Sample records for high-performance parallel analysis

  1. Parallel-vector solution of large-scale structural analysis problems on supercomputers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Agarwal, Tarun K.

    1989-01-01

    A direct linear equation solution method based on the Choleski factorization procedure is presented which exploits both parallel and vector features of supercomputers. The new equation solver is described, and its performance is evaluated by solving structural analysis problems on three high-performance computers. The method has been implemented using Force, a generic parallel FORTRAN language.

  2. Concurrent Probabilistic Simulation of High Temperature Composite Structural Response

    NASA Technical Reports Server (NTRS)

    Abdi, Frank

    1996-01-01

    A computational structural/material analysis and design tool which would meet industry's future demand for expedience and reduced cost is presented. This unique software 'GENOA' is dedicated to parallel and high speed analysis to perform probabilistic evaluation of high temperature composite response of aerospace systems. The development is based on detailed integration and modification of diverse fields of specialized analysis techniques and mathematical models to combine their latest innovative capabilities into a commercially viable software package. The technique is specifically designed to exploit the availability of processors to perform computationally intense probabilistic analysis assessing uncertainties in structural reliability analysis and composite micromechanics. The primary objectives which were achieved in performing the development were: (1) Utilization of the power of parallel processing and static/dynamic load balancing optimization to make the complex simulation of structure, material and processing of high temperature composite affordable; (2) Computational integration and synchronization of probabilistic mathematics, structural/material mechanics and parallel computing; (3) Implementation of an innovative multi-level domain decomposition technique to identify the inherent parallelism, and increasing convergence rates through high- and low-level processor assignment; (4) Creating the framework for Portable Paralleled architecture for the machine independent Multi Instruction Multi Data, (MIMD), Single Instruction Multi Data (SIMD), hybrid and distributed workstation type of computers; and (5) Market evaluation. The results of Phase-2 effort provides a good basis for continuation and warrants Phase-3 government, and industry partnership.

  3. Study of Solid State Drives performance in PROOF distributed analysis system

    NASA Astrophysics Data System (ADS)

    Panitkin, S. Y.; Ernst, M.; Petkus, R.; Rind, O.; Wenaus, T.

    2010-04-01

    Solid State Drives (SSD) is a promising storage technology for High Energy Physics parallel analysis farms. Its combination of low random access time and relatively high read speed is very well suited for situations where multiple jobs concurrently access data located on the same drive. It also has lower energy consumption and higher vibration tolerance than Hard Disk Drive (HDD) which makes it an attractive choice in many applications raging from personal laptops to large analysis farms. The Parallel ROOT Facility - PROOF is a distributed analysis system which allows to exploit inherent event level parallelism of high energy physics data. PROOF is especially efficient together with distributed local storage systems like Xrootd, when data are distributed over computing nodes. In such an architecture the local disk subsystem I/O performance becomes a critical factor, especially when computing nodes use multi-core CPUs. We will discuss our experience with SSDs in PROOF environment. We will compare performance of HDD with SSD in I/O intensive analysis scenarios. In particular we will discuss PROOF system performance scaling with a number of simultaneously running analysis jobs.

  4. Spatial data analytics on heterogeneous multi- and many-core parallel architectures using python

    USGS Publications Warehouse

    Laura, Jason R.; Rey, Sergio J.

    2017-01-01

    Parallel vector spatial analysis concerns the application of parallel computational methods to facilitate vector-based spatial analysis. The history of parallel computation in spatial analysis is reviewed, and this work is placed into the broader context of high-performance computing (HPC) and parallelization research. The rise of cyber infrastructure and its manifestation in spatial analysis as CyberGIScience is seen as a main driver of renewed interest in parallel computation in the spatial sciences. Key problems in spatial analysis that have been the focus of parallel computing are covered. Chief among these are spatial optimization problems, computational geometric problems including polygonization and spatial contiguity detection, the use of Monte Carlo Markov chain simulation in spatial statistics, and parallel implementations of spatial econometric methods. Future directions for research on parallelization in computational spatial analysis are outlined.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sewell, Christopher Meyer

    This is a set of slides from a guest lecture for a class at the University of Texas, El Paso on visualization and data analysis for high-performance computing. The topics covered are the following: trends in high-performance computing; scientific visualization, such as OpenGL, ray tracing and volume rendering, VTK, and ParaView; data science at scale, such as in-situ visualization, image databases, distributed memory parallelism, shared memory parallelism, VTK-m, "big data", and then an analysis example.

  6. Large-scale three-dimensional phase-field simulations for phase coarsening at ultrahigh volume fraction on high-performance architectures

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Wang, K. G.; Jones, Jim E.

    2016-06-01

    A parallel algorithm for large-scale three-dimensional phase-field simulations of phase coarsening is developed and implemented on high-performance architectures. From the large-scale simulations, a new kinetics in phase coarsening in the region of ultrahigh volume fraction is found. The parallel implementation is capable of harnessing the greater computer power available from high-performance architectures. The parallelized code enables increase in three-dimensional simulation system size up to a 5123 grid cube. Through the parallelized code, practical runtime can be achieved for three-dimensional large-scale simulations, and the statistical significance of the results from these high resolution parallel simulations are greatly improved over those obtainable from serial simulations. A detailed performance analysis on speed-up and scalability is presented, showing good scalability which improves with increasing problem size. In addition, a model for prediction of runtime is developed, which shows a good agreement with actual run time from numerical tests.

  7. Automatic differentiation for design sensitivity analysis of structural systems using multiple processors

    NASA Technical Reports Server (NTRS)

    Nguyen, Duc T.; Storaasli, Olaf O.; Qin, Jiangning; Qamar, Ramzi

    1994-01-01

    An automatic differentiation tool (ADIFOR) is incorporated into a finite element based structural analysis program for shape and non-shape design sensitivity analysis of structural systems. The entire analysis and sensitivity procedures are parallelized and vectorized for high performance computation. Small scale examples to verify the accuracy of the proposed program and a medium scale example to demonstrate the parallel vector performance on multiple CRAY C90 processors are included.

  8. Considering Horn's Parallel Analysis from a Random Matrix Theory Point of View.

    PubMed

    Saccenti, Edoardo; Timmerman, Marieke E

    2017-03-01

    Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy-Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy-Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.

  9. Performance Analysis of Multilevel Parallel Applications on Shared Memory Architectures

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A. (Technical Monitor); Jost, G.; Jin, H.; Labarta J.; Gimenez, J.; Caubet, J.

    2003-01-01

    Parallel programming paradigms include process level parallelism, thread level parallelization, and multilevel parallelism. This viewgraph presentation describes a detailed performance analysis of these paradigms for Shared Memory Architecture (SMA). This analysis uses the Paraver Performance Analysis System. The presentation includes diagrams of a flow of useful computations.

  10. Characterizing parallel file-access patterns on a large-scale multiprocessor

    NASA Technical Reports Server (NTRS)

    Purakayastha, A.; Ellis, Carla; Kotz, David; Nieuwejaar, Nils; Best, Michael L.

    1995-01-01

    High-performance parallel file systems are needed to satisfy tremendous I/O requirements of parallel scientific applications. The design of such high-performance parallel file systems depends on a comprehensive understanding of the expected workload, but so far there have been very few usage studies of multiprocessor file systems. This paper is part of the CHARISMA project, which intends to fill this void by measuring real file-system workloads on various production parallel machines. In particular, we present results from the CM-5 at the National Center for Supercomputing Applications. Our results are unique because we collect information about nearly every individual I/O request from the mix of jobs running on the machine. Analysis of the traces leads to various recommendations for parallel file-system design.

  11. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmalz, Mark S

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G}more » for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient parallel computation of particle and fluid dynamics simulations. These problems occur throughout DOE, military and commercial sectors: the potential payoff is high. We plan to license or sell the solution to contractors for military and domestic applications such as disaster simulation (aerodynamic and hydrodynamic), Government agencies (hydrological and environmental simulations), and medical applications (e.g., in tomographic image reconstruction). Keywords - High-performance Computing, Graphic Processing Unit, Fluid/Particle Simulation. Summary for Members of Congress - Department of Energy has many simulation codes that must compute faster, to be effective. The Phase I research parallelized particle/fluid simulations for rocket combustion, for high-performance computing systems.« less

  12. Computer architecture evaluation for structural dynamics computations: Project summary

    NASA Technical Reports Server (NTRS)

    Standley, Hilda M.

    1989-01-01

    The intent of the proposed effort is the examination of the impact of the elements of parallel architectures on the performance realized in a parallel computation. To this end, three major projects are developed: a language for the expression of high level parallelism, a statistical technique for the synthesis of multicomputer interconnection networks based upon performance prediction, and a queueing model for the analysis of shared memory hierarchies.

  13. Diderot: a Domain-Specific Language for Portable Parallel Scientific Visualization and Image Analysis.

    PubMed

    Kindlmann, Gordon; Chiw, Charisee; Seltzer, Nicholas; Samuels, Lamont; Reppy, John

    2016-01-01

    Many algorithms for scientific visualization and image analysis are rooted in the world of continuous scalar, vector, and tensor fields, but are programmed in low-level languages and libraries that obscure their mathematical foundations. Diderot is a parallel domain-specific language that is designed to bridge this semantic gap by providing the programmer with a high-level, mathematical programming notation that allows direct expression of mathematical concepts in code. Furthermore, Diderot provides parallel performance that takes advantage of modern multicore processors and GPUs. The high-level notation allows a concise and natural expression of the algorithms and the parallelism allows efficient execution on real-world datasets.

  14. HPCC Methodologies for Structural Design and Analysis on Parallel and Distributed Computing Platforms

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel

    1998-01-01

    In this grant, we have proposed a three-year research effort focused on developing High Performance Computation and Communication (HPCC) methodologies for structural analysis on parallel processors and clusters of workstations, with emphasis on reducing the structural design cycle time. Besides consolidating and further improving the FETI solver technology to address plate and shell structures, we have proposed to tackle the following design related issues: (a) parallel coupling and assembly of independently designed and analyzed three-dimensional substructures with non-matching interfaces, (b) fast and smart parallel re-analysis of a given structure after it has undergone design modifications, (c) parallel evaluation of sensitivity operators (derivatives) for design optimization, and (d) fast parallel analysis of mildly nonlinear structures. While our proposal was accepted, support was provided only for one year.

  15. Linear static structural and vibration analysis on high-performance computers

    NASA Technical Reports Server (NTRS)

    Baddourah, M. A.; Storaasli, O. O.; Bostic, S. W.

    1993-01-01

    Parallel computers offer the oppurtunity to significantly reduce the computation time necessary to analyze large-scale aerospace structures. This paper presents algorithms developed for and implemented on massively-parallel computers hereafter referred to as Scalable High-Performance Computers (SHPC), for the most computationally intensive tasks involved in structural analysis, namely, generation and assembly of system matrices, solution of systems of equations and calculation of the eigenvalues and eigenvectors. Results on SHPC are presented for large-scale structural problems (i.e. models for High-Speed Civil Transport). The goal of this research is to develop a new, efficient technique which extends structural analysis to SHPC and makes large-scale structural analyses tractable.

  16. High-performance parallel analysis of coupled problems for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Lanteri, S.; Gumaste, U.; Ronaghi, M.

    1994-01-01

    Applications are described of high-performance parallel, computation for the analysis of complete jet engines, considering its multi-discipline coupled problem. The coupled problem involves interaction of structures with gas dynamics, heat conduction and heat transfer in aircraft engines. The methodology issues addressed include: consistent discrete formulation of coupled problems with emphasis on coupling phenomena; effect of partitioning strategies, augmentation and temporal solution procedures; sensitivity of response to problem parameters; and methods for interfacing multiscale discretizations in different single fields. The computer implementation issues addressed include: parallel treatment of coupled systems; domain decomposition and mesh partitioning strategies; data representation in object-oriented form and mapping to hardware driven representation, and tradeoff studies between partitioning schemes and fully coupled treatment.

  17. Efficient Parallel Kernel Solvers for Computational Fluid Dynamics Applications

    NASA Technical Reports Server (NTRS)

    Sun, Xian-He

    1997-01-01

    Distributed-memory parallel computers dominate today's parallel computing arena. These machines, such as Intel Paragon, IBM SP2, and Cray Origin2OO, have successfully delivered high performance computing power for solving some of the so-called "grand-challenge" problems. Despite initial success, parallel machines have not been widely accepted in production engineering environments due to the complexity of parallel programming. On a parallel computing system, a task has to be partitioned and distributed appropriately among processors to reduce communication cost and to attain load balance. More importantly, even with careful partitioning and mapping, the performance of an algorithm may still be unsatisfactory, since conventional sequential algorithms may be serial in nature and may not be implemented efficiently on parallel machines. In many cases, new algorithms have to be introduced to increase parallel performance. In order to achieve optimal performance, in addition to partitioning and mapping, a careful performance study should be conducted for a given application to find a good algorithm-machine combination. This process, however, is usually painful and elusive. The goal of this project is to design and develop efficient parallel algorithms for highly accurate Computational Fluid Dynamics (CFD) simulations and other engineering applications. The work plan is 1) developing highly accurate parallel numerical algorithms, 2) conduct preliminary testing to verify the effectiveness and potential of these algorithms, 3) incorporate newly developed algorithms into actual simulation packages. The work plan has well achieved. Two highly accurate, efficient Poisson solvers have been developed and tested based on two different approaches: (1) Adopting a mathematical geometry which has a better capacity to describe the fluid, (2) Using compact scheme to gain high order accuracy in numerical discretization. The previously developed Parallel Diagonal Dominant (PDD) algorithm and Reduced Parallel Diagonal Dominant (RPDD) algorithm have been carefully studied on different parallel platforms for different applications, and a NASA simulation code developed by Man M. Rai and his colleagues has been parallelized and implemented based on data dependency analysis. These achievements are addressed in detail in the paper.

  18. Accelerating Large Scale Image Analyses on Parallel, CPU-GPU Equipped Systems

    PubMed Central

    Teodoro, George; Kurc, Tahsin M.; Pan, Tony; Cooper, Lee A.D.; Kong, Jun; Widener, Patrick; Saltz, Joel H.

    2014-01-01

    The past decade has witnessed a major paradigm shift in high performance computing with the introduction of accelerators as general purpose processors. These computing devices make available very high parallel computing power at low cost and power consumption, transforming current high performance platforms into heterogeneous CPU-GPU equipped systems. Although the theoretical performance achieved by these hybrid systems is impressive, taking practical advantage of this computing power remains a very challenging problem. Most applications are still deployed to either GPU or CPU, leaving the other resource under- or un-utilized. In this paper, we propose, implement, and evaluate a performance aware scheduling technique along with optimizations to make efficient collaborative use of CPUs and GPUs on a parallel system. In the context of feature computations in large scale image analysis applications, our evaluations show that intelligently co-scheduling CPUs and GPUs can significantly improve performance over GPU-only or multi-core CPU-only approaches. PMID:25419545

  19. Supercomputing '91; Proceedings of the 4th Annual Conference on High Performance Computing, Albuquerque, NM, Nov. 18-22, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Various papers on supercomputing are presented. The general topics addressed include: program analysis/data dependence, memory access, distributed memory code generation, numerical algorithms, supercomputer benchmarks, latency tolerance, parallel programming, applications, processor design, networks, performance tools, mapping and scheduling, characterization affecting performance, parallelism packaging, computing climate change, combinatorial algorithms, hardware and software performance issues, system issues. (No individual items are abstracted in this volume)

  20. Parallel processing of genomics data

    NASA Astrophysics Data System (ADS)

    Agapito, Giuseppe; Guzzi, Pietro Hiram; Cannataro, Mario

    2016-10-01

    The availability of high-throughput experimental platforms for the analysis of biological samples, such as mass spectrometry, microarrays and Next Generation Sequencing, have made possible to analyze a whole genome in a single experiment. Such platforms produce an enormous volume of data per single experiment, thus the analysis of this enormous flow of data poses several challenges in term of data storage, preprocessing, and analysis. To face those issues, efficient, possibly parallel, bioinformatics software needs to be used to preprocess and analyze data, for instance to highlight genetic variation associated with complex diseases. In this paper we present a parallel algorithm for the parallel preprocessing and statistical analysis of genomics data, able to face high dimension of data and resulting in good response time. The proposed system is able to find statistically significant biological markers able to discriminate classes of patients that respond to drugs in different ways. Experiments performed on real and synthetic genomic datasets show good speed-up and scalability.

  1. SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX-80

    NASA Astrophysics Data System (ADS)

    Kamat, Manohar P.; Watson, Brian C.

    1992-11-01

    The finite element method has proven to be an invaluable tool for analysis and design of complex, high performance systems, such as bladed-disk assemblies in aircraft turbofan engines. However, as the problem size increase, the computation time required by conventional computers can be prohibitively high. Parallel processing computers provide the means to overcome these computation time limits. This report summarizes the results of a research activity aimed at providing a finite element capability for analyzing turbomachinery bladed-disk assemblies in a vector/parallel processing environment. A special purpose code, named with the acronym SAPNEW, has been developed to perform static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements. SAPNEW provides a stand alone capability for static and eigen analysis on the Alliant FX/80, a parallel processing computer. A preprocessor, named with the acronym NTOS, has been developed to accept NASTRAN input decks and convert them to the SAPNEW format to make SAPNEW more readily used by researchers at NASA Lewis Research Center.

  2. A visual parallel-BCI speller based on the time-frequency coding strategy.

    PubMed

    Xu, Minpeng; Chen, Long; Zhang, Lixin; Qi, Hongzhi; Ma, Lan; Tang, Jiabei; Wan, Baikun; Ming, Dong

    2014-04-01

    Spelling is one of the most important issues in brain-computer interface (BCI) research. This paper is to develop a visual parallel-BCI speller system based on the time-frequency coding strategy in which the sub-speller switching among four simultaneously presented sub-spellers and the character selection are identified in a parallel mode. The parallel-BCI speller was constituted by four independent P300+SSVEP-B (P300 plus SSVEP blocking) spellers with different flicker frequencies, thereby all characters had a specific time-frequency code. To verify its effectiveness, 11 subjects were involved in the offline and online spellings. A classification strategy was designed to recognize the target character through jointly using the canonical correlation analysis and stepwise linear discriminant analysis. Online spellings showed that the proposed parallel-BCI speller had a high performance, reaching the highest information transfer rate of 67.4 bit min(-1), with an average of 54.0 bit min(-1) and 43.0 bit min(-1) in the three rounds and five rounds, respectively. The results indicated that the proposed parallel-BCI could be effectively controlled by users with attention shifting fluently among the sub-spellers, and highly improved the BCI spelling performance.

  3. Performance of the Wavelet Decomposition on Massively Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek A.; LeMoigne, Jacqueline; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    Traditionally, Fourier Transforms have been utilized for performing signal analysis and representation. But although it is straightforward to reconstruct a signal from its Fourier transform, no local description of the signal is included in its Fourier representation. To alleviate this problem, Windowed Fourier transforms and then wavelet transforms have been introduced, and it has been proven that wavelets give a better localization than traditional Fourier transforms, as well as a better division of the time- or space-frequency plane than Windowed Fourier transforms. Because of these properties and after the development of several fast algorithms for computing the wavelet representation of any signal, in particular the Multi-Resolution Analysis (MRA) developed by Mallat, wavelet transforms have increasingly been applied to signal analysis problems, especially real-life problems, in which speed is critical. In this paper we present and compare efficient wavelet decomposition algorithms on different parallel architectures. We report and analyze experimental measurements, using NASA remotely sensed images. Results show that our algorithms achieve significant performance gains on current high performance parallel systems, and meet scientific applications and multimedia requirements. The extensive performance measurements collected over a number of high-performance computer systems have revealed important architectural characteristics of these systems, in relation to the processing demands of the wavelet decomposition of digital images.

  4. CFD Analysis and Design Optimization Using Parallel Computers

    NASA Technical Reports Server (NTRS)

    Martinelli, Luigi; Alonso, Juan Jose; Jameson, Antony; Reuther, James

    1997-01-01

    A versatile and efficient multi-block method is presented for the simulation of both steady and unsteady flow, as well as aerodynamic design optimization of complete aircraft configurations. The compressible Euler and Reynolds Averaged Navier-Stokes (RANS) equations are discretized using a high resolution scheme on body-fitted structured meshes. An efficient multigrid implicit scheme is implemented for time-accurate flow calculations. Optimum aerodynamic shape design is achieved at very low cost using an adjoint formulation. The method is implemented on parallel computing systems using the MPI message passing interface standard to ensure portability. The results demonstrate that, by combining highly efficient algorithms with parallel computing, it is possible to perform detailed steady and unsteady analysis as well as automatic design for complex configurations using the present generation of parallel computers.

  5. Exploiting Thread Parallelism for Ocean Modeling on Cray XC Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarje, Abhinav; Jacobsen, Douglas W.; Williams, Samuel W.

    The incorporation of increasing core counts in modern processors used to build state-of-the-art supercomputers is driving application development towards exploitation of thread parallelism, in addition to distributed memory parallelism, with the goal of delivering efficient high-performance codes. In this work we describe the exploitation of threading and our experiences with it with respect to a real-world ocean modeling application code, MPAS-Ocean. We present detailed performance analysis and comparisons of various approaches and configurations for threading on the Cray XC series supercomputers.

  6. Application of the Linux cluster for exhaustive window haplotype analysis using the FBAT and Unphased programs.

    PubMed

    Mishima, Hiroyuki; Lidral, Andrew C; Ni, Jun

    2008-05-28

    Genetic association studies have been used to map disease-causing genes. A newly introduced statistical method, called exhaustive haplotype association study, analyzes genetic information consisting of different numbers and combinations of DNA sequence variations along a chromosome. Such studies involve a large number of statistical calculations and subsequently high computing power. It is possible to develop parallel algorithms and codes to perform the calculations on a high performance computing (HPC) system. However, most existing commonly-used statistic packages for genetic studies are non-parallel versions. Alternatively, one may use the cutting-edge technology of grid computing and its packages to conduct non-parallel genetic statistical packages on a centralized HPC system or distributed computing systems. In this paper, we report the utilization of a queuing scheduler built on the Grid Engine and run on a Rocks Linux cluster for our genetic statistical studies. Analysis of both consecutive and combinational window haplotypes was conducted by the FBAT (Laird et al., 2000) and Unphased (Dudbridge, 2003) programs. The dataset consisted of 26 loci from 277 extended families (1484 persons). Using the Rocks Linux cluster with 22 compute-nodes, FBAT jobs performed about 14.4-15.9 times faster, while Unphased jobs performed 1.1-18.6 times faster compared to the accumulated computation duration. Execution of exhaustive haplotype analysis using non-parallel software packages on a Linux-based system is an effective and efficient approach in terms of cost and performance.

  7. Application of the Linux cluster for exhaustive window haplotype analysis using the FBAT and Unphased programs

    PubMed Central

    Mishima, Hiroyuki; Lidral, Andrew C; Ni, Jun

    2008-01-01

    Background Genetic association studies have been used to map disease-causing genes. A newly introduced statistical method, called exhaustive haplotype association study, analyzes genetic information consisting of different numbers and combinations of DNA sequence variations along a chromosome. Such studies involve a large number of statistical calculations and subsequently high computing power. It is possible to develop parallel algorithms and codes to perform the calculations on a high performance computing (HPC) system. However, most existing commonly-used statistic packages for genetic studies are non-parallel versions. Alternatively, one may use the cutting-edge technology of grid computing and its packages to conduct non-parallel genetic statistical packages on a centralized HPC system or distributed computing systems. In this paper, we report the utilization of a queuing scheduler built on the Grid Engine and run on a Rocks Linux cluster for our genetic statistical studies. Results Analysis of both consecutive and combinational window haplotypes was conducted by the FBAT (Laird et al., 2000) and Unphased (Dudbridge, 2003) programs. The dataset consisted of 26 loci from 277 extended families (1484 persons). Using the Rocks Linux cluster with 22 compute-nodes, FBAT jobs performed about 14.4–15.9 times faster, while Unphased jobs performed 1.1–18.6 times faster compared to the accumulated computation duration. Conclusion Execution of exhaustive haplotype analysis using non-parallel software packages on a Linux-based system is an effective and efficient approach in terms of cost and performance. PMID:18541045

  8. Nick Grue | NREL

    Science.gov Websites

    geospatial data analysis using parallel processing High performance computing Renewable resource technical potential and supply curve analysis Spatial database utilization Rapid analysis of large geospatial datasets energy and geospatial analysis products Research Interests Rapid, web-based renewable resource analysis

  9. A high-performance spatial database based approach for pathology imaging algorithm evaluation

    PubMed Central

    Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A.D.; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J.; Saltz, Joel H.

    2013-01-01

    Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. Aims: (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and loaded into a spatial database. To support efficient data loading, we have implemented a parallel data loading tool that takes advantage of multi-core CPUs to accelerate data injection. The spatial database manages both geometric shapes and image features or classifications, and enables spatial sampling, result comparison, and result aggregation through expressive structured query language (SQL) queries with spatial extensions. To provide scalable and efficient query support, we have employed a shared nothing parallel database architecture, which distributes data homogenously across multiple database partitions to take advantage of parallel computation power and implements spatial indexing to achieve high I/O throughput. Results: Our work proposes a high performance, parallel spatial database platform for algorithm validation and comparison. This platform was evaluated by storing, managing, and comparing analysis results from a set of brain tumor whole slide images. The tools we develop are open source and available to download. Conclusions: Pathology image algorithm validation and comparison are essential to iterative algorithm development and refinement. One critical component is the support for queries involving spatial predicates and comparisons. In our work, we develop an efficient data model and parallel database approach to model, normalize, manage and query large volumes of analytical image result data. Our experiments demonstrate that the data partitioning strategy and the grid-based indexing result in good data distribution across database nodes and reduce I/O overhead in spatial join queries through parallel retrieval of relevant data and quick subsetting of datasets. The set of tools in the framework provide a full pipeline to normalize, load, manage and query analytical results for algorithm evaluation. PMID:23599905

  10. A visual parallel-BCI speller based on the time-frequency coding strategy

    NASA Astrophysics Data System (ADS)

    Xu, Minpeng; Chen, Long; Zhang, Lixin; Qi, Hongzhi; Ma, Lan; Tang, Jiabei; Wan, Baikun; Ming, Dong

    2014-04-01

    Objective. Spelling is one of the most important issues in brain-computer interface (BCI) research. This paper is to develop a visual parallel-BCI speller system based on the time-frequency coding strategy in which the sub-speller switching among four simultaneously presented sub-spellers and the character selection are identified in a parallel mode. Approach. The parallel-BCI speller was constituted by four independent P300+SSVEP-B (P300 plus SSVEP blocking) spellers with different flicker frequencies, thereby all characters had a specific time-frequency code. To verify its effectiveness, 11 subjects were involved in the offline and online spellings. A classification strategy was designed to recognize the target character through jointly using the canonical correlation analysis and stepwise linear discriminant analysis. Main results. Online spellings showed that the proposed parallel-BCI speller had a high performance, reaching the highest information transfer rate of 67.4 bit min-1, with an average of 54.0 bit min-1 and 43.0 bit min-1 in the three rounds and five rounds, respectively. Significance. The results indicated that the proposed parallel-BCI could be effectively controlled by users with attention shifting fluently among the sub-spellers, and highly improved the BCI spelling performance.

  11. Parallel peak pruning for scalable SMP contour tree computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, Hamish A.; Weber, Gunther H.; Sewell, Christopher M.

    As data sets grow to exascale, automated data analysis and visualisation are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this formmore » of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. Here in this paper, we report the first shared SMP algorithm for fully parallel contour tree computation, withfor-mal guarantees of O(lgnlgt) parallel steps and O(n lgn) work, and implementations with up to 10x parallel speed up in OpenMP and up to 50x speed up in NVIDIA Thrust.« less

  12. Parallel Climate Data Assimilation PSAS Package

    NASA Technical Reports Server (NTRS)

    Ding, Hong Q.; Chan, Clara; Gennery, Donald B.; Ferraro, Robert D.

    1996-01-01

    We have designed and implemented a set of highly efficient and highly scalable algorithms for an unstructured computational package, the PSAS data assimilation package, as demonstrated by detailed performance analysis of systematic runs on up to 512node Intel Paragon. The equation solver achieves a sustained 18 Gflops performance. As the results, we achieved an unprecedented 100-fold solution time reduction on the Intel Paragon parallel platform over the Cray C90. This not only meets and exceeds the DAO time requirements, but also significantly enlarges the window of exploration in climate data assimilations.

  13. High-Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Park, K. C.; Gumaste, U.; Chen, P.-S.; Lesoinne, M.; Stern, P.

    1997-01-01

    Applications are described of high-performance computing methods to the numerical simulation of complete jet engines. The methodology focuses on the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by structural displacements. The latter is treated by a ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field elements. New partitioned analysis procedures to treat this coupled three-component problem were developed. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers, including the iPSC-860, Paragon XP/S and the IBM SP2. The NASA-sponsored ENG10 program was used for the global steady state analysis of the whole engine. This program uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor for parallel versions of ENG10 was developed as well as the capability for the first full 3D aeroelastic simulation of a multirow engine stage. This capability was tested on the IBM SP2 parallel supercomputer at NASA Ames.

  14. Performance Analysis and Optimization on the UCLA Parallel Atmospheric General Circulation Model Code

    NASA Technical Reports Server (NTRS)

    Lou, John; Ferraro, Robert; Farrara, John; Mechoso, Carlos

    1996-01-01

    An analysis is presented of several factors influencing the performance of a parallel implementation of the UCLA atmospheric general circulation model (AGCM) on massively parallel computer systems. Several modificaitons to the original parallel AGCM code aimed at improving its numerical efficiency, interprocessor communication cost, load-balance and issues affecting single-node code performance are discussed.

  15. Dynamic performance of high speed solenoid valve with parallel coils

    NASA Astrophysics Data System (ADS)

    Kong, Xiaowu; Li, Shizhen

    2014-07-01

    The methods of improving the dynamic performance of high speed on/off solenoid valve include increasing the magnetic force of armature and the slew rate of coil current, decreasing the mass and stroke of moving parts. The increase of magnetic force usually leads to the decrease of current slew rate, which could increase the delay time of the dynamic response of solenoid valve. Using a high voltage to drive coil can solve this contradiction, but a high driving voltage can also lead to more cost and a decrease of safety and reliability. In this paper, a new scheme of parallel coils is investigated, in which the single coil of solenoid is replaced by parallel coils with same ampere turns. Based on the mathematic model of high speed solenoid valve, the theoretical formula for the delay time of solenoid valve is deduced. Both the theoretical analysis and the dynamic simulation show that the effect of dividing a single coil into N parallel sub-coils is close to that of driving the single coil with N times of the original driving voltage as far as the delay time of solenoid valve is concerned. A specific test bench is designed to measure the dynamic performance of high speed on/off solenoid valve. The experimental results also prove that both the delay time and switching time of the solenoid valves can be decreased greatly by adopting the parallel coil scheme. This research presents a simple and practical method to improve the dynamic performance of high speed on/off solenoid valve.

  16. Geopotential Error Analysis from Satellite Gradiometer and Global Positioning System Observables on Parallel Architecture

    NASA Technical Reports Server (NTRS)

    Schutz, Bob E.; Baker, Gregory A.

    1997-01-01

    The recovery of a high resolution geopotential from satellite gradiometer observations motivates the examination of high performance computational techniques. The primary subject matter addresses specifically the use of satellite gradiometer and GPS observations to form and invert the normal matrix associated with a large degree and order geopotential solution. Memory resident and out-of-core parallel linear algebra techniques along with data parallel batch algorithms form the foundation of the least squares application structure. A secondary topic includes the adoption of object oriented programming techniques to enhance modularity and reusability of code. Applications implementing the parallel and object oriented methods successfully calculate the degree variance for a degree and order 110 geopotential solution on 32 processors of the Cray T3E. The memory resident gradiometer application exhibits an overall application performance of 5.4 Gflops, and the out-of-core linear solver exhibits an overall performance of 2.4 Gflops. The combination solution derived from a sun synchronous gradiometer orbit produce average geoid height variances of 17 millimeters.

  17. Geopotential error analysis from satellite gradiometer and global positioning system observables on parallel architectures

    NASA Astrophysics Data System (ADS)

    Baker, Gregory Allen

    The recovery of a high resolution geopotential from satellite gradiometer observations motivates the examination of high performance computational techniques. The primary subject matter addresses specifically the use of satellite gradiometer and GPS observations to form and invert the normal matrix associated with a large degree and order geopotential solution. Memory resident and out-of-core parallel linear algebra techniques along with data parallel batch algorithms form the foundation of the least squares application structure. A secondary topic includes the adoption of object oriented programming techniques to enhance modularity and reusability of code. Applications implementing the parallel and object oriented methods successfully calculate the degree variance for a degree and order 110 geopotential solution on 32 processors of the Cray T3E. The memory resident gradiometer application exhibits an overall application performance of 5.4 Gflops, and the out-of-core linear solver exhibits an overall performance of 2.4 Gflops. The combination solution derived from a sun synchronous gradiometer orbit produce average geoid height variances of 17 millimeters.

  18. High-performance computing — an overview

    NASA Astrophysics Data System (ADS)

    Marksteiner, Peter

    1996-08-01

    An overview of high-performance computing (HPC) is given. Different types of computer architectures used in HPC are discussed: vector supercomputers, high-performance RISC processors, various parallel computers like symmetric multiprocessors, workstation clusters, massively parallel processors. Software tools and programming techniques used in HPC are reviewed: vectorizing compilers, optimization and vector tuning, optimization for RISC processors; parallel programming techniques like shared-memory parallelism, message passing and data parallelism; and numerical libraries.

  19. StrAuto: automation and parallelization of STRUCTURE analysis.

    PubMed

    Chhatre, Vikram E; Emerson, Kevin J

    2017-03-24

    Population structure inference using the software STRUCTURE has become an integral part of population genetic studies covering a broad spectrum of taxa including humans. The ever-expanding size of genetic data sets poses computational challenges for this analysis. Although at least one tool currently implements parallel computing to reduce computational overload of this analysis, it does not fully automate the use of replicate STRUCTURE analysis runs required for downstream inference of optimal K. There is pressing need for a tool that can deploy population structure analysis on high performance computing clusters. We present an updated version of the popular Python program StrAuto, to streamline population structure analysis using parallel computing. StrAuto implements a pipeline that combines STRUCTURE analysis with the Evanno Δ K analysis and visualization of results using STRUCTURE HARVESTER. Using benchmarking tests, we demonstrate that StrAuto significantly reduces the computational time needed to perform iterative STRUCTURE analysis by distributing runs over two or more processors. StrAuto is the first tool to integrate STRUCTURE analysis with post-processing using a pipeline approach in addition to implementing parallel computation - a set up ideal for deployment on computing clusters. StrAuto is distributed under the GNU GPL (General Public License) and available to download from http://strauto.popgen.org .

  20. Life-cycle costs of high-performance cells

    NASA Technical Reports Server (NTRS)

    Daniel, R.; Burger, D.; Reiter, L.

    1985-01-01

    A life cycle cost analysis of high efficiency cells was presented. Although high efficiency cells produce more power, they also cost more to make and are more susceptible to array hot-spot heating. Three different computer analysis programs were used: SAMICS (solar array manufacturing industry costing standards), PVARRAY (an array failure mode/degradation simulator), and LCP (lifetime cost and performance). The high efficiency cell modules were found to be more economical in this study, but parallel redundancy is recommended.

  1. User's Guide for ENSAERO_FE Parallel Finite Element Solver

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.; Guruswamy, Guru P.

    1999-01-01

    A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.

  2. Commodity cluster and hardware-based massively parallel implementations of hyperspectral imaging algorithms

    NASA Astrophysics Data System (ADS)

    Plaza, Antonio; Chang, Chein-I.; Plaza, Javier; Valencia, David

    2006-05-01

    The incorporation of hyperspectral sensors aboard airborne/satellite platforms is currently producing a nearly continual stream of multidimensional image data, and this high data volume has soon introduced new processing challenges. The price paid for the wealth spatial and spectral information available from hyperspectral sensors is the enormous amounts of data that they generate. Several applications exist, however, where having the desired information calculated quickly enough for practical use is highly desirable. High computing performance of algorithm analysis is particularly important in homeland defense and security applications, in which swift decisions often involve detection of (sub-pixel) military targets (including hostile weaponry, camouflage, concealment, and decoys) or chemical/biological agents. In order to speed-up computational performance of hyperspectral imaging algorithms, this paper develops several fast parallel data processing techniques. Techniques include four classes of algorithms: (1) unsupervised classification, (2) spectral unmixing, and (3) automatic target recognition, and (4) onboard data compression. A massively parallel Beowulf cluster (Thunderhead) at NASA's Goddard Space Flight Center in Maryland is used to measure parallel performance of the proposed algorithms. In order to explore the viability of developing onboard, real-time hyperspectral data compression algorithms, a Xilinx Virtex-II field programmable gate array (FPGA) is also used in experiments. Our quantitative and comparative assessment of parallel techniques and strategies may help image analysts in selection of parallel hyperspectral algorithms for specific applications.

  3. Highly scalable parallel processing of extracellular recordings of Multielectrode Arrays.

    PubMed

    Gehring, Tiago V; Vasilaki, Eleni; Giugliano, Michele

    2015-01-01

    Technological advances of Multielectrode Arrays (MEAs) used for multisite, parallel electrophysiological recordings, lead to an ever increasing amount of raw data being generated. Arrays with hundreds up to a few thousands of electrodes are slowly seeing widespread use and the expectation is that more sophisticated arrays will become available in the near future. In order to process the large data volumes resulting from MEA recordings there is a pressing need for new software tools able to process many data channels in parallel. Here we present a new tool for processing MEA data recordings that makes use of new programming paradigms and recent technology developments to unleash the power of modern highly parallel hardware, such as multi-core CPUs with vector instruction sets or GPGPUs. Our tool builds on and complements existing MEA data analysis packages. It shows high scalability and can be used to speed up some performance critical pre-processing steps such as data filtering and spike detection, helping to make the analysis of larger data sets tractable.

  4. High-performance parallel analysis of coupled problems for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Lanteri, S.; Maman, N.; Piperno, S.; Gumaste, U.

    1994-01-01

    This research program deals with the application of high-performance computing methods for the analysis of complete jet engines. We have entitled this program by applying the two dimensional parallel aeroelastic codes to the interior gas flow problem of a bypass jet engine. The fluid mesh generation, domain decomposition, and solution capabilities were successfully tested. We then focused attention on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion that results from these structural displacements. This is treated by a new arbitrary Lagrangian-Eulerian (ALE) technique that models the fluid mesh motion as that of a fictitious mass-spring network. New partitioned analysis procedures to treat this coupled three-component problem are developed. These procedures involved delayed corrections and subcycling. Preliminary results on the stability, accuracy, and MPP computational efficiency are reported.

  5. Open | SpeedShop: An Open Source Infrastructure for Parallel Performance Analysis

    DOE PAGES

    Schulz, Martin; Galarowicz, Jim; Maghrak, Don; ...

    2008-01-01

    Over the last decades a large number of performance tools has been developed to analyze and optimize high performance applications. Their acceptance by end users, however, has been slow: each tool alone is often limited in scope and comes with widely varying interfaces and workflow constraints, requiring different changes in the often complex build and execution infrastructure of the target application. We started the Open | SpeedShop project about 3 years ago to overcome these limitations and provide efficient, easy to apply, and integrated performance analysis for parallel systems. Open | SpeedShop has two different faces: it provides an interoperable tool set covering themore » most common analysis steps as well as a comprehensive plugin infrastructure for building new tools. In both cases, the tools can be deployed to large scale parallel applications using DPCL/Dyninst for distributed binary instrumentation. Further, all tools developed within or on top of Open | SpeedShop are accessible through multiple fully equivalent interfaces including an easy-to-use GUI as well as an interactive command line interface reducing the usage threshold for those tools.« less

  6. Synthesizing parallel imaging applications using the CAP (computer-aided parallelization) tool

    NASA Astrophysics Data System (ADS)

    Gennart, Benoit A.; Mazzariol, Marc; Messerli, Vincent; Hersch, Roger D.

    1997-12-01

    Imaging applications such as filtering, image transforms and compression/decompression require vast amounts of computing power when applied to large data sets. These applications would potentially benefit from the use of parallel processing. However, dedicated parallel computers are expensive and their processing power per node lags behind that of the most recent commodity components. Furthermore, developing parallel applications remains a difficult task: writing and debugging the application is difficult (deadlocks), programs may not be portable from one parallel architecture to the other, and performance often comes short of expectations. In order to facilitate the development of parallel applications, we propose the CAP computer-aided parallelization tool which enables application programmers to specify at a high-level of abstraction the flow of data between pipelined-parallel operations. In addition, the CAP tool supports the programmer in developing parallel imaging and storage operations. CAP enables combining efficiently parallel storage access routines and image processing sequential operations. This paper shows how processing and I/O intensive imaging applications must be implemented to take advantage of parallelism and pipelining between data access and processing. This paper's contribution is (1) to show how such implementations can be compactly specified in CAP, and (2) to demonstrate that CAP specified applications achieve the performance of custom parallel code. The paper analyzes theoretically the performance of CAP specified applications and demonstrates the accuracy of the theoretical analysis through experimental measurements.

  7. Scalable parallel communications

    NASA Technical Reports Server (NTRS)

    Maly, K.; Khanna, S.; Overstreet, C. M.; Mukkamala, R.; Zubair, M.; Sekhar, Y. S.; Foudriat, E. C.

    1992-01-01

    Coarse-grain parallelism in networking (that is, the use of multiple protocol processors running replicated software sending over several physical channels) can be used to provide gigabit communications for a single application. Since parallel network performance is highly dependent on real issues such as hardware properties (e.g., memory speeds and cache hit rates), operating system overhead (e.g., interrupt handling), and protocol performance (e.g., effect of timeouts), we have performed detailed simulations studies of both a bus-based multiprocessor workstation node (based on the Sun Galaxy MP multiprocessor) and a distributed-memory parallel computer node (based on the Touchstone DELTA) to evaluate the behavior of coarse-grain parallelism. Our results indicate: (1) coarse-grain parallelism can deliver multiple 100 Mbps with currently available hardware platforms and existing networking protocols (such as Transmission Control Protocol/Internet Protocol (TCP/IP) and parallel Fiber Distributed Data Interface (FDDI) rings); (2) scale-up is near linear in n, the number of protocol processors, and channels (for small n and up to a few hundred Mbps); and (3) since these results are based on existing hardware without specialized devices (except perhaps for some simple modifications of the FDDI boards), this is a low cost solution to providing multiple 100 Mbps on current machines. In addition, from both the performance analysis and the properties of these architectures, we conclude: (1) multiple processors providing identical services and the use of space division multiplexing for the physical channels can provide better reliability than monolithic approaches (it also provides graceful degradation and low-cost load balancing); (2) coarse-grain parallelism supports running several transport protocols in parallel to provide different types of service (for example, one TCP handles small messages for many users, other TCP's running in parallel provide high bandwidth service to a single application); and (3) coarse grain parallelism will be able to incorporate many future improvements from related work (e.g., reduced data movement, fast TCP, fine-grain parallelism) also with near linear speed-ups.

  8. High-performance parallel analysis of coupled problems for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Chen, P.-S.; Gumaste, U.; Leoinne, M.; Stern, P.

    1995-01-01

    This research program deals with the application of high-performance computing methods to the numerical simulation of complete jet engines. The program was initiated in 1993 by applying two-dimensional parallel aeroelastic codes to the interior gas flow problem of a by-pass jet engine. The fluid mesh generation, domain decomposition and solution capabilities were successfully tested. Attention was then focused on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by these structural displacements. The latter is treated by an ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field fluid elements. New partitioned analysis procedures to treat this coupled 3-component problem were developed in 1994. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers. For the global steady-state axisymmetric analysis of a complete engine we have decided to use the NASA-sponsored ENG10 program, which uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor for parallel versions of ENG10 has been developed. It is planned to use the steady-state global solution provided by ENG10 as input to a localized three-dimensional FSI analysis for engine regions where aeroelastic effects may be important.

  9. Conceptual design and kinematic analysis of a novel parallel robot for high-speed pick-and-place operations

    NASA Astrophysics Data System (ADS)

    Meng, Qizhi; Xie, Fugui; Liu, Xin-Jun

    2018-06-01

    This paper deals with the conceptual design, kinematic analysis and workspace identification of a novel four degrees-of-freedom (DOFs) high-speed spatial parallel robot for pick-and-place operations. The proposed spatial parallel robot consists of a base, four arms and a 1½ mobile platform. The mobile platform is a major innovation that avoids output singularity and offers the advantages of both single and double platforms. To investigate the characteristics of the robot's DOFs, a line graph method based on Grassmann line geometry is adopted in mobility analysis. In addition, the inverse kinematics is derived, and the constraint conditions to identify the correct solution are also provided. On the basis of the proposed concept, the workspace of the robot is identified using a set of presupposed parameters by taking input and output transmission index as the performance evaluation criteria.

  10. The paradigm compiler: Mapping a functional language for the connection machine

    NASA Technical Reports Server (NTRS)

    Dennis, Jack B.

    1989-01-01

    The Paradigm Compiler implements a new approach to compiling programs written in high level languages for execution on highly parallel computers. The general approach is to identify the principal data structures constructed by the program and to map these structures onto the processing elements of the target machine. The mapping is chosen to maximize performance as determined through compile time global analysis of the source program. The source language is Sisal, a functional language designed for scientific computations, and the target language is Paris, the published low level interface to the Connection Machine. The data structures considered are multidimensional arrays whose dimensions are known at compile time. Computations that build such arrays usually offer opportunities for highly parallel execution; they are data parallel. The Connection Machine is an attractive target for these computations, and the parallel for construct of the Sisal language is a convenient high level notation for data parallel algorithms. The principles and organization of the Paradigm Compiler are discussed.

  11. Pteros 2.0: Evolution of the fast parallel molecular analysis library for C++ and python.

    PubMed

    Yesylevskyy, Semen O

    2015-07-15

    Pteros is the high-performance open-source library for molecular modeling and analysis of molecular dynamics trajectories. Starting from version 2.0 Pteros is available for C++ and Python programming languages with very similar interfaces. This makes it suitable for writing complex reusable programs in C++ and simple interactive scripts in Python alike. New version improves the facilities for asynchronous trajectory reading and parallel execution of analysis tasks by introducing analysis plugins which could be written in either C++ or Python in completely uniform way. The high level of abstraction provided by analysis plugins greatly simplifies prototyping and implementation of complex analysis algorithms. Pteros is available for free under Artistic License from http://sourceforge.net/projects/pteros/. © 2015 Wiley Periodicals, Inc.

  12. Parallel Algorithms for Image Analysis.

    DTIC Science & Technology

    1982-06-01

    8217 _ _ _ _ _ _ _ 4. TITLE (aid Subtitle) S. TYPE OF REPORT & PERIOD COVERED PARALLEL ALGORITHMS FOR IMAGE ANALYSIS TECHNICAL 6. PERFORMING O4G. REPORT NUMBER TR-1180...Continue on reverse side it neceesary aid Identlfy by block number) Image processing; image analysis ; parallel processing; cellular computers. 20... IMAGE ANALYSIS TECHNICAL 6. PERFORMING ONG. REPORT NUMBER TR-1180 - 7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(s) Azriel Rosenfeld AFOSR-77-3271 9

  13. Transmission Index Research of Parallel Manipulators Based on Matrix Orthogonal Degree

    NASA Astrophysics Data System (ADS)

    Shao, Zhu-Feng; Mo, Jiao; Tang, Xiao-Qiang; Wang, Li-Ping

    2017-11-01

    Performance index is the standard of performance evaluation, and is the foundation of both performance analysis and optimal design for the parallel manipulator. Seeking the suitable kinematic indices is always an important and challenging issue for the parallel manipulator. So far, there are extensive studies in this field, but few existing indices can meet all the requirements, such as simple, intuitive, and universal. To solve this problem, the matrix orthogonal degree is adopted, and generalized transmission indices that can evaluate motion/force transmissibility of fully parallel manipulators are proposed. Transmission performance analysis of typical branches, end effectors, and parallel manipulators is given to illustrate proposed indices and analysis methodology. Simulation and analysis results reveal that proposed transmission indices possess significant advantages, such as normalized finite (ranging from 0 to 1), dimensionally homogeneous, frame-free, intuitive and easy to calculate. Besides, proposed indices well indicate the good transmission region and relativity to the singularity with better resolution than the traditional local conditioning index, and provide a novel tool for kinematic analysis and optimal design of fully parallel manipulators.

  14. Line-Focused Optical Excitation of Parallel Acoustic Focused Sample Streams for High Volumetric and Analytical Rate Flow Cytometry.

    PubMed

    Kalb, Daniel M; Fencl, Frank A; Woods, Travis A; Swanson, August; Maestas, Gian C; Juárez, Jaime J; Edwards, Bruce S; Shreve, Andrew P; Graves, Steven W

    2017-09-19

    Flow cytometry provides highly sensitive multiparameter analysis of cells and particles but has been largely limited to the use of a single focused sample stream. This limits the analytical rate to ∼50K particles/s and the volumetric rate to ∼250 μL/min. Despite the analytical prowess of flow cytometry, there are applications where these rates are insufficient, such as rare cell analysis in high cellular backgrounds (e.g., circulating tumor cells and fetal cells in maternal blood), detection of cells/particles in large dilute samples (e.g., water quality, urine analysis), or high-throughput screening applications. Here we report a highly parallel acoustic flow cytometer that uses an acoustic standing wave to focus particles into 16 parallel analysis points across a 2.3 mm wide optical flow cell. A line-focused laser and wide-field collection optics are used to excite and collect the fluorescence emission of these parallel streams onto a high-speed camera for analysis. With this instrument format and fluorescent microsphere standards, we obtain analysis rates of 100K/s and flow rates of 10 mL/min, while maintaining optical performance comparable to that of a commercial flow cytometer. The results with our initial prototype instrument demonstrate that the integration of key parallelizable components, including the line-focused laser, particle focusing using multinode acoustic standing waves, and a spatially arrayed detector, can increase analytical and volumetric throughputs by orders of magnitude in a compact, simple, and cost-effective platform. Such instruments will be of great value to applications in need of high-throughput yet sensitive flow cytometry analysis.

  15. Graphics Processing Unit Assisted Thermographic Compositing

    NASA Technical Reports Server (NTRS)

    Ragasa, Scott; Russell, Samuel S.

    2012-01-01

    Objective Develop a software application utilizing high performance computing techniques, including general purpose graphics processing units (GPGPUs), for the analysis and visualization of large thermographic data sets. Over the past several years, an increasing effort among scientists and engineers to utilize graphics processing units (GPUs) in a more general purpose fashion is allowing for previously unobtainable levels of computation by individual workstations. As data sets grow, the methods to work them grow at an equal, and often greater, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU which yield significant increases in performance. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Image processing is one area were GPUs are being used to greatly increase the performance of certain analysis and visualization techniques.

  16. Dust Dynamics in Protoplanetary Disks: Parallel Computing with PVM

    NASA Astrophysics Data System (ADS)

    de La Fuente Marcos, Carlos; Barge, Pierre; de La Fuente Marcos, Raúl

    2002-03-01

    We describe a parallel version of our high-order-accuracy particle-mesh code for the simulation of collisionless protoplanetary disks. We use this code to carry out a massively parallel, two-dimensional, time-dependent, numerical simulation, which includes dust particles, to study the potential role of large-scale, gaseous vortices in protoplanetary disks. This noncollisional problem is easy to parallelize on message-passing multicomputer architectures. We performed the simulations on a cache-coherent nonuniform memory access Origin 2000 machine, using both the parallel virtual machine (PVM) and message-passing interface (MPI) message-passing libraries. Our performance analysis suggests that, for our problem, PVM is about 25% faster than MPI. Using PVM and MPI made it possible to reduce CPU time and increase code performance. This allows for simulations with a large number of particles (N ~ 105-106) in reasonable CPU times. The performances of our implementation of the pa! rallel code on an Origin 2000 supercomputer are presented and discussed. They exhibit very good speedup behavior and low load unbalancing. Our results confirm that giant gaseous vortices can play a dominant role in giant planet formation.

  17. National Combustion Code: Parallel Implementation and Performance

    NASA Technical Reports Server (NTRS)

    Quealy, A.; Ryder, R.; Norris, A.; Liu, N.-S.

    2000-01-01

    The National Combustion Code (NCC) is being developed by an industry-government team for the design and analysis of combustion systems. CORSAIR-CCD is the current baseline reacting flow solver for NCC. This is a parallel, unstructured grid code which uses a distributed memory, message passing model for its parallel implementation. The focus of the present effort has been to improve the performance of the NCC flow solver to meet combustor designer requirements for model accuracy and analysis turnaround time. Improving the performance of this code contributes significantly to the overall reduction in time and cost of the combustor design cycle. This paper describes the parallel implementation of the NCC flow solver and summarizes its current parallel performance on an SGI Origin 2000. Earlier parallel performance results on an IBM SP-2 are also included. The performance improvements which have enabled a turnaround of less than 15 hours for a 1.3 million element fully reacting combustion simulation are described.

  18. Vectorization and parallelization of the finite strip method for dynamic Mindlin plate problems

    NASA Technical Reports Server (NTRS)

    Chen, Hsin-Chu; He, Ai-Fang

    1993-01-01

    The finite strip method is a semi-analytical finite element process which allows for a discrete analysis of certain types of physical problems by discretizing the domain of the problem into finite strips. This method decomposes a single large problem into m smaller independent subproblems when m harmonic functions are employed, thus yielding natural parallelism at a very high level. In this paper we address vectorization and parallelization strategies for the dynamic analysis of simply-supported Mindlin plate bending problems and show how to prevent potential conflicts in memory access during the assemblage process. The vector and parallel implementations of this method and the performance results of a test problem under scalar, vector, and vector-concurrent execution modes on the Alliant FX/80 are also presented.

  19. Parallel computing in experimental mechanics and optical measurement: A review (II)

    NASA Astrophysics Data System (ADS)

    Wang, Tianyi; Kemao, Qian

    2018-05-01

    With advantages such as non-destructiveness, high sensitivity and high accuracy, optical techniques have successfully integrated into various important physical quantities in experimental mechanics (EM) and optical measurement (OM). However, in pursuit of higher image resolutions for higher accuracy, the computation burden of optical techniques has become much heavier. Therefore, in recent years, heterogeneous platforms composing of hardware such as CPUs and GPUs, have been widely employed to accelerate these techniques due to their cost-effectiveness, short development cycle, easy portability, and high scalability. In this paper, we analyze various works by first illustrating their different architectures, followed by introducing their various parallel patterns for high speed computation. Next, we review the effects of CPU and GPU parallel computing specifically in EM & OM applications in a broad scope, which include digital image/volume correlation, fringe pattern analysis, tomography, hyperspectral imaging, computer-generated holograms, and integral imaging. In our survey, we have found that high parallelism can always be exploited in such applications for the development of high-performance systems.

  20. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers

    DOE PAGES

    Abraham, Mark James; Murtola, Teemu; Schulz, Roland; ...

    2015-07-15

    GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of biomolecules. It provides a rich set of calculation types, preparation and analysis tools. Several advanced techniques for free-energy calculations are supported. In version 5, it reaches new performance heights, through several new and enhanced parallelization algorithms. This work on every level; SIMD registers inside cores, multithreading, heterogeneous CPU–GPU acceleration, state-of-the-art 3D domain decomposition, and ensemble-level parallelization through built-in replica exchange and the separate Copernicus framework. Finally, the latest best-in-class compressed trajectory storage format is supported.

  1. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, Mark James; Murtola, Teemu; Schulz, Roland

    GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of biomolecules. It provides a rich set of calculation types, preparation and analysis tools. Several advanced techniques for free-energy calculations are supported. In version 5, it reaches new performance heights, through several new and enhanced parallelization algorithms. This work on every level; SIMD registers inside cores, multithreading, heterogeneous CPU–GPU acceleration, state-of-the-art 3D domain decomposition, and ensemble-level parallelization through built-in replica exchange and the separate Copernicus framework. Finally, the latest best-in-class compressed trajectory storage format is supported.

  2. High Performance Computing at NASA

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Cooper, D. M. (Technical Monitor)

    1994-01-01

    The speaker will give an overview of high performance computing in the U.S. in general and within NASA in particular, including a description of the recently signed NASA-IBM cooperative agreement. The latest performance figures of various parallel systems on the NAS Parallel Benchmarks will be presented. The speaker was one of the authors of the NAS (National Aerospace Standards) Parallel Benchmarks, which are now widely cited in the industry as a measure of sustained performance on realistic high-end scientific applications. It will be shown that significant progress has been made by the highly parallel supercomputer industry during the past year or so, with several new systems, based on high-performance RISC processors, that now deliver superior performance per dollar compared to conventional supercomputers. Various pitfalls in reporting performance will be discussed. The speaker will then conclude by assessing the general state of the high performance computing field.

  3. Highly-Parallel, Highly-Compact Computing Structures Implemented in Nanotechnology

    NASA Technical Reports Server (NTRS)

    Crawley, D. G.; Duff, M. J. B.; Fountain, T. J.; Moffat, C. D.; Tomlinson, C. D.

    1995-01-01

    In this paper, we describe work in which we are evaluating how the evolving properties of nano-electronic devices could best be utilized in highly parallel computing structures. Because of their combination of high performance, low power, and extreme compactness, such structures would have obvious applications in spaceborne environments, both for general mission control and for on-board data analysis. However, the anticipated properties of nano-devices mean that the optimum architecture for such systems is by no means certain. Candidates include single instruction multiple datastream (SIMD) arrays, neural networks, and multiple instruction multiple datastream (MIMD) assemblies.

  4. The Design and Evaluation of "CAPTools"--A Computer Aided Parallelization Toolkit

    NASA Technical Reports Server (NTRS)

    Yan, Jerry; Frumkin, Michael; Hribar, Michelle; Jin, Haoqiang; Waheed, Abdul; Johnson, Steve; Cross, Jark; Evans, Emyr; Ierotheou, Constantinos; Leggett, Pete; hide

    1998-01-01

    Writing applications for high performance computers is a challenging task. Although writing code by hand still offers the best performance, it is extremely costly and often not very portable. The Computer Aided Parallelization Tools (CAPTools) are a toolkit designed to help automate the mapping of sequential FORTRAN scientific applications onto multiprocessors. CAPTools consists of the following major components: an inter-procedural dependence analysis module that incorporates user knowledge; a 'self-propagating' data partitioning module driven via user guidance; an execution control mask generation and optimization module for the user to fine tune parallel processing of individual partitions; a program transformation/restructuring facility for source code clean up and optimization; a set of browsers through which the user interacts with CAPTools at each stage of the parallelization process; and a code generator supporting multiple programming paradigms on various multiprocessors. Besides describing the rationale behind the architecture of CAPTools, the parallelization process is illustrated via case studies involving structured and unstructured meshes. The programming process and the performance of the generated parallel programs are compared against other programming alternatives based on the NAS Parallel Benchmarks, ARC3D and other scientific applications. Based on these results, a discussion on the feasibility of constructing architectural independent parallel applications is presented.

  5. Static analysis techniques for semiautomatic synthesis of message passing software skeletons

    DOE PAGES

    Sottile, Matthew; Dagit, Jason; Zhang, Deli; ...

    2015-06-29

    The design of high-performance computing architectures demands performance analysis of large-scale parallel applications to derive various parameters concerning hardware design and software development. The process of performance analysis and benchmarking an application can be done in several ways with varying degrees of fidelity. One of the most cost-effective ways is to do a coarse-grained study of large-scale parallel applications through the use of program skeletons. The concept of a “program skeleton” that we discuss in this article is an abstracted program that is derived from a larger program where source code that is determined to be irrelevant is removed formore » the purposes of the skeleton. In this work, we develop a semiautomatic approach for extracting program skeletons based on compiler program analysis. Finally, we demonstrate correctness of our skeleton extraction process by comparing details from communication traces, as well as show the performance speedup of using skeletons by running simulations in the SST/macro simulator.« less

  6. High-Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Park, K. C.; Gumaste, U.; Chen, P.-S.; Lesoinne, M.; Stern, P.

    1996-01-01

    This research program dealt with the application of high-performance computing methods to the numerical simulation of complete jet engines. The program was initiated in January 1993 by applying two-dimensional parallel aeroelastic codes to the interior gas flow problem of a bypass jet engine. The fluid mesh generation, domain decomposition and solution capabilities were successfully tested. Attention was then focused on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by these structural displacements. The latter is treated by a ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field fluid elements. New partitioned analysis procedures to treat this coupled three-component problem were developed during 1994 and 1995. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers, including the iPSC-860, Paragon XP/S and the IBM SP2. For the global steady-state axisymmetric analysis of a complete engine we have decided to use the NASA-sponsored ENG10 program, which uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor tor parallel versions of ENG10 was developed. During 1995 and 1996 we developed the capability tor the first full 3D aeroelastic simulation of a multirow engine stage. This capability was tested on the IBM SP2 parallel supercomputer at NASA Ames. Benchmark results were presented at the 1196 Computational Aeroscience meeting.

  7. Three-Dimensional High-Lift Analysis Using a Parallel Unstructured Multigrid Solver

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1998-01-01

    A directional implicit unstructured agglomeration multigrid solver is ported to shared and distributed memory massively parallel machines using the explicit domain-decomposition and message-passing approach. Because the algorithm operates on local implicit lines in the unstructured mesh, special care is required in partitioning the problem for parallel computing. A weighted partitioning strategy is described which avoids breaking the implicit lines across processor boundaries, while incurring minimal additional communication overhead. Good scalability is demonstrated on a 128 processor SGI Origin 2000 machine and on a 512 processor CRAY T3E machine for reasonably fine grids. The feasibility of performing large-scale unstructured grid calculations with the parallel multigrid algorithm is demonstrated by computing the flow over a partial-span flap wing high-lift geometry on a highly resolved grid of 13.5 million points in approximately 4 hours of wall clock time on the CRAY T3E.

