servers).

  15. Towards Test Driven Development for Computational Science with pFUnit

    NASA Technical Reports Server (NTRS)

    Rilee, Michael L.; Clune, Thomas L.

    2014-01-01

    Developers working in Computational Science & Engineering (CSE)/High Performance Computing (HPC) must contend with constant change due to advances in computing technology and science. Test Driven Development (TDD) is a methodology that mitigates software development risks due to change at the cost of adding comprehensive and continuous testing to the development process. Testing frameworks tailored for CSE/HPC, like pFUnit, can lower the barriers to such testing, yet CSE software faces unique constraints foreign to the broader software engineering community. Effective testing of numerical software requires a comprehensive suite of oracles, i.e., use cases with known answers, as well as robust estimates for the unavoidable numerical errors associated with implementation with finite-precision arithmetic. At first glance these concerns often seem exceedingly challenging or even insurmountable for real-world scientific applications. However, we argue that this common perception is incorrect and driven by (1) a conflation between model validation and software verification and (2) the general tendency in the scientific community to develop relatively coarse-grained, large procedures that compound numerous algorithmic steps.We believe TDD can be applied routinely to numerical software if developers pursue fine-grained implementations that permit testing, neatly side-stepping concerns about needing nontrivial oracles as well as the accumulation of errors. We present an example of a successful, complex legacy CSE/HPC code whose development process shares some aspects with TDD, which we contrast with current and potential capabilities. A mix of our proposed methodology and framework support should enable everyday use of TDD by CSE-expert developers.

  16. Assessment of current cybersecurity practices in the public domain : cyber indications and warnings domain.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamlet, Jason R.; Keliiaa, Curtis M.

    This report assesses current public domain cyber security practices with respect to cyber indications and warnings. It describes cybersecurity industry and government activities, including cybersecurity tools, methods, practices, and international and government-wide initiatives known to be impacting current practice. Of particular note are the U.S. Government's Trusted Internet Connection (TIC) and 'Einstein' programs, which are serving to consolidate the Government's internet access points and to provide some capability to monitor and mitigate cyber attacks. Next, this report catalogs activities undertaken by various industry and government entities. In addition, it assesses the benchmarks of HPC capability and other HPC attributes thatmore » may lend themselves to assist in the solution of this problem. This report draws few conclusions, as it is intended to assess current practice in preparation for future work, however, no explicit references to HPC usage for the purpose of analyzing cyber infrastructure in near-real-time were found in the current practice. This report and a related SAND2010-4766 National Cyber Defense High Performance Computing and Analysis: Concepts, Planning and Roadmap report are intended to provoke discussion throughout a broad audience about developing a cohesive HPC centric solution to wide-area cybersecurity problems.« less

  17. Making Cloud Computing Available For Researchers and Innovators (Invited)

    NASA Astrophysics Data System (ADS)

    Winsor, R.

    2010-12-01

    High Performance Computing (HPC) facilities exist in most academic institutions but are almost invariably over-subscribed. Access is allocated based on academic merit, the only practical method of assigning valuable finite compute resources. Cloud computing on the other hand, and particularly commercial clouds, draw flexibly on an almost limitless resource as long as the user has sufficient funds to pay the bill. How can the commercial cloud model be applied to scientific computing? Is there a case to be made for a publicly available research cloud and how would it be structured? This talk will explore these themes and describe how Cybera, a not-for-profit non-governmental organization in Alberta Canada, aims to leverage its high speed research and education network to provide cloud computing facilities for a much wider user base.

  18. A parallel calibration utility for WRF-Hydro on high performance computers

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, C.; Kotamarthi, V. R.

    2017-12-01

    A successful modeling of complex hydrological processes comprises establishing an integrated hydrological model which simulates the hydrological processes in each water regime, calibrates and validates the model performance based on observation data, and estimates the uncertainties from different sources especially those associated with parameters. Such a model system requires large computing resources and often have to be run on High Performance Computers (HPC). The recently developed WRF-Hydro modeling system provides a significant advancement in the capability to simulate regional water cycles more completely. The WRF-Hydro model has a large range of parameters such as those in the input table files — GENPARM.TBL, SOILPARM.TBL and CHANPARM.TBL — and several distributed scaling factors such as OVROUGHRTFAC. These parameters affect the behavior and outputs of the model and thus may need to be calibrated against the observations in order to obtain a good modeling performance. Having a parameter calibration tool specifically for automate calibration and uncertainty estimates of WRF-Hydro model can provide significant convenience for the modeling community. In this study, we developed a customized tool using the parallel version of the model-independent parameter estimation and uncertainty analysis tool, PEST, to enabled it to run on HPC with PBS and SLURM workload manager and job scheduler. We also developed a series of PEST input file templates that are specifically for WRF-Hydro model calibration and uncertainty analysis. Here we will present a flood case study occurred in April 2013 over Midwest. The sensitivity and uncertainties are analyzed using the customized PEST tool we developed.

  19. Collective input/output under memory constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Yin; Chen, Yong; Zhuang, Yu

    2014-12-18

    Compared with current high-performance computing (HPC) systems, exascale systems are expected to have much less memory per node, which can significantly reduce necessary collective input/output (I/O) performance. In this study, we introduce a memory-conscious collective I/O strategy that takes into account memory capacity and bandwidth constraints. The new strategy restricts aggregation data traffic within disjointed subgroups, coordinates I/O accesses in intranode and internode layers, and determines I/O aggregators at run time considering memory consumption among processes. We have prototyped the design and evaluated it with commonly used benchmarks to verify its potential. The evaluation results demonstrate that this strategy holdsmore » promise in mitigating the memory pressure, alleviating the contention for memory bandwidth, and improving the I/O performance for projected extreme-scale systems. Given the importance of supporting increasingly data-intensive workloads and projected memory constraints on increasingly larger scale HPC systems, this new memory-conscious collective I/O can have a significant positive impact on scientific discovery productivity.« less

  20. Approach to solution of coupled heat transfer problem on the surface of hypersonic vehicle of arbitrary shape

    NASA Astrophysics Data System (ADS)

    Bocharov, A. N.; Bityurin, V. A.; Golovin, N. N.; Evstigneev, N. M.; Petrovskiy, V. P.; Ryabkov, O. I.; Teplyakov, I. O.; Shustov, A. A.; Solomonov, Yu S.; Fortov, V. E.

    2016-11-01

    In this paper, an approach to solve conjugate heat- and mass-transfer problems is considered to be applied to hypersonic vehicle surface of arbitrary shape. The approach under developing should satisfy the following demands. (i) The surface of the body of interest may have arbitrary geometrical shape. (ii) The shape of the body can change during calculation. (iii) The flight characteristics may vary in a wide range, specifically flight altitude, free-stream Mach number, angle-of-attack, etc. (iv) The approach should be realized with using the high-performance-computing (HPC) technologies. The approach is based on coupled solution of 3D unsteady hypersonic flow equations and 3D unsteady heat conductance problem for the thick wall. Iterative process is applied to account for ablation of wall material and, consequently, mass injection from the surface and changes in the surface shape. While iterations, unstructured computational grids both in the flow region and within the wall interior are adapted to the current geometry and flow conditions. The flow computations are done on HPC platform and are most time-consuming part of the whole problem, while heat conductance problem can be solved on many kinds of computers.

  1. DOD HPC Insights. Spring 2012

    DTIC Science & Technology

    2012-04-01

    spr2012-Final.indd 1 5/9/2012 10:54:32 AM DOD Spring 2012 INSIGHTS A publication of the Department of Defense High Performance Computing...0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing...collection of information if it does not display a currently valid OMB control number. 1 . REPORT DATE 2012 2. REPORT TYPE 3. DATES COVERED 4. TITLE

  2. Rebuilding the NAVSEA Early Stage Ship Design Environment

    DTIC Science & Technology

    2010-04-01

    rules -of- thumb to base these crucial decisions upon. With High Performance Computing (HPC) as an enabler, the vision is to explore all downstream...the results of the analysis back into LEAPS. Another software development worthy of discussion here is Intelligent Ship Arrangements ( ISA ), which...constraints and rules set by the users ahead of time. When used in a systematic and stochastic way, and when integrated using LEAPS, having this

  3. Visualization Development of the Ballistic Threat Geospatial Optimization

    DTIC Science & Technology

    2015-07-01

    topographic globes, Keyhole Markup Language (KML), and Collada files. World Wind gives the user the ability to import 3-D models and navigate...present. After the first person view window is closed , the images stored in memory are then converted to a QuickTime movie (.MOV). The video will be...processing unit HPC high-performance computing JOGL Java implementation of OpenGL KML Keyhole Markup Language NASA National Aeronautics and Space

  4. Applied Computational Electromagnetics Society Journal (ACES); Special Issue on Electromagnetics and High Performance Computing. Vol. 13, No. 2

    DTIC Science & Technology

    1998-07-01

    author’s responsibility to obtain written permission to reproduce such material. 1 " vssmwmato srÄmaöNfTT fWi««-ii|<.1iw »■■«. i-i...interesting to compare papers in the issue with previous special issues of other jour- nals and monographs, for example [ 1 , 2]. HPC issues first attracted...environment, in particular the Kendall Square Research KSR- 1 . Fast algorithms have attracted considerable atten- tion in the CEM community, since they

  5. Final Report Scalable Analysis Methods and In Situ Infrastructure for Extreme Scale Knowledge Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Leary, Patrick

    The primary challenge motivating this project is the widening gap between the ability to compute information and to store it for subsequent analysis. This gap adversely impacts science code teams, who can perform analysis only on a small fraction of the data they calculate, resulting in the substantial likelihood of lost or missed science, when results are computed but not analyzed. Our approach is to perform as much analysis or visualization processing on data while it is still resident in memory, which is known as in situ processing. The idea in situ processing was not new at the time ofmore » the start of this effort in 2014, but efforts in that space were largely ad hoc, and there was no concerted effort within the research community that aimed to foster production-quality software tools suitable for use by Department of Energy (DOE) science projects. Our objective was to produce and enable the use of production-quality in situ methods and infrastructure, at scale, on DOE high-performance computing (HPC) facilities, though we expected to have an impact beyond DOE due to the widespread nature of the challenges, which affect virtually all large-scale computational science efforts. To achieve this objective, we engaged in software technology research and development (R&D), in close partnerships with DOE science code teams, to produce software technologies that were shown to run efficiently at scale on DOE HPC platforms.« less

  6. Evaluating Application Resilience with XRay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Sui; Bronevetsky, Greg; Li, Bin

    2015-05-07

    The rising count and shrinking feature size of transistors within modern computers is making them increasingly vulnerable to various types of soft faults. This problem is especially acute in high-performance computing (HPC) systems used for scientific computing, because these systems include many thousands of compute cores and nodes, all of which may be utilized in a single large-scale run. The increasing vulnerability of HPC applications to errors induced by soft faults is motivating extensive work on techniques to make these applications more resiilent to such faults, ranging from generic techniques such as replication or checkpoint/restart to algorithmspecific error detection andmore » tolerance techniques. Effective use of such techniques requires a detailed understanding of how a given application is affected by soft faults to ensure that (i) efforts to improve application resilience are spent in the code regions most vulnerable to faults and (ii) the appropriate resilience technique is applied to each code region. This paper presents XRay, a tool to view the application vulnerability to soft errors, and illustrates how XRay can be used in the context of a representative application. In addition to providing actionable insights into application behavior XRay automatically selects the number of fault injection experiments required to provide an informative view of application behavior, ensuring that the information is statistically well-grounded without performing unnecessary experiments.« less

  7. The Practical Obstacles of Data Transfer: Why researchers still love scp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Hai Ah; Hill, Jason J; Parete-Koon, Suzanne T

    The importance of computing facilities is heralded every six months with the announcement of the new Top500 list, showcasing the world s fastest supercomputers. Unfortu- nately, with great computing capability does not come great long-term data storage capacity, which often means users must move their data to their local site archive, to remote sites where they may be doing future computation or anal- ysis, or back to their home institution, else face the dreaded data purge that most HPC centers employ to keep utiliza- tion of large parallel filesystems low to manage performance and capacity. At HPC centers, data transfermore » is crucial to the scientific workflow and will increase in importance as computing systems grow in size. The Energy Sciences Net- work (ESnet) recently launched its fifth generation network, a 100 Gbps high-performance, unclassified national network connecting more than 40 DOE research sites to support scientific research and collaboration. Despite the tenfold increase in bandwidth to DOE research sites amenable to multiple data transfer streams and high throughput, in prac- tice, researchers often under-utilize the network and resort to painfully-slow single stream transfer methods such as scp to avoid the complexity of using multiple stream tools such as GridFTP and bbcp, and contend with frustration from the lack of consistency of available tools between sites. In this study we survey and assess the data transfer methods pro- vided at several DOE supported computing facilities, includ- ing both leadership-computing facilities, connected through ESnet. We present observed transfer rates, suggested opti- mizations, and discuss the obstacles the tools must overcome to receive wide-spread adoption over scp.« less

  8. DoD HPC Insights Fall 2016A publication of the Department of Defense High Performance Computing Modernization Program

    DTIC Science & Technology

    2016-09-01

    HPCMP will continue to be a key resource in solving challenging problems for the Department of Defense . 1 Fall 2016 High-F idel i ty Simulat ions of...laser interactions. The group had studied plasma expansion experimentally, but this wasn’t sufficient to understand the problem . Feister adapted and...focused on increasing the efficiency of jet turbine engines and extending aircraft flight ranges by changing the shape (articulation) of the turbine

  9. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Voice Call Analysis

    DTIC Science & Technology

    2015-09-01

    Gateway 2 4. Voice Packet Flow: SIP , Session Description Protocol (SDP), and RTP 3 5. Voice Data Analysis 5 6. Call Analysis 6 7. Call Metrics 6...analysis processing is designed for a general VoIP system architecture based on Session Initiation Protocol ( SIP ) for negotiating call sessions and...employs Skinny Client Control Protocol for network communication between the phone and the local CallManager (e.g., for each dialed digit), SIP

  10. A Long History of Supercomputing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grider, Gary

    As part of its national security science mission, Los Alamos National Laboratory and HPC have a long, entwined history dating back to the earliest days of computing. From bringing the first problem to the nation’s first computer to building the first machine to break the petaflop barrier, Los Alamos holds many “firsts” in HPC breakthroughs. Today, supercomputers are integral to stockpile stewardship and the Laboratory continues to work with vendors in developing the future of HPC.

  11. Advanced Biomedical Computing Center (ABCC) | DSITP

    Cancer.gov

    The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.

  12. Unified Performance and Power Modeling of Scientific Workloads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Shuaiwen; Barker, Kevin J.; Kerbyson, Darren J.

    2013-11-17

    It is expected that scientific applications executing on future large-scale HPC must be optimized not only in terms of performance, but also in terms of power consumption. As power and energy become increasingly constrained resources, researchers and developers must have access to tools that will allow for accurate prediction of both performance and power consumption. Reasoning about performance and power consumption in concert will be critical for achieving maximum utilization of limited resources on future HPC systems. To this end, we present a unified performance and power model for the Nek-Bone mini-application developed as part of the DOE's CESAR Exascalemore » Co-Design Center. Our models consider the impact of computation, point-to-point communication, and collective communication« less

  13. I/O load balancing for big data HPC applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Arnab K.; Goyal, Arpit; Wang, Feiyi

    High Performance Computing (HPC) big data problems require efficient distributed storage systems. However, at scale, such storage systems often experience load imbalance and resource contention due to two factors: the bursty nature of scientific application I/O; and the complex I/O path that is without centralized arbitration and control. For example, the extant Lustre parallel file system-that supports many HPC centers-comprises numerous components connected via custom network topologies, and serves varying demands of a large number of users and applications. Consequently, some storage servers can be more loaded than others, which creates bottlenecks and reduces overall application I/O performance. Existing solutionsmore » typically focus on per application load balancing, and thus are not as effective given their lack of a global view of the system. In this paper, we propose a data-driven approach to load balance the I/O servers at scale, targeted at Lustre deployments. To this end, we design a global mapper on Lustre Metadata Server, which gathers runtime statistics from key storage components on the I/O path, and applies Markov chain modeling and a minimum-cost maximum-flow algorithm to decide where data should be placed. Evaluation using a realistic system simulator and a real setup shows that our approach yields better load balancing, which in turn can improve end-to-end performance.« less

  14. Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing. The PRIMA Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malony, Allen D.; Wolf, Felix G.

    2014-01-31

    The growing number of cores provided by today’s high-­end computing systems present substantial challenges to application developers in their pursuit of parallel efficiency. To find the most effective optimization strategy, application developers need insight into the runtime behavior of their code. The University of Oregon (UO) and the Juelich Supercomputing Centre of Forschungszentrum Juelich (FZJ) develop the performance analysis tools TAU and Scalasca, respectively, which allow high-­performance computing (HPC) users to collect and analyze relevant performance data – even at very large scales. TAU and Scalasca are considered among the most advanced parallel performance systems available, and are used extensivelymore » across HPC centers in the U.S., Germany, and around the world. The TAU and Scalasca groups share a heritage of parallel performance tool research and partnership throughout the past fifteen years. Indeed, the close interactions of the two groups resulted in a cross-­fertilization of tool ideas and technologies that pushed TAU and Scalasca to what they are today. It also produced two performance systems with an increasing degree of functional overlap. While each tool has its specific analysis focus, the tools were implementing measurement infrastructures that were substantially similar. Because each tool provides complementary performance analysis, sharing of measurement results is valuable to provide the user with more facets to understand performance behavior. However, each measurement system was producing performance data in different formats, requiring data interoperability tools to be created. A common measurement and instrumentation system was needed to more closely integrate TAU and Scalasca and to avoid the duplication of development and maintenance effort. The PRIMA (Performance Refactoring of Instrumentation, Measurement, and Analysis) project was proposed over three years ago as a joint international effort between UO and FZJ to accomplish these objectives: (1) refactor TAU and Scalasca performance system components for core code sharing and (2) integrate TAU and Scalasca functionality through data interfaces, formats, and utilities. As presented in this report, the project has completed these goals. In addition to shared technical advances, the groups have worked to engage with users through application performance engineering and tools training. In this regard, the project benefits from the close interactions the teams have with national laboratories in the United States and Germany. We have also sought to enhance our interactions through joint tutorials and outreach. UO has become a member of the Virtual Institute of High-­Productivity Supercomputing (VI-­HPS) established by the Helmholtz Association of German Research Centres as a center of excellence, focusing on HPC tools for diagnosing programming errors and optimizing performance. UO and FZJ have conducted several VI-­HPS training activities together within the past three years.« less

  15. Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing: the PRIMA Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malony, Allen D.; Wolf, Felix G.

    2014-01-31

    The growing number of cores provided by today’s high-end computing systems present substantial challenges to application developers in their pursuit of parallel efficiency. To find the most effective optimization strategy, application developers need insight into the runtime behavior of their code. The University of Oregon (UO) and the Juelich Supercomputing Centre of Forschungszentrum Juelich (FZJ) develop the performance analysis tools TAU and Scalasca, respectively, which allow high-performance computing (HPC) users to collect and analyze relevant performance data – even at very large scales. TAU and Scalasca are considered among the most advanced parallel performance systems available, and are used extensivelymore » across HPC centers in the U.S., Germany, and around the world. The TAU and Scalasca groups share a heritage of parallel performance tool research and partnership throughout the past fifteen years. Indeed, the close interactions of the two groups resulted in a cross-fertilization of tool ideas and technologies that pushed TAU and Scalasca to what they are today. It also produced two performance systems with an increasing degree of functional overlap. While each tool has its specific analysis focus, the tools were implementing measurement infrastructures that were substantially similar. Because each tool provides complementary performance analysis, sharing of measurement results is valuable to provide the user with more facets to understand performance behavior. However, each measurement system was producing performance data in different formats, requiring data interoperability tools to be created. A common measurement and instrumentation system was needed to more closely integrate TAU and Scalasca and to avoid the duplication of development and maintenance effort. The PRIMA (Performance Refactoring of Instrumentation, Measurement, and Analysis) project was proposed over three years ago as a joint international effort between UO and FZJ to accomplish these objectives: (1) refactor TAU and Scalasca performance system components for core code sharing and (2) integrate TAU and Scalasca functionality through data interfaces, formats, and utilities. As presented in this report, the project has completed these goals. In addition to shared technical advances, the groups have worked to engage with users through application performance engineering and tools training. In this regard, the project benefits from the close interactions the teams have with national laboratories in the United States and Germany. We have also sought to enhance our interactions through joint tutorials and outreach. UO has become a member of the Virtual Institute of High-Productivity Supercomputing (VI-HPS) established by the Helmholtz Association of German Research Centres as a center of excellence, focusing on HPC tools for diagnosing programming errors and optimizing performance. UO and FZJ have conducted several VI-HPS training activities together within the past three years.« less

  16. MemAxes: Visualization and Analytics for Characterizing Complex Memory Performance Behaviors.

    PubMed

    Gimenez, Alfredo; Gamblin, Todd; Jusufi, Ilir; Bhatele, Abhinav; Schulz, Martin; Bremer, Peer-Timo; Hamann, Bernd

    2018-07-01

    Memory performance is often a major bottleneck for high-performance computing (HPC) applications. Deepening memory hierarchies, complex memory management, and non-uniform access times have made memory performance behavior difficult to characterize, and users require novel, sophisticated tools to analyze and optimize this aspect of their codes. Existing tools target only specific factors of memory performance, such as hardware layout, allocations, or access instructions. However, today's tools do not suffice to characterize the complex relationships between these factors. Further, they require advanced expertise to be used effectively. We present MemAxes, a tool based on a novel approach for analytic-driven visualization of memory performance data. MemAxes uniquely allows users to analyze the different aspects related to memory performance by providing multiple visual contexts for a centralized dataset. We define mappings of sampled memory access data to new and existing visual metaphors, each of which enabling a user to perform different analysis tasks. We present methods to guide user interaction by scoring subsets of the data based on known performance problems. This scoring is used to provide visual cues and automatically extract clusters of interest. We designed MemAxes in collaboration with experts in HPC and demonstrate its effectiveness in case studies.

  17. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.

