Stanford Hardware Development Program
NASA Technical Reports Server (NTRS)
Peterson, A.; Linscott, I.; Burr, J.
1986-01-01
Architectures for high performance, digital signal processing, particularly for high resolution, wide band spectrum analysis were developed. These developments are intended to provide instrumentation for NASA's Search for Extraterrestrial Intelligence (SETI) program. The real time signal processing is both formal and experimental. The efficient organization and optimal scheduling of signal processing algorithms were investigated. The work is complemented by efforts in processor architecture design and implementation. A high resolution, multichannel spectrometer that incorporates special purpose microcoded signal processors is being tested. A general purpose signal processor for the data from the multichannel spectrometer was designed to function as the processing element in a highly concurrent machine. The processor performance required for the spectrometer is in the range of 1000 to 10,000 million instructions per second (MIPS). Multiple node processor configurations, where each node performs at 100 MIPS, are sought. The nodes are microprogrammable and are interconnected through a network with high bandwidth for neighboring nodes, and medium bandwidth for nodes at larger distance. The implementation of both the current mutlichannel spectrometer and the signal processor as Very Large Scale Integration CMOS chip sets was commenced.
Yu, Ge; Yang, T C; Piao, Shengchun
2017-10-01
A chirp signal is a signal with linearly varying instantaneous frequency over the signal bandwidth, also known as a linear frequency modulated (LFM) signal. It is widely used in communication, radar, active sonar, and other applications due to its Doppler tolerance property in signal detection using the matched filter (MF) processing. Modern sonar uses high-gain, wideband signals to improve the signal to reverberation ratio. High gain implies a high product of the signal bandwidth and duration. However, wideband and/or long duration LFM signals are no longer Doppler tolerant. The shortcoming of the standard MF processing is loss of performance, and bias in range estimation. This paper uses the wideband ambiguity function and the fractional Fourier transform method to estimate the target velocity and restore the performance. Target velocity or Doppler provides a clue for differentiating the target from the background reverberation and clutter. The methods are applied to simulated and experimental data.
Hybrid photonic signal processing
NASA Astrophysics Data System (ADS)
Ghauri, Farzan Naseer
This thesis proposes research of novel hybrid photonic signal processing systems in the areas of optical communications, test and measurement, RF signal processing and extreme environment optical sensors. It will be shown that use of innovative hybrid techniques allows design of photonic signal processing systems with superior performance parameters and enhanced capabilities. These applications can be divided into domains of analog-digital hybrid signal processing applications and free-space---fiber-coupled hybrid optical sensors. The analog-digital hybrid signal processing applications include a high-performance analog-digital hybrid MEMS variable optical attenuator that can simultaneously provide high dynamic range as well as high resolution attenuation controls; an analog-digital hybrid MEMS beam profiler that allows high-power watt-level laser beam profiling and also provides both submicron-level high resolution and wide area profiling coverage; and all optical transversal RF filters that operate on the principle of broadband optical spectral control using MEMS and/or Acousto-Optic tunable Filters (AOTF) devices which can provide continuous, digital or hybrid signal time delay and weight selection. The hybrid optical sensors presented in the thesis are extreme environment pressure sensors and dual temperature-pressure sensors. The sensors employ hybrid free-space and fiber-coupled techniques for remotely monitoring a system under simultaneous extremely high temperatures and pressures.
Multichannel heterodyning for wideband interferometry, correlation and signal processing
Erskine, David J.
1999-01-01
A method of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized.
Multichannel heterodyning for wideband interferometry, correlation and signal processing
Erskine, D.J.
1999-08-24
A method is disclosed of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized. 50 figs.
NASA Astrophysics Data System (ADS)
Kepner, J. V.; Janka, R. S.; Lebak, J.; Richards, M. A.
1999-12-01
The Vector/Signal/Image Processing Library (VSIPL) is a DARPA initiated effort made up of industry, government and academic representatives who have defined an industry standard API for vector, signal, and image processing primitives for real-time signal processing on high performance systems. VSIPL supports a wide range of data types (int, float, complex, ...) and layouts (vectors, matrices and tensors) and is ideal for astronomical data processing. The VSIPL API is intended to serve as an open, vendor-neutral, industry standard interface. The object-based VSIPL API abstracts the memory architecture of the underlying machine by using the concept of memory blocks and views. Early experiments with VSIPL code conversions have been carried out by the High Performance Computing Program team at the UCSD. Commercially, several major vendors of signal processors are actively developing implementations. VSIPL has also been explicitly required as part of a recent Rome Labs teraflop procurement. This poster presents the VSIPL API, its functionality and the status of various implementations.
Hardware design and implementation of fast DOA estimation method based on multicore DSP
NASA Astrophysics Data System (ADS)
Guo, Rui; Zhao, Yingxiao; Zhang, Yue; Lin, Qianqiang; Chen, Zengping
2016-10-01
In this paper, we present a high-speed real-time signal processing hardware platform based on multicore digital signal processor (DSP). The real-time signal processing platform shows several excellent characteristics including high performance computing, low power consumption, large-capacity data storage and high speed data transmission, which make it able to meet the constraint of real-time direction of arrival (DOA) estimation. To reduce the high computational complexity of DOA estimation algorithm, a novel real-valued MUSIC estimator is used. The algorithm is decomposed into several independent steps and the time consumption of each step is counted. Based on the statistics of the time consumption, we present a new parallel processing strategy to distribute the task of DOA estimation to different cores of the real-time signal processing hardware platform. Experimental results demonstrate that the high processing capability of the signal processing platform meets the constraint of real-time direction of arrival (DOA) estimation.
Global interrupt and barrier networks
Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E; Heidelberger, Philip; Kopcsay, Gerard V.; Steinmacher-Burow, Burkhard D.; Takken, Todd E.
2008-10-28
A system and method for generating global asynchronous signals in a computing structure. Particularly, a global interrupt and barrier network is implemented that implements logic for generating global interrupt and barrier signals for controlling global asynchronous operations performed by processing elements at selected processing nodes of a computing structure in accordance with a processing algorithm; and includes the physical interconnecting of the processing nodes for communicating the global interrupt and barrier signals to the elements via low-latency paths. The global asynchronous signals respectively initiate interrupt and barrier operations at the processing nodes at times selected for optimizing performance of the processing algorithms. In one embodiment, the global interrupt and barrier network is implemented in a scalable, massively parallel supercomputing device structure comprising a plurality of processing nodes interconnected by multiple independent networks, with each node including one or more processing elements for performing computation or communication activity as required when performing parallel algorithm operations. One multiple independent network includes a global tree network for enabling high-speed global tree communications among global tree network nodes or sub-trees thereof. The global interrupt and barrier network may operate in parallel with the global tree network for providing global asynchronous sideband signals.
NASA Astrophysics Data System (ADS)
Xu, Xingyuan; Wu, Jiayang; Shoeiby, Mehrdad; Nguyen, Thach G.; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.
2018-01-01
An arbitrary-order intensity differentiator for high-order microwave signal differentiation is proposed and experimentally demonstrated on a versatile transversal microwave photonic signal processing platform based on integrated Kerr combs. With a CMOS-compatible nonlinear micro-ring resonator, high quality Kerr combs with broad bandwidth and large frequency spacings are generated, enabling a larger number of taps and an increased Nyquist zone. By programming and shaping individual comb lines' power, calculated tap weights are realized, thus achieving a versatile microwave photonic signal processing platform. Arbitrary-order intensity differentiation is demonstrated on the platform. The RF responses are experimentally characterized, and systems demonstrations for Gaussian input signals are also performed.
Implementation and Performance of GaAs Digital Signal Processing ASICs
NASA Technical Reports Server (NTRS)
Whitaker, William D.; Buchanan, Jeffrey R.; Burke, Gary R.; Chow, Terrance W.; Graham, J. Scott; Kowalski, James E.; Lam, Barbara; Siavoshi, Fardad; Thompson, Matthew S.; Johnson, Robert A.
1993-01-01
The feasibility of performing high speed digital signal processing in GaAs gate array technology has been demonstrated with the successful implementation of a VLSI communications chip set for NASA's Deep Space Network. This paper describes the techniques developed to solve some of the technology and implementation problems associated with large scale integration of GaAs gate arrays.
A reprogrammable receiver architecture for wireless signal interception
NASA Astrophysics Data System (ADS)
Yao, Timothy S.
2003-09-01
In this paper, a re-programmable receiver architecture, based on software-defined-radio concept, for wireless signal interception is presented. The radio-frequency (RF) signal that the receiver would like to intercept may come from a terrestrial cellular network or communication satellites, which their carrier frequency are in the range from 800 MHz (civilian mobile) to 15 GHz (Ku band). To intercept signals from such a wide range of frequency in these variant communication systems, the traditional way is to deploy multiple receivers to scan and detect the desired signal. This traditional approach is obviously unattractive due to the cost, efficiency, and accuracy. Instead, we propose a universal receiver, which is software-driven and re-configurable, to intercept signals of interest. The software-defined-radio based receiver first intercepts RF energy of wide spectrum (25MHz) through antenna, performs zero-IF down conversion (homodyne architecture) to baseband, and digital channelizes the baseband signal. The channelization module is a bank of high performance digital filters. The bandwidth of the filter bank is programmable according to the wireless communication protocol under watch. In the baseband processing, high-performance digital signal processors carry out the detection process and microprocessors handle the communication protocols. The baseband processing is also re-configurable for different wireless standards and protocol. The advantages of the software-defined-radio architecture over traditional RF receiver make it a favorable technology for the communication signal interception and surveillance.
Digital signal processing for velocity measurements in dynamical material's behaviour studies.
Devlaminck, Julien; Luc, Jérôme; Chanal, Pierre-Yves
2014-03-01
In this work, we describe different configurations of optical fiber interferometers (types Michelson and Mach-Zehnder) used to measure velocities during dynamical material's behaviour studies. We detail the algorithms of processing developed and optimized to improve the performance of these interferometers especially in terms of time and frequency resolutions. Three methods of analysis of interferometric signals were studied. For Michelson interferometers, the time-frequency analysis of signals by Short-Time Fourier Transform (STFT) is compared to a time-frequency analysis by Continuous Wavelet Transform (CWT). The results have shown that the CWT was more suitable than the STFT for signals with low signal-to-noise, and low velocity and high acceleration areas. For Mach-Zehnder interferometers, the measurement is carried out by analyzing the phase shift between three interferometric signals (Triature processing). These three methods of digital signal processing were evaluated, their measurement uncertainties estimated, and their restrictions or operational limitations specified from experimental results performed on a pulsed power machine.
An open-loop system design for deep space signal processing applications
NASA Astrophysics Data System (ADS)
Tang, Jifei; Xia, Lanhua; Mahapatra, Rabi
2018-06-01
A novel open-loop system design with high performance is proposed for space positioning and navigation signal processing. Divided by functions, the system has four modules, bandwidth selectable data recorder, narrowband signal analyzer, time-delay difference of arrival estimator and ANFIS supplement processor. A hardware-software co-design approach is made to accelerate computing capability and improve system efficiency. Embedded with the proposed signal processing algorithms, the designed system is capable of handling tasks with high accuracy over long period of continuous measurements. The experiment results show the Doppler frequency tracking root mean square error during 3 h observation is 0.0128 Hz, while the TDOA residue analysis in correlation power spectrum is 0.1166 rad.
Noninvasive Diagnosis of Coronary Artery Disease Using 12-Lead High-Frequency Electrocardiograms
NASA Technical Reports Server (NTRS)
Schlegel, Todd T.; Arenare, Brian
2006-01-01
A noninvasive, sensitive method of diagnosing certain pathological conditions of the human heart involves computational processing of digitized electrocardiographic (ECG) signals acquired from a patient at all 12 conventional ECG electrode positions. In the processing, attention is focused on low-amplitude, high-frequency components of those portions of the ECG signals known in the art as QRS complexes. The unique contribution of this method lies in the utilization of signal features and combinations of signal features from various combinations of electrode positions, not reported previously, that have been found to be helpful in diagnosing coronary artery disease and such related pathological conditions as myocardial ischemia, myocardial infarction, and congestive heart failure. The electronic hardware and software used to acquire the QRS complexes and perform some preliminary analyses of their high-frequency components were summarized in Real-Time, High-Frequency QRS Electrocardiograph (MSC- 23154), NASA Tech Briefs, Vol. 27, No. 7 (July 2003), pp. 26-28. To recapitulate, signals from standard electrocardiograph electrodes are preamplified, then digitized at a sampling rate of 1,000 Hz, then analyzed by the software that detects R waves and QRS complexes and analyzes them from several perspectives. The software includes provisions for averaging signals over multiple beats and for special-purpose nonrecursive digital filters with specific low- and high-frequency cutoffs. These filters, applied to the averaged signal, effect a band-pass operation in the frequency range from 150 to 250 Hz. The output of the bandpass filter is the desired high-frequency QRS signal. Further processing is then performed in real time to obtain the beat-to-beat root mean square (RMS) voltage amplitude of the filtered signal, certain variations of the RMS voltage, and such standard measures as the heart rate and R-R interval at any given time. A key signal feature analyzed in the present method is the presence versus the absence of reduced-amplitude zones (RAZs). In terms that must be simplified for the sake of brevity, an RAZ comprises several cycles of a high-frequency QRS signal during which the amplitude of the high-frequency oscillation in a portion of the signal is abnormally low (see figure). A given signal sample exhibiting an interval of reduced amplitude may or may not be classified as an RAZ, depending on quantitative criteria regarding peaks and troughs within the reduced-amplitude portion of the high-frequency QRS signal. This analysis is performed in all 12 leads in real time.
A fully reconfigurable photonic integrated signal processor
NASA Astrophysics Data System (ADS)
Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping
2016-03-01
Photonic signal processing has been considered a solution to overcome the inherent electronic speed limitations. Over the past few years, an impressive range of photonic integrated signal processors have been proposed, but they usually offer limited reconfigurability, a feature highly needed for the implementation of large-scale general-purpose photonic signal processors. Here, we report and experimentally demonstrate a fully reconfigurable photonic integrated signal processor based on an InP-InGaAsP material system. The proposed photonic signal processor is capable of performing reconfigurable signal processing functions including temporal integration, temporal differentiation and Hilbert transformation. The reconfigurability is achieved by controlling the injection currents to the active components of the signal processor. Our demonstration suggests great potential for chip-scale fully programmable all-optical signal processing.
Maglev Train Signal Processing Architecture Based on Nonlinear Discrete Tracking Differentiator.
Wang, Zhiqiang; Li, Xiaolong; Xie, Yunde; Long, Zhiqiang
2018-05-24
In a maglev train levitation system, signal processing plays an important role for the reason that some sensor signals are prone to be corrupted by noise due to the harsh installation and operation environment of sensors and some signals cannot be acquired directly via sensors. Based on these concerns, an architecture based on a new type of nonlinear second-order discrete tracking differentiator is proposed. The function of this signal processing architecture includes filtering signal noise and acquiring needed signals for levitation purposes. The proposed tracking differentiator possesses the advantages of quick convergence, no fluttering, and simple calculation. Tracking differentiator's frequency characteristics at different parameter values are studied in this paper. The performance of this new type of tracking differentiator is tested in a MATLAB simulation and this tracking-differentiator is implemented in Very-High-Speed Integrated Circuit Hardware Description Language (VHDL). In the end, experiments are conducted separately on a test board and a maglev train model. Simulation and experiment results show that the performance of this novel signal processing architecture can fulfill the real system requirement.
NASA Astrophysics Data System (ADS)
Benkrid, K.; Belkacemi, S.; Sukhsawas, S.
2005-06-01
This paper proposes an integrated framework for the high level design of high performance signal processing algorithms' implementations on FPGAs. The framework emerged from a constant need to rapidly implement increasingly complicated algorithms on FPGAs while maintaining the high performance needed in many real time digital signal processing applications. This is particularly important for application developers who often rely on iterative and interactive development methodologies. The central idea behind the proposed framework is to dynamically integrate high performance structural hardware description languages with higher level hardware languages in other to help satisfy the dual requirement of high level design and high performance implementation. The paper illustrates this by integrating two environments: Celoxica's Handel-C language, and HIDE, a structural hardware environment developed at the Queen's University of Belfast. On the one hand, Handel-C has been proven to be very useful in the rapid design and prototyping of FPGA circuits, especially control intensive ones. On the other hand, HIDE, has been used extensively, and successfully, in the generation of highly optimised parameterisable FPGA cores. In this paper, this is illustrated in the construction of a scalable and fully parameterisable core for image algebra's five core neighbourhood operations, where fully floorplanned efficient FPGA configurations, in the form of EDIF netlists, are generated automatically for instances of the core. In the proposed combined framework, highly optimised data paths are invoked dynamically from within Handel-C, and are synthesized using HIDE. Although the idea might seem simple prima facie, it could have serious implications on the design of future generations of hardware description languages.