  8. Use Computer-Aided Tools to Parallelize Large CFD Applications

    NASA Technical Reports Server (NTRS)

    Jin, H.; Frumkin, M.; Yan, J.

    2000-01-01

    Porting applications to high performance parallel computers is always a challenging task. It is time consuming and costly. With rapid progressing in hardware architectures and increasing complexity of real applications in recent years, the problem becomes even more sever. Today, scalability and high performance are mostly involving handwritten parallel programs using message-passing libraries (e.g. MPI). However, this process is very difficult and often error-prone. The recent reemergence of shared memory parallel (SMP) architectures, such as the cache coherent Non-Uniform Memory Access (ccNUMA) architecture used in the SGI Origin 2000, show good prospects for scaling beyond hundreds of processors. Programming on an SMP is simplified by working in a globally accessible address space. The user can supply compiler directives, such as OpenMP, to parallelize the code. As an industry standard for portable implementation of parallel programs for SMPs, OpenMP is a set of compiler directives and callable runtime library routines that extend Fortran, C and C++ to express shared memory parallelism. It promises an incremental path for parallel conversion of existing software, as well as scalability and performance for a complete rewrite or an entirely new development. Perhaps the main disadvantage of programming with directives is that inserted directives may not necessarily enhance performance. In the worst cases, it can create erroneous results. While vendors have provided tools to perform error-checking and profiling, automation in directive insertion is very limited and often failed on large programs, primarily due to the lack of a thorough enough data dependence analysis. To overcome the deficiency, we have developed a toolkit, CAPO, to automatically insert OpenMP directives in Fortran programs and apply certain degrees of optimization. CAPO is aimed at taking advantage of detailed inter-procedural dependence analysis provided by CAPTools, developed by the University of Greenwich, to reduce potential errors made by users. Earlier tests on NAS Benchmarks and ARC3D have demonstrated good success of this tool. In this study, we have applied CAPO to parallelize three large applications in the area of computational fluid dynamics (CFD): OVERFLOW, TLNS3D and INS3D. These codes are widely used for solving Navier-Stokes equations with complicated boundary conditions and turbulence model in multiple zones. Each one comprises of from 50K to 1,00k lines of FORTRAN77. As an example, CAPO took 77 hours to complete the data dependence analysis of OVERFLOW on a workstation (SGI, 175MHz, R10K processor). A fair amount of effort was spent on correcting false dependencies due to lack of necessary knowledge during the analysis. Even so, CAPO provides an easy way for user to interact with the parallelization process. The OpenMP version was generated within a day after the analysis was completed. Due to sequential algorithms involved, code sections in TLNS3D and INS3D need to be restructured by hand to produce more efficient parallel codes. An included figure shows preliminary test results of the generated OVERFLOW with several test cases in single zone. The MPI data points for the small test case were taken from a handcoded MPI version. As we can see, CAPO's version has achieved 18 fold speed up on 32 nodes of the SGI O2K. For the small test case, it outperformed the MPI version. These results are very encouraging, but further work is needed. For example, although CAPO attempts to place directives on the outer- most parallel loops in an interprocedural framework, it does not insert directives based on the best manual strategy. In particular, it lacks the support of parallelization at the multi-zone level. Future work will emphasize on the development of methodology to work in a multi-zone level and with a hybrid approach. Development of tools to perform more complicated code transformation is also needed.

  9. A Parallel Independent Component Analysis Approach to Investigate Genomic Influence on Brain Function

    PubMed Central

    Liu, Jingyu; Demirci, Oguz; Calhoun, Vince D.

    2009-01-01

    Relationships between genomic data and functional brain images are of great interest but require new analysis approaches to integrate the high-dimensional data types. This letter presents an extension of a technique called parallel independent component analysis (paraICA), which enables the joint analysis of multiple modalities including interconnections between them. We extend our earlier work by allowing for multiple interconnections and by providing important overfitting controls. Performance was assessed by simulations under different conditions, and indicated reliable results can be extracted by properly balancing overfitting and underfitting. An application to functional magnetic resonance images and single nucleotide polymorphism array produced interesting findings. PMID:19834575

  10. A Parallel Independent Component Analysis Approach to Investigate Genomic Influence on Brain Function.

    PubMed

    Liu, Jingyu; Demirci, Oguz; Calhoun, Vince D

    2008-01-01

    Relationships between genomic data and functional brain images are of great interest but require new analysis approaches to integrate the high-dimensional data types. This letter presents an extension of a technique called parallel independent component analysis (paraICA), which enables the joint analysis of multiple modalities including interconnections between them. We extend our earlier work by allowing for multiple interconnections and by providing important overfitting controls. Performance was assessed by simulations under different conditions, and indicated reliable results can be extracted by properly balancing overfitting and underfitting. An application to functional magnetic resonance images and single nucleotide polymorphism array produced interesting findings.

  11. Integrated electronics for time-resolved array of single-photon avalanche diodes

    NASA Astrophysics Data System (ADS)

    Acconcia, G.; Crotti, M.; Rech, I.; Ghioni, M.

    2013-12-01

    The Time Correlated Single Photon Counting (TCSPC) technique has reached a prominent position among analytical methods employed in a great variety of fields, from medicine and biology (fluorescence spectroscopy) to telemetry (laser ranging) and communication (quantum cryptography). Nevertheless the development of TCSPC acquisition systems featuring both a high number of parallel channels and very high performance is still an open challenge: to satisfy the tight requirements set by the applications, a fully parallel acquisition system requires not only high efficiency single photon detectors but also a read-out electronics specifically designed to obtain the highest performance in conjunction with these sensors. To this aim three main blocks have been designed: a gigahertz bandwidth front-end stage to directly read the custom technology SPAD array avalanche current, a reconfigurable logic to route the detectors output signals to the acquisition chain and an array of time measurement circuits capable of recording the photon arrival times with picoseconds time resolution and a very high linearity. An innovative architecture based on these three circuits will feature a very high number of detectors to perform a truly parallel spatial or spectral analysis and a smaller number of high performance time-to-amplitude converter offering very high performance and a very high conversion frequency while limiting the area occupation and power dissipation. The routing logic will make the dynamic connection between the two arrays possible in order to guarantee that no information gets lost.

  12. Look-ahead Dynamic Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-20

    Look-ahead dynamic simulation software system incorporates the high performance parallel computing technologies, significantly reduces the solution time for each transient simulation case, and brings the dynamic simulation analysis into on-line applications to enable more transparency for better reliability and asset utilization. It takes the snapshot of the current power grid status, functions in parallel computing the system dynamic simulation, and outputs the transient response of the power system in real time.

  13. Interfacing Computer Aided Parallelization and Performance Analysis

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Biegel, Bryan A. (Technical Monitor)

    2003-01-01

    When porting sequential applications to parallel computer architectures, the program developer will typically go through several cycles of source code optimization and performance analysis. We have started a project to develop an environment where the user can jointly navigate through program structure and performance data information in order to make efficient optimization decisions. In a prototype implementation we have interfaced the CAPO computer aided parallelization tool with the Paraver performance analysis tool. We describe both tools and their interface and give an example for how the interface helps within the program development cycle of a benchmark code.

  14. Parallelization of the Physical-Space Statistical Analysis System (PSAS)

    NASA Technical Reports Server (NTRS)

    Larson, J. W.; Guo, J.; Lyster, P. M.

    1999-01-01

    Atmospheric data assimilation is a method of combining observations with model forecasts to produce a more accurate description of the atmosphere than the observations or forecast alone can provide. Data assimilation plays an increasingly important role in the study of climate and atmospheric chemistry. The NASA Data Assimilation Office (DAO) has developed the Goddard Earth Observing System Data Assimilation System (GEOS DAS) to create assimilated datasets. The core computational components of the GEOS DAS include the GEOS General Circulation Model (GCM) and the Physical-space Statistical Analysis System (PSAS). The need for timely validation of scientific enhancements to the data assimilation system poses computational demands that are best met by distributed parallel software. PSAS is implemented in Fortran 90 using object-based design principles. The analysis portions of the code solve two equations. The first of these is the "innovation" equation, which is solved on the unstructured observation grid using a preconditioned conjugate gradient (CG) method. The "analysis" equation is a transformation from the observation grid back to a structured grid, and is solved by a direct matrix-vector multiplication. Use of a factored-operator formulation reduces the computational complexity of both the CG solver and the matrix-vector multiplication, rendering the matrix-vector multiplications as a successive product of operators on a vector. Sparsity is introduced to these operators by partitioning the observations using an icosahedral decomposition scheme. PSAS builds a large (approx. 128MB) run-time database of parameters used in the calculation of these operators. Implementing a message passing parallel computing paradigm into an existing yet developing computational system as complex as PSAS is nontrivial. One of the technical challenges is balancing the requirements for computational reproducibility with the need for high performance. The problem of computational reproducibility is well known in the parallel computing community. It is a requirement that the parallel code perform calculations in a fashion that will yield identical results on different configurations of processing elements on the same platform. In some cases this problem can be solved by sacrificing performance. Meeting this requirement and still achieving high performance is very difficult. Topics to be discussed include: current PSAS design and parallelization strategy; reproducibility issues; load balance vs. database memory demands, possible solutions to these problems.

  15. Global Magnetohydrodynamic Simulation Using High Performance FORTRAN on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Ogino, T.

    High Performance Fortran (HPF) is one of modern and common techniques to achieve high performance parallel computation. We have translated a 3-dimensional magnetohydrodynamic (MHD) simulation code of the Earth's magnetosphere from VPP Fortran to HPF/JA on the Fujitsu VPP5000/56 vector-parallel supercomputer and the MHD code was fully vectorized and fully parallelized in VPP Fortran. The entire performance and capability of the HPF MHD code could be shown to be almost comparable to that of VPP Fortran. A 3-dimensional global MHD simulation of the earth's magnetosphere was performed at a speed of over 400 Gflops with an efficiency of 76.5 VPP5000/56 in vector and parallel computation that permitted comparison with catalog values. We have concluded that fluid and MHD codes that are fully vectorized and fully parallelized in VPP Fortran can be translated with relative ease to HPF/JA, and a code in HPF/JA may be expected to perform comparably to the same code written in VPP Fortran.

  16. Parametric analysis of hollow conductor parallel and coaxial transmission lines for high frequency space power distribution

    NASA Technical Reports Server (NTRS)

    Jeffries, K. S.; Renz, D. D.

    1984-01-01

    A parametric analysis was performed of transmission cables for transmitting electrical power at high voltage (up to 1000 V) and high frequency (10 to 30 kHz) for high power (100 kW or more) space missions. Large diameter (5 to 30 mm) hollow conductors were considered in closely spaced coaxial configurations and in parallel lines. Formulas were derived to calculate inductance and resistance for these conductors. Curves of cable conductance, mass, inductance, capacitance, resistance, power loss, and temperature were plotted for various conductor diameters, conductor thickness, and alternating current frequencies. An example 5 mm diameter coaxial cable with 0.5 mm conductor thickness was calculated to transmit 100 kW at 1000 Vac, 50 m with a power loss of 1900 W, an inductance of 1.45 micron and a capacitance of 0.07 micron-F. The computer programs written for this analysis are listed in the appendix.

  17. An Analysis of Performance Enhancement Techniques for Overset Grid Applications

    NASA Technical Reports Server (NTRS)

    Djomehri, J. J.; Biswas, R.; Potsdam, M.; Strawn, R. C.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The overset grid methodology has significantly reduced time-to-solution of high-fidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process resolves the geometrical complexity of the problem domain by using separately generated but overlapping structured discretization grids that periodically exchange information through interpolation. However, high performance computations of such large-scale realistic applications must be handled efficiently on state-of-the-art parallel supercomputers. This paper analyzes the effects of various performance enhancement techniques on the parallel efficiency of an overset grid Navier-Stokes CFD application running on an SGI Origin2000 machine. Specifically, the role of asynchronous communication, grid splitting, and grid grouping strategies are presented and discussed. Results indicate that performance depends critically on the level of latency hiding and the quality of load balancing across the processors.

  18. Two-way and three-way approaches to ultra high performance liquid chromatography-photodiode array dataset for the quantitative resolution of a two-component mixture containing ciprofloxacin and ornidazole.

    PubMed

    Dinç, Erdal; Ertekin, Zehra Ceren; Büker, Eda

    2016-09-01

    Two-way and three-way calibration models were applied to ultra high performance liquid chromatography with photodiode array data with coeluted peaks in the same wavelength and time regions for the simultaneous quantitation of ciprofloxacin and ornidazole in tablets. The chromatographic data cube (tensor) was obtained by recording chromatographic spectra of the standard and sample solutions containing ciprofloxacin and ornidazole with sulfadiazine as an internal standard as a function of time and wavelength. Parallel factor analysis and trilinear partial least squares were used as three-way calibrations for the decomposition of the tensor, whereas three-way unfolded partial least squares was applied as a two-way calibration to the unfolded dataset obtained from the data array of ultra high performance liquid chromatography with photodiode array detection. The validity and ability of two-way and three-way analysis methods were tested by analyzing validation samples: synthetic mixture, interday and intraday samples, and standard addition samples. Results obtained from two-way and three-way calibrations were compared to those provided by traditional ultra high performance liquid chromatography. The proposed methods, parallel factor analysis, trilinear partial least squares, unfolded partial least squares, and traditional ultra high performance liquid chromatography were successfully applied to the quantitative estimation of the solid dosage form containing ciprofloxacin and ornidazole. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhancing Application Performance Using Mini-Apps: Comparison of Hybrid Parallel Programming Paradigms

    NASA Technical Reports Server (NTRS)

    Lawson, Gary; Sosonkina, Masha; Baurle, Robert; Hammond, Dana

    2017-01-01

    In many fields, real-world applications for High Performance Computing have already been developed. For these applications to stay up-to-date, new parallel strategies must be explored to yield the best performance; however, restructuring or modifying a real-world application may be daunting depending on the size of the code. In this case, a mini-app may be employed to quickly explore such options without modifying the entire code. In this work, several mini-apps have been created to enhance a real-world application performance, namely the VULCAN code for complex flow analysis developed at the NASA Langley Research Center. These mini-apps explore hybrid parallel programming paradigms with Message Passing Interface (MPI) for distributed memory access and either Shared MPI (SMPI) or OpenMP for shared memory accesses. Performance testing shows that MPI+SMPI yields the best execution performance, while requiring the largest number of code changes. A maximum speedup of 23 was measured for MPI+SMPI, but only 11 was measured for MPI+OpenMP.

  20. MrBayes tgMC3++: A High Performance and Resource-Efficient GPU-Oriented Phylogenetic Analysis Method.

    PubMed

    Ling, Cheng; Hamada, Tsuyoshi; Gao, Jingyang; Zhao, Guoguang; Sun, Donghong; Shi, Weifeng

    2016-01-01

    MrBayes is a widespread phylogenetic inference tool harnessing empirical evolutionary models and Bayesian statistics. However, the computational cost on the likelihood estimation is very expensive, resulting in undesirably long execution time. Although a number of multi-threaded optimizations have been proposed to speed up MrBayes, there are bottlenecks that severely limit the GPU thread-level parallelism of likelihood estimations. This study proposes a high performance and resource-efficient method for GPU-oriented parallelization of likelihood estimations. Instead of having to rely on empirical programming, the proposed novel decomposition storage model implements high performance data transfers implicitly. In terms of performance improvement, a speedup factor of up to 178 can be achieved on the analysis of simulated datasets by four Tesla K40 cards. In comparison to the other publicly available GPU-oriented MrBayes, the tgMC 3 ++ method (proposed herein) outperforms the tgMC 3 (v1.0), nMC 3 (v2.1.1) and oMC 3 (v1.00) methods by speedup factors of up to 1.6, 1.9 and 2.9, respectively. Moreover, tgMC 3 ++ supports more evolutionary models and gamma categories, which previous GPU-oriented methods fail to take into analysis.

  1. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-03-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3DMIP platform when a larger number of cores is available.

  2. Massive Exploration of Perturbed Conditions of the Blood Coagulation Cascade through GPU Parallelization

    PubMed Central

    Cazzaniga, Paolo; Nobile, Marco S.; Besozzi, Daniela; Bellini, Matteo; Mauri, Giancarlo

    2014-01-01

    The introduction of general-purpose Graphics Processing Units (GPUs) is boosting scientific applications in Bioinformatics, Systems Biology, and Computational Biology. In these fields, the use of high-performance computing solutions is motivated by the need of performing large numbers of in silico analysis to study the behavior of biological systems in different conditions, which necessitate a computing power that usually overtakes the capability of standard desktop computers. In this work we present coagSODA, a CUDA-powered computational tool that was purposely developed for the analysis of a large mechanistic model of the blood coagulation cascade (BCC), defined according to both mass-action kinetics and Hill functions. coagSODA allows the execution of parallel simulations of the dynamics of the BCC by automatically deriving the system of ordinary differential equations and then exploiting the numerical integration algorithm LSODA. We present the biological results achieved with a massive exploration of perturbed conditions of the BCC, carried out with one-dimensional and bi-dimensional parameter sweep analysis, and show that GPU-accelerated parallel simulations of this model can increase the computational performances up to a 181× speedup compared to the corresponding sequential simulations. PMID:25025072

  3. Evaluation of Parallel Analysis Methods for Determining the Number of Factors

    ERIC Educational Resources Information Center

    Crawford, Aaron V.; Green, Samuel B.; Levy, Roy; Lo, Wen-Juo; Scott, Lietta; Svetina, Dubravka; Thompson, Marilyn S.

    2010-01-01

    Population and sample simulation approaches were used to compare the performance of parallel analysis using principal component analysis (PA-PCA) and parallel analysis using principal axis factoring (PA-PAF) to identify the number of underlying factors. Additionally, the accuracies of the mean eigenvalue and the 95th percentile eigenvalue criteria…

  4. Decoupling Principle Analysis and Development of a Parallel Three-Dimensional Force Sensor

    PubMed Central

    Zhao, Yanzhi; Jiao, Leihao; Weng, Dacheng; Zhang, Dan; Zheng, Rencheng

    2016-01-01

    In the development of the multi-dimensional force sensor, dimension coupling is the ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence of the friction on dimension coupling is effectively reduced by making the friction rolling instead of sliding friction. In this paper, the mathematical model is established by combining with the structure model of the parallel three-dimensional force sensor, and the modeling and analysis of mechanical decoupling are carried out. The coupling degree (ε) of the designed sensor is defined and calculated, and the calculation results show that the mechanical decoupling parallel structure of the sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition experiment system are built, and then calibration experiments were done. According to the calibration experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than 3.02%. The experimental results show that the sensor system possesses high measuring accuracy, which provides a basis for the applied research of the parallel multi-dimensional force sensor. PMID:27649194

  5. Research on retailer data clustering algorithm based on Spark

    NASA Astrophysics Data System (ADS)

    Huang, Qiuman; Zhou, Feng

    2017-03-01

    Big data analysis is a hot topic in the IT field now. Spark is a high-reliability and high-performance distributed parallel computing framework for big data sets. K-means algorithm is one of the classical partition methods in clustering algorithm. In this paper, we study the k-means clustering algorithm on Spark. Firstly, the principle of the algorithm is analyzed, and then the clustering analysis is carried out on the supermarket customers through the experiment to find out the different shopping patterns. At the same time, this paper proposes the parallelization of k-means algorithm and the distributed computing framework of Spark, and gives the concrete design scheme and implementation scheme. This paper uses the two-year sales data of a supermarket to validate the proposed clustering algorithm and achieve the goal of subdividing customers, and then analyze the clustering results to help enterprises to take different marketing strategies for different customer groups to improve sales performance.

  6. Multi-threaded parallel simulation of non-local non-linear problems in ultrashort laser pulse propagation in the presence of plasma

    NASA Astrophysics Data System (ADS)

    Baregheh, Mandana; Mezentsev, Vladimir; Schmitz, Holger

    2011-06-01

    We describe a parallel multi-threaded approach for high performance modelling of wide class of phenomena in ultrafast nonlinear optics. Specific implementation has been performed using the highly parallel capabilities of a programmable graphics processor.

  7. A Parallel Framework with Block Matrices of a Discrete Fourier Transform for Vector-Valued Discrete-Time Signals.

    PubMed

    Soto-Quiros, Pablo

    2015-01-01

    This paper presents a parallel implementation of a kind of discrete Fourier transform (DFT): the vector-valued DFT. The vector-valued DFT is a novel tool to analyze the spectra of vector-valued discrete-time signals. This parallel implementation is developed in terms of a mathematical framework with a set of block matrix operations. These block matrix operations contribute to analysis, design, and implementation of parallel algorithms in multicore processors. In this work, an implementation and experimental investigation of the mathematical framework are performed using MATLAB with the Parallel Computing Toolbox. We found that there is advantage to use multicore processors and a parallel computing environment to minimize the high execution time. Additionally, speedup increases when the number of logical processors and length of the signal increase.

  8. A hybrid parallel framework for the cellular Potts model simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yi; He, Kejing; Dong, Shoubin

    2009-01-01

    The Cellular Potts Model (CPM) has been widely used for biological simulations. However, most current implementations are either sequential or approximated, which can't be used for large scale complex 3D simulation. In this paper we present a hybrid parallel framework for CPM simulations. The time-consuming POE solving, cell division, and cell reaction operation are distributed to clusters using the Message Passing Interface (MPI). The Monte Carlo lattice update is parallelized on shared-memory SMP system using OpenMP. Because the Monte Carlo lattice update is much faster than the POE solving and SMP systems are more and more common, this hybrid approachmore » achieves good performance and high accuracy at the same time. Based on the parallel Cellular Potts Model, we studied the avascular tumor growth using a multiscale model. The application and performance analysis show that the hybrid parallel framework is quite efficient. The hybrid parallel CPM can be used for the large scale simulation ({approx}10{sup 8} sites) of complex collective behavior of numerous cells ({approx}10{sup 6}).« less

  9. The Open Connectome Project Data Cluster: Scalable Analysis and Vision for High-Throughput Neuroscience.

    PubMed

    Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R; Bock, Davi D; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R Clay; Smith, Stephen J; Szalay, Alexander S; Vogelstein, Joshua T; Vogelstein, R Jacob

    2013-01-01

    We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes - neural connectivity maps of the brain-using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems-reads to parallel disk arrays and writes to solid-state storage-to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization.

  10. The Open Connectome Project Data Cluster: Scalable Analysis and Vision for High-Throughput Neuroscience

    PubMed Central

    Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R.; Bock, Davi D.; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C.; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R. Clay; Smith, Stephen J.; Szalay, Alexander S.; Vogelstein, Joshua T.; Vogelstein, R. Jacob

    2013-01-01

    We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes— neural connectivity maps of the brain—using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems—reads to parallel disk arrays and writes to solid-state storage—to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization. PMID:24401992

  11. By Hand or Not By-Hand: A Case Study of Alternative Approaches to Parallelize CFD Applications

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Bailey, David (Technical Monitor)

    1997-01-01

    While parallel processing promises to speed up applications by several orders of magnitude, the performance achieved still depends upon several factors, including the multiprocessor architecture, system software, data distribution and alignment, as well as the methods used for partitioning the application and mapping its components onto the architecture. The existence of the Gorden Bell Prize given out at Supercomputing every year suggests that while good performance can be attained for real applications on general purpose multiprocessors, the large investment in man-power and time still has to be repeated for each application-machine combination. As applications and machine architectures become more complex, the cost and time-delays for obtaining performance by hand will become prohibitive. Computer users today can turn to three possible avenues for help: parallel libraries, parallel languages and compilers, interactive parallelization tools. The success of these methodologies, in turn, depends on proper application of data dependency analysis, program structure recognition and transformation, performance prediction as well as exploitation of user supplied knowledge. NASA has been developing multidisciplinary applications on highly parallel architectures under the High Performance Computing and Communications Program. Over the past six years, the transition of underlying hardware and system software have forced the scientists to spend a large effort to migrate and recede their applications. Various attempts to exploit software tools to automate the parallelization process have not produced favorable results. In this paper, we report our most recent experience with CAPTOOL, a package developed at Greenwich University. We have chosen CAPTOOL for three reasons: 1. CAPTOOL accepts a FORTRAN 77 program as input. This suggests its potential applicability to a large collection of legacy codes currently in use. 2. CAPTOOL employs domain decomposition to obtain parallelism. Although the fact that not all kinds of parallelism are handled may seem unappealing, many NASA applications in computational aerosciences as well as earth and space sciences are amenable to domain decomposition. 3. CAPTOOL generates code for a large variety of environments employed across NASA centers: MPI/PVM on network of workstations to the IBS/SP2 and CRAY/T3D.

  12. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics.

    PubMed

    Wu, Xiao-Lin; Sun, Chuanyu; Beissinger, Timothy M; Rosa, Guilherme Jm; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel

    2012-09-25

    Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs.

  13. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics

    PubMed Central

    2012-01-01

    Background Most Bayesian models for the analysis of complex traits are not analytically tractable and inferences are based on computationally intensive techniques. This is true of Bayesian models for genome-enabled selection, which uses whole-genome molecular data to predict the genetic merit of candidate animals for breeding purposes. In this regard, parallel computing can overcome the bottlenecks that can arise from series computing. Hence, a major goal of the present study is to bridge the gap to high-performance Bayesian computation in the context of animal breeding and genetics. Results Parallel Monte Carlo Markov chain algorithms and strategies are described in the context of animal breeding and genetics. Parallel Monte Carlo algorithms are introduced as a starting point including their applications to computing single-parameter and certain multiple-parameter models. Then, two basic approaches for parallel Markov chain Monte Carlo are described: one aims at parallelization within a single chain; the other is based on running multiple chains, yet some variants are discussed as well. Features and strategies of the parallel Markov chain Monte Carlo are illustrated using real data, including a large beef cattle dataset with 50K SNP genotypes. Conclusions Parallel Markov chain Monte Carlo algorithms are useful for computing complex Bayesian models, which does not only lead to a dramatic speedup in computing but can also be used to optimize model parameters in complex Bayesian models. Hence, we anticipate that use of parallel Markov chain Monte Carlo will have a profound impact on revolutionizing the computational tools for genomic selection programs. PMID:23009363

  14. Analysis of multigrid methods on massively parallel computers: Architectural implications

    NASA Technical Reports Server (NTRS)

    Matheson, Lesley R.; Tarjan, Robert E.

    1993-01-01

    We study the potential performance of multigrid algorithms running on massively parallel computers with the intent of discovering whether presently envisioned machines will provide an efficient platform for such algorithms. We consider the domain parallel version of the standard V cycle algorithm on model problems, discretized using finite difference techniques in two and three dimensions on block structured grids of size 10(exp 6) and 10(exp 9), respectively. Our models of parallel computation were developed to reflect the computing characteristics of the current generation of massively parallel multicomputers. These models are based on an interconnection network of 256 to 16,384 message passing, 'workstation size' processors executing in an SPMD mode. The first model accomplishes interprocessor communications through a multistage permutation network. The communication cost is a logarithmic function which is similar to the costs in a variety of different topologies. The second model allows single stage communication costs only. Both models were designed with information provided by machine developers and utilize implementation derived parameters. With the medium grain parallelism of the current generation and the high fixed cost of an interprocessor communication, our analysis suggests an efficient implementation requires the machine to support the efficient transmission of long messages, (up to 1000 words) or the high initiation cost of a communication must be significantly reduced through an alternative optimization technique. Furthermore, with variable length message capability, our analysis suggests the low diameter multistage networks provide little or no advantage over a simple single stage communications network.

  15. Reliability Modeling Methodology for Independent Approaches on Parallel Runways Safety Analysis

    NASA Technical Reports Server (NTRS)

    Babcock, P.; Schor, A.; Rosch, G.

    1998-01-01

    This document is an adjunct to the final report An Integrated Safety Analysis Methodology for Emerging Air Transport Technologies. That report presents the results of our analysis of the problem of simultaneous but independent, approaches of two aircraft on parallel runways (independent approaches on parallel runways, or IAPR). This introductory chapter presents a brief overview and perspective of approaches and methodologies for performing safety analyses for complex systems. Ensuing chapter provide the technical details that underlie the approach that we have taken in performing the safety analysis for the IAPR concept.

  16. Parallel labeling experiments and metabolic flux analysis: Past, present and future methodologies.

    PubMed

    Crown, Scott B; Antoniewicz, Maciek R

    2013-03-01

    Radioactive and stable isotopes have been applied for decades to elucidate metabolic pathways and quantify carbon flow in cellular systems using mass and isotope balancing approaches. Isotope-labeling experiments can be conducted as a single tracer experiment, or as parallel labeling experiments. In the latter case, several experiments are performed under identical conditions except for the choice of substrate labeling. In this review, we highlight robust approaches for probing metabolism and addressing metabolically related questions though parallel labeling experiments. In the first part, we provide a brief historical perspective on parallel labeling experiments, from the early metabolic studies when radioisotopes were predominant to present-day applications based on stable-isotopes. We also elaborate on important technical and theoretical advances that have facilitated the transition from radioisotopes to stable-isotopes. In the second part of the review, we focus on parallel labeling experiments for (13)C-metabolic flux analysis ((13)C-MFA). Parallel experiments offer several advantages that include: tailoring experiments to resolve specific fluxes with high precision; reducing the length of labeling experiments by introducing multiple entry-points of isotopes; validating biochemical network models; and improving the performance of (13)C-MFA in systems where the number of measurements is limited. We conclude by discussing some challenges facing the use of parallel labeling experiments for (13)C-MFA and highlight the need to address issues related to biological variability, data integration, and rational tracer selection. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Visualizing Parallel Computer System Performance

    NASA Technical Reports Server (NTRS)

    Malony, Allen D.; Reed, Daniel A.

    1988-01-01

    Parallel computer systems are among the most complex of man's creations, making satisfactory performance characterization difficult. Despite this complexity, there are strong, indeed, almost irresistible, incentives to quantify parallel system performance using a single metric. The fallacy lies in succumbing to such temptations. A complete performance characterization requires not only an analysis of the system's constituent levels, it also requires both static and dynamic characterizations. Static or average behavior analysis may mask transients that dramatically alter system performance. Although the human visual system is remarkedly adept at interpreting and identifying anomalies in false color data, the importance of dynamic, visual scientific data presentation has only recently been recognized Large, complex parallel system pose equally vexing performance interpretation problems. Data from hardware and software performance monitors must be presented in ways that emphasize important events while eluding irrelevant details. Design approaches and tools for performance visualization are the subject of this paper.

  18. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos

    2014-09-01

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo99 used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 106 cm-1) in a tube, their delta reactivities are the still within safety limits; however, for 7.9542 g and 8.838 g (× 106 cm-1) the limits were exceeded.

  19. Parallel performance investigations of an unstructured mesh Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    2000-01-01

    A Reynolds-averaged Navier-Stokes solver based on unstructured mesh techniques for analysis of high-lift configurations is described. The method makes use of an agglomeration multigrid solver for convergence acceleration. Implicit line-smoothing is employed to relieve the stiffness associated with highly stretched meshes. A GMRES technique is also implemented to speed convergence at the expense of additional memory usage. The solver is cache efficient and fully vectorizable, and is parallelized using a two-level hybrid MPI-OpenMP implementation suitable for shared and/or distributed memory architectures, as well as clusters of shared memory machines. Convergence and scalability results are illustrated for various high-lift cases.

  20. Enabling Efficient Climate Science Workflows in High Performance Computing Environments

    NASA Astrophysics Data System (ADS)

    Krishnan, H.; Byna, S.; Wehner, M. F.; Gu, J.; O'Brien, T. A.; Loring, B.; Stone, D. A.; Collins, W.; Prabhat, M.; Liu, Y.; Johnson, J. N.; Paciorek, C. J.

    2015-12-01

    A typical climate science workflow often involves a combination of acquisition of data, modeling, simulation, analysis, visualization, publishing, and storage of results. Each of these tasks provide a myriad of challenges when running on a high performance computing environment such as Hopper or Edison at NERSC. Hurdles such as data transfer and management, job scheduling, parallel analysis routines, and publication require a lot of forethought and planning to ensure that proper quality control mechanisms are in place. These steps require effectively utilizing a combination of well tested and newly developed functionality to move data, perform analysis, apply statistical routines, and finally, serve results and tools to the greater scientific community. As part of the CAlibrated and Systematic Characterization, Attribution and Detection of Extremes (CASCADE) project we highlight a stack of tools our team utilizes and has developed to ensure that large scale simulation and analysis work are commonplace and provide operations that assist in everything from generation/procurement of data (HTAR/Globus) to automating publication of results to portals like the Earth Systems Grid Federation (ESGF), all while executing everything in between in a scalable environment in a task parallel way (MPI). We highlight the use and benefit of these tools by showing several climate science analysis use cases they have been applied to.

  1. A high-throughput platform for low-volume high-temperature/pressure sealed vessel solvent extractions.

    PubMed

    Damm, Markus; Kappe, C Oliver

    2011-11-30

    A high-throughput platform for performing parallel solvent extractions in sealed HPLC/GC vials inside a microwave reactor is described. The system consist of a strongly microwave-absorbing silicon carbide plate with 20 cylindrical wells of appropriate dimensions to be fitted with standard HPLC/GC autosampler vials serving as extraction vessels. Due to the possibility of heating up to four heating platforms simultaneously (80 vials), efficient parallel analytical-scale solvent extractions can be performed using volumes of 0.5-1.5 mL at a maximum temperature/pressure limit of 200°C/20 bar. Since the extraction and subsequent analysis by either gas chromatography or liquid chromatography coupled with mass detection (GC-MS or LC-MS) is performed directly from the autosampler vial, errors caused by sample transfer can be minimized. The platform was evaluated for the extraction and quantification of caffeine from commercial coffee powders assessing different solvent types, extraction temperatures and times. For example, 141±11 μg caffeine (5 mg coffee powder) were extracted during a single extraction cycle using methanol as extraction solvent, whereas only 90±11 were obtained performing the extraction in methylene chloride, applying the same reaction conditions (90°C, 10 min). In multiple extraction experiments a total of ~150 μg caffeine was extracted from 5 mg commercial coffee powder. In addition to the quantitative caffeine determination, a comparative qualitative analysis of the liquid phase coffee extracts and the headspace volatiles was performed, placing special emphasis on headspace analysis using solid-phase microextraction (SPME) techniques. The miniaturized parallel extraction technique introduced herein allows solvent extractions to be performed at significantly expanded temperature/pressure limits and shortened extraction times, using standard HPLC autosampler vials as reaction vessels. Remarkable differences regarding peak pattern and main peaks were observed when low-temperature extraction (60°C) and high-temperature extraction (160°C) are compared prior to headspace-SPME-GC-MS performed in the same HPLC/GC vials. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. NETRA: A parallel architecture for integrated vision systems. 1: Architecture and organization

    NASA Technical Reports Server (NTRS)

    Choudhary, Alok N.; Patel, Janak H.; Ahuja, Narendra

    1989-01-01

    Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is considered to be a system that uses vision algorithms from all levels of processing for a high level application (such as object recognition). A model of computation is presented for parallel processing for an IVS. Using the model, desired features and capabilities of a parallel architecture suitable for IVSs are derived. Then a multiprocessor architecture (called NETRA) is presented. This architecture is highly flexible without the use of complex interconnection schemes. The topology of NETRA is recursively defined and hence is easily scalable from small to large systems. Homogeneity of NETRA permits fault tolerance and graceful degradation under faults. It is a recursively defined tree-type hierarchical architecture where each of the leaf nodes consists of a cluster of processors connected with a programmable crossbar with selective broadcast capability to provide for desired flexibility. A qualitative evaluation of NETRA is presented. Then general schemes are described to map parallel algorithms onto NETRA. Algorithms are classified according to their communication requirements for parallel processing. An extensive analysis of inter-cluster communication strategies in NETRA is presented, and parameters affecting performance of parallel algorithms when mapped on NETRA are discussed. Finally, a methodology to evaluate performance of algorithms on NETRA is described.

  3. Parallelization of interpolation, solar radiation and water flow simulation modules in GRASS GIS using OpenMP

    NASA Astrophysics Data System (ADS)

    Hofierka, Jaroslav; Lacko, Michal; Zubal, Stanislav

    2017-10-01

    In this paper, we describe the parallelization of three complex and computationally intensive modules of GRASS GIS using the OpenMP application programming interface for multi-core computers. These include the v.surf.rst module for spatial interpolation, the r.sun module for solar radiation modeling and the r.sim.water module for water flow simulation. We briefly describe the functionality of the modules and parallelization approaches used in the modules. Our approach includes the analysis of the module's functionality, identification of source code segments suitable for parallelization and proper application of OpenMP parallelization code to create efficient threads processing the subtasks. We document the efficiency of the solutions using the airborne laser scanning data representing land surface in the test area and derived high-resolution digital terrain model grids. We discuss the performance speed-up and parallelization efficiency depending on the number of processor threads. The study showed a substantial increase in computation speeds on a standard multi-core computer while maintaining the accuracy of results in comparison to the output from original modules. The presented parallelization approach showed the simplicity and efficiency of the parallelization of open-source GRASS GIS modules using OpenMP, leading to an increased performance of this geospatial software on standard multi-core computers.

  4. [Series: Medical Applications of the PHITS Code (2): Acceleration by Parallel Computing].

    PubMed

    Furuta, Takuya; Sato, Tatsuhiko

    2015-01-01

    Time-consuming Monte Carlo dose calculation becomes feasible owing to the development of computer technology. However, the recent development is due to emergence of the multi-core high performance computers. Therefore, parallel computing becomes a key to achieve good performance of software programs. A Monte Carlo simulation code PHITS contains two parallel computing functions, the distributed-memory parallelization using protocols of message passing interface (MPI) and the shared-memory parallelization using open multi-processing (OpenMP) directives. Users can choose the two functions according to their needs. This paper gives the explanation of the two functions with their advantages and disadvantages. Some test applications are also provided to show their performance using a typical multi-core high performance workstation.

  5. New NAS Parallel Benchmarks Results

    NASA Technical Reports Server (NTRS)

    Yarrow, Maurice; Saphir, William; VanderWijngaart, Rob; Woo, Alex; Kutler, Paul (Technical Monitor)

    1997-01-01

    NPB2 (NAS (NASA Advanced Supercomputing) Parallel Benchmarks 2) is an implementation, based on Fortran and the MPI (message passing interface) message passing standard, of the original NAS Parallel Benchmark specifications. NPB2 programs are run with little or no tuning, in contrast to NPB vendor implementations, which are highly optimized for specific architectures. NPB2 results complement, rather than replace, NPB results. Because they have not been optimized by vendors, NPB2 implementations approximate the performance a typical user can expect for a portable parallel program on distributed memory parallel computers. Together these results provide an insightful comparison of the real-world performance of high-performance computers. New NPB2 features: New implementation (CG), new workstation class problem sizes, new serial sample versions, more performance statistics.

  6. Accelerating DNA analysis applications on GPU clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumeo, Antonino; Villa, Oreste

    DNA analysis is an emerging application of high performance bioinformatic. Modern sequencing machinery are able to provide, in few hours, large input streams of data which needs to be matched against exponentially growing databases known fragments. The ability to recognize these patterns effectively and fastly may allow extending the scale and the reach of the investigations performed by biology scientists. Aho-Corasick is an exact, multiple pattern matching algorithm often at the base of this application. High performance systems are a promising platform to accelerate this algorithm, which is computationally intensive but also inherently parallel. Nowadays, high performance systems also includemore » heterogeneous processing elements, such as Graphic Processing Units (GPUs), to further accelerate parallel algorithms. Unfortunately, the Aho-Corasick algorithm exhibits large performance variabilities, depending on the size of the input streams, on the number of patterns to search and on the number of matches, and poses significant challenges on current high performance software and hardware implementations. An adequate mapping of the algorithm on the target architecture, coping with the limit of the underlining hardware, is required to reach the desired high throughputs. Load balancing also plays a crucial role when considering the limited bandwidth among the nodes of these systems. In this paper we present an efficient implementation of the Aho-Corasick algorithm for high performance clusters accelerated with GPUs. We discuss how we partitioned and adapted the algorithm to fit the Tesla C1060 GPU and then present a MPI based implementation for a heterogeneous high performance cluster. We compare this implementation to MPI and MPI with pthreads based implementations for a homogeneous cluster of x86 processors, discussing the stability vs. the performance and the scaling of the solutions, taking into consideration aspects such as the bandwidth among the different nodes.« less

  7. Spatiotemporal Domain Decomposition for Massive Parallel Computation of Space-Time Kernel Density

    NASA Astrophysics Data System (ADS)

    Hohl, A.; Delmelle, E. M.; Tang, W.

    2015-07-01

    Accelerated processing capabilities are deemed critical when conducting analysis on spatiotemporal datasets of increasing size, diversity and availability. High-performance parallel computing offers the capacity to solve computationally demanding problems in a limited timeframe, but likewise poses the challenge of preventing processing inefficiency due to workload imbalance between computing resources. Therefore, when designing new algorithms capable of implementing parallel strategies, careful spatiotemporal domain decomposition is necessary to account for heterogeneity in the data. In this study, we perform octtree-based adaptive decomposition of the spatiotemporal domain for parallel computation of space-time kernel density. In order to avoid edge effects near subdomain boundaries, we establish spatiotemporal buffers to include adjacent data-points that are within the spatial and temporal kernel bandwidths. Then, we quantify computational intensity of each subdomain to balance workloads among processors. We illustrate the benefits of our methodology using a space-time epidemiological dataset of Dengue fever, an infectious vector-borne disease that poses a severe threat to communities in tropical climates. Our parallel implementation of kernel density reaches substantial speedup compared to sequential processing, and achieves high levels of workload balance among processors due to great accuracy in quantifying computational intensity. Our approach is portable of other space-time analytical tests.

  8. Proceedings: Sisal `93

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feo, J.T.

    1993-10-01

    This report contain papers on: Programmability and performance issues; The case of an iterative partial differential equation solver; Implementing the kernal of the Australian Region Weather Prediction Model in Sisal; Even and quarter-even prime length symmetric FFTs and their Sisal Implementations; Top-down thread generation for Sisal; Overlapping communications and computations on NUMA architechtures; Compiling technique based on dataflow analysis for funtional programming language Valid; Copy elimination for true multidimensional arrays in Sisal 2.0; Increasing parallelism for an optimization that reduces copying in IF2 graphs; Caching in on Sisal; Cache performance of Sisal Vs. FORTRAN; FFT algorithms on a shared-memory multiprocessor;more » A parallel implementation of nonnumeric search problems in Sisal; Computer vision algorithms in Sisal; Compilation of Sisal for a high-performance data driven vector processor; Sisal on distributed memory machines; A virtual shared addressing system for distributed memory Sisal; Developing a high-performance FFT algorithm in Sisal for a vector supercomputer; Implementation issues for IF2 on a static data-flow architechture; and Systematic control of parallelism in array-based data-flow computation. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less

  9. MPI, HPF or OpenMP: A Study with the NAS Benchmarks

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Frumkin, Michael; Hribar, Michelle; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1999-01-01

    Porting applications to new high performance parallel and distributed platforms is a challenging task. Writing parallel code by hand is time consuming and costly, but the task can be simplified by high level languages and would even better be automated by parallelizing tools and compilers. The definition of HPF (High Performance Fortran, based on data parallel model) and OpenMP (based on shared memory parallel model) standards has offered great opportunity in this respect. Both provide simple and clear interfaces to language like FORTRAN and simplify many tedious tasks encountered in writing message passing programs. In our study we implemented the parallel versions of the NAS Benchmarks with HPF and OpenMP directives. Comparison of their performance with the MPI implementation and pros and cons of different approaches will be discussed along with experience of using computer-aided tools to help parallelize these benchmarks. Based on the study,potentials of applying some of the techniques to realistic aerospace applications will be presented

  10. MPI, HPF or OpenMP: A Study with the NAS Benchmarks

    NASA Technical Reports Server (NTRS)

    Jin, H.; Frumkin, M.; Hribar, M.; Waheed, A.; Yan, J.; Saini, Subhash (Technical Monitor)

    1999-01-01

    Porting applications to new high performance parallel and distributed platforms is a challenging task. Writing parallel code by hand is time consuming and costly, but this task can be simplified by high level languages and would even better be automated by parallelizing tools and compilers. The definition of HPF (High Performance Fortran, based on data parallel model) and OpenMP (based on shared memory parallel model) standards has offered great opportunity in this respect. Both provide simple and clear interfaces to language like FORTRAN and simplify many tedious tasks encountered in writing message passing programs. In our study, we implemented the parallel versions of the NAS Benchmarks with HPF and OpenMP directives. Comparison of their performance with the MPI implementation and pros and cons of different approaches will be discussed along with experience of using computer-aided tools to help parallelize these benchmarks. Based on the study, potentials of applying some of the techniques to realistic aerospace applications will be presented.

  11. Xyce parallel electronic simulator users guide, version 6.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas; Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers; A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models; Device models that are specifically tailored to meet Sandia's needs, including some radiationaware devices (for Sandia users only); and Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase-a message passing parallel implementation-which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  12. Xyce parallel electronic simulator users' guide, Version 6.0.1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  13. Xyce parallel electronic simulator users guide, version 6.0.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R; Mei, Ting; Russo, Thomas V.

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  14. The Automated Instrumentation and Monitoring System (AIMS): Design and Architecture. 3.2

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Schmidt, Melisa; Schulbach, Cathy; Bailey, David (Technical Monitor)

    1997-01-01

    Whether a researcher is designing the 'next parallel programming paradigm', another 'scalable multiprocessor' or investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be captured and displayed is invaluable. Careful analysis of such information can help computer and software architects to capture, and therefore, exploit behavioral variations among/within various parallel programs to take advantage of specific hardware characteristics. A software tool-set that facilitates performance evaluation of parallel applications on multiprocessors has been put together at NASA Ames Research Center under the sponsorship of NASA's High Performance Computing and Communications Program over the past five years. The Automated Instrumentation and Monitoring Systematic has three major software components: a source code instrumentor which automatically inserts active event recorders into program source code before compilation; a run-time performance monitoring library which collects performance data; and a visualization tool-set which reconstructs program execution based on the data collected. Besides being used as a prototype for developing new techniques for instrumenting, monitoring and presenting parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Currently, the execution of FORTRAN and C programs on the Intel Paragon and PALM workstations can be automatically instrumented and monitored. Performance data thus collected can be displayed graphically on various workstations. The process of performance tuning with AIMS will be illustrated using various NAB Parallel Benchmarks. This report includes a description of the internal architecture of AIMS and a listing of the source code.

  15. Performance Evaluation of Parallel Branch and Bound Search with the Intel iPSC (Intel Personal SuperComputer) Hypercube Computer.

    DTIC Science & Technology

    1986-12-01

    17 III. Analysis of Parallel Design ................................................ 18 Parallel Abstract Data ...Types ........................................... 18 Abstract Data Type .................................................. 19 Parallel ADT...22 Data -Structure Design ........................................... 23 Object-Oriented Design

  16. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 2; Preliminary Results

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Weston, R. P.; Samareh, J. A.; Mason, B. H.; Green, L. L.; Biedron, R. T.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity finite-element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a high-speed civil transport configuration. The paper describes both the preliminary results from implementing and validating the multidisciplinary analysis and the results from an aerodynamic optimization. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture compliant software product. A companion paper describes the formulation of the multidisciplinary analysis and optimization system.

  17. Aerostructural analysis and design optimization of composite aircraft

    NASA Astrophysics Data System (ADS)

    Kennedy, Graeme James

    High-performance composite materials exhibit both anisotropic strength and stiffness properties. These anisotropic properties can be used to produce highly-tailored aircraft structures that meet stringent performance requirements, but these properties also present unique challenges for analysis and design. New tools and techniques are developed to address some of these important challenges. A homogenization-based theory for beams is developed to accurately predict the through-thickness stress and strain distribution in thick composite beams. Numerical comparisons demonstrate that the proposed beam theory can be used to obtain highly accurate results in up to three orders of magnitude less computational time than three-dimensional calculations. Due to the large finite-element model requirements for thin composite structures used in aerospace applications, parallel solution methods are explored. A parallel direct Schur factorization method is developed. The parallel scalability of the direct Schur approach is demonstrated for a large finite-element problem with over 5 million unknowns. In order to address manufacturing design requirements, a novel laminate parametrization technique is presented that takes into account the discrete nature of the ply-angle variables, and ply-contiguity constraints. This parametrization technique is demonstrated on a series of structural optimization problems including compliance minimization of a plate, buckling design of a stiffened panel and layup design of a full aircraft wing. The design and analysis of composite structures for aircraft is not a stand-alone problem and cannot be performed without multidisciplinary considerations. A gradient-based aerostructural design optimization framework is presented that partitions the disciplines into distinct process groups. An approximate Newton-Krylov method is shown to be an efficient aerostructural solution algorithm and excellent parallel scalability of the algorithm is demonstrated. An induced drag optimization study is performed to compare the trade-off between wing weight and induced drag for wing tip extensions, raked wing tips and winglets. The results demonstrate that it is possible to achieve a 43% induced drag reduction with no weight penalty, a 28% induced drag reduction with a 10% wing weight reduction, or a 20% wing weight reduction with a 5% induced drag penalty from a baseline wing obtained from a structural mass-minimization problem with fixed aerodynamic loads.

  18. Parallelization of NAS Benchmarks for Shared Memory Multiprocessors

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry C.; Saini, Subhash (Technical Monitor)

    1998-01-01

    This paper presents our experiences of parallelizing the sequential implementation of NAS benchmarks using compiler directives on SGI Origin2000 distributed shared memory (DSM) system. Porting existing applications to new high performance parallel and distributed computing platforms is a challenging task. Ideally, a user develops a sequential version of the application, leaving the task of porting to new generations of high performance computing systems to parallelization tools and compilers. Due to the simplicity of programming shared-memory multiprocessors, compiler developers have provided various facilities to allow the users to exploit parallelism. Native compilers on SGI Origin2000 support multiprocessing directives to allow users to exploit loop-level parallelism in their programs. Additionally, supporting tools can accomplish this process automatically and present the results of parallelization to the users. We experimented with these compiler directives and supporting tools by parallelizing sequential implementation of NAS benchmarks. Results reported in this paper indicate that with minimal effort, the performance gain is comparable with the hand-parallelized, carefully optimized, message-passing implementations of the same benchmarks.

  19. A Hybrid Shared-Memory Parallel Max-Tree Algorithm for Extreme Dynamic-Range Images.

    PubMed

    Moschini, Ugo; Meijster, Arnold; Wilkinson, Michael H F

    2018-03-01

    Max-trees, or component trees, are graph structures that represent the connected components of an image in a hierarchical way. Nowadays, many application fields rely on images with high-dynamic range or floating point values. Efficient sequential algorithms exist to build trees and compute attributes for images of any bit depth. However, we show that the current parallel algorithms perform poorly already with integers at bit depths higher than 16 bits per pixel. We propose a parallel method combining the two worlds of flooding and merging max-tree algorithms. First, a pilot max-tree of a quantized version of the image is built in parallel using a flooding method. Later, this structure is used in a parallel leaf-to-root approach to compute efficiently the final max-tree and to drive the merging of the sub-trees computed by the threads. We present an analysis of the performance both on simulated and actual 2D images and 3D volumes. Execution times are about better than the fastest sequential algorithm and speed-up goes up to on 64 threads.

  20. Chromatographic background drift correction coupled with parallel factor analysis to resolve coelution problems in three-dimensional chromatographic data: quantification of eleven antibiotics in tap water samples by high-performance liquid chromatography coupled with a diode array detector.

    PubMed

    Yu, Yong-Jie; Wu, Hai-Long; Fu, Hai-Yan; Zhao, Juan; Li, Yuan-Na; Li, Shu-Fang; Kang, Chao; Yu, Ru-Qin

    2013-08-09

    Chromatographic background drift correction has been an important field of research in chromatographic analysis. In the present work, orthogonal spectral space projection for background drift correction of three-dimensional chromatographic data was described in detail and combined with parallel factor analysis (PARAFAC) to resolve overlapped chromatographic peaks and obtain the second-order advantage. This strategy was verified by simulated chromatographic data and afforded significant improvement in quantitative results. Finally, this strategy was successfully utilized to quantify eleven antibiotics in tap water samples. Compared with the traditional methodology of introducing excessive factors for the PARAFAC model to eliminate the effect of background drift, clear improvement in the quantitative performance of PARAFAC was observed after background drift correction by orthogonal spectral space projection. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Parallel Tensor Compression for Large-Scale Scientific Data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolda, Tamara G.; Ballard, Grey; Austin, Woody Nathan

    As parallel computing trends towards the exascale, scientific data produced by high-fidelity simulations are growing increasingly massive. For instance, a simulation on a three-dimensional spatial grid with 512 points per dimension that tracks 64 variables per grid point for 128 time steps yields 8 TB of data. By viewing the data as a dense five way tensor, we can compute a Tucker decomposition to find inherent low-dimensional multilinear structure, achieving compression ratios of up to 10000 on real-world data sets with negligible loss in accuracy. So that we can operate on such massive data, we present the first-ever distributed memorymore » parallel implementation for the Tucker decomposition, whose key computations correspond to parallel linear algebra operations, albeit with nonstandard data layouts. Our approach specifies a data distribution for tensors that avoids any tensor data redistribution, either locally or in parallel. We provide accompanying analysis of the computation and communication costs of the algorithms. To demonstrate the compression and accuracy of the method, we apply our approach to real-world data sets from combustion science simulations. We also provide detailed performance results, including parallel performance in both weak and strong scaling experiments.« less

  2. Impedance matching for repetitive high voltage all-solid-state Marx generator and excimer DBD UV sources

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Tong, Liqing; Liu, Kefu

    2017-06-01

    The purpose of impedance matching for a Marx generator and DBD lamp is to limit the output current of the Marx generator, provide a large discharge current at ignition, and obtain fast voltage rising/falling edges and large overshoot. In this paper, different impedance matching circuits (series inductor, parallel capacitor, and series inductor combined with parallel capacitor) are analyzed. It demonstrates that a series inductor could limit the Marx current. However, the discharge current is also limited. A parallel capacitor could provide a large discharge current, but the Marx current is also enlarged. A series inductor combined with a parallel capacitor takes full advantage of the inductor and capacitor, and avoids their shortcomings. Therefore, it is a good solution. Experimental results match the theoretical analysis well and show that both the series inductor and parallel capacitor improve the performance of the system. However, the series inductor combined with the parallel capacitor has the best performance. Compared with driving the DBD lamp with a Marx generator directly, an increase of 97.3% in radiant power and an increase of 59.3% in system efficiency are achieved using this matching circuit.

  3. Computational analysis of a multistage axial compressor

    NASA Astrophysics Data System (ADS)

    Mamidoju, Chaithanya

    Turbomachines are used extensively in Aerospace, Power Generation, and Oil & Gas Industries. Efficiency of these machines is often an important factor and has led to the continuous effort to improve the design to achieve better efficiency. The axial flow compressor is a major component in a gas turbine with the turbine's overall performance depending strongly on compressor performance. Traditional analysis of axial compressors involves throughflow calculations, isolated blade passage analysis, Quasi-3D blade-to-blade analysis, single-stage (rotor-stator) analysis, and multi-stage analysis involving larger design cycles. In the current study, the detailed flow through a 15 stage axial compressor is analyzed using a 3-D Navier Stokes CFD solver in a parallel computing environment. Methodology is described for steady state (frozen rotor stator) analysis of one blade passage per component. Various effects such as mesh type and density, boundary conditions, tip clearance and numerical issues such as turbulence model choice, advection model choice, and parallel processing performance are analyzed. A high sensitivity of the predictions to the above was found. Physical explanation to the flow features observed in the computational study are given. The total pressure rise verses mass flow rate was computed.

  4. Parallel simulation today

    NASA Technical Reports Server (NTRS)

    Nicol, David; Fujimoto, Richard

    1992-01-01

    This paper surveys topics that presently define the state of the art in parallel simulation. Included in the tutorial are discussions on new protocols, mathematical performance analysis, time parallelism, hardware support for parallel simulation, load balancing algorithms, and dynamic memory management for optimistic synchronization.

  5. MPI implementation of PHOENICS: A general purpose computational fluid dynamics code

    NASA Astrophysics Data System (ADS)

    Simunovic, S.; Zacharia, T.; Baltas, N.; Spalding, D. B.

    1995-03-01

    PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. The Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.

  6. MPI implementation of PHOENICS: A general purpose computational fluid dynamics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simunovic, S.; Zacharia, T.; Baltas, N.

    1995-04-01

    PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. Themore » Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.« less

  7. An Overview of High-performance Parallel Big Data transfers over multiple network channels with Transport Layer Security (TLS) and TLS plus Perfect Forward Secrecy (PFS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Chin; Corttrell, R. A.

    This Technical Note provides an overview of high-performance parallel Big Data transfers with and without encryption for data in-transit over multiple network channels. It shows that with the parallel approach, it is feasible to carry out high-performance parallel "encrypted" Big Data transfers without serious impact to throughput. But other impacts, e.g. the energy-consumption part should be investigated. It also explains our rationales of using a statistics-based approach for gaining understanding from test results and for improving the system. The presentation is of high-level nature. Nevertheless, at the end we will pose some questions and identify potentially fruitful directions for futuremore » work.« less

  8. Parallel Work of CO2 Ejectors Installed in a Multi-Ejector Module of Refrigeration System

    NASA Astrophysics Data System (ADS)

    Bodys, Jakub; Palacz, Michal; Haida, Michal; Smolka, Jacek; Nowak, Andrzej J.; Banasiak, Krzysztof; Hafner, Armin

    2016-09-01

    A performance analysis on of fixed ejectors installed in a multi-ejector module in a CO2 refrigeration system is presented in this study. The serial and the parallel work of four fixed-geometry units that compose the multi-ejector pack was carried out. The executed numerical simulations were performed with the use of validated Homogeneous Equilibrium Model (HEM). The computational tool ejectorPL for typical transcritical parameters at the motive nozzle were used in all the tests. A wide range of the operating conditions for supermarket applications in three different European climate zones were taken into consideration. The obtained results present the high and stable performance of all the ejectors in the multi-ejector pack.

  9. National Combustion Code Parallel Performance Enhancements

    NASA Technical Reports Server (NTRS)

    Quealy, Angela; Benyo, Theresa (Technical Monitor)

    2002-01-01

    The National Combustion Code (NCC) is being developed by an industry-government team for the design and analysis of combustion systems. The unstructured grid, reacting flow code uses a distributed memory, message passing model for its parallel implementation. The focus of the present effort has been to improve the performance of the NCC code to meet combustor designer requirements for model accuracy and analysis turnaround time. Improving the performance of this code contributes significantly to the overall reduction in time and cost of the combustor design cycle. This report describes recent parallel processing modifications to NCC that have improved the parallel scalability of the code, enabling a two hour turnaround for a 1.3 million element fully reacting combustion simulation on an SGI Origin 2000.

  10. Simulating neural systems with Xyce.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiek, Richard Louis; Thornquist, Heidi K.; Mei, Ting

    2012-12-01

    Sandias parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

  11. Jagged Tiling for Intra-tile Parallelism and Fine-Grain Multithreading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Sunil; Manzano Franco, Joseph B.; Marquez, Andres

    In this paper, we have developed a novel methodology that takes into consideration multithreaded many-core designs to better utilize memory/processing resources and improve memory residence on tileable applications. It takes advantage of polyhedral analysis and transformation in the form of PLUTO, combined with a highly optimized finegrain tile runtime to exploit parallelism at all levels. The main contributions of this paper include the introduction of multi-hierarchical tiling techniques that increases intra tile parallelism; and a data-flow inspired runtime library that allows the expression of parallel tiles with an efficient synchronization registry. Our current implementation shows performance improvements on an Intelmore » Xeon Phi board up to 32.25% against instances produced by state-of-the-art compiler frameworks for selected stencil applications.« less

  12. Paramedir: A Tool for Programmable Performance Analysis

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Labarta, Jesus; Gimenez, Judit

    2004-01-01

    Performance analysis of parallel scientific applications is time consuming and requires great expertise in areas such as programming paradigms, system software, and computer hardware architectures. In this paper we describe a tool that facilitates the programmability of performance metric calculations thereby allowing the automation of the analysis and reducing the application development time. We demonstrate how the system can be used to capture knowledge and intuition acquired by advanced parallel programmers in order to be transferred to novice users.

  13. Analysis and performance of paralleling circuits for modular inverter-converter systems

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.; Gourash, F.

    1972-01-01

    As part of a modular inverter-converter development program, control techniques were developed to provide load sharing among paralleled inverters or converters. An analysis of the requirements of paralleling circuits and a discussion of the circuits developed and their performance are included in this report. The current sharing was within 5.6 percent of rated-load current for the ac modules and 7.4 percent for the dc modules for an initial output voltage unbalance of 5 volts.

  14. SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX/80

    NASA Astrophysics Data System (ADS)

    Kamat, Manohar P.; Watson, Brian C.

    1992-02-01

    The results of a research activity aimed at providing a finite element capability for analyzing turbo-machinery bladed-disk assemblies in a vector/parallel processing environment are summarized. Analysis of aircraft turbofan engines is very computationally intensive. The performance limit of modern day computers with a single processing unit was estimated at 3 billions of floating point operations per second (3 gigaflops). In view of this limit of a sequential unit, performance rates higher than 3 gigaflops can be achieved only through vectorization and/or parallelization as on Alliant FX/80. Accordingly, the efforts of this critically needed research were geared towards developing and evaluating parallel finite element methods for static and vibration analysis. A special purpose code, named with the acronym SAPNEW, performs static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements.