    PubMed

    Stamatakis, Alexandros

    2006-11-01

    RAxML-VI-HPC (randomized axelerated maximum likelihood for high performance computing) is a sequential and parallel program for inference of large phylogenies with maximum likelihood (ML). Low-level technical optimizations, a modification of the search algorithm, and the use of the GTR+CAT approximation as replacement for GTR+Gamma yield a program that is between 2.7 and 52 times faster than the previous version of RAxML. A large-scale performance comparison with GARLI, PHYML, IQPNNI and MrBayes on real data containing 1000 up to 6722 taxa shows that RAxML requires at least 5.6 times less main memory and yields better trees in similar times than the best competing program (GARLI) on datasets up to 2500 taxa. On datasets > or =4000 taxa it also runs 2-3 times faster than GARLI. RAxML has been parallelized with MPI to conduct parallel multiple bootstraps and inferences on distinct starting trees. The program has been used to compute ML trees on two of the largest alignments to date containing 25,057 (1463 bp) and 2182 (51,089 bp) taxa, respectively. icwww.epfl.ch/~stamatak

  18. Using Formal Grammars to Predict I/O Behaviors in HPC: The Omnisc'IO Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorier, Matthieu; Ibrahim, Shadi; Antoniu, Gabriel

    2016-08-01

    The increasing gap between the computation performance of post-petascale machines and the performance of their I/O subsystem has motivated many I/O optimizations including prefetching, caching, and scheduling. In order to further improve these techniques, modeling and predicting spatial and temporal I/O patterns of HPC applications as they run has become crucial. In this paper we present Omnisc'IO, an approach that builds a grammar-based model of the I/O behavior of HPC applications and uses it to predict when future I/O operations will occur, and where and how much data will be accessed. To infer grammars, Omnisc'IO is based on StarSequitur, amore » novel algorithm extending Nevill-Manning's Sequitur algorithm. Omnisc'IO is transparently integrated into the POSIX and MPI I/O stacks and does not require any modification in applications or higher-level I/O libraries. It works without any prior knowledge of the application and converges to accurate predictions of any N future I/O operations within a couple of iterations. Its implementation is efficient in both computation time and memory footprint.« less

  19. Continuous Security and Configuration Monitoring of HPC Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Lomeli, H. D.; Bertsch, A. D.; Fox, D. M.

    Continuous security and configuration monitoring of information systems has been a time consuming and laborious task for system administrators at the High Performance Computing (HPC) center. Prior to this project, system administrators had to manually check the settings of thousands of nodes, which required a significant number of hours rendering the old process ineffective and inefficient. This paper explains the application of Splunk Enterprise, a software agent, and a reporting tool in the development of a user application interface to track and report on critical system updates and security compliance status of HPC Clusters. In conjunction with other configuration managementmore » systems, the reporting tool is to provide continuous situational awareness to system administrators of the compliance state of information systems. Our approach consisted of the development, testing, and deployment of an agent to collect any arbitrary information across a massively distributed computing center, and organize that information into a human-readable format. Using Splunk Enterprise, this raw data was then gathered into a central repository and indexed for search, analysis, and correlation. Following acquisition and accumulation, the reporting tool generated and presented actionable information by filtering the data according to command line parameters passed at run time. Preliminary data showed results for over six thousand nodes. Further research and expansion of this tool could lead to the development of a series of agents to gather and report critical system parameters. However, in order to make use of the flexibility and resourcefulness of the reporting tool the agent must conform to specifications set forth in this paper. This project has simplified the way system administrators gather, analyze, and report on the configuration and security state of HPC clusters, maintaining ongoing situational awareness. Rather than querying each cluster independently, compliance checking can be managed from one central location.« less

  20. Experimental investigation on high performance RC column with manufactured sand and silica fume

    NASA Astrophysics Data System (ADS)

    Shanmuga Priya, T.

    2017-11-01

    In recent years, the use High Performance Concrete (HPC) has increased in construction industry. The ingredients of HPC depend on the availability and characteristics of suitable alternative materials. Those alternative materials are silica fume and manufactured sand, a by products from ferro silicon and quarry industries respectively. HPC made with silica fume as partial replacement of cement and manufactured sand as replacement of natural sand is considered as sustainable high performance concrete. In this present study the concrete was designed to get target strength of 60 MPa as per guide lines given by ACI 211- 4R (2008). The laboratory study was carried out experimentally to analyse the axial behavior of reinforced cement HPC column of size 100×100×1000mm and square in cross section. 10% of silica fume was preferred over ordinary portland cement. The natural sand was replaced by 0, 20, 40, 60, 80 and 100% with Manufactured Sand (M-Sand). In this investigation, totally 6 column specimens were cast for mixes M1 to M6 and were tested in 1000kN loading frame at 28 days. From this, Load-Mid height deflection curves were drawn and compared. Maximum ultimate load carrying capacity and the least deflection is obtained for the mix prepared by partial replacement of cement with 10% silica fume & natural sand by 100% M-Sand. The fine, amorphous and pozzalonic nature of silica fume and fine mineral particles in M- Sand increased the stiffness of HPC column. The test results revealed that HPC can be produced by using M-Sand with silica fume.

  1. Guest Editorial High Performance Computing (HPC) Applications for a More Resilient and Efficient Power Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhenyu Henry; Tate, Zeb; Abhyankar, Shrirang

    The power grid has been evolving over the last 120 years, but it is seeing more changes in this decade and next than it has seen over the past century. In particular, the widespread deployment of intermittent renewable generation, smart loads and devices, hierarchical and distributed control technologies, phasor measurement units, energy storage, and widespread usage of electric vehicles will require fundamental changes in methods and tools for the operation and planning of the power grid. The resulting new dynamic and stochastic behaviors will demand the inclusion of more complexity in modeling the power grid. Solving such complex models inmore » the traditional computing environment will be a major challenge. Along with the increasing complexity of power system models, the increasing complexity of smart grid data further adds to the prevailing challenges. In this environment, the myriad of smart sensors and meters in the power grid increase by multiple orders of magnitude, so do the volume and speed of the data. The information infrastructure will need to drastically change to support the exchange of enormous amounts of data as smart grid applications will need the capability to collect, assimilate, analyze and process the data, to meet real-time grid functions. High performance computing (HPC) holds the promise to enhance these functions, but it is a great resource that has not been fully explored and adopted for the power grid domain.« less

  2. A study of the viability of exploiting memory content similarity to improve resilience to memory errors

    DOE PAGES

    Levy, Scott; Ferreira, Kurt B.; Bridges, Patrick G.; ...

    2014-12-09

    Building the next-generation of extreme-scale distributed systems will require overcoming several challenges related to system resilience. As the number of processors in these systems grow, the failure rate increases proportionally. One of the most common sources of failure in large-scale systems is memory. In this paper, we propose a novel runtime for transparently exploiting memory content similarity to improve system resilience by reducing the rate at which memory errors lead to node failure. We evaluate the viability of this approach by examining memory snapshots collected from eight high-performance computing (HPC) applications and two important HPC operating systems. Based on themore » characteristics of the similarity uncovered, we conclude that our proposed approach shows promise for addressing system resilience in large-scale systems.« less

  3. An Assessment of the State-of-the-art in Multidisciplinary Aeromechanical Analyses

    NASA Technical Reports Server (NTRS)

    Datta, Anubhav; Johnson, Wayne

    2008-01-01

    This paper presents a survey of the current state-of-the-art in multidisciplinary aeromechanical analyses which integrate advanced Computational Structural Dynamics (CSD) and Computational Fluid Dynamics (CFD) methods. The application areas to be surveyed include fixed wing aircraft, turbomachinery, and rotary wing aircraft. The objective of the authors in the present paper, together with a companion paper on requirements, is to lay out a path for a High Performance Computing (HPC) based next generation comprehensive rotorcraft analysis. From this survey of the key technologies in other application areas it is possible to identify the critical technology gaps that stem from unique rotorcraft requirements.

  4. Mantle Convection on Modern Supercomputers

    NASA Astrophysics Data System (ADS)

    Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.

    2015-12-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.

  5. When to Renew Software Licences at HPC Centres? A Mathematical Analysis

    NASA Astrophysics Data System (ADS)

    Baolai, Ge; MacIsaac, Allan B.

    2010-11-01

    In this paper we study a common problem faced by many high performance computing (HPC) centres: When and how to renew commercial software licences. Software vendors often sell perpetual licences along with forward update and support contracts at an additional, annual cost. Every year or so, software support personnel and the budget units of HPC centres are required to make the decision of whether or not to renew such support, and usually such decisions are made intuitively. The total cost for a continuing support contract can, however, be costly. One might therefore want a rational answer to the question of whether the option for a renewal should be exercised and when. In an attempt to study this problem within a market framework, we present the mathematical problem derived for the day to day operation of a hypothetical HPC centre that charges for the use of software packages. In the mathematical model, we assume that the uncertainty comes from the demand, number of users using the packages, as well as the price. Further we assume the availability of up to date software versions may also affect the demand. We develop a renewal strategy that aims to maximize the expected profit from the use the software under consideration. The derived problem involves a decision tree, which constitutes a numerical procedure that can be processed in parallel.

  6. A Long History of Supercomputing

    ScienceCinema

    Grider, Gary

    2018-06-13

    As part of its national security science mission, Los Alamos National Laboratory and HPC have a long, entwined history dating back to the earliest days of computing. From bringing the first problem to the nation’s first computer to building the first machine to break the petaflop barrier, Los Alamos holds many “firsts” in HPC breakthroughs. Today, supercomputers are integral to stockpile stewardship and the Laboratory continues to work with vendors in developing the future of HPC.

  7. CDAC Student Report: Summary of LLNL Internship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herriman, Jane E.

    Multiple objectives motivated me to apply for an internship at LLNL: I wanted to experience the work environment at a national lab, to learn about research and job opportunities at LLNL in particular, and to gain greater experience with code development, particularly within the realm of high performance computing (HPC). This summer I was selected to participate in LLNL's Computational Chemistry and Material Science Summer Institute (CCMS). CCMS is a 10 week program hosted by the Quantum Simulations group leader, Dr. Eric Schwegler. CCMS connects graduate students to mentors at LLNL involved in similar re- search and provides weekly seminarsmore » on a broad array of topics from within chemistry and materials science. Dr. Xavier Andrade and Dr. Erik Draeger served as my co-mentors over the summer, and Dr. Andrade continues to mentor me now that CCMS has concluded. Dr. Andrade is a member of the Quantum Simulations group within the Physical and Life Sciences at LLNL, and Dr. Draeger leads the HPC group within the Center for Applied Scientific Computing (CASC). The two have worked together to develop Qb@ll, an open-source first principles molecular dynamics code that was the platform for my summer research project.« less

  8. Cognitive Model Exploration and Optimization: A New Challenge for Computational Science

    DTIC Science & Technology

    2010-01-01

    Introduction Research in cognitive science often involves the generation and analysis of computational cognitive models to explain various...HPC) clusters and volunteer computing for large-scale computational resources. The majority of applications on the Department of Defense HPC... clusters focus on solving partial differential equations (Post, 2009). These tend to be lean, fast models with little noise. While we lack specific

  9. A task-based parallelism and vectorized approach to 3D Method of Characteristics (MOC) reactor simulation for high performance computing architectures

    NASA Astrophysics Data System (ADS)

    Tramm, John R.; Gunow, Geoffrey; He, Tim; Smith, Kord S.; Forget, Benoit; Siegel, Andrew R.

    2016-05-01

    In this study we present and analyze a formulation of the 3D Method of Characteristics (MOC) technique applied to the simulation of full core nuclear reactors. Key features of the algorithm include a task-based parallelism model that allows independent MOC tracks to be assigned to threads dynamically, ensuring load balancing, and a wide vectorizable inner loop that takes advantage of modern SIMD computer architectures. The algorithm is implemented in a set of highly optimized proxy applications in order to investigate its performance characteristics on CPU, GPU, and Intel Xeon Phi architectures. Speed, power, and hardware cost efficiencies are compared. Additionally, performance bottlenecks are identified for each architecture in order to determine the prospects for continued scalability of the algorithm on next generation HPC architectures.

  10. Evaluating the Efficacy of the Cloud for Cluster Computation

    NASA Technical Reports Server (NTRS)

    Knight, David; Shams, Khawaja; Chang, George; Soderstrom, Tom

    2012-01-01

    Computing requirements vary by industry, and it follows that NASA and other research organizations have computing demands that fall outside the mainstream. While cloud computing made rapid inroads for tasks such as powering web applications, performance issues on highly distributed tasks hindered early adoption for scientific computation. One venture to address this problem is Nebula, NASA's homegrown cloud project tasked with delivering science-quality cloud computing resources. However, another industry development is Amazon's high-performance computing (HPC) instances on Elastic Cloud Compute (EC2) that promises improved performance for cluster computation. This paper presents results from a series of benchmarks run on Amazon EC2 and discusses the efficacy of current commercial cloud technology for running scientific applications across a cluster. In particular, a 240-core cluster of cloud instances achieved 2 TFLOPS on High-Performance Linpack (HPL) at 70% of theoretical computational performance. The cluster's local network also demonstrated sub-100 ?s inter-process latency with sustained inter-node throughput in excess of 8 Gbps. Beyond HPL, a real-world Hadoop image processing task from NASA's Lunar Mapping and Modeling Project (LMMP) was run on a 29 instance cluster to process lunar and Martian surface images with sizes on the order of tens of gigapixels. These results demonstrate that while not a rival of dedicated supercomputing clusters, commercial cloud technology is now a feasible option for moderately demanding scientific workloads.

  11. Long-term monitoring of the HPC Charenton Canal Bridge.

    DOT National Transportation Integrated Search

    2011-08-01

    The report contains long-term monitoring data collection and analysis of the first fully high : performance concrete (HPC) bridge in Louisiana, the Charenton Canal Bridge. The design of this : bridge started in 1997, and it was built and opened to tr...

  12. Combined Performance of Polypropylene Fibre and Weld Slag in High Performance Concrete

    NASA Astrophysics Data System (ADS)

    Ananthi, A.; Karthikeyan, J.

    2017-12-01

    The effect of polypropylene fibre and weld slag on the mechanical properties of High Performance Concrete (HPC) containing silica fume as the mineral admixtures was experimentally verified in this study. Sixteen series of HPC mixtures(70 MPa) were designed with varying fibre fractions and Weld Slag (WS). Fibre added at different proportion (0, 0.1, 0.3 and 0.6%) to the weight of cement. Weld slag was substituted to the fine aggregate (0, 10, 20 and 30%) at volume. The addition of fibre decreases the slump at 5, 9 and 14%, whereas the substitution of weld slag decreases by about 3, 11 and 21% with respect to the control mixture. Mechanical properties like compressive strength, split tensile strength, flexural strength, Ultrasonic Pulse Velocity test (UPV) and bond strength were tested. Durability studies such as Water absorption and Sorptivity test were conducted to check the absorption of water in HPC. Weld slag of 10% and fibre dosage of 0.3% in HPC, attains the maximum strength and hence this combination is most favourable for the structural applications.

  13. Exploring Infiniband Hardware Virtualization in OpenNebula towards Efficient High-Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pais Pitta de Lacerda Ruivo, Tiago; Bernabeu Altayo, Gerard; Garzoglio, Gabriele

    2014-11-11

    has been widely accepted that software virtualization has a big negative impact on high-performance computing (HPC) application performance. This work explores the potential use of Infiniband hardware virtualization in an OpenNebula cloud towards the efficient support of MPI-based workloads. We have implemented, deployed, and tested an Infiniband network on the FermiCloud private Infrastructure-as-a-Service (IaaS) cloud. To avoid software virtualization towards minimizing the virtualization overhead, we employed a technique called Single Root Input/Output Virtualization (SRIOV). Our solution spanned modifications to the Linux’s Hypervisor as well as the OpenNebula manager. We evaluated the performance of the hardware virtualization on up to 56more » virtual machines connected by up to 8 DDR Infiniband network links, with micro-benchmarks (latency and bandwidth) as well as w a MPI-intensive application (the HPL Linpack benchmark).« less

  14. Fine grained event processing on HPCs with the ATLAS Yoda system

    NASA Astrophysics Data System (ADS)

    Calafiura, Paolo; De, Kaushik; Guan, Wen; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Panitkin, Sergey; Tsulaia, Vakhtang; Van Gemmeren, Peter; Wenaus, Torre

    2015-12-01

    High performance computing facilities present unique challenges and opportunities for HEP event processing. The massive scale of many HPC systems means that fractionally small utilization can yield large returns in processing throughput. Parallel applications which can dynamically and efficiently fill any scheduling opportunities the resource presents benefit both the facility (maximal utilization) and the (compute-limited) science. The ATLAS Yoda system provides this capability to HEP-like event processing applications by implementing event-level processing in an MPI-based master-client model that integrates seamlessly with the more broadly scoped ATLAS Event Service. Fine grained, event level work assignments are intelligently dispatched to parallel workers to sustain full utilization on all cores, with outputs streamed off to destination object stores in near real time with similarly fine granularity, such that processing can proceed until termination with full utilization. The system offers the efficiency and scheduling flexibility of preemption without requiring the application actually support or employ check-pointing. We will present the new Yoda system, its motivations, architecture, implementation, and applications in ATLAS data processing at several US HPC centers.

  15. WinHPC System Configuration | High-Performance Computing | NREL

    Science.gov Websites

    CPUs with 48GB of memory. Node 04 has dual Intel Xeon E5530 CPUs with 24GB of memory. Nodes 05-20 have dual AMD Opteron 2374 HE CPUs with 16GB of memory. Nodes 21-30 have been decommissioned. Nodes 31-35 have dual Intel Xeon X5675 CPUs with 48GB of memory. Nodes 36-37 have dual Intel Xeon E5-2680 CPUs with

  16. On Parallelizing Single Dynamic Simulation Using HPC Techniques and APIs of Commercial Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diao, Ruisheng; Jin, Shuangshuang; Howell, Frederic

    Time-domain simulations are heavily used in today’s planning and operation practices to assess power system transient stability and post-transient voltage/frequency profiles following severe contingencies to comply with industry standards. Because of the increased modeling complexity, it is several times slower than real time for state-of-the-art commercial packages to complete a dynamic simulation for a large-scale model. With the growing stochastic behavior introduced by emerging technologies, power industry has seen a growing need for performing security assessment in real time. This paper presents a parallel implementation framework to speed up a single dynamic simulation by leveraging the existing stability model librarymore » in commercial tools through their application programming interfaces (APIs). Several high performance computing (HPC) techniques are explored such as parallelizing the calculation of generator current injection, identifying fast linear solvers for network solution, and parallelizing data outputs when interacting with APIs in the commercial package, TSAT. The proposed method has been tested on a WECC planning base case with detailed synchronous generator models and exhibits outstanding scalable performance with sufficient accuracy.« less

  17. Characterizing output bottlenecks in a supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Bing; Chase, Jeffrey; Dillow, David A

    2012-01-01

    Supercomputer I/O loads are often dominated by writes. HPC (High Performance Computing) file systems are designed to absorb these bursty outputs at high bandwidth through massive parallelism. However, the delivered write bandwidth often falls well below the peak. This paper characterizes the data absorption behavior of a center-wide shared Lustre parallel file system on the Jaguar supercomputer. We use a statistical methodology to address the challenges of accurately measuring a shared machine under production load and to obtain the distribution of bandwidth across samples of compute nodes, storage targets, and time intervals. We observe and quantify limitations from competing traffic,more » contention on storage servers and I/O routers, concurrency limitations in the client compute node operating systems, and the impact of variance (stragglers) on coupled output such as striping. We then examine the implications of our results for application performance and the design of I/O middleware systems on shared supercomputers.« less

  18. On-demand provisioning of HEP compute resources on cloud sites and shared HPC centers

    NASA Astrophysics Data System (ADS)

    Erli, G.; Fischer, F.; Fleig, G.; Giffels, M.; Hauth, T.; Quast, G.; Schnepf, M.; Heese, J.; Leppert, K.; Arnaez de Pedro, J.; Sträter, R.

    2017-10-01

    This contribution reports on solutions, experiences and recent developments with the dynamic, on-demand provisioning of remote computing resources for analysis and simulation workflows. Local resources of a physics institute are extended by private and commercial cloud sites, ranging from the inclusion of desktop clusters over institute clusters to HPC centers. Rather than relying on dedicated HEP computing centers, it is nowadays more reasonable and flexible to utilize remote computing capacity via virtualization techniques or container concepts. We report on recent experience from incorporating a remote HPC center (NEMO Cluster, Freiburg University) and resources dynamically requested from the commercial provider 1&1 Internet SE into our intitute’s computing infrastructure. The Freiburg HPC resources are requested via the standard batch system, allowing HPC and HEP applications to be executed simultaneously, such that regular batch jobs run side by side to virtual machines managed via OpenStack [1]. For the inclusion of the 1&1 commercial resources, a Python API and SDK as well as the possibility to upload images were available. Large scale tests prove the capability to serve the scientific use case in the European 1&1 datacenters. The described environment at the Institute of Experimental Nuclear Physics (IEKP) at KIT serves the needs of researchers participating in the CMS and Belle II experiments. In total, resources exceeding half a million CPU hours have been provided by remote sites.

  19. Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Shujiang; Kline, Keith L; Nair, S. Surendran

    A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulatedmore » a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.« less

  20. PHoToNs–A parallel heterogeneous and threads oriented code for cosmological N-body simulation

    NASA Astrophysics Data System (ADS)

    Wang, Qiao; Cao, Zong-Yan; Gao, Liang; Chi, Xue-Bin; Meng, Chen; Wang, Jie; Wang, Long

    2018-06-01

    We introduce a new code for cosmological simulations, PHoToNs, which incorporates features for performing massive cosmological simulations on heterogeneous high performance computer (HPC) systems and threads oriented programming. PHoToNs adopts a hybrid scheme to compute gravitational force, with the conventional Particle-Mesh (PM) algorithm to compute the long-range force, the Tree algorithm to compute the short range force and the direct summation Particle-Particle (PP) algorithm to compute gravity from very close particles. A self-similar space filling a Peano-Hilbert curve is used to decompose the computing domain. Threads programming is advantageously used to more flexibly manage the domain communication, PM calculation and synchronization, as well as Dual Tree Traversal on the CPU+MIC platform. PHoToNs scales well and efficiency of the PP kernel achieves 68.6% of peak performance on MIC and 74.4% on CPU platforms. We also test the accuracy of the code against the much used Gadget-2 in the community and found excellent agreement.