Generation and detection of 80-Gbit/s return-to-zero differential phase-shift keying signals
NASA Astrophysics Data System (ADS)
Möller, Lothar; Su, Yikai; Xie, Chongjin; Liu, Xiang; Leuthold, Juerg; Gill, Douglas; Wei, Xing
2003-12-01
Nonlinear polarization rotation between a pump and a probe signal in a highly nonlinear fiber is used as a modulation process to generate 80-Gbit/s return-to-zero differential phase-shift keying signals. Its performance is analyzed and compared with a conventional on-off keying modulated signal.
Control of coherent information via on-chip photonic-phononic emitter-receivers.
Shin, Heedeuk; Cox, Jonathan A; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T
2015-03-05
Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon-phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics--which supports GHz frequencies--we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.
Design of an FMCW radar baseband signal processing system for automotive application.
Lin, Jau-Jr; Li, Yuan-Ping; Hsu, Wei-Chiang; Lee, Ta-Sung
2016-01-01
For a typical FMCW automotive radar system, a new design of baseband signal processing architecture and algorithms is proposed to overcome the ghost targets and overlapping problems in the multi-target detection scenario. To satisfy the short measurement time constraint without increasing the RF front-end loading, a three-segment waveform with different slopes is utilized. By introducing a new pairing mechanism and a spatial filter design algorithm, the proposed detection architecture not only provides high accuracy and reliability, but also requires low pairing time and computational loading. This proposed baseband signal processing architecture and algorithms balance the performance and complexity, and are suitable to be implemented in a real automotive radar system. Field measurement results demonstrate that the proposed automotive radar signal processing system can perform well in a realistic application scenario.
Processing circuit with asymmetry corrector and convolutional encoder for digital data
NASA Technical Reports Server (NTRS)
Pfiffner, Harold J. (Inventor)
1987-01-01
A processing circuit is provided for correcting for input parameter variations, such as data and clock signal symmetry, phase offset and jitter, noise and signal amplitude, in incoming data signals. An asymmetry corrector circuit performs the correcting function and furnishes the corrected data signals to a convolutional encoder circuit. The corrector circuit further forms a regenerated clock signal from clock pulses in the incoming data signals and another clock signal at a multiple of the incoming clock signal. These clock signals are furnished to the encoder circuit so that encoded data may be furnished to a modulator at a high data rate for transmission.
Implementation and optimization of ultrasound signal processing algorithms on mobile GPU
NASA Astrophysics Data System (ADS)
Kong, Woo Kyu; Lee, Wooyoul; Kim, Kyu Cheol; Yoo, Yangmo; Song, Tai-Kyong
2014-03-01
A general-purpose graphics processing unit (GPGPU) has been used for improving computing power in medical ultrasound imaging systems. Recently, a mobile GPU becomes powerful to deal with 3D games and videos at high frame rates on Full HD or HD resolution displays. This paper proposes the method to implement ultrasound signal processing on a mobile GPU available in the high-end smartphone (Galaxy S4, Samsung Electronics, Seoul, Korea) with programmable shaders on the OpenGL ES 2.0 platform. To maximize the performance of the mobile GPU, the optimization of shader design and load sharing between vertex and fragment shader was performed. The beamformed data were captured from a tissue mimicking phantom (Model 539 Multipurpose Phantom, ATS Laboratories, Inc., Bridgeport, CT, USA) by using a commercial ultrasound imaging system equipped with a research package (Ultrasonix Touch, Ultrasonix, Richmond, BC, Canada). The real-time performance is evaluated by frame rates while varying the range of signal processing blocks. The implementation method of ultrasound signal processing on OpenGL ES 2.0 was verified by analyzing PSNR with MATLAB gold standard that has the same signal path. CNR was also analyzed to verify the method. From the evaluations, the proposed mobile GPU-based processing method has no significant difference with the processing using MATLAB (i.e., PSNR<52.51 dB). The comparable results of CNR were obtained from both processing methods (i.e., 11.31). From the mobile GPU implementation, the frame rates of 57.6 Hz were achieved. The total execution time was 17.4 ms that was faster than the acquisition time (i.e., 34.4 ms). These results indicate that the mobile GPU-based processing method can support real-time ultrasound B-mode processing on the smartphone.
NASA Astrophysics Data System (ADS)
Xie, Yiwei; Geng, Zihan; Zhuang, Leimeng; Burla, Maurizio; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Roeloffzen, Chris G. H.; Boller, Klaus-J.; Lowery, Arthur J.
2017-12-01
Integrated optical signal processors have been identified as a powerful engine for optical processing of microwave signals. They enable wideband and stable signal processing operations on miniaturized chips with ultimate control precision. As a promising application, such processors enables photonic implementations of reconfigurable radio frequency (RF) filters with wide design flexibility, large bandwidth, and high-frequency selectivity. This is a key technology for photonic-assisted RF front ends that opens a path to overcoming the bandwidth limitation of current digital electronics. Here, the recent progress of integrated optical signal processors for implementing such RF filters is reviewed. We highlight the use of a low-loss, high-index-contrast stoichiometric silicon nitride waveguide which promises to serve as a practical material platform for realizing high-performance optical signal processors and points toward photonic RF filters with digital signal processing (DSP)-level flexibility, hundreds-GHz bandwidth, MHz-band frequency selectivity, and full system integration on a chip scale.
NASA Astrophysics Data System (ADS)
Deng, Ning
In recent years, optical phase modulation has attracted much research attention in the field of fiber optic communications. Compared with the traditional optical intensity-modulated signal, one of the main merits of the optical phase-modulated signal is the better transmission performance. For optical phase modulation, in spite of the comprehensive study of its transmission performance, only a little research has been carried out in terms of its functions, applications and signal processing for future optical networks. These issues are systematically investigated in this thesis. The research findings suggest that optical phase modulation and its signal processing can greatly facilitate flexible network functions and high bandwidth which can be enjoyed by end users. In the thesis, the most important physical-layer technology, signal processing and multiplexing, are investigated with optical phase-modulated signals. Novel and advantageous signal processing and multiplexing approaches are proposed and studied. Experimental investigations are also reported and discussed in the thesis. Optical time-division multiplexing and demultiplexing. With the ever-increasing demand on communication bandwidth, optical time division multiplexing (OTDM) is an effective approach to upgrade the capacity of each wavelength channel in current optical systems. OTDM multiplexing can be simply realized, however, the demultiplexing requires relatively complicated signal processing and stringent timing control, and thus hinders its practicability. To tackle this problem, in this thesis a new OTDM scheme with hybrid DPSK and OOK signals is proposed. Experimental investigation shows this scheme can greatly enhance the demultiplexing timing misalignment and improve the demultiplexing performance, and thus make OTDM more practical and cost effective. All-optical signal processing. In current and future optical communication systems and networks, the data rate per wavelength has been approaching the speed limitation of electronics. Thus, all-optical signal processing techniques are highly desirable to support the necessary optical switching functionalities in future ultrahigh-speed optical packet-switching networks. To cope with the wide use of optical phase-modulated signals, in the thesis, an all-optical logic for DPSK or PSK input signals is developed, for the first time. Based on four-wave mixing in semiconductor optical amplifier, the structure of the logic gate is simple, compact, and capable of supporting ultrafast operation. In addition to the general logic processing, a simple label recognition scheme, as a specific signal processing function, is proposed for phase-modulated label signals. The proposed scheme can recognize any incoming label pattern according to the local pattern, and is potentially capable of handling variable-length label patterns. Optical access network with multicast overlay and centralized light sources. In the arena of optical access networks, wavelength division multiplexing passive optical network (WDM-PON) is a promising technology to deliver high-speed data traffic. However, most of proposed WDM-PONs only support conventional point-to-point service, and cannot meet the requirement of increasing demand on broadcast and multicast service. In this thesis, a simple network upgrade is proposed based on the traditional PON architecture to support both point-to-point and multicast service. In addition, the two service signals are modulated on the same lightwave carrier. The upstream signal is also remodulated on the same carrier at the optical network unit, which can significantly relax the requirement on wavelength management at the network unit.
NASA Astrophysics Data System (ADS)
Narciso, Steven J.
2011-08-01
An emerging test and measurement standard called AXIe, AdvancedTCA extensions for Instrumentation, is expected to find wide acceptance within the Physics community as it offers many benefits to applications including shock, plasma, particle and nuclear physics. It is expected that many COTS (commercial off-the-shelf) signal conditioning, acquisition and processing modules will become available from a range of different suppliers. AXIe uses AdvancedTCA® as its basis, but then levers test and measurement industry standards such as PXI, IVI, and LXI to facilitate cooperation and plug-and-play interoperability between COTS instrument suppliers. AXIe's large board footprint and power allows high density in a 19" rack, enabling the development of high-performance signal conditioning, analog-to-digital conversion, and data processing, while offering channel count scalability inherent in modular systems. Synchronization between modules is flexible and provided by two triggering structures: a parallel trigger bus, and radially-distributed, time-matched point-to-point trigger lines. Inter-module communication is also provided with an adjacent module local bus allowing data transfer to 600 Gbits/s in each direction, for example between a front-end digitizer and DSP. AXIe allows embedding high performance computing and a range of COTS AdvancedTCA® computer blades are currently available that provide low cost alternatives to the development of custom signal processing modules. The availability of both LAN and PCI Express allow interconnection between modules, as well as industry-standard high-performance data paths to external host computer systems. AXIe delivers a powerful environment for custom module devel opment. As in the case of VXIbus and PXI before it, commercial development kits are expected to be available. This paper will give an overview of the architectural elements of AXIe 1.0, the compatibility model with AdvancedTCA, and signal acquisition performance of many of the AXIe structures.
Mixed-signal 0.18μm CMOS and SiGe BiCMOS foundry technologies for ROIC applications
NASA Astrophysics Data System (ADS)
Kar-Roy, Arjun; Howard, David; Racanelli, Marco; Scott, Mike; Hurwitz, Paul; Zwingman, Robert; Chaudhry, Samir; Jordan, Scott
2010-10-01
Today's readout integrated-circuits (ROICs) require a high level of integration of high performance analog and low power digital logic. TowerJazz offers a commercial 0.18μm CMOS technology platform for mixed-signal, RF, and high performance analog applications which can be used for ROIC applications. The commercial CA18HD dual gate oxide 1.8V/3.3V and CA18HA dual gate oxide 1.8V/5V RF/mixed signal processes, consisting of six layers of metallization, have high density stacked linear MIM capacitors, high-value resistors, triple-well isolation and thick top aluminum metal. The CA18HA process also has scalable drain extended LDMOS devices, up to 40V Vds, for high-voltage sensor applications, and high-performance bipolars for low noise requirements in ROICs. Also discussed are the available features of the commercial SBC18 SiGe BiCMOS platform with SiGe NPNs operating up to 200/200GHz (fT/fMAX frequencies in manufacturing and demonstrated to 270 GHz fT, for reduced noise and integrated RF capabilities which could be used in ROICs. Implementation of these technologies in a thick film SOI process for integrated RF switch and power management and the availability of high fT vertical PNPs to enable complementary BiCMOS (CBiCMOS), for RF enabled ROICs, are also described in this paper.
NASA Astrophysics Data System (ADS)
Noda, Toshihiko; Takao, Hidekuni; Ashiki, Mitsuaki; Ebi, Hiroyuki; Sawada, Kazuaki; Ishida, Makoto
2004-04-01
In this study, a microchip for measurement of hemoglobin in human blood has been proposed, fabricated and evaluated. The measurement principle of hemoglobin is based on the “cyanmethemoglobin method” that calculates the cyanmethemoglobin concentration by absorption photometry. A glass/silicon/silicon structure was used for the microchip. The middle silicon layer includes flow channels, and 45° mirrors formed at each end of the flow channels. Photodiodes and metal oxide semiconductor (MOS) integrated circuits were fabricated on the bottom silicon layer. The performance of the microchip for hemoglobin measurement was evaluated using a solution of red food color instead of a real blood sample. The fabricated microchip exhibited a similar performance to a nonminiaturized absorption cell which has the same optical path length. Signal processing output varied with solution concentration from 5.32 V to 5.55 V with very high stability due to differential signal processing.
High-performance wavelet engine
NASA Astrophysics Data System (ADS)
Taylor, Fred J.; Mellot, Jonathon D.; Strom, Erik; Koren, Iztok; Lewis, Michael P.
1993-11-01
Wavelet processing has shown great promise for a variety of image and signal processing applications. Wavelets are also among the most computationally expensive techniques in signal processing. It is demonstrated that a wavelet engine constructed with residue number system arithmetic elements offers significant advantages over commercially available wavelet accelerators based upon conventional arithmetic elements. Analysis is presented predicting the dynamic range requirements of the reported residue number system based wavelet accelerator.
Preface to the special issue on "Integrated Microwave Photonic Signal Processing"
NASA Astrophysics Data System (ADS)
Azaña, José; Yao, Jianping
2016-08-01
As Guest Editors, we are pleased to introduce this special issue on ;Integrated Microwave Photonic Signal Processing; published by the Elsevier journal Optics Communications. Microwave photonics is a field of growing importance from both scientific and practical application perspectives. The field of microwave photonics is devoted to the study, development and application of optics-based techniques and technologies aimed to the generation, processing, control, characterization and/or distribution of microwave signals, including signals well into the millimeter-wave frequency range. The use of photonic technologies for these microwave applications translates into a number of key advantages, such as the possibility of dealing with high-frequency, wide bandwidth signals with minimal losses and reduced electromagnetic interferences, and the potential for enhanced reconfigurability. The central purpose of this special issue is to provide an overview of the state of the art of generation, processing and characterization technologies for high-frequency microwave signals. It is now widely accepted that the practical success of microwave photonics at a large scale will essentially depend on the realization of high-performance microwave-photonic signal-processing engines in compact and integrated formats, preferably on a chip. Thus, the focus of the issue is on techniques implemented using integrated photonic technologies, with the goal of providing an update of the most recent advances toward realization of this vision.
Kuhlmann, F E; Apffel, A; Fischer, S M; Goldberg, G; Goodley, P C
1995-12-01
Trifluoroacetic acid (TFA) and other volatile strong acids, used as modifiers in reverse-phase high-performance liquid chromatography, cause signal suppression for basic compounds when analyzed by electrospray ionization mass spectrometry (ESI-MS). Evidence is presented that signal suppression is caused by strong ion pairing between the TFA anion and the protonated sample cation of basic sample molecules. The ion-pairing process "masks" the protonated sample cations from the ESI-MS electric fields by rendering them "neutral. " Weakly basic molecules are not suppressed by this process. The TFA signal suppression effect is independent from the well-known spray problem that electrospray has with highly aqueous solutions that contain TFA. This previously reported spray problem is caused by the high conductivity and surface tension of aqueous TFA solutions. A practical method to enhance the signal for most basic analytes in the presence of signal-suppressing volatile strong acids has been developed. The method employs postcolumn addition of a solution of 75% propionic acid and 25% isopropanol in a ratio 1:2 to the column flow. Signal enhancement is typically 10-50 times for peptides and other small basic molecules. Thus, peptide maps that use ESI-MS for detection can be performed at lower levels, with conventional columns, without the need to use capillary chromatography or reduced mass spectral resolution to achieve satisfactory sensitivity. The method may be used with similar results for heptafluorobutyric acid and hydrochloric acid. A mechanism for TFA signal suppression and signal enhancement by the foregoing method, is proposed.
Electrospun amplified fiber optics.
Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario
2015-03-11
All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.
Transient high frequency signal estimation: A model-based processing approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, F.L.