  15. SAPNEW: Parallel finite element code for thin shell structures on the Alliant FX/80

    NASA Technical Reports Server (NTRS)

    Kamat, Manohar P.; Watson, Brian C.

    1992-01-01

    The results of a research activity aimed at providing a finite element capability for analyzing turbo-machinery bladed-disk assemblies in a vector/parallel processing environment are summarized. Analysis of aircraft turbofan engines is very computationally intensive. The performance limit of modern day computers with a single processing unit was estimated at 3 billions of floating point operations per second (3 gigaflops). In view of this limit of a sequential unit, performance rates higher than 3 gigaflops can be achieved only through vectorization and/or parallelization as on Alliant FX/80. Accordingly, the efforts of this critically needed research were geared towards developing and evaluating parallel finite element methods for static and vibration analysis. A special purpose code, named with the acronym SAPNEW, performs static and eigen analysis of multi-degree-of-freedom blade models built-up from flat thin shell elements.

  16. Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules

    PubMed Central

    Panzeri, Francesco

    2017-01-01

    We describe an 8-spot confocal setup for high-throughput smFRET assays and illustrate its performance with two characteristic experiments. First, measurements on a series of freely diffusing doubly-labeled dsDNA samples allow us to demonstrate that data acquired in multiple spots in parallel can be properly corrected and result in measured sample characteristics consistent with those obtained with a standard single-spot setup. We then take advantage of the higher throughput provided by parallel acquisition to address an outstanding question about the kinetics of the initial steps of bacterial RNA transcription. Our real-time kinetic analysis of promoter escape by bacterial RNA polymerase confirms results obtained by a more indirect route, shedding additional light on the initial steps of transcription. Finally, we discuss the advantages of our multispot setup, while pointing potential limitations of the current single laser excitation design, as well as analysis challenges and their solutions. PMID:28419142

  17. Analyzing Tropical Waves Using the Parallel Ensemble Empirical Model Decomposition Method: Preliminary Results from Hurricane Sandy

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Cheung, Samson; Li, Jui-Lin F.; Wu, Yu-ling

    2013-01-01

    In this study, we discuss the performance of the parallel ensemble empirical mode decomposition (EMD) in the analysis of tropical waves that are associated with tropical cyclone (TC) formation. To efficiently analyze high-resolution, global, multiple-dimensional data sets, we first implement multilevel parallelism into the ensemble EMD (EEMD) and obtain a parallel speedup of 720 using 200 eight-core processors. We then apply the parallel EEMD (PEEMD) to extract the intrinsic mode functions (IMFs) from preselected data sets that represent (1) idealized tropical waves and (2) large-scale environmental flows associated with Hurricane Sandy (2012). Results indicate that the PEEMD is efficient and effective in revealing the major wave characteristics of the data, such as wavelengths and periods, by sifting out the dominant (wave) components. This approach has a potential for hurricane climate study by examining the statistical relationship between tropical waves and TC formation.

  18. An Efficient Fuzzy Controller Design for Parallel Connected Induction Motor Drives

    NASA Astrophysics Data System (ADS)

    Usha, S.; Subramani, C.

    2018-04-01

    Generally, an induction motors are highly non-linear and has a complex time varying dynamics. This makes the speed control of an induction motor a challenging issue in the industries. But, due to the recent trends in the power electronic devices and intelligent controllers, the speed control of the induction motor is achieved by including non-linear characteristics also. Conventionally a single inverter is used to run one induction motor in industries. In the traction applications, two or more inductions motors are operated in parallel to reduce the size and cost of induction motors. In this application, the parallel connected induction motors can be driven by a single inverter unit. The stability problems may introduce in the parallel operation under low speed operating conditions. Hence, the speed deviations should be reduce with help of suitable controllers. The speed control of the parallel connected system is performed by PID controller and fuzzy logic controller. In this paper the speed response of the induction motor for the rating of IHP, 1440 rpm, and 50Hz with these controller are compared in time domain specifications. The stability analysis of the system also performed under low speed using matlab platform. The hardware model is developed for speed control using fuzzy logic controller which exhibited superior performances over the other controller.

  19. A Multi-Level Parallelization Concept for High-Fidelity Multi-Block Solvers

    NASA Technical Reports Server (NTRS)

    Hatay, Ferhat F.; Jespersen, Dennis C.; Guruswamy, Guru P.; Rizk, Yehia M.; Byun, Chansup; Gee, Ken; VanDalsem, William R. (Technical Monitor)

    1997-01-01

    The integration of high-fidelity Computational Fluid Dynamics (CFD) analysis tools with the industrial design process benefits greatly from the robust implementations that are transportable across a wide range of computer architectures. In the present work, a hybrid domain-decomposition and parallelization concept was developed and implemented into the widely-used NASA multi-block Computational Fluid Dynamics (CFD) packages implemented in ENSAERO and OVERFLOW. The new parallel solver concept, PENS (Parallel Euler Navier-Stokes Solver), employs both fine and coarse granularity in data partitioning as well as data coalescing to obtain the desired load-balance characteristics on the available computer platforms. This multi-level parallelism implementation itself introduces no changes to the numerical results, hence the original fidelity of the packages are identically preserved. The present implementation uses the Message Passing Interface (MPI) library for interprocessor message passing and memory accessing. By choosing an appropriate combination of the available partitioning and coalescing capabilities only during the execution stage, the PENS solver becomes adaptable to different computer architectures from shared-memory to distributed-memory platforms with varying degrees of parallelism. The PENS implementation on the IBM SP2 distributed memory environment at the NASA Ames Research Center obtains 85 percent scalable parallel performance using fine-grain partitioning of single-block CFD domains using up to 128 wide computational nodes. Multi-block CFD simulations of complete aircraft simulations achieve 75 percent perfect load-balanced executions using data coalescing and the two levels of parallelism. SGI PowerChallenge, SGI Origin 2000, and a cluster of workstations are the other platforms where the robustness of the implementation is tested. The performance behavior on the other computer platforms with a variety of realistic problems will be included as this on-going study progresses.

  20. CUDAMPF: a multi-tiered parallel framework for accelerating protein sequence search in HMMER on CUDA-enabled GPU.

    PubMed

    Jiang, Hanyu; Ganesan, Narayan

    2016-02-27

    HMMER software suite is widely used for analysis of homologous protein and nucleotide sequences with high sensitivity. The latest version of hmmsearch in HMMER 3.x, utilizes heuristic-pipeline which consists of MSV/SSV (Multiple/Single ungapped Segment Viterbi) stage, P7Viterbi stage and the Forward scoring stage to accelerate homology detection. Since the latest version is highly optimized for performance on modern multi-core CPUs with SSE capabilities, only a few acceleration attempts report speedup. However, the most compute intensive tasks within the pipeline (viz., MSV/SSV and P7Viterbi stages) still stand to benefit from the computational capabilities of massively parallel processors. A Multi-Tiered Parallel Framework (CUDAMPF) implemented on CUDA-enabled GPUs presented here, offers a finer-grained parallelism for MSV/SSV and Viterbi algorithms. We couple SIMT (Single Instruction Multiple Threads) mechanism with SIMD (Single Instructions Multiple Data) video instructions with warp-synchronism to achieve high-throughput processing and eliminate thread idling. We also propose a hardware-aware optimal allocation scheme of scarce resources like on-chip memory and caches in order to boost performance and scalability of CUDAMPF. In addition, runtime compilation via NVRTC available with CUDA 7.0 is incorporated into the presented framework that not only helps unroll innermost loop to yield upto 2 to 3-fold speedup than static compilation but also enables dynamic loading and switching of kernels depending on the query model size, in order to achieve optimal performance. CUDAMPF is designed as a hardware-aware parallel framework for accelerating computational hotspots within the hmmsearch pipeline as well as other sequence alignment applications. It achieves significant speedup by exploiting hierarchical parallelism on single GPU and takes full advantage of limited resources based on their own performance features. In addition to exceeding performance of other acceleration attempts, comprehensive evaluations against high-end CPUs (Intel i5, i7 and Xeon) shows that CUDAMPF yields upto 440 GCUPS for SSV, 277 GCUPS for MSV and 14.3 GCUPS for P7Viterbi all with 100 % accuracy, which translates to a maximum speedup of 37.5, 23.1 and 11.6-fold for MSV, SSV and P7Viterbi respectively. The source code is available at https://github.com/Super-Hippo/CUDAMPF.

  1. Parallel Aircraft Trajectory Optimization with Analytic Derivatives

    NASA Technical Reports Server (NTRS)

    Falck, Robert D.; Gray, Justin S.; Naylor, Bret

    2016-01-01

    Trajectory optimization is an integral component for the design of aerospace vehicles, but emerging aircraft technologies have introduced new demands on trajectory analysis that current tools are not well suited to address. Designing aircraft with technologies such as hybrid electric propulsion and morphing wings requires consideration of the operational behavior as well as the physical design characteristics of the aircraft. The addition of operational variables can dramatically increase the number of design variables which motivates the use of gradient based optimization with analytic derivatives to solve the larger optimization problems. In this work we develop an aircraft trajectory analysis tool using a Legendre-Gauss-Lobatto based collocation scheme, providing analytic derivatives via the OpenMDAO multidisciplinary optimization framework. This collocation method uses an implicit time integration scheme that provides a high degree of sparsity and thus several potential options for parallelization. The performance of the new implementation was investigated via a series of single and multi-trajectory optimizations using a combination of parallel computing and constraint aggregation. The computational performance results show that in order to take full advantage of the sparsity in the problem it is vital to parallelize both the non-linear analysis evaluations and the derivative computations themselves. The constraint aggregation results showed a significant numerical challenge due to difficulty in achieving tight convergence tolerances. Overall, the results demonstrate the value of applying analytic derivatives to trajectory optimization problems and lay the foundation for future application of this collocation based method to the design of aircraft with where operational scheduling of technologies is key to achieving good performance.

  2. A parallel implementation of 3D Zernike moment analysis

    NASA Astrophysics Data System (ADS)

    Berjón, Daniel; Arnaldo, Sergio; Morán, Francisco

    2011-01-01

    Zernike polynomials are a well known set of functions that find many applications in image or pattern characterization because they allow to construct shape descriptors that are invariant against translations, rotations or scale changes. The concepts behind them can be extended to higher dimension spaces, making them also fit to describe volumetric data. They have been less used than their properties might suggest due to their high computational cost. We present a parallel implementation of 3D Zernike moments analysis, written in C with CUDA extensions, which makes it practical to employ Zernike descriptors in interactive applications, yielding a performance of several frames per second in voxel datasets about 2003 in size. In our contribution, we describe the challenges of implementing 3D Zernike analysis in a general-purpose GPU. These include how to deal with numerical inaccuracies, due to the high precision demands of the algorithm, or how to deal with the high volume of input data so that it does not become a bottleneck for the system.

  3. Hybrid-optimization strategy for the communication of large-scale Kinetic Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Wu, Baodong; Li, Shigang; Zhang, Yunquan; Nie, Ningming

    2017-02-01

    The parallel Kinetic Monte Carlo (KMC) algorithm based on domain decomposition has been widely used in large-scale physical simulations. However, the communication overhead of the parallel KMC algorithm is critical, and severely degrades the overall performance and scalability. In this paper, we present a hybrid optimization strategy to reduce the communication overhead for the parallel KMC simulations. We first propose a communication aggregation algorithm to reduce the total number of messages and eliminate the communication redundancy. Then, we utilize the shared memory to reduce the memory copy overhead of the intra-node communication. Finally, we optimize the communication scheduling using the neighborhood collective operations. We demonstrate the scalability and high performance of our hybrid optimization strategy by both theoretical and experimental analysis. Results show that the optimized KMC algorithm exhibits better performance and scalability than the well-known open-source library-SPPARKS. On 32-node Xeon E5-2680 cluster (total 640 cores), the optimized algorithm reduces the communication time by 24.8% compared with SPPARKS.

  4. Time-Resolved 3D Quantitative Flow MRI of the Major Intracranial Vessels: Initial Experience and Comparative Evaluation at 1.5T and 3.0T in Combination With Parallel Imaging

    PubMed Central

    Bammer, Roland; Hope, Thomas A.; Aksoy, Murat; Alley, Marcus T.

    2012-01-01

    Exact knowledge of blood flow characteristics in the major cerebral vessels is of great relevance for diagnosing cerebrovascular abnormalities. This involves the assessment of hemodynamically critical areas as well as the derivation of biomechanical parameters such as wall shear stress and pressure gradients. A time-resolved, 3D phase-contrast (PC) MRI method using parallel imaging was implemented to measure blood flow in three dimensions at multiple instances over the cardiac cycle. The 4D velocity data obtained from 14 healthy volunteers were used to investigate dynamic blood flow with the use of multiplanar reformatting, 3D streamlines, and 4D particle tracing. In addition, the effects of magnetic field strength, parallel imaging, and temporal resolution on the data were investigated in a comparative evaluation at 1.5T and 3T using three different parallel imaging reduction factors and three different temporal resolutions in eight of the 14 subjects. Studies were consistently performed faster at 3T than at 1.5T because of better parallel imaging performance. A high temporal resolution (65 ms) was required to follow dynamic processes in the intracranial vessels. The 4D flow measurements provided a high degree of vascular conspicuity. Time-resolved streamline analysis provided features that have not been reported previously for the intracranial vasculature. PMID:17195166

  5. Xyce Parallel Electronic Simulator Users' Guide Version 6.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R.; Aadithya, Karthik Venkatraman; Mei, Ting

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been de- signed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel com- puting platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows onemore » to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase$-$ a message passing parallel implementation $-$ which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.« less

  6. Solving Partial Differential Equations in a data-driven multiprocessor environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaudiot, J.L.; Lin, C.M.; Hosseiniyar, M.

    1988-12-31

    Partial differential equations can be found in a host of engineering and scientific problems. The emergence of new parallel architectures has spurred research in the definition of parallel PDE solvers. Concurrently, highly programmable systems such as data-how architectures have been proposed for the exploitation of large scale parallelism. The implementation of some Partial Differential Equation solvers (such as the Jacobi method) on a tagged token data-flow graph is demonstrated here. Asynchronous methods (chaotic relaxation) are studied and new scheduling approaches (the Token No-Labeling scheme) are introduced in order to support the implementation of the asychronous methods in a data-driven environment.more » New high-level data-flow language program constructs are introduced in order to handle chaotic operations. Finally, the performance of the program graphs is demonstrated by a deterministic simulation of a message passing data-flow multiprocessor. An analysis of the overhead in the data-flow graphs is undertaken to demonstrate the limits of parallel operations in dataflow PDE program graphs.« less

  7. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 1; Formulation

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Townsend, J. C.; Salas, A. O.; Samareh, J. A.; Mukhopadhyay, V.; Barthelemy, J.-F.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a highspeed civil transport configuration. The paper describes the engineering aspects of formulating the optimization by integrating these analysis codes and associated interface codes into the system. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture (CORBA) compliant software product. A companion paper presents currently available results.

  8. Scalable High Performance Computing: Direct and Large-Eddy Turbulent Flow Simulations Using Massively Parallel Computers

    NASA Technical Reports Server (NTRS)

    Morgan, Philip E.

    2004-01-01

    This final report contains reports of research related to the tasks "Scalable High Performance Computing: Direct and Lark-Eddy Turbulent FLow Simulations Using Massively Parallel Computers" and "Devleop High-Performance Time-Domain Computational Electromagnetics Capability for RCS Prediction, Wave Propagation in Dispersive Media, and Dual-Use Applications. The discussion of Scalable High Performance Computing reports on three objectives: validate, access scalability, and apply two parallel flow solvers for three-dimensional Navier-Stokes flows; develop and validate a high-order parallel solver for Direct Numerical Simulations (DNS) and Large Eddy Simulation (LES) problems; and Investigate and develop a high-order Reynolds averaged Navier-Stokes turbulence model. The discussion of High-Performance Time-Domain Computational Electromagnetics reports on five objectives: enhancement of an electromagnetics code (CHARGE) to be able to effectively model antenna problems; utilize lessons learned in high-order/spectral solution of swirling 3D jets to apply to solving electromagnetics project; transition a high-order fluids code, FDL3DI, to be able to solve Maxwell's Equations using compact-differencing; develop and demonstrate improved radiation absorbing boundary conditions for high-order CEM; and extend high-order CEM solver to address variable material properties. The report also contains a review of work done by the systems engineer.

  9. Analysis and selection of optimal function implementations in massively parallel computer

    DOEpatents

    Archer, Charles Jens [Rochester, MN; Peters, Amanda [Rochester, MN; Ratterman, Joseph D [Rochester, MN

    2011-05-31

    An apparatus, program product and method optimize the operation of a parallel computer system by, in part, collecting performance data for a set of implementations of a function capable of being executed on the parallel computer system based upon the execution of the set of implementations under varying input parameters in a plurality of input dimensions. The collected performance data may be used to generate selection program code that is configured to call selected implementations of the function in response to a call to the function under varying input parameters. The collected performance data may be used to perform more detailed analysis to ascertain the comparative performance of the set of implementations of the function under the varying input parameters.

  10. Large-scale parallel genome assembler over cloud computing environment.

    PubMed

    Das, Arghya Kusum; Koppa, Praveen Kumar; Goswami, Sayan; Platania, Richard; Park, Seung-Jong

    2017-06-01

    The size of high throughput DNA sequencing data has already reached the terabyte scale. To manage this huge volume of data, many downstream sequencing applications started using locality-based computing over different cloud infrastructures to take advantage of elastic (pay as you go) resources at a lower cost. However, the locality-based programming model (e.g. MapReduce) is relatively new. Consequently, developing scalable data-intensive bioinformatics applications using this model and understanding the hardware environment that these applications require for good performance, both require further research. In this paper, we present a de Bruijn graph oriented Parallel Giraph-based Genome Assembler (GiGA), as well as the hardware platform required for its optimal performance. GiGA uses the power of Hadoop (MapReduce) and Giraph (large-scale graph analysis) to achieve high scalability over hundreds of compute nodes by collocating the computation and data. GiGA achieves significantly higher scalability with competitive assembly quality compared to contemporary parallel assemblers (e.g. ABySS and Contrail) over traditional HPC cluster. Moreover, we show that the performance of GiGA is significantly improved by using an SSD-based private cloud infrastructure over traditional HPC cluster. We observe that the performance of GiGA on 256 cores of this SSD-based cloud infrastructure closely matches that of 512 cores of traditional HPC cluster.

  11. Statistical Analysis of NAS Parallel Benchmarks and LINPACK Results

    NASA Technical Reports Server (NTRS)

    Meuer, Hans-Werner; Simon, Horst D.; Strohmeier, Erich; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    In the last three years extensive performance data have been reported for parallel machines both based on the NAS Parallel Benchmarks, and on LINPACK. In this study we have used the reported benchmark results and performed a number of statistical experiments using factor, cluster, and regression analyses. In addition to the performance results of LINPACK and the eight NAS parallel benchmarks, we have also included peak performance of the machine, and the LINPACK n and n(sub 1/2) values. Some of the results and observations can be summarized as follows: 1) All benchmarks are strongly correlated with peak performance. 2) LINPACK and EP have each a unique signature. 3) The remaining NPB can grouped into three groups as follows: (CG and IS), (LU and SP), and (MG, FT, and BT). Hence three (or four with EP) benchmarks are sufficient to characterize the overall NPB performance. Our poster presentation will follow a standard poster format, and will present the data of our statistical analysis in detail.

  12. Hierarchical Parallelization of Gene Differential Association Analysis

    PubMed Central

    2011-01-01

    Background Microarray gene differential expression analysis is a widely used technique that deals with high dimensional data and is computationally intensive for permutation-based procedures. Microarray gene differential association analysis is even more computationally demanding and must take advantage of multicore computing technology, which is the driving force behind increasing compute power in recent years. In this paper, we present a two-layer hierarchical parallel implementation of gene differential association analysis. It takes advantage of both fine- and coarse-grain (with granularity defined by the frequency of communication) parallelism in order to effectively leverage the non-uniform nature of parallel processing available in the cutting-edge systems of today. Results Our results show that this hierarchical strategy matches data sharing behavior to the properties of the underlying hardware, thereby reducing the memory and bandwidth needs of the application. The resulting improved efficiency reduces computation time and allows the gene differential association analysis code to scale its execution with the number of processors. The code and biological data used in this study are downloadable from http://www.urmc.rochester.edu/biostat/people/faculty/hu.cfm. Conclusions The performance sweet spot occurs when using a number of threads per MPI process that allows the working sets of the corresponding MPI processes running on the multicore to fit within the machine cache. Hence, we suggest that practitioners follow this principle in selecting the appropriate number of MPI processes and threads within each MPI process for their cluster configurations. We believe that the principles of this hierarchical approach to parallelization can be utilized in the parallelization of other computationally demanding kernels. PMID:21936916

  13. Hierarchical parallelization of gene differential association analysis.

    PubMed

    Needham, Mark; Hu, Rui; Dwarkadas, Sandhya; Qiu, Xing

    2011-09-21

    Microarray gene differential expression analysis is a widely used technique that deals with high dimensional data and is computationally intensive for permutation-based procedures. Microarray gene differential association analysis is even more computationally demanding and must take advantage of multicore computing technology, which is the driving force behind increasing compute power in recent years. In this paper, we present a two-layer hierarchical parallel implementation of gene differential association analysis. It takes advantage of both fine- and coarse-grain (with granularity defined by the frequency of communication) parallelism in order to effectively leverage the non-uniform nature of parallel processing available in the cutting-edge systems of today. Our results show that this hierarchical strategy matches data sharing behavior to the properties of the underlying hardware, thereby reducing the memory and bandwidth needs of the application. The resulting improved efficiency reduces computation time and allows the gene differential association analysis code to scale its execution with the number of processors. The code and biological data used in this study are downloadable from http://www.urmc.rochester.edu/biostat/people/faculty/hu.cfm. The performance sweet spot occurs when using a number of threads per MPI process that allows the working sets of the corresponding MPI processes running on the multicore to fit within the machine cache. Hence, we suggest that practitioners follow this principle in selecting the appropriate number of MPI processes and threads within each MPI process for their cluster configurations. We believe that the principles of this hierarchical approach to parallelization can be utilized in the parallelization of other computationally demanding kernels.

  14. High-energy physics software parallelization using database techniques

    NASA Astrophysics Data System (ADS)

    Argante, E.; van der Stok, P. D. V.; Willers, I.

    1997-02-01

    A programming model for software parallelization, called CoCa, is introduced that copes with problems caused by typical features of high-energy physics software. By basing CoCa on the database transaction paradimg, the complexity induced by the parallelization is for a large part transparent to the programmer, resulting in a higher level of abstraction than the native message passing software. CoCa is implemented on a Meiko CS-2 and on a SUN SPARCcenter 2000 parallel computer. On the CS-2, the performance is comparable with the performance of native PVM and MPI.

  15. Scalable Unix commands for parallel processors : a high-performance implementation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, E.; Lusk, E.; Gropp, W.

    2001-06-22

    We describe a family of MPI applications we call the Parallel Unix Commands. These commands are natural parallel versions of common Unix user commands such as ls, ps, and find, together with a few similar commands particular to the parallel environment. We describe the design and implementation of these programs and present some performance results on a 256-node Linux cluster. The Parallel Unix Commands are open source and freely available.

  16. Optoelectronic associative recall using motionless-head parallel readout optical disk

    NASA Astrophysics Data System (ADS)

    Marchand, P. J.; Krishnamoorthy, A. V.; Ambs, P.; Esener, S. C.

    1990-12-01

    High data rates, low retrieval times, and simple implementation are presently shown to be obtainable by means of a motionless-head 2D parallel-readout system for optical disks. Since the optical disk obviates mechanical head motions for access, focusing, and tracking, addressing is performed exclusively through the disk's rotation. Attention is given to a high-performance associative memory system configuration which employs a parallel readout disk.

  17. NAS Parallel Benchmark. Results 11-96: Performance Comparison of HPF and MPI Based NAS Parallel Benchmarks. 1.0

    NASA Technical Reports Server (NTRS)

    Saini, Subash; Bailey, David; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    High Performance Fortran (HPF), the high-level language for parallel Fortran programming, is based on Fortran 90. HALF was defined by an informal standards committee known as the High Performance Fortran Forum (HPFF) in 1993, and modeled on TMC's CM Fortran language. Several HPF features have since been incorporated into the draft ANSI/ISO Fortran 95, the next formal revision of the Fortran standard. HPF allows users to write a single parallel program that can execute on a serial machine, a shared-memory parallel machine, or a distributed-memory parallel machine. HPF eliminates the complex, error-prone task of explicitly specifying how, where, and when to pass messages between processors on distributed-memory machines, or when to synchronize processors on shared-memory machines. HPF is designed in a way that allows the programmer to code an application at a high level, and then selectively optimize portions of the code by dropping into message-passing or calling tuned library routines as 'extrinsics'. Compilers supporting High Performance Fortran features first appeared in late 1994 and early 1995 from Applied Parallel Research (APR) Digital Equipment Corporation, and The Portland Group (PGI). IBM introduced an HPF compiler for the IBM RS/6000 SP/2 in April of 1996. Over the past two years, these implementations have shown steady improvement in terms of both features and performance. The performance of various hardware/ programming model (HPF and MPI (message passing interface)) combinations will be compared, based on latest NAS (NASA Advanced Supercomputing) Parallel Benchmark (NPB) results, thus providing a cross-machine and cross-model comparison. Specifically, HPF based NPB results will be compared with MPI based NPB results to provide perspective on performance currently obtainable using HPF versus MPI or versus hand-tuned implementations such as those supplied by the hardware vendors. In addition we would also present NPB (Version 1.0) performance results for the following systems: DEC Alpha Server 8400 5/440, Fujitsu VPP Series (VX, VPP300, and VPP700), HP/Convex Exemplar SPP2000, IBM RS/6000 SP P2SC node (120 MHz) NEC SX-4/32, SGI/CRAY T3E, SGI Origin2000.

  18. Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing. The PRIMA Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malony, Allen D.; Wolf, Felix G.

    2014-01-31

    The growing number of cores provided by today’s high-­end computing systems present substantial challenges to application developers in their pursuit of parallel efficiency. To find the most effective optimization strategy, application developers need insight into the runtime behavior of their code. The University of Oregon (UO) and the Juelich Supercomputing Centre of Forschungszentrum Juelich (FZJ) develop the performance analysis tools TAU and Scalasca, respectively, which allow high-­performance computing (HPC) users to collect and analyze relevant performance data – even at very large scales. TAU and Scalasca are considered among the most advanced parallel performance systems available, and are used extensivelymore » across HPC centers in the U.S., Germany, and around the world. The TAU and Scalasca groups share a heritage of parallel performance tool research and partnership throughout the past fifteen years. Indeed, the close interactions of the two groups resulted in a cross-­fertilization of tool ideas and technologies that pushed TAU and Scalasca to what they are today. It also produced two performance systems with an increasing degree of functional overlap. While each tool has its specific analysis focus, the tools were implementing measurement infrastructures that were substantially similar. Because each tool provides complementary performance analysis, sharing of measurement results is valuable to provide the user with more facets to understand performance behavior. However, each measurement system was producing performance data in different formats, requiring data interoperability tools to be created. A common measurement and instrumentation system was needed to more closely integrate TAU and Scalasca and to avoid the duplication of development and maintenance effort. The PRIMA (Performance Refactoring of Instrumentation, Measurement, and Analysis) project was proposed over three years ago as a joint international effort between UO and FZJ to accomplish these objectives: (1) refactor TAU and Scalasca performance system components for core code sharing and (2) integrate TAU and Scalasca functionality through data interfaces, formats, and utilities. As presented in this report, the project has completed these goals. In addition to shared technical advances, the groups have worked to engage with users through application performance engineering and tools training. In this regard, the project benefits from the close interactions the teams have with national laboratories in the United States and Germany. We have also sought to enhance our interactions through joint tutorials and outreach. UO has become a member of the Virtual Institute of High-­Productivity Supercomputing (VI-­HPS) established by the Helmholtz Association of German Research Centres as a center of excellence, focusing on HPC tools for diagnosing programming errors and optimizing performance. UO and FZJ have conducted several VI-­HPS training activities together within the past three years.« less

  19. Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing: the PRIMA Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malony, Allen D.; Wolf, Felix G.

    2014-01-31

    The growing number of cores provided by today’s high-end computing systems present substantial challenges to application developers in their pursuit of parallel efficiency. To find the most effective optimization strategy, application developers need insight into the runtime behavior of their code. The University of Oregon (UO) and the Juelich Supercomputing Centre of Forschungszentrum Juelich (FZJ) develop the performance analysis tools TAU and Scalasca, respectively, which allow high-performance computing (HPC) users to collect and analyze relevant performance data – even at very large scales. TAU and Scalasca are considered among the most advanced parallel performance systems available, and are used extensivelymore » across HPC centers in the U.S., Germany, and around the world. The TAU and Scalasca groups share a heritage of parallel performance tool research and partnership throughout the past fifteen years. Indeed, the close interactions of the two groups resulted in a cross-fertilization of tool ideas and technologies that pushed TAU and Scalasca to what they are today. It also produced two performance systems with an increasing degree of functional overlap. While each tool has its specific analysis focus, the tools were implementing measurement infrastructures that were substantially similar. Because each tool provides complementary performance analysis, sharing of measurement results is valuable to provide the user with more facets to understand performance behavior. However, each measurement system was producing performance data in different formats, requiring data interoperability tools to be created. A common measurement and instrumentation system was needed to more closely integrate TAU and Scalasca and to avoid the duplication of development and maintenance effort. The PRIMA (Performance Refactoring of Instrumentation, Measurement, and Analysis) project was proposed over three years ago as a joint international effort between UO and FZJ to accomplish these objectives: (1) refactor TAU and Scalasca performance system components for core code sharing and (2) integrate TAU and Scalasca functionality through data interfaces, formats, and utilities. As presented in this report, the project has completed these goals. In addition to shared technical advances, the groups have worked to engage with users through application performance engineering and tools training. In this regard, the project benefits from the close interactions the teams have with national laboratories in the United States and Germany. We have also sought to enhance our interactions through joint tutorials and outreach. UO has become a member of the Virtual Institute of High-Productivity Supercomputing (VI-HPS) established by the Helmholtz Association of German Research Centres as a center of excellence, focusing on HPC tools for diagnosing programming errors and optimizing performance. UO and FZJ have conducted several VI-HPS training activities together within the past three years.« less

  20. Parallelized direct execution simulation of message-passing parallel programs

    NASA Technical Reports Server (NTRS)

    Dickens, Phillip M.; Heidelberger, Philip; Nicol, David M.

    1994-01-01

    As massively parallel computers proliferate, there is growing interest in findings ways by which performance of massively parallel codes can be efficiently predicted. This problem arises in diverse contexts such as parallelizing computers, parallel performance monitoring, and parallel algorithm development. In this paper we describe one solution where one directly executes the application code, but uses a discrete-event simulator to model details of the presumed parallel machine such as operating system and communication network behavior. Because this approach is computationally expensive, we are interested in its own parallelization specifically the parallelization of the discrete-event simulator. We describe methods suitable for parallelized direct execution simulation of message-passing parallel programs, and report on the performance of such a system, Large Application Parallel Simulation Environment (LAPSE), we have built on the Intel Paragon. On all codes measured to date, LAPSE predicts performance well typically within 10 percent relative error. Depending on the nature of the application code, we have observed low slowdowns (relative to natively executing code) and high relative speedups using up to 64 processors.

  1. High Performance Parallel Computational Nanotechnology

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    At a recent press conference, NASA Administrator Dan Goldin encouraged NASA Ames Research Center to take a lead role in promoting research and development of advanced, high-performance computer technology, including nanotechnology. Manufacturers of leading-edge microprocessors currently perform large-scale simulations in the design and verification of semiconductor devices and microprocessors. Recently, the need for this intensive simulation and modeling analysis has greatly increased, due in part to the ever-increasing complexity of these devices, as well as the lessons of experiences such as the Pentium fiasco. Simulation, modeling, testing, and validation will be even more important for designing molecular computers because of the complex specification of millions of atoms, thousands of assembly steps, as well as the simulation and modeling needed to ensure reliable, robust and efficient fabrication of the molecular devices. The software for this capacity does not exist today, but it can be extrapolated from the software currently used in molecular modeling for other applications: semi-empirical methods, ab initio methods, self-consistent field methods, Hartree-Fock methods, molecular mechanics; and simulation methods for diamondoid structures. In as much as it seems clear that the application of such methods in nanotechnology will require powerful, highly powerful systems, this talk will discuss techniques and issues for performing these types of computations on parallel systems. We will describe system design issues (memory, I/O, mass storage, operating system requirements, special user interface issues, interconnects, bandwidths, and programming languages) involved in parallel methods for scalable classical, semiclassical, quantum, molecular mechanics, and continuum models; molecular nanotechnology computer-aided designs (NanoCAD) techniques; visualization using virtual reality techniques of structural models and assembly sequences; software required to control mini robotic manipulators for positional control; scalable numerical algorithms for reliability, verifications and testability. There appears no fundamental obstacle to simulating molecular compilers and molecular computers on high performance parallel computers, just as the Boeing 777 was simulated on a computer before manufacturing it.

  2. MPACT Standard Input User s Manual, Version 2.2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Benjamin S.; Downar, Thomas; Fitzgerald, Andrew

    The MPACT (Michigan PArallel Charactistics based Transport) code is designed to perform high-fidelity light water reactor (LWR) analysis using whole-core pin-resolved neutron transport calculations on modern parallel-computing hardware. The code consists of several libraries which provide the functionality necessary to solve steady-state eigenvalue problems. Several transport capabilities are available within MPACT including both 2-D and 3-D Method of Characteristics (MOC). A three-dimensional whole core solution based on the 2D-1D solution method provides the capability for full core depletion calculations.

  3. Parallel processing considerations for image recognition tasks

    NASA Astrophysics Data System (ADS)

    Simske, Steven J.

    2011-01-01

    Many image recognition tasks are well-suited to parallel processing. The most obvious example is that many imaging tasks require the analysis of multiple images. From this standpoint, then, parallel processing need be no more complicated than assigning individual images to individual processors. However, there are three less trivial categories of parallel processing that will be considered in this paper: parallel processing (1) by task; (2) by image region; and (3) by meta-algorithm. Parallel processing by task allows the assignment of multiple workflows-as diverse as optical character recognition [OCR], document classification and barcode reading-to parallel pipelines. This can substantially decrease time to completion for the document tasks. For this approach, each parallel pipeline is generally performing a different task. Parallel processing by image region allows a larger imaging task to be sub-divided into a set of parallel pipelines, each performing the same task but on a different data set. This type of image analysis is readily addressed by a map-reduce approach. Examples include document skew detection and multiple face detection and tracking. Finally, parallel processing by meta-algorithm allows different algorithms to be deployed on the same image simultaneously. This approach may result in improved accuracy.

  4. Graphics Processing Unit Assisted Thermographic Compositing

    NASA Technical Reports Server (NTRS)

    Ragasa, Scott; McDougal, Matthew; Russell, Sam

    2012-01-01

    Objective: To develop a software application utilizing general purpose graphics processing units (GPUs) for the analysis of large sets of thermographic data. Background: Over the past few years, an increasing effort among scientists and engineers to utilize the GPU in a more general purpose fashion is allowing for supercomputer level results at individual workstations. As data sets grow, the methods to work them grow at an equal, and often great, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU to allow for throughput that was previously reserved for compute clusters. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Signal (image) processing is one area were GPUs are being used to greatly increase the performance of certain algorithms and analysis techniques. Technical Methodology/Approach: Apply massively parallel algorithms and data structures to the specific analysis requirements presented when working with thermographic data sets.

  5. Parallel-vector computation for structural analysis and nonlinear unconstrained optimization problems

    NASA Technical Reports Server (NTRS)

    Nguyen, Duc T.

    1990-01-01

    Practical engineering application can often be formulated in the form of a constrained optimization problem. There are several solution algorithms for solving a constrained optimization problem. One approach is to convert a constrained problem into a series of unconstrained problems. Furthermore, unconstrained solution algorithms can be used as part of the constrained solution algorithms. Structural optimization is an iterative process where one starts with an initial design, a finite element structure analysis is then performed to calculate the response of the system (such as displacements, stresses, eigenvalues, etc.). Based upon the sensitivity information on the objective and constraint functions, an optimizer such as ADS or IDESIGN, can be used to find the new, improved design. For the structural analysis phase, the equation solver for the system of simultaneous, linear equations plays a key role since it is needed for either static, or eigenvalue, or dynamic analysis. For practical, large-scale structural analysis-synthesis applications, computational time can be excessively large. Thus, it is necessary to have a new structural analysis-synthesis code which employs new solution algorithms to exploit both parallel and vector capabilities offered by modern, high performance computers such as the Convex, Cray-2 and Cray-YMP computers. The objective of this research project is, therefore, to incorporate the latest development in the parallel-vector equation solver, PVSOLVE into the widely popular finite-element production code, such as the SAP-4. Furthermore, several nonlinear unconstrained optimization subroutines have also been developed and tested under a parallel computer environment. The unconstrained optimization subroutines are not only useful in their own right, but they can also be incorporated into a more popular constrained optimization code, such as ADS.

  6. High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterka, Tom; Morozov, Dmitriy; Phillips, Carolyn

    2014-11-14

    Computing a Voronoi or Delaunay tessellation from a set of points is a core part of the analysis of many simulated and measured datasets: N-body simulations, molecular dynamics codes, and LIDAR point clouds are just a few examples. Such computational geometry methods are common in data analysis and visualization; but as the scale of simulations and observations surpasses billions of particles, the existing serial and shared-memory algorithms no longer suffice. A distributed-memory scalable parallel algorithm is the only feasible approach. The primary contribution of this paper is a new parallel Delaunay and Voronoi tessellation algorithm that automatically determines which neighbormore » points need to be exchanged among the subdomains of a spatial decomposition. Other contributions include periodic and wall boundary conditions, comparison of our method using two popular serial libraries, and application to numerous science datasets.« less

  7. Parallelizing Timed Petri Net simulations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1993-01-01

    The possibility of using parallel processing to accelerate the simulation of Timed Petri Nets (TPN's) was studied. It was recognized that complex system development tools often transform system descriptions into TPN's or TPN-like models, which are then simulated to obtain information about system behavior. Viewed this way, it was important that the parallelization of TPN's be as automatic as possible, to admit the possibility of the parallelization being embedded in the system design tool. Later years of the grant were devoted to examining the problem of joint performance and reliability analysis, to explore whether both types of analysis could be accomplished within a single framework. In this final report, the results of our studies are summarized. We believe that the problem of parallelizing TPN's automatically for MIMD architectures has been almost completely solved for a large and important class of problems. Our initial investigations into joint performance/reliability analysis are two-fold; it was shown that Monte Carlo simulation, with importance sampling, offers promise of joint analysis in the context of a single tool, and methods for the parallel simulation of general Continuous Time Markov Chains, a model framework within which joint performance/reliability models can be cast, were developed. However, very much more work is needed to determine the scope and generality of these approaches. The results obtained in our two studies, future directions for this type of work, and a list of publications are included.

  8. Multi-arm spectrometer for parallel frequency analysis of radio-wave signals oriented to astronomical observations

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Chavez Dagostino, Miguel; Arellanes, Adan Omar; Tepichin Rodriguez, Eduardo

    2017-08-01

    We describe a potential prototype of modern spectrometer based on acousto-optical technique with three parallel optical arms for analysis of radio-wave signals specific to astronomical observations. Each optical arm exhibits original performances to provide parallel multi-band observations with different scales simultaneously. Similar multi-band instrument is able to realize measurements within various scenarios from planetary atmospheres to attractive objects in the distant Universe. The arrangement under development has two novelties. First, each optical arm represents an individual spectrum analyzer with its individual performances. Such an approach is conditioned by exploiting various materials for acousto-optical cells operating within various regimes, frequency ranges, and light wavelengths from independent light sources. Individually produced beam shapers give both the needed incident light polarization and the required apodization for light beam to increase the dynamic range of the system as a whole. After parallel acousto-optical processing, a few data flows from these optical arms are united by the joint CCD matrix on the stage of the combined extremely high-bit rate electronic data processing that provides the system performances as well. The other novelty consists in the usage of various materials for designing wide-aperture acousto-optical cells exhibiting the best performances within each of optical arms. Here, one can mention specifically selected cuts of tellurium dioxide, bastron, and lithium niobate, which overlap selected areas within the frequency range from 40 MHz to 2.0 GHz. Thus one yields the united versatile instrument for comprehensive studies of astronomical objects simultaneously with precise synchronization in various frequency ranges.

  9. Enabling High-performance Interactive Geoscience Data Analysis Through Data Placement and Movement Optimization

    NASA Astrophysics Data System (ADS)

    Zhu, F.; Yu, H.; Rilee, M. L.; Kuo, K. S.; Yu, L.; Pan, Y.; Jiang, H.

    2017-12-01

    Since the establishment of data archive centers and the standardization of file formats, scientists are required to search metadata catalogs for data needed and download the data files to their local machines to carry out data analysis. This approach has facilitated data discovery and access for decades, but it inevitably leads to data transfer from data archive centers to scientists' computers through low-bandwidth Internet connections. Data transfer becomes a major performance bottleneck in such an approach. Combined with generally constrained local compute/storage resources, they limit the extent of scientists' studies and deprive them of timely outcomes. Thus, this conventional approach is not scalable with respect to both the volume and variety of geoscience data. A much more viable solution is to couple analysis and storage systems to minimize data transfer. In our study, we compare loosely coupled approaches (exemplified by Spark and Hadoop) and tightly coupled approaches (exemplified by parallel distributed database management systems, e.g., SciDB). In particular, we investigate the optimization of data placement and movement to effectively tackle the variety challenge, and boost the popularization of parallelization to address the volume challenge. Our goal is to enable high-performance interactive analysis for a good portion of geoscience data analysis exercise. We show that tightly coupled approaches can concentrate data traffic between local storage systems and compute units, and thereby optimizing bandwidth utilization to achieve a better throughput. Based on our observations, we develop a geoscience data analysis system that tightly couples analysis engines with storages, which has direct access to the detailed map of data partition locations. Through an innovation data partitioning and distribution scheme, our system has demonstrated scalable and interactive performance in real-world geoscience data analysis applications.

  10. Characterizing parallel file-access patterns on a large-scale multiprocessor

    NASA Technical Reports Server (NTRS)

    Purakayastha, Apratim; Ellis, Carla Schlatter; Kotz, David; Nieuwejaar, Nils; Best, Michael

    1994-01-01

    Rapid increases in the computational speeds of multiprocessors have not been matched by corresponding performance enhancements in the I/O subsystem. To satisfy the large and growing I/O requirements of some parallel scientific applications, we need parallel file systems that can provide high-bandwidth and high-volume data transfer between the I/O subsystem and thousands of processors. Design of such high-performance parallel file systems depends on a thorough grasp of the expected workload. So far there have been no comprehensive usage studies of multiprocessor file systems. Our CHARISMA project intends to fill this void. The first results from our study involve an iPSC/860 at NASA Ames. This paper presents results from a different platform, the CM-5 at the National Center for Supercomputing Applications. The CHARISMA studies are unique because we collect information about every individual read and write request and about the entire mix of applications running on the machines. The results of our trace analysis lead to recommendations for parallel file system design. First the file system should support efficient concurrent access to many files, and I/O requests from many jobs under varying load conditions. Second, it must efficiently manage large files kept open for long periods. Third, it should expect to see small requests predominantly sequential access patterns, application-wide synchronous access, no concurrent file-sharing between jobs appreciable byte and block sharing between processes within jobs, and strong interprocess locality. Finally, the trace data suggest that node-level write caches and collective I/O request interfaces may be useful in certain environments.

  11. Feasibility of the determination of polycyclic aromatic hydrocarbons in edible oils via unfolded partial least-squares/residual bilinearization and parallel factor analysis of fluorescence excitation emission matrices.

    PubMed

    Alarcón, Francis; Báez, María E; Bravo, Manuel; Richter, Pablo; Escandar, Graciela M; Olivieri, Alejandro C; Fuentes, Edwar

    2013-01-15

    The possibility of simultaneously determining seven concerned heavy polycyclic aromatic hydrocarbons (PAHs) of the US-EPA priority pollutant list, in extra virgin olive and sunflower oils was examined using unfolded partial least-squares with residual bilinearization (U-PLS/RBL) and parallel factor analysis (PARAFAC). Both of these methods were applied to fluorescence excitation emission matrices. The compounds studied were benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene and indeno[1,2,3-c,d]-pyrene. The analysis was performed using fluorescence spectroscopy after a microwave assisted liquid-liquid extraction and solid-phase extraction on silica. The U-PLS/RBL algorithm exhibited the best performance for resolving the heavy PAH mixture in the presence of both the highly complex oil matrix and other unpredicted PAHs of the US-EPA list. The obtained limit of detection for the proposed method ranged from 0.07 to 2 μg kg(-1). The predicted U-PLS/RBL concentrations were satisfactorily compared with those obtained using high-performance liquid chromatography with fluorescence detection. A simple analysis with a considerable reduction in time and solvent consumption in comparison with chromatography are the principal advantages of the proposed method. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Performance analysis of three dimensional integral equation computations on a massively parallel computer. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Logan, Terry G.

    1994-01-01

    The purpose of this study is to investigate the performance of the integral equation computations using numerical source field-panel method in a massively parallel processing (MPP) environment. A comparative study of computational performance of the MPP CM-5 computer and conventional Cray-YMP supercomputer for a three-dimensional flow problem is made. A serial FORTRAN code is converted into a parallel CM-FORTRAN code. Some performance results are obtained on CM-5 with 32, 62, 128 nodes along with those on Cray-YMP with a single processor. The comparison of the performance indicates that the parallel CM-FORTRAN code near or out-performs the equivalent serial FORTRAN code for some cases.

  13. A high performance linear equation solver on the VPP500 parallel supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakanishi, Makoto; Ina, Hiroshi; Miura, Kenichi

    1994-12-31

    This paper describes the implementation of two high performance linear equation solvers developed for the Fujitsu VPP500, a distributed memory parallel supercomputer system. The solvers take advantage of the key architectural features of VPP500--(1) scalability for an arbitrary number of processors up to 222 processors, (2) flexible data transfer among processors provided by a crossbar interconnection network, (3) vector processing capability on each processor, and (4) overlapped computation and transfer. The general linear equation solver based on the blocked LU decomposition method achieves 120.0 GFLOPS performance with 100 processors in the LIN-PACK Highly Parallel Computing benchmark.

  14. A high performance parallel algorithm for 1-D FFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, R.C.; Gustavson, F.G.; Zubair, M.

    1994-12-31

    In this paper the authors propose a parallel high performance FFT algorithm based on a multi-dimensional formulation. They use this to solve a commonly encountered FFT based kernel on a distributed memory parallel machine, the IBM scalable parallel system, SP1. The kernel requires a forward FFT computation of an input sequence, multiplication of the transformed data by a coefficient array, and finally an inverse FFT computation of the resultant data. They show that the multi-dimensional formulation helps in reducing the communication costs and also improves the single node performance by effectively utilizing the memory system of the node. They implementedmore » this kernel on the IBM SP1 and observed a performance of 1.25 GFLOPS on a 64-node machine.« less

  15. A new parallel-vector finite element analysis software on distributed-memory computers

    NASA Technical Reports Server (NTRS)

    Qin, Jiangning; Nguyen, Duc T.

    1993-01-01

    A new parallel-vector finite element analysis software package MPFEA (Massively Parallel-vector Finite Element Analysis) is developed for large-scale structural analysis on massively parallel computers with distributed-memory. MPFEA is designed for parallel generation and assembly of the global finite element stiffness matrices as well as parallel solution of the simultaneous linear equations, since these are often the major time-consuming parts of a finite element analysis. Block-skyline storage scheme along with vector-unrolling techniques are used to enhance the vector performance. Communications among processors are carried out concurrently with arithmetic operations to reduce the total execution time. Numerical results on the Intel iPSC/860 computers (such as the Intel Gamma with 128 processors and the Intel Touchstone Delta with 512 processors) are presented, including an aircraft structure and some very large truss structures, to demonstrate the efficiency and accuracy of MPFEA.

  16. An Expert System for the Development of Efficient Parallel Code

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Chun, Robert; Jin, Hao-Qiang; Labarta, Jesus; Gimenez, Judit

    2004-01-01

    We have built the prototype of an expert system to assist the user in the development of efficient parallel code. The system was integrated into the parallel programming environment that is currently being developed at NASA Ames. The expert system interfaces to tools for automatic parallelization and performance analysis. It uses static program structure information and performance data in order to automatically determine causes of poor performance and to make suggestions for improvements. In this paper we give an overview of our programming environment, describe the prototype implementation of our expert system, and demonstrate its usefulness with several case studies.

  17. High-Performance Psychometrics: The Parallel-E Parallel-M Algorithm for Generalized Latent Variable Models. Research Report. ETS RR-16-34

    ERIC Educational Resources Information Center

    von Davier, Matthias

    2016-01-01

    This report presents results on a parallel implementation of the expectation-maximization (EM) algorithm for multidimensional latent variable models. The developments presented here are based on code that parallelizes both the E step and the M step of the parallel-E parallel-M algorithm. Examples presented in this report include item response…

  18. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry

    PubMed Central

    Rauniyar, Navin

    2015-01-01

    The parallel reaction monitoring (PRM) assay has emerged as an alternative method of targeted quantification. The PRM assay is performed in a high resolution and high mass accuracy mode on a mass spectrometer. This review presents the features that make PRM a highly specific and selective method for targeted quantification using quadrupole-Orbitrap hybrid instruments. In addition, this review discusses the label-based and label-free methods of quantification that can be performed with the targeted approach. PMID:26633379

  19. Efficient parallel architecture for highly coupled real-time linear system applications

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Homaifar, Abdollah; Barua, Soumavo

    1988-01-01

    A systematic procedure is developed for exploiting the parallel constructs of computation in a highly coupled, linear system application. An overall top-down design approach is adopted. Differential equations governing the application under consideration are partitioned into subtasks on the basis of a data flow analysis. The interconnected task units constitute a task graph which has to be computed in every update interval. Multiprocessing concepts utilizing parallel integration algorithms are then applied for efficient task graph execution. A simple scheduling routine is developed to handle task allocation while in the multiprocessor mode. Results of simulation and scheduling are compared on the basis of standard performance indices. Processor timing diagrams are developed on the basis of program output accruing to an optimal set of processors. Basic architectural attributes for implementing the system are discussed together with suggestions for processing element design. Emphasis is placed on flexible architectures capable of accommodating widely varying application specifics.

  20. Parallel-vector computation for linear structural analysis and non-linear unconstrained optimization problems

    NASA Technical Reports Server (NTRS)

    Nguyen, D. T.; Al-Nasra, M.; Zhang, Y.; Baddourah, M. A.; Agarwal, T. K.; Storaasli, O. O.; Carmona, E. A.

    1991-01-01

    Several parallel-vector computational improvements to the unconstrained optimization procedure are described which speed up the structural analysis-synthesis process. A fast parallel-vector Choleski-based equation solver, pvsolve, is incorporated into the well-known SAP-4 general-purpose finite-element code. The new code, denoted PV-SAP, is tested for static structural analysis. Initial results on a four processor CRAY 2 show that using pvsolve reduces the equation solution time by a factor of 14-16 over the original SAP-4 code. In addition, parallel-vector procedures for the Golden Block Search technique and the BFGS method are developed and tested for nonlinear unconstrained optimization. A parallel version of an iterative solver and the pvsolve direct solver are incorporated into the BFGS method. Preliminary results on nonlinear unconstrained optimization test problems, using pvsolve in the analysis, show excellent parallel-vector performance indicating that these parallel-vector algorithms can be used in a new generation of finite-element based structural design/analysis-synthesis codes.

  1. Multi-GPU parallel algorithm design and analysis for improved inversion of probability tomography with gravity gradiometry data

    NASA Astrophysics Data System (ADS)

    Hou, Zhenlong; Huang, Danian

    2017-09-01

    In this paper, we make a study on the inversion of probability tomography (IPT) with gravity gradiometry data at first. The space resolution of the results is improved by multi-tensor joint inversion, depth weighting matrix and the other methods. Aiming at solving the problems brought by the big data in the exploration, we present the parallel algorithm and the performance analysis combining Compute Unified Device Architecture (CUDA) with Open Multi-Processing (OpenMP) based on Graphics Processing Unit (GPU) accelerating. In the test of the synthetic model and real data from Vinton Dome, we get the improved results. It is also proved that the improved inversion algorithm is effective and feasible. The performance of parallel algorithm we designed is better than the other ones with CUDA. The maximum speedup could be more than 200. In the performance analysis, multi-GPU speedup and multi-GPU efficiency are applied to analyze the scalability of the multi-GPU programs. The designed parallel algorithm is demonstrated to be able to process larger scale of data and the new analysis method is practical.

  2. Performance Analysis of Multilevel Parallel Applications on Shared Memory Architectures

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Caubet, Jordi; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    In this paper we describe how to apply powerful performance analysis techniques to understand the behavior of multilevel parallel applications. We use the Paraver/OMPItrace performance analysis system for our study. This system consists of two major components: The OMPItrace dynamic instrumentation mechanism, which allows the tracing of processes and threads and the Paraver graphical user interface for inspection and analyses of the generated traces. We describe how to use the system to conduct a detailed comparative study of a benchmark code implemented in five different programming paradigms applicable for shared memory

  3. Parallel integer sorting with medium and fine-scale parallelism

    NASA Technical Reports Server (NTRS)

    Dagum, Leonardo

    1993-01-01

    Two new parallel integer sorting algorithms, queue-sort and barrel-sort, are presented and analyzed in detail. These algorithms do not have optimal parallel complexity, yet they show very good performance in practice. Queue-sort designed for fine-scale parallel architectures which allow the queueing of multiple messages to the same destination. Barrel-sort is designed for medium-scale parallel architectures with a high message passing overhead. The performance results from the implementation of queue-sort on a Connection Machine CM-2 and barrel-sort on a 128 processor iPSC/860 are given. The two implementations are found to be comparable in performance but not as good as a fully vectorized bucket sort on the Cray YMP.

  4. Scalable Algorithms for Clustering Large Geospatiotemporal Data Sets on Manycore Architectures

    NASA Astrophysics Data System (ADS)

    Mills, R. T.; Hoffman, F. M.; Kumar, J.; Sreepathi, S.; Sripathi, V.

    2016-12-01

    The increasing availability of high-resolution geospatiotemporal data sets from sources such as observatory networks, remote sensing platforms, and computational Earth system models has opened new possibilities for knowledge discovery using data sets fused from disparate sources. Traditional algorithms and computing platforms are impractical for the analysis and synthesis of data sets of this size; however, new algorithmic approaches that can effectively utilize the complex memory hierarchies and the extremely high levels of available parallelism in state-of-the-art high-performance computing platforms can enable such analysis. We describe a massively parallel implementation of accelerated k-means clustering and some optimizations to boost computational intensity and utilization of wide SIMD lanes on state-of-the art multi- and manycore processors, including the second-generation Intel Xeon Phi ("Knights Landing") processor based on the Intel Many Integrated Core (MIC) architecture, which includes several new features, including an on-package high-bandwidth memory. We also analyze the code in the context of a few practical applications to the analysis of climatic and remotely-sensed vegetation phenology data sets, and speculate on some of the new applications that such scalable analysis methods may enable.

  5. Churchill: an ultra-fast, deterministic, highly scalable and balanced parallelization strategy for the discovery of human genetic variation in clinical and population-scale genomics.

    PubMed

    Kelly, Benjamin J; Fitch, James R; Hu, Yangqiu; Corsmeier, Donald J; Zhong, Huachun; Wetzel, Amy N; Nordquist, Russell D; Newsom, David L; White, Peter

    2015-01-20

    While advances in genome sequencing technology make population-scale genomics a possibility, current approaches for analysis of these data rely upon parallelization strategies that have limited scalability, complex implementation and lack reproducibility. Churchill, a balanced regional parallelization strategy, overcomes these challenges, fully automating the multiple steps required to go from raw sequencing reads to variant discovery. Through implementation of novel deterministic parallelization techniques, Churchill allows computationally efficient analysis of a high-depth whole genome sample in less than two hours. The method is highly scalable, enabling full analysis of the 1000 Genomes raw sequence dataset in a week using cloud resources. http://churchill.nchri.org/.

  6. Stiffness modeling of compliant parallel mechanisms and applications in the performance analysis of a decoupled parallel compliant stage

    NASA Astrophysics Data System (ADS)

    Jiang, Yao; Li, Tie-Min; Wang, Li-Ping

    2015-09-01

    This paper investigates the stiffness modeling of compliant parallel mechanism (CPM) based on the matrix method. First, the general compliance matrix of a serial flexure chain is derived. The stiffness modeling of CPMs is next discussed in detail, considering the relative positions of the applied load and the selected displacement output point. The derived stiffness models have simple and explicit forms, and the input, output, and coupling stiffness matrices of the CPM can easily be obtained. The proposed analytical model is applied to the stiffness modeling and performance analysis of an XY parallel compliant stage with input and output decoupling characteristics. Then, the key geometrical parameters of the stage are optimized to obtain the minimum input decoupling degree. Finally, a prototype of the compliant stage is developed and its input axial stiffness, coupling characteristics, positioning resolution, and circular contouring performance are tested. The results demonstrate the excellent performance of the compliant stage and verify the effectiveness of the proposed theoretical model. The general stiffness models provided in this paper will be helpful for performance analysis, especially in determining coupling characteristics, and the structure optimization of the CPM.

  7. Web Based Parallel Programming Workshop for Undergraduate Education.

    ERIC Educational Resources Information Center

    Marcus, Robert L.; Robertson, Douglass

    Central State University (Ohio), under a contract with Nichols Research Corporation, has developed a World Wide web based workshop on high performance computing entitled "IBN SP2 Parallel Programming Workshop." The research is part of the DoD (Department of Defense) High Performance Computing Modernization Program. The research…

  8. Integration experiences and performance studies of A COTS parallel archive systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsing-bung; Scott, Cody; Grider, Bary

    2010-01-01

    Current and future Archive Storage Systems have been asked to (a) scale to very high bandwidths, (b) scale in metadata performance, (c) support policy-based hierarchical storage management capability, (d) scale in supporting changing needs of very large data sets, (e) support standard interface, and (f) utilize commercial-off-the-shelf(COTS) hardware. Parallel file systems have been asked to do the same thing but at one or more orders of magnitude faster in performance. Archive systems continue to move closer to file systems in their design due to the need for speed and bandwidth, especially metadata searching speeds such as more caching and lessmore » robust semantics. Currently the number of extreme highly scalable parallel archive solutions is very small especially those that will move a single large striped parallel disk file onto many tapes in parallel. We believe that a hybrid storage approach of using COTS components and innovative software technology can bring new capabilities into a production environment for the HPC community much faster than the approach of creating and maintaining a complete end-to-end unique parallel archive software solution. In this paper, we relay our experience of integrating a global parallel file system and a standard backup/archive product with a very small amount of additional code to provide a scalable, parallel archive. Our solution has a high degree of overlap with current parallel archive products including (a) doing parallel movement to/from tape for a single large parallel file, (b) hierarchical storage management, (c) ILM features, (d) high volume (non-single parallel file) archives for backup/archive/content management, and (e) leveraging all free file movement tools in Linux such as copy, move, ls, tar, etc. We have successfully applied our working COTS Parallel Archive System to the current world's first petaflop/s computing system, LANL's Roadrunner, and demonstrated its capability to address requirements of future archival storage systems.« less

  9. Integration experiments and performance studies of a COTS parallel archive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsing-bung; Scott, Cody; Grider, Gary

    2010-06-16

    Current and future Archive Storage Systems have been asked to (a) scale to very high bandwidths, (b) scale in metadata performance, (c) support policy-based hierarchical storage management capability, (d) scale in supporting changing needs of very large data sets, (e) support standard interface, and (f) utilize commercial-off-the-shelf (COTS) hardware. Parallel file systems have been asked to do the same thing but at one or more orders of magnitude faster in performance. Archive systems continue to move closer to file systems in their design due to the need for speed and bandwidth, especially metadata searching speeds such as more caching andmore » less robust semantics. Currently the number of extreme highly scalable parallel archive solutions is very small especially those that will move a single large striped parallel disk file onto many tapes in parallel. We believe that a hybrid storage approach of using COTS components and innovative software technology can bring new capabilities into a production environment for the HPC community much faster than the approach of creating and maintaining a complete end-to-end unique parallel archive software solution. In this paper, we relay our experience of integrating a global parallel file system and a standard backup/archive product with a very small amount of additional code to provide a scalable, parallel archive. Our solution has a high degree of overlap with current parallel archive products including (a) doing parallel movement to/from tape for a single large parallel file, (b) hierarchical storage management, (c) ILM features, (d) high volume (non-single parallel file) archives for backup/archive/content management, and (e) leveraging all free file movement tools in Linux such as copy, move, Is, tar, etc. We have successfully applied our working COTS Parallel Archive System to the current world's first petafiop/s computing system, LANL's Roadrunner machine, and demonstrated its capability to address requirements of future archival storage systems.« less

  10. HPC-NMF: A High-Performance Parallel Algorithm for Nonnegative Matrix Factorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannan, Ramakrishnan; Sukumar, Sreenivas R.; Ballard, Grey M.