  1. Effect of rice husk ash and fly ash on the compressive strength of high performance concrete

    NASA Astrophysics Data System (ADS)

    Van Lam, Tang; Bulgakov, Boris; Aleksandrova, Olga; Larsen, Oksana; Anh, Pham Ngoc

    2018-03-01

    The usage of industrial and agricultural wastes for building materials production plays an important role to improve the environment and economy by preserving nature materials and land resources, reducing land, water and air pollution as well as organizing and storing waste costs. This study mainly focuses on mathematical modeling dependence of the compressive strength of high performance concrete (HPC) at the ages of 3, 7 and 28 days on the amount of rice husk ash (RHA) and fly ash (FA), which are added to the concrete mixtures by using the Central composite rotatable design. The result of this study provides the second-order regression equation of objective function, the images of the surface expression and the corresponding contours of the objective function of the regression equation, as the optimal points of HPC compressive strength. These objective functions, which are the compressive strength values of HPC at the ages of 3, 7 and 28 days, depend on two input variables as: x1 (amount of RHA) and x2 (amount of FA). The Maple 13 program, solving the second-order regression equation, determines the optimum composition of the concrete mixture for obtaining high performance concrete and calculates the maximum value of the HPC compressive strength at the ages of 28 days. The results containMaxR28HPC = 76.716 MPa when RHA = 0.1251 and FA = 0.3119 by mass of Portland cement.

  2. Open-Source, Distributed Computational Environment for Virtual Materials Exploration

    DTIC Science & Technology

    2015-01-01

    compromising structural integrity.  For  example, advanced designs could specify advanced materials processing techniques such as heat  treatments  in specific...orchestration of execution of multiple standalone codes at varying  length scales will need advanced  high ‐performance computing (HPC) integration in...possible hooks that could be used to  coordinate larger  workflows spanning tools developed by different groups.    The  high  level approach explored

  3. The Reduced Basis Method in Geosciences: Practical examples for numerical forward simulations

    NASA Astrophysics Data System (ADS)

    Degen, D.; Veroy, K.; Wellmann, F.

    2017-12-01

    Due to the highly heterogeneous character of the earth's subsurface, the complex coupling of thermal, hydrological, mechanical, and chemical processes, and the limited accessibility we have to face high-dimensional problems associated with high uncertainties in geosciences. Performing the obviously necessary uncertainty quantifications with a reasonable number of parameters is often not possible due to the high-dimensional character of the problem. Therefore, we are presenting the reduced basis (RB) method, being a model order reduction (MOR) technique, that constructs low-order approximations to, for instance, the finite element (FE) space. We use the RB method to address this computationally challenging simulations because this method significantly reduces the degrees of freedom. The RB method is decomposed into an offline and online stage, allowing to make the expensive pre-computations beforehand to get real-time results during field campaigns. Generally, the RB approach is most beneficial in the many-query and real-time context.We will illustrate the advantages of the RB method for the field of geosciences through two examples of numerical forward simulations.The first example is a geothermal conduction problem demonstrating the implementation of the RB method for a steady-state case. The second examples, a Darcy flow problem, shows the benefits for transient scenarios. In both cases, a quality evaluation of the approximations is given. Additionally, the runtimes for both the FE and the RB simulations are compared. We will emphasize the advantages of this method for repetitive simulations by showing the speed-up for the RB solution in contrast to the FE solution. Finally, we will demonstrate how the used implementation is usable in high-performance computing (HPC) infrastructures and evaluate its performance for such infrastructures. Hence, we will especially point out its scalability, yielding in an optimal usage on HPC infrastructures and normal working stations.

  4. Constructive Engineering of Simulations

    NASA Technical Reports Server (NTRS)

    Snyder, Daniel R.; Barsness, Brendan

    2011-01-01

    Joint experimentation that investigates sensor optimization, re-tasking and management has far reaching implications for Department of Defense, Interagency and multinational partners. An adaption of traditional human in the loop (HITL) Modeling and Simulation (M&S) was one approach used to generate the findings necessary to derive and support these implications. Here an entity-based simulation was re-engineered to run on USJFCOM's High Performance Computer (HPC). The HPC was used to support the vast number of constructive runs necessary to produce statistically significant data in a timely manner. Then from the resulting sensitivity analysis, event designers blended the necessary visualization and decision making components into a synthetic environment for the HITL simulations trials. These trials focused on areas where human decision making had the greatest impact on the sensor investigations. Thus, this paper discusses how re-engineering existing M&S for constructive applications can positively influence the design of an associated HITL experiment.

  5. Molgenis-impute: imputation pipeline in a box.

    PubMed

    Kanterakis, Alexandros; Deelen, Patrick; van Dijk, Freerk; Byelas, Heorhiy; Dijkstra, Martijn; Swertz, Morris A

    2015-08-19

    Genotype imputation is an important procedure in current genomic analysis such as genome-wide association studies, meta-analyses and fine mapping. Although high quality tools are available that perform the steps of this process, considerable effort and expertise is required to set up and run a best practice imputation pipeline, particularly for larger genotype datasets, where imputation has to scale out in parallel on computer clusters. Here we present MOLGENIS-impute, an 'imputation in a box' solution that seamlessly and transparently automates the set up and running of all the steps of the imputation process. These steps include genome build liftover (liftovering), genotype phasing with SHAPEIT2, quality control, sample and chromosomal chunking/merging, and imputation with IMPUTE2. MOLGENIS-impute builds on MOLGENIS-compute, a simple pipeline management platform for submission and monitoring of bioinformatics tasks in High Performance Computing (HPC) environments like local/cloud servers, clusters and grids. All the required tools, data and scripts are downloaded and installed in a single step. Researchers with diverse backgrounds and expertise have tested MOLGENIS-impute on different locations and imputed over 30,000 samples so far using the 1,000 Genomes Project and new Genome of the Netherlands data as the imputation reference. The tests have been performed on PBS/SGE clusters, cloud VMs and in a grid HPC environment. MOLGENIS-impute gives priority to the ease of setting up, configuring and running an imputation. It has minimal dependencies and wraps the pipeline in a simple command line interface, without sacrificing flexibility to adapt or limiting the options of underlying imputation tools. It does not require knowledge of a workflow system or programming, and is targeted at researchers who just want to apply best practices in imputation via simple commands. It is built on the MOLGENIS compute workflow framework to enable customization with additional computational steps or it can be included in other bioinformatics pipelines. It is available as open source from: https://github.com/molgenis/molgenis-imputation.

  6. Who watches the watchers?: preventing fault in a fault tolerance library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanavige, C. D.

    The Scalable Checkpoint/Restart library (SCR) was developed and is used by researchers at Lawrence Livermore National Laboratory to provide a fast and efficient method of saving and recovering large applications during runtime on high-performance computing (HPC) systems. Though SCR protects other programs, up until June 2017, nothing was actively protecting SCR. The goal of this project was to automate the building and testing of this library on the varying HPC architectures on which it is used. Our methods centered around the use of a continuous integration tool called Bamboo that allowed for automation agents to be installed on the HPCmore » systems themselves. These agents provided a way for us to establish a new and unique way to automate and customize the allocation of resources and running of tests with CMake’s unit testing framework, CTest, as well as integration testing scripts though an HPC package manager called Spack. These methods provided a parallel environment in which to test the more complex features of SCR. As a result, SCR is now automatically built and tested on several HPC architectures any time changes are made by developers to the library’s source code. The results of these tests are then communicated back to the developers for immediate feedback, allowing them to fix functionality of SCR that may have broken. Hours of developers’ time are now being saved from the tedious process of manually testing and debugging, which saves money and allows the SCR project team to focus their efforts towards development. Thus, HPC system users can use SCR in conjunction with their own applications to efficiently and effectively checkpoint and restart as needed with the assurance that SCR itself is functioning properly.« less

  7. The role of dedicated data computing centers in the age of cloud computing

    NASA Astrophysics Data System (ADS)

    Caramarcu, Costin; Hollowell, Christopher; Strecker-Kellogg, William; Wong, Antonio; Zaytsev, Alexandr

    2017-10-01

    Brookhaven National Laboratory (BNL) anticipates significant growth in scientific programs with large computing and data storage needs in the near future and has recently reorganized support for scientific computing to meet these needs. A key component is the enhanced role of the RHIC-ATLAS Computing Facility (RACF) in support of high-throughput and high-performance computing (HTC and HPC) at BNL. This presentation discusses the evolving role of the RACF at BNL, in light of its growing portfolio of responsibilities and its increasing integration with cloud (academic and for-profit) computing activities. We also discuss BNL’s plan to build a new computing center to support the new responsibilities of the RACF and present a summary of the cost benefit analysis done, including the types of computing activities that benefit most from a local data center vs. cloud computing. This analysis is partly based on an updated cost comparison of Amazon EC2 computing services and the RACF, which was originally conducted in 2012.

  8. Hierarchically porous carbon/polyaniline hybrid for use in supercapacitors.

    PubMed

    Joo, Min Jae; Yun, Young Soo; Jin, Hyoung-Joon

    2014-12-01

    A hierarchically porous carbon (HPC)/polyaniline (PANI) hybrid electrode was prepared by the polymerization of PANI on the surface of the HPC via rapid-mixing polymerization. The surface morphologies and chemical composition of the HPC/PANI hybrid electrode were characterized using transmission electron microscopy and X-ray photoelectron spectroscopy (XPS), respectively. The surface morphologies and XPS results for the HPC, PANI and HPC/PANI hybrids indicate that PANI is coated on the surface of HPC in the HPC/PANI hybrids which have two different nitrogen groups as a benzenoid amine (-NH-) peak and positively charged nitrogen (N+) peak. The electrochemical performances of the HPC/PANI hybrids were analyzed by performing cyclic voltammetry and galvanostatic charge-discharge tests. The HPC/PANI hybrids showed a better specific capacitance (222 F/g) than HPC (111 F/g) because of effect of pseudocapacitor behavior. In addition, good cycle stabilities were maintained over 1000 cycles.

  9. Spectral-element Seismic Wave Propagation on CUDA/OpenCL Hardware Accelerators

    NASA Astrophysics Data System (ADS)

    Peter, D. B.; Videau, B.; Pouget, K.; Komatitsch, D.

    2015-12-01

    Seismic wave propagation codes are essential tools to investigate a variety of wave phenomena in the Earth. Furthermore, they can now be used for seismic full-waveform inversions in regional- and global-scale adjoint tomography. Although these seismic wave propagation solvers are crucial ingredients to improve the resolution of tomographic images to answer important questions about the nature of Earth's internal processes and subsurface structure, their practical application is often limited due to high computational costs. They thus need high-performance computing (HPC) facilities to improving the current state of knowledge. At present, numerous large HPC systems embed many-core architectures such as graphics processing units (GPUs) to enhance numerical performance. Such hardware accelerators can be programmed using either the CUDA programming environment or the OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted by additional hardware accelerators, like e.g. AMD graphic cards, ARM-based processors as well as Intel Xeon Phi coprocessors. For seismic wave propagation simulations using the open-source spectral-element code package SPECFEM3D_GLOBE, we incorporated an automatic source-to-source code generation tool (BOAST) which allows us to use meta-programming of all computational kernels for forward and adjoint runs. Using our BOAST kernels, we generate optimized source code for both CUDA and OpenCL languages within the source code package. Thus, seismic wave simulations are able now to fully utilize CUDA and OpenCL hardware accelerators. We show benchmarks of forward seismic wave propagation simulations using SPECFEM3D_GLOBE on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  10. Humic acids-based hierarchical porous carbons as high-rate performance electrodes for symmetric supercapacitors.

    PubMed

    Qiao, Zhi-jun; Chen, Ming-ming; Wang, Cheng-yang; Yuan, Yun-cai

    2014-07-01

    Two kinds of hierarchical porous carbons (HPCs) with specific surface areas of 2000 m(2)g(-1) were synthesized using leonardite humic acids (LHA) or biotechnology humic acids (BHA) precursors via a KOH activation process. Humic acids have a high content of oxygen-containing groups which enabled them to dissolve in aqueous KOH and facilitated the homogeneous KOH activation. The LHA-based HPC is made up of abundant micro-, meso-, and macropores and in 6M KOH it has a specific capacitance of 178 F g(-1) at 100 Ag(-1) and its capacitance retention on going from 0.05 to 100 A g(-1) is 64%. In contrast, the BHA-based HPC exhibits a lower capacitance retention of 54% and a specific capacitance of 157 F g(-1) at 100 A g(-1) which is due to the excessive micropores in the BHA-HPC. Moreover, LHA-HPC is produced in a higher yield than BHA-HPC (51 vs. 17 wt%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Introducing students to ocean modeling via a web-based implementation for the Regional Ocean Modeling System (ROMS) river plume case study

    NASA Astrophysics Data System (ADS)

    Harris, C. K.; Overeem, I.; Hutton, E.; Moriarty, J.; Wiberg, P.

    2016-12-01

    Numerical models are increasingly used for both research and applied sciences, and it is important that we train students to run models and analyze model data. This is especially true within oceanographic sciences, many of which use hydrodynamic models to address oceanographic transport problems. These models, however, often require a fair amount of training and computer skills before a student can run the models and analyze the large data sets produced by the models. One example is the Regional Ocean Modeling System (ROMS), an open source, three-dimensional primitive equation hydrodynamic ocean model that uses a structured curvilinear horizontal grid. It currently has thousands of users worldwide, and the full model includes modules for sediment transport and biogeochemistry, and several options for turbulence closures and numerical schemes. Implementing ROMS can be challenging to students, however, in part because the code was designed to provide flexibility for the choice of model parameterizations and processes, and to run on a variety of High Performance Computing (HPC) platforms. To provide a more accessible tool for classroom use, we have modified an existing idealized ROMS implementation to be run on a High Performance Computer (HPC) via the WMT (Web Modeling Toolkit), and developed a series of lesson plans that explore sediment transport within the idealized model domain. This has addressed our goal to provide a relatively easy introduction to the numerical modeling process that can be used within upper level undergraduate and graduate classes to explore sediment transport on continental shelves. The model implementation includes wave forcing, along-shelf currents, a riverine source, and suspended sediment transport. The model calculates suspended transport and deposition of sediment delivered to the continental shelf by a riverine flood. Lesson plans lead the students through running the model on a remote HPC, modifying the standard model. The lesson plans also include instruction for visualizing the model output within Matlab and Panoply. The lesson plans have been used within graduate, undergraduate classrooms, as well as in clinics aimed at educators. Feedback from these exercises has been used to improve the lesson plans and model implementation.

  12. Use of Continuous Integration Tools for Application Performance Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vergara Larrea, Veronica G; Joubert, Wayne; Fuson, Christopher B

    High performance computing systems are becom- ing increasingly complex, both in node architecture and in the multiple layers of software stack required to compile and run applications. As a consequence, the likelihood is increasing for application performance regressions to occur as a result of routine upgrades of system software components which interact in complex ways. The purpose of this study is to evaluate the effectiveness of continuous integration tools for application performance monitoring on HPC systems. In addition, this paper also describes a prototype system for application perfor- mance monitoring based on Jenkins, a Java-based continuous integration tool. The monitoringmore » system described leverages several features in Jenkins to track application performance results over time. Preliminary results and lessons learned from monitoring applications on Cray systems at the Oak Ridge Leadership Computing Facility are presented.« less

  13. Scalability Test of Multiscale Fluid-Platelet Model for Three Top Supercomputers

    PubMed Central

    Zhang, Peng; Zhang, Na; Gao, Chao; Zhang, Li; Gao, Yuxiang; Deng, Yuefan; Bluestein, Danny

    2016-01-01

    We have tested the scalability of three supercomputers: the Tianhe-2, Stampede and CS-Storm with multiscale fluid-platelet simulations, in which a highly-resolved and efficient numerical model for nanoscale biophysics of platelets in microscale viscous biofluids is considered. Three experiments involving varying problem sizes were performed: Exp-S: 680,718-particle single-platelet; Exp-M: 2,722,872-particle 4-platelet; and Exp-L: 10,891,488-particle 16-platelet. Our implementations of multiple time-stepping (MTS) algorithm improved the performance of single time-stepping (STS) in all experiments. Using MTS, our model achieved the following simulation rates: 12.5, 25.0, 35.5 μs/day for Exp-S and 9.09, 6.25, 14.29 μs/day for Exp-M on Tianhe-2, CS-Storm 16-K80 and Stampede K20. The best rate for Exp-L was 6.25 μs/day for Stampede. Utilizing current advanced HPC resources, the simulation rates achieved by our algorithms bring within reach performing complex multiscale simulations for solving vexing problems at the interface of biology and engineering, such as thrombosis in blood flow which combines millisecond-scale hematology with microscale blood flow at resolutions of micro-to-nanoscale cellular components of platelets. This study of testing the performance characteristics of supercomputers with advanced computational algorithms that offer optimal trade-off to achieve enhanced computational performance serves to demonstrate that such simulations are feasible with currently available HPC resources. PMID:27570250

  14. Optimizing CyberShake Seismic Hazard Workflows for Large HPC Resources

    NASA Astrophysics Data System (ADS)

    Callaghan, S.; Maechling, P. J.; Juve, G.; Vahi, K.; Deelman, E.; Jordan, T. H.

    2014-12-01

    The CyberShake computational platform is a well-integrated collection of scientific software and middleware that calculates 3D simulation-based probabilistic seismic hazard curves and hazard maps for the Los Angeles region. Currently each CyberShake model comprises about 235 million synthetic seismograms from about 415,000 rupture variations computed at 286 sites. CyberShake integrates large-scale parallel and high-throughput serial seismological research codes into a processing framework in which early stages produce files used as inputs by later stages. Scientific workflow tools are used to manage the jobs, data, and metadata. The Southern California Earthquake Center (SCEC) developed the CyberShake platform using USC High Performance Computing and Communications systems and open-science NSF resources.CyberShake calculations were migrated to the NSF Track 1 system NCSA Blue Waters when it became operational in 2013, via an interdisciplinary team approach including domain scientists, computer scientists, and middleware developers. Due to the excellent performance of Blue Waters and CyberShake software optimizations, we reduced the makespan (a measure of wallclock time-to-solution) of a CyberShake study from 1467 to 342 hours. We will describe the technical enhancements behind this improvement, including judicious introduction of new GPU software, improved scientific software components, increased workflow-based automation, and Blue Waters-specific workflow optimizations.Our CyberShake performance improvements highlight the benefits of scientific workflow tools. The CyberShake workflow software stack includes the Pegasus Workflow Management System (Pegasus-WMS, which includes Condor DAGMan), HTCondor, and Globus GRAM, with Pegasus-mpi-cluster managing the high-throughput tasks on the HPC resources. The workflow tools handle data management, automatically transferring about 13 TB back to SCEC storage.We will present performance metrics from the most recent CyberShake study, executed on Blue Waters. We will compare the performance of CPU and GPU versions of our large-scale parallel wave propagation code, AWP-ODC-SGT. Finally, we will discuss how these enhancements have enabled SCEC to move forward with plans to increase the CyberShake simulation frequency to 1.0 Hz.

  15. A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments

    NASA Astrophysics Data System (ADS)

    Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue

    2013-03-01

    The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.

  16. 3D streamers simulation in a pin to plane configuration using massively parallel computing

    NASA Astrophysics Data System (ADS)

    Plewa, J.-M.; Eichwald, O.; Ducasse, O.; Dessante, P.; Jacobs, C.; Renon, N.; Yousfi, M.

    2018-03-01

    This paper concerns the 3D simulation of corona discharge using high performance computing (HPC) managed with the message passing interface (MPI) library. In the field of finite volume methods applied on non-adaptive mesh grids and in the case of a specific 3D dynamic benchmark test devoted to streamer studies, the great efficiency of the iterative R&B SOR and BiCGSTAB methods versus the direct MUMPS method was clearly demonstrated in solving the Poisson equation using HPC resources. The optimization of the parallelization and the resulting scalability was undertaken as a function of the HPC architecture for a number of mesh cells ranging from 8 to 512 million and a number of cores ranging from 20 to 1600. The R&B SOR method remains at least about four times faster than the BiCGSTAB method and requires significantly less memory for all tested situations. The R&B SOR method was then implemented in a 3D MPI parallelized code that solves the classical first order model of an atmospheric pressure corona discharge in air. The 3D code capabilities were tested by following the development of one, two and four coplanar streamers generated by initial plasma spots for 6 ns. The preliminary results obtained allowed us to follow in detail the formation of the tree structure of a corona discharge and the effects of the mutual interactions between the streamers in terms of streamer velocity, trajectory and diameter. The computing time for 64 million of mesh cells distributed over 1000 cores using the MPI procedures is about 30 min ns-1, regardless of the number of streamers.

  17. CI-WATER HPC Model: Cyberinfrastructure to Advance High Performance Water Resources Modeling in the Intermountain Western U.S

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.; Lai, W.; Douglas, C. C.; Miller, S. N.; Zhang, Y.

    2012-12-01

    The CI-WATER project is a cooperative effort between the Utah and Wyoming EPSCoR jurisdictions, and is funded through a cooperative agreement with the U.S. National Science Foundation EPSCoR. The CI-WATER project is acquiring hardware and developing software cyberinfrastructure (CI) to enhance accessibility of High Performance Computing for water resources modeling in the Western U.S. One of the components of the project is development of a large-scale, high-resolution, physically-based, data-driven, integrated computational water resources model, which we call the CI-WATER HPC model. The objective of this model development is to enable evaluation of integrated system behavior to guide and support water system planning and management by individual users, cities, or states. The model is first being tested in the Green River basin of Wyoming, which is the largest tributary to the Colorado River. The model will ultimately be applied to simulate the entire Upper Colorado River basin for hydrological studies, watershed management, economic analysis, as well as evaluation of potential changes in environmental policy and law, population, land use, and climate. In addition to hydrologically important processes simulated in many hydrological models, the CI-WATER HPC model will emphasize anthropogenic influences such as land use change, water resources infrastructure, irrigation practices, trans-basin diversions, and urban/suburban development. The model operates on an unstructured mesh, employing adaptive mesh at grid sizes as small as 10 m as needed- particularly in high elevation snow melt regions. Data for the model are derived from remote sensing sources, atmospheric models and geophysical techniques. Monte-Carlo techniques and ensemble Kalman filtering methodologies are employed for data assimilation. The model includes application programming interface (API) standards to allow easy substitution of alternative process-level simulation routines, and provide post-processing, visualization, and communication of massive amounts of output. The open-source CI-WATER model represents a significant advance in water resources modeling, and will be useful to water managers, planners, resource economists, and the hydrologic research community in general.