1985-03-22
By utilizing the superposition property of linear systems a method of estimating the incident signal from reflective nondispersive data is developed. One of the basic merits of this approach is that, the reflections were removed by direct application of a Weiner type estimation algorithm, after the appropriate input was synthesized. The structure of the nondispersive signal model is well documented, and thus its' credence is established. The model is stated and more effort is devoted to practical methods of estimating the model parameters. Though a general approach was developed for obtaining the reflection weights, a simpler approach was employed here,more » since a fairly good reflection model is available. The technique essentially consists of calculating ratios of the autocorrelation function at lag zero and that lag where the incident and first reflection coincide. We initially performed our processing procedure on a measurement of a single signal. Multiple application of the processing procedure was required when we applied the reflection removal technique on a measurement containing information from the interaction of two physical phenomena. All processing was performed using SIG, an interactive signal processing package. One of the many consequences of using SIG was that repetitive operations were, for the most part, automated. A custom menu was designed to perform the deconvolution process.« less
NASA Astrophysics Data System (ADS)
Siddiqui, Aleem; Reinke, Charles; Shin, Heedeuk; Jarecki, Robert L.; Starbuck, Andrew L.; Rakich, Peter
2017-05-01
The performance of electronic systems for radio-frequency (RF) spectrum analysis is critical for agile radar and communications systems, ISR (intelligence, surveillance, and reconnaissance) operations in challenging electromagnetic (EM) environments, and EM-environment situational awareness. While considerable progress has been made in size, weight, and power (SWaP) and performance metrics in conventional RF technology platforms, fundamental limits make continued improvements increasingly difficult. Alternatively, we propose employing cascaded transduction processes in a chip-scale nano-optomechanical system (NOMS) to achieve a spectral sensor with exceptional signal-linearity, high dynamic range, narrow spectral resolution and ultra-fast sweep times. By leveraging the optimal capabilities of photons and phonons, the system we pursue in this work has performance metrics scalable well beyond the fundamental limitations inherent to all electronic systems. In our device architecture, information processing is performed on wide-bandwidth RF-modulated optical signals by photon-mediated phononic transduction of the modulation to the acoustical-domain for narrow-band filtering, and then back to the optical-domain by phonon-mediated phase modulation (the reverse process). Here, we rely on photonics to efficiently distribute signals for parallel processing, and on phononics for effective and flexible RF-frequency manipulation. This technology is used to create RF-filters that are insensitive to the optical wavelength, with wide center frequency bandwidth selectivity (1-100GHz), ultra-narrow filter bandwidth (1-100MHz), and high dynamic range (70dB), which we will present. Additionally, using this filter as a building block, we will discuss current results and progress toward demonstrating a multichannel-filter with a bandwidth of < 10MHz per channel, while minimizing cumulative optical/acoustic/optical transduced insertion-loss to ideally < 10dB. These proposed metric represent significant improvements over RF-platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovell, Jack, E-mail: jack.lovell@durham.ac.uk; Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon OX14 3DB; Naylor, Graham
A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of themore » JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.« less
A bunch to bucket phase detector for the RHIC LLRF upgrade platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, K.S.; Harvey, M.; Hayes, T.
2011-03-28
As part of the overall development effort for the RHIC LLRF Upgrade Platform [1,2,3], a generic four channel 16 bit Analog-to-Digital Converter (ADC) daughter module was developed to provide high speed, wide dynamic range digitizing and processing of signals from DC to several hundred megahertz. The first operational use of this card was to implement the bunch to bucket phase detector for the RHIC LLRF beam control feedback loops. This paper will describe the design and performance features of this daughter module as a bunch to bucket phase detector, and also provide an overview of its place within the overallmore » LLRF platform architecture as a high performance digitizer and signal processing module suitable to a variety of applications. In modern digital control and signal processing systems, ADCs provide the interface between the analog and digital signal domains. Once digitized, signals are then typically processed using algorithms implemented in field programmable gate array (FPGA) logic, general purpose processors (GPPs), digital signal processors (DSPs) or a combination of these. For the recently developed and commissioned RHIC LLRF Upgrade Platform, we've developed a four channel ADC daughter module based on the Linear Technology LTC2209 16 bit, 160 MSPS ADC and the Xilinx V5FX70T FPGA. The module is designed to be relatively generic in application, and with minimal analog filtering on board, is capable of processing signals from DC to 500 MHz or more. The module's first application was to implement the bunch to bucket phase detector (BTB-PD) for the RHIC LLRF system. The same module also provides DC digitizing of analog processed BPM signals used by the LLRF system for radial feedback.« less
Optical Vector Receiver Operating Near the Quantum Limit
NASA Astrophysics Data System (ADS)
Vilnrotter, V. A.; Lau, C.-W.
2005-05-01
An optical receiver concept for binary signals with performance approaching the quantum limit at low average-signal energies is developed and analyzed. A conditionally nulling receiver that reaches the quantum limit in the absence of background photons has been devised by Dolinar. However, this receiver requires ideal optical combining and complicated real-time shaping of the local field; hence, it tends to be difficult to implement at high data rates. A simpler nulling receiver that approaches the quantum limit without complex optical processing, suitable for high-rate operation, had been suggested earlier by Kennedy. Here we formulate a vector receiver concept that incorporates the Kennedy receiver with a physical beamsplitter, but it also utilizes the reflected signal component to improve signal detection. It is found that augmenting the Kennedy receiver with classical coherent detection at the auxiliary beamsplitter output, and optimally processing the vector observations, always improves on the performance of the Kennedy receiver alone, significantly so at low average-photon rates. This is precisely the region of operation where modern codes approach channel capacity. It is also shown that the addition of background radiation has little effect on the performance of the coherent receiver component, suggesting a viable approach for near-quantum-limited performance in high background environments.
Design of signal reception and processing system of embedded ultrasonic endoscope
NASA Astrophysics Data System (ADS)
Li, Ming; Yu, Feng; Zhang, Ruiqiang; Li, Yan; Chen, Xiaodong; Yu, Daoyin
2009-11-01
Embedded Ultrasonic Endoscope, based on embedded microprocessor and embedded real-time operating system, sends a micro ultrasonic probe into coelom through the biopsy channel of the Electronic Endoscope to get the fault histology features of digestive organs by rotary scanning, and acquires the pictures of the alimentary canal mucosal surface. At the same time, ultrasonic signals are processed by signal reception and processing system, forming images of the full histology of the digestive organs. Signal Reception and Processing System is an important component of Embedded Ultrasonic Endoscope. However, the traditional design, using multi-level amplifiers and special digital processing circuits to implement signal reception and processing, is no longer satisfying the standards of high-performance, miniaturization and low power requirements that embedded system requires, and as a result of the high noise that multi-level amplifier brought, the extraction of small signal becomes hard. Therefore, this paper presents a method of signal reception and processing based on double variable gain amplifier and FPGA, increasing the flexibility and dynamic range of the Signal Reception and Processing System, improving system noise level, and reducing power consumption. Finally, we set up the embedded experiment system, using a transducer with the center frequency of 8MHz to scan membrane samples, and display the image of ultrasonic echo reflected by each layer of membrane, with a frame rate of 5Hz, verifying the correctness of the system.
Control of coherent information via on-chip photonic–phononic emitter–receivers
Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; ...
2015-03-05
We report that rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction,more » which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.« less
Control of coherent information via on-chip photonic–phononic emitter–receivers
Shin, Heedeuk; Cox, Jonathan A.; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.
2015-01-01
Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon–phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics—which supports GHz frequencies—we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes. PMID:25740405
Internal curvature signal and noise in low- and high-level vision
Grabowecky, Marcia; Kim, Yee Joon; Suzuki, Satoru
2011-01-01
How does internal processing contribute to visual pattern perception? By modeling visual search performance, we estimated internal signal and noise relevant to perception of curvature, a basic feature important for encoding of three-dimensional surfaces and objects. We used isolated, sparse, crowded, and face contexts to determine how internal curvature signal and noise depended on image crowding, lateral feature interactions, and level of pattern processing. Observers reported the curvature of a briefly flashed segment, which was presented alone (without lateral interaction) or among multiple straight segments (with lateral interaction). Each segment was presented with no context (engaging low-to-intermediate-level curvature processing), embedded within a face context as the mouth (engaging high-level face processing), or embedded within an inverted-scrambled-face context as a control for crowding. Using a simple, biologically plausible model of curvature perception, we estimated internal curvature signal and noise as the mean and standard deviation, respectively, of the Gaussian-distributed population activity of local curvature-tuned channels that best simulated behavioral curvature responses. Internal noise was increased by crowding but not by face context (irrespective of lateral interactions), suggesting prevention of noise accumulation in high-level pattern processing. In contrast, internal curvature signal was unaffected by crowding but modulated by lateral interactions. Lateral interactions (with straight segments) increased curvature signal when no contextual elements were added, but equivalent interactions reduced curvature signal when each segment was presented within a face. These opposing effects of lateral interactions are consistent with the phenomena of local-feature contrast in low-level processing and global-feature averaging in high-level processing. PMID:21209356
A high-efficiency real-time digital signal averager for time-of-flight mass spectrometry.
Wang, Yinan; Xu, Hui; Li, Qingjiang; Li, Nan; Huang, Zhengxu; Zhou, Zhen; Liu, Husheng; Sun, Zhaolin; Xu, Xin; Yu, Hongqi; Liu, Haijun; Li, David D-U; Wang, Xi; Dong, Xiuzhen; Gao, Wei
2013-05-30
Analog-to-digital converter (ADC)-based acquisition systems are widely applied in time-of-flight mass spectrometers (TOFMS) due to their ability to record the signal intensity of all ions within the same pulse. However, the acquisition system raises the requirement for data throughput, along with increasing the conversion rate and resolution of the ADC. It is therefore of considerable interest to develop a high-performance real-time acquisition system, which can relieve the limitation of data throughput. We present in this work a high-efficiency real-time digital signal averager, consisting of a signal conditioner, a data conversion module and a signal processing module. Two optimization strategies are implemented using field programmable gate arrays (FPGAs) to enhance the efficiency of the real-time processing. A pipeline procedure is used to reduce the time consumption of the accumulation strategy. To realize continuous data transfer, a high-efficiency transmission strategy is developed, based on a ping-pong procedure. The digital signal averager features good responsiveness, analog bandwidth and dynamic performance. The optimal effective number of bits reaches 6.7 bits. For a 32 µs record length, the averager can realize 100% efficiency with an extraction frequency below 31.23 kHz by modifying the number of accumulation steps. In unit time, the averager yields superior signal-to-noise ratio (SNR) compared with data accumulation in a computer. The digital signal averager is combined with a vacuum ultraviolet single-photon ionization time-of-flight mass spectrometer (VUV-SPI-TOFMS). The efficiency of the real-time processing is tested by analyzing the volatile organic compounds (VOCs) from ordinary printed materials. In these experiments, 22 kinds of compounds are detected, and the dynamic range exceeds 3 orders of magnitude. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Mao, Mingzhi; Qian, Chen; Cao, Bingyao; Zhang, Qianwu; Song, Yingxiong; Wang, Min
2017-09-01
A digital signal process enabled dual-drive Mach-Zehnder modulator (DD-MZM)-based spectral converter is proposed and extensively investigated to realize dynamically reconfigurable and high transparent spectral conversion. As another important innovation point of the paper, to optimize the converter performance, the optimum operation conditions of the proposed converter are deduced, statistically simulated, and experimentally verified. The optimum conditions supported-converter performances are verified by detail numerical simulations and experiments in intensity-modulation and direct-detection-based network in terms of frequency detuning range-dependent conversion efficiency, strict operation transparency for user signal characteristics, impact of parasitic components on the conversion performance, as well as the converted component waveform are almost nondistortion. It is also found that the converter has the high robustness to the input signal power, optical signal-to-noise ratio variations, extinction ratio, and driving signal frequency.
Develop Advanced Nonlinear Signal Analysis Topographical Mapping System
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1997-01-01
During the development of the SSME, a hierarchy of advanced signal analysis techniques for mechanical signature analysis has been developed by NASA and AI Signal Research Inc. (ASRI) to improve the safety and reliability for Space Shuttle operations. These techniques can process and identify intelligent information hidden in a measured signal which is often unidentifiable using conventional signal analysis methods. Currently, due to the highly interactive processing requirements and the volume of dynamic data involved, detailed diagnostic analysis is being performed manually which requires immense man-hours with extensive human interface. To overcome this manual process, NASA implemented this program to develop an Advanced nonlinear signal Analysis Topographical Mapping System (ATMS) to provide automatic/unsupervised engine diagnostic capabilities. The ATMS will utilize a rule-based Clips expert system to supervise a hierarchy of diagnostic signature analysis techniques in the Advanced Signal Analysis Library (ASAL). ASAL will perform automatic signal processing, archiving, and anomaly detection/identification tasks in order to provide an intelligent and fully automated engine diagnostic capability. The ATMS has been successfully developed under this contract. In summary, the program objectives to design, develop, test and conduct performance evaluation for an automated engine diagnostic system have been successfully achieved. Software implementation of the entire ATMS system on MSFC's OISPS computer has been completed. The significance of the ATMS developed under this program is attributed to the fully automated coherence analysis capability for anomaly detection and identification which can greatly enhance the power and reliability of engine diagnostic evaluation. The results have demonstrated that ATMS can significantly save time and man-hours in performing engine test/flight data analysis and performance evaluation of large volumes of dynamic test data.
Towards the understanding of network information processing in biology
NASA Astrophysics Data System (ADS)
Singh, Vijay
Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.
Dynamic force signal processing system of a robot manipulator
NASA Technical Reports Server (NTRS)
Uchiyama, M.; Kitagaki, K.; Hakomori, K.
1987-01-01
If dynamic noises such as those caused by the inertia forces of the hand can be eliminated from the signal of the force sensor installed on the wrist of the robot manipulator and if the necessary information of the external force can be detected with high sensitivity and high accuracy, a fine force feedback control for robots used in high speed and various fields will be possible. As the dynamic force sensing system, an external force estimate method with the extended Kalman filter is suggested and simulations and tests for a one axis force were performed. Later a dynamic signal processing system of six axes was composed and tested. The results are presented.
Plyler, Patrick N; Reber, Monika Bertges; Kovach, Amanda; Galloway, Elisabeth; Humphrey, Elizabeth
2013-02-01
Multichannel wide dynamic range compression (WDRC) and ChannelFree processing have similar goals yet differ significantly in terms of signal processing. Multichannel WDRC devices divide the input signal into separate frequency bands; a separate level is determined within each frequency band; and compression in each band is based on the level within each band. ChannelFree processing detects the wideband level, and gain adjustments are based on the wideband signal level and adjusted up to 20,000 times per second. Although both signal processing strategies are currently available in hearing aids, it is unclear if differences in these signal processing strategies affect the performance and/or preference of the end user. The purpose of the research was to determine the effects of multichannel wide dynamic range compression and ChannelFree processing on performance and/or preference of listeners using open-canal hearing instruments. An experimental study in which subjects were exposed to a repeated measures design was utilized. Fourteen adult listeners with mild sloping to moderately severe sensorineural hearing loss participated (mean age 67 yr). Participants completed two 5 wk trial periods for each signal processing strategy. Probe microphone, behavioral and subjective measures were conducted unaided and aided at the end of each trial period. Behavioral and subjective results for both signal processing strategies were significantly better than unaided results; however, behavioral and subjective results were not significantly different between the signal processing strategies. Multichannel WDRC and ChannelFree processing are both effective signal processing strategies that provide significant benefit for hearing instrument users. Overall preference between the strategies may be related to the degree of hearing loss of the user, high-frequency in-situ levels, and/or acceptance of background noise. American Academy of Audiology.
NASA Technical Reports Server (NTRS)
Frehlich, Rod
1993-01-01
Calculations of the exact Cramer-Rao Bound (CRB) for unbiased estimates of the mean frequency, signal power, and spectral width of Doppler radar/lidar signals (a Gaussian random process) are presented. Approximate CRB's are derived using the Discrete Fourier Transform (DFT). These approximate results are equal to the exact CRB when the DFT coefficients are mutually uncorrelated. Previous high SNR limits for CRB's are shown to be inaccurate because the discrete summations cannot be approximated with integration. The performance of an approximate maximum likelihood estimator for mean frequency approaches the exact CRB for moderate signal to noise ratio and moderate spectral width.
Wang, Xuezhi; Huang, Xiaotao; Suvorova, Sofia; Moran, Bill
2018-01-01
Golay complementary waveforms can, in theory, yield radar returns of high range resolution with essentially zero sidelobes. In practice, when deployed conventionally, while high signal-to-noise ratios can be achieved for static target detection, significant range sidelobes are generated by target returns of nonzero Doppler causing unreliable detection. We consider signal processing techniques using Golay complementary waveforms to improve radar detection performance in scenarios involving multiple nonzero Doppler targets. A signal processing procedure based on an existing, so called, Binomial Design algorithm that alters the transmission order of Golay complementary waveforms and weights the returns is proposed in an attempt to achieve an enhanced illumination performance. The procedure applies one of three proposed waveform transmission ordering algorithms, followed by a pointwise nonlinear processor combining the outputs of the Binomial Design algorithm and one of the ordering algorithms. The computational complexity of the Binomial Design algorithm and the three ordering algorithms are compared, and a statistical analysis of the performance of the pointwise nonlinear processing is given. Estimation of the areas in the Delay–Doppler map occupied by significant range sidelobes for given targets are also discussed. Numerical simulations for the comparison of the performances of the Binomial Design algorithm and the three ordering algorithms are presented for both fixed and randomized target locations. The simulation results demonstrate that the proposed signal processing procedure has a better detection performance in terms of lower sidelobes and higher Doppler resolution in the presence of multiple nonzero Doppler targets compared to existing methods. PMID:29324708
An FPGA-based bolometer for the MAST-U Super-X divertor.