    NMF is a useful tool for many applications in different domains such as topic modeling in text mining, background separation in video analysis, and community detection in social networks. Despite its popularity in the data mining community, there is a lack of efficient distributed algorithms to solve the problem for big data sets. We propose a high-performance distributed-memory parallel algorithm that computes the factorization by iteratively solving alternating non-negative least squares (NLS) subproblems formore » $$\\WW$$ and $$\\HH$$. It maintains the data and factor matrices in memory (distributed across processors), uses MPI for interprocessor communication, and, in the dense case, provably minimizes communication costs (under mild assumptions). As opposed to previous implementation, our algorithm is also flexible: It performs well for both dense and sparse matrices, and allows the user to choose any one of the multiple algorithms for solving the updates to low rank factors $$\\WW$$ and $$\\HH$$ within the alternating iterations.« less

  11. Xyce™ Parallel Electronic Simulator Users' Guide, Version 6.5.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiter, Eric R.; Aadithya, Karthik V.; Mei, Ting

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to developmore » new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandia's needs, including some radiation- aware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase -- a message passing parallel implementation -- which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The information herein is subject to change without notice. Copyright © 2002-2016 Sandia Corporation. All rights reserved.« less

  12. An Expert Assistant for Computer Aided Parallelization

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Chun, Robert; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit

    2004-01-01

    The prototype implementation of an expert system was developed to assist the user in the computer aided parallelization process. The system interfaces to tools for automatic parallelization and performance analysis. By fusing static program structure information and dynamic performance analysis data the expert system can help the user to filter, correlate, and interpret the data gathered by the existing tools. Sections of the code that show poor performance and require further attention are rapidly identified and suggestions for improvements are presented to the user. In this paper we describe the components of the expert system and discuss its interface to the existing tools. We present a case study to demonstrate the successful use in full scale scientific applications.

  13. Parallel processing in finite element structural analysis

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1987-01-01

    A brief review is made of the fundamental concepts and basic issues of parallel processing. Discussion focuses on parallel numerical algorithms, performance evaluation of machines and algorithms, and parallelism in finite element computations. A computational strategy is proposed for maximizing the degree of parallelism at different levels of the finite element analysis process including: 1) formulation level (through the use of mixed finite element models); 2) analysis level (through additive decomposition of the different arrays in the governing equations into the contributions to a symmetrized response plus correction terms); 3) numerical algorithm level (through the use of operator splitting techniques and application of iterative processes); and 4) implementation level (through the effective combination of vectorization, multitasking and microtasking, whenever available).

  14. A new deadlock resolution protocol and message matching algorithm for the extreme-scale simulator

    DOE PAGES

    Engelmann, Christian; Naughton, III, Thomas J.

    2016-03-22

    Investigating the performance of parallel applications at scale on future high-performance computing (HPC) architectures and the performance impact of different HPC architecture choices is an important component of HPC hardware/software co-design. The Extreme-scale Simulator (xSim) is a simulation toolkit for investigating the performance of parallel applications at scale. xSim scales to millions of simulated Message Passing Interface (MPI) processes. The overhead introduced by a simulation tool is an important performance and productivity aspect. This paper documents two improvements to xSim: (1)~a new deadlock resolution protocol to reduce the parallel discrete event simulation overhead and (2)~a new simulated MPI message matchingmore » algorithm to reduce the oversubscription management overhead. The results clearly show a significant performance improvement. The simulation overhead for running the NAS Parallel Benchmark suite was reduced from 102% to 0% for the embarrassingly parallel (EP) benchmark and from 1,020% to 238% for the conjugate gradient (CG) benchmark. xSim offers a highly accurate simulation mode for better tracking of injected MPI process failures. Furthermore, with highly accurate simulation, the overhead was reduced from 3,332% to 204% for EP and from 37,511% to 13,808% for CG.« less

  15. Parallel microscope-based fluorescence, absorbance and time-of-flight mass spectrometry detection for high performance liquid chromatography and determination of glucosamine in urine.

    PubMed

    Xiong, Bo; Wang, Ling-Ling; Li, Qiong; Nie, Yu-Ting; Cheng, Shuang-Shuang; Zhang, Hui; Sun, Ren-Qiang; Wang, Yu-Jiao; Zhou, Hong-Bin

    2015-11-01

    A parallel microscope-based laser-induced fluorescence (LIF), ultraviolet-visible absorbance (UV) and time-of-flight mass spectrometry (TOF-MS) detection for high performance liquid chromatography (HPLC) was achieved and used to determine glucosamine in urines. First, a reliable and convenient LIF detection was developed based on an inverted microscope and corresponding modulations. Parallel HPLC-LIF/UV/TOF-MS detection was developed by the combination of preceding Microscope-based LIF detection and HPLC coupled with UV and TOF-MS. The proposed setup, due to its parallel scheme, was free of the influence from photo bleaching in LIF detection. Rhodamine B, glutamic acid and glucosamine have been determined to evaluate its performance. Moreover, the proposed strategy was used to determine the glucosamine in urines, and subsequent results suggested that glucosamine, which was widely used in the prevention of the bone arthritis, was metabolized to urines within 4h. Furthermore, its concentration in urines decreased to 5.4mM at 12h. Efficient glucosamine detection was achieved based on a sensitive quantification (LIF), a universal detection (UV) and structural characterizations (TOF-MS). This application indicated that the proposed strategy was sensitive, universal and versatile, and it was capable of improved analysis, especially for analytes with low concentrations in complex samples, compared with conventional HPLC-UV/TOF-MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Parallel algorithms for placement and routing in VLSI design. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Brouwer, Randall Jay

    1991-01-01

    The computational requirements for high quality synthesis, analysis, and verification of very large scale integration (VLSI) designs have rapidly increased with the fast growing complexity of these designs. Research in the past has focused on the development of heuristic algorithms, special purpose hardware accelerators, or parallel algorithms for the numerous design tasks to decrease the time required for solution. Two new parallel algorithms are proposed for two VLSI synthesis tasks, standard cell placement and global routing. The first algorithm, a parallel algorithm for global routing, uses hierarchical techniques to decompose the routing problem into independent routing subproblems that are solved in parallel. Results are then presented which compare the routing quality to the results of other published global routers and which evaluate the speedups attained. The second algorithm, a parallel algorithm for cell placement and global routing, hierarchically integrates a quadrisection placement algorithm, a bisection placement algorithm, and the previous global routing algorithm. Unique partitioning techniques are used to decompose the various stages of the algorithm into independent tasks which can be evaluated in parallel. Finally, results are presented which evaluate the various algorithm alternatives and compare the algorithm performance to other placement programs. Measurements are presented on the parallel speedups available.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David H.

    The NAS Parallel Benchmarks (NPB) are a suite of parallel computer performance benchmarks. They were originally developed at the NASA Ames Research Center in 1991 to assess high-end parallel supercomputers. Although they are no longer used as widely as they once were for comparing high-end system performance, they continue to be studied and analyzed a great deal in the high-performance computing community. The acronym 'NAS' originally stood for the Numerical Aeronautical Simulation Program at NASA Ames. The name of this organization was subsequently changed to the Numerical Aerospace Simulation Program, and more recently to the NASA Advanced Supercomputing Center, althoughmore » the acronym remains 'NAS.' The developers of the original NPB suite were David H. Bailey, Eric Barszcz, John Barton, David Browning, Russell Carter, LeoDagum, Rod Fatoohi, Samuel Fineberg, Paul Frederickson, Thomas Lasinski, Rob Schreiber, Horst Simon, V. Venkatakrishnan and Sisira Weeratunga. The original NAS Parallel Benchmarks consisted of eight individual benchmark problems, each of which focused on some aspect of scientific computing. The principal focus was in computational aerophysics, although most of these benchmarks have much broader relevance, since in a much larger sense they are typical of many real-world scientific computing applications. The NPB suite grew out of the need for a more rational procedure to select new supercomputers for acquisition by NASA. The emergence of commercially available highly parallel computer systems in the late 1980s offered an attractive alternative to parallel vector supercomputers that had been the mainstay of high-end scientific computing. However, the introduction of highly parallel systems was accompanied by a regrettable level of hype, not only on the part of the commercial vendors but even, in some cases, by scientists using the systems. As a result, it was difficult to discern whether the new systems offered any fundamental performance advantage over vector supercomputers, and, if so, which of the parallel offerings would be most useful in real-world scientific computation. In part to draw attention to some of the performance reporting abuses prevalent at the time, the present author wrote a humorous essay 'Twelve Ways to Fool the Masses,' which described in a light-hearted way a number of the questionable ways in which both vendor marketing people and scientists were inflating and distorting their performance results. All of this underscored the need for an objective and scientifically defensible measure to compare performance on these systems.« less

  18. Performance of GeantV EM Physics Models

    NASA Astrophysics Data System (ADS)

    Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Cosmo, G.; Duhem, L.; Elvira, D.; Folger, G.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.

    2017-10-01

    The recent progress in parallel hardware architectures with deeper vector pipelines or many-cores technologies brings opportunities for HEP experiments to take advantage of SIMD and SIMT computing models. Launched in 2013, the GeantV project studies performance gains in propagating multiple particles in parallel, improving instruction throughput and data locality in HEP event simulation on modern parallel hardware architecture. Due to the complexity of geometry description and physics algorithms of a typical HEP application, performance analysis is indispensable in identifying factors limiting parallel execution. In this report, we will present design considerations and preliminary computing performance of GeantV physics models on coprocessors (Intel Xeon Phi and NVidia GPUs) as well as on mainstream CPUs.

  19. 1988 IEEE Aerospace Applications Conference, Park City, UT, Feb. 7-12, 1988, Digest

    NASA Astrophysics Data System (ADS)

    The conference presents papers on microwave applications, data and signal processing applications, related aerospace applications, and advanced microelectronic products for the aerospace industry. Topics include a high-performance antenna measurement system, microwave power beaming from earth to space, the digital enhancement of microwave component performance, and a GaAs vector processor based on parallel RISC microprocessors. Consideration is also given to unique techniques for reliable SBNR architectures, a linear analysis subsystem for CSSL-IV, and a structured singular value approach to missile autopilot analysis.

  20. Parallel computing in enterprise modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsby, Michael E.; Armstrong, Robert C.; Shneider, Max S.

    2008-08-01

    This report presents the results of our efforts to apply high-performance computing to entity-based simulations with a multi-use plugin for parallel computing. We use the term 'Entity-based simulation' to describe a class of simulation which includes both discrete event simulation and agent based simulation. What simulations of this class share, and what differs from more traditional models, is that the result sought is emergent from a large number of contributing entities. Logistic, economic and social simulations are members of this class where things or people are organized or self-organize to produce a solution. Entity-based problems never have an a priorimore » ergodic principle that will greatly simplify calculations. Because the results of entity-based simulations can only be realized at scale, scalable computing is de rigueur for large problems. Having said that, the absence of a spatial organizing principal makes the decomposition of the problem onto processors problematic. In addition, practitioners in this domain commonly use the Java programming language which presents its own problems in a high-performance setting. The plugin we have developed, called the Parallel Particle Data Model, overcomes both of these obstacles and is now being used by two Sandia frameworks: the Decision Analysis Center, and the Seldon social simulation facility. While the ability to engage U.S.-sized problems is now available to the Decision Analysis Center, this plugin is central to the success of Seldon. Because Seldon relies on computationally intensive cognitive sub-models, this work is necessary to achieve the scale necessary for realistic results. With the recent upheavals in the financial markets, and the inscrutability of terrorist activity, this simulation domain will likely need a capability with ever greater fidelity. High-performance computing will play an important part in enabling that greater fidelity.« less

  1. Use of parallel computing in mass processing of laser data

    NASA Astrophysics Data System (ADS)

    Będkowski, J.; Bratuś, R.; Prochaska, M.; Rzonca, A.

    2015-12-01

    The first part of the paper includes a description of the rules used to generate the algorithm needed for the purpose of parallel computing and also discusses the origins of the idea of research on the use of graphics processors in large scale processing of laser scanning data. The next part of the paper includes the results of an efficiency assessment performed for an array of different processing options, all of which were substantially accelerated with parallel computing. The processing options were divided into the generation of orthophotos using point clouds, coloring of point clouds, transformations, and the generation of a regular grid, as well as advanced processes such as the detection of planes and edges, point cloud classification, and the analysis of data for the purpose of quality control. Most algorithms had to be formulated from scratch in the context of the requirements of parallel computing. A few of the algorithms were based on existing technology developed by the Dephos Software Company and then adapted to parallel computing in the course of this research study. Processing time was determined for each process employed for a typical quantity of data processed, which helped confirm the high efficiency of the solutions proposed and the applicability of parallel computing to the processing of laser scanning data. The high efficiency of parallel computing yields new opportunities in the creation and organization of processing methods for laser scanning data.

  2. Kinematic Analysis and Performance Evaluation of Novel PRS Parallel Mechanism

    NASA Astrophysics Data System (ADS)

    Balaji, K.; Khan, B. Shahul Hamid

    2018-02-01

    In this paper, a 3 DoF (Degree of Freedom) novel PRS (Prismatic-Revolute- Spherical) type parallel mechanisms has been designed and presented. The combination of striaght and arc type linkages for 3 DOF parallel mechanism is introduced for the first time. The performances of the mechanisms are evaluated based on the indices such as Minimum Singular Value (MSV), Condition Number (CN), Local Conditioning Index (LCI), Kinematic Configuration Index (KCI) and Global Conditioning Index (GCI). The overall reachable workspace of all mechanisms are presented. The kinematic measure, dexterity measure and workspace analysis for all the mechanism have been evaluated and compared.

  3. A Comparison of Automatic Parallelization Tools/Compilers on the SGI Origin 2000 Using the NAS Benchmarks

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Frumkin, Michael; Hribar, Michelle; Jin, Hao-Qiang; Waheed, Abdul; Yan, Jerry

    1998-01-01

    Porting applications to new high performance parallel and distributed computing platforms is a challenging task. Since writing parallel code by hand is extremely time consuming and costly, porting codes would ideally be automated by using some parallelization tools and compilers. In this paper, we compare the performance of the hand written NAB Parallel Benchmarks against three parallel versions generated with the help of tools and compilers: 1) CAPTools: an interactive computer aided parallelization too] that generates message passing code, 2) the Portland Group's HPF compiler and 3) using compiler directives with the native FORTAN77 compiler on the SGI Origin2000.

  4. A Parallel Rendering Algorithm for MIMD Architectures

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.; Orloff, Tobias

    1991-01-01

    Applications such as animation and scientific visualization demand high performance rendering of complex three dimensional scenes. To deliver the necessary rendering rates, highly parallel hardware architectures are required. The challenge is then to design algorithms and software which effectively use the hardware parallelism. A rendering algorithm targeted to distributed memory MIMD architectures is described. For maximum performance, the algorithm exploits both object-level and pixel-level parallelism. The behavior of the algorithm is examined both analytically and experimentally. Its performance for large numbers of processors is found to be limited primarily by communication overheads. An experimental implementation for the Intel iPSC/860 shows increasing performance from 1 to 128 processors across a wide range of scene complexities. It is shown that minimal modifications to the algorithm will adapt it for use on shared memory architectures as well.

  5. Nuclide Depletion Capabilities in the Shift Monte Carlo Code

    DOE PAGES

    Davidson, Gregory G.; Pandya, Tara M.; Johnson, Seth R.; ...

    2017-12-21

    A new depletion capability has been developed in the Exnihilo radiation transport code suite. This capability enables massively parallel domain-decomposed coupling between the Shift continuous-energy Monte Carlo solver and the nuclide depletion solvers in ORIGEN to perform high-performance Monte Carlo depletion calculations. This paper describes this new depletion capability and discusses its various features, including a multi-level parallel decomposition, high-order transport-depletion coupling, and energy-integrated power renormalization. Several test problems are presented to validate the new capability against other Monte Carlo depletion codes, and the parallel performance of the new capability is analyzed.

  6. Resolutions of the Coulomb operator: VIII. Parallel implementation using the modern programming language X10.

    PubMed

    Limpanuparb, Taweetham; Milthorpe, Josh; Rendell, Alistair P

    2014-10-30

    Use of the modern parallel programming language X10 for computing long-range Coulomb and exchange interactions is presented. By using X10, a partitioned global address space language with support for task parallelism and the explicit representation of data locality, the resolution of the Ewald operator can be parallelized in a straightforward manner including use of both intranode and internode parallelism. We evaluate four different schemes for dynamic load balancing of integral calculation using X10's work stealing runtime, and report performance results for long-range HF energy calculation of large molecule/high quality basis running on up to 1024 cores of a high performance cluster machine. Copyright © 2014 Wiley Periodicals, Inc.

  7. Flow of GE90 Turbofan Engine Simulated

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1999-01-01

    The objective of this task was to create and validate a three-dimensional model of the GE90 turbofan engine (General Electric) using the APNASA (average passage) flow code. This was a joint effort between GE Aircraft Engines and the NASA Lewis Research Center. The goal was to perform an aerodynamic analysis of the engine primary flow path, in under 24 hours of CPU time, on a parallel distributed workstation system. Enhancements were made to the APNASA Navier-Stokes code to make it faster and more robust and to allow for the analysis of more arbitrary geometry. The resulting simulation exploited the use of parallel computations by using two levels of parallelism, with extremely high efficiency.The primary flow path of the GE90 turbofan consists of a nacelle and inlet, 49 blade rows of turbomachinery, and an exhaust nozzle. Secondary flows entering and exiting the primary flow path-such as bleed, purge, and cooling flows-were modeled macroscopically as source terms to accurately simulate the engine. The information on these source terms came from detailed descriptions of the cooling flow and from thermodynamic cycle system simulations. These provided boundary condition data to the three-dimensional analysis. A simplified combustor was used to feed boundary conditions to the turbomachinery. Flow simulations of the fan, high-pressure compressor, and high- and low-pressure turbines were completed with the APNASA code.

  8. Performance Characterization of Global Address Space Applications: A Case Study with NWChem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Jeffrey R.; Krishnamoorthy, Sriram; Shende, Sameer

    The use of global address space languages and one-sided communication for complex applications is gaining attention in the parallel computing community. However, lack of good evaluative methods to observe multiple levels of performance makes it difficult to isolate the cause of performance deficiencies and to understand the fundamental limitations of system and application design for future improvement. NWChem is a popular computational chemistry package which depends on the Global Arrays/ ARMCI suite for partitioned global address space functionality to deliver high-end molecular modeling capabilities. A workload characterization methodology was developed to support NWChem performance engineering on large-scale parallel platforms. Themore » research involved both the integration of performance instrumentation and measurement in the NWChem software, as well as the analysis of one-sided communication performance in the context of NWChem workloads. Scaling studies were conducted for NWChem on Blue Gene/P and on two large-scale clusters using different generation Infiniband interconnects and x86 processors. The performance analysis and results show how subtle changes in the runtime parameters related to the communication subsystem could have significant impact on performance behavior. The tool has successfully identified several algorithmic bottlenecks which are already being tackled by computational chemists to improve NWChem performance.« less

  9. Analysis and identification of subsynchronous vibration for a high pressure parallel flow centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Kirk, R. G.; Nicholas, J. C.; Donald, G. H.; Murphy, R. C.

    1980-01-01

    The summary of a complete analytical design evaluation of an existing parallel flow compressor is presented and a field vibration problem that manifested itself as a subsynchronous vibration that tracked at approximately 2/3 of compressor speed is reviewed. The comparison of predicted and observed peak response speeds, frequency spectrum content, and the performance of the bearing-seal systems are presented as the events of the field problem are reviewed. Conclusions and recommendations are made as to the degree of accuracy of the analytical techniques used to evaluate the compressor design.

  10. Full 3D Analysis of the GE90 Turbofan Primary Flowpath

    NASA Technical Reports Server (NTRS)

    Turner, Mark G.

    2000-01-01

    The multistage simulations of the GE90 turbofan primary flowpath components have been performed. The multistage CFD code, APNASA, has been used to analyze the fan, fan OGV and booster, the 10-stage high-pressure compressor and the entire turbine system of the GE90 turbofan engine. The code has two levels of parallel, and for the 18 blade row full turbine simulation has 87.3 percent parallel efficiency with 121 processors on an SGI ORIGIN. Grid generation is accomplished with the multistage Average Passage Grid Generator, APG. Results for each component are shown which compare favorably with test data.

  11. Parallel Architectures and Parallel Algorithms for Integrated Vision Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Choudhary, Alok Nidhi

    1989-01-01

    Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems.

  12. Lanczos eigensolution method for high-performance computers

    NASA Technical Reports Server (NTRS)

    Bostic, Susan W.

    1991-01-01

    The theory, computational analysis, and applications are presented of a Lanczos algorithm on high performance computers. The computationally intensive steps of the algorithm are identified as: the matrix factorization, the forward/backward equation solution, and the matrix vector multiples. These computational steps are optimized to exploit the vector and parallel capabilities of high performance computers. The savings in computational time from applying optimization techniques such as: variable band and sparse data storage and access, loop unrolling, use of local memory, and compiler directives are presented. Two large scale structural analysis applications are described: the buckling of a composite blade stiffened panel with a cutout, and the vibration analysis of a high speed civil transport. The sequential computational time for the panel problem executed on a CONVEX computer of 181.6 seconds was decreased to 14.1 seconds with the optimized vector algorithm. The best computational time of 23 seconds for the transport problem with 17,000 degs of freedom was on the the Cray-YMP using an average of 3.63 processors.

  13. Parallel Guessing: A Strategy for High-Speed Computation

    DTIC Science & Technology

    1984-09-19

    for using additional hardware to obtain higher processing speed). In this paper we argue that parallel guessing for image analysis is a useful...from a true solution, or the correctness of a guess, can be readily checked. We review image - analysis algorithms having a parallel guessing or

  14. High-density fiber-optic DNA random microsphere array.

    PubMed

    Ferguson, J A; Steemers, F J; Walt, D R

    2000-11-15

    A high-density fiber-optic DNA microarray sensor was developed to monitor multiple DNA sequences in parallel. Microarrays were prepared by randomly distributing DNA probe-functionalized 3.1-microm-diameter microspheres in an array of wells etched in a 500-microm-diameter optical imaging fiber. Registration of the microspheres was performed using an optical encoding scheme and a custom-built imaging system. Hybridization was visualized using fluorescent-labeled DNA targets with a detection limit of 10 fM. Hybridization times of seconds are required for nanomolar target concentrations, and analysis is performed in minutes.

  15. Message passing interface and multithreading hybrid for parallel molecular docking of large databases on petascale high performance computing machines.

    PubMed

    Zhang, Xiaohua; Wong, Sergio E; Lightstone, Felice C

    2013-04-30

    A mixed parallel scheme that combines message passing interface (MPI) and multithreading was implemented in the AutoDock Vina molecular docking program. The resulting program, named VinaLC, was tested on the petascale high performance computing (HPC) machines at Lawrence Livermore National Laboratory. To exploit the typical cluster-type supercomputers, thousands of docking calculations were dispatched by the master process to run simultaneously on thousands of slave processes, where each docking calculation takes one slave process on one node, and within the node each docking calculation runs via multithreading on multiple CPU cores and shared memory. Input and output of the program and the data handling within the program were carefully designed to deal with large databases and ultimately achieve HPC on a large number of CPU cores. Parallel performance analysis of the VinaLC program shows that the code scales up to more than 15K CPUs with a very low overhead cost of 3.94%. One million flexible compound docking calculations took only 1.4 h to finish on about 15K CPUs. The docking accuracy of VinaLC has been validated against the DUD data set by the re-docking of X-ray ligands and an enrichment study, 64.4% of the top scoring poses have RMSD values under 2.0 Å. The program has been demonstrated to have good enrichment performance on 70% of the targets in the DUD data set. An analysis of the enrichment factors calculated at various percentages of the screening database indicates VinaLC has very good early recovery of actives. Copyright © 2013 Wiley Periodicals, Inc.

  16. WarpIV: In situ visualization and analysis of ion accelerator simulations

    DOE PAGES

    Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc; ...

    2016-05-09

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less

  17. Significantly reducing the processing times of high-speed photometry data sets using a distributed computing model

    NASA Astrophysics Data System (ADS)

    Doyle, Paul; Mtenzi, Fred; Smith, Niall; Collins, Adrian; O'Shea, Brendan

    2012-09-01

    The scientific community is in the midst of a data analysis crisis. The increasing capacity of scientific CCD instrumentation and their falling costs is contributing to an explosive generation of raw photometric data. This data must go through a process of cleaning and reduction before it can be used for high precision photometric analysis. Many existing data processing pipelines either assume a relatively small dataset or are batch processed by a High Performance Computing centre. A radical overhaul of these processing pipelines is required to allow reduction and cleaning rates to process terabyte sized datasets at near capture rates using an elastic processing architecture. The ability to access computing resources and to allow them to grow and shrink as demand fluctuates is essential, as is exploiting the parallel nature of the datasets. A distributed data processing pipeline is required. It should incorporate lossless data compression, allow for data segmentation and support processing of data segments in parallel. Academic institutes can collaborate and provide an elastic computing model without the requirement for large centralized high performance computing data centers. This paper demonstrates how a base 10 order of magnitude improvement in overall processing time has been achieved using the "ACN pipeline", a distributed pipeline spanning multiple academic institutes.

  18. A CS1 pedagogical approach to parallel thinking

    NASA Astrophysics Data System (ADS)

    Rague, Brian William

    Almost all collegiate programs in Computer Science offer an introductory course in programming primarily devoted to communicating the foundational principles of software design and development. The ACM designates this introduction to computer programming course for first-year students as CS1, during which methodologies for solving problems within a discrete computational context are presented. Logical thinking is highlighted, guided primarily by a sequential approach to algorithm development and made manifest by typically using the latest, commercially successful programming language. In response to the most recent developments in accessible multicore computers, instructors of these introductory classes may wish to include training on how to design workable parallel code. Novel issues arise when programming concurrent applications which can make teaching these concepts to beginning programmers a seemingly formidable task. Student comprehension of design strategies related to parallel systems should be monitored to ensure an effective classroom experience. This research investigated the feasibility of integrating parallel computing concepts into the first-year CS classroom. To quantitatively assess student comprehension of parallel computing, an experimental educational study using a two-factor mixed group design was conducted to evaluate two instructional interventions in addition to a control group: (1) topic lecture only, and (2) topic lecture with laboratory work using a software visualization Parallel Analysis Tool (PAT) specifically designed for this project. A new evaluation instrument developed for this study, the Perceptions of Parallelism Survey (PoPS), was used to measure student learning regarding parallel systems. The results from this educational study show a statistically significant main effect among the repeated measures, implying that student comprehension levels of parallel concepts as measured by the PoPS improve immediately after the delivery of any initial three-week CS1 level module when compared with student comprehension levels just prior to starting the course. Survey results measured during the ninth week of the course reveal that performance levels remained high compared to pre-course performance scores. A second result produced by this study reveals no statistically significant interaction effect between the intervention method and student performance as measured by the evaluation instrument over three separate testing periods. However, visual inspection of survey score trends and the low p-value generated by the interaction analysis (0.062) indicate that further studies may verify improved concept retention levels for the lecture w/PAT group.

  19. Experiments and Analyses of Data Transfers Over Wide-Area Dedicated Connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Liu, Qiang; Sen, Satyabrata

    Dedicated wide-area network connections are increasingly employed in high-performance computing and big data scenarios. One might expect the performance and dynamics of data transfers over such connections to be easy to analyze due to the lack of competing traffic. However, non-linear transport dynamics and end-system complexities (e.g., multi-core hosts and distributed filesystems) can in fact make analysis surprisingly challenging. We present extensive measurements of memory-to-memory and disk-to-disk file transfers over 10 Gbps physical and emulated connections with 0–366 ms round trip times (RTTs). For memory-to-memory transfers, profiles of both TCP and UDT throughput as a function of RTT show concavemore » and convex regions; large buffer sizes and more parallel flows lead to wider concave regions, which are highly desirable. TCP and UDT both also display complex throughput dynamics, as indicated by their Poincare maps and Lyapunov exponents. For disk-to-disk transfers, we determine that high throughput can be achieved via a combination of parallel I/O threads, parallel network threads, and direct I/O mode. Our measurements also show that Lustre filesystems can be mounted over long-haul connections using LNet routers, although challenges remain in jointly optimizing file I/O and transport method parameters to achieve peak throughput.« less

  20. A highly efficient multi-core algorithm for clustering extremely large datasets

    PubMed Central

    2010-01-01

    Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer. PMID:20370922

  1. MC64-ClustalWP2: A Highly-Parallel Hybrid Strategy to Align Multiple Sequences in Many-Core Architectures

    PubMed Central

    Díaz, David; Esteban, Francisco J.; Hernández, Pilar; Caballero, Juan Antonio; Guevara, Antonio

    2014-01-01

    We have developed the MC64-ClustalWP2 as a new implementation of the Clustal W algorithm, integrating a novel parallelization strategy and significantly increasing the performance when aligning long sequences in architectures with many cores. It must be stressed that in such a process, the detailed analysis of both the software and hardware features and peculiarities is of paramount importance to reveal key points to exploit and optimize the full potential of parallelism in many-core CPU systems. The new parallelization approach has focused into the most time-consuming stages of this algorithm. In particular, the so-called progressive alignment has drastically improved the performance, due to a fine-grained approach where the forward and backward loops were unrolled and parallelized. Another key approach has been the implementation of the new algorithm in a hybrid-computing system, integrating both an Intel Xeon multi-core CPU and a Tilera Tile64 many-core card. A comparison with other Clustal W implementations reveals the high-performance of the new algorithm and strategy in many-core CPU architectures, in a scenario where the sequences to align are relatively long (more than 10 kb) and, hence, a many-core GPU hardware cannot be used. Thus, the MC64-ClustalWP2 runs multiple alignments more than 18x than the original Clustal W algorithm, and more than 7x than the best x86 parallel implementation to date, being publicly available through a web service. Besides, these developments have been deployed in cost-effective personal computers and should be useful for life-science researchers, including the identification of identities and differences for mutation/polymorphism analyses, biodiversity and evolutionary studies and for the development of molecular markers for paternity testing, germplasm management and protection, to assist breeding, illegal traffic control, fraud prevention and for the protection of the intellectual property (identification/traceability), including the protected designation of origin, among other applications. PMID:24710354

  2. Performance Models for the Spike Banded Linear System Solver

    DOE PAGES

    Manguoglu, Murat; Saied, Faisal; Sameh, Ahmed; ...

    2011-01-01

    With availability of large-scale parallel platforms comprised of tens-of-thousands of processors and beyond, there is significant impetus for the development of scalable parallel sparse linear system solvers and preconditioners. An integral part of this design process is the development of performance models capable of predicting performance and providing accurate cost models for the solvers and preconditioners. There has been some work in the past on characterizing performance of the iterative solvers themselves. In this paper, we investigate the problem of characterizing performance and scalability of banded preconditioners. Recent work has demonstrated the superior convergence properties and robustness of banded preconditioners,more » compared to state-of-the-art ILU family of preconditioners as well as algebraic multigrid preconditioners. Furthermore, when used in conjunction with efficient banded solvers, banded preconditioners are capable of significantly faster time-to-solution. Our banded solver, the Truncated Spike algorithm is specifically designed for parallel performance and tolerance to deep memory hierarchies. Its regular structure is also highly amenable to accurate performance characterization. Using these characteristics, we derive the following results in this paper: (i) we develop parallel formulations of the Truncated Spike solver, (ii) we develop a highly accurate pseudo-analytical parallel performance model for our solver, (iii) we show excellent predication capabilities of our model – based on which we argue the high scalability of our solver. Our pseudo-analytical performance model is based on analytical performance characterization of each phase of our solver. These analytical models are then parameterized using actual runtime information on target platforms. An important consequence of our performance models is that they reveal underlying performance bottlenecks in both serial and parallel formulations. All of our results are validated on diverse heterogeneous multiclusters – platforms for which performance prediction is particularly challenging. Finally, we provide predict the scalability of the Spike algorithm using up to 65,536 cores with our model. In this paper we extend the results presented in the Ninth International Symposium on Parallel and Distributed Computing.« less

  3. Multiprocessor smalltalk: Implementation, performance, and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallas, J.I.

    1990-01-01

    Multiprocessor Smalltalk demonstrates the value of object-oriented programming on a multiprocessor. Its implementation and analysis shed light on three areas: concurrent programming in an object oriented language without special extensions, implementation techniques for adapting to multiprocessors, and performance factors in the resulting system. Adding parallelism to Smalltalk code is easy, because programs already use control abstractions like iterators. Smalltalk's basic control and concurrency primitives (lambda expressions, processes and semaphores) can be used to build parallel control abstractions, including parallel iterators, parallel objects, atomic objects, and futures. Language extensions for concurrency are not required. This implementation demonstrates that it is possiblemore » to build an efficient parallel object-oriented programming system and illustrates techniques for doing so. Three modification tools-serialization, replication, and reorganization-adapted the Berkeley Smalltalk interpreter to the Firefly multiprocessor. Multiprocessor Smalltalk's performance shows that the combination of multiprocessing and object-oriented programming can be effective: speedups (relative to the original serial version) exceed 2.0 for five processors on all the benchmarks; the median efficiency is 48%. Analysis shows both where performance is lost and how to improve and generalize the experimental results. Changes in the interpreter to support concurrency add at most 12% overhead; better access to per-process variables could eliminate much of that. Changes in the user code to express concurrency add as much as 70% overhead; this overhead could be reduced to 54% if blocks (lambda expressions) were reentrant. Performance is also lost when the program cannot keep all five processors busy.« less

  4. A high-speed linear algebra library with automatic parallelism

    NASA Technical Reports Server (NTRS)

    Boucher, Michael L.

    1994-01-01

    Parallel or distributed processing is key to getting highest performance workstations. However, designing and implementing efficient parallel algorithms is difficult and error-prone. It is even more difficult to write code that is both portable to and efficient on many different computers. Finally, it is harder still to satisfy the above requirements and include the reliability and ease of use required of commercial software intended for use in a production environment. As a result, the application of parallel processing technology to commercial software has been extremely small even though there are numerous computationally demanding programs that would significantly benefit from application of parallel processing. This paper describes DSSLIB, which is a library of subroutines that perform many of the time-consuming computations in engineering and scientific software. DSSLIB combines the high efficiency and speed of parallel computation with a serial programming model that eliminates many undesirable side-effects of typical parallel code. The result is a simple way to incorporate the power of parallel processing into commercial software without compromising maintainability, reliability, or ease of use. This gives significant advantages over less powerful non-parallel entries in the market.

  5. A Screen Space GPGPU Surface LIC Algorithm for Distributed Memory Data Parallel Sort Last Rendering Infrastructures

    NASA Astrophysics Data System (ADS)

    Loring, B.; Karimabadi, H.; Rortershteyn, V.

    2015-10-01

    The surface line integral convolution(LIC) visualization technique produces dense visualization of vector fields on arbitrary surfaces. We present a screen space surface LIC algorithm for use in distributed memory data parallel sort last rendering infrastructures. The motivations for our work are to support analysis of datasets that are too large to fit in the main memory of a single computer and compatibility with prevalent parallel scientific visualization tools such as ParaView and VisIt. By working in screen space using OpenGL we can leverage the computational power of GPUs when they are available and run without them when they are not. We address efficiency and performance issues that arise from the transformation of data from physical to screen space by selecting an alternate screen space domain decomposition. We analyze the algorithm's scaling behavior with and without GPUs on two high performance computing systems using data from turbulent plasma simulations.

  6. A Screen Space GPGPU Surface LIC Algorithm for Distributed Memory Data Parallel Sort Last Rendering Infrastructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loring, Burlen; Karimabadi, Homa; Rortershteyn, Vadim

    2014-07-01

    The surface line integral convolution(LIC) visualization technique produces dense visualization of vector fields on arbitrary surfaces. We present a screen space surface LIC algorithm for use in distributed memory data parallel sort last rendering infrastructures. The motivations for our work are to support analysis of datasets that are too large to fit in the main memory of a single computer and compatibility with prevalent parallel scientific visualization tools such as ParaView and VisIt. By working in screen space using OpenGL we can leverage the computational power of GPUs when they are available and run without them when they are not.more » We address efficiency and performance issues that arise from the transformation of data from physical to screen space by selecting an alternate screen space domain decomposition. We analyze the algorithm's scaling behavior with and without GPUs on two high performance computing systems using data from turbulent plasma simulations.« less

  7. Revisiting Parallel Cyclic Reduction and Parallel Prefix-Based Algorithms for Block Tridiagonal System of Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seal, Sudip K; Perumalla, Kalyan S; Hirshman, Steven Paul

    2013-01-01

    Simulations that require solutions of block tridiagonal systems of equations rely on fast parallel solvers for runtime efficiency. Leading parallel solvers that are highly effective for general systems of equations, dense or sparse, are limited in scalability when applied to block tridiagonal systems. This paper presents scalability results as well as detailed analyses of two parallel solvers that exploit the special structure of block tridiagonal matrices to deliver superior performance, often by orders of magnitude. A rigorous analysis of their relative parallel runtimes is shown to reveal the existence of a critical block size that separates the parameter space spannedmore » by the number of block rows, the block size and the processor count, into distinct regions that favor one or the other of the two solvers. Dependence of this critical block size on the above parameters as well as on machine-specific constants is established. These formal insights are supported by empirical results on up to 2,048 cores of a Cray XT4 system. To the best of our knowledge, this is the highest reported scalability for parallel block tridiagonal solvers to date.« less

  8. Scalable Molecular Dynamics with NAMD

    PubMed Central

    Phillips, James C.; Braun, Rosemary; Wang, Wei; Gumbart, James; Tajkhorshid, Emad; Villa, Elizabeth; Chipot, Christophe; Skeel, Robert D.; Kalé, Laxmikant; Schulten, Klaus

    2008-01-01

    NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This paper, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Next, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, e.g., the Tcl scripting language. Finally, the paper provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu. PMID:16222654

  9. Kinematics and dynamics analysis of a quadruped walking robot with parallel leg mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Hongbo; Sang, Lingfeng; Hu, Xing; Zhang, Dianfan; Yu, Hongnian

    2013-09-01

    It is desired to require a walking robot for the elderly and the disabled to have large capacity, high stiffness, stability, etc. However, the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function. Therefore, Improvement of enhancing capacity and functions of the walking robot is an important research issue. According to walking requirements and combining modularization and reconfigurable ideas, a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed. The proposed robot can be used for both a biped and a quadruped walking robot. The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized. The results show that performance of the walking robot is optimal when the circumradius R, r of the upper and lower platform of leg mechanism are 161.7 mm, 57.7 mm, respectively. Based on the optimal results, the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory, and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed, which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process. Besides laying a theoretical foundation for development of the prototype, the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism.

  10. Development of a parallel FE simulator for modeling the whole trans-scale failure process of rock from meso- to engineering-scale

    NASA Astrophysics Data System (ADS)

    Li, Gen; Tang, Chun-An; Liang, Zheng-Zhao

    2017-01-01

    Multi-scale high-resolution modeling of rock failure process is a powerful means in modern rock mechanics studies to reveal the complex failure mechanism and to evaluate engineering risks. However, multi-scale continuous modeling of rock, from deformation, damage to failure, has raised high requirements on the design, implementation scheme and computation capacity of the numerical software system. This study is aimed at developing the parallel finite element procedure, a parallel rock failure process analysis (RFPA) simulator that is capable of modeling the whole trans-scale failure process of rock. Based on the statistical meso-damage mechanical method, the RFPA simulator is able to construct heterogeneous rock models with multiple mechanical properties, deal with and represent the trans-scale propagation of cracks, in which the stress and strain fields are solved for the damage evolution analysis of representative volume element by the parallel finite element method (FEM) solver. This paper describes the theoretical basis of the approach and provides the details of the parallel implementation on a Windows - Linux interactive platform. A numerical model is built to test the parallel performance of FEM solver. Numerical simulations are then carried out on a laboratory-scale uniaxial compression test, and field-scale net fracture spacing and engineering-scale rock slope examples, respectively. The simulation results indicate that relatively high speedup and computation efficiency can be achieved by the parallel FEM solver with a reasonable boot process. In laboratory-scale simulation, the well-known physical phenomena, such as the macroscopic fracture pattern and stress-strain responses, can be reproduced. In field-scale simulation, the formation process of net fracture spacing from initiation, propagation to saturation can be revealed completely. In engineering-scale simulation, the whole progressive failure process of the rock slope can be well modeled. It is shown that the parallel FE simulator developed in this study is an efficient tool for modeling the whole trans-scale failure process of rock from meso- to engineering-scale.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubel, Oliver; Loring, Burlen; Vay, Jean -Luc

    The generation of short pulses of ion beams through the interaction of an intense laser with a plasma sheath offers the possibility of compact and cheaper ion sources for many applications--from fast ignition and radiography of dense targets to hadron therapy and injection into conventional accelerators. To enable the efficient analysis of large-scale, high-fidelity particle accelerator simulations using the Warp simulation suite, the authors introduce the Warp In situ Visualization Toolkit (WarpIV). WarpIV integrates state-of-the-art in situ visualization and analysis using VisIt with Warp, supports management and control of complex in situ visualization and analysis workflows, and implements integrated analyticsmore » to facilitate query- and feature-based data analytics and efficient large-scale data analysis. WarpIV enables for the first time distributed parallel, in situ visualization of the full simulation data using high-performance compute resources as the data is being generated by Warp. The authors describe the application of WarpIV to study and compare large 2D and 3D ion accelerator simulations, demonstrating significant differences in the acceleration process in 2D and 3D simulations. WarpIV is available to the public via https://bitbucket.org/berkeleylab/warpiv. The Warp In situ Visualization Toolkit (WarpIV) supports large-scale, parallel, in situ visualization and analysis and facilitates query- and feature-based analytics, enabling for the first time high-performance analysis of large-scale, high-fidelity particle accelerator simulations while the data is being generated by the Warp simulation suite. Furthermore, this supplemental material https://extras.computer.org/extra/mcg2016030022s1.pdf provides more details regarding the memory profiling and optimization and the Yee grid recentering optimization results discussed in the main article.« less

  12. Knowledge Support and Automation for Performance Analysis with PerfExplorer 2.0

    DOE PAGES

    Huck, Kevin A.; Malony, Allen D.; Shende, Sameer; ...

    2008-01-01

    The integration of scalable performance analysis in parallel development tools is difficult. The potential size of data sets and the need to compare results from multiple experiments presents a challenge to manage and process the information. Simply to characterize the performance of parallel applications running on potentially hundreds of thousands of processor cores requires new scalable analysis techniques. Furthermore, many exploratory analysis processes are repeatable and could be automated, but are now implemented as manual procedures. In this paper, we will discuss the current version of PerfExplorer, a performance analysis framework which provides dimension reduction, clustering and correlation analysis ofmore » individual trails of large dimensions, and can perform relative performance analysis between multiple application executions. PerfExplorer analysis processes can be captured in the form of Python scripts, automating what would otherwise be time-consuming tasks. We will give examples of large-scale analysis results, and discuss the future development of the framework, including the encoding and processing of expert performance rules, and the increasing use of performance metadata.« less

  13. Preliminary Evaluation of MapReduce for High-Performance Climate Data Analysis

    NASA Technical Reports Server (NTRS)

    Duffy, Daniel Q.; Schnase, John L.; Thompson, John H.; Freeman, Shawn M.; Clune, Thomas L.

    2012-01-01

    MapReduce is an approach to high-performance analytics that may be useful to data intensive problems in climate research. It offers an analysis paradigm that uses clusters of computers and combines distributed storage of large data sets with parallel computation. We are particularly interested in the potential of MapReduce to speed up basic operations common to a wide range of analyses. In order to evaluate this potential, we are prototyping a series of canonical MapReduce operations over a test suite of observational and climate simulation datasets. Our initial focus has been on averaging operations over arbitrary spatial and temporal extents within Modern Era Retrospective- Analysis for Research and Applications (MERRA) data. Preliminary results suggest this approach can improve efficiencies within data intensive analytic workflows.

  14. Scalable Performance Environments for Parallel Systems

    NASA Technical Reports Server (NTRS)

    Reed, Daniel A.; Olson, Robert D.; Aydt, Ruth A.; Madhyastha, Tara M.; Birkett, Thomas; Jensen, David W.; Nazief, Bobby A. A.; Totty, Brian K.

    1991-01-01

    As parallel systems expand in size and complexity, the absence of performance tools for these parallel systems exacerbates the already difficult problems of application program and system software performance tuning. Moreover, given the pace of technological change, we can no longer afford to develop ad hoc, one-of-a-kind performance instrumentation software; we need scalable, portable performance analysis tools. We describe an environment prototype based on the lessons learned from two previous generations of performance data analysis software. Our environment prototype contains a set of performance data transformation modules that can be interconnected in user-specified ways. It is the responsibility of the environment infrastructure to hide details of module interconnection and data sharing. The environment is written in C++ with the graphical displays based on X windows and the Motif toolkit. It allows users to interconnect and configure modules graphically to form an acyclic, directed data analysis graph. Performance trace data are represented in a self-documenting stream format that includes internal definitions of data types, sizes, and names. The environment prototype supports the use of head-mounted displays and sonic data presentation in addition to the traditional use of visual techniques.

  15. Target recognition of ladar range images using even-order Zernike moments.

    PubMed

    Liu, Zheng-Jun; Li, Qi; Xia, Zhi-Wei; Wang, Qi

    2012-11-01

    Ladar range images have attracted considerable attention in automatic target recognition fields. In this paper, Zernike moments (ZMs) are applied to classify the target of the range image from an arbitrary azimuth angle. However, ZMs suffer from high computational costs. To improve the performance of target recognition based on small samples, even-order ZMs with serial-parallel backpropagation neural networks (BPNNs) are applied to recognize the target of the range image. It is found that the rotation invariance and classified performance of the even-order ZMs are both better than for odd-order moments and for moments compressed by principal component analysis. The experimental results demonstrate that combining the even-order ZMs with serial-parallel BPNNs can significantly improve the recognition rate for small samples.

  16. High Performance Proactive Digital Forensics

    NASA Astrophysics Data System (ADS)

    Alharbi, Soltan; Moa, Belaid; Weber-Jahnke, Jens; Traore, Issa

    2012-10-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  17. Meshless collocation methods for the numerical solution of elliptic boundary valued problems the rotational shallow water equations on the sphere

    NASA Astrophysics Data System (ADS)

    Blakely, Christopher D.

    This dissertation thesis has three main goals: (1) To explore the anatomy of meshless collocation approximation methods that have recently gained attention in the numerical analysis community; (2) Numerically demonstrate why the meshless collocation method should clearly become an attractive alternative to standard finite-element methods due to the simplicity of its implementation and its high-order convergence properties; (3) Propose a meshless collocation method for large scale computational geophysical fluid dynamics models. We provide numerical verification and validation of the meshless collocation scheme applied to the rotational shallow-water equations on the sphere and demonstrate computationally that the proposed model can compete with existing high performance methods for approximating the shallow-water equations such as the SEAM (spectral-element atmospheric model) developed at NCAR. A detailed analysis of the parallel implementation of the model, along with the introduction of parallel algorithmic routines for the high-performance simulation of the model will be given. We analyze the programming and computational aspects of the model using Fortran 90 and the message passing interface (mpi) library along with software and hardware specifications and performance tests. Details from many aspects of the implementation in regards to performance, optimization, and stabilization will be given. In order to verify the mathematical correctness of the algorithms presented and to validate the performance of the meshless collocation shallow-water model, we conclude the thesis with numerical experiments on some standardized test cases for the shallow-water equations on the sphere using the proposed method.

  18. The ARES High-level Intermediate Representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, Nicholas David

    The LLVM intermediate representation (IR) lacks semantic constructs for depicting common high-performance operations such as parallel and concurrent execution, communication and synchronization. Currently, representing such semantics in LLVM requires either extending the intermediate form (a signi cant undertaking) or the use of ad hoc indirect means such as encoding them as intrinsics and/or the use of metadata constructs. In this paper we discuss a work in progress to explore the design and implementation of a new compilation stage and associated high-level intermediate form that is placed between the abstract syntax tree and when it is lowered to LLVM's IR. Thismore » highlevel representation is a superset of LLVM IR and supports the direct representation of these common parallel computing constructs along with the infrastructure for supporting analysis and transformation passes on this representation.« less

  19. A Comparative Propulsion System Analysis for the High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Haller, William J.; Senick, Paul F.; Jones, Scott M.; Seidel, Jonathan A.

    2005-01-01

    Six of the candidate propulsion systems for the High-Speed Civil Transport are the turbojet, turbine bypass engine, mixed flow turbofan, variable cycle engine, Flade engine, and the inverting flow valve engine. A comparison of these propulsion systems by NASA's Glenn Research Center, paralleling studies within the aircraft industry, is presented. This report describes the Glenn Aeropropulsion Analysis Office's contribution to the High-Speed Research Program's 1993 and 1994 propulsion system selections. A parametric investigation of each propulsion cycle's primary design variables is analytically performed. Performance, weight, and geometric data are calculated for each engine. The resulting engines are then evaluated on two airframer-derived supersonic commercial aircraft for a 5000 nautical mile, Mach 2.4 cruise design mission. The effects of takeoff noise, cruise emissions, and cycle design rules are examined.

  20. High-performance parallel approaches for three-dimensional light detection and ranging point clouds gridding

    NASA Astrophysics Data System (ADS)

    Rizki, Permata Nur Miftahur; Lee, Heezin; Lee, Minsu; Oh, Sangyoon

    2017-01-01

    With the rapid advance of remote sensing technology, the amount of three-dimensional point-cloud data has increased extraordinarily, requiring faster processing in the construction of digital elevation models. There have been several attempts to accelerate the computation using parallel methods; however, little attention has been given to investigating different approaches for selecting the most suited parallel programming model for a given computing environment. We present our findings and insights identified by implementing three popular high-performance parallel approaches (message passing interface, MapReduce, and GPGPU) on time demanding but accurate kriging interpolation. The performances of the approaches are compared by varying the size of the grid and input data. In our empirical experiment, we demonstrate the significant acceleration by all three approaches compared to a C-implemented sequential-processing method. In addition, we also discuss the pros and cons of each method in terms of usability, complexity infrastructure, and platform limitation to give readers a better understanding of utilizing those parallel approaches for gridding purposes.

  1. Numerical characteristics of quantum computer simulation

    NASA Astrophysics Data System (ADS)

    Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.

    2016-12-01

    The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.

  2. A parallel genome-wide RNAi screening strategy to identify host proteins important for entry of Marburg virus and H5N1 influenza virus.

    PubMed

    Cheng, Han; Koning, Katie; O'Hearn, Aileen; Wang, Minxiu; Rumschlag-Booms, Emily; Varhegyi, Elizabeth; Rong, Lijun

    2015-11-24

    Genome-wide RNAi screening has been widely used to identify host proteins involved in replication and infection of different viruses, and numerous host factors are implicated in the replication cycles of these viruses, demonstrating the power of this approach. However, discrepancies on target identification of the same viruses by different groups suggest that high throughput RNAi screening strategies need to be carefully designed, developed and optimized prior to the large scale screening. Two genome-wide RNAi screens were performed in parallel against the entry of pseudotyped Marburg viruses and avian influenza virus H5N1 utilizing an HIV-1 based surrogate system, to identify host factors which are important for virus entry. A comparative analysis approach was employed in data analysis, which alleviated systematic positional effects and reduced the false positive number of virus-specific hits. The parallel nature of the strategy allows us to easily identify the host factors for a specific virus with a greatly reduced number of false positives in the initial screen, which is one of the major problems with high throughput screening. The power of this strategy is illustrated by a genome-wide RNAi screen for identifying the host factors important for Marburg virus and/or avian influenza virus H5N1 as described in this study. This strategy is particularly useful for highly pathogenic viruses since pseudotyping allows us to perform high throughput screens in the biosafety level 2 (BSL-2) containment instead of the BSL-3 or BSL-4 for the infectious viruses, with alleviated safety concerns. The screening strategy together with the unique comparative analysis approach makes the data more suitable for hit selection and enables us to identify virus-specific hits with a much lower false positive rate.

  3. Microfluidic integration of parallel solid-phase liquid chromatography.

    PubMed

    Huft, Jens; Haynes, Charles A; Hansen, Carl L

    2013-03-05

    We report the development of a fully integrated microfluidic chromatography system based on a recently developed column geometry that allows for robust packing of high-performance separation columns in poly(dimethylsiloxane) microfluidic devices having integrated valves made by multilayer soft lithography (MSL). The combination of parallel high-performance separation columns and on-chip plumbing was used to achieve a fully integrated system for on-chip chromatography, including all steps of automated sample loading, programmable gradient generation, separation, fluorescent detection, and sample recovery. We demonstrate this system in the separation of fluorescently labeled DNA and parallel purification of reverse transcription polymerase chain reaction (RT-PCR) amplified variable regions of mouse immunoglobulin genes using a strong anion exchange (AEX) resin. Parallel sample recovery in an immiscible oil stream offers the advantage of low sample dilution and high recovery rates. The ability to perform nucleic acid size selection and recovery on subnanogram samples of DNA holds promise for on-chip genomics applications including sequencing library preparation, cloning, and sample fractionation for diagnostics.

  4. Trace: a high-throughput tomographic reconstruction engine for large-scale datasets.

    PubMed

    Bicer, Tekin; Gürsoy, Doğa; Andrade, Vincent De; Kettimuthu, Rajkumar; Scullin, William; Carlo, Francesco De; Foster, Ian T

    2017-01-01

    Modern synchrotron light sources and detectors produce data at such scale and complexity that large-scale computation is required to unleash their full power. One of the widely used imaging techniques that generates data at tens of gigabytes per second is computed tomography (CT). Although CT experiments result in rapid data generation, the analysis and reconstruction of the collected data may require hours or even days of computation time with a medium-sized workstation, which hinders the scientific progress that relies on the results of analysis. We present Trace, a data-intensive computing engine that we have developed to enable high-performance implementation of iterative tomographic reconstruction algorithms for parallel computers. Trace provides fine-grained reconstruction of tomography datasets using both (thread-level) shared memory and (process-level) distributed memory parallelization. Trace utilizes a special data structure called replicated reconstruction object to maximize application performance. We also present the optimizations that we apply to the replicated reconstruction objects and evaluate them using tomography datasets collected at the Advanced Photon Source. Our experimental evaluations show that our optimizations and parallelization techniques can provide 158× speedup using 32 compute nodes (384 cores) over a single-core configuration and decrease the end-to-end processing time of a large sinogram (with 4501 × 1 × 22,400 dimensions) from 12.5 h to <5 min per iteration. The proposed tomographic reconstruction engine can efficiently process large-scale tomographic data using many compute nodes and minimize reconstruction times.

  5. Development of parallel algorithms for electrical power management in space applications

    NASA Technical Reports Server (NTRS)

    Berry, Frederick C.

    1989-01-01

    The application of parallel techniques for electrical power system analysis is discussed. The Newton-Raphson method of load flow analysis was used along with the decomposition-coordination technique to perform load flow analysis. The decomposition-coordination technique enables tasks to be performed in parallel by partitioning the electrical power system into independent local problems. Each independent local problem represents a portion of the total electrical power system on which a loan flow analysis can be performed. The load flow analysis is performed on these partitioned elements by using the Newton-Raphson load flow method. These independent local problems will produce results for voltage and power which can then be passed to the coordinator portion of the solution procedure. The coordinator problem uses the results of the local problems to determine if any correction is needed on the local problems. The coordinator problem is also solved by an iterative method much like the local problem. The iterative method for the coordination problem will also be the Newton-Raphson method. Therefore, each iteration at the coordination level will result in new values for the local problems. The local problems will have to be solved again along with the coordinator problem until some convergence conditions are met.

  6. Design and Performance of a 1 ms High-Speed Vision Chip with 3D-Stacked 140 GOPS Column-Parallel PEs †.

    PubMed

    Nose, Atsushi; Yamazaki, Tomohiro; Katayama, Hironobu; Uehara, Shuji; Kobayashi, Masatsugu; Shida, Sayaka; Odahara, Masaki; Takamiya, Kenichi; Matsumoto, Shizunori; Miyashita, Leo; Watanabe, Yoshihiro; Izawa, Takashi; Muramatsu, Yoshinori; Nitta, Yoshikazu; Ishikawa, Masatoshi

    2018-04-24

    We have developed a high-speed vision chip using 3D stacking technology to address the increasing demand for high-speed vision chips in diverse applications. The chip comprises a 1/3.2-inch, 1.27 Mpixel, 500 fps (0.31 Mpixel, 1000 fps, 2 × 2 binning) vision chip with 3D-stacked column-parallel Analog-to-Digital Converters (ADCs) and 140 Giga Operation per Second (GOPS) programmable Single Instruction Multiple Data (SIMD) column-parallel PEs for new sensing applications. The 3D-stacked structure and column parallel processing architecture achieve high sensitivity, high resolution, and high-accuracy object positioning.

  7. Vectorization for Molecular Dynamics on Intel Xeon Phi Corpocessors

    NASA Astrophysics Data System (ADS)

    Yi, Hongsuk

    2014-03-01

    Many modern processors are capable of exploiting data-level parallelism through the use of single instruction multiple data (SIMD) execution. The new Intel Xeon Phi coprocessor supports 512 bit vector registers for the high performance computing. In this paper, we have developed a hierarchical parallelization scheme for accelerated molecular dynamics simulations with the Terfoff potentials for covalent bond solid crystals on Intel Xeon Phi coprocessor systems. The scheme exploits multi-level parallelism computing. We combine thread-level parallelism using a tightly coupled thread-level and task-level parallelism with 512-bit vector register. The simulation results show that the parallel performance of SIMD implementations on Xeon Phi is apparently superior to their x86 CPU architecture.

  8. Scaling predictive modeling in drug development with cloud computing.

    PubMed

    Moghadam, Behrooz Torabi; Alvarsson, Jonathan; Holm, Marcus; Eklund, Martin; Carlsson, Lars; Spjuth, Ola

    2015-01-26

    Growing data sets with increased time for analysis is hampering predictive modeling in drug discovery. Model building can be carried out on high-performance computer clusters, but these can be expensive to purchase and maintain. We have evaluated ligand-based modeling on cloud computing resources where computations are parallelized and run on the Amazon Elastic Cloud. We trained models on open data sets of varying sizes for the end points logP and Ames mutagenicity and compare with model building parallelized on a traditional high-performance computing cluster. We show that while high-performance computing results in faster model building, the use of cloud computing resources is feasible for large data sets and scales well within cloud instances. An additional advantage of cloud computing is that the costs of predictive models can be easily quantified, and a choice can be made between speed and economy. The easy access to computational resources with no up-front investments makes cloud computing an attractive alternative for scientists, especially for those without access to a supercomputer, and our study shows that it enables cost-efficient modeling of large data sets on demand within reasonable time.

  9. Accuracy analysis and design of A3 parallel spindle head

    NASA Astrophysics Data System (ADS)

    Ni, Yanbing; Zhang, Biao; Sun, Yupeng; Zhang, Yuan

    2016-03-01

    As functional components of machine tools, parallel mechanisms are widely used in high efficiency machining of aviation components, and accuracy is one of the critical technical indexes. Lots of researchers have focused on the accuracy problem of parallel mechanisms, but in terms of controlling the errors and improving the accuracy in the stage of design and manufacturing, further efforts are required. Aiming at the accuracy design of a 3-DOF parallel spindle head(A3 head), its error model, sensitivity analysis and tolerance allocation are investigated. Based on the inverse kinematic analysis, the error model of A3 head is established by using the first-order perturbation theory and vector chain method. According to the mapping property of motion and constraint Jacobian matrix, the compensatable and uncompensatable error sources which affect the accuracy in the end-effector are separated. Furthermore, sensitivity analysis is performed on the uncompensatable error sources. The sensitivity probabilistic model is established and the global sensitivity index is proposed to analyze the influence of the uncompensatable error sources on the accuracy in the end-effector of the mechanism. The results show that orientation error sources have bigger effect on the accuracy in the end-effector. Based upon the sensitivity analysis results, the tolerance design is converted into the issue of nonlinearly constrained optimization with the manufacturing cost minimum being the optimization objective. By utilizing the genetic algorithm, the allocation of the tolerances on each component is finally determined. According to the tolerance allocation results, the tolerance ranges of ten kinds of geometric error sources are obtained. These research achievements can provide fundamental guidelines for component manufacturing and assembly of this kind of parallel mechanisms.

  10. On the costs of parallel processing in dual-task performance: The case of lexical processing in word production.

    PubMed

    Paucke, Madlen; Oppermann, Frank; Koch, Iring; Jescheniak, Jörg D

    2015-12-01

    Previous dual-task picture-naming studies suggest that lexical processes require capacity-limited processes and prevent other tasks to be carried out in parallel. However, studies involving the processing of multiple pictures suggest that parallel lexical processing is possible. The present study investigated the specific costs that may arise when such parallel processing occurs. We used a novel dual-task paradigm by presenting 2 visual objects associated with different tasks and manipulating between-task similarity. With high similarity, a picture-naming task (T1) was combined with a phoneme-decision task (T2), so that lexical processes were shared across tasks. With low similarity, picture-naming was combined with a size-decision T2 (nonshared lexical processes). In Experiment 1, we found that a manipulation of lexical processes (lexical frequency of T1 object name) showed an additive propagation with low between-task similarity and an overadditive propagation with high between-task similarity. Experiment 2 replicated this differential forward propagation of the lexical effect and showed that it disappeared with longer stimulus onset asynchronies. Moreover, both experiments showed backward crosstalk, indexed as worse T1 performance with high between-task similarity compared with low similarity. Together, these findings suggest that conditions of high between-task similarity can lead to parallel lexical processing in both tasks, which, however, does not result in benefits but rather in extra performance costs. These costs can be attributed to crosstalk based on the dual-task binding problem arising from parallel processing. Hence, the present study reveals that capacity-limited lexical processing can run in parallel across dual tasks but only at the expense of extraordinary high costs. (c) 2015 APA, all rights reserved).

  11. Performance evaluation of parallel electric field tunnel field-effect transistor by a distributed-element circuit model

    NASA Astrophysics Data System (ADS)

    Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki

    2014-12-01

    The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.