  18. Parallel Application Performance on Two Generations of Intel Xeon HPC Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Christopher H.; Long, Hai; Sides, Scott

    2015-10-15

    Two next-generation node configurations hosting the Haswell microarchitecture were tested with a suite of microbenchmarks and application examples, and compared with a current Ivy Bridge production node on NREL" tm s Peregrine high-performance computing cluster. A primary conclusion from this study is that the additional cores are of little value to individual task performance--limitations to application parallelism, or resource contention among concurrently running but independent tasks, limits effective utilization of these added cores. Hyperthreading generally impacts throughput negatively, but can improve performance in the absence of detailed attention to runtime workflow configuration. The observations offer some guidance to procurement ofmore » future HPC systems at NREL. First, raw core count must be balanced with available resources, particularly memory bandwidth. Balance-of-system will determine value more than processor capability alone. Second, hyperthreading continues to be largely irrelevant to the workloads that are commonly seen, and were tested here, at NREL. Finally, perhaps the most impactful enhancement to productivity might occur through enabling multiple concurrent jobs per node. Given the right type and size of workload, more may be achieved by doing many slow things at once, than fast things in order.« less

  19. Python and HPC for High Energy Physics Data Analyses

    DOE PAGES

    Sehrish, S.; Kowalkowski, J.; Paterno, M.; ...

    2017-01-01

    High level abstractions in Python that can utilize computing hardware well seem to be an attractive option for writing data reduction and analysis tasks. In this paper, we explore the features available in Python which are useful and efficient for end user analysis in High Energy Physics (HEP). A typical vertical slice of an HEP data analysis is somewhat fragmented: the state of the reduction/analysis process must be saved at certain stages to allow for selective reprocessing of only parts of a generally time-consuming workflow. Also, algorithms tend to to be modular because of the heterogeneous nature of most detectorsmore » and the need to analyze different parts of the detector separately before combining the information. This fragmentation causes difficulties for interactive data analysis, and as data sets increase in size and complexity (O10 TiB for a “small” neutrino experiment to the O10 PiB currently held by the CMS experiment at the LHC), data analysis methods traditional to the field must evolve to make optimum use of emerging HPC technologies and platforms. Mainstream big data tools, while suggesting a direction in terms of what can be done if an entire data set can be available across a system and analysed with high-level programming abstractions, are not designed with either scientific computing generally, or modern HPC platform features in particular, such as data caching levels, in mind. Our example HPC use case is a search for a new elementary particle which might explain the phenomenon known as “Dark Matter”. Here, using data from the CMS detector, we will use HDF5 as our input data format, and MPI with Python to implement our use case.« less

  20. Spatial data analytics on heterogeneous multi- and many-core parallel architectures using python

    USGS Publications Warehouse

    Laura, Jason R.; Rey, Sergio J.

    2017-01-01

    Parallel vector spatial analysis concerns the application of parallel computational methods to facilitate vector-based spatial analysis. The history of parallel computation in spatial analysis is reviewed, and this work is placed into the broader context of high-performance computing (HPC) and parallelization research. The rise of cyber infrastructure and its manifestation in spatial analysis as CyberGIScience is seen as a main driver of renewed interest in parallel computation in the spatial sciences. Key problems in spatial analysis that have been the focus of parallel computing are covered. Chief among these are spatial optimization problems, computational geometric problems including polygonization and spatial contiguity detection, the use of Monte Carlo Markov chain simulation in spatial statistics, and parallel implementations of spatial econometric methods. Future directions for research on parallelization in computational spatial analysis are outlined.

  1. Continuous whole-system monitoring toward rapid understanding of production HPC applications and systems

    DOE PAGES

    Agelastos, Anthony; Allan, Benjamin; Brandt, Jim; ...

    2016-05-18

    A detailed understanding of HPC applications’ resource needs and their complex interactions with each other and HPC platform resources are critical to achieving scalability and performance. Such understanding has been difficult to achieve because typical application profiling tools do not capture the behaviors of codes under the potentially wide spectrum of actual production conditions and because typical monitoring tools do not capture system resource usage information with high enough fidelity to gain sufficient insight into application performance and demands. In this paper we present both system and application profiling results based on data obtained through synchronized system wide monitoring onmore » a production HPC cluster at Sandia National Laboratories (SNL). We demonstrate analytic and visualization techniques that we are using to characterize application and system resource usage under production conditions for better understanding of application resource needs. Furthermore, our goals are to improve application performance (through understanding application-to-resource mapping and system throughput) and to ensure that future system capabilities match their intended workloads.« less

  2. High performance data transfer

    NASA Astrophysics Data System (ADS)

    Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.

    2017-10-01

    The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.

  3. Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors.

    PubMed

    Chou, Tsu-Chin; Doong, Ruey-An; Hu, Chi-Chang; Zhang, Bingsen; Su, Dang Sheng

    2014-03-01

    A promising energy storage material, MnO2 /hierarchically porous carbon (HPC) nanocomposites, with exceptional electrochemical performance and ultrahigh energy density was developed for asymmetric supercapacitor applications. The microstructures of MnO2 /HPC nanocomposites were characterized by transmission electron microscopy, scanning transmission electron microscopy, and electron dispersive X-ray elemental mapping analysis. The 3-5 nm MnO2 nanocrystals at mass loadings of 7.3-10.8 wt % are homogeneously distributed onto the HPCs, and the utilization efficiency of MnO2 on specific capacitance can be enhanced to 94-96 %. By combining the ultrahigh utilization efficiency of MnO2 and the conductive and ion-transport advantages of HPCs, MnO2 /HPC electrodes can achieve higher specific capacitance values (196 F g(-1) ) than those of pure carbon electrodes (60.8 F g(-1) ), and maintain their superior rate capability in neutral electrolyte solutions. The asymmetric supercapacitor consisting of a MnO2 /HPC cathode and a HPC anode shows an excellent performance with energy and power densities of 15.3 Wh kg(-1) and 19.8 kW kg(-1) , respectively, at a cell voltage of 2 V. Results obtained herein demonstrate the excellence of MnO2 /HPC nanocomposites as energy storage material and open an avenue to fabricate the next generation supercapacitors with both high power and energy densities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. An Interface for Biomedical Big Data Processing on the Tianhe-2 Supercomputer.

    PubMed

    Yang, Xi; Wu, Chengkun; Lu, Kai; Fang, Lin; Zhang, Yong; Li, Shengkang; Guo, Guixin; Du, YunFei

    2017-12-01

    Big data, cloud computing, and high-performance computing (HPC) are at the verge of convergence. Cloud computing is already playing an active part in big data processing with the help of big data frameworks like Hadoop and Spark. The recent upsurge of high-performance computing in China provides extra possibilities and capacity to address the challenges associated with big data. In this paper, we propose Orion-a big data interface on the Tianhe-2 supercomputer-to enable big data applications to run on Tianhe-2 via a single command or a shell script. Orion supports multiple users, and each user can launch multiple tasks. It minimizes the effort needed to initiate big data applications on the Tianhe-2 supercomputer via automated configuration. Orion follows the "allocate-when-needed" paradigm, and it avoids the idle occupation of computational resources. We tested the utility and performance of Orion using a big genomic dataset and achieved a satisfactory performance on Tianhe-2 with very few modifications to existing applications that were implemented in Hadoop/Spark. In summary, Orion provides a practical and economical interface for big data processing on Tianhe-2.

  5. Computing for Finance

    ScienceCinema

    None

    2018-01-24

    The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followed by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Seti@Home. Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance. 4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.

  6. Computing for Finance

    ScienceCinema

    None

    2018-06-20

    The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followed by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry. Michael Yoo, Managing Director, Head of the Technical Council, UBS. Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse. Grid computing gets mentions in the press for community programs starting last decade with "Seti@Home". Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance.4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.

  7. Computing for Finance

    ScienceCinema

    None

    2018-01-25

    The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followed by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industries Adam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance.4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.

  8. Computing for Finance

    ScienceCinema

    None

    2018-02-02

    The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followed by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance. 4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.

  9. Computing for Finance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followedmore » by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Seti@Home. Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance. 4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.« less

  10. Computing for Finance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followedmore » by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry. Michael Yoo, Managing Director, Head of the Technical Council, UBS. Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse. Grid computing gets mentions in the press for community programs starting last decade with "Seti@Home". Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance.4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.« less

  11. Computing for Finance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followedmore » by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance. 4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.« less

  12. Computing for Finance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followedmore » by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance.4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.« less

  13. Computing for Finance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followedmore » by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industries Adam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance.4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.« less

  14. Computing for Finance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followedmore » by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Seti@Home. Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN. 3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance.4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.« less

  15. Computing for Finance

    ScienceCinema

    None

    2018-02-01

    The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followed by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance.4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.

  16. Computing for Finance

    ScienceCinema

    None

    2018-01-24

    The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followed by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Seti@Home. Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN. 3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance.4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.

  17. Optimisation of multiplet identifier processing on a PLAYSTATION® 3

    NASA Astrophysics Data System (ADS)

    Hattori, Masami; Mizuno, Takashi

    2010-02-01

    To enable high-performance computing (HPC) for applications with large datasets using a Sony® PLAYSTATION® 3 (PS3™) video game console, we configured a hybrid system consisting of a Windows® PC and a PS3™. To validate this system, we implemented the real-time multiplet identifier (RTMI) application, which identifies multiplets of microearthquakes in terms of the similarity of their waveforms. The cross-correlation computation, which is a core algorithm of the RTMI application, was optimised for the PS3™ platform, while the rest of the computation, including data input and output remained on the PC. With this configuration, the core part of the algorithm ran 69 times faster than the original program, accelerating total computation speed more than five times. As a result, the system processed up to 2100 total microseismic events, whereas the original implementation had a limit of 400 events. These results indicate that this system enables high-performance computing for large datasets using the PS3™, as long as data transfer time is negligible compared with computation time.

  18. Adoption of High Performance Computational (HPC) Modeling Software for Widespread Use in the Manufacture of Welded Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brust, Frederick W.; Punch, Edward F.; Twombly, Elizabeth Kurth

    This report summarizes the final product developed for the US DOE Small Business Innovation Research (SBIR) Phase II grant made to Engineering Mechanics Corporation of Columbus (Emc 2) between April 16, 2014 and August 31, 2016 titled ‘Adoption of High Performance Computational (HPC) Modeling Software for Widespread Use in the Manufacture of Welded Structures’. Many US companies have moved fabrication and production facilities off shore because of cheaper labor costs. A key aspect in bringing these jobs back to the US is the use of technology to render US-made fabrications more cost-efficient overall with higher quality. One significant advantage thatmore » has emerged in the US over the last two decades is the use of virtual design for fabrication of small and large structures in weld fabrication industries. Industries that use virtual design and analysis tools have reduced material part size, developed environmentally-friendly fabrication processes, improved product quality and performance, and reduced manufacturing costs. Indeed, Caterpillar Inc. (CAT), one of the partners in this effort, continues to have a large fabrication presence in the US because of the use of weld fabrication modeling to optimize fabrications by controlling weld residual stresses and distortions and improving fatigue, corrosion, and fracture performance. This report describes Emc 2’s DOE SBIR Phase II final results to extend an existing, state-of-the-art software code, Virtual Fabrication Technology (VFT®), currently used to design and model large welded structures prior to fabrication - to a broader range of products with widespread applications for small and medium-sized enterprises (SMEs). VFT® helps control distortion, can minimize and/or control residual stresses, control welding microstructure, and pre-determine welding parameters such as weld-sequencing, pre-bending, thermal-tensioning, etc. VFT® uses material properties, consumable properties, etc. as inputs. Through VFT®, manufacturing companies can avoid costly design changes after fabrication. This leads to the concept of joint design/fabrication where these important disciplines are intimately linked to minimize fabrication costs. Finally service performance (such as fatigue, corrosion, and fracture/damage) can be improved using this product. Emc 2’s DOE SBIR Phase II effort successfully adapted VFT® to perform efficiently in an HPC environment independent of commercial software on a platform to permit easy and cost effective access to the code. This provides the key for SMEs to access this sophisticated and proven methodology that is quick, accurate, cost effective and available “on-demand” to address weld-simulation and fabrication problems prior to manufacture. In addition, other organizations, such as Government agencies and large companies, may have a need for spot use of such a tool. The open source code, WARP3D, a high performance finite element code used in fracture and damage assessment of structures, was significantly modified so computational weld problems can be solved efficiently on multiple processors and threads with VFT®. The thermal solver for VFT®, based on a series of closed form solution approximations, was extensively enhanced for solution on multiple processors greatly increasing overall speed. In addition, the graphical user interface (GUI) was re-written to permit SMEs access to an HPC environment at the Ohio Super Computer Center (OSC) to integrate these solutions with WARP3D. The GUI is used to define all weld pass descriptions, number of passes, material properties, consumable properties, weld speed, etc. for the structure to be modeled. The GUI was enhanced to make it more user-friendly so that non-experts can perform weld modeling. Finally, an extensive outreach program to market this capability to fabrication companies was performed. This access will permit SMEs to perform weld modeling to improve their competitiveness at a reasonable cost.« less

  19. Computational Fluid Dynamics Ventilation Study for the Human Powered Centrifuge at the International Space Station

    NASA Technical Reports Server (NTRS)

    Son, Chang H.

    2012-01-01

    The Human Powered Centrifuge (HPC) is a facility that is planned to be installed on board the International Space Station (ISS) to enable crew exercises under the artificial gravity conditions. The HPC equipment includes a "bicycle" for long-term exercises of a crewmember that provides power for rotation of HPC at a speed of 30 rpm. The crewmember exercising vigorously on the centrifuge generates the amount of carbon dioxide of about two times higher than a crewmember in ordinary conditions. The goal of the study is to analyze the airflow and carbon dioxide distribution within Pressurized Multipurpose Module (PMM) cabin when HPC is operating. A full unsteady formulation is used for airflow and CO2 transport CFD-based modeling with the so-called sliding mesh concept when the HPC equipment with the adjacent Bay 4 cabin volume is considered in the rotating reference frame while the rest of the cabin volume is considered in the stationary reference frame. The rotating part of the computational domain includes also a human body model. Localized effects of carbon dioxide dispersion are examined. Strong influence of the rotating HPC equipment on the CO2 distribution detected is discussed.

  20. Costa - Introduction to 2015 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, James E.

    In parallel with Sandia National Laboratories having two major locations (NM and CA), along with a number of smaller facilities across the nation, so too is the distribution of scientific, engineering and computing resources. As a part of Sandia’s Institutional Computing Program, CA site-based Sandia computer scientists and engineers have been providing mission and research staff with local CA resident expertise on computing options while also focusing on two growing high performance computing research problems. The first is how to increase system resilience to failure, as machines grow larger, more complex and heterogeneous. The second is how to ensure thatmore » computer hardware and configurations are optimized for specialized data analytical mission needs within the overall Sandia computing environment, including the HPC subenvironment. All of these activities support the larger Sandia effort in accelerating development and integration of high performance computing into national security missions. Sandia continues to both promote national R&D objectives, including the recent Presidential Executive Order establishing the National Strategic Computing Initiative and work to ensure that the full range of computing services and capabilities are available for all mission responsibilities, from national security to energy to homeland defense.« less

  1. Hierarchically porous carbon with high-speed ion transport channels for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Lu, Haoyuan; Li, Qingwei; Guo, Jianhui; Song, Aixin; Gong, Chunhong; Zhang, Jiwei; Zhang, Jingwei

    2018-01-01

    Hierarchically porous carbons (HPC) are considered as promising electrode materials for supercapacitors, due to their outstanding charge/discharge cycling stabilities and high power densities. However, HPC possess a relatively low ion diffusion rate inside the materials, which challenges their application for high performance supercapacitor. Thus tunnel-shaped carbon pores with a size of tens of nanometers were constructed by inducing the self-assembly of lithocholic acid with ammonium chloride, thereby providing high-speed channels for internal ion diffusion. The as-formed one-dimensional pores are beneficial to the activation process by KOH, providing a large specific surface area, and then facilitate rapid transport of electrolyte ions from macropores to the microporous surfaces. Therefore, the HPC achieve an outstanding gravimetric capacitance of 284 F g-1 at a current density of 0.1 A g-1 and a remarkable capacity retention of 64.8% when the current density increases by 1000 times to 100 A g-1.

  2. Dust in the wind: challenges for urban aerodynamics

    NASA Astrophysics Data System (ADS)

    Boris, Jay P.

    2007-04-01

    The fluid dynamics of airflow through a city controls the transport and dispersion of airborne contaminants. This is urban aerodynamics, not meteorology. The average flow, large-scale fluctuations and turbulence are closely coupled to the building geometry. Buildings create large "rooster-tail" wakes; there are systematic fountain flows up the backs of tall buildings; and dust in the wind can move perpendicular to or even against the locally prevailing wind. Requirements for better prediction accuracy demand time-dependent, three-dimensional CFD computations that include solar heating and buoyancy, complete landscape and building geometry specification including foliage and, realistic wind fluctuations. This fundamental prediction capability is necessary to assess urban visibility and line-of-sight sensor performance in street canyons and rugged terrain. Computing urban aerodynamics accurately is clearly a time-dependent High Performance Computing (HPC) problem. In an emergency, on the other hand, prediction technology to assess crisis information, sensor performance, and obscured line-of-sight propagation in the face of industrial spills, transportation accidents, or terrorist attacks has very tight time requirements that suggest simple approximations which tend to produce inaccurate results. In the past we have had to choose one or the other: a fast, inaccurate model or a slow accurate model. Using new fluid-dynamic principles, an urban-oriented emergency assessment system called CT-Analyst® was invented that solves this dilemma. It produces HPC-quality results for airborne contaminant scenarios nearly instantly and has unique new capabilities suited to sensor optimization. This presentation treats the design and use of CT-Analyst and discusses the developments needed for widespread use with advanced sensor and communication systems.

  3. Create full-scale predictive economic models on ROI and innovation with performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Earl C.; Conway, Steve

    The U.S. Department of Energy (DOE), the world's largest buyer and user of supercomputers, awarded IDC Research, Inc. a grant to create two macroeconomic models capable of quantifying, respectively, financial and non-financial (innovation) returns on investments in HPC resources. Following a 2013 pilot study in which we created the models and tested them on about 200 real-world HPC cases, DOE authorized us to conduct a full-out, three-year grant study to collect and measure many more examples, a process that would also subject the methodology to further testing and validation. A secondary, "stretch" goal of the full-out study was to advancemore » the methodology from association toward (but not all the way to) causation, by eliminating the effects of some of the other factors that might be contributing, along with HPC investments, to the returns produced in the investigated projects.« less

  4. Ventral, but not dorsal, hippocampus inactivation impairs reward memory expression and retrieval in contexts defined by proximal cues.

    PubMed

    Riaz, Sadia; Schumacher, Anett; Sivagurunathan, Seyon; Van Der Meer, Matthijs; Ito, Rutsuko

    2017-07-01

    The hippocampus (HPC) has been widely implicated in the contextual control of appetitive and aversive conditioning. However, whole hippocampal lesions do not invariably impair all forms of contextual processing, as in the case of complex biconditional context discrimination, leading to contention over the exact nature of the contribution of the HPC in contextual processing. Moreover, the increasingly well-established functional dissociation between the dorsal (dHPC) and ventral (vHPC) subregions of the HPC has been largely overlooked in the existing literature on hippocampal-based contextual memory processing in appetitively motivated tasks. Thus, the present study sought to investigate the individual roles of the dHPC and the vHPC in contextual biconditional discrimination (CBD) performance and memory retrieval. To this end, we examined the effects of transient post-acquisition pharmacological inactivation (using a combination of GABA A and GABA B receptor agonists muscimol and baclofen) of functionally distinct subregions of the HPC (CA1/CA3 subfields of the dHPC and vHPC) on CBD memory retrieval. Additional behavioral assays including novelty preference, light-dark box and locomotor activity test were also performed to confirm that the respective sites of inactivation were functionally silent. We observed robust deficits in CBD performance and memory retrieval following inactivation of the vHPC, but not the dHPC. Our data provides novel insight into the differential roles of the ventral and dorsal HPC in reward contextual processing, under conditions in which the context is defined by proximal cues. © 2017 Wiley Periodicals, Inc.

  5. A web portal for hydrodynamical, cosmological simulations

    NASA Astrophysics Data System (ADS)

    Ragagnin, A.; Dolag, K.; Biffi, V.; Cadolle Bel, M.; Hammer, N. J.; Krukau, A.; Petkova, M.; Steinborn, D.

    2017-07-01

    This article describes a data centre hosting a web portal for accessing and sharing the output of large, cosmological, hydro-dynamical simulations with a broad scientific community. It also allows users to receive related scientific data products by directly processing the raw simulation data on a remote computing cluster. The data centre has a multi-layer structure: a web portal, a job control layer, a computing cluster and a HPC storage system. The outer layer enables users to choose an object from the simulations. Objects can be selected by visually inspecting 2D maps of the simulation data, by performing highly compounded and elaborated queries or graphically by plotting arbitrary combinations of properties. The user can run analysis tools on a chosen object. These services allow users to run analysis tools on the raw simulation data. The job control layer is responsible for handling and performing the analysis jobs, which are executed on a computing cluster. The innermost layer is formed by a HPC storage system which hosts the large, raw simulation data. The following services are available for the users: (I) CLUSTERINSPECT visualizes properties of member galaxies of a selected galaxy cluster; (II) SIMCUT returns the raw data of a sub-volume around a selected object from a simulation, containing all the original, hydro-dynamical quantities; (III) SMAC creates idealized 2D maps of various, physical quantities and observables of a selected object; (IV) PHOX generates virtual X-ray observations with specifications of various current and upcoming instruments.

  6. On the energy footprint of I/O management in Exascale HPC systems

    DOE PAGES

    Dorier, Matthieu; Yildiz, Orcun; Ibrahim, Shadi; ...