Lovell, Jack; Naylor, Graham; Field, Anthony; Drewelow, Peter; Sharples, Ray
2016-11-01
A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of the JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.
PPM Receiver Implemented in Software
NASA Technical Reports Server (NTRS)
Gray, Andrew; Kang, Edward; Lay, Norman; Vilnrotter, Victor; Srinivasan, Meera; Lee, Clement
2010-01-01
A computer program has been written as a tool for developing optical pulse-position- modulation (PPM) receivers in which photodetector outputs are fed to analog-to-digital converters (ADCs) and all subsequent signal processing is performed digitally. The program can be used, for example, to simulate an all-digital version of the PPM receiver described in Parallel Processing of Broad-Band PPM Signals (NPO-40711), which appears elsewhere in this issue of NASA Tech Briefs. The program can also be translated into a design for digital PPM receiver hardware. The most notable innovation embodied in the software and the underlying PPM-reception concept is a digital processing subsystem that performs synchronization of PPM time slots, even though the digital processing is, itself, asynchronous in the sense that no attempt is made to synchronize it with the incoming optical signal a priori and there is no feedback to analog signal processing subsystems or ADCs. Functions performed by the software receiver include time-slot synchronization, symbol synchronization, coding preprocessing, and diagnostic functions. The program is written in the MATLAB and Simulink software system. The software receiver is highly parameterized and, hence, programmable: for example, slot- and symbol-synchronization filters have programmable bandwidths.
Álvarez, Fernando; Garnacho, Fernando; Ortego, Javier; Sánchez-Urán, Miguel Ángel
2015-01-01
Partial discharge (PD) measurements provide valuable information for assessing the condition of high voltage (HV) insulation systems, contributing to their quality assurance. Different PD measuring techniques have been developed in the last years specially designed to perform on-line measurements. Non-conventional PD methods operating in high frequency bands are usually used when this type of tests are carried out. In PD measurements the signal acquisition, the subsequent signal processing and the capability to obtain an accurate diagnosis are conditioned by the selection of a suitable detection technique and by the implementation of effective signal processing tools. This paper proposes an optimized electromagnetic detection method based on the combined use of wideband PD sensors for measurements performed in the HF and UHF frequency ranges, together with the implementation of powerful processing tools. The effectiveness of the measuring techniques proposed is demonstrated through an example, where several PD sources are measured simultaneously in a HV installation consisting of a cable system connected by a plug-in terminal to a gas insulated substation (GIS) compartment. PMID:25815452
Multichannel Detection in High-Performance Liquid Chromatography.
ERIC Educational Resources Information Center
Miller, James C.; And Others
1982-01-01
A linear photodiode array is used as the photodetector element in a new ultraviolet-visible detection system for high-performance liquid chromatography (HPLC). Using a computer network, the system processes eight different chromatographic signals simultaneously in real-time and acquires spectra manually/automatically. Applications in fast HPLC…
Xu, Tianhua; Karanov, Boris; Shevchenko, Nikita A; Lavery, Domaniç; Liga, Gabriele; Killey, Robert I; Bayvel, Polina
2017-10-11
Nyquist-spaced transmission and digital signal processing have proved effective in maximising the spectral efficiency and reach of optical communication systems. In these systems, Kerr nonlinearity determines the performance limits, and leads to spectral broadening of the signals propagating in the fibre. Although digital nonlinearity compensation was validated to be promising for mitigating Kerr nonlinearities, the impact of spectral broadening on nonlinearity compensation has never been quantified. In this paper, the performance of multi-channel digital back-propagation (MC-DBP) for compensating fibre nonlinearities in Nyquist-spaced optical communication systems is investigated, when the effect of signal spectral broadening is considered. It is found that accounting for the spectral broadening effect is crucial for achieving the best performance of DBP in both single-channel and multi-channel communication systems, independent of modulation formats used. For multi-channel systems, the degradation of DBP performance due to neglecting the spectral broadening effect in the compensation is more significant for outer channels. Our work also quantified the minimum bandwidths of optical receivers and signal processing devices to ensure the optimal compensation of deterministic nonlinear distortions.
Signal design study for shuttle/TDRSS Ku-band uplink
NASA Technical Reports Server (NTRS)
1976-01-01
The adequacy of the signal design approach chosen for the TDRSS/orbiter uplink was evaluated. Critical functions and/or components associated with the baseline design were identified, and design alternatives were developed for those areas considered high risk. A detailed set of RF and signal processing performance specifications for the orbiter hardware associated with the TDRSS/orbiter Ku band uplink was analyzed. Performances of a detailed design of the PN despreader, the PSK carrier synchronization loop, and the symbol synchronizer are identified. The performance of the downlink signal by means of computer simulation to obtain a realistic determination of bit error rate degradations was studied. The three channel PM downlink signal was detailed by means of analysis and computer simulation.
Analog Module Architecture for Space-Qualified Field-Programmable Mixed-Signal Arrays
NASA Technical Reports Server (NTRS)
Edwards, R. Timothy; Strohbehn, Kim; Jaskulek, Steven E.; Katz, Richard
1999-01-01
Spacecraft require all manner of both digital and analog circuits. Onboard digital systems are constructed almost exclusively from field-programmable gate array (FPGA) circuits providing numerous advantages over discrete design including high integration density, high reliability, fast turn-around design cycle time, lower mass, volume, and power consumption, and lower parts acquisition and flight qualification costs. Analog and mixed-signal circuits perform tasks ranging from housekeeping to signal conditioning and processing. These circuits are painstakingly designed and built using discrete components due to a lack of options for field-programmability. FPAA (Field-Programmable Analog Array) and FPMA (Field-Programmable Mixed-signal Array) parts exist but not in radiation-tolerant technology and not necessarily in an architecture optimal for the design of analog circuits for spaceflight applications. This paper outlines an architecture proposed for an FPAA fabricated in an existing commercial digital CMOS process used to make radiation-tolerant antifuse-based FPGA devices. The primary concerns are the impact of the technology and the overall array architecture on the flexibility of programming, the bandwidth available for high-speed analog circuits, and the accuracy of the components for high-performance applications.
Sequence information signal processor for local and global string comparisons
Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.
1997-01-01
A sequence information signal processing integrated circuit chip designed to perform high speed calculation of a dynamic programming algorithm based upon the algorithm defined by Waterman and Smith. The signal processing chip of the present invention is designed to be a building block of a linear systolic array, the performance of which can be increased by connecting additional sequence information signal processing chips to the array. The chip provides a high speed, low cost linear array processor that can locate highly similar global sequences or segments thereof such as contiguous subsequences from two different DNA or protein sequences. The chip is implemented in a preferred embodiment using CMOS VLSI technology to provide the equivalent of about 400,000 transistors or 100,000 gates. Each chip provides 16 processing elements, and is designed to provide 16 bit, two's compliment operation for maximum score precision of between -32,768 and +32,767. It is designed to provide a comparison between sequences as long as 4,194,304 elements without external software and between sequences of unlimited numbers of elements with the aid of external software. Each sequence can be assigned different deletion and insertion weight functions. Each processor is provided with a similarity measure device which is independently variable. Thus, each processor can contribute to maximum value score calculation using a different similarity measure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, K.R.; Hansen, F.R.; Napolitano, L.M.
1992-01-01
DART (DSP Arrary for Reconfigurable Tasks) is a parallel architecture of two high-performance SDP (digital signal processing) chips with the flexibility to handle a wide range of real-time applications. Each of the 32-bit floating-point DSP processes in DART is programmable in a high-level languate ( C'' or Ada). We have added extensions to the real-time operating system used by DART in order to support parallel processor. The combination of high-level language programmability, a real-time operating system, and parallel processing support significantly reduces the development cost of application software for signal processing and control applications. We have demonstrated this capability bymore » using DART to reconstruct images in the prototype VIP (Video Imaging Projectile) groundstation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, K.R.; Hansen, F.R.; Napolitano, L.M.
1992-01-01
DART (DSP Arrary for Reconfigurable Tasks) is a parallel architecture of two high-performance SDP (digital signal processing) chips with the flexibility to handle a wide range of real-time applications. Each of the 32-bit floating-point DSP processes in DART is programmable in a high-level languate (``C`` or Ada). We have added extensions to the real-time operating system used by DART in order to support parallel processor. The combination of high-level language programmability, a real-time operating system, and parallel processing support significantly reduces the development cost of application software for signal processing and control applications. We have demonstrated this capability by usingmore » DART to reconstruct images in the prototype VIP (Video Imaging Projectile) groundstation.« less
A scalable SIMD digital signal processor for high-quality multifunctional printer systems
NASA Astrophysics Data System (ADS)
Kang, Hyeong-Ju; Choi, Yongwoo; Kim, Kimo; Park, In-Cheol; Kim, Jung-Wook; Lee, Eul-Hwan; Gahang, Goo-Soo
2005-01-01
This paper describes a high-performance scalable SIMD digital signal processor (DSP) developed for multifunctional printer systems. The DSP supports a variable number of datapaths to cover a wide range of performance and maintain a RISC-like pipeline structure. Many special instructions suitable for image processing algorithms are included in the DSP. Quad/dual instructions are introduced for 8-bit or 16-bit data, and bit-field extraction/insertion instructions are supported to process various data types. Conditional instructions are supported to deal with complex relative conditions efficiently. In addition, an intelligent DMA block is integrated to align data in the course of data reading. Experimental results show that the proposed DSP outperforms a high-end printer-system DSP by at least two times.
NASA Astrophysics Data System (ADS)
Zhang, Xian; Zhou, Binquan; Li, Hong; Zhao, Xinghua; Mu, Weiwei; Wu, Wenfeng
2017-10-01
Navigation technology is crucial to the national defense and military, which can realize the measurement of orientation, positioning, attitude and speed for moving object. Inertial navigation is not only autonomous, real-time, continuous, hidden, undisturbed but also no time-limited and environment-limited. The gyroscope is the core component of the inertial navigation system, whose precision and size are the bottleneck of the performance. However, nuclear magnetic resonance gyroscope is characteristic of the advantage of high precision and small size. Nuclear magnetic resonance gyroscope can meet the urgent needs of high-tech weapons and equipment development of new generation. This paper mainly designs a set of photoelectric signal processing system for nuclear magnetic resonance gyroscope based on FPGA, which process and control the information of detecting laser .The photoelectric signal with high frequency carrier is demodulated by in-phase and quadrature demodulation method. Finally, the processing system of photoelectric signal can compensate the residual magnetism of the shielding barrel and provide the information of nuclear magnetic resonance gyroscope angular velocity.
Electrocardiogram signal denoising based on empirical mode decomposition technique: an overview
NASA Astrophysics Data System (ADS)
Han, G.; Lin, B.; Xu, Z.
2017-03-01
Electrocardiogram (ECG) signal is nonlinear and non-stationary weak signal which reflects whether the heart is functioning normally or abnormally. ECG signal is susceptible to various kinds of noises such as high/low frequency noises, powerline interference and baseline wander. Hence, the removal of noises from ECG signal becomes a vital link in the ECG signal processing and plays a significant role in the detection and diagnosis of heart diseases. The review will describe the recent developments of ECG signal denoising based on Empirical Mode Decomposition (EMD) technique including high frequency noise removal, powerline interference separation, baseline wander correction, the combining of EMD and Other Methods, EEMD technique. EMD technique is a quite potential and prospective but not perfect method in the application of processing nonlinear and non-stationary signal like ECG signal. The EMD combined with other algorithms is a good solution to improve the performance of noise cancellation. The pros and cons of EMD technique in ECG signal denoising are discussed in detail. Finally, the future work and challenges in ECG signal denoising based on EMD technique are clarified.
NASA Astrophysics Data System (ADS)
Su, Zhongqing; Ye, Lin
2004-08-01
The practical utilization of elastic waves, e.g. Rayleigh-Lamb waves, in high-performance structural health monitoring techniques is somewhat impeded due to the complicated wave dispersion phenomena, the existence of multiple wave modes, the high susceptibility to diverse interferences, the bulky sampled data and the difficulty in signal interpretation. An intelligent signal processing and pattern recognition (ISPPR) approach using the wavelet transform and artificial neural network algorithms was developed; this was actualized in a signal processing package (SPP). The ISPPR technique comprehensively functions as signal filtration, data compression, characteristic extraction, information mapping and pattern recognition, capable of extracting essential yet concise features from acquired raw wave signals and further assisting in structural health evaluation. For validation, the SPP was applied to the prediction of crack growth in an alloy structural beam and construction of a damage parameter database for defect identification in CF/EP composite structures. It was clearly apparent that the elastic wave propagation-based damage assessment could be dramatically streamlined by introduction of the ISPPR technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loughry, Thomas A.
As the volume of data acquired by space-based sensors increases, mission data compression/decompression and forward error correction code processing performance must likewise scale. This competency development effort was explored using the General Purpose Graphics Processing Unit (GPGPU) to accomplish high-rate Rice Decompression and high-rate Reed-Solomon (RS) decoding at the satellite mission ground station. Each algorithm was implemented and benchmarked on a single GPGPU. Distributed processing across one to four GPGPUs was also investigated. The results show that the GPGPU has considerable potential for performing satellite communication Data Signal Processing, with three times or better performance improvements and up to tenmore » times reduction in cost over custom hardware, at least in the case of Rice Decompression and Reed-Solomon Decoding.« less
Martinek, Radek; Nedoma, Jan; Fajkus, Marcel; Kahankova, Radana; Konecny, Jaromir; Janku, Petr; Kepak, Stanislav; Bilik, Petr; Nazeran, Homer
2017-04-18
This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR) monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS), and the Normalized Least Mean Square (NLMS) Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs), filtered from abdominal maternal phonocardiograms (mPCGs) by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies) and quantitative measures such as: Signal-to-Noise Ratio-SNR, Root Mean Square Error-RMSE, Sensitivity-S+, and Positive Predictive Value-PPV.
Martinek, Radek; Nedoma, Jan; Fajkus, Marcel; Kahankova, Radana; Konecny, Jaromir; Janku, Petr; Kepak, Stanislav; Bilik, Petr; Nazeran, Homer
2017-01-01
This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR) monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body. Building on this signal model, we then designed, implemented, and verified our adaptive signal processing system by implementing two stochastic gradient-based algorithms: the Least Mean Square Algorithm (LMS), and the Normalized Least Mean Square (NLMS) Algorithm. With this system we were able to extract the fHR information from high quality fetal phonocardiograms (fPCGs), filtered from abdominal maternal phonocardiograms (mPCGs) by performing fPCG signal peak detection. Common signal processing methods such as linear filtering, signal subtraction, and others could not be used for this purpose as fPCG and mPCG signals share overlapping frequency spectra. The performance of the adaptive system was evaluated by using both qualitative (gynecological studies) and quantitative measures such as: Signal-to-Noise Ratio—SNR, Root Mean Square Error—RMSE, Sensitivity—S+, and Positive Predictive Value—PPV. PMID:28420215
A high precision position sensor design and its signal processing algorithm for a maglev train.
Xue, Song; Long, Zhiqiang; He, Ning; Chang, Wensen
2012-01-01
High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS) system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD) is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run.
A High Precision Position Sensor Design and Its Signal Processing Algorithm for a Maglev Train
Xue, Song; Long, Zhiqiang; He, Ning; Chang, Wensen
2012-01-01
High precision positioning technology for a kind of high speed maglev train with an electromagnetic suspension (EMS) system is studied. At first, the basic structure and functions of the position sensor are introduced and some key techniques to enhance the positioning precision are designed. Then, in order to further improve the positioning signal quality and the fault-tolerant ability of the sensor, a new kind of discrete-time tracking differentiator (TD) is proposed based on nonlinear optimal control theory. This new TD has good filtering and differentiating performances and a small calculation load. It is suitable for real-time signal processing. The stability, convergence property and frequency characteristics of the TD are studied and analyzed thoroughly. The delay constant of the TD is figured out and an effective time delay compensation algorithm is proposed. Based on the TD technology, a filtering process is introduced in to improve the positioning signal waveform when the sensor is under bad working conditions, and a two-sensor switching algorithm is designed to eliminate the positioning errors caused by the joint gaps of the long stator. The effectiveness and stability of the sensor and its signal processing algorithms are proved by the experiments on a test train during a long-term test run. PMID:22778582
NASA Technical Reports Server (NTRS)
Gilliland, M. G.; Rougelot, R. S.; Schumaker, R. A.
1966-01-01
Video signal processor uses special-purpose integrated circuits with nonsaturating current mode switching to accept texture and color information from a digital computer in a visual spaceflight simulator and to combine these, for display on color CRT with analog information concerning fading.
NASA Astrophysics Data System (ADS)
Ferhati, H.; Djeffal, F.