  12. Exploration of a Permanent Magnet Synchronous Generator with Compensated Reactance Windings in Parallel Rod Configuration

    NASA Astrophysics Data System (ADS)

    Lyan, Oleg; Jankunas, Valdas; Guseinoviene, Eleonora; Pašilis, Aleksas; Senulis, Audrius; Knolis, Audrius; Kurt, Erol

    2018-02-01

    In this study, a permanent magnet synchronous generator (PMSG) topology with compensated reactance windings in parallel rod configuration is proposed to reduce the armature reactance X L and to achieve higher efficiency of PMSG. The PMSG was designed using iron-cored bifilar coil topology to overcome problems of market-dominant rotary type generators. Often the problem is a comparatively high armature reactance X L, which is usually bigger than armature resistance R a. Therefore, the topology is proposed to partially compensate or negligibly reduce the PMSG reactance. The study was performed by using finite element method (FEM) analysis and experimental investigation. FEM analysis was used to investigate magnetic field flux distribution and density in PMSG. The PMSG experimental analyses of no-load losses and electromotive force versus frequency (i.e., speed) was performed. Also terminal voltage, power output and efficiency relation with load current at different frequencies have been evaluated. The reactance of PMSG has low value and a linear relation with operating frequency. The low reactance gives a small variation of efficiency (from 90% to 95%) in a wide range of load (from 3 A to 10 A) and operation frequency (from 44 Hz to 114 Hz). The comparison of PMSG characteristics with parallel and series winding connection showed insignificant power variation. The research results showed that compensated reactance winding in parallel rod configuration in PMSG design provides lower reactance and therefore, higher efficiency under wider load and frequency variation.

  13. Supercomputing with toys: harnessing the power of NVIDIA 8800GTX and playstation 3 for bioinformatics problem.

    PubMed

    Wilson, Justin; Dai, Manhong; Jakupovic, Elvis; Watson, Stanley; Meng, Fan

    2007-01-01

    Modern video cards and game consoles typically have much better performance to price ratios than that of general purpose CPUs. The parallel processing capabilities of game hardware are well-suited for high throughput biomedical data analysis. Our initial results suggest that game hardware is a cost-effective platform for some computationally demanding bioinformatics problems.

  14. Analysis and Design of High-Order Parallel Resonant Converters

    NASA Astrophysics Data System (ADS)

    Batarseh, Issa Eid

    1990-01-01

    In this thesis, a special state variable transformation technique has been derived for the analysis of high order dc-to-dc resonant converters. Converters comprised of high order resonant tanks have the advantage of utilizing the parasitic elements by making them part of the resonant tank. A new set of state variables is defined in order to make use of two-dimensional state-plane diagrams in the analysis of high order converters. Such a method has been successfully used for the analysis of the conventional Parallel Resonant Converters (PRC). Consequently, two -dimensional state-plane diagrams are used to analyze the steady state response for third and fourth order PRC's when these converters are operated in the continuous conduction mode. Based on this analysis, a set of control characteristic curves for the LCC-, LLC- and LLCC-type PRC are presented from which various converter design parameters are obtained. Various design curves for component value selections and device ratings are given. This analysis of high order resonant converters shows that the addition of the reactive components to the resonant tank results in converters with better performance characteristics when compared with the conventional second order PRC. Complete design procedure along with design examples for 2nd, 3rd and 4th order converters are presented. Practical power supply units, normally used for computer applications, were built and tested by using the LCC-, LLC- and LLCC-type commutation schemes. In addition, computer simulation results are presented for these converters in order to verify the theoretical results.

  15. Computational Issues in Damping Identification for Large Scale Problems

    NASA Technical Reports Server (NTRS)

    Pilkey, Deborah L.; Roe, Kevin P.; Inman, Daniel J.

    1997-01-01

    Two damping identification methods are tested for efficiency in large-scale applications. One is an iterative routine, and the other a least squares method. Numerical simulations have been performed on multiple degree-of-freedom models to test the effectiveness of the algorithm and the usefulness of parallel computation for the problems. High Performance Fortran is used to parallelize the algorithm. Tests were performed using the IBM-SP2 at NASA Ames Research Center. The least squares method tested incurs high communication costs, which reduces the benefit of high performance computing. This method's memory requirement grows at a very rapid rate meaning that larger problems can quickly exceed available computer memory. The iterative method's memory requirement grows at a much slower pace and is able to handle problems with 500+ degrees of freedom on a single processor. This method benefits from parallelization, and significant speedup can he seen for problems of 100+ degrees-of-freedom.

  16. The NAS parallel benchmarks

    NASA Technical Reports Server (NTRS)

    Bailey, David (Editor); Barton, John (Editor); Lasinski, Thomas (Editor); Simon, Horst (Editor)

    1993-01-01

    A new set of benchmarks was developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of a set of kernels, the 'Parallel Kernels,' and a simulated application benchmark. Together they mimic the computation and data movement characteristics of large scale computational fluid dynamics (CFD) applications. The principal distinguishing feature of these benchmarks is their 'pencil and paper' specification - all details of these benchmarks are specified only algorithmically. In this way many of the difficulties associated with conventional benchmarking approaches on highly parallel systems are avoided.

  17. Alleviating Search Uncertainty through Concept Associations: Automatic Indexing, Co-Occurrence Analysis, and Parallel Computing.

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Martinez, Joanne; Kirchhoff, Amy; Ng, Tobun D.; Schatz, Bruce R.

    1998-01-01

    Grounded on object filtering, automatic indexing, and co-occurrence analysis, an experiment was performed using a parallel supercomputer to analyze over 400,000 abstracts in an INSPEC computer engineering collection. A user evaluation revealed that system-generated thesauri were better than the human-generated INSPEC subject thesaurus in concept…

  18. EDIN design study alternate space shuttle booster replacement concepts. Volume 1: Engineering analysis

    NASA Technical Reports Server (NTRS)

    Demakes, P. T.; Hirsch, G. N.; Stewart, W. A.; Glatt, C. R.

    1976-01-01

    The use of a recoverable liquid rocket booster (LRB) system to replace the existing solid rocket booster (SRB) system for the shuttle was studied. Historical weight estimating relationships were developed for the LRB using Saturn technology and modified as required. Mission performance was computed using February 1975 shuttle configuration groundrules to allow reasonable comparison of the existing shuttle with the study designs. The launch trajectory was constrained to pass through both the RTLS/AOA and main engine cut off points of the shuttle reference mission 1. Performance analysis is based on a point design trajectory model which optimizes initial tilt rate and exoatmospheric pitch profile. A gravity turn was employed during the boost phase in place of the shuttle angle of attack profile. Engine throttling add/or shutdown was used to constrain dynamic pressure and/or longitudinal acceleration where necessary. Four basic configurations were investigated: a parallel burn vehicle with an F-1 engine powered LRB; a parallel burn vehicle with a high pressure engine powered LRB; a series burn vehicle with a high pressure engine powered LRB. The relative sizes of the LRB and the ET are optimized to minimize GLOW in most cases.

  19. A Next-Generation Parallel File System Environment for the OLCF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillow, David A; Fuller, Douglas; Gunasekaran, Raghul

    2012-01-01

    When deployed in 2008/2009 the Spider system at the Oak Ridge National Laboratory s Leadership Computing Facility (OLCF) was the world s largest scale Lustre parallel file system. Envisioned as a shared parallel file system capable of delivering both the bandwidth and capacity requirements of the OLCF s diverse computational environment, Spider has since become a blueprint for shared Lustre environments deployed worldwide. Designed to support the parallel I/O requirements of the Jaguar XT5 system and other smallerscale platforms at the OLCF, the upgrade to the Titan XK6 heterogeneous system will begin to push the limits of Spider s originalmore » design by mid 2013. With a doubling in total system memory and a 10x increase in FLOPS, Titan will require both higher bandwidth and larger total capacity. Our goal is to provide a 4x increase in total I/O bandwidth from over 240GB=sec today to 1TB=sec and a doubling in total capacity. While aggregate bandwidth and total capacity remain important capabilities, an equally important goal in our efforts is dramatically increasing metadata performance, currently the Achilles heel of parallel file systems at leadership. We present in this paper an analysis of our current I/O workloads, our operational experiences with the Spider parallel file systems, the high-level design of our Spider upgrade, and our efforts in developing benchmarks that synthesize our performance requirements based on our workload characterization studies.« less

  20. Parallel Scaling Characteristics of Selected NERSC User ProjectCodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, David; Verdier, Francesca; Anand, Harsh

    This report documents parallel scaling characteristics of NERSC user project codes between Fiscal Year 2003 and the first half of Fiscal Year 2004 (Oct 2002-March 2004). The codes analyzed cover 60% of all the CPU hours delivered during that time frame on seaborg, a 6080 CPU IBM SP and the largest parallel computer at NERSC. The scale in terms of concurrency and problem size of the workload is analyzed. Drawing on batch queue logs, performance data and feedback from researchers we detail the motivations, benefits, and challenges of implementing highly parallel scientific codes on current NERSC High Performance Computing systems.more » An evaluation and outlook of the NERSC workload for Allocation Year 2005 is presented.« less

  1. Optics Program Modified for Multithreaded Parallel Computing

    NASA Technical Reports Server (NTRS)

    Lou, John; Bedding, Dave; Basinger, Scott

    2006-01-01

    A powerful high-performance computer program for simulating and analyzing adaptive and controlled optical systems has been developed by modifying the serial version of the Modeling and Analysis for Controlled Optical Systems (MACOS) program to impart capabilities for multithreaded parallel processing on computing systems ranging from supercomputers down to Symmetric Multiprocessing (SMP) personal computers. The modifications included the incorporation of OpenMP, a portable and widely supported application interface software, that can be used to explicitly add multithreaded parallelism to an application program under a shared-memory programming model. OpenMP was applied to parallelize ray-tracing calculations, one of the major computing components in MACOS. Multithreading is also used in the diffraction propagation of light in MACOS based on pthreads [POSIX Thread, (where "POSIX" signifies a portable operating system for UNIX)]. In tests of the parallelized version of MACOS, the speedup in ray-tracing calculations was found to be linear, or proportional to the number of processors, while the speedup in diffraction calculations ranged from 50 to 60 percent, depending on the type and number of processors. The parallelized version of MACOS is portable, and, to the user, its interface is basically the same as that of the original serial version of MACOS.

  2. Aeroelasticity of wing and wing-body configurations on parallel computers

    NASA Technical Reports Server (NTRS)

    Byun, Chansup

    1995-01-01

    The objective of this research is to develop computationally efficient methods for solving aeroelasticity problems on parallel computers. Both uncoupled and coupled methods are studied in this research. For the uncoupled approach, the conventional U-g method is used to determine the flutter boundary. The generalized aerodynamic forces required are obtained by the pulse transfer-function analysis method. For the coupled approach, the fluid-structure interaction is obtained by directly coupling finite difference Euler/Navier-Stokes equations for fluids and finite element dynamics equations for structures. This capability will significantly impact many aerospace projects of national importance such as Advanced Subsonic Civil Transport (ASCT), where the structural stability margin becomes very critical at the transonic region. This research effort will have direct impact on the High Performance Computing and Communication (HPCC) Program of NASA in the area of parallel computing.

  3. Imaging resolution and properties analysis of super resolution microscopy with parallel detection under different noise, detector and image restoration conditions

    NASA Astrophysics Data System (ADS)

    Yu, Zhongzhi; Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Liu, Xu

    2018-06-01

    Parallel detection, which can use the additional information of a pinhole plane image taken at every excitation scan position, could be an efficient method to enhance the resolution of a confocal laser scanning microscope. In this paper, we discuss images obtained under different conditions and using different image restoration methods with parallel detection to quantitatively compare the imaging quality. The conditions include different noise levels and different detector array settings. The image restoration methods include linear deconvolution and pixel reassignment with Richard-Lucy deconvolution and with maximum-likelihood estimation deconvolution. The results show that the linear deconvolution share properties such as high-efficiency and the best performance under all different conditions, and is therefore expected to be of use for future biomedical routine research.

  4. Photonic content-addressable memory system that uses a parallel-readout optical disk

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Ashok V.; Marchand, Philippe J.; Yayla, Gökçe; Esener, Sadik C.

    1995-11-01

    We describe a high-performance associative-memory system that can be implemented by means of an optical disk modified for parallel readout and a custom-designed silicon integrated circuit with parallel optical input. The system can achieve associative recall on 128 \\times 128 bit images and also on variable-size subimages. The system's behavior and performance are evaluated on the basis of experimental results on a motionless-head parallel-readout optical-disk system, logic simulations of the very-large-scale integrated chip, and a software emulation of the overall system.

  5. High Performance Radiation Transport Simulations on TITAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Christopher G; Davidson, Gregory G; Evans, Thomas M

    2012-01-01

    In this paper we describe the Denovo code system. Denovo solves the six-dimensional, steady-state, linear Boltzmann transport equation, of central importance to nuclear technology applications such as reactor core analysis (neutronics), radiation shielding, nuclear forensics and radiation detection. The code features multiple spatial differencing schemes, state-of-the-art linear solvers, the Koch-Baker-Alcouffe (KBA) parallel-wavefront sweep algorithm for inverting the transport operator, a new multilevel energy decomposition method scaling to hundreds of thousands of processing cores, and a modern, novel code architecture that supports straightforward integration of new features. In this paper we discuss the performance of Denovo on the 10--20 petaflop ORNLmore » GPU-based system, Titan. We describe algorithms and techniques used to exploit the capabilities of Titan's heterogeneous compute node architecture and the challenges of obtaining good parallel performance for this sparse hyperbolic PDE solver containing inherently sequential computations. Numerical results demonstrating Denovo performance on early Titan hardware are presented.« less

  6. A Faster Parallel Algorithm and Efficient Multithreaded Implementations for Evaluating Betweenness Centrality on Massive Datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madduri, Kamesh; Ediger, David; Jiang, Karl

    2009-05-29

    We present a new lock-free parallel algorithm for computing betweenness centrality of massive small-world networks. With minor changes to the data structures, our algorithm also achieves better spatial cache locality compared to previous approaches. Betweenness centrality is a key algorithm kernel in the HPCS SSCA#2 Graph Analysis benchmark, which has been extensively used to evaluate the performance of emerging high-performance computing architectures for graph-theoretic computations. We design optimized implementations of betweenness centrality and the SSCA#2 benchmark for two hardware multithreaded systems: a Cray XMT system with the ThreadStorm processor, and a single-socket Sun multicore server with the UltraSparc T2 processor.more » For a small-world network of 134 million vertices and 1.073 billion edges, the 16-processor XMT system and the 8-core Sun Fire T5120 server achieve TEPS scores (an algorithmic performance count for the SSCA#2 benchmark) of 160 million and 90 million respectively, which corresponds to more than a 2X performance improvement over the previous parallel implementations. To better characterize the performance of these multithreaded systems, we correlate the SSCA#2 performance results with data from the memory-intensive STREAM and RandomAccess benchmarks. Finally, we demonstrate the applicability of our implementation to analyze massive real-world datasets by computing approximate betweenness centrality for a large-scale IMDb movie-actor network.« less

  7. Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments

    DOE PAGES

    Yim, Won Cheol; Cushman, John C.

    2017-07-22

    Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less

  8. Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yim, Won Cheol; Cushman, John C.

    Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less

  9. Performance Analysis and Scaling Behavior of the Terrestrial Systems Modeling Platform TerrSysMP in Large-Scale Supercomputing Environments

    NASA Astrophysics Data System (ADS)

    Kollet, S. J.; Goergen, K.; Gasper, F.; Shresta, P.; Sulis, M.; Rihani, J.; Simmer, C.; Vereecken, H.

    2013-12-01

    In studies of the terrestrial hydrologic, energy and biogeochemical cycles, integrated multi-physics simulation platforms take a central role in characterizing non-linear interactions, variances and uncertainties of system states and fluxes in reciprocity with observations. Recently developed integrated simulation platforms attempt to honor the complexity of the terrestrial system across multiple time and space scales from the deeper subsurface including groundwater dynamics into the atmosphere. Technically, this requires the coupling of atmospheric, land surface, and subsurface-surface flow models in supercomputing environments, while ensuring a high-degree of efficiency in the utilization of e.g., standard Linux clusters and massively parallel resources. A systematic performance analysis including profiling and tracing in such an application is crucial in the understanding of the runtime behavior, to identify optimum model settings, and is an efficient way to distinguish potential parallel deficiencies. On sophisticated leadership-class supercomputers, such as the 28-rack 5.9 petaFLOP IBM Blue Gene/Q 'JUQUEEN' of the Jülich Supercomputing Centre (JSC), this is a challenging task, but even more so important, when complex coupled component models are to be analysed. Here we want to present our experience from coupling, application tuning (e.g. 5-times speedup through compiler optimizations), parallel scaling and performance monitoring of the parallel Terrestrial Systems Modeling Platform TerrSysMP. The modeling platform consists of the weather prediction system COSMO of the German Weather Service; the Community Land Model, CLM of NCAR; and the variably saturated surface-subsurface flow code ParFlow. The model system relies on the Multiple Program Multiple Data (MPMD) execution model where the external Ocean-Atmosphere-Sea-Ice-Soil coupler (OASIS3) links the component models. TerrSysMP has been instrumented with the performance analysis tool Scalasca and analyzed on JUQUEEN with processor counts on the order of 10,000. The instrumentation is used in weak and strong scaling studies with real data cases and hypothetical idealized numerical experiments for detailed profiling and tracing analysis. The profiling is not only useful in identifying wait states that are due to the MPMD execution model, but also in fine-tuning resource allocation to the component models in search of the most suitable load balancing. This is especially necessary, as with numerical experiments that cover multiple (high resolution) spatial scales, the time stepping, coupling frequencies, and communication overheads are constantly shifting, which makes it necessary to re-determine the model setup with each new experimental design.

  10. A more secure parallel keyed hash function based on chaotic neural network

    NASA Astrophysics Data System (ADS)

    Huang, Zhongquan

    2011-08-01

    Although various hash functions based on chaos or chaotic neural network were proposed, most of them can not work efficiently in parallel computing environment. Recently, an algorithm for parallel keyed hash function construction based on chaotic neural network was proposed [13]. However, there is a strict limitation in this scheme that its secret keys must be nonce numbers. In other words, if the keys are used more than once in this scheme, there will be some potential security flaw. In this paper, we analyze the cause of vulnerability of the original one in detail, and then propose the corresponding enhancement measures, which can remove the limitation on the secret keys. Theoretical analysis and computer simulation indicate that the modified hash function is more secure and practical than the original one. At the same time, it can keep the parallel merit and satisfy the other performance requirements of hash function, such as good statistical properties, high message and key sensitivity, and strong collision resistance, etc.

  11. Comparison of multihardware parallel implementations for a phase unwrapping algorithm

    NASA Astrophysics Data System (ADS)

    Hernandez-Lopez, Francisco Javier; Rivera, Mariano; Salazar-Garibay, Adan; Legarda-Sáenz, Ricardo

    2018-04-01

    Phase unwrapping is an important problem in the areas of optical metrology, synthetic aperture radar (SAR) image analysis, and magnetic resonance imaging (MRI) analysis. These images are becoming larger in size and, particularly, the availability and need for processing of SAR and MRI data have increased significantly with the acquisition of remote sensing data and the popularization of magnetic resonators in clinical diagnosis. Therefore, it is important to develop faster and accurate phase unwrapping algorithms. We propose a parallel multigrid algorithm of a phase unwrapping method named accumulation of residual maps, which builds on a serial algorithm that consists of the minimization of a cost function; minimization achieved by means of a serial Gauss-Seidel kind algorithm. Our algorithm also optimizes the original cost function, but unlike the original work, our algorithm is a parallel Jacobi class with alternated minimizations. This strategy is known as the chessboard type, where red pixels can be updated in parallel at same iteration since they are independent. Similarly, black pixels can be updated in parallel in an alternating iteration. We present parallel implementations of our algorithm for different parallel multicore architecture such as CPU-multicore, Xeon Phi coprocessor, and Nvidia graphics processing unit. In all the cases, we obtain a superior performance of our parallel algorithm when compared with the original serial version. In addition, we present a detailed comparative performance of the developed parallel versions.

  12. PIPER: Performance Insight for Programmers and Exascale Runtimes: Guiding the Development of the Exascale Software Stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellor-Crummey, John

    The PIPER project set out to develop methodologies and software for measurement, analysis, attribution, and presentation of performance data for extreme-scale systems. Goals of the project were to support analysis of massive multi-scale parallelism, heterogeneous architectures, multi-faceted performance concerns, and to support both post-mortem performance analysis to identify program features that contribute to problematic performance and on-line performance analysis to drive adaptation. This final report summarizes the research and development activity at Rice University as part of the PIPER project. Producing a complete suite of performance tools for exascale platforms during the course of this project was impossible since bothmore » hardware and software for exascale systems is still a moving target. For that reason, the project focused broadly on the development of new techniques for measurement and analysis of performance on modern parallel architectures, enhancements to HPCToolkit’s software infrastructure to support our research goals or use on sophisticated applications, engaging developers of multithreaded runtimes to explore how support for tools should be integrated into their designs, engaging operating system developers with feature requests for enhanced monitoring support, engaging vendors with requests that they add hardware measure- ment capabilities and software interfaces needed by tools as they design new components of HPC platforms including processors, accelerators and networks, and finally collaborations with partners interested in using HPCToolkit to analyze and tune scalable parallel applications.« less

  13. The method of parallel-hierarchical transformation for rapid recognition of dynamic images using GPGPU technology

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid; Yarovyi, Andrii; Kokriatskaya, Nataliya; Nakonechna, Svitlana; Abramenko, Ludmila; Ławicki, Tomasz; Popiel, Piotr; Yesmakhanova, Laura

    2016-09-01

    The paper presents a method of parallel-hierarchical transformations for rapid recognition of dynamic images using GPU technology. Direct parallel-hierarchical transformations based on cluster CPU-and GPU-oriented hardware platform. Mathematic models of training of the parallel hierarchical (PH) network for the transformation are developed, as well as a training method of the PH network for recognition of dynamic images. This research is most topical for problems on organizing high-performance computations of super large arrays of information designed to implement multi-stage sensing and processing as well as compaction and recognition of data in the informational structures and computer devices. This method has such advantages as high performance through the use of recent advances in parallelization, possibility to work with images of ultra dimension, ease of scaling in case of changing the number of nodes in the cluster, auto scan of local network to detect compute nodes.

  14. Influence of Segmentation of Ring-Shaped NdFeB Magnets with Parallel Magnetization on Cylindrical Actuators

    PubMed Central

    Eckert, Paulo Roberto; Goltz, Evandro Claiton; Filho, Aly Ferreira Flores

    2014-01-01

    This work analyses the effects of segmentation followed by parallel magnetization of ring-shaped NdFeB permanent magnets used in slotless cylindrical linear actuators. The main purpose of the work is to evaluate the effects of that segmentation on the performance of the actuator and to present a general overview of the influence of parallel magnetization by varying the number of segments and comparing the results with ideal radially magnetized rings. The analysis is first performed by modelling mathematically the radial and circumferential components of magnetization for both radial and parallel magnetizations, followed by an analysis carried out by means of the 3D finite element method. Results obtained from the models are validated by measuring radial and tangential components of magnetic flux distribution in the air gap on a prototype which employs magnet rings with eight segments each with parallel magnetization. The axial force produced by the actuator was also measured and compared with the results obtained from numerical models. Although this analysis focused on a specific topology of cylindrical actuator, the observed effects on the topology could be extended to others in which surface-mounted permanent magnets are employed, including rotating electrical machines. PMID:25051032

  15. Influence of segmentation of ring-shaped NdFeB magnets with parallel magnetization on cylindrical actuators.

    PubMed

    Eckert, Paulo Roberto; Goltz, Evandro Claiton; Flores Filho, Aly Ferreira

    2014-07-21

    This work analyses the effects of segmentation followed by parallel magnetization of ring-shaped NdFeB permanent magnets used in slotless cylindrical linear actuators. The main purpose of the work is to evaluate the effects of that segmentation on the performance of the actuator and to present a general overview of the influence of parallel magnetization by varying the number of segments and comparing the results with ideal radially magnetized rings. The analysis is first performed by modelling mathematically the radial and circumferential components of magnetization for both radial and parallel magnetizations, followed by an analysis carried out by means of the 3D finite element method. Results obtained from the models are validated by measuring radial and tangential components of magnetic flux distribution in the air gap on a prototype which employs magnet rings with eight segments each with parallel magnetization. The axial force produced by the actuator was also measured and compared with the results obtained from numerical models. Although this analysis focused on a specific topology of cylindrical actuator, the observed effects on the topology could be extended to others in which surface-mounted permanent magnets are employed, including rotating electrical machines.

  16. Parallel computing works

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of manymore » computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.« less

  17. A parallel-vector algorithm for rapid structural analysis on high-performance computers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Agarwal, Tarun K.

    1990-01-01

    A fast, accurate Choleski method for the solution of symmetric systems of linear equations is presented. This direct method is based on a variable-band storage scheme and takes advantage of column heights to reduce the number of operations in the Choleski factorization. The method employs parallel computation in the outermost DO-loop and vector computation via the 'loop unrolling' technique in the innermost DO-loop. The method avoids computations with zeros outside the column heights, and as an option, zeros inside the band. The close relationship between Choleski and Gauss elimination methods is examined. The minor changes required to convert the Choleski code to a Gauss code to solve non-positive-definite symmetric systems of equations are identified. The results for two large-scale structural analyses performed on supercomputers, demonstrate the accuracy and speed of the method.

  18. A parallel-vector algorithm for rapid structural analysis on high-performance computers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Agarwal, Tarun K.

    1990-01-01

    A fast, accurate Choleski method for the solution of symmetric systems of linear equations is presented. This direct method is based on a variable-band storage scheme and takes advantage of column heights to reduce the number of operations in the Choleski factorization. The method employs parallel computation in the outermost DO-loop and vector computation via the loop unrolling technique in the innermost DO-loop. The method avoids computations with zeros outside the column heights, and as an option, zeros inside the band. The close relationship between Choleski and Gauss elimination methods is examined. The minor changes required to convert the Choleski code to a Gauss code to solve non-positive-definite symmetric systems of equations are identified. The results for two large scale structural analyses performed on supercomputers, demonstrate the accuracy and speed of the method.

  19. Portable multi-node LQCD Monte Carlo simulations using OpenACC

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; Calore, Enrico; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Sanfilippo, Francesco; Schifano, Sebastiano Fabio; Silvi, Giorgio; Tripiccione, Raffaele

    This paper describes a state-of-the-art parallel Lattice QCD Monte Carlo code for staggered fermions, purposely designed to be portable across different computer architectures, including GPUs and commodity CPUs. Portability is achieved using the OpenACC parallel programming model, used to develop a code that can be compiled for several processor architectures. The paper focuses on parallelization on multiple computing nodes using OpenACC to manage parallelism within the node, and OpenMPI to manage parallelism among the nodes. We first discuss the available strategies to be adopted to maximize performances, we then describe selected relevant details of the code, and finally measure the level of performance and scaling-performance that we are able to achieve. The work focuses mainly on GPUs, which offer a significantly high level of performances for this application, but also compares with results measured on other processors.

  20. WImpiBLAST: web interface for mpiBLAST to help biologists perform large-scale annotation using high performance computing.

    PubMed

    Sharma, Parichit; Mantri, Shrikant S

    2014-01-01

    The function of a newly sequenced gene can be discovered by determining its sequence homology with known proteins. BLAST is the most extensively used sequence analysis program for sequence similarity search in large databases of sequences. With the advent of next generation sequencing technologies it has now become possible to study genes and their expression at a genome-wide scale through RNA-seq and metagenome sequencing experiments. Functional annotation of all the genes is done by sequence similarity search against multiple protein databases. This annotation task is computationally very intensive and can take days to obtain complete results. The program mpiBLAST, an open-source parallelization of BLAST that achieves superlinear speedup, can be used to accelerate large-scale annotation by using supercomputers and high performance computing (HPC) clusters. Although many parallel bioinformatics applications using the Message Passing Interface (MPI) are available in the public domain, researchers are reluctant to use them due to lack of expertise in the Linux command line and relevant programming experience. With these limitations, it becomes difficult for biologists to use mpiBLAST for accelerating annotation. No web interface is available in the open-source domain for mpiBLAST. We have developed WImpiBLAST, a user-friendly open-source web interface for parallel BLAST searches. It is implemented in Struts 1.3 using a Java backbone and runs atop the open-source Apache Tomcat Server. WImpiBLAST supports script creation and job submission features and also provides a robust job management interface for system administrators. It combines script creation and modification features with job monitoring and management through the Torque resource manager on a Linux-based HPC cluster. Use case information highlights the acceleration of annotation analysis achieved by using WImpiBLAST. Here, we describe the WImpiBLAST web interface features and architecture, explain design decisions, describe workflows and provide a detailed analysis.

  1. WImpiBLAST: Web Interface for mpiBLAST to Help Biologists Perform Large-Scale Annotation Using High Performance Computing

    PubMed Central

    Sharma, Parichit; Mantri, Shrikant S.

    2014-01-01

    The function of a newly sequenced gene can be discovered by determining its sequence homology with known proteins. BLAST is the most extensively used sequence analysis program for sequence similarity search in large databases of sequences. With the advent of next generation sequencing technologies it has now become possible to study genes and their expression at a genome-wide scale through RNA-seq and metagenome sequencing experiments. Functional annotation of all the genes is done by sequence similarity search against multiple protein databases. This annotation task is computationally very intensive and can take days to obtain complete results. The program mpiBLAST, an open-source parallelization of BLAST that achieves superlinear speedup, can be used to accelerate large-scale annotation by using supercomputers and high performance computing (HPC) clusters. Although many parallel bioinformatics applications using the Message Passing Interface (MPI) are available in the public domain, researchers are reluctant to use them due to lack of expertise in the Linux command line and relevant programming experience. With these limitations, it becomes difficult for biologists to use mpiBLAST for accelerating annotation. No web interface is available in the open-source domain for mpiBLAST. We have developed WImpiBLAST, a user-friendly open-source web interface for parallel BLAST searches. It is implemented in Struts 1.3 using a Java backbone and runs atop the open-source Apache Tomcat Server. WImpiBLAST supports script creation and job submission features and also provides a robust job management interface for system administrators. It combines script creation and modification features with job monitoring and management through the Torque resource manager on a Linux-based HPC cluster. Use case information highlights the acceleration of annotation analysis achieved by using WImpiBLAST. Here, we describe the WImpiBLAST web interface features and architecture, explain design decisions, describe workflows and provide a detailed analysis. PMID:24979410

  2. Understanding and Improving High-Performance I/O Subsystems

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek A.; Frieder, Gideon; Clark, A. James

    1996-01-01

    This research program has been conducted in the framework of the NASA Earth and Space Science (ESS) evaluations led by Dr. Thomas Sterling. In addition to the many important research findings for NASA and the prestigious publications, the program has helped orienting the doctoral research program of two students towards parallel input/output in high-performance computing. Further, the experimental results in the case of the MasPar were very useful and helpful to MasPar with which the P.I. has had many interactions with the technical management. The contributions of this program are drawn from three experimental studies conducted on different high-performance computing testbeds/platforms, and therefore presented in 3 different segments as follows: 1. Evaluating the parallel input/output subsystem of a NASA high-performance computing testbeds, namely the MasPar MP- 1 and MP-2; 2. Characterizing the physical input/output request patterns for NASA ESS applications, which used the Beowulf platform; and 3. Dynamic scheduling techniques for hiding I/O latency in parallel applications such as sparse matrix computations. This study also has been conducted on the Intel Paragon and has also provided an experimental evaluation for the Parallel File System (PFS) and parallel input/output on the Paragon. This report is organized as follows. The summary of findings discusses the results of each of the aforementioned 3 studies. Three appendices, each containing a key scholarly research paper that details the work in one of the studies are included.

  3. Profiling and Improving I/O Performance of a Large-Scale Climate Scientific Application

    NASA Technical Reports Server (NTRS)

    Liu, Zhuo; Wang, Bin; Wang, Teng; Tian, Yuan; Xu, Cong; Wang, Yandong; Yu, Weikuan; Cruz, Carlos A.; Zhou, Shujia; Clune, Tom; hide

    2013-01-01

    Exascale computing systems are soon to emerge, which will pose great challenges on the huge gap between computing and I/O performance. Many large-scale scientific applications play an important role in our daily life. The huge amounts of data generated by such applications require highly parallel and efficient I/O management policies. In this paper, we adopt a mission-critical scientific application, GEOS-5, as a case to profile and analyze the communication and I/O issues that are preventing applications from fully utilizing the underlying parallel storage systems. Through in-detail architectural and experimental characterization, we observe that current legacy I/O schemes incur significant network communication overheads and are unable to fully parallelize the data access, thus degrading applications' I/O performance and scalability. To address these inefficiencies, we redesign its I/O framework along with a set of parallel I/O techniques to achieve high scalability and performance. Evaluation results on the NASA discover cluster show that our optimization of GEOS-5 with ADIOS has led to significant performance improvements compared to the original GEOS-5 implementation.

  4. Routing performance analysis and optimization within a massively parallel computer

    DOEpatents

    Archer, Charles Jens; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen

    2013-04-16

    An apparatus, program product and method optimize the operation of a massively parallel computer system by, in part, receiving actual performance data concerning an application executed by the plurality of interconnected nodes, and analyzing the actual performance data to identify an actual performance pattern. A desired performance pattern may be determined for the application, and an algorithm may be selected from among a plurality of algorithms stored within a memory, the algorithm being configured to achieve the desired performance pattern based on the actual performance data.

  5. Compute Server Performance Results

    NASA Technical Reports Server (NTRS)

    Stockdale, I. E.; Barton, John; Woodrow, Thomas (Technical Monitor)

    1994-01-01

    Parallel-vector supercomputers have been the workhorses of high performance computing. As expectations of future computing needs have risen faster than projected vector supercomputer performance, much work has been done investigating the feasibility of using Massively Parallel Processor systems as supercomputers. An even more recent development is the availability of high performance workstations which have the potential, when clustered together, to replace parallel-vector systems. We present a systematic comparison of floating point performance and price-performance for various compute server systems. A suite of highly vectorized programs was run on systems including traditional vector systems such as the Cray C90, and RISC workstations such as the IBM RS/6000 590 and the SGI R8000. The C90 system delivers 460 million floating point operations per second (FLOPS), the highest single processor rate of any vendor. However, if the price-performance ration (PPR) is considered to be most important, then the IBM and SGI processors are superior to the C90 processors. Even without code tuning, the IBM and SGI PPR's of 260 and 220 FLOPS per dollar exceed the C90 PPR of 160 FLOPS per dollar when running our highly vectorized suite,

  6. Hardware Architectures for Data-Intensive Computing Problems: A Case Study for String Matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumeo, Antonino; Villa, Oreste; Chavarría-Miranda, Daniel

    DNA analysis is an emerging application of high performance bioinformatic. Modern sequencing machinery are able to provide, in few hours, large input streams of data, which needs to be matched against exponentially growing databases of known fragments. The ability to recognize these patterns effectively and fastly may allow extending the scale and the reach of the investigations performed by biology scientists. Aho-Corasick is an exact, multiple pattern matching algorithm often at the base of this application. High performance systems are a promising platform to accelerate this algorithm, which is computationally intensive but also inherently parallel. Nowadays, high performance systems alsomore » include heterogeneous processing elements, such as Graphic Processing Units (GPUs), to further accelerate parallel algorithms. Unfortunately, the Aho-Corasick algorithm exhibits large performance variability, depending on the size of the input streams, on the number of patterns to search and on the number of matches, and poses significant challenges on current high performance software and hardware implementations. An adequate mapping of the algorithm on the target architecture, coping with the limit of the underlining hardware, is required to reach the desired high throughputs. In this paper, we discuss the implementation of the Aho-Corasick algorithm for GPU-accelerated high performance systems. We present an optimized implementation of Aho-Corasick for GPUs and discuss its tradeoffs on the Tesla T10 and he new Tesla T20 (codename Fermi) GPUs. We then integrate the optimized GPU code, respectively, in a MPI-based and in a pthreads-based load balancer to enable execution of the algorithm on clusters and large sharedmemory multiprocessors (SMPs) accelerated with multiple GPUs.« less

  7. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.

    PubMed

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.

  8. Parallel Analysis with Unidimensional Binary Data

    ERIC Educational Resources Information Center

    Weng, Li-Jen; Cheng, Chung-Ping

    2005-01-01

    The present simulation investigated the performance of parallel analysis for unidimensional binary data. Single-factor models with 8 and 20 indicators were examined, and sample size (50, 100, 200, 500, and 1,000), factor loading (.45, .70, and .90), response ratio on two categories (50/50, 60/40, 70/30, 80/20, and 90/10), and types of correlation…

  9. High Performance Programming Using Explicit Shared Memory Model on Cray T3D1

    NASA Technical Reports Server (NTRS)

    Simon, Horst D.; Saini, Subhash; Grassi, Charles

    1994-01-01

    The Cray T3D system is the first-phase system in Cray Research, Inc.'s (CRI) three-phase massively parallel processing (MPP) program. This system features a heterogeneous architecture that closely couples DEC's Alpha microprocessors and CRI's parallel-vector technology, i.e., the Cray Y-MP and Cray C90. An overview of the Cray T3D hardware and available programming models is presented. Under Cray Research adaptive Fortran (CRAFT) model four programming methods (data parallel, work sharing, message-passing using PVM, and explicit shared memory model) are available to the users. However, at this time data parallel and work sharing programming models are not available to the user community. The differences between standard PVM and CRI's PVM are highlighted with performance measurements such as latencies and communication bandwidths. We have found that the performance of neither standard PVM nor CRI s PVM exploits the hardware capabilities of the T3D. The reasons for the bad performance of PVM as a native message-passing library are presented. This is illustrated by the performance of NAS Parallel Benchmarks (NPB) programmed in explicit shared memory model on Cray T3D. In general, the performance of standard PVM is about 4 to 5 times less than obtained by using explicit shared memory model. This degradation in performance is also seen on CM-5 where the performance of applications using native message-passing library CMMD on CM-5 is also about 4 to 5 times less than using data parallel methods. The issues involved (such as barriers, synchronization, invalidating data cache, aligning data cache etc.) while programming in explicit shared memory model are discussed. Comparative performance of NPB using explicit shared memory programming model on the Cray T3D and other highly parallel systems such as the TMC CM-5, Intel Paragon, Cray C90, IBM-SP1, etc. is presented.

  10. Parallel and Efficient Sensitivity Analysis of Microscopy Image Segmentation Workflows in Hybrid Systems

    PubMed Central

    Barreiros, Willian; Teodoro, George; Kurc, Tahsin; Kong, Jun; Melo, Alba C. M. A.; Saltz, Joel

    2017-01-01

    We investigate efficient sensitivity analysis (SA) of algorithms that segment and classify image features in a large dataset of high-resolution images. Algorithm SA is the process of evaluating variations of methods and parameter values to quantify differences in the output. A SA can be very compute demanding because it requires re-processing the input dataset several times with different parameters to assess variations in output. In this work, we introduce strategies to efficiently speed up SA via runtime optimizations targeting distributed hybrid systems and reuse of computations from runs with different parameters. We evaluate our approach using a cancer image analysis workflow on a hybrid cluster with 256 nodes, each with an Intel Phi and a dual socket CPU. The SA attained a parallel efficiency of over 90% on 256 nodes. The cooperative execution using the CPUs and the Phi available in each node with smart task assignment strategies resulted in an additional speedup of about 2×. Finally, multi-level computation reuse lead to an additional speedup of up to 2.46× on the parallel version. The level of performance attained with the proposed optimizations will allow the use of SA in large-scale studies. PMID:29081725

  11. Parallelized multi–graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy

    PubMed Central

    Tankam, Patrice; Santhanam, Anand P.; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P.

    2014-01-01

    Abstract. Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing. PMID:24695868

  12. Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy.

    PubMed

    Tankam, Patrice; Santhanam, Anand P; Lee, Kye-Sung; Won, Jungeun; Canavesi, Cristina; Rolland, Jannick P

    2014-07-01

    Gabor-domain optical coherence microscopy (GD-OCM) is a volumetric high-resolution technique capable of acquiring three-dimensional (3-D) skin images with histological resolution. Real-time image processing is needed to enable GD-OCM imaging in a clinical setting. We present a parallelized and scalable multi-graphics processing unit (GPU) computing framework for real-time GD-OCM image processing. A parallelized control mechanism was developed to individually assign computation tasks to each of the GPUs. For each GPU, the optimal number of amplitude-scans (A-scans) to be processed in parallel was selected to maximize GPU memory usage and core throughput. We investigated five computing architectures for computational speed-up in processing 1000×1000 A-scans. The proposed parallelized multi-GPU computing framework enables processing at a computational speed faster than the GD-OCM image acquisition, thereby facilitating high-speed GD-OCM imaging in a clinical setting. Using two parallelized GPUs, the image processing of a 1×1×0.6  mm3 skin sample was performed in about 13 s, and the performance was benchmarked at 6.5 s with four GPUs. This work thus demonstrates that 3-D GD-OCM data may be displayed in real-time to the examiner using parallelized GPU processing.

  13. 3.0 Tesla high spatial resolution contrast-enhanced magnetic resonance angiography (CE-MRA) of the pulmonary circulation: initial experience with a 32-channel phased array coil using a high relaxivity contrast agent.

    PubMed

    Nael, Kambiz; Fenchel, Michael; Krishnam, Mayil; Finn, J Paul; Laub, Gerhard; Ruehm, Stefan G

    2007-06-01

    To evaluate the technical feasibility of high spatial resolution contrast-enhanced magnetic resonance angiography (CE-MRA) with highly accelerated parallel acquisition at 3.0 T using a 32-channel phased array coil, and a high relaxivity contrast agent. Ten adult healthy volunteers (5 men, 5 women, aged 21-66 years) underwent high spatial resolution CE-MRA of the pulmonary circulation. Imaging was performed at 3 T using a 32-channel phase array coil. After intravenous injection of 1 mL of gadobenate dimeglumine (Gd-BOPTA) at 1.5 mL/s, a timing bolus was used to measure the transit time from the arm vein to the main pulmonary artery. Subsequently following intravenous injection of 0.1 mmol/kg of Gd-BOPTA at the same rate, isotropic high spatial resolution data sets (1 x 1 x 1 mm3) CE-MRA of the entire pulmonary circulation were acquired using a fast gradient-recalled echo sequence (TR/TE 3/1.2 milliseconds, FA 18 degrees) and highly accelerated parallel acquisition (GRAPPA x 6) during a 20-second breath hold. The presence of artifact, noise, and image quality of the pulmonary arterial segments were evaluated independently by 2 radiologists. Phantom measurements were performed to assess the signal-to-noise ratio (SNR). Statistical analysis of data was performed by using Wilcoxon rank sum test and 2-sample Student t test. The interobserver variability was tested by kappa coefficient. All studies were of diagnostic quality as determined by both observers. The pulmonary arteries were routinely identified up to fifth-order branches, with definition in the diagnostic range and excellent interobserver agreement (kappa = 0.84, 95% confidence interval 0.77-0.90). Phantom measurements showed significantly lower SNR (P < 0.01) using GRAPPA (17.3 +/- 18.8) compared with measurements without parallel acquisition (58 +/- 49.4). The described 3 T CE-MRA protocol in addition to high T1 relaxivity of Gd-BOPTA provides sufficient SNR to support highly accelerated parallel acquisition (GRAPPA x 6), resulting in acquisition of isotopic (1 x 1 x 1 mm3) voxels over the entire pulmonary circulation in 20 seconds.

  14. Real-time implementations of image segmentation algorithms on shared memory multicore architecture: a survey (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Akil, Mohamed

    2017-05-01

    The real-time processing is getting more and more important in many image processing applications. Image segmentation is one of the most fundamental tasks image analysis. As a consequence, many different approaches for image segmentation have been proposed. The watershed transform is a well-known image segmentation tool. The watershed transform is a very data intensive task. To achieve acceleration and obtain real-time processing of watershed algorithms, parallel architectures and programming models for multicore computing have been developed. This paper focuses on the survey of the approaches for parallel implementation of sequential watershed algorithms on multicore general purpose CPUs: homogeneous multicore processor with shared memory. To achieve an efficient parallel implementation, it's necessary to explore different strategies (parallelization/distribution/distributed scheduling) combined with different acceleration and optimization techniques to enhance parallelism. In this paper, we give a comparison of various parallelization of sequential watershed algorithms on shared memory multicore architecture. We analyze the performance measurements of each parallel implementation and the impact of the different sources of overhead on the performance of the parallel implementations. In this comparison study, we also discuss the advantages and disadvantages of the parallel programming models. Thus, we compare the OpenMP (an application programming interface for multi-Processing) with Ptheads (POSIX Threads) to illustrate the impact of each parallel programming model on the performance of the parallel implementations.

  15. Advanced complex trait analysis.

    PubMed

    Gray, A; Stewart, I; Tenesa, A

    2012-12-01

    The Genome-wide Complex Trait Analysis (GCTA) software package can quantify the contribution of genetic variation to phenotypic variation for complex traits. However, as those datasets of interest continue to increase in size, GCTA becomes increasingly computationally prohibitive. We present an adapted version, Advanced Complex Trait Analysis (ACTA), demonstrating dramatically improved performance. We restructure the genetic relationship matrix (GRM) estimation phase of the code and introduce the highly optimized parallel Basic Linear Algebra Subprograms (BLAS) library combined with manual parallelization and optimization. We introduce the Linear Algebra PACKage (LAPACK) library into the restricted maximum likelihood (REML) analysis stage. For a test case with 8999 individuals and 279,435 single nucleotide polymorphisms (SNPs), we reduce the total runtime, using a compute node with two multi-core Intel Nehalem CPUs, from ∼17 h to ∼11 min. The source code is fully available under the GNU Public License, along with Linux binaries. For more information see http://www.epcc.ed.ac.uk/software-products/acta. a.gray@ed.ac.uk Supplementary data are available at Bioinformatics online.

  16. High Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Lanteri, S.; Maman, N.; Piperno, S.; Gumaste, U.

    1994-01-01

    In order to predict the dynamic response of a flexible structure in a fluid flow, the equations of motion of the structure and the fluid must be solved simultaneously. In this paper, we present several partitioned procedures for time-integrating this focus coupled problem and discuss their merits in terms of accuracy, stability, heterogeneous computing, I/O transfers, subcycling, and parallel processing. All theoretical results are derived for a one-dimensional piston model problem with a compressible flow, because the complete three-dimensional aeroelastic problem is difficult to analyze mathematically. However, the insight gained from the analysis of the coupled piston problem and the conclusions drawn from its numerical investigation are confirmed with the numerical simulation of the two-dimensional transient aeroelastic response of a flexible panel in a transonic nonlinear Euler flow regime.

  17. Parallel implementation of D-Phylo algorithm for maximum likelihood clusters.

    PubMed

    Malik, Shamita; Sharma, Dolly; Khatri, Sunil Kumar

    2017-03-01

    This study explains a newly developed parallel algorithm for phylogenetic analysis of DNA sequences. The newly designed D-Phylo is a more advanced algorithm for phylogenetic analysis using maximum likelihood approach. The D-Phylo while misusing the seeking capacity of k -means keeps away from its real constraint of getting stuck at privately conserved motifs. The authors have tested the behaviour of D-Phylo on Amazon Linux Amazon Machine Image(Hardware Virtual Machine)i2.4xlarge, six central processing unit, 122 GiB memory, 8  ×  800 Solid-state drive Elastic Block Store volume, high network performance up to 15 processors for several real-life datasets. Distributing the clusters evenly on all the processors provides us the capacity to accomplish a near direct speed if there should arise an occurrence of huge number of processors.

  18. Method and apparatus for fabrication of high gradient insulators with parallel surface conductors spaced less than one millimeter apart

    DOEpatents

    Sanders, David M.; Decker, Derek E.

    1999-01-01

    Optical patterns and lithographic techniques are used as part of a process to embed parallel and evenly spaced conductors in the non-planar surfaces of an insulator to produce high gradient insulators. The approach extends the size that high gradient insulating structures can be fabricated as well as improves the performance of those insulators by reducing the scale of the alternating parallel lines of insulator and conductor along the surface. This fabrication approach also substantially decreases the cost required to produce high gradient insulators.

  19. High Performance Fortran for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush; Zima, Hans; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    This paper focuses on the use of High Performance Fortran (HPF) for important classes of algorithms employed in aerospace applications. HPF is a set of Fortran extensions designed to provide users with a high-level interface for programming data parallel scientific applications, while delegating to the compiler/runtime system the task of generating explicitly parallel message-passing programs. We begin by providing a short overview of the HPF language. This is followed by a detailed discussion of the efficient use of HPF for applications involving multiple structured grids such as multiblock and adaptive mesh refinement (AMR) codes as well as unstructured grid codes. We focus on the data structures and computational structures used in these codes and on the high-level strategies that can be expressed in HPF to optimally exploit the parallelism in these algorithms.

  20. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    NASA Astrophysics Data System (ADS)

    Moon, Hongsik

    What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the changing computer hardware platforms in order to provide fast, accurate and efficient solutions to large, complex electromagnetic problems. The research in this dissertation proves that the performance of parallel code is intimately related to the configuration of the computer hardware and can be maximized for different hardware platforms. To benchmark and optimize the performance of parallel CEM software, a variety of large, complex projects are created and executed on a variety of computer platforms. The computer platforms used in this research are detailed in this dissertation. The projects run as benchmarks are also described in detail and results are presented. The parameters that affect parallel CEM software on High Performance Computing Clusters (HPCC) are investigated. This research demonstrates methods to maximize the performance of parallel CEM software code.

  1. The NAS parallel benchmarks

    NASA Technical Reports Server (NTRS)

    Bailey, D. H.; Barszcz, E.; Barton, J. T.; Carter, R. L.; Lasinski, T. A.; Browning, D. S.; Dagum, L.; Fatoohi, R. A.; Frederickson, P. O.; Schreiber, R. S.

    1991-01-01

    A new set of benchmarks has been developed for the performance evaluation of highly parallel supercomputers in the framework of the NASA Ames Numerical Aerodynamic Simulation (NAS) Program. These consist of five 'parallel kernel' benchmarks and three 'simulated application' benchmarks. Together they mimic the computation and data movement characteristics of large-scale computational fluid dynamics applications. The principal distinguishing feature of these benchmarks is their 'pencil and paper' specification-all details of these benchmarks are specified only algorithmically. In this way many of the difficulties associated with conventional benchmarking approaches on highly parallel systems are avoided.

  2. Portability and Cross-Platform Performance of an MPI-Based Parallel Polygon Renderer

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1999-01-01

    Visualizing the results of computations performed on large-scale parallel computers is a challenging problem, due to the size of the datasets involved. One approach is to perform the visualization and graphics operations in place, exploiting the available parallelism to obtain the necessary rendering performance. Over the past several years, we have been developing algorithms and software to support visualization applications on NASA's parallel supercomputers. Our results have been incorporated into a parallel polygon rendering system called PGL. PGL was initially developed on tightly-coupled distributed-memory message-passing systems, including Intel's iPSC/860 and Paragon, and IBM's SP2. Over the past year, we have ported it to a variety of additional platforms, including the HP Exemplar, SGI Origin2OOO, Cray T3E, and clusters of Sun workstations. In implementing PGL, we have had two primary goals: cross-platform portability and high performance. Portability is important because (1) our manpower resources are limited, making it difficult to develop and maintain multiple versions of the code, and (2) NASA's complement of parallel computing platforms is diverse and subject to frequent change. Performance is important in delivering adequate rendering rates for complex scenes and ensuring that parallel computing resources are used effectively. Unfortunately, these two goals are often at odds. In this paper we report on our experiences with portability and performance of the PGL polygon renderer across a range of parallel computing platforms.

  3. HTSFinder: Powerful Pipeline of DNA Signature Discovery by Parallel and Distributed Computing

    PubMed Central

    Karimi, Ramin; Hajdu, Andras

    2016-01-01

    Comprehensive effort for low-cost sequencing in the past few years has led to the growth of complete genome databases. In parallel with this effort, a strong need, fast and cost-effective methods and applications have been developed to accelerate sequence analysis. Identification is the very first step of this task. Due to the difficulties, high costs, and computational challenges of alignment-based approaches, an alternative universal identification method is highly required. Like an alignment-free approach, DNA signatures have provided new opportunities for the rapid identification of species. In this paper, we present an effective pipeline HTSFinder (high-throughput signature finder) with a corresponding k-mer generator GkmerG (genome k-mers generator). Using this pipeline, we determine the frequency of k-mers from the available complete genome databases for the detection of extensive DNA signatures in a reasonably short time. Our application can detect both unique and common signatures in the arbitrarily selected target and nontarget databases. Hadoop and MapReduce as parallel and distributed computing tools with commodity hardware are used in this pipeline. This approach brings the power of high-performance computing into the ordinary desktop personal computers for discovering DNA signatures in large databases such as bacterial genome. A considerable number of detected unique and common DNA signatures of the target database bring the opportunities to improve the identification process not only for polymerase chain reaction and microarray assays but also for more complex scenarios such as metagenomics and next-generation sequencing analysis. PMID:26884678

  4. HTSFinder: Powerful Pipeline of DNA Signature Discovery by Parallel and Distributed Computing.

    PubMed

    Karimi, Ramin; Hajdu, Andras

    2016-01-01

    Comprehensive effort for low-cost sequencing in the past few years has led to the growth of complete genome databases. In parallel with this effort, a strong need, fast and cost-effective methods and applications have been developed to accelerate sequence analysis. Identification is the very first step of this task. Due to the difficulties, high costs, and computational challenges of alignment-based approaches, an alternative universal identification method is highly required. Like an alignment-free approach, DNA signatures have provided new opportunities for the rapid identification of species. In this paper, we present an effective pipeline HTSFinder (high-throughput signature finder) with a corresponding k-mer generator GkmerG (genome k-mers generator). Using this pipeline, we determine the frequency of k-mers from the available complete genome databases for the detection of extensive DNA signatures in a reasonably short time. Our application can detect both unique and common signatures in the arbitrarily selected target and nontarget databases. Hadoop and MapReduce as parallel and distributed computing tools with commodity hardware are used in this pipeline. This approach brings the power of high-performance computing into the ordinary desktop personal computers for discovering DNA signatures in large databases such as bacterial genome. A considerable number of detected unique and common DNA signatures of the target database bring the opportunities to improve the identification process not only for polymerase chain reaction and microarray assays but also for more complex scenarios such as metagenomics and next-generation sequencing analysis.

  5. Legacy Code Modernization

    NASA Technical Reports Server (NTRS)

    Hribar, Michelle R.; Frumkin, Michael; Jin, Haoqiang; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Over the past decade, high performance computing has evolved rapidly; systems based on commodity microprocessors have been introduced in quick succession from at least seven vendors/families. Porting codes to every new architecture is a difficult problem; in particular, here at NASA, there are many large CFD applications that are very costly to port to new machines by hand. The LCM ("Legacy Code Modernization") Project is the development of an integrated parallelization environment (IPE) which performs the automated mapping of legacy CFD (Fortran) applications to state-of-the-art high performance computers. While most projects to port codes focus on the parallelization of the code, we consider porting to be an iterative process consisting of several steps: 1) code cleanup, 2) serial optimization,3) parallelization, 4) performance monitoring and visualization, 5) intelligent tools for automated tuning using performance prediction and 6) machine specific optimization. The approach for building this parallelization environment is to build the components for each of the steps simultaneously and then integrate them together. The demonstration will exhibit our latest research in building this environment: 1. Parallelizing tools and compiler evaluation. 2. Code cleanup and serial optimization using automated scripts 3. Development of a code generator for performance prediction 4. Automated partitioning 5. Automated insertion of directives. These demonstrations will exhibit the effectiveness of an automated approach for all the steps involved with porting and tuning a legacy code application for a new architecture.

  6. A Queue Simulation Tool for a High Performance Scientific Computing Center

    NASA Technical Reports Server (NTRS)

    Spear, Carrie; McGalliard, James

    2007-01-01

    The NASA Center for Computational Sciences (NCCS) at the Goddard Space Flight Center provides high performance highly parallel processors, mass storage, and supporting infrastructure to a community of computational Earth and space scientists. Long running (days) and highly parallel (hundreds of CPUs) jobs are common in the workload. NCCS management structures batch queues and allocates resources to optimize system use and prioritize workloads. NCCS technical staff use a locally developed discrete event simulation tool to model the impacts of evolving workloads, potential system upgrades, alternative queue structures and resource allocation policies.

  7. Bilingual parallel programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, I.; Overbeek, R.

    1990-01-01

    Numerous experiments have demonstrated that computationally intensive algorithms support adequate parallelism to exploit the potential of large parallel machines. Yet successful parallel implementations of serious applications are rare. The limiting factor is clearly programming technology. None of the approaches to parallel programming that have been proposed to date -- whether parallelizing compilers, language extensions, or new concurrent languages -- seem to adequately address the central problems of portability, expressiveness, efficiency, and compatibility with existing software. In this paper, we advocate an alternative approach to parallel programming based on what we call bilingual programming. We present evidence that this approach providesmore » and effective solution to parallel programming problems. The key idea in bilingual programming is to construct the upper levels of applications in a high-level language while coding selected low-level components in low-level languages. This approach permits the advantages of a high-level notation (expressiveness, elegance, conciseness) to be obtained without the cost in performance normally associated with high-level approaches. In addition, it provides a natural framework for reusing existing code.« less

  8. National Combustion Code: Parallel Performance

    NASA Technical Reports Server (NTRS)

    Babrauckas, Theresa

    2001-01-01

    This report discusses the National Combustion Code (NCC). The NCC is an integrated system of codes for the design and analysis of combustion systems. The advanced features of the NCC meet designers' requirements for model accuracy and turn-around time. The fundamental features at the inception of the NCC were parallel processing and unstructured mesh. The design and performance of the NCC are discussed.

  9. Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots.

    PubMed

    Wang, Junpeng; Liu, Xiaotong; Shen, Han-Wei; Lin, Guang

    2017-01-01

    Due to the uncertain nature of weather prediction, climate simulations are usually performed multiple times with different spatial resolutions. The outputs of simulations are multi-resolution spatial temporal ensembles. Each simulation run uses a unique set of values for multiple convective parameters. Distinct parameter settings from different simulation runs in different resolutions constitute a multi-resolution high-dimensional parameter space. Understanding the correlation between the different convective parameters, and establishing a connection between the parameter settings and the ensemble outputs are crucial to domain scientists. The multi-resolution high-dimensional parameter space, however, presents a unique challenge to the existing correlation visualization techniques. We present Nested Parallel Coordinates Plot (NPCP), a new type of parallel coordinates plots that enables visualization of intra-resolution and inter-resolution parameter correlations. With flexible user control, NPCP integrates superimposition, juxtaposition and explicit encodings in a single view for comparative data visualization and analysis. We develop an integrated visual analytics system to help domain scientists understand the connection between multi-resolution convective parameters and the large spatial temporal ensembles. Our system presents intricate climate ensembles with a comprehensive overview and on-demand geographic details. We demonstrate NPCP, along with the climate ensemble visualization system, based on real-world use-cases from our collaborators in computational and predictive science.

  10. Thread concept for automatic task parallelization in image analysis

    NASA Astrophysics Data System (ADS)

    Lueckenhaus, Maximilian; Eckstein, Wolfgang

    1998-09-01

    Parallel processing of image analysis tasks is an essential method to speed up image processing and helps to exploit the full capacity of distributed systems. However, writing parallel code is a difficult and time-consuming process and often leads to an architecture-dependent program that has to be re-implemented when changing the hardware. Therefore it is highly desirable to do the parallelization automatically. For this we have developed a special kind of thread concept for image analysis tasks. Threads derivated from one subtask may share objects and run in the same context but may process different threads of execution and work on different data in parallel. In this paper we describe the basics of our thread concept and show how it can be used as basis of an automatic task parallelization to speed up image processing. We further illustrate the design and implementation of an agent-based system that uses image analysis threads for generating and processing parallel programs by taking into account the available hardware. The tests made with our system prototype show that the thread concept combined with the agent paradigm is suitable to speed up image processing by an automatic parallelization of image analysis tasks.

  11. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms

    NASA Astrophysics Data System (ADS)

    Yu, Leiming; Nina-Paravecino, Fanny; Kaeli, David; Fang, Qianqian

    2018-01-01

    We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous computing environment, achieving significantly improved performance and software portability. A number of parallel computing techniques are investigated to achieve portable performance over a wide range of computing hardware. Furthermore, multiple thread-level and device-level load-balancing strategies are developed to obtain efficient simulations using multiple central processing units and GPUs.

  12. Efficient Parallel Levenberg-Marquardt Model Fitting towards Real-Time Automated Parametric Imaging Microscopy

    PubMed Central

    Zhu, Xiang; Zhang, Dianwen

    2013-01-01

    We present a fast, accurate and robust parallel Levenberg-Marquardt minimization optimizer, GPU-LMFit, which is implemented on graphics processing unit for high performance scalable parallel model fitting processing. GPU-LMFit can provide a dramatic speed-up in massive model fitting analyses to enable real-time automated pixel-wise parametric imaging microscopy. We demonstrate the performance of GPU-LMFit for the applications in superresolution localization microscopy and fluorescence lifetime imaging microscopy. PMID:24130785

  13. Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.

    PubMed

    Lan, Haidong; Chan, Yuandong; Xu, Kai; Schmidt, Bertil; Peng, Shaoliang; Liu, Weiguo

    2016-07-19

    Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence datasets and use Xeon Phi shuffle operations to improve I/O efficiency. Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.com/turbo0628/LSDBS-mpi .

  14. An efficient parallel algorithm for matrix-vector multiplication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrickson, B.; Leland, R.; Plimpton, S.