    2016-03-21

    The advent of unprecedentedly scalable yet energy hungry Exascale supercomputers poses a major challenge in sustaining a high performance-per-watt ratio. With I/O management acquiring a crucial role in supporting scientific simulations, various I/O management approaches have been proposed to achieve high performance and scalability. But, the details of how these approaches affect energy consumption have not been studied yet. Therefore, this paper aims to explore how much energy a supercomputer consumes while running scientific simulations when adopting various I/O management approaches. In particular, we closely examine three radically different I/O schemes including time partitioning, dedicated cores, and dedicated nodes. Tomore » accomplish this, we implement the three approaches within the Damaris I/O middleware and perform extensive experiments with one of the target HPC applications of the Blue Waters sustained-petaflop supercomputer project: the CM1 atmospheric model. Our experimental results obtained on the French Grid'5000 platform highlight the differences among these three approaches and illustrate in which way various configurations of the application and of the system can impact performance and energy consumption. Moreover, we propose and validate a mathematical model that estimates the energy consumption of a HPC simulation under different I/O approaches. This proposed model gives hints to pre-select the most energy-efficient I/O approach for a particular simulation on a particular HPC system and therefore provides a step towards energy-efficient HPC simulations in Exascale systems. To the best of our knowledge, our work provides the first in-depth look into the energy-performance tradeoffs of I/O management approaches.« less

  7. A Look at the Impact of High-End Computing Technologies on NASA Missions

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Dunbar, Jill; Hardman, John; Bailey, F. Ron; Wheeler, Lorien; Rogers, Stuart

    2012-01-01

    From its bold start nearly 30 years ago and continuing today, the NASA Advanced Supercomputing (NAS) facility at Ames Research Center has enabled remarkable breakthroughs in the space agency s science and engineering missions. Throughout this time, NAS experts have influenced the state-of-the-art in high-performance computing (HPC) and related technologies such as scientific visualization, system benchmarking, batch scheduling, and grid environments. We highlight the pioneering achievements and innovations originating from and made possible by NAS resources and know-how, from early supercomputing environment design and software development, to long-term simulation and analyses critical to design safe Space Shuttle operations and associated spinoff technologies, to the highly successful Kepler Mission s discovery of new planets now capturing the world s imagination.

  8. Fabricating hierarchically porous carbon with well-defined open pores via polymer dehalogenation for high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Guo, Mei; Li, Yu; Du, Kewen; Qiu, Chaochao; Dou, Gang; Zhang, Guoxin

    2018-05-01

    Improving specific energy of supercapacitors (SCs) at high power has been intensively investigated as a hot and challengeable topic. In this work, hierarchically porous carbon (HPC) materials with well-defined meso-/macro-pores are reported via the dehalogenation reaction of polyvinyl fluoride (PVDF) by NaNH2. The pore hierarchy is achievable mainly because of the coupled effects of NaNH2 activation and the template/bubbling effects of byproducts of NaF and NH3. Electron microscopy studies and Brunauer-Emmett-Teller (BET) measurements confirm that the structures of HPC samples contain multiple-scale pores assembled in a hierarchical pattern, and most of their volumes are contributed by mesopores. Aqueous symmetric supercapacitors (ASSCs) were fabricated using HPC-M7 materials, achieving an ultrahigh specific energy of 18.8 Wh kg-1 at specific power of 986.8 W kg-1. Remarkably, at the ultrahigh power of 14.3 kW kg-1, the HPC-ASSCs still output a very high specific energy of 16.7 Wh kg-1, which means the ASSCs can be charged or discharged within 4 s. The outstanding rate capacitive performance is mainly benefited from the hierarchical porous structure that allows highly efficient ion diffusion.

  9. WMT: The CSDMS Web Modeling Tool

    NASA Astrophysics Data System (ADS)

    Piper, M.; Hutton, E. W. H.; Overeem, I.; Syvitski, J. P.

    2015-12-01

    The Community Surface Dynamics Modeling System (CSDMS) has a mission to enable model use and development for research in earth surface processes. CSDMS strives to expand the use of quantitative modeling techniques, promotes best practices in coding, and advocates for the use of open-source software. To streamline and standardize access to models, CSDMS has developed the Web Modeling Tool (WMT), a RESTful web application with a client-side graphical interface and a server-side database and API that allows users to build coupled surface dynamics models in a web browser on a personal computer or a mobile device, and run them in a high-performance computing (HPC) environment. With WMT, users can: Design a model from a set of components Edit component parameters Save models to a web-accessible server Share saved models with the community Submit runs to an HPC system Download simulation results The WMT client is an Ajax application written in Java with GWT, which allows developers to employ object-oriented design principles and development tools such as Ant, Eclipse and JUnit. For deployment on the web, the GWT compiler translates Java code to optimized and obfuscated JavaScript. The WMT client is supported on Firefox, Chrome, Safari, and Internet Explorer. The WMT server, written in Python and SQLite, is a layered system, with each layer exposing a web service API: wmt-db: database of component, model, and simulation metadata and output wmt-api: configure and connect components wmt-exe: launch simulations on remote execution servers The database server provides, as JSON-encoded messages, the metadata for users to couple model components, including descriptions of component exchange items, uses and provides ports, and input parameters. Execution servers are network-accessible computational resources, ranging from HPC systems to desktop computers, containing the CSDMS software stack for running a simulation. Once a simulation completes, its output, in NetCDF, is packaged and uploaded to a data server where it is stored and from which a user can download it as a single compressed archive file.

  10. ATLAS and LHC computing on CRAY

    NASA Astrophysics Data System (ADS)

    Sciacca, F. G.; Haug, S.; ATLAS Collaboration

    2017-10-01

    Access and exploitation of large scale computing resources, such as those offered by general purpose HPC centres, is one important measure for ATLAS and the other Large Hadron Collider experiments in order to meet the challenge posed by the full exploitation of the future data within the constraints of flat budgets. We report on the effort of moving the Swiss WLCG T2 computing, serving ATLAS, CMS and LHCb, from a dedicated cluster to the large Cray systems at the Swiss National Supercomputing Centre CSCS. These systems do not only offer very efficient hardware, cooling and highly competent operators, but also have large backfill potentials due to size and multidisciplinary usage and potential gains due to economy at scale. Technical solutions, performance, expected return and future plans are discussed.

  11. MRS study of meningeal hemangiopericytoma and edema: a comparison with meningothelial meningioma.

    PubMed

    Righi, Valeria; Tugnoli, Vitaliano; Mucci, Adele; Bacci, Antonella; Bonora, Sergio; Schenetti, Luisa

    2012-10-01

    Intracranial hemangiopericytomas (HPCs) are rare tumors and their radiological appearance resembles that of meningiomas, especially meningothelial meningiomas. To increase the knowledge on the biochemical composition of this type of tumor for better diagnosis and prognosis, we performed a molecular study using ex vivo high resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) perfomed on HPC and peritumoral edematous tissues. Moreover, to help in the discrimination between HPC and meningothelial meningioma we compared the ex vivo HR-MAS spectra of samples from one patient with HPC and 5 patients affected by meningothelial meningioma. Magnetic resonance imaging (MRI), in vivo localized single voxel 1H-MRS was also performed on the same patients prior to surgery and the in vivo and ex vivo MRS spectra were compared. We observed the presence of OH-butyrate, together with glucose in HPC and a low amount of N-acetylaspartate in the edema, that may reflect neuronal alteration responsible for associated epilepsy. Many differences between HPC and meningothelial meningioma were identified. The relative ratios of myo-inositol, glucose and gluthatione with respect to glutamate are higher in HPC compared to meningioma; whereas the relative ratios of creatine, glutamine, alanine, glycine and choline-containing compounds with respect to glutamate are lower in HPC compared to meningioma. These data will be useful to improve the interpretation of in vivo MRS spectra resulting in a more accurate diagnosis of these rare tumors.

  12. Using Rollback Avoidance to Mitigate Failures in Next-Generation Extreme-Scale Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, Scott N.

    2016-05-01

    High-performance computing (HPC) systems enable scientists to numerically model complex phenomena in many important physical systems. The next major milestone in the development of HPC systems is the construction of the rst supercomputer capable executing more than an exa op, 10 18 oating point operations per second. On systems of this scale, failures will occur much more frequently than on current systems. As a result, resilience is a key obstacle to building next-generation extremescale systems. Coordinated checkpointing is currently the most widely-used mechanism for handling failures on HPC systems. Although coordinated checkpointing remains e ective on current systems, increasing themore » scale of today's systems to build next-generation systems will increase the cost of fault tolerance as more and more time is taken away from the application to protect against or recover from failure. Rollback avoidance techniques seek to mitigate the cost of checkpoint/restart by allowing an application to continue its execution rather than rolling back to an earlier checkpoint when failures occur. These techniqes include failure prediction and preventive migration, replicated computation, fault-tolerant algorithms, and softwarebased memory fault correction. In this thesis, we examine how rollback avoidance techniques can be used to address failures on extreme-scale systems. Using a combination of analytic modeling and simulation, we evaluate the potential impact of rollback avoidance on these systems. We then present a novel rollback avoidance technique that exploits similarities in application memory. Finally, we examine the feasibility of using this technique to protect against memory faults in kernel memory.« less

  13. Message passing interface and multithreading hybrid for parallel molecular docking of large databases on petascale high performance computing machines.

    PubMed

    Zhang, Xiaohua; Wong, Sergio E; Lightstone, Felice C

    2013-04-30

    A mixed parallel scheme that combines message passing interface (MPI) and multithreading was implemented in the AutoDock Vina molecular docking program. The resulting program, named VinaLC, was tested on the petascale high performance computing (HPC) machines at Lawrence Livermore National Laboratory. To exploit the typical cluster-type supercomputers, thousands of docking calculations were dispatched by the master process to run simultaneously on thousands of slave processes, where each docking calculation takes one slave process on one node, and within the node each docking calculation runs via multithreading on multiple CPU cores and shared memory. Input and output of the program and the data handling within the program were carefully designed to deal with large databases and ultimately achieve HPC on a large number of CPU cores. Parallel performance analysis of the VinaLC program shows that the code scales up to more than 15K CPUs with a very low overhead cost of 3.94%. One million flexible compound docking calculations took only 1.4 h to finish on about 15K CPUs. The docking accuracy of VinaLC has been validated against the DUD data set by the re-docking of X-ray ligands and an enrichment study, 64.4% of the top scoring poses have RMSD values under 2.0 Å. The program has been demonstrated to have good enrichment performance on 70% of the targets in the DUD data set. An analysis of the enrichment factors calculated at various percentages of the screening database indicates VinaLC has very good early recovery of actives. Copyright © 2013 Wiley Periodicals, Inc.

  14. A Study of Complex Deep Learning Networks on High Performance, Neuromorphic, and Quantum Computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potok, Thomas E; Schuman, Catherine D; Young, Steven R

    Current Deep Learning models use highly optimized convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers with a fairly simple layered network topology, i.e., highly connected layers, without intra-layer connections. Complex topologies have been proposed, but are intractable to train on current systems. Building the topologies of the deep learning network requires hand tuning, and implementing the network in hardware is expensive in both cost and power. In this paper, we evaluate deep learning models using three different computing architectures to address these problems: quantum computing to train complex topologies, high performance computing (HPC) to automatically determinemore » network topology, and neuromorphic computing for a low-power hardware implementation. Due to input size limitations of current quantum computers we use the MNIST dataset for our evaluation. The results show the possibility of using the three architectures in tandem to explore complex deep learning networks that are untrainable using a von Neumann architecture. We show that a quantum computer can find high quality values of intra-layer connections and weights, while yielding a tractable time result as the complexity of the network increases; a high performance computer can find optimal layer-based topologies; and a neuromorphic computer can represent the complex topology and weights derived from the other architectures in low power memristive hardware. This represents a new capability that is not feasible with current von Neumann architecture. It potentially enables the ability to solve very complicated problems unsolvable with current computing technologies.« less

  15. eWaterCycle: A high resolution global hydrological model

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick; Bierkens, Marc; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2014-05-01

    In 2013, the eWaterCycle project was started, which has the ambitious goal to run a high resolution global hydrological model. Starting point was the PCR-GLOBWB built by Utrecht University. The software behind this model will partially be re-engineered in order to enable to run it in a High Performance Computing (HPC) environment. The aim is to have a spatial resolution of 1km x 1km. The idea is also to run the model in real-time and forecasting mode, using data assimilation. An on-demand hydraulic model will be available for detailed flow and flood forecasting in support of navigation and disaster management. The project faces a set of scientific challenges. First, to enable the model to run in a HPC environment, model runs were analyzed to examine on which parts of the program most CPU time was spent. These parts were re-coded in Open MPI to allow for parallel processing. Different parallelization strategies are thinkable. In our case, it was decided to use watershed logic as a first step to distribute the analysis. There is rather limited recent experience with HPC in hydrology and there is much to be learned and adjusted, both on the hydrological modeling side and the computer science side. For example, an interesting early observation was that hydrological models are, due to their localized parameterization, much more memory intensive than models of sister-disciplines such as meteorology and oceanography. Because it would be deadly to have to swap information between CPU and hard drive, memory management becomes crucial. A standard Ensemble Kalman Filter (enKF) would, for example, have excessive memory demands. To circumvent these problems, an alternative to the enKF was developed that produces equivalent results. This presentation shows the most recent results from the model, including a 5km x 5km simulation and a proof of concept for the new data assimilation approach. Finally, some early ideas about financial sustainability of an operational global hydrological model are presented.

  16. Integrating the Apache Big Data Stack with HPC for Big Data

    NASA Astrophysics Data System (ADS)

    Fox, G. C.; Qiu, J.; Jha, S.

    2014-12-01

    There is perhaps a broad consensus as to important issues in practical parallel computing as applied to large scale simulations; this is reflected in supercomputer architectures, algorithms, libraries, languages, compilers and best practice for application development. However, the same is not so true for data intensive computing, even though commercially clouds devote much more resources to data analytics than supercomputers devote to simulations. We look at a sample of over 50 big data applications to identify characteristics of data intensive applications and to deduce needed runtime and architectures. We suggest a big data version of the famous Berkeley dwarfs and NAS parallel benchmarks and use these to identify a few key classes of hardware/software architectures. Our analysis builds on combining HPC and ABDS the Apache big data software stack that is well used in modern cloud computing. Initial results on clouds and HPC systems are encouraging. We propose the development of SPIDAL - Scalable Parallel Interoperable Data Analytics Library -- built on system aand data abstractions suggested by the HPC-ABDS architecture. We discuss how it can be used in several application areas including Polar Science.

  17. The Ettention software package.

    PubMed

    Dahmen, Tim; Marsalek, Lukas; Marniok, Nico; Turoňová, Beata; Bogachev, Sviatoslav; Trampert, Patrick; Nickels, Stefan; Slusallek, Philipp

    2016-02-01

    We present a novel software package for the problem "reconstruction from projections" in electron microscopy. The Ettention framework consists of a set of modular building-blocks for tomographic reconstruction algorithms. The well-known block iterative reconstruction method based on Kaczmarz algorithm is implemented using these building-blocks, including adaptations specific to electron tomography. Ettention simultaneously features (1) a modular, object-oriented software design, (2) optimized access to high-performance computing (HPC) platforms such as graphic processing units (GPU) or many-core architectures like Xeon Phi, and (3) accessibility to microscopy end-users via integration in the IMOD package and eTomo user interface. We also provide developers with a clean and well-structured application programming interface (API) that allows for extending the software easily and thus makes it an ideal platform for algorithmic research while hiding most of the technical details of high-performance computing. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Decentralized Grid Scheduling with Evolutionary Fuzzy Systems

    NASA Astrophysics Data System (ADS)

    Fölling, Alexander; Grimme, Christian; Lepping, Joachim; Papaspyrou, Alexander

    In this paper, we address the problem of finding workload exchange policies for decentralized Computational Grids using an Evolutionary Fuzzy System. To this end, we establish a non-invasive collaboration model on the Grid layer which requires minimal information about the participating High Performance and High Throughput Computing (HPC/HTC) centers and which leaves the local resource managers completely untouched. In this environment of fully autonomous sites, independent users are assumed to submit their jobs to the Grid middleware layer of their local site, which in turn decides on the delegation and execution either on the local system or on remote sites in a situation-dependent, adaptive way. We find for different scenarios that the exchange policies show good performance characteristics not only with respect to traditional metrics such as average weighted response time and utilization, but also in terms of robustness and stability in changing environments.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaskey, Alexander J.

    There is a lack of state-of-the-art HPC simulation tools for simulating general quantum computing. Furthermore, there are no real software tools that integrate current quantum computers into existing classical HPC workflows. This product, the Quantum Virtual Machine (QVM), solves this problem by providing an extensible framework for pluggable virtual, or physical, quantum processing units (QPUs). It enables the execution of low level quantum assembly codes and returns the results of such executions.

  20. DCDM1: Lessons Learned from the World's Most Energy Efficient Data Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sickinger, David E; Van Geet, Otto D; Carter, Thomas

    This presentation discusses the holistic approach to design the world's most energy-efficient data center, which is located at the U.S. Department of Energy National Renewable Energy Laboratory (NREL). This high-performance computing (HPC) data center has achieved a trailing twelve-month average power usage effectiveness (PUE) of 1.04 and features a chiller-less design, component-level warm-water liquid cooling, and waste heat capture and reuse. We provide details of the demonstrated PUE and energy reuse effectiveness (ERE) and lessons learned during four years of production operation. Recent efforts to dramatically reduce the water footprint will also be discussed. Johnson Controls partnered with NREL andmore » Sandia National Laboratories to deploy a thermosyphon cooler (TSC) as a test bed at NREL's HPC data center that resulted in a 50% reduction in water usage during the first year of operation. The Thermosyphon Cooler Hybrid System (TCHS) integrates the control of a dry heat rejection device with an open cooling tower.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Karla

    Although the high-performance computing (HPC) community increasingly embraces object-oriented programming (OOP), most HPC OOP projects employ the C++ programming language. Until recently, Fortran programmers interested in mining the benefits of OOP had to emulate OOP in Fortran 90/95. The advent of widespread compiler support for Fortran 2003 now facilitates explicitly constructing object-oriented class hierarchies via inheritance and leveraging related class behaviors such as dynamic polymorphism. Although C++ allows a class to inherit from multiple parent classes, Fortran and several other OOP languages restrict or prohibit explicit multiple inheritance relationships in order to circumvent several pitfalls associated with them. Nonetheless, whatmore » appears as an intrinsic feature in one language can be modeled as a user-constructed design pattern in another language. The present paper demonstrates how to apply the facade structural design pattern to support a multiple inheritance class relationship in Fortran 2003. As a result, the design unleashes the power of the associated class relationships for modeling complicated data structures yet avoids the ambiguities that plague some multiple inheritance scenarios.« less

  2. GEOS. User Tutorials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Pengchen; Settgast, Randolph R.; Johnson, Scott M.

    2014-12-17

    GEOS is a massively parallel, multi-physics simulation application utilizing high performance computing (HPC) to address subsurface reservoir stimulation activities with the goal of optimizing current operations and evaluating innovative stimulation methods. GEOS enables coupling of di erent solvers associated with the various physical processes occurring during reservoir stimulation in unique and sophisticated ways, adapted to various geologic settings, materials and stimulation methods. Developed at the Lawrence Livermore National Laboratory (LLNL) as a part of a Laboratory-Directed Research and Development (LDRD) Strategic Initiative (SI) project, GEOS represents the culmination of a multi-year ongoing code development and improvement e ort that hasmore » leveraged existing code capabilities and sta expertise to design new computational geosciences software.« less

  3. Institute for Sustained Performance, Energy, and Resilience (SuPER)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagode, Heike; Bosilca, George; Danalis, Anthony

    The University of Tennessee (UTK) and University of Texas at El Paso (UTEP) partnership supported the three main thrusts of the SUPER project---performance, energy, and resilience. The UTK-UTEP effort thus helped advance the main goal of SUPER, which was to ensure that DOE's computational scientists can successfully exploit the emerging generation of high performance computing (HPC) systems. This goal is being met by providing application scientists with strategies and tools to productively maximize performance, conserve energy, and attain resilience. The primary vehicle through which UTK provided performance measurement support to SUPER and the larger HPC community is the Performance Applicationmore » Programming Interface (PAPI). PAPI is an ongoing project that provides a consistent interface and methodology for collecting hardware performance information from various hardware and software components, including most major CPUs, GPUs and accelerators, interconnects, I/O systems, and power interfaces, as well as virtual cloud environments. The PAPI software is widely used for performance modeling of scientific and engineering applications---for example, the HOMME (High Order Methods Modeling Environment) climate code, and the GAMESS and NWChem computational chemistry codes---on DOE supercomputers. PAPI is widely deployed as middleware for use by higher-level profiling, tracing, and sampling tools (e.g., CrayPat, HPCToolkit, Scalasca, Score-P, TAU, Vampir, PerfExpert), making it the de facto standard for hardware counter analysis. PAPI has established itself as fundamental software infrastructure in every application domain (spanning academia, government, and industry), where improving performance can be mission critical. Ultimately, as more application scientists migrate their applications to HPC platforms, they will benefit from the extended capabilities this grant brought to PAPI to analyze and optimize performance in these environments, whether they use PAPI directly, or via third-party performance tools. Capabilities added to PAPI through this grant include support for new architectures such as the lastest GPU and Xeon Phi accelerators, and advanced power measurement and management features. Another important topic for the UTK team was providing support for a rich ecosystem of different fault management strategies in the context of parallel computing. Our long term efforts have been oriented toward proposing flexible strategies and providing building boxes that application developers can use to build the most efficient fault management technique for their application. These efforts span across the entire software spectrum, from theoretical models of existing strategies to easily assess their performance, to algorithmic modifications to take advantage of specific mathematical properties for data redundancy and to extensions to widely used programming paradigms to empower the application developers to deal with all types of faults. We have also continued our tight collaborations with users to help them adopt these technologies to ensure their application always deliver meaningful scientific data. Large supercomputer systems are becoming more and more power and energy constrained, and future systems and applications running on them will need to be optimized to run under power caps and/or minimize energy consumption. The UTEP team contributed to the SUPER energy thrust by developing power modeling methodologies and investigating power management strategies. Scalability modeling results showed that some applications can scale better with respect to an increasing power budget than with respect to only the number of processors. Power management, in particular shifting power to processors on the critical path of an application execution, can reduce perturbation due to system noise and other sources of runtime variability, which are growing problems on large-scale power-constrained computer systems.« less

  4. High Performance Distributed Computing in a Supercomputer Environment: Computational Services and Applications Issues

    NASA Technical Reports Server (NTRS)

    Kramer, Williams T. C.; Simon, Horst D.