2017-12-01
In this paper, a new junctionless optical controlled field effect transistor (JL-OCFET) and its comprehensive theoretical model is proposed to achieve high optical performance and low cost fabrication process. Exhaustive study of the device characteristics and comparison between the proposed junctionless design and the conventional inversion mode structure (IM-OCFET) for similar dimensions are performed. Our investigation reveals that the proposed design exhibits an outstanding capability to be an alternative to the IM-OCFET due to the high performance and the weak signal detection benefit offered by this design. Moreover, the developed analytical expressions are exploited to formulate the objective functions to optimize the device performance using Genetic Algorithms (GAs) approach. The optimized JL-OCFET not only demonstrates good performance in terms of derived drain current and responsivity, but also exhibits superior signal to noise ratio, low power consumption, high-sensitivity, high ION/IOFF ratio and high-detectivity as compared to the conventional IM-OCFET counterpart. These characteristics make the optimized JL-OCFET potentially suitable for developing low cost and ultrasensitive photodetectors for high-performance and low cost inter-chips data communication applications.
Wang, Xiaohua; Li, Xi; Rong, Mingzhe; Xie, Dingli; Ding, Dan; Wang, Zhixiang
2017-01-01
The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space (H, L, and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved. PMID:28106806
Wang, Xiaohua; Li, Xi; Rong, Mingzhe; Xie, Dingli; Ding, Dan; Wang, Zhixiang
2017-01-18
The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space ( H , L , and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved.
NASA Technical Reports Server (NTRS)
Lai, Jonathan Y.
1994-01-01
This dissertation focuses on the signal processing problems associated with the detection of hazardous windshears using airborne Doppler radar when weak weather returns are in the presence of strong clutter returns. In light of the frequent inadequacy of spectral-processing oriented clutter suppression methods, we model a clutter signal as multiple sinusoids plus Gaussian noise, and propose adaptive filtering approaches that better capture the temporal characteristics of the signal process. This idea leads to two research topics in signal processing: (1) signal modeling and parameter estimation, and (2) adaptive filtering in this particular signal environment. A high-resolution, low SNR threshold maximum likelihood (ML) frequency estimation and signal modeling algorithm is devised and proves capable of delineating both the spectral and temporal nature of the clutter return. Furthermore, the Least Mean Square (LMS) -based adaptive filter's performance for the proposed signal model is investigated, and promising simulation results have testified to its potential for clutter rejection leading to more accurate estimation of windspeed thus obtaining a better assessment of the windshear hazard.
A Subsystem Test Bed for Chinese Spectral Radioheliograph
NASA Astrophysics Data System (ADS)
Zhao, An; Yan, Yihua; Wang, Wei
2014-11-01
The Chinese Spectral Radioheliograph is a solar dedicated radio interferometric array that will produce high spatial resolution, high temporal resolution, and high spectral resolution images of the Sun simultaneously in decimetre and centimetre wave range. Digital processing of intermediate frequency signal is an important part in a radio telescope. This paper describes a flexible and high-speed digital down conversion system for the CSRH by applying complex mixing, parallel filtering, and extracting algorithms to process IF signal at the time of being designed and incorporates canonic-signed digit coding and bit-plane method to improve program efficiency. The DDC system is intended to be a subsystem test bed for simulation and testing for CSRH. Software algorithms for simulation and hardware language algorithms based on FPGA are written which use less hardware resources and at the same time achieve high performances such as processing high-speed data flow (1 GHz) with 10 MHz spectral resolution. An experiment with the test bed is illustrated by using geostationary satellite data observed on March 20, 2014. Due to the easy alterability of the algorithms on FPGA, the data can be recomputed with different digital signal processing algorithms for selecting optimum algorithm.
NASA Astrophysics Data System (ADS)
Kaba, M.; Zhou, F. C.; Lim, A.; Decoster, D.; Huignard, J.-P.; Tonda, S.; Dolfi, D.; Chazelas, J.
2007-11-01
The applications of microwave optoelectronics are extremely large since they extend from the Radio-over-Fibre to the Homeland security and defence systems. Then, the improved maturity of the optoelectronic components operating up to 40GHz permit to consider new optical processing functions (filtering, beamforming, ...) which can operate over very wideband microwave analogue signals. Specific performances are required which imply optical delay lines able to exhibit large Time-Bandwidth product values. It is proposed to evaluate slow light approach through highly dispersive structures based on either uniform or chirped Bragg Gratings. Therefore, we highlight the impact of the major parameters of such structures: index modulation depth, grating length, grating period, chirp coefficient and demonstrate the high potentiality of Bragg Grating for Large RF signals bandwidth processing under slow-light propagation.
Comparison of lifetime-based methods for 2D phosphor thermometry in high-temperature environment
NASA Astrophysics Data System (ADS)
Peng, Di; Liu, Yingzheng; Zhao, Xiaofeng; Kim, Kyung Chun
2016-09-01
This paper discusses the currently available techniques for 2D phosphor thermometry, and compares the performance of two lifetime-based methods: high-speed imaging and the dual-gate. High-speed imaging resolves luminescent decay with a fast frame rate, and has become a popular method for phosphor thermometry in recent years. But it has disadvantages such as high equipment cost and long data processing time, and it would fail at sufficiently high temperature due to a low signal-to-noise ratio and short lifetime. The dual-gate method only requires two images on the decay curve and therefore greatly reduces cost in hardware and processing time. A dual-gate method for phosphor thermometry has been developed and compared with the high-speed imaging method through both calibration and a jet impingement experiment. Measurement uncertainty has been evaluated for a temperature range of 473-833 K. The effects of several key factors on uncertainty have been discussed, including the luminescent signal level, the decay lifetime and temperature sensitivity. The results show that both methods are valid for 2D temperature sensing within the given range. The high-speed imaging method shows less uncertainty at low temperatures where the signal level and the lifetime are both sufficient, but its performance is degraded at higher temperatures due to a rapidly reduced signal and lifetime. For T > 750 K, the dual-gate method outperforms the high-speed imaging method thanks to its superiority in signal-to-noise ratio and temperature sensitivity. The dual-gate method has great potential for applications in high-temperature environments where the high-speed imaging method is not applicable.
Khan, Adil Mehmood; Siddiqi, Muhammad Hameed; Lee, Seok-Won
2013-09-27
Smartphone-based activity recognition (SP-AR) recognizes users' activities using the embedded accelerometer sensor. Only a small number of previous works can be classified as online systems, i.e., the whole process (pre-processing, feature extraction, and classification) is performed on the device. Most of these online systems use either a high sampling rate (SR) or long data-window (DW) to achieve high accuracy, resulting in short battery life or delayed system response, respectively. This paper introduces a real-time/online SP-AR system that solves this problem. Exploratory data analysis was performed on acceleration signals of 6 activities, collected from 30 subjects, to show that these signals are generated by an autoregressive (AR) process, and an accurate AR-model in this case can be built using a low SR (20 Hz) and a small DW (3 s). The high within class variance resulting from placing the phone at different positions was reduced using kernel discriminant analysis to achieve position-independent recognition. Neural networks were used as classifiers. Unlike previous works, true subject-independent evaluation was performed, where 10 new subjects evaluated the system at their homes for 1 week. The results show that our features outperformed three commonly used features by 40% in terms of accuracy for the given SR and DW.
NASA Astrophysics Data System (ADS)
Senkin, Sergey
2018-01-01
The ATLAS Collaboration has started a vast programme of upgrades in the context of high-luminosity LHC (HL-LHC) foreseen in 2024. We present here one of the frontend readout options, an ASIC called FATALIC, proposed for the high-luminosity phase LHC upgrade of the ATLAS Tile Calorimeter. Based on a 130 nm CMOS technology, FATALIC performs the complete signal processing, including amplification, shaping and digitisation. We describe the full characterisation of FATALIC and also the Optimal Filtering signal reconstruction method adapted to fully exploit the FATALIC three-range layout. Additionally we present the resolution performance of the whole chain measured using the charge injection system designed for calibration. Finally we discuss the results of the signal reconstruction used on real data collected during a preliminary beam test at CERN.
Performance of the Wavelet Decomposition on Massively Parallel Architectures
NASA Technical Reports Server (NTRS)
El-Ghazawi, Tarek A.; LeMoigne, Jacqueline; Zukor, Dorothy (Technical Monitor)
2001-01-01
Traditionally, Fourier Transforms have been utilized for performing signal analysis and representation. But although it is straightforward to reconstruct a signal from its Fourier transform, no local description of the signal is included in its Fourier representation. To alleviate this problem, Windowed Fourier transforms and then wavelet transforms have been introduced, and it has been proven that wavelets give a better localization than traditional Fourier transforms, as well as a better division of the time- or space-frequency plane than Windowed Fourier transforms. Because of these properties and after the development of several fast algorithms for computing the wavelet representation of any signal, in particular the Multi-Resolution Analysis (MRA) developed by Mallat, wavelet transforms have increasingly been applied to signal analysis problems, especially real-life problems, in which speed is critical. In this paper we present and compare efficient wavelet decomposition algorithms on different parallel architectures. We report and analyze experimental measurements, using NASA remotely sensed images. Results show that our algorithms achieve significant performance gains on current high performance parallel systems, and meet scientific applications and multimedia requirements. The extensive performance measurements collected over a number of high-performance computer systems have revealed important architectural characteristics of these systems, in relation to the processing demands of the wavelet decomposition of digital images.
High performance thermal imaging for the 21st century
NASA Astrophysics Data System (ADS)
Clarke, David J.; Knowles, Peter
2003-01-01
In recent years IR detector technology has developed from early short linear arrays. Such devices require high performance signal processing electronics to meet today's thermal imaging requirements for military and para-military applications. This paper describes BAE SYSTEMS Avionics Group's Sensor Integrated Modular Architecture thermal imager which has been developed alongside the group's Eagle 640×512 arrays to provide high performance imaging capability. The electronics architecture also supprots High Definition TV format 2D arrays for future growth capability.
Information theory analysis of sensor-array imaging systems for computer vision
NASA Technical Reports Server (NTRS)
Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.; Self, M. O.
1983-01-01
Information theory is used to assess the performance of sensor-array imaging systems, with emphasis on the performance obtained with image-plane signal processing. By electronically controlling the spatial response of the imaging system, as suggested by the mechanism of human vision, it is possible to trade-off edge enhancement for sensitivity, increase dynamic range, and reduce data transmission. Computational results show that: signal information density varies little with large variations in the statistical properties of random radiance fields; most information (generally about 85 to 95 percent) is contained in the signal intensity transitions rather than levels; and performance is optimized when the OTF of the imaging system is nearly limited to the sampling passband to minimize aliasing at the cost of blurring, and the SNR is very high to permit the retrieval of small spatial detail from the extensively blurred signal. Shading the lens aperture transmittance to increase depth of field and using a regular hexagonal sensor-array instead of square lattice to decrease sensitivity to edge orientation also improves the signal information density up to about 30 percent at high SNRs.
Symmetric Phase Only Filtering for Improved DPIV Data Processing
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
2006-01-01
The standard approach in Digital Particle Image Velocimetry (DPIV) data processing is to use Fast Fourier Transforms to obtain the cross-correlation of two single exposure subregions, where the location of the cross-correlation peak is representative of the most probable particle displacement across the subregion. This standard DPIV processing technique is analogous to Matched Spatial Filtering, a technique commonly used in optical correlators to perform the crosscorrelation operation. Phase only filtering is a well known variation of Matched Spatial Filtering, which when used to process DPIV image data yields correlation peaks which are narrower and up to an order of magnitude larger than those obtained using traditional DPIV processing. In addition to possessing desirable correlation plane features, phase only filters also provide superior performance in the presence of DC noise in the correlation subregion. When DPIV image subregions contaminated with surface flare light or high background noise levels are processed using phase only filters, the correlation peak pertaining only to the particle displacement is readily detected above any signal stemming from the DC objects. Tedious image masking or background image subtraction are not required. Both theoretical and experimental analyses of the signal-to-noise ratio performance of the filter functions are presented. In addition, a new Symmetric Phase Only Filtering (SPOF) technique, which is a variation on the traditional phase only filtering technique, is described and demonstrated. The SPOF technique exceeds the performance of the traditionally accepted phase only filtering techniques and is easily implemented in standard DPIV FFT based correlation processing with no significant computational performance penalty. An "Automatic" SPOF algorithm is presented which determines when the SPOF is able to provide better signal to noise results than traditional PIV processing. The SPOF based optical correlation processing approach is presented as a new paradigm for more robust cross-correlation processing of low signal-to-noise ratio DPIV image data."
CORDIC-based digital signal processing (DSP) element for adaptive signal processing
NASA Astrophysics Data System (ADS)
Bolstad, Gregory D.; Neeld, Kenneth B.
1995-04-01
The High Performance Adaptive Weight Computation (HAWC) processing element is a CORDIC based application specific DSP element that, when connected in a linear array, can perform extremely high throughput (100s of GFLOPS) matrix arithmetic operations on linear systems of equations in real time. In particular, it very efficiently performs the numerically intense computation of optimal least squares solutions for large, over-determined linear systems. Most techniques for computing solutions to these types of problems have used either a hard-wired, non-programmable systolic array approach, or more commonly, programmable DSP or microprocessor approaches. The custom logic methods can be efficient, but are generally inflexible. Approaches using multiple programmable generic DSP devices are very flexible, but suffer from poor efficiency and high computation latencies, primarily due to the large number of DSP devices that must be utilized to achieve the necessary arithmetic throughput. The HAWC processor is implemented as a highly optimized systolic array, yet retains some of the flexibility of a programmable data-flow system, allowing efficient implementation of algorithm variations. This provides flexible matrix processing capabilities that are one to three orders of magnitude less expensive and more dense than the current state of the art, and more importantly, allows a realizable solution to matrix processing problems that were previously considered impractical to physically implement. HAWC has direct applications in RADAR, SONAR, communications, and image processing, as well as in many other types of systems.
ASIC For Complex Fixed-Point Arithmetic
NASA Technical Reports Server (NTRS)
Petilli, Stephen G.; Grimm, Michael J.; Olson, Erlend M.
1995-01-01
Application-specific integrated circuit (ASIC) performs 24-bit, fixed-point arithmetic operations on arrays of complex-valued input data. High-performance, wide-band arithmetic logic unit (ALU) designed for use in computing fast Fourier transforms (FFTs) and for performing ditigal filtering functions. Other applications include general computations involved in analysis of spectra and digital signal processing.
NASA Astrophysics Data System (ADS)
Sujono, A.; Santoso, B.; Juwana, W. E.
2016-03-01
Problems of detonation (knock) on Otto engine (petrol engine) is completely unresolved problem until now, especially if want to improve the performance. This research did sound vibration signal processing engine with a microphone sensor, for the detection and identification of detonation. A microphone that can be mounted is not attached to the cylinder block, that's high temperature, so that its performance will be more stable, durable and inexpensive. However, the method of analysis is not very easy, because a lot of noise (interference). Therefore the use of new methods of pattern recognition, through filtration, and the regression function normalized envelope. The result is quite good, can achieve a success rate of about 95%.
User's manual SIG: a general-purpose signal processing program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lager, D.; Azevedo, S.
1983-10-25
SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Many of the basic operations one would perform on digitized data are contained in the core SIG package. Out of these core commands, more powerful signal processing algorithms may be built. Many different operations on time- and frequency-domain signals can be performed by SIG. They include operations on the samples of a signal, such as adding a scalar tomore » each sample, operations on the entire signal such as digital filtering, and operations on two or more signals such as adding two signals. Signals may be simulated, such as a pulse train or a random waveform. Graphics operations display signals and spectra.« less
Chen, Ming; He, Jing; Tang, Jin; Wu, Xian; Chen, Lin
2014-07-28
In this paper, a FPGAs-based real-time adaptively modulated 256/64/16QAM-encoded base-band OFDM transceiver with a high spectral efficiency up to 5.76bit/s/Hz is successfully developed, and experimentally demonstrated in a simple intensity-modulated direct-detection optical communication system. Experimental results show that it is feasible to transmit a raw signal bit rate of 7.19Gbps adaptively modulated real-time optical OFDM signal over 20km and 50km single mode fibers (SMFs). The performance comparison between real-time and off-line digital signal processing is performed, and the results show that there is a negligible power penalty. In addition, to obtain the best transmission performance, direct-current (DC) bias voltage for MZM and launch power into optical fiber links are explored in the real-time optical OFDM systems.