    The multiplication of a vector by a matrix is the kernel computation of many algorithms in scientific computation. A fast parallel algorithm for this calculation is therefore necessary if one is to make full use of the new generation of parallel supercomputers. This paper presents a high performance, parallel matrix-vector multiplication algorithm that is particularly well suited to hypercube multiprocessors. For an n x n matrix on p processors, the communication cost of this algorithm is O(n/[radical]p + log(p)), independent of the matrix sparsity pattern. The performance of the algorithm is demonstrated by employing it as the kernel in themore » well-known NAS conjugate gradient benchmark, where a run time of 6.09 seconds was observed. This is the best published performance on this benchmark achieved to date using a massively parallel supercomputer.« less

  15. Overview of the NCC

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey

    2001-01-01

    A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between then NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Glenn Research Center (LeRC), and Pratt & Whitney (P&W). The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration. The development of the NCC beta version was essentially completed in June 1998. Technical details of the NCC elements are given in the Reference List. Elements such as the baseline flow solver, turbulence module, and the chemistry module, have been extensively validated; and their parallel performance on large-scale parallel systems has been evaluated and optimized. However the scalar PDF module and the Spray module, as well as their coupling with the baseline flow solver, were developed in a small-scale distributed computing environment. As a result, the validation of the NCC beta version as a whole was quite limited. Current effort has been focused on the validation of the integrated code and the evaluation/optimization of its overall performance on large-scale parallel systems.

  16. Performance bounds on parallel self-initiating discrete-event

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1990-01-01

    The use is considered of massively parallel architectures to execute discrete-event simulations of what is termed self-initiating models. A logical process in a self-initiating model schedules its own state re-evaluation times, independently of any other logical process, and sends its new state to other logical processes following the re-evaluation. The interest is in the effects of that communication on synchronization. The performance is considered of various synchronization protocols by deriving upper and lower bounds on optimal performance, upper bounds on Time Warp's performance, and lower bounds on the performance of a new conservative protocol. The analysis of Time Warp includes the overhead costs of state-saving and rollback. The analysis points out sufficient conditions for the conservative protocol to outperform Time Warp. The analysis also quantifies the sensitivity of performance to message fan-out, lookahead ability, and the probability distributions underlying the simulation.

  17. Lower Limb Rehabilitation Using Patient Data

    PubMed Central

    Saadat, Mozafar

    2016-01-01

    The aim of this study is to investigate the performance of a 6-DoF parallel robot in tracking the movement of the foot trajectory of a paretic leg during a single stride. The foot trajectories of nine patients with a paretic leg including both males and females have been measured and analysed by a Vicon system in a gait laboratory. Based on kinematic and dynamic analysis of a 6-DoF UPS parallel robot, an algorithm was developed in MATLAB to calculate the length of the actuators and their required forces during all trajectories. The workspace and singularity points of the robot were then investigated in nine different cases. A 6-DoF UPS parallel robot prototype with high repeatability was designed and built in order to simulate a single stride. Results showed that the robot was capable of tracking all of the trajectories with the maximum position error of 1.2 mm. PMID:27721648

  18. A Concept for Airborne Precision Spacing for Dependent Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Baxley, Brian T.; Abbott, Terence S.; Capron, William R.; Smith, Colin L.; Shay, Richard F.; Hubbs, Clay

    2012-01-01

    The Airborne Precision Spacing concept of operations has been previously developed to support the precise delivery of aircraft landing successively on the same runway. The high-precision and consistent delivery of inter-aircraft spacing allows for increased runway throughput and the use of energy-efficient arrivals routes such as Continuous Descent Arrivals and Optimized Profile Descents. This paper describes an extension to the Airborne Precision Spacing concept to enable dependent parallel approach operations where the spacing aircraft must manage their in-trail spacing from a leading aircraft on approach to the same runway and spacing from an aircraft on approach to a parallel runway. Functionality for supporting automation is discussed as well as procedures for pilots and controllers. An analysis is performed to identify the required information and a new ADS-B report is proposed to support these information needs. Finally, several scenarios are described in detail.

  19. Studying an Eulerian Computer Model on Different High-performance Computer Platforms and Some Applications

    NASA Astrophysics Data System (ADS)

    Georgiev, K.; Zlatev, Z.

    2010-11-01

    The Danish Eulerian Model (DEM) is an Eulerian model for studying the transport of air pollutants on large scale. Originally, the model was developed at the National Environmental Research Institute of Denmark. The model computational domain covers Europe and some neighbour parts belong to the Atlantic Ocean, Asia and Africa. If DEM model is to be applied by using fine grids, then its discretization leads to a huge computational problem. This implies that such a model as DEM must be run only on high-performance computer architectures. The implementation and tuning of such a complex large-scale model on each different computer is a non-trivial task. Here, some comparison results of running of this model on different kind of vector (CRAY C92A, Fujitsu, etc.), parallel computers with distributed memory (IBM SP, CRAY T3E, Beowulf clusters, Macintosh G4 clusters, etc.), parallel computers with shared memory (SGI Origin, SUN, etc.) and parallel computers with two levels of parallelism (IBM SMP, IBM BlueGene/P, clusters of multiprocessor nodes, etc.) will be presented. The main idea in the parallel version of DEM is domain partitioning approach. Discussions according to the effective use of the cache and hierarchical memories of the modern computers as well as the performance, speed-ups and efficiency achieved will be done. The parallel code of DEM, created by using MPI standard library, appears to be highly portable and shows good efficiency and scalability on different kind of vector and parallel computers. Some important applications of the computer model output are presented in short.

  20. Parallel Flux Tensor Analysis for Efficient Moving Object Detection

    DTIC Science & Technology

    2011-07-01

    computing as well as parallelization to enable real time performance in analyzing complex video [3, 4 ]. There are a number of challenging computer vision... 4 . TITLE AND SUBTITLE Parallel Flux Tensor Analysis for Efficient Moving Object Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...We use the trace of the flux tensor matrix, referred to as Tr JF , that is defined below, Tr JF = ∫ Ω W (x− y)(I2xt(y) + I2yt(y) + I2tt(y))dy ( 4 ) as

  1. A Domain Decomposition Parallelization of the Fast Marching Method

    NASA Technical Reports Server (NTRS)

    Herrmann, M.

    2003-01-01

    In this paper, the first domain decomposition parallelization of the Fast Marching Method for level sets has been presented. Parallel speedup has been demonstrated in both the optimal and non-optimal domain decomposition case. The parallel performance of the proposed method is strongly dependent on load balancing separately the number of nodes on each side of the interface. A load imbalance of nodes on either side of the domain leads to an increase in communication and rollback operations. Furthermore, the amount of inter-domain communication can be reduced by aligning the inter-domain boundaries with the interface normal vectors. In the case of optimal load balancing and aligned inter-domain boundaries, the proposed parallel FMM algorithm is highly efficient, reaching efficiency factors of up to 0.98. Future work will focus on the extension of the proposed parallel algorithm to higher order accuracy. Also, to further enhance parallel performance, the coupling of the domain decomposition parallelization to the G(sub 0)-based parallelization will be investigated.

  2. Incremental Parallelization of Non-Data-Parallel Programs Using the Charon Message-Passing Library

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.

    2000-01-01

    Message passing is among the most popular techniques for parallelizing scientific programs on distributed-memory architectures. The reasons for its success are wide availability (MPI), efficiency, and full tuning control provided to the programmer. A major drawback, however, is that incremental parallelization, as offered by compiler directives, is not generally possible, because all data structures have to be changed throughout the program simultaneously. Charon remedies this situation through mappings between distributed and non-distributed data. It allows breaking up the parallelization into small steps, guaranteeing correctness at every stage. Several tools are available to help convert legacy codes into high-performance message-passing programs. They usually target data-parallel applications, whose loops carrying most of the work can be distributed among all processors without much dependency analysis. Others do a full dependency analysis and then convert the code virtually automatically. Even more toolkits are available that aid construction from scratch of message passing programs. None, however, allows piecemeal translation of codes with complex data dependencies (i.e. non-data-parallel programs) into message passing codes. The Charon library (available in both C and Fortran) provides incremental parallelization capabilities by linking legacy code arrays with distributed arrays. During the conversion process, non-distributed and distributed arrays exist side by side, and simple mapping functions allow the programmer to switch between the two in any location in the program. Charon also provides wrapper functions that leave the structure of the legacy code intact, but that allow execution on truly distributed data. Finally, the library provides a rich set of communication functions that support virtually all patterns of remote data demands in realistic structured grid scientific programs, including transposition, nearest-neighbor communication, pipelining, gather/scatter, and redistribution. At the end of the conversion process most intermediate Charon function calls will have been removed, the non-distributed arrays will have been deleted, and virtually the only remaining Charon functions calls are the high-level, highly optimized communications. Distribution of the data is under complete control of the programmer, although a wide range of useful distributions is easily available through predefined functions. A crucial aspect of the library is that it does not allocate space for distributed arrays, but accepts programmer-specified memory. This has two major consequences. First, codes parallelized using Charon do not suffer from encapsulation; user data is always directly accessible. This provides high efficiency, and also retains the possibility of using message passing directly for highly irregular communications. Second, non-distributed arrays can be interpreted as (trivial) distributions in the Charon sense, which allows them to be mapped to truly distributed arrays, and vice versa. This is the mechanism that enables incremental parallelization. In this paper we provide a brief introduction of the library and then focus on the actual steps in the parallelization process, using some representative examples from, among others, the NAS Parallel Benchmarks. We show how a complicated two-dimensional pipeline-the prototypical non-data-parallel algorithm- can be constructed with ease. To demonstrate the flexibility of the library, we give examples of the stepwise, efficient parallel implementation of nonlocal boundary conditions common in aircraft simulations, as well as the construction of the sequence of grids required for multigrid.

  3. High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis.

    PubMed

    Simonyan, Vahan; Mazumder, Raja

    2014-09-30

    The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis.

  4. High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis

    PubMed Central

    Simonyan, Vahan; Mazumder, Raja

    2014-01-01

    The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis. PMID:25271953

  5. Parallel simulation of tsunami inundation on a large-scale supercomputer

    NASA Astrophysics Data System (ADS)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2013-12-01

    An accurate prediction of tsunami inundation is important for disaster mitigation purposes. One approach is to approximate the tsunami wave source through an instant inversion analysis using real-time observation data (e.g., Tsushima et al., 2009) and then use the resulting wave source data in an instant tsunami inundation simulation. However, a bottleneck of this approach is the large computational cost of the non-linear inundation simulation and the computational power of recent massively parallel supercomputers is helpful to enable faster than real-time execution of a tsunami inundation simulation. Parallel computers have become approximately 1000 times faster in 10 years (www.top500.org), and so it is expected that very fast parallel computers will be more and more prevalent in the near future. Therefore, it is important to investigate how to efficiently conduct a tsunami simulation on parallel computers. In this study, we are targeting very fast tsunami inundation simulations on the K computer, currently the fastest Japanese supercomputer, which has a theoretical peak performance of 11.2 PFLOPS. One computing node of the K computer consists of 1 CPU with 8 cores that share memory, and the nodes are connected through a high-performance torus-mesh network. The K computer is designed for distributed-memory parallel computation, so we have developed a parallel tsunami model. Our model is based on TUNAMI-N2 model of Tohoku University, which is based on a leap-frog finite difference method. A grid nesting scheme is employed to apply high-resolution grids only at the coastal regions. To balance the computation load of each CPU in the parallelization, CPUs are first allocated to each nested layer in proportion to the number of grid points of the nested layer. Using CPUs allocated to each layer, 1-D domain decomposition is performed on each layer. In the parallel computation, three types of communication are necessary: (1) communication to adjacent neighbours for the finite difference calculation, (2) communication between adjacent layers for the calculations to connect each layer, and (3) global communication to obtain the time step which satisfies the CFL condition in the whole domain. A preliminary test on the K computer showed the parallel efficiency on 1024 cores was 57% relative to 64 cores. We estimate that the parallel efficiency will be considerably improved by applying a 2-D domain decomposition instead of the present 1-D domain decomposition in future work. The present parallel tsunami model was applied to the 2011 Great Tohoku tsunami. The coarsest resolution layer covers a 758 km × 1155 km region with a 405 m grid spacing. A nesting of five layers was used with the resolution ratio of 1/3 between nested layers. The finest resolution region has 5 m resolution and covers most of the coastal region of Sendai city. To complete 2 hours of simulation time, the serial (non-parallel) computation took approximately 4 days on a workstation. To complete the same simulation on 1024 cores of the K computer, it took 45 minutes which is more than two times faster than real-time. This presentation discusses the updated parallel computational performance and the efficient use of the K computer when considering the characteristics of the tsunami inundation simulation model in relation to the characteristics and capabilities of the K computer.

  6. Parallel ICA and its hardware implementation in hyperspectral image analysis

    NASA Astrophysics Data System (ADS)

    Du, Hongtao; Qi, Hairong; Peterson, Gregory D.

    2004-04-01

    Advances in hyperspectral images have dramatically boosted remote sensing applications by providing abundant information using hundreds of contiguous spectral bands. However, the high volume of information also results in excessive computation burden. Since most materials have specific characteristics only at certain bands, a lot of these information is redundant. This property of hyperspectral images has motivated many researchers to study various dimensionality reduction algorithms, including Projection Pursuit (PP), Principal Component Analysis (PCA), wavelet transform, and Independent Component Analysis (ICA), where ICA is one of the most popular techniques. It searches for a linear or nonlinear transformation which minimizes the statistical dependence between spectral bands. Through this process, ICA can eliminate superfluous but retain practical information given only the observations of hyperspectral images. One hurdle of applying ICA in hyperspectral image (HSI) analysis, however, is its long computation time, especially for high volume hyperspectral data sets. Even the most efficient method, FastICA, is a very time-consuming process. In this paper, we present a parallel ICA (pICA) algorithm derived from FastICA. During the unmixing process, pICA divides the estimation of weight matrix into sub-processes which can be conducted in parallel on multiple processors. The decorrelation process is decomposed into the internal decorrelation and the external decorrelation, which perform weight vector decorrelations within individual processors and between cooperative processors, respectively. In order to further improve the performance of pICA, we seek hardware solutions in the implementation of pICA. Until now, there are very few hardware designs for ICA-related processes due to the complicated and iterant computation. This paper discusses capacity limitation of FPGA implementations for pICA in HSI analysis. A synthesis of Application-Specific Integrated Circuit (ASIC) is designed for pICA-based dimensionality reduction in HSI analysis. The pICA design is implemented using standard-height cells and aimed at TSMC 0.18 micron process. During the synthesis procedure, three ICA-related reconfigurable components are developed for the reuse and retargeting purpose. Preliminary results show that the standard-height cell based ASIC synthesis provide an effective solution for pICA and ICA-related processes in HSI analysis.

  7. Image segmentation by iterative parallel region growing with application to data compression and image analysis

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    1988-01-01

    Image segmentation can be a key step in data compression and image analysis. However, the segmentation results produced by most previous approaches to region growing are suspect because they depend on the order in which portions of the image are processed. An iterative parallel segmentation algorithm avoids this problem by performing globally best merges first. Such a segmentation approach, and two implementations of the approach on NASA's Massively Parallel Processor (MPP) are described. Application of the segmentation approach to data compression and image analysis is then described, and results of such application are given for a LANDSAT Thematic Mapper image.

  8. Exploiting Parallel R in the Cloud with SPRINT

    PubMed Central

    Piotrowski, M.; McGilvary, G.A.; Sloan, T. M.; Mewissen, M.; Lloyd, A.D.; Forster, T.; Mitchell, L.; Ghazal, P.; Hill, J.

    2012-01-01

    Background Advances in DNA Microarray devices and next-generation massively parallel DNA sequencing platforms have led to an exponential growth in data availability but the arising opportunities require adequate computing resources. High Performance Computing (HPC) in the Cloud offers an affordable way of meeting this need. Objectives Bioconductor, a popular tool for high-throughput genomic data analysis, is distributed as add-on modules for the R statistical programming language but R has no native capabilities for exploiting multi-processor architectures. SPRINT is an R package that enables easy access to HPC for genomics researchers. This paper investigates: setting up and running SPRINT-enabled genomic analyses on Amazon’s Elastic Compute Cloud (EC2), the advantages of submitting applications to EC2 from different parts of the world and, if resource underutilization can improve application performance. Methods The SPRINT parallel implementations of correlation, permutation testing, partitioning around medoids and the multi-purpose papply have been benchmarked on data sets of various size on Amazon EC2. Jobs have been submitted from both the UK and Thailand to investigate monetary differences. Results It is possible to obtain good, scalable performance but the level of improvement is dependent upon the nature of algorithm. Resource underutilization can further improve the time to result. End-user’s location impacts on costs due to factors such as local taxation. Conclusions: Although not designed to satisfy HPC requirements, Amazon EC2 and cloud computing in general provides an interesting alternative and provides new possibilities for smaller organisations with limited funds. PMID:23223611

  9. Exploiting parallel R in the cloud with SPRINT.

    PubMed

    Piotrowski, M; McGilvary, G A; Sloan, T M; Mewissen, M; Lloyd, A D; Forster, T; Mitchell, L; Ghazal, P; Hill, J

    2013-01-01

    Advances in DNA Microarray devices and next-generation massively parallel DNA sequencing platforms have led to an exponential growth in data availability but the arising opportunities require adequate computing resources. High Performance Computing (HPC) in the Cloud offers an affordable way of meeting this need. Bioconductor, a popular tool for high-throughput genomic data analysis, is distributed as add-on modules for the R statistical programming language but R has no native capabilities for exploiting multi-processor architectures. SPRINT is an R package that enables easy access to HPC for genomics researchers. This paper investigates: setting up and running SPRINT-enabled genomic analyses on Amazon's Elastic Compute Cloud (EC2), the advantages of submitting applications to EC2 from different parts of the world and, if resource underutilization can improve application performance. The SPRINT parallel implementations of correlation, permutation testing, partitioning around medoids and the multi-purpose papply have been benchmarked on data sets of various size on Amazon EC2. Jobs have been submitted from both the UK and Thailand to investigate monetary differences. It is possible to obtain good, scalable performance but the level of improvement is dependent upon the nature of the algorithm. Resource underutilization can further improve the time to result. End-user's location impacts on costs due to factors such as local taxation. Although not designed to satisfy HPC requirements, Amazon EC2 and cloud computing in general provides an interesting alternative and provides new possibilities for smaller organisations with limited funds.

  10. Parallel Hybrid Gas-Electric Geared Turbofan Engine Conceptual Design and Benefits Analysis

    NASA Technical Reports Server (NTRS)

    Lents, Charles; Hardin, Larry; Rheaume, Jonathan; Kohlman, Lee

    2016-01-01

    The conceptual design of a parallel gas-electric hybrid propulsion system for a conventional single aisle twin engine tube and wing vehicle has been developed. The study baseline vehicle and engine technology are discussed, followed by results of the hybrid propulsion system sizing and performance analysis. The weights analysis for the electric energy storage & conversion system and thermal management system is described. Finally, the potential system benefits are assessed.

  11. ParCAT: A Parallel Climate Analysis Toolkit

    NASA Astrophysics Data System (ADS)

    Haugen, B.; Smith, B.; Steed, C.; Ricciuto, D. M.; Thornton, P. E.; Shipman, G.

    2012-12-01

    Climate science has employed increasingly complex models and simulations to analyze the past and predict the future of our climate. The size and dimensionality of climate simulation data has been growing with the complexity of the models. This growth in data is creating a widening gap between the data being produced and the tools necessary to analyze large, high dimensional data sets. With single run data sets increasing into 10's, 100's and even 1000's of gigabytes, parallel computing tools are becoming a necessity in order to analyze and compare climate simulation data. The Parallel Climate Analysis Toolkit (ParCAT) provides basic tools that efficiently use parallel computing techniques to narrow the gap between data set size and analysis tools. ParCAT was created as a collaborative effort between climate scientists and computer scientists in order to provide efficient parallel implementations of the computing tools that are of use to climate scientists. Some of the basic functionalities included in the toolkit are the ability to compute spatio-temporal means and variances, differences between two runs and histograms of the values in a data set. ParCAT is designed to facilitate the "heavy lifting" that is required for large, multidimensional data sets. The toolkit does not focus on performing the final visualizations and presentation of results but rather, reducing large data sets to smaller, more manageable summaries. The output from ParCAT is provided in commonly used file formats (NetCDF, CSV, ASCII) to allow for simple integration with other tools. The toolkit is currently implemented as a command line utility, but will likely also provide a C library for developers interested in tighter software integration. Elements of the toolkit are already being incorporated into projects such as UV-CDAT and CMDX. There is also an effort underway to implement portions of the CCSM Land Model Diagnostics package using ParCAT in conjunction with Python and gnuplot. ParCAT is implemented in C to provide efficient file IO. The file IO operations in the toolkit use the parallel-netcdf library; this enables the code to use the parallel IO capabilities of modern HPC systems. Analysis that currently requires an estimated 12+ hours with the traditional CCSM Land Model Diagnostics Package can now be performed in as little as 30 minutes on a single desktop workstation and a few minutes for relatively small jobs completed on modern HPC systems such as ORNL's Jaguar.

  12. Performance of a 300 Mbps 1:16 serial/parallel optoelectronic receiver module

    NASA Technical Reports Server (NTRS)

    Richard, M. A.; Claspy, P. C.; Bhasin, K. B.; Bendett, M. B.

    1990-01-01

    Optical interconnects are being considered for the high speed distribution of multiplexed control signals in GaAs monolithic microwave integrated circuit (MMIC) based phased array antennas. The performance of a hybrid GaAs optoelectronic integrated circuit (OEIC) is described, as well as its design and fabrication. The OEIC converts a 16-bit serial optical input to a 16 parallel line electrical output using an on-board 1:16 demultiplexer and operates at data rates as high as 30b Mbps. The performance characteristics and potential applications of the device are presented.

  13. Scaling and Graphical Transport-Map Analysis of Ambipolar Schottky-Barrier Thin-Film Transistors Based on a Parallel Array of Si Nanowires.

    PubMed

    Jeon, Dae-Young; Pregl, Sebastian; Park, So Jeong; Baraban, Larysa; Cuniberti, Gianaurelio; Mikolajick, Thomas; Weber, Walter M

    2015-07-08

    Si nanowire (Si-NW) based thin-film transistors (TFTs) have been considered as a promising candidate for next-generation flexible and wearable electronics as well as sensor applications with high performance. Here, we have fabricated ambipolar Schottky-barrier (SB) TFTs consisting of a parallel array of Si-NWs and performed an in-depth study related to their electrical performance and operation mechanism through several electrical parameters extracted from the channel length scaling based method. Especially, the newly suggested current-voltage (I-V) contour map clearly elucidates the unique operation mechanism of the ambipolar SB-TFTs, governed by Schottky-junction between NiSi2 and Si-NW. Further, it reveals for the first-time in SB based FETs the important internal electrostatic coupling between the channel and externally applied voltages. This work provides helpful information for the realization of practical circuits with ambipolar SB-TFTs that can be transferred to different substrate technologies and applications.

  14. Refractive multiple optical tweezers for parallel biochemical analysis in micro-fluidics

    NASA Astrophysics Data System (ADS)

    Merenda, Fabrice; Rohner, Johann; Pascoal, Pedro; Fournier, Jean-Marc; Vogel, Horst; Salathé, René-Paul

    2007-02-01

    We present a multiple laser tweezers system based on refractive optics. The system produces an array of 100 optical traps thanks to a refractive microlens array, whose focal plane is imaged into the focal plane of a high-NA microscope objective. This refractive multi-tweezers system is combined to micro-fluidics, aiming at performing simultaneous biochemical reactions on ensembles of free floating objects. Micro-fluidics allows both transporting the particles to the trapping area, and conveying biochemical reagents to the trapped particles. Parallel trapping in micro-fluidics is achieved with polystyrene beads as well as with native vesicles produced from mammalian cells. The traps can hold objects against fluid flows exceeding 100 micrometers per second. Parallel fluorescence excitation and detection on the ensemble of trapped particles is also demonstrated. Additionally, the system is capable of selectively and individually releasing particles from the tweezers array using a complementary steerable laser beam. Strategies for high-yield particle capture and individual particle release in a micro-fluidic environment are discussed. A comparison with diffractive optical tweezers enhances the pros and cons of refractive systems.

  15. Efficient implementation of parallel three-dimensional FFT on clusters of PCs

    NASA Astrophysics Data System (ADS)

    Takahashi, Daisuke

    2003-05-01

    In this paper, we propose a high-performance parallel three-dimensional fast Fourier transform (FFT) algorithm on clusters of PCs. The three-dimensional FFT algorithm can be altered into a block three-dimensional FFT algorithm to reduce the number of cache misses. We show that the block three-dimensional FFT algorithm improves performance by utilizing the cache memory effectively. We use the block three-dimensional FFT algorithm to implement the parallel three-dimensional FFT algorithm. We succeeded in obtaining performance of over 1.3 GFLOPS on an 8-node dual Pentium III 1 GHz PC SMP cluster.

  16. Vivaldi: A Domain-Specific Language for Volume Processing and Visualization on Distributed Heterogeneous Systems.

    PubMed

    Choi, Hyungsuk; Choi, Woohyuk; Quan, Tran Minh; Hildebrand, David G C; Pfister, Hanspeter; Jeong, Won-Ki

    2014-12-01

    As the size of image data from microscopes and telescopes increases, the need for high-throughput processing and visualization of large volumetric data has become more pressing. At the same time, many-core processors and GPU accelerators are commonplace, making high-performance distributed heterogeneous computing systems affordable. However, effectively utilizing GPU clusters is difficult for novice programmers, and even experienced programmers often fail to fully leverage the computing power of new parallel architectures due to their steep learning curve and programming complexity. In this paper, we propose Vivaldi, a new domain-specific language for volume processing and visualization on distributed heterogeneous computing systems. Vivaldi's Python-like grammar and parallel processing abstractions provide flexible programming tools for non-experts to easily write high-performance parallel computing code. Vivaldi provides commonly used functions and numerical operators for customized visualization and high-throughput image processing applications. We demonstrate the performance and usability of Vivaldi on several examples ranging from volume rendering to image segmentation.

  17. High performance data transfer

    NASA Astrophysics Data System (ADS)

    Cottrell, R.; Fang, C.; Hanushevsky, A.; Kreuger, W.; Yang, W.

    2017-10-01

    The exponentially increasing need for high speed data transfer is driven by big data, and cloud computing together with the needs of data intensive science, High Performance Computing (HPC), defense, the oil and gas industry etc. We report on the Zettar ZX software. This has been developed since 2013 to meet these growing needs by providing high performance data transfer and encryption in a scalable, balanced, easy to deploy and use way while minimizing power and space utilization. In collaboration with several commercial vendors, Proofs of Concept (PoC) consisting of clusters have been put together using off-the- shelf components to test the ZX scalability and ability to balance services using multiple cores, and links. The PoCs are based on SSD flash storage that is managed by a parallel file system. Each cluster occupies 4 rack units. Using the PoCs, between clusters we have achieved almost 200Gbps memory to memory over two 100Gbps links, and 70Gbps parallel file to parallel file with encryption over a 5000 mile 100Gbps link.

  18. TECA: A Parallel Toolkit for Extreme Climate Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhat, Mr; Ruebel, Oliver; Byna, Surendra

    2012-03-12

    We present TECA, a parallel toolkit for detecting extreme events in large climate datasets. Modern climate datasets expose parallelism across a number of dimensions: spatial locations, timesteps and ensemble members. We design TECA to exploit these modes of parallelism and demonstrate a prototype implementation for detecting and tracking three classes of extreme events: tropical cyclones, extra-tropical cyclones and atmospheric rivers. We process a modern TB-sized CAM5 simulation dataset with TECA, and demonstrate good runtime performance for the three case studies.

  19. A parallel implementation of a multisensor feature-based range-estimation method

    NASA Technical Reports Server (NTRS)

    Suorsa, Raymond E.; Sridhar, Banavar

    1993-01-01

    There are many proposed vision based methods to perform obstacle detection and avoidance for autonomous or semi-autonomous vehicles. All methods, however, will require very high processing rates to achieve real time performance. A system capable of supporting autonomous helicopter navigation will need to extract obstacle information from imagery at rates varying from ten frames per second to thirty or more frames per second depending on the vehicle speed. Such a system will need to sustain billions of operations per second. To reach such high processing rates using current technology, a parallel implementation of the obstacle detection/ranging method is required. This paper describes an efficient and flexible parallel implementation of a multisensor feature-based range-estimation algorithm, targeted for helicopter flight, realized on both a distributed-memory and shared-memory parallel computer.

  20. Accelerating Pathology Image Data Cross-Comparison on CPU-GPU Hybrid Systems

    PubMed Central

    Wang, Kaibo; Huai, Yin; Lee, Rubao; Wang, Fusheng; Zhang, Xiaodong; Saltz, Joel H.

    2012-01-01

    As an important application of spatial databases in pathology imaging analysis, cross-comparing the spatial boundaries of a huge amount of segmented micro-anatomic objects demands extremely data- and compute-intensive operations, requiring high throughput at an affordable cost. However, the performance of spatial database systems has not been satisfactory since their implementations of spatial operations cannot fully utilize the power of modern parallel hardware. In this paper, we provide a customized software solution that exploits GPUs and multi-core CPUs to accelerate spatial cross-comparison in a cost-effective way. Our solution consists of an efficient GPU algorithm and a pipelined system framework with task migration support. Extensive experiments with real-world data sets demonstrate the effectiveness of our solution, which improves the performance of spatial cross-comparison by over 18 times compared with a parallelized spatial database approach. PMID:23355955

  1. A design methodology for portable software on parallel computers

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Miller, Keith W.; Chrisman, Dan A.

    1993-01-01

    This final report for research that was supported by grant number NAG-1-995 documents our progress in addressing two difficulties in parallel programming. The first difficulty is developing software that will execute quickly on a parallel computer. The second difficulty is transporting software between dissimilar parallel computers. In general, we expect that more hardware-specific information will be included in software designs for parallel computers than in designs for sequential computers. This inclusion is an instance of portability being sacrificed for high performance. New parallel computers are being introduced frequently. Trying to keep one's software on the current high performance hardware, a software developer almost continually faces yet another expensive software transportation. The problem of the proposed research is to create a design methodology that helps designers to more precisely control both portability and hardware-specific programming details. The proposed research emphasizes programming for scientific applications. We completed our study of the parallelizability of a subsystem of the NASA Earth Radiation Budget Experiment (ERBE) data processing system. This work is summarized in section two. A more detailed description is provided in Appendix A ('Programming Practices to Support Eventual Parallelism'). Mr. Chrisman, a graduate student, wrote and successfully defended a Ph.D. dissertation proposal which describes our research associated with the issues of software portability and high performance. The list of research tasks are specified in the proposal. The proposal 'A Design Methodology for Portable Software on Parallel Computers' is summarized in section three and is provided in its entirety in Appendix B. We are currently studying a proposed subsystem of the NASA Clouds and the Earth's Radiant Energy System (CERES) data processing system. This software is the proof-of-concept for the Ph.D. dissertation. We have implemented and measured the performance of a portion of this subsystem on the Intel iPSC/2 parallel computer. These results are provided in section four. Our future work is summarized in section five, our acknowledgements are stated in section six, and references for published papers associated with NAG-1-995 are provided in section seven.

  2. Parallel Algorithms for Monte Carlo Particle Transport Simulation on Exascale Computing Architectures

    NASA Astrophysics Data System (ADS)

    Romano, Paul Kollath

    Monte Carlo particle transport methods are being considered as a viable option for high-fidelity simulation of nuclear reactors. While Monte Carlo methods offer several potential advantages over deterministic methods, there are a number of algorithmic shortcomings that would prevent their immediate adoption for full-core analyses. In this thesis, algorithms are proposed both to ameliorate the degradation in parallel efficiency typically observed for large numbers of processors and to offer a means of decomposing large tally data that will be needed for reactor analysis. A nearest-neighbor fission bank algorithm was proposed and subsequently implemented in the OpenMC Monte Carlo code. A theoretical analysis of the communication pattern shows that the expected cost is O( N ) whereas traditional fission bank algorithms are O(N) at best. The algorithm was tested on two supercomputers, the Intrepid Blue Gene/P and the Titan Cray XK7, and demonstrated nearly linear parallel scaling up to 163,840 processor cores on a full-core benchmark problem. An algorithm for reducing network communication arising from tally reduction was analyzed and implemented in OpenMC. The proposed algorithm groups only particle histories on a single processor into batches for tally purposes---in doing so it prevents all network communication for tallies until the very end of the simulation. The algorithm was tested, again on a full-core benchmark, and shown to reduce network communication substantially. A model was developed to predict the impact of load imbalances on the performance of domain decomposed simulations. The analysis demonstrated that load imbalances in domain decomposed simulations arise from two distinct phenomena: non-uniform particle densities and non-uniform spatial leakage. The dominant performance penalty for domain decomposition was shown to come from these physical effects rather than insufficient network bandwidth or high latency. The model predictions were verified with measured data from simulations in OpenMC on a full-core benchmark problem. Finally, a novel algorithm for decomposing large tally data was proposed, analyzed, and implemented/tested in OpenMC. The algorithm relies on disjoint sets of compute processes and tally servers. The analysis showed that for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead. Tests were performed on Intrepid and Titan and demonstrated that the algorithm did indeed perform well over a wide range of parameters. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  3. Modelling parallel programs and multiprocessor architectures with AXE

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Fineman, Charles E.

    1991-01-01

    AXE, An Experimental Environment for Parallel Systems, was designed to model and simulate for parallel systems at the process level. It provides an integrated environment for specifying computation models, multiprocessor architectures, data collection, and performance visualization. AXE is being used at NASA-Ames for developing resource management strategies, parallel problem formulation, multiprocessor architectures, and operating system issues related to the High Performance Computing and Communications Program. AXE's simple, structured user-interface enables the user to model parallel programs and machines precisely and efficiently. Its quick turn-around time keeps the user interested and productive. AXE models multicomputers. The user may easily modify various architectural parameters including the number of sites, connection topologies, and overhead for operating system activities. Parallel computations in AXE are represented as collections of autonomous computing objects known as players. Their use and behavior is described. Performance data of the multiprocessor model can be observed on a color screen. These include CPU and message routing bottlenecks, and the dynamic status of the software.

  4. Combining Phase Identification and Statistic Modeling for Automated Parallel Benchmark Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ye; Ma, Xiaosong; Liu, Qing Gary

    2015-01-01

    Parallel application benchmarks are indispensable for evaluating/optimizing HPC software and hardware. However, it is very challenging and costly to obtain high-fidelity benchmarks reflecting the scale and complexity of state-of-the-art parallel applications. Hand-extracted synthetic benchmarks are time-and labor-intensive to create. Real applications themselves, while offering most accurate performance evaluation, are expensive to compile, port, reconfigure, and often plainly inaccessible due to security or ownership concerns. This work contributes APPRIME, a novel tool for trace-based automatic parallel benchmark generation. Taking as input standard communication-I/O traces of an application's execution, it couples accurate automatic phase identification with statistical regeneration of event parameters tomore » create compact, portable, and to some degree reconfigurable parallel application benchmarks. Experiments with four NAS Parallel Benchmarks (NPB) and three real scientific simulation codes confirm the fidelity of APPRIME benchmarks. They retain the original applications' performance characteristics, in particular the relative performance across platforms.« less

  5. Computational Performance of a Parallelized Three-Dimensional High-Order Spectral Element Toolbox

    NASA Astrophysics Data System (ADS)

    Bosshard, Christoph; Bouffanais, Roland; Clémençon, Christian; Deville, Michel O.; Fiétier, Nicolas; Gruber, Ralf; Kehtari, Sohrab; Keller, Vincent; Latt, Jonas

    In this paper, a comprehensive performance review of an MPI-based high-order three-dimensional spectral element method C++ toolbox is presented. The focus is put on the performance evaluation of several aspects with a particular emphasis on the parallel efficiency. The performance evaluation is analyzed with help of a time prediction model based on a parameterization of the application and the hardware resources. A tailor-made CFD computation benchmark case is introduced and used to carry out this review, stressing the particular interest for clusters with up to 8192 cores. Some problems in the parallel implementation have been detected and corrected. The theoretical complexities with respect to the number of elements, to the polynomial degree, and to communication needs are correctly reproduced. It is concluded that this type of code has a nearly perfect speed up on machines with thousands of cores, and is ready to make the step to next-generation petaflop machines.

  6. The Automatic Parallelisation of Scientific Application Codes Using a Computer Aided Parallelisation Toolkit

    NASA Technical Reports Server (NTRS)

    Ierotheou, C.; Johnson, S.; Leggett, P.; Cross, M.; Evans, E.; Jin, Hao-Qiang; Frumkin, M.; Yan, J.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. Historically, the lack of a programming standard for using directives and the rather limited performance due to scalability have affected the take-up of this programming model approach. Significant progress has been made in hardware and software technologies, as a result the performance of parallel programs with compiler directives has also made improvements. The introduction of an industrial standard for shared-memory programming with directives, OpenMP, has also addressed the issue of portability. In this study, we have extended the computer aided parallelization toolkit (developed at the University of Greenwich), to automatically generate OpenMP based parallel programs with nominal user assistance. We outline the way in which loop types are categorized and how efficient OpenMP directives can be defined and placed using the in-depth interprocedural analysis that is carried out by the toolkit. We also discuss the application of the toolkit on the NAS Parallel Benchmarks and a number of real-world application codes. This work not only demonstrates the great potential of using the toolkit to quickly parallelize serial programs but also the good performance achievable on up to 300 processors for hybrid message passing and directive-based parallelizations.

  7. Toward performance portability of the Albany finite element analysis code using the Kokkos library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.

    Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less

  8. Toward performance portability of the Albany finite element analysis code using the Kokkos library

    DOE PAGES

    Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.; ...

    2018-02-05

    Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less

  9. Computational strategies for three-dimensional flow simulations on distributed computer systems. Ph.D. Thesis Semiannual Status Report, 15 Aug. 1993 - 15 Feb. 1994

    NASA Technical Reports Server (NTRS)

    Weed, Richard Allen; Sankar, L. N.

    1994-01-01

    An increasing amount of research activity in computational fluid dynamics has been devoted to the development of efficient algorithms for parallel computing systems. The increasing performance to price ratio of engineering workstations has led to research to development procedures for implementing a parallel computing system composed of distributed workstations. This thesis proposal outlines an ongoing research program to develop efficient strategies for performing three-dimensional flow analysis on distributed computing systems. The PVM parallel programming interface was used to modify an existing three-dimensional flow solver, the TEAM code developed by Lockheed for the Air Force, to function as a parallel flow solver on clusters of workstations. Steady flow solutions were generated for three different wing and body geometries to validate the code and evaluate code performance. The proposed research will extend the parallel code development to determine the most efficient strategies for unsteady flow simulations.

  10. GPU based cloud system for high-performance arrhythmia detection with parallel k-NN algorithm.

    PubMed

    Tae Joon Jun; Hyun Ji Park; Hyuk Yoo; Young-Hak Kim; Daeyoung Kim

    2016-08-01

    In this paper, we propose an GPU based Cloud system for high-performance arrhythmia detection. Pan-Tompkins algorithm is used for QRS detection and we optimized beat classification algorithm with K-Nearest Neighbor (K-NN). To support high performance beat classification on the system, we parallelized beat classification algorithm with CUDA to execute the algorithm on virtualized GPU devices on the Cloud system. MIT-BIH Arrhythmia database is used for validation of the algorithm. The system achieved about 93.5% of detection rate which is comparable to previous researches while our algorithm shows 2.5 times faster execution time compared to CPU only detection algorithm.

  11. SUPREM-DSMC: A New Scalable, Parallel, Reacting, Multidimensional Direct Simulation Monte Carlo Flow Code

    NASA Technical Reports Server (NTRS)

    Campbell, David; Wysong, Ingrid; Kaplan, Carolyn; Mott, David; Wadsworth, Dean; VanGilder, Douglas

    2000-01-01

    An AFRL/NRL team has recently been selected to develop a scalable, parallel, reacting, multidimensional (SUPREM) Direct Simulation Monte Carlo (DSMC) code for the DoD user community under the High Performance Computing Modernization Office (HPCMO) Common High Performance Computing Software Support Initiative (CHSSI). This paper will introduce the JANNAF Exhaust Plume community to this three-year development effort and present the overall goals, schedule, and current status of this new code.

  12. pWeb: A High-Performance, Parallel-Computing Framework for Web-Browser-Based Medical Simulation.

    PubMed

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2014-01-01

    This work presents a pWeb - a new language and compiler for parallelization of client-side compute intensive web applications such as surgical simulations. The recently introduced HTML5 standard has enabled creating unprecedented applications on the web. Low performance of the web browser, however, remains the bottleneck of computationally intensive applications including visualization of complex scenes, real time physical simulations and image processing compared to native ones. The new proposed language is built upon web workers for multithreaded programming in HTML5. The language provides fundamental functionalities of parallel programming languages as well as the fork/join parallel model which is not supported by web workers. The language compiler automatically generates an equivalent parallel script that complies with the HTML5 standard. A case study on realistic rendering for surgical simulations demonstrates enhanced performance with a compact set of instructions.

  13. TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics.

    PubMed

    Röst, Hannes L; Liu, Yansheng; D'Agostino, Giuseppe; Zanella, Matteo; Navarro, Pedro; Rosenberger, George; Collins, Ben C; Gillet, Ludovic; Testa, Giuseppe; Malmström, Lars; Aebersold, Ruedi

    2016-09-01

    Next-generation mass spectrometric (MS) techniques such as SWATH-MS have substantially increased the throughput and reproducibility of proteomic analysis, but ensuring consistent quantification of thousands of peptide analytes across multiple liquid chromatography-tandem MS (LC-MS/MS) runs remains a challenging and laborious manual process. To produce highly consistent and quantitatively accurate proteomics data matrices in an automated fashion, we developed TRIC (http://proteomics.ethz.ch/tric/), a software tool that utilizes fragment-ion data to perform cross-run alignment, consistent peak-picking and quantification for high-throughput targeted proteomics. TRIC reduced the identification error compared to a state-of-the-art SWATH-MS analysis without alignment by more than threefold at constant recall while correcting for highly nonlinear chromatographic effects. On a pulsed-SILAC experiment performed on human induced pluripotent stem cells, TRIC was able to automatically align and quantify thousands of light and heavy isotopic peak groups. Thus, TRIC fills a gap in the pipeline for automated analysis of massively parallel targeted proteomics data sets.

  14. Evaluating the performance of the particle finite element method in parallel architectures

    NASA Astrophysics Data System (ADS)

    Gimenez, Juan M.; Nigro, Norberto M.; Idelsohn, Sergio R.

    2014-05-01

    This paper presents a high performance implementation for the particle-mesh based method called particle finite element method two (PFEM-2). It consists of a material derivative based formulation of the equations with a hybrid spatial discretization which uses an Eulerian mesh and Lagrangian particles. The main aim of PFEM-2 is to solve transport equations as fast as possible keeping some level of accuracy. The method was found to be competitive with classical Eulerian alternatives for these targets, even in their range of optimal application. To evaluate the goodness of the method with large simulations, it is imperative to use of parallel environments. Parallel strategies for Finite Element Method have been widely studied and many libraries can be used to solve Eulerian stages of PFEM-2. However, Lagrangian stages, such as streamline integration, must be developed considering the parallel strategy selected. The main drawback of PFEM-2 is the large amount of memory needed, which limits its application to large problems with only one computer. Therefore, a distributed-memory implementation is urgently needed. Unlike a shared-memory approach, using domain decomposition the memory is automatically isolated, thus avoiding race conditions; however new issues appear due to data distribution over the processes. Thus, a domain decomposition strategy for both particle and mesh is adopted, which minimizes the communication between processes. Finally, performance analysis running over multicore and multinode architectures are presented. The Courant-Friedrichs-Lewy number used influences the efficiency of the parallelization and, in some cases, a weighted partitioning can be used to improve the speed-up. However the total cputime for cases presented is lower than that obtained when using classical Eulerian strategies.

  15. Computer architecture for efficient algorithmic executions in real-time systems: New technology for avionics systems and advanced space vehicles

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Youngblood, John N.; Saha, Aindam

    1987-01-01

    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processing elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.

  16. Computer architecture for efficient algorithmic executions in real-time systems: new technology for avionics systems and advanced space vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, C.C.; Youngblood, J.N.; Saha, A.

    1987-12-01

    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processingmore » elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.« less

  17. Parallel high-performance grid computing: capabilities and opportunities of a novel demanding service and business class allowing highest resource efficiency.

    PubMed

    Kepper, Nick; Ettig, Ramona; Dickmann, Frank; Stehr, Rene; Grosveld, Frank G; Wedemann, Gero; Knoch, Tobias A

    2010-01-01

    Especially in the life-science and the health-care sectors the huge IT requirements are imminent due to the large and complex systems to be analysed and simulated. Grid infrastructures play here a rapidly increasing role for research, diagnostics, and treatment, since they provide the necessary large-scale resources efficiently. Whereas grids were first used for huge number crunching of trivially parallelizable problems, increasingly parallel high-performance computing is required. Here, we show for the prime example of molecular dynamic simulations how the presence of large grid clusters including very fast network interconnects within grid infrastructures allows now parallel high-performance grid computing efficiently and thus combines the benefits of dedicated super-computing centres and grid infrastructures. The demands for this service class are the highest since the user group has very heterogeneous requirements: i) two to many thousands of CPUs, ii) different memory architectures, iii) huge storage capabilities, and iv) fast communication via network interconnects, are all needed in different combinations and must be considered in a highly dedicated manner to reach highest performance efficiency. Beyond, advanced and dedicated i) interaction with users, ii) the management of jobs, iii) accounting, and iv) billing, not only combines classic with parallel high-performance grid usage, but more importantly is also able to increase the efficiency of IT resource providers. Consequently, the mere "yes-we-can" becomes a huge opportunity like e.g. the life-science and health-care sectors as well as grid infrastructures by reaching higher level of resource efficiency.

  18. Solution-processed parallel tandem polymer solar cells using silver nanowires as intermediate electrode.

    PubMed

    Guo, Fei; Kubis, Peter; Li, Ning; Przybilla, Thomas; Matt, Gebhard; Stubhan, Tobias; Ameri, Tayebeh; Butz, Benjamin; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2014-12-23

    Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices.

  19. Climate Data Assimilation on a Massively Parallel Supercomputer

    NASA Technical Reports Server (NTRS)

    Ding, Hong Q.; Ferraro, Robert D.

    1996-01-01

    We have designed and implemented a set of highly efficient and highly scalable algorithms for an unstructured computational package, the PSAS data assimilation package, as demonstrated by detailed performance analysis of systematic runs on up to 512-nodes of an Intel Paragon. The preconditioned Conjugate Gradient solver achieves a sustained 18 Gflops performance. Consequently, we achieve an unprecedented 100-fold reduction in time to solution on the Intel Paragon over a single head of a Cray C90. This not only exceeds the daily performance requirement of the Data Assimilation Office at NASA's Goddard Space Flight Center, but also makes it possible to explore much larger and challenging data assimilation problems which are unthinkable on a traditional computer platform such as the Cray C90.

  20. Graphics Processing Unit Assisted Thermographic Compositing

    NASA Technical Reports Server (NTRS)

    Ragasa, Scott; McDougal, Matthew; Russell, Sam

    2013-01-01

    Objective: To develop a software application utilizing general purpose graphics processing units (GPUs) for the analysis of large sets of thermographic data. Background: Over the past few years, an increasing effort among scientists and engineers to utilize the GPU in a more general purpose fashion is allowing for supercomputer level results at individual workstations. As data sets grow, the methods to work them grow at an equal, and often greater, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU to allow for throughput that was previously reserved for compute clusters. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Signal (image) processing is one area were GPUs are being used to greatly increase the performance of certain algorithms and analysis techniques.

  1. Oscillatory electroosmotic flow in a parallel-plate microchannel under asymmetric zeta potentials

    NASA Astrophysics Data System (ADS)

    Peralta, M.; Arcos, J.; Méndez, F.; Bautista, O.

    2017-06-01

    In this work, we conduct a theoretical analysis of the start-up of an oscillatory electroosmotic flow (EOF) in a parallel-plate microchannel under asymmetric zeta potentials. It is found that the transient evolution of the flow field is controlled by the parameters {R}ω , {R}\\zeta , and \\bar{κ }, which represent the dimensionless frequency, the ratio of the zeta potentials of the microchannel walls, and the electrokinetic parameter, which is defined as the ratio of the microchannel height to the Debye length. The analysis is performed for both low and high zeta potentials; in the former case, an analytical solution is derived, whereas in the latter, a numerical solution is obtained. These solutions provide the fundamental characteristics of the oscillatory EOFs for which, with suitable adjustment of the zeta potential and the dimensionless frequency, the velocity profiles of the fluid flow exhibit symmetric or asymmetric shapes.

  2. High-throughput microfluidic single-cell digital polymerase chain reaction.

    PubMed

    White, A K; Heyries, K A; Doolin, C; Vaninsberghe, M; Hansen, C L

    2013-08-06

    Here we present an integrated microfluidic device for the high-throughput digital polymerase chain reaction (dPCR) analysis of single cells. This device allows for the parallel processing of single cells and executes all steps of analysis, including cell capture, washing, lysis, reverse transcription, and dPCR analysis. The cDNA from each single cell is distributed into a dedicated dPCR array consisting of 1020 chambers, each having a volume of 25 pL, using surface-tension-based sample partitioning. The high density of this dPCR format (118,900 chambers/cm(2)) allows the analysis of 200 single cells per run, for a total of 204,000 PCR reactions using a device footprint of 10 cm(2). Experiments using RNA dilutions show this device achieves shot-noise-limited performance in quantifying single molecules, with a dynamic range of 10(4). We performed over 1200 single-cell measurements, demonstrating the use of this platform in the absolute quantification of both high- and low-abundance mRNA transcripts, as well as micro-RNAs that are not easily measured using alternative hybridization methods. We further apply the specificity and sensitivity of single-cell dPCR to performing measurements of RNA editing events in single cells. High-throughput dPCR provides a new tool in the arsenal of single-cell analysis methods, with a unique combination of speed, precision, sensitivity, and specificity. We anticipate this approach will enable new studies where high-performance single-cell measurements are essential, including the analysis of transcriptional noise, allelic imbalance, and RNA processing.

  3. Block-Parallel Data Analysis with DIY2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, Dmitriy; Peterka, Tom

    DIY2 is a programming model and runtime for block-parallel analytics on distributed-memory machines. Its main abstraction is block-structured data parallelism: data are decomposed into blocks; blocks are assigned to processing elements (processes or threads); computation is described as iterations over these blocks, and communication between blocks is defined by reusable patterns. By expressing computation in this general form, the DIY2 runtime is free to optimize the movement of blocks between slow and fast memories (disk and flash vs. DRAM) and to concurrently execute blocks residing in memory with multiple threads. This enables the same program to execute in-core, out-of-core, serial,more » parallel, single-threaded, multithreaded, or combinations thereof. This paper describes the implementation of the main features of the DIY2 programming model and optimizations to improve performance. DIY2 is evaluated on benchmark test cases to establish baseline performance for several common patterns and on larger complete analysis codes running on large-scale HPC machines.« less

  4. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu

    2015-07-01

    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  5. Performance of the Galley Parallel File System

    NASA Technical Reports Server (NTRS)

    Nieuwejaar, Nils; Kotz, David

    1996-01-01

    As the input/output (I/O) needs of parallel scientific applications increase, file systems for multiprocessors are being designed to provide applications with parallel access to multiple disks. Many parallel file systems present applications with a conventional Unix-like interface that allows the application to access multiple disks transparently. This interface conceals the parallism within the file system, which increases the ease of programmability, but makes it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. Furthermore, most current parallel file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic parallel workloads. Initial experiments, reported in this paper, indicate that Galley is capable of providing high-performance 1/O to applications the applications that rely on them. In Section 3 we describe that access data in patterns that have been observed to be common.

  6. Striped Data Server for Scalable Parallel Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Jin; Gutsche, Oliver; Mandrichenko, Igor

    A columnar data representation is known to be an efficient way for data storage, specifically in cases when the analysis is often done based only on a small fragment of the available data structures. A data representation like Apache Parquet is a step forward from a columnar representation, which splits data horizontally to allow for easy parallelization of data analysis. Based on the general idea of columnar data storage, working on the [LDRD Project], we have developed a striped data representation, which, we believe, is better suited to the needs of High Energy Physics data analysis. A traditional columnar approachmore » allows for efficient data analysis of complex structures. While keeping all the benefits of columnar data representations, the striped mechanism goes further by enabling easy parallelization of computations without requiring special hardware. We will present an implementation and some performance characteristics of such a data representation mechanism using a distributed no-SQL database or a local file system, unified under the same API and data representation model. The representation is efficient and at the same time simple so that it allows for a common data model and APIs for wide range of underlying storage mechanisms such as distributed no-SQL databases and local file systems. Striped storage adopts Numpy arrays as its basic data representation format, which makes it easy and efficient to use in Python applications. The Striped Data Server is a web service, which allows to hide the server implementation details from the end user, easily exposes data to WAN users, and allows to utilize well known and developed data caching solutions to further increase data access efficiency. We are considering the Striped Data Server as the core of an enterprise scale data analysis platform for High Energy Physics and similar areas of data processing. We have been testing this architecture with a 2TB dataset from a CMS dark matter search and plan to expand it to multiple 100 TB or even PB scale. We will present the striped format, Striped Data Server architecture and performance test results.« less

  7. Investigating a method of producing "red and dead" galaxies

    NASA Astrophysics Data System (ADS)

    Skory, Stephen

    2010-08-01

    In optical wavelengths, galaxies are observed to be either red or blue. The overall color of a galaxy is due to the distribution of the ages of its stellar population. Galaxies with currently active star formation appear blue, while those with no recent star formation at all (greater than about a Gyr) have only old, red stars. This strong bimodality has lead to the idea of star formation quenching, and various proposed physical mechanisms. In this dissertation, I attempt to reproduce with Enzo the results of Naab et al. (2007), in which red and dead galaxies are formed using gravitational quenching, rather than with one of the more typical methods of quenching. My initial attempts are unsuccessful, and I explore the reasons why I think they failed. Then using simpler methods better suited to Enzo + AMR, I am successful in producing a galaxy that appears to be similar in color and formation history to those in Naab et al. However, quenching is achieved using unphysically high star formation efficiencies, which is a different mechanism than Naab et al. suggests. Preliminary results of a much higher resolution, follow-on simulation of the above show some possible contradiction with the results of Naab et al. Cold gas is streaming into the galaxy to fuel starbursts, while at a similar epoch the galaxies in Naab et al. have largely already ceased forming stars in the galaxy. On the other hand, the results of the high resolution simulation are qualitatively similar to other works in the literature that show a somewhat different gravitational quenching mechanism than Naab et al. I also discuss my work using halo finders to analyze simulated cosmological data, and my work improving the Enzo/AMR analysis tool "yt". This includes two parallelizations of the halo finder HOP (Eisenstein and Hut, 1998) which allows analysis of very large cosmological datasets on parallel machines. The first version is "yt-HOP," which works well for datasets between about 2563 and 5123 particles, but has memory bottlenecks as the datasets get larger. These bottlenecks inspired the second version, "Parallel HOP," which is a fully parallelized method and implementation of HOP that has worked on datasets with more than 20483 particles on hundreds of processing cores. Both methods are described in detail, as are the various effects of performance-related runtime options. Additionally, both halo finders are subjected to a full suite of performance benchmarks varying both dataset sizes and computational resources used. I conclude with descriptions of four new tools I added to yt. A Parallel Structure Function Generator allows analysis of two-point functions, such as correlation functions, using memory- and workload-parallelism. A Parallel Merger Tree Generator leverages the parallel halo finders in yt, such as Parallel HOP, to build the merger tree of halos in a cosmological simulation, and outputs the result to a SQLite database for simple and powerful data extraction. A Star Particle Analysis toolkit takes a group of star particles and can output the rate of formation as a function of time, and/or a synthetic Spectral Energy Distribution (S.E.D.) using the Bruzual and Charlot (2003) data tables. Finally, a Halo Mass Function toolkit takes as input a list of halo masses and can output the halo mass function for the halos, as well as an analytical fit for those halos using several previously published fits.

  8. Performance analysis of parallel branch and bound search with the hypercube architecture

    NASA Technical Reports Server (NTRS)

    Mraz, Richard T.

    1987-01-01

    With the availability of commercial parallel computers, researchers are examining new classes of problems which might benefit from parallel computing. This paper presents results of an investigation of the class of search intensive problems. The specific problem discussed is the Least-Cost Branch and Bound search method of deadline job scheduling. The object-oriented design methodology was used to map the problem into a parallel solution. While the initial design was good for a prototype, the best performance resulted from fine-tuning the algorithm for a specific computer. The experiments analyze the computation time, the speed up over a VAX 11/785, and the load balance of the problem when using loosely coupled multiprocessor system based on the hypercube architecture.

  9. On Designing Multicore-Aware Simulators for Systems Biology Endowed with OnLine Statistics

    PubMed Central

    Calcagno, Cristina; Coppo, Mario

    2014-01-01

    The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed. PMID:25050327

  10. On designing multicore-aware simulators for systems biology endowed with OnLine statistics.

    PubMed

    Aldinucci, Marco; Calcagno, Cristina; Coppo, Mario; Damiani, Ferruccio; Drocco, Maurizio; Sciacca, Eva; Spinella, Salvatore; Torquati, Massimo; Troina, Angelo

    2014-01-01

    The paper arguments are on enabling methodologies for the design of a fully parallel, online, interactive tool aiming to support the bioinformatics scientists .In particular, the features of these methodologies, supported by the FastFlow parallel programming framework, are shown on a simulation tool to perform the modeling, the tuning, and the sensitivity analysis of stochastic biological models. A stochastic simulation needs thousands of independent simulation trajectories turning into big data that should be analysed by statistic and data mining tools. In the considered approach the two stages are pipelined in such a way that the simulation stage streams out the partial results of all simulation trajectories to the analysis stage that immediately produces a partial result. The simulation-analysis workflow is validated for performance and effectiveness of the online analysis in capturing biological systems behavior on a multicore platform and representative proof-of-concept biological systems. The exploited methodologies include pattern-based parallel programming and data streaming that provide key features to the software designers such as performance portability and efficient in-memory (big) data management and movement. Two paradigmatic classes of biological systems exhibiting multistable and oscillatory behavior are used as a testbed.

  11. Development of a Robust and Efficient Parallel Solver for Unsteady Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    West, Jeff; Wright, Jeffrey; Thakur, Siddharth; Luke, Ed; Grinstead, Nathan

    2012-01-01

    The traditional design and analysis practice for advanced propulsion systems relies heavily on expensive full-scale prototype development and testing. Over the past decade, use of high-fidelity analysis and design tools such as CFD early in the product development cycle has been identified as one way to alleviate testing costs and to develop these devices better, faster and cheaper. In the design of advanced propulsion systems, CFD plays a major role in defining the required performance over the entire flight regime, as well as in testing the sensitivity of the design to the different modes of operation. Increased emphasis is being placed on developing and applying CFD models to simulate the flow field environments and performance of advanced propulsion systems. This necessitates the development of next generation computational tools which can be used effectively and reliably in a design environment. The turbomachinery simulation capability presented here is being developed in a computational tool called Loci-STREAM [1]. It integrates proven numerical methods for generalized grids and state-of-the-art physical models in a novel rule-based programming framework called Loci [2] which allows: (a) seamless integration of multidisciplinary physics in a unified manner, and (b) automatic handling of massively parallel computing. The objective is to be able to routinely simulate problems involving complex geometries requiring large unstructured grids and complex multidisciplinary physics. An immediate application of interest is simulation of unsteady flows in rocket turbopumps, particularly in cryogenic liquid rocket engines. The key components of the overall methodology presented in this paper are the following: (a) high fidelity unsteady simulation capability based on Detached Eddy Simulation (DES) in conjunction with second-order temporal discretization, (b) compliance with Geometric Conservation Law (GCL) in order to maintain conservative property on moving meshes for second-order time-stepping scheme, (c) a novel cloud-of-points interpolation method (based on a fast parallel kd-tree search algorithm) for interfaces between turbomachinery components in relative motion which is demonstrated to be highly scalable, and (d) demonstrated accuracy and parallel scalability on large grids (approx 250 million cells) in full turbomachinery geometries.

  12. Development of parallel line analysis criteria for recombinant adenovirus potency assay and definition of a unit of potency.

    PubMed

    Ogawa, Yasushi; Fawaz, Farah; Reyes, Candice; Lai, Julie; Pungor, Erno

    2007-01-01

    Parameter settings of a parallel line analysis procedure were defined by applying statistical analysis procedures to the absorbance data from a cell-based potency bioassay for a recombinant adenovirus, Adenovirus 5 Fibroblast Growth Factor-4 (Ad5FGF-4). The parallel line analysis was performed with a commercially available software, PLA 1.2. The software performs Dixon outlier test on replicates of the absorbance data, performs linear regression analysis to define linear region of the absorbance data, and tests parallelism between the linear regions of standard and sample. Width of Fiducial limit, expressed as a percent of the measured potency, was developed as a criterion for rejection of the assay data and to significantly improve the reliability of the assay results. With the linear range-finding criteria of the software set to a minimum of 5 consecutive dilutions and best statistical outcome, and in combination with the Fiducial limit width acceptance criterion of <135%, 13% of the assay results were rejected. With these criteria applied, the assay was found to be linear over the range of 0.25 to 4 relative potency units, defined as the potency of the sample normalized to the potency of Ad5FGF-4 standard containing 6 x 10(6) adenovirus particles/mL. The overall precision of the assay was estimated to be 52%. Without the application of Fiducial limit width criterion, the assay results were not linear over the range, and an overall precision of 76% was calculated from the data. An absolute unit of potency for the assay was defined by using the parallel line analysis procedure as the amount of Ad5FGF-4 that results in an absorbance value that is 121% of the average absorbance readings of the wells containing cells not infected with the adenovirus.