    1994-01-01

    This tutorial proposes to be a practical guide for the uninitiated to the main topics and themes of high-performance computing (HPC), with particular emphasis to distributed computing. The intent is first to provide some guidance and directions in the rapidly increasing field of scientific computing using both massively parallel and traditional supercomputers. Because of their considerable potential computational power, loosely or tightly coupled clusters of workstations are increasingly considered as a third alternative to both the more conventional supercomputers based on a small number of powerful vector processors, as well as high massively parallel processors. Even though many research issues concerning the effective use of workstation clusters and their integration into a large scale production facility are still unresolved, such clusters are already used for production computing. In this tutorial we will utilize the unique experience made at the NAS facility at NASA Ames Research Center. Over the last five years at NAS massively parallel supercomputers such as the Connection Machines CM-2 and CM-5 from Thinking Machines Corporation and the iPSC/860 (Touchstone Gamma Machine) and Paragon Machines from Intel were used in a production supercomputer center alongside with traditional vector supercomputers such as the Cray Y-MP and C90.

  5. Modernization and optimization of a legacy open-source CFD code for high-performance computing architectures

    NASA Astrophysics Data System (ADS)

    Gel, Aytekin; Hu, Jonathan; Ould-Ahmed-Vall, ElMoustapha; Kalinkin, Alexander A.

    2017-02-01

    Legacy codes remain a crucial element of today's simulation-based engineering ecosystem due to the extensive validation process and investment in such software. The rapid evolution of high-performance computing architectures necessitates the modernization of these codes. One approach to modernization is a complete overhaul of the code. However, this could require extensive investments, such as rewriting in modern languages, new data constructs, etc., which will necessitate systematic verification and validation to re-establish the credibility of the computational models. The current study advocates using a more incremental approach and is a culmination of several modernization efforts of the legacy code MFIX, which is an open-source computational fluid dynamics code that has evolved over several decades, widely used in multiphase flows and still being developed by the National Energy Technology Laboratory. Two different modernization approaches,'bottom-up' and 'top-down', are illustrated. Preliminary results show up to 8.5x improvement at the selected kernel level with the first approach, and up to 50% improvement in total simulated time with the latter were achieved for the demonstration cases and target HPC systems employed.

  6. Coupled ultrasonication-milling synthesis of hierarchically porous carbon for high-performance supercapacitor.

    PubMed

    Yang, Dewei; Jing, Huijuan; Wang, Zhaowu; Li, Jiaheng; Hu, Mingxiang; Lv, Ruitao; Zhang, Rui; Chen, Deliang

    2018-05-19

    Activated carbon (AC) based supercapacitors exhibit intrinsic advantages in energy storage. Traditional two-step synthesis (carbonization and activation) of AC faces difficulties in precisely regulating its pore-size distribution and thoroughly removing residual impurities like silicon oxide. This paper reports a novel coupled ultrasonication-milling (CUM) process for the preparation of hierarchically porous carbon (HPC) using corn cobs as the carbon resource. The as-obtained HPC is of a large surface area (2288 m 2  g -1 ) with a high mesopore ratio of ∼44.6%. When tested in a three-electrode system, the HPC exhibits a high specific capacitance of 465 F g -1 at 0.5 Ag -1 , 2.7 times higher than that (170 F g -1 ) of the commercial AC (YP-50F). In the two-electrode test system, the HPC device exhibits a specific capacitance of 135 F g -1 at 1 A g -1 , twice higher than that (68 F g -1 ) of YP-50F. The above excellent energy-storage properties are resulted from the CUM process which efficiently removes the impurities and modulates the mesopore/micropore structures of the AC samples derived from the agricultural resides of corn cobs. The CUM process is an efficient method to prepare high-performance biomass-derived AC materials. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. VisIVO: A Library and Integrated Tools for Large Astrophysical Dataset Exploration

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Costa, A.; Ersotelos, N.; Krokos, M.; Massimino, P.; Petta, C.; Vitello, F.

    2012-09-01

    VisIVO provides an integrated suite of tools and services that can be used in many scientific fields. VisIVO development starts in the Virtual Observatory framework. VisIVO allows users to visualize meaningfully highly-complex, large-scale datasets and create movies of these visualizations based on distributed infrastructures. VisIVO supports high-performance, multi-dimensional visualization of large-scale astrophysical datasets. Users can rapidly obtain meaningful visualizations while preserving full and intuitive control of the relevant parameters. VisIVO consists of VisIVO Desktop - a stand-alone application for interactive visualization on standard PCs, VisIVO Server - a platform for high performance visualization, VisIVO Web - a custom designed web portal, VisIVOSmartphone - an application to exploit the VisIVO Server functionality and the latest VisIVO features: VisIVO Library allows a job running on a computational system (grid, HPC, etc.) to produce movies directly with the code internal data arrays without the need to produce intermediate files. This is particularly important when running on large computational facilities, where the user wants to have a look at the results during the data production phase. For example, in grid computing facilities, images can be produced directly in the grid catalogue while the user code is running in a system that cannot be directly accessed by the user (a worker node). The deployment of VisIVO on the DG and gLite is carried out with the support of EDGI and EGI-Inspire projects. Depending on the structure and size of datasets under consideration, the data exploration process could take several hours of CPU for creating customized views and the production of movies could potentially last several days. For this reason an MPI parallel version of VisIVO could play a fundamental role in increasing performance, e.g. it could be automatically deployed on nodes that are MPI aware. A central concept in our development is thus to produce unified code that can run either on serial nodes or in parallel by using HPC oriented grid nodes. Another important aspect, to obtain as high performance as possible, is the integration of VisIVO processes with grid nodes where GPUs are available. We have selected CUDA for implementing a range of computationally heavy modules. VisIVO is supported by EGI-Inspire, EDGI and SCI-BUS projects.

  8. Avi Purkayastha | NREL

    Science.gov Websites

    Austin, from 2001 to 2007. There he was principal in HPC applications and user support, as well as in research and development in large-scale scientific applications and different HPC systems and technologies Interests HPC applications performance and optimizations|HPC systems and accelerator technologies|Scientific

  9. Managing Scientific Software Complexity with Bocca and CCA

    DOE PAGES

    Allan, Benjamin A.; Norris, Boyana; Elwasif, Wael R.; ...

    2008-01-01

    In high-performance scientific software development, the emphasis is often on short time to first solution. Even when the development of new components mostly reuses existing components or libraries and only small amounts of new code must be created, dealing with the component glue code and software build processes to obtain complete applications is still tedious and error-prone. Component-based software meant to reduce complexity at the application level increases complexity to the extent that the user must learn and remember the interfaces and conventions of the component model itself. To address these needs, we introduce Bocca, the first tool to enablemore » application developers to perform rapid component prototyping while maintaining robust software-engineering practices suitable to HPC environments. Bocca provides project management and a comprehensive build environment for creating and managing applications composed of Common Component Architecture components. Of critical importance for high-performance computing (HPC) applications, Bocca is designed to operate in a language-agnostic way, simultaneously handling components written in any of the languages commonly used in scientific applications: C, C++, Fortran, Python and Java. Bocca automates the tasks related to the component glue code, freeing the user to focus on the scientific aspects of the application. Bocca embraces the philosophy pioneered by Ruby on Rails for web applications: start with something that works, and evolve it to the user's purpose.« less

  10. Forward and adjoint spectral-element simulations of seismic wave propagation using hardware accelerators

    NASA Astrophysics Data System (ADS)

    Peter, Daniel; Videau, Brice; Pouget, Kevin; Komatitsch, Dimitri

    2015-04-01

    Improving the resolution of tomographic images is crucial to answer important questions on the nature of Earth's subsurface structure and internal processes. Seismic tomography is the most prominent approach where seismic signals from ground-motion records are used to infer physical properties of internal structures such as compressional- and shear-wave speeds, anisotropy and attenuation. Recent advances in regional- and global-scale seismic inversions move towards full-waveform inversions which require accurate simulations of seismic wave propagation in complex 3D media, providing access to the full 3D seismic wavefields. However, these numerical simulations are computationally very expensive and need high-performance computing (HPC) facilities for further improving the current state of knowledge. During recent years, many-core architectures such as graphics processing units (GPUs) have been added to available large HPC systems. Such GPU-accelerated computing together with advances in multi-core central processing units (CPUs) can greatly accelerate scientific applications. There are mainly two possible choices of language support for GPU cards, the CUDA programming environment and OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted mainly by AMD graphic cards. In order to employ such hardware accelerators for seismic wave propagation simulations, we incorporated a code generation tool BOAST into an existing spectral-element code package SPECFEM3D_GLOBE. This allows us to use meta-programming of computational kernels and generate optimized source code for both CUDA and OpenCL languages, running simulations on either CUDA or OpenCL hardware accelerators. We show here applications of forward and adjoint seismic wave propagation on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  11. GSDC: A Unique Data Center in Korea for HEP research

    NASA Astrophysics Data System (ADS)

    Ahn, Sang-Un

    2017-04-01

    Global Science experimental Data hub Center (GSDC) at Korea Institute of Science and Technology Information (KISTI) is a unique data center in South Korea established for promoting the fundamental research fields by supporting them with the expertise on Information and Communication Technology (ICT) and the infrastructure for High Performance Computing (HPC), High Throughput Computing (HTC) and Networking. GSDC has supported various research fields in South Korea dealing with the large scale of data, e.g. RENO experiment for neutrino research, LIGO experiment for gravitational wave detection, Genome sequencing project for bio-medical, and HEP experiments such as CDF at FNAL, Belle at KEK, and STAR at BNL. In particular, GSDC has run a Tier-1 center for ALICE experiment using the LHC at CERN since 2013. In this talk, we present the overview on computing infrastructure that GSDC runs for the research fields and we discuss on the data center infrastructure management system deployed at GSDC.

  12. Internal curing of high-performance concrete for bridge decks.

    DOT National Transportation Integrated Search

    2013-03-01

    High performance concrete (HPC) provides a long lasting, durable concrete that is typically used in bridge decks due to its low permeability, high abrasion resistance, freeze-thaw resistance and strength. However, this type of concrete is highly susc...

  13. Underground Coal Thermal Treatment: Task 6 Topical Report, Utah Clean Coal Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.J.; Deo, M.; Edding, E.G.

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand themore » feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO 2 storage. In order to help determine the amount of CO 2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.« less

  14. Power-Time Curve Comparison between Weightlifting Derivatives

    PubMed Central

    Suchomel, Timothy J.; Sole, Christopher J.

    2017-01-01

    This study examined the power production differences between weightlifting derivatives through a comparison of power-time (P-t) curves. Thirteen resistance-trained males performed hang power clean (HPC), jump shrug (JS), and hang high pull (HHP) repetitions at relative loads of 30%, 45%, 65%, and 80% of their one repetition maximum (1RM) HPC. Relative peak power (PPRel), work (WRel), and P-t curves were compared. The JS produced greater PPRel than the HPC (p < 0.001, d = 2.53) and the HHP (p < 0.001, d = 2.14). In addition, the HHP PPRel was statistically greater than the HPC (p = 0.008, d = 0.80). Similarly, the JS produced greater WRel compared to the HPC (p < 0.001, d = 1.89) and HHP (p < 0.001, d = 1.42). Furthermore, HHP WRel was statistically greater than the HPC (p = 0.003, d = 0.73). The P-t profiles of each exercise were similar during the first 80-85% of the movement; however, during the final 15-20% of the movement the P-t profile of the JS was found to be greater than the HPC and HHP. The JS produced greater PPRel and WRel compared to the HPC and HHP with large effect size differences. The HHP produced greater PPRel and WRel than the HPC with moderate effect size differences. The JS and HHP produced markedly different P-t profiles in the final 15-20% of the movement compared to the HPC. Thus, these exercises may be superior methods of training to enhance PPRel. The greatest differences in PPRel between the JS and HHP and the HPC occurred at lighter loads, suggesting that loads of 30-45% 1RM HPC may provide the best training stimulus when using the JS and HHP. In contrast, loads ranging 65-80% 1RM HPC may provide an optimal stimulus for power production during the HPC. Key points The JS and HHP exercises produced greater relative peak power and relative work compared to the HPC. Although the power-time curves were similar during the first 80-85% of the movement, the JS and HHP possessed unique power-time characteristics during the final 15-20% of the movement compared to the HPC. The JS and HHP may be effectively implemented to train peak power characteristics, especially using loads ranging from 30-45% of an individual’s 1RM HPC. The HPC may be best implemented using loads ranging from 65-80% of an individual’s 1RM HPC. PMID:28912659

  15. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Device Status Data

    DTIC Science & Technology

    2015-09-01

    Figures iv List of Tables iv 1. Introduction 1 2. Device Status Data 1 2.1 SNMP 1 2.2 NMS 1 2.3 ICMP Ping 2 3. Data Collection 2 4. Hydra ...Configuration 3 4.1 Status Codes 4 4.2 Request Time 5 4.3 Hydra BLOb Metadata 6 5. Data Processing 6 5.1 Hydra Data Processing Framework 6 5.1.1...Basic Components 6 5.1.2 Map Component 7 5.1.3 Postmap Methods 8 5.1.4 Data Flow 9 5.1.5 Distributed Processing Considerations 9 5.2 Specific Hydra

  16. The HARNESS Workbench: Unified and Adaptive Access to Diverse HPC Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunderam, Vaidy S.

    2012-03-20

    The primary goal of the Harness WorkBench (HWB) project is to investigate innovative software environments that will help enhance the overall productivity of applications science on diverse HPC platforms. Two complementary frameworks were designed: one, a virtualized command toolkit for application building, deployment, and execution, that provides a common view across diverse HPC systems, in particular the DOE leadership computing platforms (Cray, IBM, SGI, and clusters); and two, a unified runtime environment that consolidates access to runtime services via an adaptive framework for execution-time and post processing activities. A prototype of the first was developed based on the concept ofmore » a 'system-call virtual machine' (SCVM), to enhance portability of the HPC application deployment process across heterogeneous high-end machines. The SCVM approach to portable builds is based on the insertion of toolkit-interpretable directives into original application build scripts. Modifications resulting from these directives preserve the semantics of the original build instruction flow. The execution of the build script is controlled by our toolkit that intercepts build script commands in a manner transparent to the end-user. We have applied this approach to a scientific production code (Gamess-US) on the Cray-XT5 machine. The second facet, termed Unibus, aims to facilitate provisioning and aggregation of multifaceted resources from resource providers and end-users perspectives. To achieve that, Unibus proposes a Capability Model and mediators (resource drivers) to virtualize access to diverse resources, and soft and successive conditioning to enable automatic and user-transparent resource provisioning. A proof of concept implementation has demonstrated the viability of this approach on high end machines, grid systems and computing clouds.« less

  17. WImpiBLAST: web interface for mpiBLAST to help biologists perform large-scale annotation using high performance computing.

    PubMed

    Sharma, Parichit; Mantri, Shrikant S

    2014-01-01

    The function of a newly sequenced gene can be discovered by determining its sequence homology with known proteins. BLAST is the most extensively used sequence analysis program for sequence similarity search in large databases of sequences. With the advent of next generation sequencing technologies it has now become possible to study genes and their expression at a genome-wide scale through RNA-seq and metagenome sequencing experiments. Functional annotation of all the genes is done by sequence similarity search against multiple protein databases. This annotation task is computationally very intensive and can take days to obtain complete results. The program mpiBLAST, an open-source parallelization of BLAST that achieves superlinear speedup, can be used to accelerate large-scale annotation by using supercomputers and high performance computing (HPC) clusters. Although many parallel bioinformatics applications using the Message Passing Interface (MPI) are available in the public domain, researchers are reluctant to use them due to lack of expertise in the Linux command line and relevant programming experience. With these limitations, it becomes difficult for biologists to use mpiBLAST for accelerating annotation. No web interface is available in the open-source domain for mpiBLAST. We have developed WImpiBLAST, a user-friendly open-source web interface for parallel BLAST searches. It is implemented in Struts 1.3 using a Java backbone and runs atop the open-source Apache Tomcat Server. WImpiBLAST supports script creation and job submission features and also provides a robust job management interface for system administrators. It combines script creation and modification features with job monitoring and management through the Torque resource manager on a Linux-based HPC cluster. Use case information highlights the acceleration of annotation analysis achieved by using WImpiBLAST. Here, we describe the WImpiBLAST web interface features and architecture, explain design decisions, describe workflows and provide a detailed analysis.

  18. WImpiBLAST: Web Interface for mpiBLAST to Help Biologists Perform Large-Scale Annotation Using High Performance Computing

    PubMed Central

    Sharma, Parichit; Mantri, Shrikant S.

    2014-01-01

    The function of a newly sequenced gene can be discovered by determining its sequence homology with known proteins. BLAST is the most extensively used sequence analysis program for sequence similarity search in large databases of sequences. With the advent of next generation sequencing technologies it has now become possible to study genes and their expression at a genome-wide scale through RNA-seq and metagenome sequencing experiments. Functional annotation of all the genes is done by sequence similarity search against multiple protein databases. This annotation task is computationally very intensive and can take days to obtain complete results. The program mpiBLAST, an open-source parallelization of BLAST that achieves superlinear speedup, can be used to accelerate large-scale annotation by using supercomputers and high performance computing (HPC) clusters. Although many parallel bioinformatics applications using the Message Passing Interface (MPI) are available in the public domain, researchers are reluctant to use them due to lack of expertise in the Linux command line and relevant programming experience. With these limitations, it becomes difficult for biologists to use mpiBLAST for accelerating annotation. No web interface is available in the open-source domain for mpiBLAST. We have developed WImpiBLAST, a user-friendly open-source web interface for parallel BLAST searches. It is implemented in Struts 1.3 using a Java backbone and runs atop the open-source Apache Tomcat Server. WImpiBLAST supports script creation and job submission features and also provides a robust job management interface for system administrators. It combines script creation and modification features with job monitoring and management through the Torque resource manager on a Linux-based HPC cluster. Use case information highlights the acceleration of annotation analysis achieved by using WImpiBLAST. Here, we describe the WImpiBLAST web interface features and architecture, explain design decisions, describe workflows and provide a detailed analysis. PMID:24979410

  19. Hot Chips and Hot Interconnects for High End Computing Systems

    NASA Technical Reports Server (NTRS)

    Saini, Subhash

    2005-01-01

    I will discuss several processors: 1. The Cray proprietary processor used in the Cray X1; 2. The IBM Power 3 and Power 4 used in an IBM SP 3 and IBM SP 4 systems; 3. The Intel Itanium and Xeon, used in the SGI Altix systems and clusters respectively; 4. IBM System-on-a-Chip used in IBM BlueGene/L; 5. HP Alpha EV68 processor used in DOE ASCI Q cluster; 6. SPARC64 V processor, which is used in the Fujitsu PRIMEPOWER HPC2500; 7. An NEC proprietary processor, which is used in NEC SX-6/7; 8. Power 4+ processor, which is used in Hitachi SR11000; 9. NEC proprietary processor, which is used in Earth Simulator. The IBM POWER5 and Red Storm Computing Systems will also be discussed. The architectures of these processors will first be presented, followed by interconnection networks and a description of high-end computer systems based on these processors and networks. The performance of various hardware/programming model combinations will then be compared, based on latest NAS Parallel Benchmark results (MPI, OpenMP/HPF and hybrid (MPI + OpenMP). The tutorial will conclude with a discussion of general trends in the field of high performance computing, (quantum computing, DNA computing, cellular engineering, and neural networks).

  20. Dynamic provisioning of local and remote compute resources with OpenStack

    NASA Astrophysics Data System (ADS)

    Giffels, M.; Hauth, T.; Polgart, F.; Quast, G.

    2015-12-01

    Modern high-energy physics experiments rely on the extensive usage of computing resources, both for the reconstruction of measured events as well as for Monte-Carlo simulation. The Institut fur Experimentelle Kernphysik (EKP) at KIT is participating in both the CMS and Belle experiments with computing and storage resources. In the upcoming years, these requirements are expected to increase due to growing amount of recorded data and the rise in complexity of the simulated events. It is therefore essential to increase the available computing capabilities by tapping into all resource pools. At the EKP institute, powerful desktop machines are available to users. Due to the multi-core nature of modern CPUs, vast amounts of CPU time are not utilized by common desktop usage patterns. Other important providers of compute capabilities are classical HPC data centers at universities or national research centers. Due to the shared nature of these installations, the standardized software stack required by HEP applications cannot be installed. A viable way to overcome this constraint and offer a standardized software environment in a transparent manner is the usage of virtualization technologies. The OpenStack project has become a widely adopted solution to virtualize hardware and offer additional services like storage and virtual machine management. This contribution will report on the incorporation of the institute's desktop machines into a private OpenStack Cloud. The additional compute resources provisioned via the virtual machines have been used for Monte-Carlo simulation and data analysis. Furthermore, a concept to integrate shared, remote HPC centers into regular HEP job workflows will be presented. In this approach, local and remote resources are merged to form a uniform, virtual compute cluster with a single point-of-entry for the user. Evaluations of the performance and stability of this setup and operational experiences will be discussed.

  1. The Livermore Brain: Massive Deep Learning Networks Enabled by High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Barry Y.