Advanced digital signal processing for short-haul and access network
NASA Astrophysics Data System (ADS)
Zhang, Junwen; Yu, Jianjun; Chi, Nan
2016-02-01
Digital signal processing (DSP) has been proved to be a successful technology recently in high speed and high spectrum-efficiency optical short-haul and access network, which enables high performances based on digital equalizations and compensations. In this paper, we investigate advanced DSP at the transmitter and receiver side for signal pre-equalization and post-equalization in an optical access network. A novel DSP-based digital and optical pre-equalization scheme has been proposed for bandwidth-limited high speed short-distance communication system, which is based on the feedback of receiver-side adaptive equalizers, such as least-mean-squares (LMS) algorithm and constant or multi-modulus algorithms (CMA, MMA). Based on this scheme, we experimentally demonstrate 400GE on a single optical carrier based on the highest ETDM 120-GBaud PDM-PAM-4 signal, using one external modulator and coherent detection. A line rate of 480-Gb/s is achieved, which enables 20% forward-error correction (FEC) overhead to keep the 400-Gb/s net information rate. The performance after fiber transmission shows large margin for both short range and metro/regional networks. We also extend the advanced DSP for short haul optical access networks by using high order QAMs. We propose and demonstrate a high speed multi-band CAP-WDM-PON system on intensity modulation, direct detection and digital equalizations. A hybrid modified cascaded MMA post-equalization schemes are used to equalize the multi-band CAP-mQAM signals. Using this scheme, we successfully demonstrates 550Gb/s high capacity WDMPON system with 11 WDM channels, 55 sub-bands, and 10-Gb/s per user in the downstream over 40-km SMF.
Signal processing of bedload transport impact amplitudes on accelerometer instrumented plates
USDA-ARS?s Scientific Manuscript database
This work was performed to help establish a data processing methodology for relating accelerometer signals caused by impacts of gravel on steel plates to the mass and size of the transported material. Signal processing was performed on impact plate data collected in flume experiments at the Nationa...
Dynamic Synchronous Capture Algorithm for an Electromagnetic Flowmeter.
Fanjiang, Yong-Yi; Lu, Shih-Wei
2017-04-10
This paper proposes a dynamic synchronous capture (DSC) algorithm to calculate the flow rate for an electromagnetic flowmeter. The characteristics of the DSC algorithm can accurately calculate the flow rate signal and efficiently convert an analog signal to upgrade the execution performance of a microcontroller unit (MCU). Furthermore, it can reduce interference from abnormal noise. It is extremely steady and independent of fluctuations in the flow measurement. Moreover, it can calculate the current flow rate signal immediately (m/s). The DSC algorithm can be applied to the current general MCU firmware platform without using DSP (Digital Signal Processing) or a high-speed and high-end MCU platform, and signal amplification by hardware reduces the demand for ADC accuracy, which reduces the cost.
Dynamic Synchronous Capture Algorithm for an Electromagnetic Flowmeter
Fanjiang, Yong-Yi; Lu, Shih-Wei
2017-01-01
This paper proposes a dynamic synchronous capture (DSC) algorithm to calculate the flow rate for an electromagnetic flowmeter. The characteristics of the DSC algorithm can accurately calculate the flow rate signal and efficiently convert an analog signal to upgrade the execution performance of a microcontroller unit (MCU). Furthermore, it can reduce interference from abnormal noise. It is extremely steady and independent of fluctuations in the flow measurement. Moreover, it can calculate the current flow rate signal immediately (m/s). The DSC algorithm can be applied to the current general MCU firmware platform without using DSP (Digital Signal Processing) or a high-speed and high-end MCU platform, and signal amplification by hardware reduces the demand for ADC accuracy, which reduces the cost. PMID:28394306
Real Time Phase Noise Meter Based on a Digital Signal Processor
NASA Technical Reports Server (NTRS)
Angrisani, Leopoldo; D'Arco, Mauro; Greenhall, Charles A.; Schiano Lo Morille, Rosario
2006-01-01
A digital signal-processing meter for phase noise measurement on sinusoidal signals is dealt with. It enlists a special hardware architecture, made up of a core digital signal processor connected to a data acquisition board, and takes advantage of a quadrature demodulation-based measurement scheme, already proposed by the authors. Thanks to an efficient measurement process and an optimized implementation of its fundamental stages, the proposed meter succeeds in exploiting all hardware resources in such an effective way as to gain high performance and real-time operation. For input frequencies up to some hundreds of kilohertz, the meter is capable both of updating phase noise power spectrum while seamlessly capturing the analyzed signal into its memory, and granting as good frequency resolution as few units of hertz.
NASA Astrophysics Data System (ADS)
Carson, John C.
1990-11-01
Various papers on materials, devices, techniques, and applications for X-plane focal plane array technology are presented. Individual topics addressed include: application of Z-plane technology to the remote sensing of the earth from GEO, applications of smart neuromorphic focal planes, image-processing of Z-plane technology, neural network Z-plane implementation with very high interconnection rates, using a small IR surveillance satellite for tactical applications, establishing requirements for homing applications, Z-plane technology. Also discussed are: on-array spike suppression signal processing, algorithms for on-focal-plane gamma circumvention and time-delay integration, current HYMOSS Z-technology, packaging of electrons for on- and off-FPA signal processing, space/performance qualification of tape automated bonded devices, automation in tape automated bonding, high-speed/high-volume radiometric testing of Z-technology focal planes, 128-layer HYMOSS-module fabrication issues, automation of IRFPA production processes.
Efficient block processing of long duration biotelemetric brain data for health care monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soumya, I.; Zia Ur Rahman, M., E-mail: mdzr-5@ieee.org; Rama Koti Reddy, D. V.
In real time clinical environment, the brain signals which doctor need to analyze are usually very long. Such a scenario can be made simple by partitioning the input signal into several blocks and applying signal conditioning. This paper presents various block based adaptive filter structures for obtaining high resolution electroencephalogram (EEG) signals, which estimate the deterministic components of the EEG signal by removing noise. To process these long duration signals, we propose Time domain Block Least Mean Square (TDBLMS) algorithm for brain signal enhancement. In order to improve filtering capability, we introduce normalization in the weight update recursion of TDBLMS,more » which results TD-B-normalized-least mean square (LMS). To increase accuracy and resolution in the proposed noise cancelers, we implement the time domain cancelers in frequency domain which results frequency domain TDBLMS and FD-B-Normalized-LMS. Finally, we have applied these algorithms on real EEG signals obtained from human using Emotive Epoc EEG recorder and compared their performance with the conventional LMS algorithm. The results show that the performance of the block based algorithms is superior to the LMS counter-parts in terms of signal to noise ratio, convergence rate, excess mean square error, misadjustment, and coherence.« less
Rapid encoding of relationships between spatially remote motion signals.
Maruya, Kazushi; Holcombe, Alex O; Nishida, Shin'ya
2013-02-06
For visual processing, the temporal correlation of remote local motion signals is a strong cue to detect meaningful large-scale structures in the retinal image, because related points are likely to move together regardless of their spatial separation. While the processing of multi-element motion patterns involved in biological motion and optic flow has been studied intensively, the encoding of simpler pairwise relationships between remote motion signals remains poorly understood. We investigated this process by measuring the temporal rate limit for perceiving the relationship of two motion directions presented at the same time at different spatial locations. Compared to luminance or orientation, motion comparison was more rapid. Performance remained very high even when interstimulus separation was increased up to 100°. Motion comparison also remained rapid regardless of whether the two motion directions were similar to or different from each other. The exception was a dramatic slowing when the elements formed an orthogonal "T," in which two motions do not perceptually group together. Motion presented at task-irrelevant positions did not reduce performance, suggesting that the rapid motion comparison could not be ascribed to global optic flow processing. Our findings reveal the existence and unique nature of specialized processing that encodes long-range relationships between motion signals for quick appreciation of global dynamic scene structure.
Research on application of photoelectric rotary encoder in space optical remote sensor
NASA Astrophysics Data System (ADS)
Zheng, Jun; Qi, Shao-fan; Wang, Yuan-yuan; Zhang, Zhan-dong
2016-11-01
For space optical remote sensor, especially wide swath detecting sensor, the focusing control system for the focal plane should be well designed to obtain the best image quality. The crucial part of this system is the measuring instrument. For previous implements, the potentiometer, which is essentially a voltage divider, is usually introduced to conduct the position in feedback closed-loop control process system. However, the performances of both electro-mechanical and digital potentiometers is limited in accuracy, temperature coefficients, and scale range. To have a better performance of focal plane moving detection, this article presents a new measuring implement with photoelectric rotary encoder, which consists of the photoelectric conversion system and the signal process system. In this novel focusing control system, the photoelectric conversion system is fixed on main axis, which can transform the angle information into a certain analog signal. Through the signal process system, after analog-to-digital converting and data format processing of the certain analog signal, the focusing control system can receive the digital precision angle position which can be used to deduct the current moving position of the focal plane. For utilization of space optical remote sensor in aerospace areas, the reliability design of photoelectric rotary encoder system should be considered with highest priority. As mentioned above, this photoelectric digital precision angle measurement device is well designed for this real-time control and dynamic measurement system, because its characters of high resolution, high accuracy, long endurance, and easy to maintain.
Separation of Intercepted Multi-Radar Signals Based on Parameterized Time-Frequency Analysis
NASA Astrophysics Data System (ADS)
Lu, W. L.; Xie, J. W.; Wang, H. M.; Sheng, C.
2016-09-01
Modern radars use complex waveforms to obtain high detection performance and low probabilities of interception and identification. Signals intercepted from multiple radars overlap considerably in both the time and frequency domains and are difficult to separate with primary time parameters. Time-frequency analysis (TFA), as a key signal-processing tool, can provide better insight into the signal than conventional methods. In particular, among the various types of TFA, parameterized time-frequency analysis (PTFA) has shown great potential to investigate the time-frequency features of such non-stationary signals. In this paper, we propose a procedure for PTFA to separate overlapped radar signals; it includes five steps: initiation, parameterized time-frequency analysis, demodulating the signal of interest, adaptive filtering and recovering the signal. The effectiveness of the method was verified with simulated data and an intercepted radar signal received in a microwave laboratory. The results show that the proposed method has good performance and has potential in electronic reconnaissance applications, such as electronic intelligence, electronic warfare support measures, and radar warning.
Advanced Signal Conditioners for Data-Acquisition Systems
NASA Technical Reports Server (NTRS)
Lucena, Angel; Perotti, Jose; Eckhoff, Anthony; Medelius, Pedro
2004-01-01
Signal conditioners embodying advanced concepts in analog and digital electronic circuitry and software have been developed for use in data-acquisition systems that are required to be compact and lightweight, to utilize electric energy efficiently, and to operate with high reliability, high accuracy, and high power efficiency, without intervention by human technicians. These signal conditioners were originally intended for use aboard spacecraft. There are also numerous potential terrestrial uses - especially in the fields of aeronautics and medicine, wherein it is necessary to monitor critical functions. Going beyond the usual analog and digital signal-processing functions of prior signal conditioners, the new signal conditioner performs the following additional functions: It continuously diagnoses its own electronic circuitry, so that it can detect failures and repair itself (as described below) within seconds. It continuously calibrates itself on the basis of a highly accurate and stable voltage reference, so that it can continue to generate accurate measurement data, even under extreme environmental conditions. It repairs itself in the sense that it contains a micro-controller that reroutes signals among redundant components as needed to maintain the ability to perform accurate and stable measurements. It detects deterioration of components, predicts future failures, and/or detects imminent failures by means of a real-time analysis in which, among other things, data on its present state are continuously compared with locally stored historical data. It minimizes unnecessary consumption of electric energy. The design architecture divides the signal conditioner into three main sections: an analog signal section, a digital module, and a power-management section. The design of the analog signal section does not follow the traditional approach of ensuring reliability through total redundancy of hardware: Instead, following an approach called spare parts tool box, the reliability of each component is assessed in terms of such considerations as risks of damage, mean times between failures, and the effects of certain failures on the performance of the signal conditioner as a whole system. Then, fewer or more spares are assigned for each affected component, pursuant to the results of this analysis, in order to obtain the required degree of reliability of the signal conditioner as a whole system. The digital module comprises one or more processors and field-programmable gate arrays, the number of each depending on the results of the aforementioned analysis. The digital module provides redundant control, monitoring, and processing of several analog signals. It is designed to minimize unnecessary consumption of electric energy, including, when possible, going into a low-power "sleep" mode that is implemented in firmware. The digital module communicates with external equipment via a personal-computer serial port. The digital module monitors the "health" of the rest of the signal conditioner by processing defined measurements and/or trends. It automatically makes adjustments to respond to channel failures, compensate for effects of temperature, and maintain calibration.
Gradient-based multiresolution image fusion.
Petrović, Valdimir S; Xydeas, Costas S
2004-02-01
A novel approach to multiresolution signal-level image fusion is presented for accurately transferring visual information from any number of input image signals, into a single fused image without loss of information or the introduction of distortion. The proposed system uses a "fuse-then-decompose" technique realized through a novel, fusion/decomposition system architecture. In particular, information fusion is performed on a multiresolution gradient map representation domain of image signal information. At each resolution, input images are represented as gradient maps and combined to produce new, fused gradient maps. Fused gradient map signals are processed, using gradient filters derived from high-pass quadrature mirror filters to yield a fused multiresolution pyramid representation. The fused output image is obtained by applying, on the fused pyramid, a reconstruction process that is analogous to that of conventional discrete wavelet transform. This new gradient fusion significantly reduces the amount of distortion artefacts and the loss of contrast information usually observed in fused images obtained from conventional multiresolution fusion schemes. This is because fusion in the gradient map domain significantly improves the reliability of the feature selection and information fusion processes. Fusion performance is evaluated through informal visual inspection and subjective psychometric preference tests, as well as objective fusion performance measurements. Results clearly demonstrate the superiority of this new approach when compared to conventional fusion systems.
RASSP signal processing architectures
NASA Astrophysics Data System (ADS)
Shirley, Fred; Bassett, Bob; Letellier, J. P.
1995-06-01
The rapid prototyping of application specific signal processors (RASSP) program is an ARPA/tri-service effort to dramatically improve the process by which complex digital systems, particularly embedded signal processors, are specified, designed, documented, manufactured, and supported. The domain of embedded signal processing was chosen because it is important to a variety of military and commercial applications as well as for the challenge it presents in terms of complexity and performance demands. The principal effort is being performed by two major contractors, Lockheed Sanders (Nashua, NH) and Martin Marietta (Camden, NJ). For both, improvements in methodology are to be exercised and refined through the performance of individual 'Demonstration' efforts. The Lockheed Sanders' Demonstration effort is to develop an infrared search and track (IRST) processor. In addition, both contractors' results are being measured by a series of externally administered (by Lincoln Labs) six-month Benchmark programs that measure process improvement as a function of time. The first two Benchmark programs are designing and implementing a synthetic aperture radar (SAR) processor. Our demonstration team is using commercially available VME modules from Mercury Computer to assemble a multiprocessor system scalable from one to hundreds of Intel i860 microprocessors. Custom modules for the sensor interface and display driver are also being developed. This system implements either proprietary or Navy owned algorithms to perform the compute-intensive IRST function in real time in an avionics environment. Our Benchmark team is designing custom modules using commercially available processor ship sets, communication submodules, and reconfigurable logic devices. One of the modules contains multiple vector processors optimized for fast Fourier transform processing. Another module is a fiberoptic interface that accepts high-rate input data from the sensors and provides video-rate output data to a display. This paper discusses the impact of simulation on choosing signal processing algorithms and architectures, drawing from the experiences of the Demonstration and Benchmark inter-company teams at Lockhhed Sanders, Motorola, Hughes, and ISX.
NASA Astrophysics Data System (ADS)
Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce; Hall, David; Niaz, Iftikhar Ahmad; Zhou, Yuchun; Sham, L. J.; Lo, Yu-Hwa
2015-08-01
Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanism based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.
Time reversal focusing of high amplitude sound in a reverberation chamber.
Willardson, Matthew L; Anderson, Brian E; Young, Sarah M; Denison, Michael H; Patchett, Brian D
2018-02-01
Time reversal (TR) is a signal processing technique that can be used for intentional sound focusing. While it has been studied in room acoustics, the application of TR to produce a high amplitude focus of sound in a room has not yet been explored. The purpose of this study is to create a virtual source of spherical waves with TR that are of sufficient intensity to study nonlinear acoustic propagation. A parameterization study of deconvolution, one-bit, clipping, and decay compensation TR methods is performed to optimize high amplitude focusing and temporal signal focus quality. Of all TR methods studied, clipping is shown to produce the highest amplitude focal signal. An experiment utilizing eight horn loudspeakers in a reverberation chamber is done with the clipping TR method. A peak focal amplitude of 9.05 kPa (173.1 dB peak re 20 μPa) is achieved. Results from this experiment indicate that this high amplitude focusing is a nonlinear process.