  13. A high performance data parallel tensor contraction framework: Application to coupled electro-mechanics

    NASA Astrophysics Data System (ADS)

    Poya, Roman; Gil, Antonio J.; Ortigosa, Rogelio

    2017-07-01

    The paper presents aspects of implementation of a new high performance tensor contraction framework for the numerical analysis of coupled and multi-physics problems on streaming architectures. In addition to explicit SIMD instructions and smart expression templates, the framework introduces domain specific constructs for the tensor cross product and its associated algebra recently rediscovered by Bonet et al. (2015, 2016) in the context of solid mechanics. The two key ingredients of the presented expression template engine are as follows. First, the capability to mathematically transform complex chains of operations to simpler equivalent expressions, while potentially avoiding routes with higher levels of computational complexity and, second, to perform a compile time depth-first or breadth-first search to find the optimal contraction indices of a large tensor network in order to minimise the number of floating point operations. For optimisations of tensor contraction such as loop transformation, loop fusion and data locality optimisations, the framework relies heavily on compile time technologies rather than source-to-source translation or JIT techniques. Every aspect of the framework is examined through relevant performance benchmarks, including the impact of data parallelism on the performance of isomorphic and nonisomorphic tensor products, the FLOP and memory I/O optimality in the evaluation of tensor networks, the compilation cost and memory footprint of the framework and the performance of tensor cross product kernels. The framework is then applied to finite element analysis of coupled electro-mechanical problems to assess the speed-ups achieved in kernel-based numerical integration of complex electroelastic energy functionals. In this context, domain-aware expression templates combined with SIMD instructions are shown to provide a significant speed-up over the classical low-level style programming techniques.

  14. The Automated Instrumentation and Monitoring System (AIMS) reference manual

    NASA Technical Reports Server (NTRS)

    Yan, Jerry; Hontalas, Philip; Listgarten, Sherry

    1993-01-01

    Whether a researcher is designing the 'next parallel programming paradigm,' another 'scalable multiprocessor' or investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be captured and displayed is invaluable. Careful analysis of execution traces can help computer designers and software architects to uncover system behavior and to take advantage of specific application characteristics and hardware features. A software tool kit that facilitates performance evaluation of parallel applications on multiprocessors is described. The Automated Instrumentation and Monitoring System (AIMS) has four major software components: a source code instrumentor which automatically inserts active event recorders into the program's source code before compilation; a run time performance-monitoring library, which collects performance data; a trace file animation and analysis tool kit which reconstructs program execution from the trace file; and a trace post-processor which compensate for data collection overhead. Besides being used as prototype for developing new techniques for instrumenting, monitoring, and visualizing parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware test beds to evaluate their impact on user productivity. Currently, AIMS instrumentors accept FORTRAN and C parallel programs written for Intel's NX operating system on the iPSC family of multi computers. A run-time performance-monitoring library for the iPSC/860 is included in this release. We plan to release monitors for other platforms (such as PVM and TMC's CM-5) in the near future. Performance data collected can be graphically displayed on workstations (e.g. Sun Sparc and SGI) supporting X-Windows (in particular, Xl IR5, Motif 1.1.3).

  15. Multidisciplinary propulsion simulation using NPSS

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.; Evans, Austin L.; Follen, Gregory J.

    1992-01-01

    The current status of the Numerical Propulsion System Simulation (NPSS) program, a cooperative effort of NASA, industry, and universities to reduce the cost and time of advanced technology propulsion system development, is reviewed. The technologies required for this program include (1) interdisciplinary analysis to couple the relevant disciplines, such as aerodynamics, structures, heat transfer, combustion, acoustics, controls, and materials; (2) integrated systems analysis; (3) a high-performance computing platform, including massively parallel processing; and (4) a simulation environment providing a user-friendly interface. Several research efforts to develop these technologies are discussed.

  16. Relation of Parallel Discrete Event Simulation algorithms with physical models

    NASA Astrophysics Data System (ADS)

    Shchur, L. N.; Shchur, L. V.

    2015-09-01

    We extend concept of local simulation times in parallel discrete event simulation (PDES) in order to take into account architecture of the current hardware and software in high-performance computing. We shortly review previous research on the mapping of PDES on physical problems, and emphasise how physical results may help to predict parallel algorithms behaviour.

  17. Simplified Parallel Domain Traversal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson III, David J

    2011-01-01

    Many data-intensive scientific analysis techniques require global domain traversal, which over the years has been a bottleneck for efficient parallelization across distributed-memory architectures. Inspired by MapReduce and other simplified parallel programming approaches, we have designed DStep, a flexible system that greatly simplifies efficient parallelization of domain traversal techniques at scale. In order to deliver both simplicity to users as well as scalability on HPC platforms, we introduce a novel two-tiered communication architecture for managing and exploiting asynchronous communication loads. We also integrate our design with advanced parallel I/O techniques that operate directly on native simulation output. We demonstrate DStep bymore » performing teleconnection analysis across ensemble runs of terascale atmospheric CO{sub 2} and climate data, and we show scalability results on up to 65,536 IBM BlueGene/P cores.« less

  18. A domain-specific compiler for a parallel multiresolution adaptive numerical simulation environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajbhandari, Samyam; Kim, Jinsung; Krishnamoorthy, Sriram

    This paper describes the design and implementation of a layered domain-specific compiler to support MADNESS---Multiresolution ADaptive Numerical Environment for Scientific Simulation. MADNESS is a high-level software environment for the solution of integral and differential equations in many dimensions, using adaptive and fast harmonic analysis methods with guaranteed precision. MADNESS uses k-d trees to represent spatial functions and implements operators like addition, multiplication, differentiation, and integration on the numerical representation of functions. The MADNESS runtime system provides global namespace support and a task-based execution model including futures. MADNESS is currently deployed on massively parallel supercomputers and has enabled many science advances.more » Due to the highly irregular and statically unpredictable structure of the k-d trees representing the spatial functions encountered in MADNESS applications, only purely runtime approaches to optimization have previously been implemented in the MADNESS framework. This paper describes a layered domain-specific compiler developed to address some performance bottlenecks in MADNESS. The newly developed static compile-time optimizations, in conjunction with the MADNESS runtime support, enable significant performance improvement for the MADNESS framework.« less

  19. Embedded Implementation of VHR Satellite Image Segmentation

    PubMed Central

    Li, Chao; Balla-Arabé, Souleymane; Ginhac, Dominique; Yang, Fan

    2016-01-01

    Processing and analysis of Very High Resolution (VHR) satellite images provide a mass of crucial information, which can be used for urban planning, security issues or environmental monitoring. However, they are computationally expensive and, thus, time consuming, while some of the applications, such as natural disaster monitoring and prevention, require high efficiency performance. Fortunately, parallel computing techniques and embedded systems have made great progress in recent years, and a series of massively parallel image processing devices, such as digital signal processors or Field Programmable Gate Arrays (FPGAs), have been made available to engineers at a very convenient price and demonstrate significant advantages in terms of running-cost, embeddability, power consumption flexibility, etc. In this work, we designed a texture region segmentation method for very high resolution satellite images by using the level set algorithm and the multi-kernel theory in a high-abstraction C environment and realize its register-transfer level implementation with the help of a new proposed high-level synthesis-based design flow. The evaluation experiments demonstrate that the proposed design can produce high quality image segmentation with a significant running-cost advantage. PMID:27240370

  20. Parallel eigenanalysis of finite element models in a completely connected architecture

    NASA Technical Reports Server (NTRS)

    Akl, F. A.; Morel, M. R.

    1989-01-01

    A parallel algorithm is presented for the solution of the generalized eigenproblem in linear elastic finite element analysis, (K)(phi) = (M)(phi)(omega), where (K) and (M) are of order N, and (omega) is order of q. The concurrent solution of the eigenproblem is based on the multifrontal/modified subspace method and is achieved in a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm was successfully implemented on a tightly coupled multiple-instruction multiple-data parallel processing machine, Cray X-MP. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor or to a logical processor (task) if the number of domains exceeds the number of physical processors. The macrotasking library routines are used in mapping each domain to a user task. Computational speed-up and efficiency are used to determine the effectiveness of the algorithm. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts and the dimension of the subspace on the performance of the algorithm are investigated. A parallel finite element dynamic analysis program, p-feda, is documented and the performance of its subroutines in parallel environment is analyzed.

  1. Experience in highly parallel processing using DAP

    NASA Technical Reports Server (NTRS)

    Parkinson, D.

    1987-01-01

    Distributed Array Processors (DAP) have been in day to day use for ten years and a large amount of user experience has been gained. The profile of user applications is similar to that of the Massively Parallel Processor (MPP) working group. Experience has shown that contrary to expectations, highly parallel systems provide excellent performance on so-called dirty problems such as the physics part of meteorological codes. The reasons for this observation are discussed. The arguments against replacing bit processors with floating point processors are also discussed.

  2. Adding Data Management Services to Parallel File Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Scott

    2015-03-04

    The objective of this project, called DAMASC for “Data Management in Scientific Computing”, is to coalesce data management with parallel file system management to present a declarative interface to scientists for managing, querying, and analyzing extremely large data sets efficiently and predictably. Managing extremely large data sets is a key challenge of exascale computing. The overhead, energy, and cost of moving massive volumes of data demand designs where computation is close to storage. In current architectures, compute/analysis clusters access data in a physically separate parallel file system and largely leave it scientist to reduce data movement. Over the past decadesmore » the high-end computing community has adopted middleware with multiple layers of abstractions and specialized file formats such as NetCDF-4 and HDF5. These abstractions provide a limited set of high-level data processing functions, but have inherent functionality and performance limitations: middleware that provides access to the highly structured contents of scientific data files stored in the (unstructured) file systems can only optimize to the extent that file system interfaces permit; the highly structured formats of these files often impedes native file system performance optimizations. We are developing Damasc, an enhanced high-performance file system with native rich data management services. Damasc will enable efficient queries and updates over files stored in their native byte-stream format while retaining the inherent performance of file system data storage via declarative queries and updates over views of underlying files. Damasc has four key benefits for the development of data-intensive scientific code: (1) applications can use important data-management services, such as declarative queries, views, and provenance tracking, that are currently available only within database systems; (2) the use of these services becomes easier, as they are provided within a familiar file-based ecosystem; (3) common optimizations, e.g., indexing and caching, are readily supported across several file formats, avoiding effort duplication; and (4) performance improves significantly, as data processing is integrated more tightly with data storage. Our key contributions are: SciHadoop which explores changes to MapReduce assumption by taking advantage of semantics of structured data while preserving MapReduce’s failure and resource management; DataMods which extends common abstractions of parallel file systems so they become programmable such that they can be extended to natively support a variety of data models and can be hooked into emerging distributed runtimes such as Stanford’s Legion; and Miso which combines Hadoop and relational data warehousing to minimize time to insight, taking into account the overhead of ingesting data into data warehousing.« less

  3. Run-time parallelization and scheduling of loops

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi; Crowley, Kay

    1991-01-01

    Run-time methods are studied to automatically parallelize and schedule iterations of a do loop in certain cases where compile-time information is inadequate. The methods presented involve execution time preprocessing of the loop. At compile-time, these methods set up the framework for performing a loop dependency analysis. At run-time, wavefronts of concurrently executable loop iterations are identified. Using this wavefront information, loop iterations are reordered for increased parallelism. Symbolic transformation rules are used to produce: inspector procedures that perform execution time preprocessing, and executors or transformed versions of source code loop structures. These transformed loop structures carry out the calculations planned in the inspector procedures. Performance results are presented from experiments conducted on the Encore Multimax. These results illustrate that run-time reordering of loop indexes can have a significant impact on performance.

  4. Active Storage with Analytics Capabilities and I/O Runtime System for Petascale Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Alok

    Computational scientists must understand results from experimental, observational and computational simulation generated data to gain insights and perform knowledge discovery. As systems approach the petascale range, problems that were unimaginable a few years ago are within reach. With the increasing volume and complexity of data produced by ultra-scale simulations and high-throughput experiments, understanding the science is largely hampered by the lack of comprehensive I/O, storage, acceleration of data manipulation, analysis, and mining tools. Scientists require techniques, tools and infrastructure to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis, statistical analysis and knowledgemore » discovery. The goal of this work is to enable more effective analysis of scientific datasets through the integration of enhancements in the I/O stack, from active storage support at the file system layer to MPI-IO and high-level I/O library layers. We propose to provide software components to accelerate data analytics, mining, I/O, and knowledge discovery for large-scale scientific applications, thereby increasing productivity of both scientists and the systems. Our approaches include 1) design the interfaces in high-level I/O libraries, such as parallel netCDF, for applications to activate data mining operations at the lower I/O layers; 2) Enhance MPI-IO runtime systems to incorporate the functionality developed as a part of the runtime system design; 3) Develop parallel data mining programs as part of runtime library for server-side file system in PVFS file system; and 4) Prototype an active storage cluster, which will utilize multicore CPUs, GPUs, and FPGAs to carry out the data mining workload.« less

  5. Interactive Fringe Analysis System: Applications To Moire Contourogram And Interferogram

    NASA Astrophysics Data System (ADS)

    Yatagai, T.; Idesawa, M.; Yamaashi, Y.; Suzuki, M.

    1982-10-01

    A general purpose fringe pattern processing facility was developed in order to analyze moire photographs used for scoliosis diagnoses and interferometric patterns in optical shops. A TV camera reads a fringe profile to be analyzed, and peaks of the fringe are detected by a microcomputer. Fringe peak correction and fringe order determination are performed with the man-machine interactive software developed. A light pen facility and an image digitizer are employed for interaction. In the case of two-dimensional fringe analysis, we analyze independently analysis lines parallel to each other and a reference line perpendicular to the parallel analysis lines. Fringe orders of parallel analysis lines are uniquely determined by using the fringe order of the reference line. Some results of analysis of moire contourograms, interferometric testing of silicon wafers, and holographic measurement of thermal deformation are presented.

  6. Performance analysis of a parallel Monte Carlo code for simulating solar radiative transfer in cloudy atmospheres using CUDA-enabled NVIDIA GPU

    NASA Astrophysics Data System (ADS)

    Russkova, Tatiana V.

    2017-11-01

    One tool to improve the performance of Monte Carlo methods for numerical simulation of light transport in the Earth's atmosphere is the parallel technology. A new algorithm oriented to parallel execution on the CUDA-enabled NVIDIA graphics processor is discussed. The efficiency of parallelization is analyzed on the basis of calculating the upward and downward fluxes of solar radiation in both a vertically homogeneous and inhomogeneous models of the atmosphere. The results of testing the new code under various atmospheric conditions including continuous singlelayered and multilayered clouds, and selective molecular absorption are presented. The results of testing the code using video cards with different compute capability are analyzed. It is shown that the changeover of computing from conventional PCs to the architecture of graphics processors gives more than a hundredfold increase in performance and fully reveals the capabilities of the technology used.

  7. Parallel discrete-event simulation of FCFS stochastic queueing networks

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1988-01-01

    Physical systems are inherently parallel. Intuition suggests that simulations of these systems may be amenable to parallel execution. The parallel execution of a discrete-event simulation requires careful synchronization of processes in order to ensure the execution's correctness; this synchronization can degrade performance. Largely negative results were recently reported in a study which used a well-known synchronization method on queueing network simulations. Discussed here is a synchronization method (appointments), which has proven itself to be effective on simulations of FCFS queueing networks. The key concept behind appointments is the provision of lookahead. Lookahead is a prediction on a processor's future behavior, based on an analysis of the processor's simulation state. It is shown how lookahead can be computed for FCFS queueing network simulations, give performance data that demonstrates the method's effectiveness under moderate to heavy loads, and discuss performance tradeoffs between the quality of lookahead, and the cost of computing lookahead.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonachea, D.; Dickens, P.; Thakur, R.

    There is a growing interest in using Java as the language for developing high-performance computing applications. To be successful in the high-performance computing domain, however, Java must not only be able to provide high computational performance, but also high-performance I/O. In this paper, we first examine several approaches that attempt to provide high-performance I/O in Java - many of which are not obvious at first glance - and evaluate their performance on two parallel machines, the IBM SP and the SGI Origin2000. We then propose extensions to the Java I/O library that address the deficiencies in the Java I/O APImore » and improve performance dramatically. The extensions add bulk (array) I/O operations to Java, thereby removing much of the overhead currently associated with array I/O in Java. We have implemented the extensions in two ways: in a standard JVM using the Java Native Interface (JNI) and in a high-performance parallel dialect of Java called Titanium. We describe the two implementations and present performance results that demonstrate the benefits of the proposed extensions.« less

  9. Parallel Robot for Lower Limb Rehabilitation Exercises.

    PubMed

    Rastegarpanah, Alireza; Saadat, Mozafar; Borboni, Alberto

    2016-01-01

    The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises.

  10. Parallel Robot for Lower Limb Rehabilitation Exercises

    PubMed Central

    Saadat, Mozafar; Borboni, Alberto

    2016-01-01

    The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises. PMID:27799727

  11. Development of micropump-actuated negative pressure pinched injection for parallel electrophoresis on array microfluidic chip.

    PubMed

    Li, Bowei; Jiang, Lei; Xie, Hua; Gao, Yan; Qin, Jianhua; Lin, Bingcheng

    2009-09-01

    A micropump-actuated negative pressure pinched injection method is developed for parallel electrophoresis on a multi-channel LIF detection system. The system has a home-made device that could individually control 16-port solenoid valves and a high-voltage power supply. The laser beam is excitated and distributes to the array separation channels for detection. The hybrid Glass-PDMS microfluidic chip comprises two common reservoirs, four separation channels coupled to their respective pneumatic micropumps and two reference channels. Due to use of pressure as a driving force, the proposed method has no sample bias effect for separation. There is only one high-voltage supply needed for separation without relying on the number of channels, which is significant for high-throughput analysis, and the time for sample loading is shortened to 1 s. In addition, the integrated micropumps can provide the versatile interface for coupling with other function units to satisfy the complicated demands. The performance is verified by separation of DNA marker and Hepatitis B virus DNA samples. And this method is also expected to show the potential throughput for the DNA analysis in the field of disease diagnosis.

  12. Sequence investigation of 34 forensic autosomal STRs with massively parallel sequencing.

    PubMed

    Zhang, Suhua; Niu, Yong; Bian, Yingnan; Dong, Rixia; Liu, Xiling; Bao, Yun; Jin, Chao; Zheng, Hancheng; Li, Chengtao

    2018-05-01

    STRs vary not only in the length of the repeat units and the number of repeats but also in the region with which they conform to an incremental repeat pattern. Massively parallel sequencing (MPS) offers new possibilities in the analysis of STRs since they can simultaneously sequence multiple targets in a single reaction and capture potential internal sequence variations. Here, we sequenced 34 STRs applied in the forensic community of China with a custom-designed panel. MPS performance were evaluated from sequencing reads analysis, concordance study and sensitivity testing. High coverage sequencing data were obtained to determine the constitute ratios and heterozygous balance. No actual inconsistent genotypes were observed between capillary electrophoresis (CE) and MPS, demonstrating the reliability of the panel and the MPS technology. With the sequencing data from the 200 investigated individuals, 346 and 418 alleles were obtained via CE and MPS technologies at the 34 STRs, indicating MPS technology provides higher discrimination than CE detection. The whole study demonstrated that STR genotyping with the custom panel and MPS technology has the potential not only to reveal length and sequence variations but also to satisfy the demands of high throughput and high multiplexing with acceptable sensitivity.

  13. Beating the tyranny of scale with a private cloud configured for Big Data

    NASA Astrophysics Data System (ADS)

    Lawrence, Bryan; Bennett, Victoria; Churchill, Jonathan; Juckes, Martin; Kershaw, Philip; Pepler, Sam; Pritchard, Matt; Stephens, Ag

    2015-04-01

    The Joint Analysis System, JASMIN, consists of a five significant hardware components: a batch computing cluster, a hypervisor cluster, bulk disk storage, high performance disk storage, and access to a tape robot. Each of the computing clusters consists of a heterogeneous set of servers, supporting a range of possible data analysis tasks - and a unique network environment makes it relatively trivial to migrate servers between the two clusters. The high performance disk storage will include the world's largest (publicly visible) deployment of the Panasas parallel disk system. Initially deployed in April 2012, JASMIN has already undergone two major upgrades, culminating in a system which by April 2015, will have in excess of 16 PB of disk and 4000 cores. Layered on the basic hardware are a range of services, ranging from managed services, such as the curated archives of the Centre for Environmental Data Archival or the data analysis environment for the National Centres for Atmospheric Science and Earth Observation, to a generic Infrastructure as a Service (IaaS) offering for the UK environmental science community. Here we present examples of some of the big data workloads being supported in this environment - ranging from data management tasks, such as checksumming 3 PB of data held in over one hundred million files, to science tasks, such as re-processing satellite observations with new algorithms, or calculating new diagnostics on petascale climate simulation outputs. We will demonstrate how the provision of a cloud environment closely coupled to a batch computing environment, all sharing the same high performance disk system allows massively parallel processing without the necessity to shuffle data excessively - even as it supports many different virtual communities, each with guaranteed performance. We will discuss the advantages of having a heterogeneous range of servers with available memory from tens of GB at the low end to (currently) two TB at the high end. There are some limitations of the JASMIN environment, the high performance disk environment is not fully available in the IaaS environment, and a planned ability to burst compute heavy jobs into the public cloud is not yet fully available. There are load balancing and performance issues that need to be understood. We will conclude with projections for future usage, and our plans to meet those requirements.

  14. PEM-PCA: a parallel expectation-maximization PCA face recognition architecture.

    PubMed

    Rujirakul, Kanokmon; So-In, Chakchai; Arnonkijpanich, Banchar

    2014-01-01

    Principal component analysis or PCA has been traditionally used as one of the feature extraction techniques in face recognition systems yielding high accuracy when requiring a small number of features. However, the covariance matrix and eigenvalue decomposition stages cause high computational complexity, especially for a large database. Thus, this research presents an alternative approach utilizing an Expectation-Maximization algorithm to reduce the determinant matrix manipulation resulting in the reduction of the stages' complexity. To improve the computational time, a novel parallel architecture was employed to utilize the benefits of parallelization of matrix computation during feature extraction and classification stages including parallel preprocessing, and their combinations, so-called a Parallel Expectation-Maximization PCA architecture. Comparing to a traditional PCA and its derivatives, the results indicate lower complexity with an insignificant difference in recognition precision leading to high speed face recognition systems, that is, the speed-up over nine and three times over PCA and Parallel PCA.

  15. Parallel Multivariate Spatio-Temporal Clustering of Large Ecological Datasets on Hybrid Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreepathi, Sarat; Kumar, Jitendra; Mills, Richard T.

    A proliferation of data from vast networks of remote sensing platforms (satellites, unmanned aircraft systems (UAS), airborne etc.), observational facilities (meteorological, eddy covariance etc.), state-of-the-art sensors, and simulation models offer unprecedented opportunities for scientific discovery. Unsupervised classification is a widely applied data mining approach to derive insights from such data. However, classification of very large data sets is a complex computational problem that requires efficient numerical algorithms and implementations on high performance computing (HPC) platforms. Additionally, increasing power, space, cooling and efficiency requirements has led to the deployment of hybrid supercomputing platforms with complex architectures and memory hierarchies like themore » Titan system at Oak Ridge National Laboratory. The advent of such accelerated computing architectures offers new challenges and opportunities for big data analytics in general and specifically, large scale cluster analysis in our case. Although there is an existing body of work on parallel cluster analysis, those approaches do not fully meet the needs imposed by the nature and size of our large data sets. Moreover, they had scaling limitations and were mostly limited to traditional distributed memory computing platforms. We present a parallel Multivariate Spatio-Temporal Clustering (MSTC) technique based on k-means cluster analysis that can target hybrid supercomputers like Titan. We developed a hybrid MPI, CUDA and OpenACC implementation that can utilize both CPU and GPU resources on computational nodes. We describe performance results on Titan that demonstrate the scalability and efficacy of our approach in processing large ecological data sets.« less

  16. Backtracking and Re-execution in the Automatic Debugging of Parallelized Programs

    NASA Technical Reports Server (NTRS)

    Matthews, Gregory; Hood, Robert; Johnson, Stephen; Leggett, Peter; Biegel, Bryan (Technical Monitor)

    2002-01-01

    In this work we describe a new approach using relative debugging to find differences in computation between a serial program and a parallel version of th it program. We use a combination of re-execution and backtracking in order to find the first difference in computation that may ultimately lead to an incorrect value that the user has indicated. In our prototype implementation we use static analysis information from a parallelization tool in order to perform the backtracking as well as the mapping required between serial and parallel computations.

  17. Design of High Field Solenoids made of High Temperature Superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartalesi, Antonio; /Pisa U.

    2010-12-01

    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductormore » (HTS). Finally, a technological winding process was proposed and the required tooling is designed.« less

  18. A parallel calibration utility for WRF-Hydro on high performance computers

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, C.; Kotamarthi, V. R.

    2017-12-01

    A successful modeling of complex hydrological processes comprises establishing an integrated hydrological model which simulates the hydrological processes in each water regime, calibrates and validates the model performance based on observation data, and estimates the uncertainties from different sources especially those associated with parameters. Such a model system requires large computing resources and often have to be run on High Performance Computers (HPC). The recently developed WRF-Hydro modeling system provides a significant advancement in the capability to simulate regional water cycles more completely. The WRF-Hydro model has a large range of parameters such as those in the input table files — GENPARM.TBL, SOILPARM.TBL and CHANPARM.TBL — and several distributed scaling factors such as OVROUGHRTFAC. These parameters affect the behavior and outputs of the model and thus may need to be calibrated against the observations in order to obtain a good modeling performance. Having a parameter calibration tool specifically for automate calibration and uncertainty estimates of WRF-Hydro model can provide significant convenience for the modeling community. In this study, we developed a customized tool using the parallel version of the model-independent parameter estimation and uncertainty analysis tool, PEST, to enabled it to run on HPC with PBS and SLURM workload manager and job scheduler. We also developed a series of PEST input file templates that are specifically for WRF-Hydro model calibration and uncertainty analysis. Here we will present a flood case study occurred in April 2013 over Midwest. The sensitivity and uncertainties are analyzed using the customized PEST tool we developed.

  19. The Axial Compressive Strength of High Performance Polymer Fibers

    DTIC Science & Technology

    1985-03-01

    consists of axially oriented graphitic microfibrils that have the strong and stiff graphite crystal basal plane oriented parallel to the long axis of the... microfibrils [3,4]. The synthetic rigid polymer fibers are represented by only one commercial material: the PPTA fibers produced by E.I. DuPont de...and/or microfibrils is presented. A potential energy balance analysis is used to calculate critical stresses for the onset of compressive buckling

  20. Current implementation and future plans on new code architecture, programming language and user interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, B.

    1997-07-01

    Computer technology has improved tremendously during the last years with larger media capacity, memory and more computational power. Visual computing with high-performance graphic interface and desktop computational power have changed the way engineers accomplish everyday tasks, development and safety studies analysis. The emergence of parallel computing will permit simulation over a larger domain. In addition, new development methods, languages and tools have appeared in the last several years.

  1. Application of Open Source Technologies for Oceanographic Data Analysis

    NASA Astrophysics Data System (ADS)

    Huang, T.; Gangl, M.; Quach, N. T.; Wilson, B. D.; Chang, G.; Armstrong, E. M.; Chin, T. M.; Greguska, F.

    2015-12-01

    NEXUS is a data-intensive analysis solution developed with a new approach for handling science data that enables large-scale data analysis by leveraging open source technologies such as Apache Cassandra, Apache Spark, Apache Solr, and Webification. NEXUS has been selected to provide on-the-fly time-series and histogram generation for the Soil Moisture Active Passive (SMAP) mission for Level 2 and Level 3 Active, Passive, and Active Passive products. It also provides an on-the-fly data subsetting capability. NEXUS is designed to scale horizontally, enabling it to handle massive amounts of data in parallel. It takes a new approach on managing time and geo-referenced array data by dividing data artifacts into chunks and stores them in an industry-standard, horizontally scaled NoSQL database. This approach enables the development of scalable data analysis services that can infuse and leverage the elastic computing infrastructure of the Cloud. It is equipped with a high-performance geospatial and indexed data search solution, coupled with a high-performance data Webification solution free from file I/O bottlenecks, as well as a high-performance, in-memory data analysis engine. In this talk, we will focus on the recently funded AIST 2014 project by using NEXUS as the core for oceanographic anomaly detection service and web portal. We call it, OceanXtremes

  2. Message Passing and Shared Address Space Parallelism on an SMP Cluster

    NASA Technical Reports Server (NTRS)

    Shan, Hongzhang; Singh, Jaswinder P.; Oliker, Leonid; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Currently, message passing (MP) and shared address space (SAS) are the two leading parallel programming paradigms. MP has been standardized with MPI, and is the more common and mature approach; however, code development can be extremely difficult, especially for irregularly structured computations. SAS offers substantial ease of programming, but may suffer from performance limitations due to poor spatial locality and high protocol overhead. In this paper, we compare the performance of and the programming effort required for six applications under both programming models on a 32-processor PC-SMP cluster, a platform that is becoming increasingly attractive for high-end scientific computing. Our application suite consists of codes that typically do not exhibit scalable performance under shared-memory programming due to their high communication-to-computation ratios and/or complex communication patterns. Results indicate that SAS can achieve about half the parallel efficiency of MPI for most of our applications, while being competitive for the others. A hybrid MPI+SAS strategy shows only a small performance advantage over pure MPI in some cases. Finally, improved implementations of two MPI collective operations on PC-SMP clusters are presented.

  3. High-performance computational fluid dynamics: a custom-code approach

    NASA Astrophysics Data System (ADS)

    Fannon, James; Loiseau, Jean-Christophe; Valluri, Prashant; Bethune, Iain; Náraigh, Lennon Ó.

    2016-07-01

    We introduce a modified and simplified version of the pre-existing fully parallelized three-dimensional Navier-Stokes flow solver known as TPLS. We demonstrate how the simplified version can be used as a pedagogical tool for the study of computational fluid dynamics (CFDs) and parallel computing. TPLS is at its heart a two-phase flow solver, and uses calls to a range of external libraries to accelerate its performance. However, in the present context we narrow the focus of the study to basic hydrodynamics and parallel computing techniques, and the code is therefore simplified and modified to simulate pressure-driven single-phase flow in a channel, using only relatively simple Fortran 90 code with MPI parallelization, but no calls to any other external libraries. The modified code is analysed in order to both validate its accuracy and investigate its scalability up to 1000 CPU cores. Simulations are performed for several benchmark cases in pressure-driven channel flow, including a turbulent simulation, wherein the turbulence is incorporated via the large-eddy simulation technique. The work may be of use to advanced undergraduate and graduate students as an introductory study in CFDs, while also providing insight for those interested in more general aspects of high-performance computing.

  4. Cedar Project---Original goals and progress to date

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cybenko, G.; Kuck, D.; Padua, D.

    1990-11-28

    This work encompasses a broad attack on high speed parallel processing. Hardware, software, applications development, and performance evaluation and visualization as well as research topics are proposed. Our goal is to develop practical parallel processing for the 1990's.

  5. Parallel-In-Time For Moving Meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falgout, R. D.; Manteuffel, T. A.; Southworth, B.

    2016-02-04

    With steadily growing computational resources available, scientists must develop e ective ways to utilize the increased resources. High performance, highly parallel software has be- come a standard. However until recent years parallelism has focused primarily on the spatial domain. When solving a space-time partial di erential equation (PDE), this leads to a sequential bottleneck in the temporal dimension, particularly when taking a large number of time steps. The XBraid parallel-in-time library was developed as a practical way to add temporal parallelism to existing se- quential codes with only minor modi cations. In this work, a rezoning-type moving mesh is appliedmore » to a di usion problem and formulated in a parallel-in-time framework. Tests and scaling studies are run using XBraid and demonstrate excellent results for the simple model problem considered herein.« less

  6. PWHATSHAP: efficient haplotyping for future generation sequencing.

    PubMed

    Bracciali, Andrea; Aldinucci, Marco; Patterson, Murray; Marschall, Tobias; Pisanti, Nadia; Merelli, Ivan; Torquati, Massimo

    2016-09-22

    Haplotype phasing is an important problem in the analysis of genomics information. Given a set of DNA fragments of an individual, it consists of determining which one of the possible alleles (alternative forms of a gene) each fragment comes from. Haplotype information is relevant to gene regulation, epigenetics, genome-wide association studies, evolutionary and population studies, and the study of mutations. Haplotyping is currently addressed as an optimisation problem aiming at solutions that minimise, for instance, error correction costs, where costs are a measure of the confidence in the accuracy of the information acquired from DNA sequencing. Solutions have typically an exponential computational complexity. WHATSHAP is a recent optimal approach which moves computational complexity from DNA fragment length to fragment overlap, i.e., coverage, and is hence of particular interest when considering sequencing technology's current trends that are producing longer fragments. Given the potential relevance of efficient haplotyping in several analysis pipelines, we have designed and engineered PWHATSHAP, a parallel, high-performance version of WHATSHAP. PWHATSHAP is embedded in a toolkit developed in Python and supports genomics datasets in standard file formats. Building on WHATSHAP, PWHATSHAP exhibits the same complexity exploring a number of possible solutions which is exponential in the coverage of the dataset. The parallel implementation on multi-core architectures allows for a relevant reduction of the execution time for haplotyping, while the provided results enjoy the same high accuracy as that provided by WHATSHAP, which increases with coverage. Due to its structure and management of the large datasets, the parallelisation of WHATSHAP posed demanding technical challenges, which have been addressed exploiting a high-level parallel programming framework. The result, PWHATSHAP, is a freely available toolkit that improves the efficiency of the analysis of genomics information.

  7. Efficient parallel implementation of active appearance model fitting algorithm on GPU.

    PubMed

    Wang, Jinwei; Ma, Xirong; Zhu, Yuanping; Sun, Jizhou

    2014-01-01

    The active appearance model (AAM) is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs) that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA) on the Nvidia's GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures.

  8. Efficient Parallel Implementation of Active Appearance Model Fitting Algorithm on GPU

    PubMed Central

    Wang, Jinwei; Ma, Xirong; Zhu, Yuanping; Sun, Jizhou

    2014-01-01

    The active appearance model (AAM) is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs) that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA) on the Nvidia's GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures. PMID:24723812

  9. Modeling Cooperative Threads to Project GPU Performance for Adaptive Parallelism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Jiayuan; Uram, Thomas; Morozov, Vitali A.

    Most accelerators, such as graphics processing units (GPUs) and vector processors, are particularly suitable for accelerating massively parallel workloads. On the other hand, conventional workloads are developed for multi-core parallelism, which often scale to only a few dozen OpenMP threads. When hardware threads significantly outnumber the degree of parallelism in the outer loop, programmers are challenged with efficient hardware utilization. A common solution is to further exploit the parallelism hidden deep in the code structure. Such parallelism is less structured: parallel and sequential loops may be imperfectly nested within each other, neigh boring inner loops may exhibit different concurrency patternsmore » (e.g. Reduction vs. Forall), yet have to be parallelized in the same parallel section. Many input-dependent transformations have to be explored. A programmer often employs a larger group of hardware threads to cooperatively walk through a smaller outer loop partition and adaptively exploit any encountered parallelism. This process is time-consuming and error-prone, yet the risk of gaining little or no performance remains high for such workloads. To reduce risk and guide implementation, we propose a technique to model workloads with limited parallelism that can automatically explore and evaluate transformations involving cooperative threads. Eventually, our framework projects the best achievable performance and the most promising transformations without implementing GPU code or using physical hardware. We envision our technique to be integrated into future compilers or optimization frameworks for autotuning.« less

  10. Higher order balance control: Distinct effects between cognitive task and manual steadiness constraint on automatic postural responses.

    PubMed

    Coelho, Daniel Boari; Bourlinova, Catarina; Teixeira, Luis Augusto

    2016-12-01

    In the present experiment, we aimed to evaluate the interactive effect of performing a cognitive task simultaneously with a manual task requiring either high or low steadiness on APRs. Young volunteers performed the task of recovering upright balance following a mechanical perturbation provoked by unanticipatedly releasing a load pulling the participant's body backwards. The postural task was performed while holding a cylinder steadily on a tray. One group performed that task under high (cylinder' round side down) and another one under low (cylinder' flat side down) manual steadiness constraint. Those tasks were evaluated in the conditions of performing concurrently a cognitive numeric subtraction task and under no cognitive task. Analysis showed that performance of the cognitive task led to increased body and tray displacement, associated with higher displacement at the hip and upper trunk, and lower magnitude of activation of the GM muscle in response to the perturbation. Conversely, high manual steadiness constraint led to reduced tray velocity in association with lower values of trunk displacement, and decreased rotation amplitude at the ankle and hip joints. We found no interactions between the effects of the cognitive and manual tasks on APRs, suggesting that they were processed in parallel in the generation of responses for balance recovery. Modulation of postural responses from the manual and cognitive tasks indicates participation of higher order neural structures in the generation of APRs, with postural responses being affected by multiple mental processes occurring in parallel. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Seeing the forest for the trees: Networked workstations as a parallel processing computer

    NASA Technical Reports Server (NTRS)

    Breen, J. O.; Meleedy, D. M.

    1992-01-01

    Unlike traditional 'serial' processing computers in which one central processing unit performs one instruction at a time, parallel processing computers contain several processing units, thereby, performing several instructions at once. Many of today's fastest supercomputers achieve their speed by employing thousands of processing elements working in parallel. Few institutions can afford these state-of-the-art parallel processors, but many already have the makings of a modest parallel processing system. Workstations on existing high-speed networks can be harnessed as nodes in a parallel processing environment, bringing the benefits of parallel processing to many. While such a system can not rival the industry's latest machines, many common tasks can be accelerated greatly by spreading the processing burden and exploiting idle network resources. We study several aspects of this approach, from algorithms to select nodes to speed gains in specific tasks. With ever-increasing volumes of astronomical data, it becomes all the more necessary to utilize our computing resources fully.

  12. Optimizing the Performance of Reactive Molecular Dynamics Simulations for Multi-core Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aktulga, Hasan Metin; Coffman, Paul; Shan, Tzu-Ray

    2015-12-01

    Hybrid parallelism allows high performance computing applications to better leverage the increasing on-node parallelism of modern supercomputers. In this paper, we present a hybrid parallel implementation of the widely used LAMMPS/ReaxC package, where the construction of bonded and nonbonded lists and evaluation of complex ReaxFF interactions are implemented efficiently using OpenMP parallelism. Additionally, the performance of the QEq charge equilibration scheme is examined and a dual-solver is implemented. We present the performance of the resulting ReaxC-OMP package on a state-of-the-art multi-core architecture Mira, an IBM BlueGene/Q supercomputer. For system sizes ranging from 32 thousand to 16.6 million particles, speedups inmore » the range of 1.5-4.5x are observed using the new ReaxC-OMP software. Sustained performance improvements have been observed for up to 262,144 cores (1,048,576 processes) of Mira with a weak scaling efficiency of 91.5% in larger simulations containing 16.6 million particles.« less

  13. A Divergence Statistics Extension to VTK for Performance Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pebay, Philippe Pierre; Bennett, Janine Camille

    This report follows the series of previous documents ([PT08, BPRT09b, PT09, BPT09, PT10, PB13], where we presented the parallel descriptive, correlative, multi-correlative, principal component analysis, contingency, k -means, order and auto-correlative statistics engines which we developed within the Visualization Tool Kit ( VTK ) as a scalable, parallel and versatile statistics package. We now report on a new engine which we developed for the calculation of divergence statistics, a concept which we hereafter explain and whose main goal is to quantify the discrepancy, in a stasticial manner akin to measuring a distance, between an observed empirical distribution and a theoretical,more » "ideal" one. The ease of use of the new diverence statistics engine is illustrated by the means of C++ code snippets. Although this new engine does not yet have a parallel implementation, it has already been applied to HPC performance analysis, of which we provide an example.« less

  14. Computational electronics and electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C. C.

    The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domainmore » CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.« less

  15. Singularity and workspace analysis of three isoconstrained parallel manipulators with schoenflies motion

    NASA Astrophysics Data System (ADS)

    Lee, Po-Chih; Lee, Jyh-Jone

    2012-06-01

    This paper presents the analysis of three parallel manipulators with Schoenflies-motion. Each parallel manipulator possesses two limbs in structure and the end-effector has three DOFs (degree of freedom) in the translational motion and one DOF in rotational motion about a given direction axis with respect to the world coordinate system. The three isoconstrained parallel manipulators have the structures denoted as C{u/u}UwHw-//-C{v/v}UwHw, CuR{u/u}Uhw-//-CvR{v/v}Uhw and CuPuUhw-//-CvPvUhw. The kinematic equations are first introduced for each manipulator. Then, Jacobian matrix, singularity, workspace, and performance index for each mechanism are subsequently derived and analysed for the first time. The results can be helpful for the engineers to evaluate such kind of parallel robots for possible application in industry where pick-and-place motion is required.

  16. Knowledge-Based Parallel Performance Technology for Scientific Application Competitiveness Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malony, Allen D; Shende, Sameer

    The primary goal of the University of Oregon's DOE "œcompetitiveness" project was to create performance technology that embodies and supports knowledge of performance data, analysis, and diagnosis in parallel performance problem solving. The target of our development activities was the TAU Performance System and the technology accomplishments reported in this and prior reports have all been incorporated in the TAU open software distribution. In addition, the project has been committed to maintaining strong interactions with the DOE SciDAC Performance Engineering Research Institute (PERI) and Center for Technology for Advanced Scientific Component Software (TASCS). This collaboration has proved valuable for translationmore » of our knowledge-based performance techniques to parallel application development and performance engineering practice. Our outreach has also extended to the DOE Advanced CompuTational Software (ACTS) collection and project. Throughout the project we have participated in the PERI and TASCS meetings, as well as the ACTS annual workshops.« less

  17. A quantitative assessment of the Hadoop framework for analyzing massively parallel DNA sequencing data.

    PubMed

    Siretskiy, Alexey; Sundqvist, Tore; Voznesenskiy, Mikhail; Spjuth, Ola

    2015-01-01

    New high-throughput technologies, such as massively parallel sequencing, have transformed the life sciences into a data-intensive field. The most common e-infrastructure for analyzing this data consists of batch systems that are based on high-performance computing resources; however, the bioinformatics software that is built on this platform does not scale well in the general case. Recently, the Hadoop platform has emerged as an interesting option to address the challenges of increasingly large datasets with distributed storage, distributed processing, built-in data locality, fault tolerance, and an appealing programming methodology. In this work we introduce metrics and report on a quantitative comparison between Hadoop and a single node of conventional high-performance computing resources for the tasks of short read mapping and variant calling. We calculate efficiency as a function of data size and observe that the Hadoop platform is more efficient for biologically relevant data sizes in terms of computing hours for both split and un-split data files. We also quantify the advantages of the data locality provided by Hadoop for NGS problems, and show that a classical architecture with network-attached storage will not scale when computing resources increase in numbers. Measurements were performed using ten datasets of different sizes, up to 100 gigabases, using the pipeline implemented in Crossbow. To make a fair comparison, we implemented an improved preprocessor for Hadoop with better performance for splittable data files. For improved usability, we implemented a graphical user interface for Crossbow in a private cloud environment using the CloudGene platform. All of the code and data in this study are freely available as open source in public repositories. From our experiments we can conclude that the improved Hadoop pipeline scales better than the same pipeline on high-performance computing resources, we also conclude that Hadoop is an economically viable option for the common data sizes that are currently used in massively parallel sequencing. Given that datasets are expected to increase over time, Hadoop is a framework that we envision will have an increasingly important role in future biological data analysis.

  18. Multinode acoustic focusing for parallel flow cytometry

    PubMed Central

    Piyasena, Menake E.; Suthanthiraraj, Pearlson P. Austin; Applegate, Robert W.; Goumas, Andrew M.; Woods, Travis A.; López, Gabriel P.; Graves, Steven W.

    2012-01-01

    Flow cytometry can simultaneously measure and analyze multiple properties of single cells or particles with high sensitivity and precision. Yet, conventional flow cytometers have fundamental limitations with regards to analyzing particles larger than about 70 microns, analyzing at flow rates greater than a few hundred microliters per minute, and providing analysis rates greater than 50,000 per second. To overcome these limits, we have developed multi-node acoustic focusing flow cells that can position particles (as small as a red blood cell and as large as 107 microns in diameter) into as many as 37 parallel flow streams. We demonstrate the potential of such flow cells for the development of high throughput, parallel flow cytometers by precision focusing of flow cytometry alignment microspheres, red blood cells, and the analysis of CD4+ cellular immunophenotyping assay. This approach will have significant impact towards the creation of high throughput flow cytometers for rare cell detection applications (e.g. circulating tumor cells), applications requiring large particle analysis, and high volume flow cytometry. PMID:22239072

  19. File-access characteristics of parallel scientific workloads

    NASA Technical Reports Server (NTRS)

    Nieuwejaar, Nils; Kotz, David; Purakayastha, Apratim; Best, Michael; Ellis, Carla Schlatter

    1995-01-01

    Phenomenal improvements in the computational performance of multiprocessors have not been matched by comparable gains in I/O system performance. This imbalance has resulted in I/O becoming a significant bottleneck for many scientific applications. One key to overcoming this bottleneck is improving the performance of parallel file systems. The design of a high-performance parallel file system requires a comprehensive understanding of the expected workload. Unfortunately, until recently, no general workload studies of parallel file systems have been conducted. The goal of the CHARISMA project was to remedy this problem by characterizing the behavior of several production workloads, on different machines, at the level of individual reads and writes. The first set of results from the CHARISMA project describe the workloads observed on an Intel iPSC/860 and a Thinking Machines CM-5. This paper is intended to compare and contrast these two workloads for an understanding of their essential similarities and differences, isolating common trends and platform-dependent variances. Using this comparison, we are able to gain more insight into the general principles that should guide parallel file-system design.

  20. Efficient parallelization of analytic bond-order potentials for large-scale atomistic simulations

    NASA Astrophysics Data System (ADS)

    Teijeiro, C.; Hammerschmidt, T.; Drautz, R.; Sutmann, G.

    2016-07-01

    Analytic bond-order potentials (BOPs) provide a way to compute atomistic properties with controllable accuracy. For large-scale computations of heterogeneous compounds at the atomistic level, both the computational efficiency and memory demand of BOP implementations have to be optimized. Since the evaluation of BOPs is a local operation within a finite environment, the parallelization concepts known from short-range interacting particle simulations can be applied to improve the performance of these simulations. In this work, several efficient parallelization methods for BOPs that use three-dimensional domain decomposition schemes are described. The schemes are implemented into the bond-order potential code BOPfox, and their performance is measured in a series of benchmarks. Systems of up to several millions of atoms are simulated on a high performance computing system, and parallel scaling is demonstrated for up to thousands of processors.

  1. Analysis of the thermal balance characteristics for multiple-connected piezoelectric transformers.

    PubMed

    Park, Joung-Hu; Cho, Bo-Hyung; Choi, Sung-Jin; Lee, Sang-Min

    2009-08-01

    Because the amount of power that a piezoelectric transformer (PT) can handle is limited, multiple connections of PTs are necessary for the power-capacity improvement of PT-applications. In the connection, thermal imbalance between the PTs should be prevented to avoid the thermal runaway of each PT. The thermal balance of the multiple-connected PTs is dominantly affected by the electrothermal characteristics of individual PTs. In this paper, the thermal balance of both parallel-parallel and parallel-series connections are analyzed by electrical model parameters. For quantitative analysis, the thermal-balance effects are estimated by the simulation of the mechanical loss ratio between the PTs. The analysis results show that with PTs of similar characteristics, the parallel-series connection has better thermal balance characteristics due to the reduced mechanical loss of the higher temperature PT. For experimental verification of the analysis, a hardware-prototype test of a Cs-Lp type 40 W adapter system with radial-vibration mode PTs has been performed.

  2. Code Parallelization with CAPO: A User Manual

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Frumkin, Michael; Yan, Jerry; Biegel, Bryan (Technical Monitor)

    2001-01-01

    A software tool has been developed to assist the parallelization of scientific codes. This tool, CAPO, extends an existing parallelization toolkit, CAPTools developed at the University of Greenwich, to generate OpenMP parallel codes for shared memory architectures. This is an interactive toolkit to transform a serial Fortran application code to an equivalent parallel version of the software - in a small fraction of the time normally required for a manual parallelization. We first discuss the way in which loop types are categorized and how efficient OpenMP directives can be defined and inserted into the existing code using the in-depth interprocedural analysis. The use of the toolkit on a number of application codes ranging from benchmark to real-world application codes is presented. This will demonstrate the great potential of using the toolkit to quickly parallelize serial programs as well as the good performance achievable on a large number of toolkit to quickly parallelize serial programs as well as the good performance achievable on a large number of processors. The second part of the document gives references to the parameters and the graphic user interface implemented in the toolkit. Finally a set of tutorials is included for hands-on experiences with this toolkit.

  3. Comparing an FPGA to a Cell for an Image Processing Application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ngo, Hau; Broussard, Randy P.; Ives, Robert W.

    2010-12-01

    Modern advancements in configurable hardware, most notably Field-Programmable Gate Arrays (FPGAs), have provided an exciting opportunity to discover the parallel nature of modern image processing algorithms. On the other hand, PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high performance. In this research project, our aim is to study the differences in performance of a modern image processing algorithm on these two hardware platforms. In particular, Iris Recognition Systems have recently become an attractive identification method because of their extremely high accuracy. Iris matching, a repeatedly executed portion of a modern iris recognition algorithm, is parallelized on an FPGA system and a Cell processor. We demonstrate a 2.5 times speedup of the parallelized algorithm on the FPGA system when compared to a Cell processor-based version.

  4. Distributed Large Data-Object Environments: End-to-End Performance Analysis of High Speed Distributed Storage Systems in Wide Area ATM Networks

    NASA Technical Reports Server (NTRS)

    Johnston, William; Tierney, Brian; Lee, Jason; Hoo, Gary; Thompson, Mary

    1996-01-01

    We have developed and deployed a distributed-parallel storage system (DPSS) in several high speed asynchronous transfer mode (ATM) wide area networks (WAN) testbeds to support several different types of data-intensive applications. Architecturally, the DPSS is a network striped disk array, but is fairly unique in that its implementation allows applications complete freedom to determine optimal data layout, replication and/or coding redundancy strategy, security policy, and dynamic reconfiguration. In conjunction with the DPSS, we have developed a 'top-to-bottom, end-to-end' performance monitoring and analysis methodology that has allowed us to characterize all aspects of the DPSS operating in high speed ATM networks. In particular, we have run a variety of performance monitoring experiments involving the DPSS in the MAGIC testbed, which is a large scale, high speed, ATM network and we describe our experience using the monitoring methodology to identify and correct problems that limit the performance of high speed distributed applications. Finally, the DPSS is part of an overall architecture for using high speed, WAN's for enabling the routine, location independent use of large data-objects. Since this is part of the motivation for a distributed storage system, we describe this architecture.

  5. Massively Parallel, Molecular Analysis Platform Developed Using a CMOS Integrated Circuit With Biological Nanopores

    PubMed Central

    Roever, Stefan

    2012-01-01

    A massively parallel, low cost molecular analysis platform will dramatically change the nature of protein, molecular and genomics research, DNA sequencing, and ultimately, molecular diagnostics. An integrated circuit (IC) with 264 sensors was fabricated using standard CMOS semiconductor processing technology. Each of these sensors is individually controlled with precision analog circuitry and is capable of single molecule measurements. Under electronic and software control, the IC was used to demonstrate the feasibility of creating and detecting lipid bilayers and biological nanopores using wild type α-hemolysin. The ability to dynamically create bilayers over each of the sensors will greatly accelerate pore development and pore mutation analysis. In addition, the noise performance of the IC was measured to be 30fA(rms). With this noise performance, single base detection of DNA was demonstrated using α-hemolysin. The data shows that a single molecule, electrical detection platform using biological nanopores can be operationalized and can ultimately scale to millions of sensors. Such a massively parallel platform will revolutionize molecular analysis and will completely change the field of molecular diagnostics in the future.

  6. Constructing Neuronal Network Models in Massively Parallel Environments.

    PubMed

    Ippen, Tammo; Eppler, Jochen M; Plesser, Hans E; Diesmann, Markus

    2017-01-01

    Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers.

  7. Constructing Neuronal Network Models in Massively Parallel Environments

    PubMed Central

    Ippen, Tammo; Eppler, Jochen M.; Plesser, Hans E.; Diesmann, Markus

    2017-01-01

    Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers. PMID:28559808

  8. An efficient implementation of 3D high-resolution imaging for large-scale seismic data with GPU/CPU heterogeneous parallel computing

    NASA Astrophysics Data System (ADS)

    Xu, Jincheng; Liu, Wei; Wang, Jin; Liu, Linong; Zhang, Jianfeng

    2018-02-01

    De-absorption pre-stack time migration (QPSTM) compensates for the absorption and dispersion of seismic waves by introducing an effective Q parameter, thereby making it an effective tool for 3D, high-resolution imaging of seismic data. Although the optimal aperture obtained via stationary-phase migration reduces the computational cost of 3D QPSTM and yields 3D stationary-phase QPSTM, the associated computational efficiency is still the main problem in the processing of 3D, high-resolution images for real large-scale seismic data. In the current paper, we proposed a division method for large-scale, 3D seismic data to optimize the performance of stationary-phase QPSTM on clusters of graphics processing units (GPU). Then, we designed an imaging point parallel strategy to achieve an optimal parallel computing performance. Afterward, we adopted an asynchronous double buffering scheme for multi-stream to perform the GPU/CPU parallel computing. Moreover, several key optimization strategies of computation and storage based on the compute unified device architecture (CUDA) were adopted to accelerate the 3D stationary-phase QPSTM algorithm. Compared with the initial GPU code, the implementation of the key optimization steps, including thread optimization, shared memory optimization, register optimization and special function units (SFU), greatly improved the efficiency. A numerical example employing real large-scale, 3D seismic data showed that our scheme is nearly 80 times faster than the CPU-QPSTM algorithm. Our GPU/CPU heterogeneous parallel computing framework significant reduces the computational cost and facilitates 3D high-resolution imaging for large-scale seismic data.

  9. Verification of Electromagnetic Physics Models for Parallel Computing Architectures in the GeantV Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amadio, G.; et al.

    An intensive R&D and programming effort is required to accomplish new challenges posed by future experimental high-energy particle physics (HEP) programs. The GeantV project aims to narrow the gap between the performance of the existing HEP detector simulation software and the ideal performance achievable, exploiting latest advances in computing technology. The project has developed a particle detector simulation prototype capable of transporting in parallel particles in complex geometries exploiting instruction level microparallelism (SIMD and SIMT), task-level parallelism (multithreading) and high-level parallelism (MPI), leveraging both the multi-core and the many-core opportunities. We present preliminary verification results concerning the electromagnetic (EM) physicsmore » models developed for parallel computing architectures within the GeantV project. In order to exploit the potential of vectorization and accelerators and to make the physics model effectively parallelizable, advanced sampling techniques have been implemented and tested. In this paper we introduce a set of automated statistical tests in order to verify the vectorized models by checking their consistency with the corresponding Geant4 models and to validate them against experimental data.« less

  10. Reliability and mass analysis of dynamic power conversion systems with parallel of standby redundancy

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Bloomfield, H. S.

    1985-01-01

    A combinatorial reliability approach is used to identify potential dynamic power conversion systems for space mission applications. A reliability and mass analysis is also performed, specifically for a 100 kWe nuclear Brayton power conversion system with parallel redundancy. Although this study is done for a reactor outlet temperature of 1100K, preliminary system mass estimates are also included for reactor outlet temperatures ranging up to 1500 K.

  11. RY-Coding and Non-Homogeneous Models Can Ameliorate the Maximum-Likelihood Inferences From Nucleotide Sequence Data with Parallel Compositional Heterogeneity.

    PubMed

    Ishikawa, Sohta A; Inagaki, Yuji; Hashimoto, Tetsuo

    2012-01-01

    In phylogenetic analyses of nucleotide sequences, 'homogeneous' substitution models, which assume the stationarity of base composition across a tree, are widely used, albeit individual sequences may bear distinctive base frequencies. In the worst-case scenario, a homogeneous model-based analysis can yield an artifactual union of two distantly related sequences that achieved similar base frequencies in parallel. Such potential difficulty can be countered by two approaches, 'RY-coding' and 'non-homogeneous' models. The former approach converts four bases into purine and pyrimidine to normalize base frequencies across a tree, while the heterogeneity in base frequency is explicitly incorporated in the latter approach. The two approaches have been applied to real-world sequence data; however, their basic properties have not been fully examined by pioneering simulation studies. Here, we assessed the performances of the maximum-likelihood analyses incorporating RY-coding and a non-homogeneous model (RY-coding and non-homogeneous analyses) on simulated data with parallel convergence to similar base composition. Both RY-coding and non-homogeneous analyses showed superior performances compared with homogeneous model-based analyses. Curiously, the performance of RY-coding analysis appeared to be significantly affected by a setting of the substitution process for sequence simulation relative to that of non-homogeneous analysis. The performance of a non-homogeneous analysis was also validated by analyzing a real-world sequence data set with significant base heterogeneity.

  12. Parallel computing of physical maps--a comparative study in SIMD and MIMD parallelism.

    PubMed

    Bhandarkar, S M; Chirravuri, S; Arnold, J

    1996-01-01

    Ordering clones from a genomic library into physical maps of whole chromosomes presents a central computational problem in genetics. Chromosome reconstruction via clone ordering is usually isomorphic to the NP-complete Optimal Linear Arrangement problem. Parallel SIMD and MIMD algorithms for simulated annealing based on Markov chain distribution are proposed and applied to the problem of chromosome reconstruction via clone ordering. Perturbation methods and problem-specific annealing heuristics are proposed and described. The SIMD algorithms are implemented on a 2048 processor MasPar MP-2 system which is an SIMD 2-D toroidal mesh architecture whereas the MIMD algorithms are implemented on an 8 processor Intel iPSC/860 which is an MIMD hypercube architecture. A comparative analysis of the various SIMD and MIMD algorithms is presented in which the convergence, speedup, and scalability characteristics of the various algorithms are analyzed and discussed. On a fine-grained, massively parallel SIMD architecture with a low synchronization overhead such as the MasPar MP-2, a parallel simulated annealing algorithm based on multiple periodically interacting searches performs the best. For a coarse-grained MIMD architecture with high synchronization overhead such as the Intel iPSC/860, a parallel simulated annealing algorithm based on multiple independent searches yields the best results. In either case, distribution of clonal data across multiple processors is shown to exacerbate the tendency of the parallel simulated annealing algorithm to get trapped in a local optimum.

  13. The RABiT: a rapid automated biodosimetry tool for radiological triage. II. Technological developments.

    PubMed

    Garty, Guy; Chen, Youhua; Turner, Helen C; Zhang, Jian; Lyulko, Oleksandra V; Bertucci, Antonella; Xu, Yanping; Wang, Hongliang; Simaan, Nabil; Randers-Pehrson, Gerhard; Lawrence Yao, Y; Brenner, David J

    2011-08-01

    Over the past five years the Center for Minimally Invasive Radiation Biodosimetry at Columbia University has developed the Rapid Automated Biodosimetry Tool (RABiT), a completely automated, ultra-high throughput biodosimetry workstation. This paper describes recent upgrades and reliability testing of the RABiT. The RABiT analyses fingerstick-derived blood samples to estimate past radiation exposure or to identify individuals exposed above or below a cut-off dose. Through automated robotics, lymphocytes are extracted from fingerstick blood samples into filter-bottomed multi-well plates. Depending on the time since exposure, the RABiT scores either micronuclei or phosphorylation of the histone H2AX, in an automated robotic system, using filter-bottomed multi-well plates. Following lymphocyte culturing, fixation and staining, the filter bottoms are removed from the multi-well plates and sealed prior to automated high-speed imaging. Image analysis is performed online using dedicated image processing hardware. Both the sealed filters and the images are archived. We have developed a new robotic system for lymphocyte processing, making use of an upgraded laser power and parallel processing of four capillaries at once. This system has allowed acceleration of lymphocyte isolation, the main bottleneck of the RABiT operation, from 12 to 2 sec/sample. Reliability tests have been performed on all robotic subsystems. Parallel handling of multiple samples through the use of dedicated, purpose-built, robotics and high speed imaging allows analysis of up to 30,000 samples per day.

  14. The RABiT: A Rapid Automated Biodosimetry Tool For Radiological Triage. II. Technological Developments

    PubMed Central

    Garty, Guy; Chen, Youhua; Turner, Helen; Zhang, Jian; Lyulko, Oleksandra; Bertucci, Antonella; Xu, Yanping; Wang, Hongliang; Simaan, Nabil; Randers-Pehrson, Gerhard; Yao, Y. Lawrence; Brenner, David J.