    The proliferation of inexpensive sensor technologies like the ubiquitous digital image sensors has resulted in the collection and sharing of vast amounts of unsorted and unexploited raw data. Companies and governments who are able to collect and make sense of large datasets to help them make better decisions more rapidly will have a competitive advantage in the information era. Machine Learning technologies play a critical role for automating the data understanding process; however, to be maximally effective, useful intermediate representations of the data are required. These representations or “features” are transformations of the raw data into a form where patternsmore » are more easily recognized. Recent breakthroughs in Deep Learning have made it possible to learn these features from large amounts of labeled data. The focus of this project is to develop and extend Deep Learning algorithms for learning features from vast amounts of unlabeled data and to develop the HPC neural network training platform to support the training of massive network models. This LDRD project succeeded in developing new unsupervised feature learning algorithms for images and video and created a scalable neural network training toolkit for HPC. Additionally, this LDRD helped create the world’s largest freely-available image and video dataset supporting open multimedia research and used this dataset for training our deep neural networks. This research helped LLNL capture several work-for-others (WFO) projects, attract new talent, and establish collaborations with leading academic and commercial partners. Finally, this project demonstrated the successful training of the largest unsupervised image neural network using HPC resources and helped establish LLNL leadership at the intersection of Machine Learning and HPC research.« less

  2. Mini-Ckpts: Surviving OS Failures in Persistent Memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiala, David; Mueller, Frank; Ferreira, Kurt Brian

    Concern is growing in the high-performance computing (HPC) community on the reliability of future extreme-scale systems. Current efforts have focused on application fault-tolerance rather than the operating system (OS), despite the fact that recent studies have suggested that failures in OS memory are more likely. The OS is critical to a system's correct and efficient operation of the node and processes it governs -- and in HPC also for any other nodes a parallelized application runs on and communicates with: Any single node failure generally forces all processes of this application to terminate due to tight communication in HPC. Therefore,more » the OS itself must be capable of tolerating failures. In this work, we introduce mini-ckpts, a framework which enables application survival despite the occurrence of a fatal OS failure or crash. Mini-ckpts achieves this tolerance by ensuring that the critical data describing a process is preserved in persistent memory prior to the failure. Following the failure, the OS is rejuvenated via a warm reboot and the application continues execution effectively making the failure and restart transparent. The mini-ckpts rejuvenation and recovery process is measured to take between three to six seconds and has a failure-free overhead of between 3-5% for a number of key HPC workloads. In contrast to current fault-tolerance methods, this work ensures that the operating and runtime system can continue in the presence of faults. This is a much finer-grained and dynamic method of fault-tolerance than the current, coarse-grained, application-centric methods. Handling faults at this level has the potential to greatly reduce overheads and enables mitigation of additional fault scenarios.« less

  3. GW Calculations of Materials on the Intel Xeon-Phi Architecture

    NASA Astrophysics Data System (ADS)

    Deslippe, Jack; da Jornada, Felipe H.; Vigil-Fowler, Derek; Biller, Ariel; Chelikowsky, James R.; Louie, Steven G.

    Intel Xeon-Phi processors are expected to power a large number of High-Performance Computing (HPC) systems around the United States and the world in the near future. We evaluate the ability of GW and pre-requisite Density Functional Theory (DFT) calculations for materials on utilizing the Xeon-Phi architecture. We describe the optimization process and performance improvements achieved. We find that the GW method, like other higher level Many-Body methods beyond standard local/semilocal approximations to Kohn-Sham DFT, is particularly well suited for many-core architectures due to the ability to exploit a large amount of parallelism over plane-waves, band-pairs and frequencies. Support provided by the SCIDAC program, Department of Energy, Office of Science, Advanced Scientic Computing Research and Basic Energy Sciences. Grant Numbers DE-SC0008877 (Austin) and DE-AC02-05CH11231 (LBNL).

  4. Synergistic effect of Nitrogen-doped hierarchical porous carbon/graphene with enhanced catalytic performance for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Kong, Dewang; Yuan, Wenjing; Li, Cun; Song, Jiming; Xie, Anjian; Shen, Yuhua

    2017-01-01

    Developing efficient and economical catalysts for the oxygen reduction reaction (ORR) is important to promote the commercialization of fuel cells. Here, we report a simple and environmentally friendly method to prepare nitrogen (N) -doped hierarchical porous carbon (HPC)/reduced graphene oxide (RGO) composites by reusing waste biomass (pomelo peel) coupled with graphene oxide (GO). This method is green, low-cost and without using any acid or alkali activator. The typical sample (N-HPC/RGO-1) contains 5.96 at.% nitrogen and larger BET surface area (1194 m2/g). Electrochemical measurements show that N-HPC/RGO-1 exhibits not only a relatively positive onset potential and high current density, but also considerable methanol tolerance and long-term durability in alkaline media as well as in acidic media. The electron transfer number is close to 4, which means that it is mostly via a four-electron pathway toward ORR. The excellent catalytic performance of N-HPC/RGO-1 is due to the synergistic effect of the inherent interwoven network structure of HPC, the good electrical conductivity of RGO, and the heteroatom doping for the composite. More importantly, this work demonstrates a good example for turning discarded rubbish into valuable functional products and addresses the disposal issue of waste biomass simultaneously for environment clean.

  5. Anterior hippocampal dysconnectivity in posttraumatic stress disorder: a dimensional and multimodal approach.

    PubMed

    Abdallah, C G; Wrocklage, K M; Averill, C L; Akiki, T; Schweinsburg, B; Roy, A; Martini, B; Southwick, S M; Krystal, J H; Scott, J C

    2017-02-28

    The anterior hippocampus (aHPC) has a central role in the regulation of anxiety-related behavior, stress response, emotional memory and fear. However, little is known about the presence and extent of aHPC abnormalities in posttraumatic stress disorder (PTSD). In this study, we used a multimodal approach, along with graph-based measures of global brain connectivity (GBC) termed functional GBC with global signal regression (f-GBCr) and diffusion GBC (d-GBC), in combat-exposed US Veterans with and without PTSD. Seed-based aHPC anatomical connectivity analyses were also performed. A whole-brain voxel-wise data-driven investigation revealed a significant association between elevated PTSD symptoms and reduced medial temporal f-GBCr, particularly in the aHPC. Similarly, aHPC d-GBC negatively correlated with PTSD severity. Both functional and anatomical aHPC dysconnectivity measures remained significant after controlling for hippocampal volume, age, gender, intelligence, education, combat severity, depression, anxiety, medication status, traumatic brain injury and alcohol/substance comorbidities. Depression-like PTSD dimensions were associated with reduced connectivity in the ventromedial and dorsolateral prefrontal cortex. In contrast, hyperarousal symptoms were positively correlated with ventromedial and dorsolateral prefrontal connectivity. We believe the findings provide first evidence of functional and anatomical dysconnectivity in the aHPC of veterans with high PTSD symptomatology. The data support the putative utility of aHPC connectivity as a measure of overall PTSD severity. Moreover, prefrontal global connectivity may be of clinical value as a brain biomarker to potentially distinguish between PTSD subgroups.

  6. Scalable and Power Efficient Data Analytics for Hybrid Exascale Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Alok; Samatova, Nagiza; Wu, Kesheng

    This project developed a generic and optimized set of core data analytics functions. These functions organically consolidate a broad constellation of high performance analytical pipelines. As the architectures of emerging HPC systems become inherently heterogeneous, there is a need to design algorithms for data analysis kernels accelerated on hybrid multi-node, multi-core HPC architectures comprised of a mix of CPUs, GPUs, and SSDs. Furthermore, the power-aware trend drives the advances in our performance-energy tradeoff analysis framework which enables our data analysis kernels algorithms and software to be parameterized so that users can choose the right power-performance optimizations.

  7. High-Throughput and Low-Latency Network Communication with NetIO

    NASA Astrophysics Data System (ADS)

    Schumacher, Jörn; Plessl, Christian; Vandelli, Wainer

    2017-10-01

    HPC network technologies like Infiniband, TrueScale or OmniPath provide low- latency and high-throughput communication between hosts, which makes them attractive options for data-acquisition systems in large-scale high-energy physics experiments. Like HPC networks, DAQ networks are local and include a well specified number of systems. Unfortunately traditional network communication APIs for HPC clusters like MPI or PGAS exclusively target the HPC community and are not suited well for DAQ applications. It is possible to build distributed DAQ applications using low-level system APIs like Infiniband Verbs, but it requires a non-negligible effort and expert knowledge. At the same time, message services like ZeroMQ have gained popularity in the HEP community. They make it possible to build distributed applications with a high-level approach and provide good performance. Unfortunately, their usage usually limits developers to TCP/IP- based networks. While it is possible to operate a TCP/IP stack on top of Infiniband and OmniPath, this approach may not be very efficient compared to a direct use of native APIs. NetIO is a simple, novel asynchronous message service that can operate on Ethernet, Infiniband and similar network fabrics. In this paper the design and implementation of NetIO is presented and described, and its use is evaluated in comparison to other approaches. NetIO supports different high-level programming models and typical workloads of HEP applications. The ATLAS FELIX project [1] successfully uses NetIO as its central communication platform. The architecture of NetIO is described in this paper, including the user-level API and the internal data-flow design. The paper includes a performance evaluation of NetIO including throughput and latency measurements. The performance is compared against the state-of-the- art ZeroMQ message service. Performance measurements are performed in a lab environment with Ethernet and FDR Infiniband networks.

  8. Efficient Machine Learning Approach for Optimizing Scientific Computing Applications on Emerging HPC Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugam, Kamesh

    Efficient parallel implementations of scientific applications on multi-core CPUs with accelerators such as GPUs and Xeon Phis is challenging. This requires - exploiting the data parallel architecture of the accelerator along with the vector pipelines of modern x86 CPU architectures, load balancing, and efficient memory transfer between different devices. It is relatively easy to meet these requirements for highly structured scientific applications. In contrast, a number of scientific and engineering applications are unstructured. Getting performance on accelerators for these applications is extremely challenging because many of these applications employ irregular algorithms which exhibit data-dependent control-ow and irregular memory accesses. Furthermore,more » these applications are often iterative with dependency between steps, and thus making it hard to parallelize across steps. As a result, parallelism in these applications is often limited to a single step. Numerical simulation of charged particles beam dynamics is one such application where the distribution of work and memory access pattern at each time step is irregular. Applications with these properties tend to present significant branch and memory divergence, load imbalance between different processor cores, and poor compute and memory utilization. Prior research on parallelizing such irregular applications have been focused around optimizing the irregular, data-dependent memory accesses and control-ow during a single step of the application independent of the other steps, with the assumption that these patterns are completely unpredictable. We observed that the structure of computation leading to control-ow divergence and irregular memory accesses in one step is similar to that in the next step. It is possible to predict this structure in the current step by observing the computation structure of previous steps. In this dissertation, we present novel machine learning based optimization techniques to address the parallel implementation challenges of such irregular applications on different HPC architectures. In particular, we use supervised learning to predict the computation structure and use it to address the control-ow and memory access irregularities in the parallel implementation of such applications on GPUs, Xeon Phis, and heterogeneous architectures composed of multi-core CPUs with GPUs or Xeon Phis. We use numerical simulation of charged particles beam dynamics simulation as a motivating example throughout the dissertation to present our new approach, though they should be equally applicable to a wide range of irregular applications. The machine learning approach presented here use predictive analytics and forecasting techniques to adaptively model and track the irregular memory access pattern at each time step of the simulation to anticipate the future memory access pattern. Access pattern forecasts can then be used to formulate optimization decisions during application execution which improves the performance of the application at a future time step based on the observations from earlier time steps. In heterogeneous architectures, forecasts can also be used to improve the memory performance and resource utilization of all the processing units to deliver a good aggregate performance. We used these optimization techniques and anticipation strategy to design a cache-aware, memory efficient parallel algorithm to address the irregularities in the parallel implementation of charged particles beam dynamics simulation on different HPC architectures. Experimental result using a diverse mix of HPC architectures shows that our approach in using anticipation strategy is effective in maximizing data reuse, ensuring workload balance, minimizing branch and memory divergence, and in improving resource utilization.« less

  9. Differential Acetylcholine Release in the Prefrontal Cortex and Hippocampus During Pavlovian Trace and Delay Conditioning

    PubMed Central

    Flesher, M. Melissa; Butt, Allen E.; Kinney-Hurd, Brandee L.

    2011-01-01

    Pavlovian trace conditioning critically depends on the medial prefrontal cortex (mPFC) and hippocampus (HPC), whereas delay conditioning does not depend on these brain structures. Given that the cholinergic basal forebrain system modulates activity in both the mPFC and HPC, it was reasoned that the level of acetylcholine (ACh) release in these regions would show distinct profiles during testing in trace and delay conditioning paradigms. To test this assumption, microdialysis probes were implanted unilaterally into the mPFC and HPC of rats that were pre-trained in appetitive trace and delay conditioning paradigms using different conditional stimuli in the two tasks. On the day of microdialysis testing, dialysate samples were collected during a quiet baseline interval before trials were initiated, and again during performance in separate blocks of trace and delay conditioning trials in each animal. ACh levels were quantified using high performance liquid chromatography and electrochemical detection techniques. Consistent with our hypothesis, results showed that ACh release in the mPFC was greater during trace conditioning than during delay conditioning. The level of ACh released during trace conditioning in the HPC was also greater than the levels observed during delay conditioning. While ACh efflux in both the mPFC and HPC selectively increased during trace conditioning, ACh levels in the mPFC during trace conditioning testing showed the greatest increases observed. These results demonstrate a dissociation in cholinergic activation of the mPFC and HPC during performance in trace but not delay appetitive conditioning, where this cholinergic activity may contribute to attentional mechanisms, adaptive response timing, or memory consolidation necessary for successful trace conditioning. PMID:21514394

  10. Directional hippocampal-prefrontal interactions during working memory.

    PubMed

    Liu, Tiaotiao; Bai, Wenwen; Xia, Mi; Tian, Xin

    2018-02-15

    Working memory refers to a system that is essential for performing complex cognitive tasks such as reasoning, comprehension and learning. Evidence shows that hippocampus (HPC) and prefrontal cortex (PFC) play important roles in working memory. The HPC-PFC interaction via theta-band oscillatory synchronization is critical for successful execution of working memory. However, whether one brain region is leading or lagging relative to another is still unclear. Therefore, in the present study, we simultaneously recorded local field potentials (LFPs) from rat ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC) and while the rats performed a Y-maze working memory task. We then applied instantaneous amplitudes cross-correlation method to calculate the time lag between PFC and vHPC to explore the functional dynamics of the HPC-PFC interaction. Our results showed a strong lead from vHPC to mPFC preceded an animal's correct choice during the working memory task. These findings suggest the vHPC-leading interaction contributes to the successful execution of working memory. Copyright © 2017. Published by Elsevier B.V.

  11. High-performance asymmetric supercapacitors based on multilayer MnO2 /graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability.

    PubMed

    Zhao, Yufeng; Ran, Wei; He, Jing; Huang, Yizhong; Liu, Zhifeng; Liu, Wei; Tang, Yongfu; Zhang, Long; Gao, Dawei; Gao, Faming

    2015-03-18

    In this work, MnO(2)/GO (graphene oxide) composites with novel multilayer nanoflake structure, and a carbon material derived from Artemia cyst shell with genetic 3D hierarchical porous structure (HPC), are prepared. An asymmetric supercapacitor has been fabricated using MnO(2)/GO as positive electrode and HPC as negative electrode material. Because of their unique structures, both MnO(2)/GO composites and HPC exhibit excellent electrochemical performances. The optimized asymmetric supercapacitor could be cycled reversibly in the high voltage range of 0-2 V in aqueous electrolyte, which exhibits maximum energy density of 46.7 Wh kg(-1) at a power density of 100 W kg(-1) and remains 18.9 Wh kg(-1) at 2000 W kg(-1). Additionally, such device also shows superior long cycle life along with ∼100% capacitance retention after 1000 cycles and ∼93% after 4000 cycles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. EMHP: an accurate automated hole masking algorithm for single-particle cryo-EM image processing.

    PubMed

    Berndsen, Zachary; Bowman, Charles; Jang, Haerin; Ward, Andrew B

    2017-12-01

    The Electron Microscopy Hole Punch (EMHP) is a streamlined suite of tools for quick assessment, sorting and hole masking of electron micrographs. With recent advances in single-particle electron cryo-microscopy (cryo-EM) data processing allowing for the rapid determination of protein structures using a smaller computational footprint, we saw the need for a fast and simple tool for data pre-processing that could run independent of existing high-performance computing (HPC) infrastructures. EMHP provides a data preprocessing platform in a small package that requires minimal python dependencies to function. https://www.bitbucket.org/chazbot/emhp Apache 2.0 License. bowman@scripps.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  13. Implementation program on high performance concrete: guidelines for instrumentation on bridges

    DOT National Transportation Integrated Search

    1996-08-01

    This report provides an outline for the instrumentation of bridges being constructed under the Federal Highway Administration's (FHWA's) Strategic Highway Research Program (SHRP) implementation effort in High Performance Concrete (HPC). The report de...

  14. High Performance Concrete (HPC) bridge project for SR 43.

    DOT National Transportation Integrated Search

    2012-10-01

    The objective of this research was to develop and test high performance concrete mixtures, made of locally available materials, having : durability characteristics that far exceed those of conventional concrete mixtures. Based on the results from the...

  15. A Big Data Approach to Analyzing Market Volatility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kesheng; Bethel, E. Wes; Gu, Ming

    2013-06-05

    Understanding the microstructure of the financial market requires the processing of a vast amount of data related to individual trades, and sometimes even multiple levels of quotes. Analyzing such a large volume of data requires tremendous computing power that is not easily available to financial academics and regulators. Fortunately, public funded High Performance Computing (HPC) power is widely available at the National Laboratories in the US. In this paper we demonstrate that the HPC resource and the techniques for data-intensive sciences can be used to greatly accelerate the computation of an early warning indicator called Volume-synchronized Probability of Informed tradingmore » (VPIN). The test data used in this study contains five and a half year's worth of trading data for about 100 most liquid futures contracts, includes about 3 billion trades, and takes 140GB as text files. By using (1) a more efficient file format for storing the trading records, (2) more effective data structures and algorithms, and (3) parallelizing the computations, we are able to explore 16,000 different ways of computing VPIN in less than 20 hours on a 32-core IBM DataPlex machine. Our test demonstrates that a modest computer is sufficient to monitor a vast number of trading activities in real-time – an ability that could be valuable to regulators. Our test results also confirm that VPIN is a strong predictor of liquidity-induced volatility. With appropriate parameter choices, the false positive rates are about 7% averaged over all the futures contracts in the test data set. More specifically, when VPIN values rise above a threshold (CDF > 0.99), the volatility in the subsequent time windows is higher than the average in 93% of the cases.« less

  16. Radio Astronomy at the Centre for High Performance Computing in South Africa

    NASA Astrophysics Data System (ADS)

    Catherine Cress; UWC Simulation Team

    2014-04-01

    I will present results on galaxy evolution and cosmology which we obtained using the supercomputing facilities at the CHPC. These include cosmological-scale N-body simulations modelling neutral hydrogen as well as the study of the clustering of radio galaxies to probe the relationship between dark and luminous matter in the universe. I will also discuss the various roles that the CHPC is playing in Astronomy in SA, including the provision of HPC for a variety of Astronomical applications, the provision of storage for radio data, our educational programs and our participation in planning for the SKA.

  17. National Energy Research Scientific Computing Center

    Science.gov Websites

    Overview NERSC Mission Contact us Staff Org Chart NERSC History NERSC Stakeholders Usage and User HPC Requirements Reviews NERSC HPC Achievement Awards User Submitted Research Citations NERSC User data archive NERSC Resources Table For Users Live Status User Announcements My NERSC Getting Started

  18. High-Resiliency and Auto-Scaling of Large-Scale Cloud Computing for OCO-2 L2 Full Physics Processing

    NASA Astrophysics Data System (ADS)

    Hua, H.; Manipon, G.; Starch, M.; Dang, L. B.; Southam, P.; Wilson, B. D.; Avis, C.; Chang, A.; Cheng, C.; Smyth, M.; McDuffie, J. L.; Ramirez, P.

    2015-12-01

    Next generation science data systems are needed to address the incoming flood of data from new missions such as SWOT and NISAR where data volumes and data throughput rates are order of magnitude larger than present day missions. Additionally, traditional means of procuring hardware on-premise are already limited due to facilities capacity constraints for these new missions. Existing missions, such as OCO-2, may also require high turn-around time for processing different science scenarios where on-premise and even traditional HPC computing environments may not meet the high processing needs. We present our experiences on deploying a hybrid-cloud computing science data system (HySDS) for the OCO-2 Science Computing Facility to support large-scale processing of their Level-2 full physics data products. We will explore optimization approaches to getting best performance out of hybrid-cloud computing as well as common issues that will arise when dealing with large-scale computing. Novel approaches were utilized to do processing on Amazon's spot market, which can potentially offer ~10X costs savings but with an unpredictable computing environment based on market forces. We will present how we enabled high-tolerance computing in order to achieve large-scale computing as well as operational cost savings.

  19. High performance computing environment for multidimensional image analysis

    PubMed Central

    Rao, A Ravishankar; Cecchi, Guillermo A; Magnasco, Marcelo

    2007-01-01

    Background The processing of images acquired through microscopy is a challenging task due to the large size of datasets (several gigabytes) and the fast turnaround time required. If the throughput of the image processing stage is significantly increased, it can have a major impact in microscopy applications. Results We present a high performance computing (HPC) solution to this problem. This involves decomposing the spatial 3D image into segments that are assigned to unique processors, and matched to the 3D torus architecture of the IBM Blue Gene/L machine. Communication between segments is restricted to the nearest neighbors. When running on a 2 Ghz Intel CPU, the task of 3D median filtering on a typical 256 megabyte dataset takes two and a half hours, whereas by using 1024 nodes of Blue Gene, this task can be performed in 18.8 seconds, a 478× speedup. Conclusion Our parallel solution dramatically improves the performance of image processing, feature extraction and 3D reconstruction tasks. This increased throughput permits biologists to conduct unprecedented large scale experiments with massive datasets. PMID:17634099

  20. High performance computing environment for multidimensional image analysis.

    PubMed

    Rao, A Ravishankar; Cecchi, Guillermo A; Magnasco, Marcelo

    2007-07-10

    The processing of images acquired through microscopy is a challenging task due to the large size of datasets (several gigabytes) and the fast turnaround time required. If the throughput of the image processing stage is significantly increased, it can have a major impact in microscopy applications. We present a high performance computing (HPC) solution to this problem. This involves decomposing the spatial 3D image into segments that are assigned to unique processors, and matched to the 3D torus architecture of the IBM Blue Gene/L machine. Communication between segments is restricted to the nearest neighbors. When running on a 2 Ghz Intel CPU, the task of 3D median filtering on a typical 256 megabyte dataset takes two and a half hours, whereas by using 1024 nodes of Blue Gene, this task can be performed in 18.8 seconds, a 478x speedup. Our parallel solution dramatically improves the performance of image processing, feature extraction and 3D reconstruction tasks. This increased throughput permits biologists to conduct unprecedented large scale experiments with massive datasets.