Pastore, Vito Paolo; Godjoski, Aleksandar; Martinoia, Sergio; Massobrio, Paolo
2018-01-01
We implemented an automated and efficient open-source software for the analysis of multi-site neuronal spike signals. The software package, named SPICODYN, has been developed as a standalone windows GUI application, using C# programming language with Microsoft Visual Studio based on .NET framework 4.5 development environment. Accepted input data formats are HDF5, level 5 MAT and text files, containing recorded or generated time series spike signals data. SPICODYN processes such electrophysiological signals focusing on: spiking and bursting dynamics and functional-effective connectivity analysis. In particular, for inferring network connectivity, a new implementation of the transfer entropy method is presented dealing with multiple time delays (temporal extension) and with multiple binary patterns (high order extension). SPICODYN is specifically tailored to process data coming from different Multi-Electrode Arrays setups, guarantying, in those specific cases, automated processing. The optimized implementation of the Delayed Transfer Entropy and the High-Order Transfer Entropy algorithms, allows performing accurate and rapid analysis on multiple spike trains from thousands of electrodes.
Near DC force measurement using PVDF sensors
NASA Astrophysics Data System (ADS)
Ramanathan, Arun Kumar; Headings, Leon M.; Dapino, Marcelo J.
2018-03-01
There is a need for high-performance force sensors capable of operating at frequencies near DC while producing a minimal mass penalty. Example application areas include steering wheel sensors, powertrain torque sensors, robotic arms, and minimally invasive surgery. The beta crystallographic phase polyvinylidene fluoride (PVDF) films are suitable for this purpose owing to their large piezoelectric constant. Unlike conventional capacitive sensors, beta crystallographic phase PVDF films exhibit a broad linear range and can potentially be designed to operate without complex electronics or signal processing. A fundamental challenge that prevents the implementation of PVDF in certain high-performance applications is their inability to measure static signals, which results from their first-order electrical impedance. Charge readout algorithms have been implemented which address this issue only partially, as they often require integration of the output signal to obtain the applied force profile, resulting in signal drift and signal processing complexities. In this paper, we propose a straightforward real time drift compensation strategy that is applicable to high output impedance PVDF films. This strategy makes it possible to utilize long sample times with a minimal loss of accuracy; our measurements show that the static output remains within 5% of the original value during half-hour measurements. The sensitivity and full-scale range are shown to be determined by the feedback capacitance of the charge amplifier. A linear model of the PVDF sensor system is developed and validated against experimental measurements, along with benchmark tests against a commercial load cell.
A general method for assessing brain-computer interface performance and its limitations
NASA Astrophysics Data System (ADS)
Hill, N. Jeremy; Häuser, Ann-Katrin; Schalk, Gerwin
2014-04-01
Objective. When researchers evaluate brain-computer interface (BCI) systems, we want quantitative answers to questions such as: How good is the system’s performance? How good does it need to be? and: Is it capable of reaching the desired level in future? In response to the current lack of objective, quantitative, study-independent approaches, we introduce methods that help to address such questions. We identified three challenges: (I) the need for efficient measurement techniques that adapt rapidly and reliably to capture a wide range of performance levels; (II) the need to express results in a way that allows comparison between similar but non-identical tasks; (III) the need to measure the extent to which certain components of a BCI system (e.g. the signal processing pipeline) not only support BCI performance, but also potentially restrict the maximum level it can reach. Approach. For challenge (I), we developed an automatic staircase method that adjusted task difficulty adaptively along a single abstract axis. For challenge (II), we used the rate of information gain between two Bernoulli distributions: one reflecting the observed success rate, the other reflecting chance performance estimated by a matched random-walk method. This measure includes Wolpaw’s information transfer rate as a special case, but addresses the latter’s limitations including its restriction to item-selection tasks. To validate our approach and address challenge (III), we compared four healthy subjects’ performance using an EEG-based BCI, a ‘Direct Controller’ (a high-performance hardware input device), and a ‘Pseudo-BCI Controller’ (the same input device, but with control signals processed by the BCI signal processing pipeline). Main results. Our results confirm the repeatability and validity of our measures, and indicate that our BCI signal processing pipeline reduced attainable performance by about 33% (21 bits min-1). Significance. Our approach provides a flexible basis for evaluating BCI performance and its limitations, across a wide range of tasks and task difficulties.
A novel multireceiver communications system configuration based on optimal estimation theory
NASA Technical Reports Server (NTRS)
Kumar, R.
1990-01-01
A multireceiver configuration for the purpose of carrier arraying and/or signal arraying is presented. Such a problem arises for example, in the NASA Deep Space Network where the same data-modulated signal from a spacecraft is received by a number of geographically separated antennas and the data detection must be efficiently performed on the basis of the various received signals. The proposed configuration is arrived at by formulating the carrier and/or signal arraying problem as an optimal estimation problem. Two specific solutions are proposed. The first solution is to simultaneously and optimally estimate the various phase processes received at different receivers with coupled phase locked loops (PLLs) wherein the individual PLLs acquire and track their respective receivers' phase processes, but are aided by each other in an optimal manner. However, when the phase processes are relatively weakly correlated, and for the case of relatively high values of symbol energy-to-noise spectral density ratio, a novel configuration for combining the data modulated, loop-output signals is proposed. The scheme can be extended to the case of low symbol energy-to-noise case by performing the combining/detection process over a multisymbol period. Such a configuration results in the minimization of the effective radio loss at the combiner output, and thus a maximization of energy per bit to noise-power spectral density ration is achieved.
Multigigahertz range-Doppler correlative processing in crystals
NASA Astrophysics Data System (ADS)
Harris, Todd L.; Babbitt, Wm. R.; Merkel, Kristian D.; Mohan, R. Krishna; Cole, Zachary; Olson, Andy
2004-06-01
Spectral-spatial holographic crystals have the unique ability to resolve fine spectral features (down to kilohertz) in an optical waveform over a broad bandwidth (over 10 gigahertz). This ability allows these crystals to record the spectral interference between spread spectrum waveforms that are temporally separated by up to several microseconds. Such crystals can be used for performing radar range-Doppler processing with fine temporal resolution. An added feature of these crystals is the long upper state lifetime of the absorbing rare earth ions, which allows the coherent integration of multiple recorded spectra, yielding integration gain and significant processing gain enhancement for selected code sets, as well as high resolution Doppler processing. Parallel processing of over 10,000 beams could be achieved with a crystal the size of a sugar cube. Spectral-spatial holographic processing and coherent integration of up to 2.5 Gigabit per second coded waveforms and of lengths up to 2047 bits has previously been reported. In this paper, we present the first demonstration of Doppler processing with these crystals. Doppler resolution down to a few hundred Hz for broadband radar signals can be achieved. The processing can be performed directly on signals modulated onto IF carriers (up to several gigahertz) without having to mix the signals down to baseband and without having to employ broadband analog to digital conversion.
Investigating Physicians' Views on Soft Signals in the Context of Their Peers' Performance.
van den Goor, Myra; Silkens, Milou; Heineman, Maas Jan; Lombarts, Kiki
2017-11-14
Physicians are responsible for delivering high quality of care. In cases of underperformance, hindsight knowledge indicates forewarning being potentially available in terms of concerns, signs, or signals. It is not known how the physicians involved perceive such signals. To openly explore how physicians perceive soft signals and react on them. In-depth interviews with 12 hospital-based physicians from various specialties and institutions following the interpretative phenomenological analysis approach. Physicians perceive soft signals as an observable deviation from a colleague's normal behavior, appearance, or communication. Once observed, they evaluate the signal by reflecting on it personally and/or by consulting others, resulting in either an active (i.e., speaking up) or passive (i.e., avoidance) reaction. Observer sensitivity, closeness to the peer, and cohesion of the physician group influence this observation-evaluation-reaction process. Physicians perceive soft signals as indicators of well-being and collegiality, not as concerns about performance or patient safety. They feel it is their responsibility to be sensitive to and deal with expressed signals. Creating a psychological safe culture could foster such an environment. Because a threat to physicians' well-being may indirectly affect their professional performance, soft signals require serious follow-up.
From SED HI concept to Pleiades FM detection unit measurements
NASA Astrophysics Data System (ADS)
Renard, Christophe; Dantes, Didier; Neveu, Claude; Lamard, Jean-Luc; Oudinot, Matthieu; Materne, Alex
2017-11-01
The first flight model PLEIADES high resolution instrument under Thales Alenia Space development, on behalf of CNES, is currently in integration and test phases. Based on the SED HI detection unit concept, PLEIADES detection unit has been fully qualified before the integration at telescope level. The main radiometric performances have been measured on engineering and first flight models. This paper presents the results of performances obtained on the both models. After a recall of the SED HI concept, the design and performances of the main elements (charge coupled detectors, focal plane and video processing unit), detection unit radiometric performances are presented and compared to the instrument specifications for the panchromatic and multispectral bands. The performances treated are the following: - video signal characteristics, - dark signal level and dark signal non uniformity, - photo-response non uniformity, - non linearity and differential non linearity, - temporal and spatial noises regarding system definitions PLEIADES detection unit allows tuning of different functions: reference and sampling time positioning, anti-blooming level, gain value, TDI line number. These parameters are presented with their associated criteria of optimisation to achieve system radiometric performances and their sensitivities on radiometric performances. All the results of the measurements performed by Thales Alenia Space on the PLEIADES detection units demonstrate the high potential of the SED HI concept for Earth high resolution observation system allowing optimised performances at instrument and satellite levels.
Design and Performance of the Astro-E/XRS Signal Processing System
NASA Technical Reports Server (NTRS)
Boyce, Kevin R.; Audley, M. D.; Baker, R. G.; Dumonthier, J. J.; Fujimoto, R.; Gendreau, K. C.; Ishisaki, Y.; Kelley, R. L.; Stahle, C. K.; Szymkowiak, A. E.
1999-01-01
We describe the signal processing system of the Astro-E XRS instrument. The Calorimeter Analog Processor (CAP) provides bias and power for the detectors and amplifies the detector signals by a factor of 20,000. The Calorimeter Digital Processor (CDP) performs the digital processing of the calorimeter signals, detecting X-ray pulses and analyzing them by optimal filtering. We describe the operation of pulse detection, Pulse height analysis. and risetime determination. We also discuss performance, including the three event grades (hi-res mid-res, and low-res). anticoincidence detection, counting rate dependence, and noise rejection.
Advanced technologies in the ASI MLRO towards a new generation laser ranging system
NASA Technical Reports Server (NTRS)
Varghese, Thomas; Bianco, Giuseppe
1994-01-01
Matera Laser Ranging Observatory (MLRO) is a high performance, highly automated optical and astronomical observatory currently under design and development by AlliedSignal for the Italian Space Agency (ASI). It is projected to become operational at the Centro Geodesia Spaziale in Matera, Italy, in 1997. MLRO, based on a 1.5-meter astronomical quality telescope, will perform ranging to spacecraft in earthbound orbits, lunar reflectors, and specially equipped deep space missions. The primary emphasis during design is to incorporate state-of-the-art technologies to produce an intelligent, automated, high accuracy ranging system that will mimic the characteristic features of a fifth generation laser ranging system. The telescope has multiple ports and foci to support future experiments in the areas of laser communications, lidar, astrometry, etc. The key features providing state-of-the-art ranging performance include: a diode-pumped picosecond (50 ps) laser, high speed (3-5 GHz) optoelectronic detection and signal processing, and a high accuracy (6 ps) high resolution (less than 2 ps) time measurement capability. The above combination of technologies is expected to yield millimeter laser ranging precision and accuracy on targets up to 300,000 km, surpassing the best operational instrument performance to date by a factor of five or more. Distributed processing and control using a state-of-the-art computing environment provides the framework for efficient operation, system optimization, and diagnostics. A computationally intelligent environment permits optimal planning, scheduling, tracking, and data processing. It also supports remote access, monitor, and control for joint experiments with other observatories.
A Normal Incidence X-ray Telescope (NIXT) sounding rocket payload
NASA Technical Reports Server (NTRS)
Golub, Leon
1989-01-01
Work on the High Resolution X-ray (HRX) Detector Program is described. In the laboratory and flight programs, multiple copies of a general purpose set of electronics which control the camera, signal processing and data acquisition, were constructed. A typical system consists of a phosphor convertor, image intensifier, a fiber optics coupler, a charge coupled device (CCD) readout, and a set of camera, signal processing and memory electronics. An initial rocket detector prototype camera was tested in flight and performed perfectly. An advanced prototype detector system was incorporated on another rocket flight, in which a high resolution heterojunction vidicon tube was used as the readout device for the H(alpha) telescope. The camera electronics for this tube were built in-house and included in the flight electronics. Performance of this detector system was 100 percent satisfactory. The laboratory X-ray system for operation on the ground is also described.
Functional Laser Trimming Of Thin Film Resistors On Silicon ICs
NASA Astrophysics Data System (ADS)
Mueller, Michael J.; Mickanin, Wes
1986-07-01
Modern Laser Wafer Trimming (LWT) technology achieves exceptional analog circuit performance and precision while maintain-ing the advantages of high production throughput and yield. Microprocessor-driven instrumentation has both emphasized the role of data conversion circuits and demanded sophisticated signal conditioning functions. Advanced analog semiconductor circuits with bandwidths over 1 GHz, and high precision, trimmable, thin-film resistors meet many of todays emerging circuit requirements. Critical to meeting these requirements are optimum choices of laser characteristics, proper materials, trimming process control, accurate modeling of trimmed resistor performance, and appropriate circuit design. Once limited exclusively to hand-crafted, custom integrated circuits, designs are now available in semi-custom circuit configurations. These are similar to those provided for digital designs and supported by computer-aided design (CAD) tools. Integrated with fully automated measurement and trimming systems, these quality circuits can now be produced in quantity to meet the requirements of communications, instrumentation, and signal processing markets.
High-Density Stretchable Electrode Grids for Chronic Neural Recording
Tybrandt, Klas; Khodagholy, Dion; Dielacher, Bernd; Stauffer, Flurin; Renz, Aline F.; Buzsáki, György; Vörös, János
2018-01-01
Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications. PMID:29488263
Nonlinear system identification of smart structures under high impact loads
NASA Astrophysics Data System (ADS)
Sarp Arsava, Kemal; Kim, Yeesock; El-Korchi, Tahar; Park, Hyo Seon
2013-05-01
The main purpose of this paper is to develop numerical models for the prediction and analysis of the highly nonlinear behavior of integrated structure control systems subjected to high impact loading. A time-delayed adaptive neuro-fuzzy inference system (TANFIS) is proposed for modeling of the complex nonlinear behavior of smart structures equipped with magnetorheological (MR) dampers under high impact forces. Experimental studies are performed to generate sets of input and output data for training and validation of the TANFIS models. The high impact load and current signals are used as the input disturbance and control signals while the displacement and acceleration responses from the structure-MR damper system are used as the output signals. The benchmark adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. Comparisons of the trained TANFIS models with experimental results demonstrate that the TANFIS modeling framework is an effective way to capture nonlinear behavior of integrated structure-MR damper systems under high impact loading. In addition, the performance of the TANFIS model is much better than that of ANFIS in both the training and the validation processes.
Next-Generation A/D Sampler ADS3000+ for VLBI2010
NASA Technical Reports Server (NTRS)
Takefuji, Kazuhiro; Takeuchi, Hiroshi; Tsutsumi, Masanori; Koyama, Yasuhiro
2010-01-01
A high-speed A/D sampler, called ADS3000+, has been developed in 2008, which can sample one analog signal up to 4 Gbps to versatile Linux PC. After A/D conversion, the ADS3000+ can perform digital signal processing such as real-time DBBC (Digital Base Band Conversion) and FIR filtering such as simple CW RFI filtering using the installed FPGAs. A 4 Gsps fringe test with the ADS3000+ has been successfully performed. The ADS3000+ will not exclusively be used for VLBI but will also be employed in other applications.
Pagan, Marino
2014-01-01
The responses of high-level neurons tend to be mixtures of many different types of signals. While this diversity is thought to allow for flexible neural processing, it presents a challenge for understanding how neural responses relate to task performance and to neural computation. To address these challenges, we have developed a new method to parse the responses of individual neurons into weighted sums of intuitive signal components. Our method computes the weights by projecting a neuron's responses onto a predefined orthonormal basis. Once determined, these weights can be combined into measures of signal modulation; however, in their raw form these signal modulation measures are biased by noise. Here we introduce and evaluate two methods for correcting this bias, and we report that an analytically derived approach produces performance that is robust and superior to a bootstrap procedure. Using neural data recorded from inferotemporal cortex and perirhinal cortex as monkeys performed a delayed-match-to-sample target search task, we demonstrate how the method can be used to quantify the amounts of task-relevant signals in heterogeneous neural populations. We also demonstrate how these intuitive quantifications of signal modulation can be related to single-neuron measures of task performance (d′). PMID:24920017
Timing Recovery Strategies in Magnetic Recording Systems
NASA Astrophysics Data System (ADS)
Kovintavewat, Piya
At some point in a digital communications receiver, the received analog signal must be sampled. Good performance requires that these samples be taken at the right times. The process of synchronizing the sampler with the received analog waveform is known as timing recovery. Conventional timing recovery techniques perform well only when operating at high signal-to-noise ratio (SNR). Nonetheless, iterative error-control codes allow reliable communication at very low SNR, where conventional techniques fail. This paper provides a detailed review on the timing recovery strategies based on per-survivor processing (PSP) that are capable of working at low SNR. We also investigate their performance in magnetic recording systems because magnetic recording is a primary method of storage for a variety of applications, including desktop, mobile, and server systems. Results indicate that the timing recovery strategies based on PSP perform better than the conventional ones and are thus worth being employed in magnetic recording systems.