    2011-01-01

    Purpose Over the past five years the Center for Minimally Invasive Radiation Biodosimetry at Columbia University has developed the Rapid Automated Biodosimetry Tool (RABiT), a completely automated, ultra-high throughput biodosimetry workstation. This paper describes recent upgrades and reliability testing of the RABiT. Materials and methods The RABiT analyzes fingerstick-derived blood samples to estimate past radiation exposure or to identify individuals exposed above or below a cutoff dose. Through automated robotics, lymphocytes are extracted from fingerstick blood samples into filter-bottomed multi-well plates. Depending on the time since exposure, the RABiT scores either micronuclei or phosphorylation of the histone H2AX, in an automated robotic system, using filter-bottomed multi-well plates. Following lymphocyte culturing, fixation and staining, the filter bottoms are removed from the multi-well plates and sealed prior to automated high-speed imaging. Image analysis is performed online using dedicated image processing hardware. Both the sealed filters and the images are archived. Results We have developed a new robotic system for lymphocyte processing, making use of an upgraded laser power and parallel processing of four capillaries at once. This system has allowed acceleration of lymphocyte isolation, the main bottleneck of the RABiT operation, from 12 to 2 sec/sample. Reliability tests have been performed on all robotic subsystems. Conclusions Parallel handling of multiple samples through the use of dedicated, purpose-built, robotics and high speed imaging allows analysis of up to 30,000 samples per day. PMID:21557703

  15. Extreme Performance Scalable Operating Systems Final Progress Report (July 1, 2008 - October 31, 2011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malony, Allen D; Shende, Sameer

    This is the final progress report for the FastOS (Phase 2) (FastOS-2) project with Argonne National Laboratory and the University of Oregon (UO). The project started at UO on July 1, 2008 and ran until April 30, 2010, at which time a six-month no-cost extension began. The FastOS-2 work at UO delivered excellent results in all research work areas: * scalable parallel monitoring * kernel-level performance measurement * parallel I/0 system measurement * large-scale and hybrid application performance measurement * onlne scalable performance data reduction and analysis * binary instrumentation

  16. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    NASA Astrophysics Data System (ADS)

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-01

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. This work was presented in part at the 2010 Annual Meeting of the American Association of Physicists in Medicine (AAPM), Philadelphia, PA.

  17. High Performance Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek; Kaewpijit, Sinthop

    1998-01-01

    Traditional remote sensing instruments are multispectral, where observations are collected at a few different spectral bands. Recently, many hyperspectral instruments, that can collect observations at hundreds of bands, have been operational. Furthermore, there have been ongoing research efforts on ultraspectral instruments that can produce observations at thousands of spectral bands. While these remote sensing technology developments hold great promise for new findings in the area of Earth and space science, they present many challenges. These include the need for faster processing of such increased data volumes, and methods for data reduction. Dimension Reduction is a spectral transformation, aimed at concentrating the vital information and discarding redundant data. One such transformation, which is widely used in remote sensing, is the Principal Components Analysis (PCA). This report summarizes our progress on the development of a parallel PCA and its implementation on two Beowulf cluster configuration; one with fast Ethernet switch and the other with a Myrinet interconnection. Details of the implementation and performance results, for typical sets of multispectral and hyperspectral NASA remote sensing data, are presented and analyzed based on the algorithm requirements and the underlying machine configuration. It will be shown that the PCA application is quite challenging and hard to scale on Ethernet-based clusters. However, the measurements also show that a high- performance interconnection network, such as Myrinet, better matches the high communication demand of PCA and can lead to a more efficient PCA execution.

  18. Parallel File System I/O Performance Testing On LANL Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Isaac Christian; Green, Jennifer Kathleen

    2016-08-18

    These are slides from a presentation on parallel file system I/O performance testing on LANL clusters. I/O is a known bottleneck for HPC applications. Performance optimization of I/O is often required. This summer project entailed integrating IOR under Pavilion and automating the results analysis. The slides cover the following topics: scope of the work, tools utilized, IOR-Pavilion test workflow, build script, IOR parameters, how parameters are passed to IOR, *run_ior: functionality, Python IOR-Output Parser, Splunk data format, Splunk dashboard and features, and future work.

  19. Early experiences in developing and managing the neuroscience gateway.

    PubMed

    Sivagnanam, Subhashini; Majumdar, Amit; Yoshimoto, Kenneth; Astakhov, Vadim; Bandrowski, Anita; Martone, MaryAnn; Carnevale, Nicholas T

    2015-02-01

    The last few decades have seen the emergence of computational neuroscience as a mature field where researchers are interested in modeling complex and large neuronal systems and require access to high performance computing machines and associated cyber infrastructure to manage computational workflow and data. The neuronal simulation tools, used in this research field, are also implemented for parallel computers and suitable for high performance computing machines. But using these tools on complex high performance computing machines remains a challenge because of issues with acquiring computer time on these machines located at national supercomputer centers, dealing with complex user interface of these machines, dealing with data management and retrieval. The Neuroscience Gateway is being developed to alleviate and/or hide these barriers to entry for computational neuroscientists. It hides or eliminates, from the point of view of the users, all the administrative and technical barriers and makes parallel neuronal simulation tools easily available and accessible on complex high performance computing machines. It handles the running of jobs and data management and retrieval. This paper shares the early experiences in bringing up this gateway and describes the software architecture it is based on, how it is implemented, and how users can use this for computational neuroscience research using high performance computing at the back end. We also look at parallel scaling of some publicly available neuronal models and analyze the recent usage data of the neuroscience gateway.

  20. RGCA: A Reliable GPU Cluster Architecture for Large-Scale Internet of Things Computing Based on Effective Performance-Energy Optimization

    PubMed Central

    Chen, Qingkui; Zhao, Deyu; Wang, Jingjuan

    2017-01-01

    This paper aims to develop a low-cost, high-performance and high-reliability computing system to process large-scale data using common data mining algorithms in the Internet of Things (IoT) computing environment. Considering the characteristics of IoT data processing, similar to mainstream high performance computing, we use a GPU (Graphics Processing Unit) cluster to achieve better IoT services. Firstly, we present an energy consumption calculation method (ECCM) based on WSNs. Then, using the CUDA (Compute Unified Device Architecture) Programming model, we propose a Two-level Parallel Optimization Model (TLPOM) which exploits reasonable resource planning and common compiler optimization techniques to obtain the best blocks and threads configuration considering the resource constraints of each node. The key to this part is dynamic coupling Thread-Level Parallelism (TLP) and Instruction-Level Parallelism (ILP) to improve the performance of the algorithms without additional energy consumption. Finally, combining the ECCM and the TLPOM, we use the Reliable GPU Cluster Architecture (RGCA) to obtain a high-reliability computing system considering the nodes’ diversity, algorithm characteristics, etc. The results show that the performance of the algorithms significantly increased by 34.1%, 33.96% and 24.07% for Fermi, Kepler and Maxwell on average with TLPOM and the RGCA ensures that our IoT computing system provides low-cost and high-reliability services. PMID:28777325

  1. Early experiences in developing and managing the neuroscience gateway

    PubMed Central

    Sivagnanam, Subhashini; Majumdar, Amit; Yoshimoto, Kenneth; Astakhov, Vadim; Bandrowski, Anita; Martone, MaryAnn; Carnevale, Nicholas. T.

    2015-01-01

    SUMMARY The last few decades have seen the emergence of computational neuroscience as a mature field where researchers are interested in modeling complex and large neuronal systems and require access to high performance computing machines and associated cyber infrastructure to manage computational workflow and data. The neuronal simulation tools, used in this research field, are also implemented for parallel computers and suitable for high performance computing machines. But using these tools on complex high performance computing machines remains a challenge because of issues with acquiring computer time on these machines located at national supercomputer centers, dealing with complex user interface of these machines, dealing with data management and retrieval. The Neuroscience Gateway is being developed to alleviate and/or hide these barriers to entry for computational neuroscientists. It hides or eliminates, from the point of view of the users, all the administrative and technical barriers and makes parallel neuronal simulation tools easily available and accessible on complex high performance computing machines. It handles the running of jobs and data management and retrieval. This paper shares the early experiences in bringing up this gateway and describes the software architecture it is based on, how it is implemented, and how users can use this for computational neuroscience research using high performance computing at the back end. We also look at parallel scaling of some publicly available neuronal models and analyze the recent usage data of the neuroscience gateway. PMID:26523124

  2. RGCA: A Reliable GPU Cluster Architecture for Large-Scale Internet of Things Computing Based on Effective Performance-Energy Optimization.

    PubMed

    Fang, Yuling; Chen, Qingkui; Xiong, Neal N; Zhao, Deyu; Wang, Jingjuan

    2017-08-04

    This paper aims to develop a low-cost, high-performance and high-reliability computing system to process large-scale data using common data mining algorithms in the Internet of Things (IoT) computing environment. Considering the characteristics of IoT data processing, similar to mainstream high performance computing, we use a GPU (Graphics Processing Unit) cluster to achieve better IoT services. Firstly, we present an energy consumption calculation method (ECCM) based on WSNs. Then, using the CUDA (Compute Unified Device Architecture) Programming model, we propose a Two-level Parallel Optimization Model (TLPOM) which exploits reasonable resource planning and common compiler optimization techniques to obtain the best blocks and threads configuration considering the resource constraints of each node. The key to this part is dynamic coupling Thread-Level Parallelism (TLP) and Instruction-Level Parallelism (ILP) to improve the performance of the algorithms without additional energy consumption. Finally, combining the ECCM and the TLPOM, we use the Reliable GPU Cluster Architecture (RGCA) to obtain a high-reliability computing system considering the nodes' diversity, algorithm characteristics, etc. The results show that the performance of the algorithms significantly increased by 34.1%, 33.96% and 24.07% for Fermi, Kepler and Maxwell on average with TLPOM and the RGCA ensures that our IoT computing system provides low-cost and high-reliability services.

  3. Hybrid parallel computing architecture for multiview phase shifting

    NASA Astrophysics Data System (ADS)

    Zhong, Kai; Li, Zhongwei; Zhou, Xiaohui; Shi, Yusheng; Wang, Congjun

    2014-11-01

    The multiview phase-shifting method shows its powerful capability in achieving high resolution three-dimensional (3-D) shape measurement. Unfortunately, this ability results in very high computation costs and 3-D computations have to be processed offline. To realize real-time 3-D shape measurement, a hybrid parallel computing architecture is proposed for multiview phase shifting. In this architecture, the central processing unit can co-operate with the graphic processing unit (GPU) to achieve hybrid parallel computing. The high computation cost procedures, including lens distortion rectification, phase computation, correspondence, and 3-D reconstruction, are implemented in GPU, and a three-layer kernel function model is designed to simultaneously realize coarse-grained and fine-grained paralleling computing. Experimental results verify that the developed system can perform 50 fps (frame per second) real-time 3-D measurement with 260 K 3-D points per frame. A speedup of up to 180 times is obtained for the performance of the proposed technique using a NVIDIA GT560Ti graphics card rather than a sequential C in a 3.4 GHZ Inter Core i7 3770.

  4. A Review of Lightweight Thread Approaches for High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castello, Adrian; Pena, Antonio J.; Seo, Sangmin

    High-level, directive-based solutions are becoming the programming models (PMs) of the multi/many-core architectures. Several solutions relying on operating system (OS) threads perfectly work with a moderate number of cores. However, exascale systems will spawn hundreds of thousands of threads in order to exploit their massive parallel architectures and thus conventional OS threads are too heavy for that purpose. Several lightweight thread (LWT) libraries have recently appeared offering lighter mechanisms to tackle massive concurrency. In order to examine the suitability of LWTs in high-level runtimes, we develop a set of microbenchmarks consisting of commonlyfound patterns in current parallel codes. Moreover, wemore » study the semantics offered by some LWT libraries in order to expose the similarities between different LWT application programming interfaces. This study reveals that a reduced set of LWT functions can be sufficient to cover the common parallel code patterns and that those LWT libraries perform better than OS threads-based solutions in cases where task and nested parallelism are becoming more popular with new architectures.« less

  5. Simulating Hydrologic Flow and Reactive Transport with PFLOTRAN and PETSc on Emerging Fine-Grained Parallel Computer Architectures

    NASA Astrophysics Data System (ADS)

    Mills, R. T.; Rupp, K.; Smith, B. F.; Brown, J.; Knepley, M.; Zhang, H.; Adams, M.; Hammond, G. E.

    2017-12-01

    As the high-performance computing community pushes towards the exascale horizon, power and heat considerations have driven the increasing importance and prevalence of fine-grained parallelism in new computer architectures. High-performance computing centers have become increasingly reliant on GPGPU accelerators and "manycore" processors such as the Intel Xeon Phi line, and 512-bit SIMD registers have even been introduced in the latest generation of Intel's mainstream Xeon server processors. The high degree of fine-grained parallelism and more complicated memory hierarchy considerations of such "manycore" processors present several challenges to existing scientific software. Here, we consider how the massively parallel, open-source hydrologic flow and reactive transport code PFLOTRAN - and the underlying Portable, Extensible Toolkit for Scientific Computation (PETSc) library on which it is built - can best take advantage of such architectures. We will discuss some key features of these novel architectures and our code optimizations and algorithmic developments targeted at them, and present experiences drawn from working with a wide range of PFLOTRAN benchmark problems on these architectures.

  6. Execution of parallel algorithms on a heterogeneous multicomputer

    NASA Astrophysics Data System (ADS)

    Isenstein, Barry S.; Greene, Jonathon

    1995-04-01

    Many aerospace/defense sensing and dual-use applications require high-performance computing, extensive high-bandwidth interconnect and realtime deterministic operation. This paper will describe the architecture of a scalable multicomputer that includes DSP and RISC processors. A single chassis implementation is capable of delivering in excess of 10 GFLOPS of DSP processing power with 2 Gbytes/s of realtime sensor I/O. A software approach to implementing parallel algorithms called the Parallel Application System (PAS) is also presented. An example of applying PAS to a DSP application is shown.

  7. One-dimensional acoustic standing waves in rectangular channels for flow cytometry.

    PubMed

    Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W

    2012-07-01

    Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Parallel k-means++ for Multiple Shared-Memory Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, Patrick S.; Lewis, Robert R.

    2016-09-22

    In recent years k-means++ has become a popular initialization technique for improved k-means clustering. To date, most of the work done to improve its performance has involved parallelizing algorithms that are only approximations of k-means++. In this paper we present a parallelization of the exact k-means++ algorithm, with a proof of its correctness. We develop implementations for three distinct shared-memory architectures: multicore CPU, high performance GPU, and the massively multithreaded Cray XMT platform. We demonstrate the scalability of the algorithm on each platform. In addition we present a visual approach for showing which platform performed k-means++ the fastest for varyingmore » data sizes.« less

  9. Portable parallel stochastic optimization for the design of aeropropulsion components

    NASA Technical Reports Server (NTRS)

    Sues, Robert H.; Rhodes, G. S.

    1994-01-01

    This report presents the results of Phase 1 research to develop a methodology for performing large-scale Multi-disciplinary Stochastic Optimization (MSO) for the design of aerospace systems ranging from aeropropulsion components to complete aircraft configurations. The current research recognizes that such design optimization problems are computationally expensive, and require the use of either massively parallel or multiple-processor computers. The methodology also recognizes that many operational and performance parameters are uncertain, and that uncertainty must be considered explicitly to achieve optimum performance and cost. The objective of this Phase 1 research was to initialize the development of an MSO methodology that is portable to a wide variety of hardware platforms, while achieving efficient, large-scale parallelism when multiple processors are available. The first effort in the project was a literature review of available computer hardware, as well as review of portable, parallel programming environments. The first effort was to implement the MSO methodology for a problem using the portable parallel programming language, Parallel Virtual Machine (PVM). The third and final effort was to demonstrate the example on a variety of computers, including a distributed-memory multiprocessor, a distributed-memory network of workstations, and a single-processor workstation. Results indicate the MSO methodology can be well-applied towards large-scale aerospace design problems. Nearly perfect linear speedup was demonstrated for computation of optimization sensitivity coefficients on both a 128-node distributed-memory multiprocessor (the Intel iPSC/860) and a network of workstations (speedups of almost 19 times achieved for 20 workstations). Very high parallel efficiencies (75 percent for 31 processors and 60 percent for 50 processors) were also achieved for computation of aerodynamic influence coefficients on the Intel. Finally, the multi-level parallelization strategy that will be needed for large-scale MSO problems was demonstrated to be highly efficient. The same parallel code instructions were used on both platforms, demonstrating portability. There are many applications for which MSO can be applied, including NASA's High-Speed-Civil Transport, and advanced propulsion systems. The use of MSO will reduce design and development time and testing costs dramatically.

  10. What Multilevel Parallel Programs do when you are not Watching: A Performance Analysis Case Study Comparing MPI/OpenMP, MLP, and Nested OpenMP

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Labarta, Jesus; Gimenez, Judit

    2004-01-01

    With the current trend in parallel computer architectures towards clusters of shared memory symmetric multi-processors, parallel programming techniques have evolved that support parallelism beyond a single level. When comparing the performance of applications based on different programming paradigms, it is important to differentiate between the influence of the programming model itself and other factors, such as implementation specific behavior of the operating system (OS) or architectural issues. Rewriting-a large scientific application in order to employ a new programming paradigms is usually a time consuming and error prone task. Before embarking on such an endeavor it is important to determine that there is really a gain that would not be possible with the current implementation. A detailed performance analysis is crucial to clarify these issues. The multilevel programming paradigms considered in this study are hybrid MPI/OpenMP, MLP, and nested OpenMP. The hybrid MPI/OpenMP approach is based on using MPI [7] for the coarse grained parallelization and OpenMP [9] for fine grained loop level parallelism. The MPI programming paradigm assumes a private address space for each process. Data is transferred by explicitly exchanging messages via calls to the MPI library. This model was originally designed for distributed memory architectures but is also suitable for shared memory systems. The second paradigm under consideration is MLP which was developed by Taft. The approach is similar to MPi/OpenMP, using a mix of coarse grain process level parallelization and loop level OpenMP parallelization. As it is the case with MPI, a private address space is assumed for each process. The MLP approach was developed for ccNUMA architectures and explicitly takes advantage of the availability of shared memory. A shared memory arena which is accessible by all processes is required. Communication is done by reading from and writing to the shared memory.

  11. Dimensional synthesis of a 3-DOF parallel manipulator with full circle rotation

    NASA Astrophysics Data System (ADS)

    Ni, Yanbing; Wu, Nan; Zhong, Xueyong; Zhang, Biao

    2015-07-01

    Parallel robots are widely used in the academic and industrial fields. In spite of the numerous achievements in the design and dimensional synthesis of the low-mobility parallel robots, few research efforts are directed towards the asymmetric 3-DOF parallel robots whose end-effector can realize 2 translational and 1 rotational(2T1R) motion. In order to develop a manipulator with the capability of full circle rotation to enlarge the workspace, a new 2T1R parallel mechanism is proposed. The modeling approach and kinematic analysis of this proposed mechanism are investigated. Using the method of vector analysis, the inverse kinematic equations are established. This is followed by a vigorous proof that this mechanism attains an annular workspace through its circular rotation and 2 dimensional translations. Taking the first order perturbation of the kinematic equations, the error Jacobian matrix which represents the mapping relationship between the error sources of geometric parameters and the end-effector position errors is derived. With consideration of the constraint conditions of pressure angles and feasible workspace, the dimensional synthesis is conducted with a goal to minimize the global comprehensive performance index. The dimension parameters making the mechanism to have optimal error mapping and kinematic performance are obtained through the optimization algorithm. All these research achievements lay the foundation for the prototype building of such kind of parallel robots.

  12. Scalable Parallel Algorithms for Multidimensional Digital Signal Processing

    DTIC Science & Technology

    1991-12-31

    Proceedings, San Diego CL., August 1989, pp. 132-146. 53 [13] A. L. Gorin, L. Auslander, and A. Silberger . Balanced computation of 2D trans- forms on a tree...Speech, Signal Processing. ASSP-34, Oct. 1986,pp. 1301-1309. [24] A. Norton and A. Silberger . Parallelization and performance analysis of the Cooley-Tukey

  13. Towards Energy-Performance Trade-off Analysis of Parallel Applications

    ERIC Educational Resources Information Center

    Korthikanti, Vijay Anand Reddy

    2011-01-01

    Energy consumption by computer systems has emerged as an important concern, both at the level of individual devices (limited battery capacity in mobile systems) and at the societal level (the production of Green House Gases). In parallel architectures, applications may be executed on a variable number of cores and these cores may operate at…

  14. Visual Analysis of North Atlantic Hurricane Trends Using Parallel Coordinates and Statistical Techniques

    DTIC Science & Technology

    2008-07-07

    analyzing multivariate data sets. The system was developed using the Java Development Kit (JDK) version 1.5; and it yields interactive performance on a... script and captures output from the MATLAB’s “regress” and “stepwisefit” utilities that perform simple and stepwise regression, respectively. The MATLAB...Statistical Association, vol. 85, no. 411, pp. 664–675, 1990. [9] H. Hauser, F. Ledermann, and H. Doleisch, “ Angular brushing of extended parallel coordinates

  15. High Resolution Aerospace Applications using the NASA Columbia Supercomputer

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Aftosmis, Michael J.; Berger, Marsha

    2005-01-01

    This paper focuses on the parallel performance of two high-performance aerodynamic simulation packages on the newly installed NASA Columbia supercomputer. These packages include both a high-fidelity, unstructured, Reynolds-averaged Navier-Stokes solver, and a fully-automated inviscid flow package for cut-cell Cartesian grids. The complementary combination of these two simulation codes enables high-fidelity characterization of aerospace vehicle design performance over the entire flight envelope through extensive parametric analysis and detailed simulation of critical regions of the flight envelope. Both packages. are industrial-level codes designed for complex geometry and incorpor.ats. CuStomized multigrid solution algorithms. The performance of these codes on Columbia is examined using both MPI and OpenMP and using both the NUMAlink and InfiniBand interconnect fabrics. Numerical results demonstrate good scalability on up to 2016 CPUs using the NUMAIink4 interconnect, with measured computational rates in the vicinity of 3 TFLOP/s, while InfiniBand showed some performance degradation at high CPU counts, particularly with multigrid. Nonetheless, the results are encouraging enough to indicate that larger test cases using combined MPI/OpenMP communication should scale well on even more processors.

  16. Parallelized Kalman-Filter-Based Reconstruction of Particle Tracks on Many-Core Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerati, Giuseppe; Elmer, Peter; Krutelyov, Slava

    Faced with physical and energy density limitations on clock speed, contemporary microprocessor designers have increasingly turned to on-chip parallelism for performance gains. Examples include the Intel Xeon Phi, GPGPUs, and similar technologies. Algorithms should accordingly be designed with ample amounts of fine-grained parallelism if they are to realize the full performance of the hardware. This requirement can be challenging for algorithms that are naturally expressed as a sequence of small-matrix operations, such as the Kalman filter methods widely in use in high-energy physics experiments. In the High-Luminosity Large Hadron Collider (HL-LHC), for example, one of the dominant computational problems ismore » expected to be finding and fitting charged-particle tracks during event reconstruction; today, the most common track-finding methods are those based on the Kalman filter. Experience at the LHC, both in the trigger and offline, has shown that these methods are robust and provide high physics performance. Previously we reported the significant parallel speedups that resulted from our efforts to adapt Kalman-filter-based tracking to many-core architectures such as Intel Xeon Phi. Here we report on how effectively those techniques can be applied to more realistic detector configurations and event complexity.« less

  17. User-Defined Data Distributions in High-Level Programming Languages

    NASA Technical Reports Server (NTRS)

    Diaconescu, Roxana E.; Zima, Hans P.

    2006-01-01

    One of the characteristic features of today s high performance computing systems is a physically distributed memory. Efficient management of locality is essential for meeting key performance requirements for these architectures. The standard technique for dealing with this issue has involved the extension of traditional sequential programming languages with explicit message passing, in the context of a processor-centric view of parallel computation. This has resulted in complex and error-prone assembly-style codes in which algorithms and communication are inextricably interwoven. This paper presents a high-level approach to the design and implementation of data distributions. Our work is motivated by the need to improve the current parallel programming methodology by introducing a paradigm supporting the development of efficient and reusable parallel code. This approach is currently being implemented in the context of a new programming language called Chapel, which is designed in the HPCS project Cascade.

  18. Integrating Cache Performance Modeling and Tuning Support in Parallelization Tools

    NASA Technical Reports Server (NTRS)

    Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    With the resurgence of distributed shared memory (DSM) systems based on cache-coherent Non Uniform Memory Access (ccNUMA) architectures and increasing disparity between memory and processors speeds, data locality overheads are becoming the greatest bottlenecks in the way of realizing potential high performance of these systems. While parallelization tools and compilers facilitate the users in porting their sequential applications to a DSM system, a lot of time and effort is needed to tune the memory performance of these applications to achieve reasonable speedup. In this paper, we show that integrating cache performance modeling and tuning support within a parallelization environment can alleviate this problem. The Cache Performance Modeling and Prediction Tool (CPMP), employs trace-driven simulation techniques without the overhead of generating and managing detailed address traces. CPMP predicts the cache performance impact of source code level "what-if" modifications in a program to assist a user in the tuning process. CPMP is built on top of a customized version of the Computer Aided Parallelization Tools (CAPTools) environment. Finally, we demonstrate how CPMP can be applied to tune a real Computational Fluid Dynamics (CFD) application.

  19. A practical approach to portability and performance problems on massively parallel supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beazley, D.M.; Lomdahl, P.S.

    1994-12-08

    We present an overview of the tactics we have used to achieve a high-level of performance while improving portability for a large-scale molecular dynamics code SPaSM. SPaSM was originally implemented in ANSI C with message passing for the Connection Machine 5 (CM-5). In 1993, SPaSM was selected as one of the winners in the IEEE Gordon Bell Prize competition for sustaining 50 Gflops on the 1024 node CM-5 at Los Alamos National Laboratory. Achieving this performance on the CM-5 required rewriting critical sections of code in CDPEAC assembler language. In addition, the code made extensive use of CM-5 parallel I/Omore » and the CMMD message passing library. Given this highly specialized implementation, we describe how we have ported the code to the Cray T3D and high performance workstations. In addition we will describe how it has been possible to do this using a single version of source code that runs on all three platforms without sacrificing any performance. Sound too good to be true? We hope to demonstrate that one can realize both code performance and portability without relying on the latest and greatest prepackaged tool or parallelizing compiler.« less

  20. Scout: high-performance heterogeneous computing made simple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablin, James; Mc Cormick, Patrick; Herlihy, Maurice

    2011-01-26

    Researchers must often write their own simulation and analysis software. During this process they simultaneously confront both computational and scientific problems. Current strategies for aiding the generation of performance-oriented programs do not abstract the software development from the science. Furthermore, the problem is becoming increasingly complex and pressing with the continued development of many-core and heterogeneous (CPU-GPU) architectures. To acbieve high performance, scientists must expertly navigate both software and hardware. Co-design between computer scientists and research scientists can alleviate but not solve this problem. The science community requires better tools for developing, optimizing, and future-proofing codes, allowing scientists to focusmore » on their research while still achieving high computational performance. Scout is a parallel programming language and extensible compiler framework targeting heterogeneous architectures. It provides the abstraction required to buffer scientists from the constantly-shifting details of hardware while still realizing higb-performance by encapsulating software and hardware optimization within a compiler framework.« less

  1. Development of Officer Selection Battery Forms 3 and 4

    DTIC Science & Technology

    1986-03-01

    the development, standardization, and validation of two parallel forms of a test to be used for assessing young men and women applying to ROTC. Fairly...appropriate di6ffculty, high reliability, and state-of-the-art validity and fairness for mit~orities and women . EDGAR M. JOHNSON Technical Directcr 4v 4...administrable, test for use in assessing young men and women applying to Advanced Army ROTC. Procedur .-: Earlier research had performed an analysis of the

  2. Ti/Al Design/Cost Trade-Off Analysis

    DTIC Science & Technology

    1978-10-01

    evaluate the applV!ati’an of selected titanium aluuinide alloys to both dynamic and static components of aircraft gas turbine engines . Mr. D. 0. Nash...the development of advanced aircraft gas turbine engines , a continuing objective has been to develop lightweight, high-performance designs. A parallel... engines for the design/cost trade-off study are as follows: Dynamic Components "* F1O1 Fourth-Stage Compressor Blade "* JlO1 Low Pressure Turbine Blade

  3. Towards Scalable Deep Learning via I/O Analysis and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pumma, Sarunya; Si, Min; Feng, Wu-Chun

    Deep learning systems have been growing in prominence as a way to automatically characterize objects, trends, and anomalies. Given the importance of deep learning systems, researchers have been investigating techniques to optimize such systems. An area of particular interest has been using large supercomputing systems to quickly generate effective deep learning networks: a phase often referred to as “training” of the deep learning neural network. As we scale existing deep learning frameworks—such as Caffe—on these large supercomputing systems, we notice that the parallelism can help improve the computation tremendously, leaving data I/O as the major bottleneck limiting the overall systemmore » scalability. In this paper, we first present a detailed analysis of the performance bottlenecks of Caffe on large supercomputing systems. Our analysis shows that the I/O subsystem of Caffe—LMDB—relies on memory-mapped I/O to access its database, which can be highly inefficient on large-scale systems because of its interaction with the process scheduling system and the network-based parallel filesystem. Based on this analysis, we then present LMDBIO, our optimized I/O plugin for Caffe that takes into account the data access pattern of Caffe in order to vastly improve I/O performance. Our experimental results show that LMDBIO can improve the overall execution time of Caffe by nearly 20-fold in some cases.« less

  4. Petascale computation of multi-physics seismic simulations

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Wollherr, Stephanie; Duru, Kenneth C.

    2017-04-01

    Capturing the observed complexity of earthquake sources in concurrence with seismic wave propagation simulations is an inherently multi-scale, multi-physics problem. In this presentation, we present simulations of earthquake scenarios resolving high-detail dynamic rupture evolution and high frequency ground motion. The simulations combine a multitude of representations of model complexity; such as non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and fault strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure to capture dynamic rupture behavior at the source; and seismic wave attenuation, 3D subsurface structure and bathymetry impacting seismic wave propagation. Performing such scenarios at the necessary spatio-temporal resolution requires highly optimized and massively parallel simulation tools which can efficiently exploit HPC facilities. Our up to multi-PetaFLOP simulations are performed with SeisSol (www.seissol.org), an open-source software package based on an ADER-Discontinuous Galerkin (DG) scheme solving the seismic wave equations in velocity-stress formulation in elastic, viscoelastic, and viscoplastic media with high-order accuracy in time and space. Our flux-based implementation of frictional failure remains free of spurious oscillations. Tetrahedral unstructured meshes allow for complicated model geometry. SeisSol has been optimized on all software levels, including: assembler-level DG kernels which obtain 50% peak performance on some of the largest supercomputers worldwide; an overlapping MPI-OpenMP parallelization shadowing the multiphysics computations; usage of local time stepping; parallel input and output schemes and direct interfaces to community standard data formats. All these factors enable aim to minimise the time-to-solution. The results presented highlight the fact that modern numerical methods and hardware-aware optimization for modern supercomputers are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis. Lastly, we will conclude with an outlook on future exascale ADER-DG solvers for seismological applications.

  5. Event parallelism: Distributed memory parallel computing for high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Nash, Thomas

    1989-12-01

    This paper describes the present and expected future development of distributed memory parallel computers for high energy physics experiments. It covers the use of event parallel microprocessor farms, particularly at Fermilab, including both ACP multiprocessors and farms of MicroVAXES. These systems have proven very cost effective in the past. A case is made for moving to the more open environment of UNIX and RISC processors. The 2nd Generation ACP Multiprocessor System, which is based on powerful RISC system, is described. Given the promise of still more extraordinary increases in processor performance, a new emphasis on point to point, rather than bussed, communication will be required. Developments in this direction are described.

  6. On the impact of communication complexity in the design of parallel numerical algorithms

    NASA Technical Reports Server (NTRS)

    Gannon, D.; Vanrosendale, J.

    1984-01-01

    This paper describes two models of the cost of data movement in parallel numerical algorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In the second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm independent upper bounds on system performance are derived for several problems that are important to scientific computation.

  7. On the impact of communication complexity on the design of parallel numerical algorithms

    NASA Technical Reports Server (NTRS)

    Gannon, D. B.; Van Rosendale, J.

    1984-01-01

    This paper describes two models of the cost of data movement in parallel numerical alorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In this second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm-independent upper bounds on system performance are derived for several problems that are important to scientific computation.

  8. FPGA-Based Filterbank Implementation for Parallel Digital Signal Processing

    NASA Technical Reports Server (NTRS)

    Berner, Stephan; DeLeon, Phillip

    1999-01-01

    One approach to parallel digital signal processing decomposes a high bandwidth signal into multiple lower bandwidth (rate) signals by an analysis bank. After processing, the subband signals are recombined into a fullband output signal by a synthesis bank. This paper describes an implementation of the analysis and synthesis banks using (Field Programmable Gate Arrays) FPGAs.

  9. Parallel versus Serial Processing Dependencies in the Perisylvian Speech Network: A Granger Analysis of Intracranial EEG Data

    ERIC Educational Resources Information Center

    Gow, David W., Jr.; Keller, Corey J.; Eskandar, Emad; Meng, Nate; Cash, Sydney S.

    2009-01-01

    In this work, we apply Granger causality analysis to high spatiotemporal resolution intracranial EEG (iEEG) data to examine how different components of the left perisylvian language network interact during spoken language perception. The specific focus is on the characterization of serial versus parallel processing dependencies in the dominant…

  10. A unified framework for building high performance DVEs

    NASA Astrophysics Data System (ADS)

    Lei, Kaibin; Ma, Zhixia; Xiong, Hua

    2011-10-01

    A unified framework for integrating PC cluster based parallel rendering with distributed virtual environments (DVEs) is presented in this paper. While various scene graphs have been proposed in DVEs, it is difficult to enable collaboration of different scene graphs. This paper proposes a technique for non-distributed scene graphs with the capability of object and event distribution. With the increase of graphics data, DVEs require more powerful rendering ability. But general scene graphs are inefficient in parallel rendering. The paper also proposes a technique to connect a DVE and a PC cluster based parallel rendering environment. A distributed multi-player video game is developed to show the interaction of different scene graphs and the parallel rendering performance on a large tiled display wall.

  11. cuTauLeaping: A GPU-Powered Tau-Leaping Stochastic Simulator for Massive Parallel Analyses of Biological Systems

    PubMed Central

    Besozzi, Daniela; Pescini, Dario; Mauri, Giancarlo

    2014-01-01

    Tau-leaping is a stochastic simulation algorithm that efficiently reconstructs the temporal evolution of biological systems, modeled according to the stochastic formulation of chemical kinetics. The analysis of dynamical properties of these systems in physiological and perturbed conditions usually requires the execution of a large number of simulations, leading to high computational costs. Since each simulation can be executed independently from the others, a massive parallelization of tau-leaping can bring to relevant reductions of the overall running time. The emerging field of General Purpose Graphic Processing Units (GPGPU) provides power-efficient high-performance computing at a relatively low cost. In this work we introduce cuTauLeaping, a stochastic simulator of biological systems that makes use of GPGPU computing to execute multiple parallel tau-leaping simulations, by fully exploiting the Nvidia's Fermi GPU architecture. We show how a considerable computational speedup is achieved on GPU by partitioning the execution of tau-leaping into multiple separated phases, and we describe how to avoid some implementation pitfalls related to the scarcity of memory resources on the GPU streaming multiprocessors. Our results show that cuTauLeaping largely outperforms the CPU-based tau-leaping implementation when the number of parallel simulations increases, with a break-even directly depending on the size of the biological system and on the complexity of its emergent dynamics. In particular, cuTauLeaping is exploited to investigate the probability distribution of bistable states in the Schlögl model, and to carry out a bidimensional parameter sweep analysis to study the oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. PMID:24663957

  12. PetIGA: A framework for high-performance isogeometric analysis

    DOE PAGES

    Dalcin, Lisandro; Collier, Nathaniel; Vignal, Philippe; ...

    2016-05-25

    We present PetIGA, a code framework to approximate the solution of partial differential equations using isogeometric analysis. PetIGA can be used to assemble matrices and vectors which come from a Galerkin weak form, discretized with Non-Uniform Rational B-spline basis functions. We base our framework on PETSc, a high-performance library for the scalable solution of partial differential equations, which simplifies the development of large-scale scientific codes, provides a rich environment for prototyping, and separates parallelism from algorithm choice. We describe the implementation of PetIGA, and exemplify its use by solving a model nonlinear problem. To illustrate the robustness and flexibility ofmore » PetIGA, we solve some challenging nonlinear partial differential equations that include problems in both solid and fluid mechanics. Lastly, we show strong scaling results on up to 4096 cores, which confirm the suitability of PetIGA for large scale simulations.« less

  13. Performance of the SERI parallel-passage dehumidifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlepp, D.; Barlow, R.

    1984-09-01

    The key component in improving the performance of solar desiccant cooling systems is the dehumidifier. A parallel-passage geometry for the desiccant dehumidifier has been identified as meeting key criteria of low pressure drop, high mass transfer efficiency, and compact size. An experimental program to build and test a small-scale prototype of this design was undertaken in FY 1982, and the results are presented in this report. Computer models to predict the adsorption/desorption behavior of desiccant dehumidifiers were updated to take into account the geometry of the bed and predict potential system performance using the new component design. The parallel-passage designmore » proved to have high mass transfer effectiveness and low pressure drop over a wide range of test conditions typical of desiccant cooling system operation. The prototype dehumidifier averaged 93% effectiveness at pressure drops of less than 50 Pa at design point conditions. Predictions of system performance using models validated with the experimental data indicate that system thermal coefficients of performance (COPs) of 1.0 to 1.2 and electrical COPs above 8.5 are possible using this design.« less

  14. Cloud object store for checkpoints of high performance computing applications using decoupling middleware

    DOEpatents

    Bent, John M.; Faibish, Sorin; Grider, Gary

    2016-04-19

    Cloud object storage is enabled for checkpoints of high performance computing applications using a middleware process. A plurality of files, such as checkpoint files, generated by a plurality of processes in a parallel computing system are stored by obtaining said plurality of files from said parallel computing system; converting said plurality of files to objects using a log structured file system middleware process; and providing said objects for storage in a cloud object storage system. The plurality of processes may run, for example, on a plurality of compute nodes. The log structured file system middleware process may be embodied, for example, as a Parallel Log-Structured File System (PLFS). The log structured file system middleware process optionally executes on a burst buffer node.

  15. A parallel algorithm for 2D visco-acoustic frequency-domain full-waveform inversion: application to a dense OBS data set

    NASA Astrophysics Data System (ADS)

    Sourbier, F.; Operto, S.; Virieux, J.

    2006-12-01

    We present a distributed-memory parallel algorithm for 2D visco-acoustic full-waveform inversion of wide-angle seismic data. Our code is written in fortran90 and use MPI for parallelism. The algorithm was applied to real wide-angle data set recorded by 100 OBSs with a 1-km spacing in the eastern-Nankai trough (Japan) to image the deep structure of the subduction zone. Full-waveform inversion is applied sequentially to discrete frequencies by proceeding from the low to the high frequencies. The inverse problem is solved with a classic gradient method. Full-waveform modeling is performed with a frequency-domain finite-difference method. In the frequency-domain, solving the wave equation requires resolution of a large unsymmetric system of linear equations. We use the massively parallel direct solver MUMPS (http://www.enseeiht.fr/irit/apo/MUMPS) for distributed-memory computer to solve this system. The MUMPS solver is based on a multifrontal method for the parallel factorization. The MUMPS algorithm is subdivided in 3 main steps: a symbolic analysis step that performs re-ordering of the matrix coefficients to minimize the fill-in of the matrix during the subsequent factorization and an estimation of the assembly tree of the matrix. Second, the factorization is performed with dynamic scheduling to accomodate numerical pivoting and provides the LU factors distributed over all the processors. Third, the resolution is performed for multiple sources. To compute the gradient of the cost function, 2 simulations per shot are required (one to compute the forward wavefield and one to back-propagate residuals). The multi-source resolutions can be performed in parallel with MUMPS. In the end, each processor stores in core a sub-domain of all the solutions. These distributed solutions can be exploited to compute in parallel the gradient of the cost function. Since the gradient of the cost function is a weighted stack of the shot and residual solutions of MUMPS, each processor computes the corresponding sub-domain of the gradient. In the end, the gradient is centralized on the master processor using a collective communation. The gradient is scaled by the diagonal elements of the Hessian matrix. This scaling is computed only once per frequency before the first iteration of the inversion. Estimation of the diagonal terms of the Hessian requires performing one simulation per non redondant shot and receiver position. The same strategy that the one used for the gradient is used to compute the diagonal Hessian in parallel. This algorithm was applied to a dense wide-angle data set recorded by 100 OBSs in the eastern Nankai trough, offshore Japan. Thirteen frequencies ranging from 3 and 15 Hz were inverted. Tweny iterations per frequency were computed leading to 260 tomographic velocity models of increasing resolution. The velocity model dimensions are 105 km x 25 km corresponding to a finite-difference grid of 4201 x 1001 grid with a 25-m grid interval. The number of shot was 1005 and the number of inverted OBS gathers was 93. The inversion requires 20 days on 6 32-bits bi-processor nodes with 4 Gbytes of RAM memory per node when only the LU factorization is performed in parallel. Preliminary estimations of the time required to perform the inversion with the fully-parallelized code is 6 and 4 days using 20 and 50 processors respectively.

  16. Large-scale Parallel Unstructured Mesh Computations for 3D High-lift Analysis

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Pirzadeh, S.

    1999-01-01

    A complete "geometry to drag-polar" analysis capability for the three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries that arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.

  17. Parallel Computing for Probabilistic Response Analysis of High Temperature Composites

    NASA Technical Reports Server (NTRS)

    Sues, R. H.; Lua, Y. J.; Smith, M. D.

    1994-01-01

    The objective of this Phase I research was to establish the required software and hardware strategies to achieve large scale parallelism in solving PCM problems. To meet this objective, several investigations were conducted. First, we identified the multiple levels of parallelism in PCM and the computational strategies to exploit these parallelisms. Next, several software and hardware efficiency investigations were conducted. These involved the use of three different parallel programming paradigms and solution of two example problems on both a shared-memory multiprocessor and a distributed-memory network of workstations.

  18. Hierarchical Parallelism in Finite Difference Analysis of Heat Conduction

    NASA Technical Reports Server (NTRS)

    Padovan, Joseph; Krishna, Lala; Gute, Douglas

    1997-01-01

    Based on the concept of hierarchical parallelism, this research effort resulted in highly efficient parallel solution strategies for very large scale heat conduction problems. Overall, the method of hierarchical parallelism involves the partitioning of thermal models into several substructured levels wherein an optimal balance into various associated bandwidths is achieved. The details are described in this report. Overall, the report is organized into two parts. Part 1 describes the parallel modelling methodology and associated multilevel direct, iterative and mixed solution schemes. Part 2 establishes both the formal and computational properties of the scheme.

  19. RISC Processors and High Performance Computing

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    This tutorial will discuss the top five RISC microprocessors and the parallel systems in which they are used. It will provide a unique cross-machine comparison not available elsewhere. The effective performance of these processors will be compared by citing standard benchmarks in the context of real applications. The latest NAS Parallel Benchmarks, both absolute performance and performance per dollar, will be listed. The next generation of the NPB will be described. The tutorial will conclude with a discussion of future directions in the field. Technology Transfer Considerations: All of these computer systems are commercially available internationally. Information about these processors is available in the public domain, mostly from the vendors themselves. The NAS Parallel Benchmarks and their results have been previously approved numerous times for public release, beginning back in 1991.

  20. Modeling and simulation performance of photovoltaic system integration battery and supercapacitor paralellization of MPPT prototipe for solar vehicle

    NASA Astrophysics Data System (ADS)

    Ajiatmo, Dwi; Robandi, Imam

    2017-03-01

    This paper proposes a control scheme photovoltaic, battery and super capacitor connected in parallel for use in a solar vehicle. Based on the features of battery charging, the control scheme consists of three modes, namely, mode dynamic irradian, constant load mode and constant voltage charging mode. The shift of the three modes can be realized by controlling the duty cycle of the mosffet Boost converter system. Meanwhile, the high voltage which is more suitable for the application can be obtained. Compared with normal charging method with parallel connected current limiting detention and charging method with dynamic irradian mode, constant load mode and constant voltage charging mode, the control scheme is proposed to shorten the charging time and increase the use of power generated from the PV array. From the simulation results and analysis conducted to determine the performance of the system in state transient and steady-state by using simulation software Matlab / Simulink. Response simulation results demonstrate the suitability of the proposed concept.

  1. Low complexity 1D IDCT for 16-bit parallel architectures

    NASA Astrophysics Data System (ADS)

    Bivolarski, Lazar

    2007-09-01

    This paper shows that using the Loeffler, Ligtenberg, and Moschytz factorization of 8-point IDCT [2] one-dimensional (1-D) algorithm as a fast approximation of the Discrete Cosine Transform (DCT) and using only 16 bit numbers, it is possible to create in an IEEE 1180-1990 compliant and multiplierless algorithm with low computational complexity. This algorithm as characterized by its structure is efficiently implemented on parallel high performance architectures as well as due to its low complexity is sufficient for wide range of other architectures. Additional constraint on this work was the requirement of compliance with the existing MPEG standards. The hardware implementation complexity and low resources where also part of the design criteria for this algorithm. This implementation is also compliant with the precision requirements described in MPEG IDCT precision specification ISO/IEC 23002-1. Complexity analysis is performed as an extension to the simple measure of shifts and adds for the multiplierless algorithm as additional operations are included in the complexity measure to better describe the actual transform implementation complexity.

  2. [Design and study of parallel computing environment of Monte Carlo simulation for particle therapy planning using a public cloud-computing infrastructure].

    PubMed

    Yokohama, Noriya

    2013-07-01

    This report was aimed at structuring the design of architectures and studying performance measurement of a parallel computing environment using a Monte Carlo simulation for particle therapy using a high performance computing (HPC) instance within a public cloud-computing infrastructure. Performance measurements showed an approximately 28 times faster speed than seen with single-thread architecture, combined with improved stability. A study of methods of optimizing the system operations also indicated lower cost.

  3. A parallel input composite transimpedance amplifier.

    PubMed

    Kim, D J; Kim, C

    2018-01-01

    A new approach to high performance current to voltage preamplifier design is presented. The design using multiple operational amplifiers (op-amps) has a parasitic capacitance compensation network and a composite amplifier topology for fast, precision, and low noise performance. The input stage consisting of a parallel linked JFET op-amps and a high-speed bipolar junction transistor (BJT) gain stage driving the output in the composite amplifier topology, cooperating with the capacitance compensation feedback network, ensures wide bandwidth stability in the presence of input capacitance above 40 nF. The design is ideal for any two-probe measurement, including high impedance transport and scanning tunneling microscopy measurements.

  4. A parallel input composite transimpedance amplifier

    NASA Astrophysics Data System (ADS)

    Kim, D. J.; Kim, C.

    2018-01-01

    A new approach to high performance current to voltage preamplifier design is presented. The design using multiple operational amplifiers (op-amps) has a parasitic capacitance compensation network and a composite amplifier topology for fast, precision, and low noise performance. The input stage consisting of a parallel linked JFET op-amps and a high-speed bipolar junction transistor (BJT) gain stage driving the output in the composite amplifier topology, cooperating with the capacitance compensation feedback network, ensures wide bandwidth stability in the presence of input capacitance above 40 nF. The design is ideal for any two-probe measurement, including high impedance transport and scanning tunneling microscopy measurements.

  5. Roofline model toolkit: A practical tool for architectural and program analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Yu Jung; Williams, Samuel; Van Straalen, Brian

    We present preliminary results of the Roofline Toolkit for multicore, many core, and accelerated architectures. This paper focuses on the processor architecture characterization engine, a collection of portable instrumented micro benchmarks implemented with Message Passing Interface (MPI), and OpenMP used to express thread-level parallelism. These benchmarks are specialized to quantify the behavior of different architectural features. Compared to previous work on performance characterization, these microbenchmarks focus on capturing the performance of each level of the memory hierarchy, along with thread-level parallelism, instruction-level parallelism and explicit SIMD parallelism, measured in the context of the compilers and run-time environments. We also measuremore » sustained PCIe throughput with four GPU memory managed mechanisms. By combining results from the architecture characterization with the Roofline model based solely on architectural specifications, this work offers insights for performance prediction of current and future architectures and their software systems. To that end, we instrument three applications and plot their resultant performance on the corresponding Roofline model when run on a Blue Gene/Q architecture.« less

  6. Implementing An Image Understanding System Architecture Using Pipe

    NASA Astrophysics Data System (ADS)

    Luck, Randall L.

    1988-03-01

    This paper will describe PIPE and how it can be used to implement an image understanding system. Image understanding is the process of developing a description of an image in order to make decisions about its contents. The tasks of image understanding are generally split into low level vision and high level vision. Low level vision is performed by PIPE -a high performance parallel processor with an architecture specifically designed for processing video images at up to 60 fields per second. High level vision is performed by one of several types of serial or parallel computers - depending on the application. An additional processor called ISMAP performs the conversion from iconic image space to symbolic feature space. ISMAP plugs into one of PIPE's slots and is memory mapped into the high level processor. Thus it forms the high speed link between the low and high level vision processors. The mechanisms for bottom-up, data driven processing and top-down, model driven processing are discussed.

  7. A Hybrid Parallel Strategy Based on String Graph Theory to Improve De Novo DNA Assembly on the TianHe-2 Supercomputer.

    PubMed

    Zhang, Feng; Liao, Xiangke; Peng, Shaoliang; Cui, Yingbo; Wang, Bingqiang; Zhu, Xiaoqian; Liu, Jie

    2016-06-01

    ' The de novo assembly of DNA sequences is increasingly important for biological researches in the genomic era. After more than one decade since the Human Genome Project, some challenges still exist and new solutions are being explored to improve de novo assembly of genomes. String graph assembler (SGA), based on the string graph theory, is a new method/tool developed to address the challenges. In this paper, based on an in-depth analysis of SGA we prove that the SGA-based sequence de novo assembly is an NP-complete problem. According to our analysis, SGA outperforms other similar methods/tools in memory consumption, but costs much more time, of which 60-70 % is spent on the index construction. Upon this analysis, we introduce a hybrid parallel optimization algorithm and implement this algorithm in the TianHe-2's parallel framework. Simulations are performed with different datasets. For data of small size the optimized solution is 3.06 times faster than before, and for data of middle size it's 1.60 times. The results demonstrate an evident performance improvement, with the linear scalability for parallel FM-index construction. This results thus contribute significantly to improving the efficiency of de novo assembly of DNA sequences.

  8. Design of a tight frame of 2D shearlets based on a fast non-iterative analysis and synthesis algorithm

    NASA Astrophysics Data System (ADS)

    Goossens, Bart; Aelterman, Jan; Luong, Hi"p.; Pižurica, Aleksandra; Philips, Wilfried

    2011-09-01

    The shearlet transform is a recent sibling in the family of geometric image representations that provides a traditional multiresolution analysis combined with a multidirectional analysis. In this paper, we present a fast DFT-based analysis and synthesis scheme for the 2D discrete shearlet transform. Our scheme conforms to the continuous shearlet theory to high extent, provides perfect numerical reconstruction (up to floating point rounding errors) in a non-iterative scheme and is highly suitable for parallel implementation (e.g. FPGA, GPU). We show that our discrete shearlet representation is also a tight frame and the redundancy factor of the transform is around 2.6, independent of the number of analysis directions. Experimental denoising results indicate that the transform performs the same or even better than several related multiresolution transforms, while having a significantly lower redundancy factor.

  9. Implementation of the NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael A.; Schultz, Matthew; Jin, Haoqiang; Yan, Jerry; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Several features make Java an attractive choice for High Performance Computing (HPC). In order to gauge the applicability of Java to Computational Fluid Dynamics (CFD), we have implemented the NAS (NASA Advanced Supercomputing) Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would position Java closer to Fortran in the competition for CFD applications.

  10. Run-time parallelization and scheduling of loops

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi; Crowley, Kay

    1990-01-01

    Run time methods are studied to automatically parallelize and schedule iterations of a do loop in certain cases, where compile-time information is inadequate. The methods presented involve execution time preprocessing of the loop. At compile-time, these methods set up the framework for performing a loop dependency analysis. At run time, wave fronts of concurrently executable loop iterations are identified. Using this wavefront information, loop iterations are reordered for increased parallelism. Symbolic transformation rules are used to produce: inspector procedures that perform execution time preprocessing and executors or transformed versions of source code loop structures. These transformed loop structures carry out the calculations planned in the inspector procedures. Performance results are presented from experiments conducted on the Encore Multimax. These results illustrate that run time reordering of loop indices can have a significant impact on performance. Furthermore, the overheads associated with this type of reordering are amortized when the loop is executed several times with the same dependency structure.

  11. YAPPA: a Compiler-Based Parallelization Framework for Irregular Applications on MPSoCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovergine, Silvia; Tumeo, Antonino; Villa, Oreste

    Modern embedded systems include hundreds of cores. Because of the difficulty in providing a fast, coherent memory architecture, these systems usually rely on non-coherent, non-uniform memory architectures with private memories for each core. However, programming these systems poses significant challenges. The developer must extract large amounts of parallelism, while orchestrating communication among cores to optimize application performance. These issues become even more significant with irregular applications, which present data sets difficult to partition, unpredictable memory accesses, unbalanced control flow and fine grained communication. Hand-optimizing every single aspect is hard and time-consuming, and it often does not lead to the expectedmore » performance. There is a growing gap between such complex and highly-parallel architectures and the high level languages used to describe the specification, which were designed for simpler systems and do not consider these new issues. In this paper we introduce YAPPA (Yet Another Parallel Programming Approach), a compilation framework for the automatic parallelization of irregular applications on modern MPSoCs based on LLVM. We start by considering an efficient parallel programming approach for irregular applications on distributed memory systems. We then propose a set of transformations that can reduce the development and optimization effort. The results of our initial prototype confirm the correctness of the proposed approach.« less

  12. Study on development system of increasing gearbox for high-performance wind-power generator

    NASA Astrophysics Data System (ADS)

    Xu, Hongbin; Yan, Kejun; Zhao, Junyu

    2005-12-01

    Based on the analysis of the development potentiality of wind-power generator and domestic manufacture of its key parts in China, an independent development system of the Increasing Gearbox for High-performance Wind-power Generator (IGHPWG) was introduced. The main elements of the system were studied, including the procedure design, design analysis system, manufacturing technology and detecting system, and the relative important technologies were analyzed such as mixed optimal joint transmission structure of the first planetary drive with two grade parallel axle drive based on equal strength, tooth root round cutting technology before milling hard tooth surface, high-precise tooth grinding technology, heat treatment optimal technology and complex surface technique, and rig test and detection technique of IGHPWG. The development conception was advanced the data share and quality assurance system through all the elements of the development system. The increasing Gearboxes for 600KW and 1MW Wind-power Generator have been successfully developed through the application of the development system.

  13. Scale Model Test and Transient Analysis of Steam Injector Driven Passive Core Injection System for Innovative-Simplified Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Ohmori, Shuichi; Narabayashi, Tadashi; Mori, Michitsugu

    A steam injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to serve also as a direct-contact feed-water heater that heats up feed-water by using extracted steam from turbine. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying "high-efficiency SI", which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feed-water heaters and emergency core cooling system of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a severe accident-free concept). This paper describes the results of the scale model test, and the transient analysis of SI-driven passive core injection system (PCIS).

  14. Parallel-vector out-of-core equation solver for computational mechanics

    NASA Technical Reports Server (NTRS)

    Qin, J.; Agarwal, T. K.; Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.

    1993-01-01

    A parallel/vector out-of-core equation solver is developed for shared-memory computers, such as the Cray Y-MP machine. The input/ output (I/O) time is reduced by using the a synchronous BUFFER IN and BUFFER OUT, which can be executed simultaneously with the CPU instructions. The parallel and vector capability provided by the supercomputers is also exploited to enhance the performance. Numerical applications in large-scale structural analysis are given to demonstrate the efficiency of the present out-of-core solver.

  15. Testing New Programming Paradigms with NAS Parallel Benchmarks

    NASA Technical Reports Server (NTRS)

    Jin, H.; Frumkin, M.; Schultz, M.; Yan, J.

    2000-01-01

    Over the past decade, high performance computing has evolved rapidly, not only in hardware architectures but also with increasing complexity of real applications. Technologies have been developing to aim at scaling up to thousands of processors on both distributed and shared memory systems. Development of parallel programs on these computers is always a challenging task. Today, writing parallel programs with message passing (e.g. MPI) is the most popular way of achieving scalability and high performance. However, writing message passing programs is difficult and error prone. Recent years new effort has been made in defining new parallel programming paradigms. The best examples are: HPF (based on data parallelism) and OpenMP (based on shared memory parallelism). Both provide simple and clear extensions to sequential programs, thus greatly simplify the tedious tasks encountered in writing message passing programs. HPF is independent of memory hierarchy, however, due to the immaturity of compiler technology its performance is still questionable. Although use of parallel compiler directives is not new, OpenMP offers a portable solution in the shared-memory domain. Another important development involves the tremendous progress in the internet and its associated technology. Although still in its infancy, Java promisses portability in a heterogeneous environment and offers possibility to "compile once and run anywhere." In light of testing these new technologies, we implemented new parallel versions of the NAS Parallel Benchmarks (NPBs) with HPF and OpenMP directives, and extended the work with Java and Java-threads. The purpose of this study is to examine the effectiveness of alternative programming paradigms. NPBs consist of five kernels and three simulated applications that mimic the computation and data movement of large scale computational fluid dynamics (CFD) applications. We started with the serial version included in NPB2.3. Optimization of memory and cache usage was applied to several benchmarks, noticeably BT and SP, resulting in better sequential performance. In order to overcome the lack of an HPF performance model and guide the development of the HPF codes, we employed an empirical performance model for several primitives found in the benchmarks. We encountered a few limitations of HPF, such as lack of supporting the "REDISTRIBUTION" directive and no easy way to handle irregular computation. The parallelization with OpenMP directives was done at the outer-most loop level to achieve the largest granularity. The performance of six HPF and OpenMP benchmarks is compared with their MPI counterparts for the Class-A problem size in the figure in next page. These results were obtained on an SGI Origin2000 (195MHz) with MIPSpro-f77 compiler 7.2.1 for OpenMP and MPI codes and PGI pghpf-2.4.3 compiler with MPI interface for HPF programs.

  16. Using Coarrays to Parallelize Legacy Fortran Applications: Strategy and Case Study

    DOE PAGES

    Radhakrishnan, Hari; Rouson, Damian W. I.; Morris, Karla; ...

    2015-01-01

    This paper summarizes a strategy for parallelizing a legacy Fortran 77 program using the object-oriented (OO) and coarray features that entered Fortran in the 2003 and 2008 standards, respectively. OO programming (OOP) facilitates the construction of an extensible suite of model-verification and performance tests that drive the development. Coarray parallel programming facilitates a rapid evolution from a serial application to a parallel application capable of running on multicore processors and many-core accelerators in shared and distributed memory. We delineate 17 code modernization steps used to refactor and parallelize the program and study the resulting performance. Our initial studies were donemore » using the Intel Fortran compiler on a 32-core shared memory server. Scaling behavior was very poor, and profile analysis using TAU showed that the bottleneck in the performance was due to our implementation of a collective, sequential summation procedure. We were able to improve the scalability and achieve nearly linear speedup by replacing the sequential summation with a parallel, binary tree algorithm. We also tested the Cray compiler, which provides its own collective summation procedure. Intel provides no collective reductions. With Cray, the program shows linear speedup even in distributed-memory execution. We anticipate similar results with other compilers once they support the new collective procedures proposed for Fortran 2015.« less

  17. Culminating Point and the 38th Parallel

    DTIC Science & Technology

    1994-01-01

    T• 3M•~ OPKALL"L 6. AUTHOR(S) TAMVS L. BRyA10 LF COL ) LkSA 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION AIR WAR ...Prescribed by ANSI Std. Z39-18 298-102 AIR WAR COLLEGE AIR UNIVERSITY THE CULMINATING POINT AND THE 38TH PARALLEL by James L. Bryan Lieutenant Colonel, USA...securing the only attainable objective the following Spring. Why do this analysis on the Korean War when so much has already been written about it

  18. Parallel Domain Decomposition Formulation and Software for Large-Scale Sparse Symmetrical/Unsymmetrical Aeroacoustic Applications

    NASA Technical Reports Server (NTRS)

    Nguyen, D. T.; Watson, Willie R. (Technical Monitor)

    2005-01-01

    The overall objectives of this research work are to formulate and validate efficient parallel algorithms, and to efficiently design/implement computer software for solving large-scale acoustic problems, arised from the unified frameworks of the finite element procedures. The adopted parallel Finite Element (FE) Domain Decomposition (DD) procedures should fully take advantages of multiple processing capabilities offered by most modern high performance computing platforms for efficient parallel computation. To achieve this objective. the formulation needs to integrate efficient sparse (and dense) assembly techniques, hybrid (or mixed) direct and iterative equation solvers, proper pre-conditioned strategies, unrolling strategies, and effective processors' communicating schemes. Finally, the numerical performance of the developed parallel finite element procedures will be evaluated by solving series of structural, and acoustic (symmetrical and un-symmetrical) problems (in different computing platforms). Comparisons with existing "commercialized" and/or "public domain" software are also included, whenever possible.

  19. Data parallel sorting for particle simulation

    NASA Technical Reports Server (NTRS)

    Dagum, Leonardo

    1992-01-01

    Sorting on a parallel architecture is a communications intensive event which can incur a high penalty in applications where it is required. In the case of particle simulation, only integer sorting is necessary, and sequential implementations easily attain the minimum performance bound of O (N) for N particles. Parallel implementations, however, have to cope with the parallel sorting problem which, in addition to incurring a heavy communications cost, can make the minimun performance bound difficult to attain. This paper demonstrates how the sorting problem in a particle simulation can be reduced to a merging problem, and describes an efficient data parallel algorithm to solve this merging problem in a particle simulation. The new algorithm is shown to be optimal under conditions usual for particle simulation, and its fieldwise implementation on the Connection Machine is analyzed in detail. The new algorithm is about four times faster than a fieldwise implementation of radix sort on the Connection Machine.

  20. Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Shuangshuang; Chen, Yousu; Wu, Di

    2015-12-09

    Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Messagemore » Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.« less

Top