  1. Seismic waveform modeling over cloud

    NASA Astrophysics Data System (ADS)

    Luo, Cong; Friederich, Wolfgang

    2016-04-01

    With the fast growing computational technologies, numerical simulation of seismic wave propagation achieved huge successes. Obtaining the synthetic waveforms through numerical simulation receives an increasing amount of attention from seismologists. However, computational seismology is a data-intensive research field, and the numerical packages usually come with a steep learning curve. Users are expected to master considerable amount of computer knowledge and data processing skills. Training users to use the numerical packages, correctly access and utilize the computational resources is a troubled task. In addition to that, accessing to HPC is also a common difficulty for many users. To solve these problems, a cloud based solution dedicated on shallow seismic waveform modeling has been developed with the state-of-the-art web technologies. It is a web platform integrating both software and hardware with multilayer architecture: a well designed SQL database serves as the data layer, HPC and dedicated pipeline for it is the business layer. Through this platform, users will no longer need to compile and manipulate various packages on the local machine within local network to perform a simulation. By providing users professional access to the computational code through its interfaces and delivering our computational resources to the users over cloud, users can customize the simulation at expert-level, submit and run the job through it.

  2. FOSS GIS on the GFZ HPC cluster: Towards a service-oriented Scientific Geocomputation Environment

    NASA Astrophysics Data System (ADS)

    Loewe, P.; Klump, J.; Thaler, J.

    2012-12-01

    High performance compute clusters can be used as geocomputation workbenches. Their wealth of resources enables us to take on geocomputation tasks which exceed the limitations of smaller systems. These general capabilities can be harnessed via tools such as Geographic Information System (GIS), provided they are able to utilize the available cluster configuration/architecture and provide a sufficient degree of user friendliness to allow for wide application. While server-level computing is clearly not sufficient for the growing numbers of data- or computation-intense tasks undertaken, these tasks do not get even close to the requirements needed for access to "top shelf" national cluster facilities. So until recently such kind of geocomputation research was effectively barred due to lack access to of adequate resources. In this paper we report on the experiences gained by providing GRASS GIS as a software service on a HPC compute cluster at the German Research Centre for Geosciences using Platform Computing's Load Sharing Facility (LSF). GRASS GIS is the oldest and largest Free Open Source (FOSS) GIS project. During ramp up in 2011, multiple versions of GRASS GIS (v 6.4.2, 6.5 and 7.0) were installed on the HPC compute cluster, which currently consists of 234 nodes with 480 CPUs providing 3084 cores. Nineteen different processing queues with varying hardware capabilities and priorities are provided, allowing for fine-grained scheduling and load balancing. After successful initial testing, mechanisms were developed to deploy scripted geocomputation tasks onto dedicated processing queues. The mechanisms are based on earlier work by NETELER et al. (2008) and allow to use all 3084 cores for GRASS based geocomputation work. However, in practice applications are limited to fewer resources as assigned to their respective queue. Applications of the new GIS functionality comprise so far of hydrological analysis, remote sensing and the generation of maps of simulated tsunamis in the Mediterranean Sea for the Tsunami Atlas of the FP-7 TRIDEC Project (www.tridec-online.eu). This included the processing of complex problems, requiring significant amounts of processing time up to full 20 CPU days. This GRASS GIS-based service is provided as a research utility in the sense of "Software as a Service" (SaaS) and is a first step towards a GFZ corporate cloud service.

  3. High performance concrete in a bridge in Richlands, Virginia

    DOT National Transportation Integrated Search

    1999-09-01

    The Virginia Department of Transportation built a high-performance concrete (HPC) bridge with high-strength and low-permeability concrete in Richlands. The beams had a minimum compressive strength of 69 MPa (10,000 psi) at 28 days and large, 15 mm (0...

  4. Unmet needs for analyzing biological big data: A survey of 704 NSF principal investigators

    PubMed Central

    2017-01-01

    In a 2016 survey of 704 National Science Foundation (NSF) Biological Sciences Directorate principal investigators (BIO PIs), nearly 90% indicated they are currently or will soon be analyzing large data sets. BIO PIs considered a range of computational needs important to their work, including high performance computing (HPC), bioinformatics support, multistep workflows, updated analysis software, and the ability to store, share, and publish data. Previous studies in the United States and Canada emphasized infrastructure needs. However, BIO PIs said the most pressing unmet needs are training in data integration, data management, and scaling analyses for HPC—acknowledging that data science skills will be required to build a deeper understanding of life. This portends a growing data knowledge gap in biology and challenges institutions and funding agencies to redouble their support for computational training in biology. PMID:29049281

  5. Mining Software Usage with the Automatic Library Tracking Database (ALTD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadri, Bilel; Fahey, Mark R

    2013-01-01

    Tracking software usage is important for HPC centers, computer vendors, code developers and funding agencies to provide more efficient and targeted software support, and to forecast needs and guide HPC software effort towards the Exascale era. However, accurately tracking software usage on HPC systems has been a challenging task. In this paper, we present a tool called Automatic Library Tracking Database (ALTD) that has been developed and put in production on several Cray systems. The ALTD infrastructure prototype automatically and transparently stores information about libraries linked into an application at compilation time and also the executables launched in a batchmore » job. We will illustrate the usage of libraries, compilers and third party software applications on a system managed by the National Institute for Computational Sciences.« less

  6. NASA's Climate in a Box: Desktop Supercomputing for Open Scientific Model Development

    NASA Astrophysics Data System (ADS)

    Wojcik, G. S.; Seablom, M. S.; Lee, T. J.; McConaughy, G. R.; Syed, R.; Oloso, A.; Kemp, E. M.; Greenseid, J.; Smith, R.

    2009-12-01

    NASA's High Performance Computing Portfolio in cooperation with its Modeling, Analysis, and Prediction program intends to make its climate and earth science models more accessible to a larger community. A key goal of this effort is to open the model development and validation process to the scientific community at large such that a natural selection process is enabled and results in a more efficient scientific process. One obstacle to others using NASA models is the complexity of the models and the difficulty in learning how to use them. This situation applies not only to scientists who regularly use these models but also non-typical users who may want to use the models such as scientists from different domains, policy makers, and teachers. Another obstacle to the use of these models is that access to high performance computing (HPC) accounts, from which the models are implemented, can be restrictive with long wait times in job queues and delays caused by an arduous process of obtaining an account, especially for foreign nationals. This project explores the utility of using desktop supercomputers in providing a complete ready-to-use toolkit of climate research products to investigators and on demand access to an HPC system. One objective of this work is to pre-package NASA and NOAA models so that new users will not have to spend significant time porting the models. In addition, the prepackaged toolkit will include tools, such as workflow, visualization, social networking web sites, and analysis tools, to assist users in running the models and analyzing the data. The system architecture to be developed will allow for automatic code updates for each user and an effective means with which to deal with data that are generated. We plan to investigate several desktop systems, but our work to date has focused on a Cray CX1. Currently, we are investigating the potential capabilities of several non-traditional development environments. While most NASA and NOAA models are designed for Linux operating systems (OS), the arrival of the WindowsHPC 2008 OS provides the opportunity to evaluate the use of a new platform on which to develop and port climate and earth science models. In particular, we are evaluating Microsoft's Visual Studio Integrated Developer Environment to determine its appropriateness for the climate modeling community. In the initial phases of this project, we have ported GEOS-5, WRF, GISS ModelE, and GFS to Linux on a CX1 and are in the process of porting WRF and ModelE to WindowsHPC 2008. Initial tests on the CX1 Linux OS indicate favorable comparisons in terms of performance and consistency of scientific results when compared with experiments executed on NASA high end systems. As in the past, NASA's large clusters will continue to be an important part of our objectives. We envision a seamless environment in which an investigator performs model development and testing on a desktop system and can seamlessly transfer execution to supercomputer clusters for production.

  7. Hierarchical Pore-Patterned Carbon Electrodes for High-Volumetric Energy Density Micro-Supercapacitors.

    PubMed

    Kim, Cheolho; Moon, Jun Hyuk

    2018-06-13

    Micro-supercapacitors (MSCs) are attractive for applications in next-generation mobile and wearable devices and have the potential to complement or even replace lithium batteries. However, many previous MSCs have often exhibited a low volumetric energy density with high-loading electrodes because of the nonuniform pore structure of the electrodes. To address this issue, we introduced a uniform-pore carbon electrode fabricated by 3D interference lithography. Furthermore, a hierarchical pore-patterned carbon (hPC) electrode was formed by introducing a micropore by chemical etching into the macropore carbon skeleton. The hPC electrodes were applied to solid-state MSCs. We achieved a constant volumetric capacitance and a corresponding volumetric energy density for electrodes of various thicknesses. The hPC MSC reached a volumetric energy density of approximately 1.43 mW h/cm 3 . The power density of the hPC MSC was 1.69 W/cm 3 . We could control the capacitance and voltage additionally by connecting the unit MSC cells in series or parallel, and we confirmed the operation of a light-emitting diode. We believe that our pore-patterned electrodes will provide a new platform for compact but high-performance energy storage devices.

  8. An Optimizing Compiler for Petascale I/O on Leadership Class Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Alok; Kandemir, Mahmut

    In high-performance computing systems, parallel I/O architectures usually have very complex hierarchies with multiple layers that collectively constitute an I/O stack, including high-level I/O libraries such as PnetCDF and HDF5, I/O middleware such as MPI-IO, and parallel file systems such as PVFS and Lustre. Our project explored automated instrumentation and compiler support for I/O intensive applications. Our project made significant progress towards understanding the complex I/O hierarchies of high-performance storage systems (including storage caches, HDDs, and SSDs), and designing and implementing state-of-the-art compiler/runtime system technology that targets I/O intensive HPC applications that target leadership class machine. This final report summarizesmore » the major achievements of the project and also points out promising future directions.« less

  9. Deployment of the OSIRIS EM-PIC code on the Intel Knights Landing architecture

    NASA Astrophysics Data System (ADS)

    Fonseca, Ricardo

    2017-10-01

    Electromagnetic particle-in-cell (EM-PIC) codes such as OSIRIS have found widespread use in modelling the highly nonlinear and kinetic processes that occur in several relevant plasma physics scenarios, ranging from astrophysical settings to high-intensity laser plasma interaction. Being computationally intensive, these codes require large scale HPC systems, and a continuous effort in adapting the algorithm to new hardware and computing paradigms. In this work, we report on our efforts on deploying the OSIRIS code on the new Intel Knights Landing (KNL) architecture. Unlike the previous generation (Knights Corner), these boards are standalone systems, and introduce several new features, include the new AVX-512 instructions and on-package MCDRAM. We will focus on the parallelization and vectorization strategies followed, as well as memory management, and present a detailed performance evaluation of code performance in comparison with the CPU code. This work was partially supported by Fundaçã para a Ciência e Tecnologia (FCT), Portugal, through Grant No. PTDC/FIS-PLA/2940/2014.

  10. Emulating multiple inheritance in Fortran 2003/2008

    DOE PAGES

    Morris, Karla

    2015-01-24

    Although the high-performance computing (HPC) community increasingly embraces object-oriented programming (OOP), most HPC OOP projects employ the C++ programming language. Until recently, Fortran programmers interested in mining the benefits of OOP had to emulate OOP in Fortran 90/95. The advent of widespread compiler support for Fortran 2003 now facilitates explicitly constructing object-oriented class hierarchies via inheritance and leveraging related class behaviors such as dynamic polymorphism. Although C++ allows a class to inherit from multiple parent classes, Fortran and several other OOP languages restrict or prohibit explicit multiple inheritance relationships in order to circumvent several pitfalls associated with them. Nonetheless, whatmore » appears as an intrinsic feature in one language can be modeled as a user-constructed design pattern in another language. The present paper demonstrates how to apply the facade structural design pattern to support a multiple inheritance class relationship in Fortran 2003. As a result, the design unleashes the power of the associated class relationships for modeling complicated data structures yet avoids the ambiguities that plague some multiple inheritance scenarios.« less

  11. DOVIS: an implementation for high-throughput virtual screening using AutoDock.

    PubMed

    Zhang, Shuxing; Kumar, Kamal; Jiang, Xiaohui; Wallqvist, Anders; Reifman, Jaques

    2008-02-27

    Molecular-docking-based virtual screening is an important tool in drug discovery that is used to significantly reduce the number of possible chemical compounds to be investigated. In addition to the selection of a sound docking strategy with appropriate scoring functions, another technical challenge is to in silico screen millions of compounds in a reasonable time. To meet this challenge, it is necessary to use high performance computing (HPC) platforms and techniques. However, the development of an integrated HPC system that makes efficient use of its elements is not trivial. We have developed an application termed DOVIS that uses AutoDock (version 3) as the docking engine and runs in parallel on a Linux cluster. DOVIS can efficiently dock large numbers (millions) of small molecules (ligands) to a receptor, screening 500 to 1,000 compounds per processor per day. Furthermore, in DOVIS, the docking session is fully integrated and automated in that the inputs are specified via a graphical user interface, the calculations are fully integrated with a Linux cluster queuing system for parallel processing, and the results can be visualized and queried. DOVIS removes most of the complexities and organizational problems associated with large-scale high-throughput virtual screening, and provides a convenient and efficient solution for AutoDock users to use this software in a Linux cluster platform.

  12. (Re)engineering Earth System Models to Expose Greater Concurrency for Ultrascale Computing: Practice, Experience, and Musings

    NASA Astrophysics Data System (ADS)

    Mills, R. T.

    2014-12-01

    As the high performance computing (HPC) community pushes towards the exascale horizon, the importance and prevalence of fine-grained parallelism in new computer architectures is increasing. This is perhaps most apparent in the proliferation of so-called "accelerators" such as the Intel Xeon Phi or NVIDIA GPGPUs, but the trend also holds for CPUs, where serial performance has grown slowly and effective use of hardware threads and vector units are becoming increasingly important to realizing high performance. This has significant implications for weather, climate, and Earth system modeling codes, many of which display impressive scalability across MPI ranks but take relatively little advantage of threading and vector processing. In addition to increasing parallelism, next generation codes will also need to address increasingly deep hierarchies for data movement: NUMA/cache levels, on node vs. off node, local vs. wide neighborhoods on the interconnect, and even in the I/O system. We will discuss some approaches (grounded in experiences with the Intel Xeon Phi architecture) for restructuring Earth science codes to maximize concurrency across multiple levels (vectors, threads, MPI ranks), and also discuss some novel approaches for minimizing expensive data movement/communication.

  13. Alkylphosphocholines: influence of structural variation on biodistribution at antineoplastically active concentrations.

    PubMed

    Kötting, J; Berger, M R; Unger, C; Eibl, H

    1992-01-01

    Hexadecylphosphocholine (HPC) and octadecylphosphocholine (OPC) show very potent antitumor activity against autochthonous methylnitrosourea-induced mammary carcinomas in rats. The longer-chain and unsaturated homologue erucylphosphocholine (EPC) forms lamellar structures rather than micelles, but nonetheless exhibits antineoplastic activity. Methylnitrosourea was used in the present study to induce autochthonous mammary carcinomas in virgin Sprague-Dawley rats. At 6 and 11 days following oral therapy, the biodistribution of HPC, OPC and EPC was analyzed in the serum, tumor, liver, kidney, lung, small intestine, brain and spleen of rats by high-performance thin-layer chromatography. In contrast to the almost identical tumor response noted, the distribution of the three homologues differed markedly. The serum levels of 50 nmol/ml obtained for OPC and EPC were much lower than the value of 120 nmol/ml measured for HPC. Nevertheless, the quite different serum levels resulted in similar tumor concentrations of about 200 nmol/g for all three of the compounds. Whereas HPC preferably accumulated in the kidney (1 mumol/g), OPC was found at increased concentrations (400 nmol/g) in the spleen, kidney and lung. In spite of the high daily dose of 120 mumol/kg EPC as compared with 51 mumol/kg HPC or OPC, EPC concentrations (100-200 nmol/g) were low in most tissues. High EPC concentrations were found in the small intestine (628 nmol/g). Values of 170 nmol/g were found for HPC and OPC in the brain, whereas the EPC concentration was 120 nmol/g. Obviously, structural modifications in the alkyl chain strongly influence the distribution pattern of alkylphosphocholines in animals. Since EPC yielded the highest tissue-to-serum concentration ratio in tumor tissue (5.1) and the lowest levels in other organs, we conclude that EPC is the most promising candidate for drug development in cancer therapy.

  14. Precipitation Estimates for Hydroelectricity

    NASA Technical Reports Server (NTRS)

    Tapiador, Francisco J.; Hou, Arthur Y.; de Castro, Manuel; Checa, Ramiro; Cuartero, Fernando; Barros, Ana P.

    2011-01-01

    Hydroelectric plants require precise and timely estimates of rain, snow and other hydrometeors for operations. However, it is far from being a trivial task to measure and predict precipitation. This paper presents the linkages between precipitation science and hydroelectricity, and in doing so it provides insight into current research directions that are relevant for this renewable energy. Methods described include radars, disdrometers, satellites and numerical models. Two recent advances that have the potential of being highly beneficial for hydropower operations are featured: the Global Precipitation Measuring (GPM) mission, which represents an important leap forward in precipitation observations from space, and high performance computing (HPC) and grid technology, that allows building ensembles of numerical weather and climate models.

  15. Modernization and optimization of a legacy open-source CFD code for high-performance computing architectures

    DOE PAGES

    Gel, Aytekin; Hu, Jonathan; Ould-Ahmed-Vall, ElMoustapha; ...

    2017-03-20

    Legacy codes remain a crucial element of today's simulation-based engineering ecosystem due to the extensive validation process and investment in such software. The rapid evolution of high-performance computing architectures necessitates the modernization of these codes. One approach to modernization is a complete overhaul of the code. However, this could require extensive investments, such as rewriting in modern languages, new data constructs, etc., which will necessitate systematic verification and validation to re-establish the credibility of the computational models. The current study advocates using a more incremental approach and is a culmination of several modernization efforts of the legacy code MFIX, whichmore » is an open-source computational fluid dynamics code that has evolved over several decades, widely used in multiphase flows and still being developed by the National Energy Technology Laboratory. Two different modernization approaches,‘bottom-up’ and ‘top-down’, are illustrated. Here, preliminary results show up to 8.5x improvement at the selected kernel level with the first approach, and up to 50% improvement in total simulated time with the latter were achieved for the demonstration cases and target HPC systems employed.« less

  16. Here and now: the intersection of computational science, quantum-mechanical simulations, and materials science

    NASA Astrophysics Data System (ADS)

    Marzari, Nicola

    The last 30 years have seen the steady and exhilarating development of powerful quantum-simulation engines for extended systems, dedicated to the solution of the Kohn-Sham equations of density-functional theory, often augmented by density-functional perturbation theory, many-body perturbation theory, time-dependent density-functional theory, dynamical mean-field theory, and quantum Monte Carlo. Their implementation on massively parallel architectures, now leveraging also GPUs and accelerators, has started a massive effort in the prediction from first principles of many or of complex materials properties, leading the way to the exascale through the combination of HPC (high-performance computing) and HTC (high-throughput computing). Challenges and opportunities abound: complementing hardware and software investments and design; developing the materials' informatics infrastructure needed to encode knowledge into complex protocols and workflows of calculations; managing and curating data; resisting the complacency that we have already reached the predictive accuracy needed for materials design, or a robust level of verification of the different quantum engines. In this talk I will provide an overview of these challenges, with the ultimate prize being the computational understanding, prediction, and design of properties and performance for novel or complex materials and devices.

  17. Modernization and optimization of a legacy open-source CFD code for high-performance computing architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gel, Aytekin; Hu, Jonathan; Ould-Ahmed-Vall, ElMoustapha

    Legacy codes remain a crucial element of today's simulation-based engineering ecosystem due to the extensive validation process and investment in such software. The rapid evolution of high-performance computing architectures necessitates the modernization of these codes. One approach to modernization is a complete overhaul of the code. However, this could require extensive investments, such as rewriting in modern languages, new data constructs, etc., which will necessitate systematic verification and validation to re-establish the credibility of the computational models. The current study advocates using a more incremental approach and is a culmination of several modernization efforts of the legacy code MFIX, whichmore » is an open-source computational fluid dynamics code that has evolved over several decades, widely used in multiphase flows and still being developed by the National Energy Technology Laboratory. Two different modernization approaches,‘bottom-up’ and ‘top-down’, are illustrated. Here, preliminary results show up to 8.5x improvement at the selected kernel level with the first approach, and up to 50% improvement in total simulated time with the latter were achieved for the demonstration cases and target HPC systems employed.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agelastos, Anthony; Allan, Benjamin; Brandt, Jim

    A detailed understanding of HPC applications’ resource needs and their complex interactions with each other and HPC platform resources are critical to achieving scalability and performance. Such understanding has been difficult to achieve because typical application profiling tools do not capture the behaviors of codes under the potentially wide spectrum of actual production conditions and because typical monitoring tools do not capture system resource usage information with high enough fidelity to gain sufficient insight into application performance and demands. In this paper we present both system and application profiling results based on data obtained through synchronized system wide monitoring onmore » a production HPC cluster at Sandia National Laboratories (SNL). We demonstrate analytic and visualization techniques that we are using to characterize application and system resource usage under production conditions for better understanding of application resource needs. Furthermore, our goals are to improve application performance (through understanding application-to-resource mapping and system throughput) and to ensure that future system capabilities match their intended workloads.« less

  19. Behavior of high-performance concrete in structural applications.

    DOT National Transportation Integrated Search

    2007-10-01

    High Performance Concrete (HPC) with improved properties has been developed by obtaining the maximum density of the matrix. Mathematical models developed by J.E. Funk and D.R. Dinger, are used to determine the particle size distribution to achieve th...

  20. High pressure homogenization to improve the stability of casein - hydroxypropyl cellulose aqueous systems.

    PubMed

    Ye, Ran; Harte, Federico

    2014-03-01

    The effect of high pressure homogenization on the improvement of the stability hydroxypropyl cellulose (HPC) and micellar casein was investigated. HPC with two molecular weights (80 and 1150 kDa) and micellar casein were mixed in water to a concentration leading to phase separation (0.45% w/v HPC and 3% w/v casein) and immediately subjected to high pressure homogenization ranging from 0 to 300 MPa, in 100 MPa increments. The various dispersions were evaluated for stability, particle size, turbidity, protein content, and viscosity over a period of two weeks and Scanning Transmission Electron Microscopy (STEM) at the end of the storage period. The stability of casein-HPC complexes was enhanced with the increasing homogenization pressure, especially for the complex containing high molecular weight HPC. The apparent particle size of complexes was reduced from ~200nm to ~130nm when using 300 MPa, corresponding to the sharp decrease of absorbance when compared to the non-homogenized controls. High pressure homogenization reduced the viscosity of HPC-casein complexes regardless of the molecular weight of HPC and STEM imagines revealed aggregates consistent with nano-scale protein polysaccharide interactions.

Top