A real-time spike sorting method based on the embedded GPU.
Zelan Yang; Kedi Xu; Xiang Tian; Shaomin Zhang; Xiaoxiang Zheng
2017-07-01
Microelectrode arrays with hundreds of channels have been widely used to acquire neuron population signals in neuroscience studies. Online spike sorting is becoming one of the most important challenges for high-throughput neural signal acquisition systems. Graphic processing unit (GPU) with high parallel computing capability might provide an alternative solution for increasing real-time computational demands on spike sorting. This study reported a method of real-time spike sorting through computing unified device architecture (CUDA) which was implemented on an embedded GPU (NVIDIA JETSON Tegra K1, TK1). The sorting approach is based on the principal component analysis (PCA) and K-means. By analyzing the parallelism of each process, the method was further optimized in the thread memory model of GPU. Our results showed that the GPU-based classifier on TK1 is 37.92 times faster than the MATLAB-based classifier on PC while their accuracies were the same with each other. The high-performance computing features of embedded GPU demonstrated in our studies suggested that the embedded GPU provide a promising platform for the real-time neural signal processing.
Simulation Test System of Non-Contact D-dot Voltage Transformer
NASA Astrophysics Data System (ADS)
Yang, Jie; Wang, Jingang; Luo, Ruixi; Gao, Can; Songnong, Li; Kongjun, Zhou
2016-04-01
The development trend of future voltage transformer in smart grid is non-contact measurement, miniaturization and intellectualization. This paper proposes one simulation test system of non-contact D-dot transformer for voltage measurement. This simulation test system consists of D-dot transformer, signal processing circuit and ground PC port. D-dot transformer realizes the indirect voltage measurement by measuring the change rate of electric displacement vector, a non-contact means (He et al. 2004, Principles and experiments of voltage transformer based on self-integrating D-dot probe. Proc CSEE 2014;15:2445-51). Specific to the characteristics of D-dot transformer signals, signal processing circuits with strong resistance to interference and distortion-free amplified sensor output signal are designed. WIFI wireless network is used to transmit the voltage detection to LabVIEW-based ground collection port and LabVIEW technology is adopted for signal reception, data processing and analysis and other functions. Finally, a test platform is established to simulate the performance of the whole test system of single-phase voltage transformer. Test results indicate that this voltage transformer has sound real-time performance, high accuracy and fast response speed and the simulation test system is stable and reliable and can be a new prototype of voltage transformers.
Analog integrated circuits design for processing physiological signals.
Li, Yan; Poon, Carmen C Y; Zhang, Yuan-Ting
2010-01-01
Analog integrated circuits (ICs) designed for processing physiological signals are important building blocks of wearable and implantable medical devices used for health monitoring or restoring lost body functions. Due to the nature of physiological signals and the corresponding application scenarios, the ICs designed for these applications should have low power consumption, low cutoff frequency, and low input-referred noise. In this paper, techniques for designing the analog front-end circuits with these three characteristics will be reviewed, including subthreshold circuits, bulk-driven MOSFETs, floating gate MOSFETs, and log-domain circuits to reduce power consumption; methods for designing fully integrated low cutoff frequency circuits; as well as chopper stabilization (CHS) and other techniques that can be used to achieve a high signal-to-noise performance. Novel applications using these techniques will also be discussed.
Direct bit detection receiver noise performance analysis for 32-PSK and 64-PSK modulated signals
NASA Astrophysics Data System (ADS)
Ahmed, Iftikhar
1987-12-01
Simple two channel receivers for 32-PSK and 64-PSK modulated signals have been proposed which allow digital data (namely bits), to be recovered directly instead of the traditional approach of symbol detection followed by symbol to bit mappings. This allows for binary rather than M-ary receiver decisions, reduces the amount of signal processing operations and permits parallel recovery of the bits. The noise performance of these receivers quantified by the Bit Error Rate (BER) assuming an Additive White Gaussian Noise interference model is evaluated as a function of Eb/No, the signal to noise ratio, and transmitted phase angles of the signals. The performance results of the direct bit detection receivers (DBDR) when compared to that of convectional phase measurement receivers demonstrate that DBDR's are optimum in BER sense. The simplicity of the receiver implementations and the BER of the delivered data make DBDR's attractive for high speed, spectrally efficient digital communication systems.
Multibeam Gpu Transient Pipeline for the Medicina BEST-2 Array
NASA Astrophysics Data System (ADS)
Magro, A.; Hickish, J.; Adami, K. Z.
2013-09-01
Radio transient discovery using next generation radio telescopes will pose several digital signal processing and data transfer challenges, requiring specialized high-performance backends. Several accelerator technologies are being considered as prototyping platforms, including Graphics Processing Units (GPUs). In this paper we present a real-time pipeline prototype capable of processing multiple beams concurrently, performing Radio Frequency Interference (RFI) rejection through thresholding, correcting for the delay in signal arrival times across the frequency band using brute-force dedispersion, event detection and clustering, and finally candidate filtering, with the capability of persisting data buffers containing interesting signals to disk. This setup was deployed at the BEST-2 SKA pathfinder in Medicina, Italy, where several benchmarks and test observations of astrophysical transients were conducted. These tests show that on the deployed hardware eight 20 MHz beams can be processed simultaneously for 640 Dispersion Measure (DM) values. Furthermore, the clustering and candidate filtering algorithms employed prove to be good candidates for online event detection techniques. The number of beams which can be processed increases proportionally to the number of servers deployed and number of GPUs, making it a viable architecture for current and future radio telescopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.
Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less
Coherent Detection of High-Rate Optical PPM Signals
NASA Technical Reports Server (NTRS)
Vilnrotter, Victor; Fernandez, Michela Munoz
2006-01-01
A method of coherent detection of high-rate pulse-position modulation (PPM) on a received laser beam has been conceived as a means of reducing the deleterious effects of noise and atmospheric turbulence in free-space optical communication using focal-plane detector array technologies. In comparison with a receiver based on direct detection of the intensity modulation of a PPM signal, a receiver based on the present method of coherent detection performs well at much higher background levels. In principle, the coherent-detection receiver can exhibit quantum-limited performance despite atmospheric turbulence. The key components of such a receiver include standard receiver optics, a laser that serves as a local oscillator, a focal-plane array of photodetectors, and a signal-processing and data-acquisition assembly needed to sample the focal-plane fields and reconstruct the pulsed signal prior to detection. The received PPM-modulated laser beam and the local-oscillator beam are focused onto the photodetector array, where they are mixed in the detection process. The two lasers are of the same or nearly the same frequency. If the two lasers are of different frequencies, then the coherent detection process is characterized as heterodyne and, using traditional heterodyne-detection terminology, the difference between the two laser frequencies is denoted the intermediate frequency (IF). If the two laser beams are of the same frequency and remain aligned in phase, then the coherent detection process is characterized as homodyne (essentially, heterodyne detection at zero IF). As a result of the inherent squaring operation of each photodetector, the output current includes an IF component that contains the signal modulation. The amplitude of the IF component is proportional to the product of the local-oscillator signal amplitude and the PPM signal amplitude. Hence, by using a sufficiently strong local-oscillator signal, one can make the PPM-modulated IF signal strong enough to overcome thermal noise in the receiver circuits: this is what makes it possible to achieve near-quantum-limited detection in the presence of strong background. Following quantum-limited coherent detection, the outputs of the individual photodetectors are automatically aligned in phase by use of one or more adaptive array compensation algorithms [e.g., the least-mean-square (LMS) algorithm]. Then the outputs are combined and the resulting signal is processed to extract the high-rate information, as though the PPM signal were received by a single photodetector. In a continuing series of experiments to test this method (see Fig. 1), the local oscillator has a wavelength of 1,064 nm, and another laser is used as a signal transmitter at a slightly different wavelength to establish an IF of about 6 MHz. There are 16 photodetectors in a 4 4 focal-plane array; the detector outputs are digitized at a sampling rate of 25 MHz, and the signals in digital form are combined by use of the LMS algorithm. Convergence of the adaptive combining algorithm in the presence of simulated atmospheric turbulence for optical PPM signals has already been demonstrated in the laboratory; the combined output is shown in Fig. 2(a), and Fig. 2(b) shows the behavior of the phase of the combining weights as a function of time (or samples). We observe that the phase of the weights has a sawtooth shape due to the continuously changing phase in the down-converted output, which is not exactly at zero frequency. Detailed performance analysis of this coherent free-space optical communication system in the presence of simulated atmospheric turbulence is currently under way.
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Miko, Joseph; Bradley, Damon; Heinzen, Katherine
2008-01-01
NASA Hubble Space Telescope (HST) and upcoming cosmology science missions carry instruments with multiple focal planes populated with many large sensor detector arrays. These sensors are passively cooled to low temperatures for low-level light (L3) and near-infrared (NIR) signal detection, and the sensor readout electronics circuitry must perform at extremely low noise levels to enable new required science measurements. Because we are at the technological edge of enhanced performance for sensors and readout electronics circuitry, as determined by thermal noise level at given temperature in analog domain, we must find new ways of further compensating for the noise in the signal digital domain. To facilitate this new approach, state-of-the-art sensors are augmented at their array hardware boundaries by non-illuminated reference pixels, which can be used to reduce noise attributed to sensors. There are a few proposed methodologies of processing in the digital domain the information carried by reference pixels, as employed by the Hubble Space Telescope and the James Webb Space Telescope Projects. These methods involve using spatial and temporal statistical parameters derived from boundary reference pixel information to enhance the active (non-reference) pixel signals. To make a step beyond this heritage methodology, we apply the NASA-developed technology known as the Hilbert- Huang Transform Data Processing System (HHT-DPS) for reference pixel information processing and its utilization in reconfigurable hardware on-board a spaceflight instrument or post-processing on the ground. The methodology examines signal processing for a 2-D domain, in which high-variance components of the thermal noise are carried by both active and reference pixels, similar to that in processing of low-voltage differential signals and subtraction of a single analog reference pixel from all active pixels on the sensor. Heritage methods using the aforementioned statistical parameters in the digital domain (such as statistical averaging of the reference pixels themselves) zeroes out the high-variance components, and the counterpart components in the active pixels remain uncorrected. This paper describes how the new methodology was demonstrated through analysis of fast-varying noise components using the Hilbert-Huang Transform Data Processing System tool (HHT-DPS) developed at NASA and the high-level programming language MATLAB (Trademark of MathWorks Inc.), as well as alternative methods for correcting for the high-variance noise component, using an HgCdTe sensor data. The NASA Hubble Space Telescope data post-processing, as well as future deep-space cosmology projects on-board instrument data processing from all the sensor channels, would benefit from this effort.
NASA Technical Reports Server (NTRS)
Pan, Jianqiang
1992-01-01
Several important problems in the fields of signal processing and model identification, such as system structure identification, frequency response determination, high order model reduction, high resolution frequency analysis, deconvolution filtering, and etc. Each of these topics involves a wide range of applications and has received considerable attention. Using the Fourier based sinusoidal modulating signals, it is shown that a discrete autoregressive model can be constructed for the least squares identification of continuous systems. Some identification algorithms are presented for both SISO and MIMO systems frequency response determination using only transient data. Also, several new schemes for model reduction were developed. Based upon the complex sinusoidal modulating signals, a parametric least squares algorithm for high resolution frequency estimation is proposed. Numerical examples show that the proposed algorithm gives better performance than the usual. Also, the problem was studied of deconvolution and parameter identification of a general noncausal nonminimum phase ARMA system driven by non-Gaussian stationary random processes. Algorithms are introduced for inverse cumulant estimation, both in the frequency domain via the FFT algorithms and in the domain via the least squares algorithm.
Signal quality and Bayesian signal processing in neurofeedback based on real-time fMRI.
Koush, Yury; Zvyagintsev, Mikhail; Dyck, Miriam; Mathiak, Krystyna A; Mathiak, Klaus
2012-01-02
Real-time fMRI allows analysis and visualization of the brain activity online, i.e. within one repetition time. It can be used in neurofeedback applications where subjects attempt to control an activation level in a specified region of interest (ROI) of their brain. The signal derived from the ROI is contaminated with noise and artifacts, namely with physiological noise from breathing and heart beat, scanner drift, motion-related artifacts and measurement noise. We developed a Bayesian approach to reduce noise and to remove artifacts in real-time using a modified Kalman filter. The system performs several signal processing operations: subtraction of constant and low-frequency signal components, spike removal and signal smoothing. Quantitative feedback signal quality analysis was used to estimate the quality of the neurofeedback time series and performance of the applied signal processing on different ROIs. The signal-to-noise ratio (SNR) across the entire time series and the group event-related SNR (eSNR) were significantly higher for the processed time series in comparison to the raw data. Applied signal processing improved the t-statistic increasing the significance of blood oxygen level-dependent (BOLD) signal changes. Accordingly, the contrast-to-noise ratio (CNR) of the feedback time series was improved as well. In addition, the data revealed increase of localized self-control across feedback sessions. The new signal processing approach provided reliable neurofeedback, performed precise artifacts removal, reduced noise, and required minimal manual adjustments of parameters. Advanced and fast online signal processing algorithms considerably increased the quality as well as the information content of the control signal which in turn resulted in higher contingency in the neurofeedback loop. Copyright © 2011 Elsevier Inc. All rights reserved.
A High Performance 50% Clock Duty Cycle Regulator
NASA Astrophysics Data System (ADS)
Huang, Peng; Deng, Hong-Hui; Yin, Yong-Sheng
A low-jitter clock duty cycle corrector circuit applied in high performance ADC is presented in the paper, such circuits can change low accuracy input signals with different frequencies into 50% pulse width clock. The result have show that the circuit could lock duty cycle rapidly with an accuracy of 50% ± 1% in 200ns. This circuit have 10%-90% of duty cycle input, and clock jitter could be suppressed to less than 5ps. The method used in the circuit, which provides little relationship with the noise and process mismatch, is widely used Implemented in 0.18μm CMOS process.
Low-Cutoff, High-Pass Digital Filtering of Neural Signals
NASA Technical Reports Server (NTRS)
Mojarradi,Mohammad; Johnson, Travis; Ortiz, Monico; Cunningham, Thomas; Andersen, Richard
2004-01-01
The figure depicts the major functional blocks of a system, now undergoing development, for conditioning neural signals acquired by electrodes implanted in a brain. The overall functions to be performed by this system can be summarized as preamplification, multiplexing, digitization, and high-pass filtering. Other systems under development for recording neural signals typically contain resistor-capacitor analog low-pass filters characterized by cutoff frequencies in the vicinity of 100 Hz. In the application for which this system is being developed, there is a requirement for a cutoff frequency of 5 Hz. Because the resistors needed to obtain such a low cutoff frequency would be impractically large, it was decided to perform low-pass filtering by use of digital rather than analog circuitry. In addition, it was decided to timemultiplex the digitized signals from the multiple input channels into a single stream of data in a single output channel. The signal in each input channel is first processed by a preamplifier having a voltage gain of approximately 50. Embedded in each preamplifier is a low-pass anti-aliasing filter having a cutoff frequency of approximately 10 kHz. The anti-aliasing filters make it possible to couple the outputs of the preamplifiers to the input ports of a multiplexer. The output of the multiplexer is a single stream of time-multiplexed samples of analog signals. This stream is processed by a main differential amplifier, the output of which is sent to an analog-to-digital converter (ADC). The output of the ADC is sent to a digital signal processor (DSP).
Russo, Michael B; Stetz, Melba C; Thomas, Maria L
2005-07-01
Judgment, decision making, and situational awareness are higher-order mental abilities critically important to operational cognitive performance. Higher-order mental abilities rely on intact functioning of multiple brain regions, including the prefrontal, thalamus, and parietal areas. Real-time monitoring of individuals for cognitive performance capacity via an approach based on sampling multiple neurophysiologic signals and integrating those signals with performance prediction models potentially provides a method of supporting warfighters' and commanders' decision making and other operationally relevant mental processes and is consistent with the goals of augmented cognition. Cognitive neurophysiological assessments that directly measure brain function and subsequent cognition include positron emission tomography, functional magnetic resonance imaging, mass spectroscopy, near-infrared spectroscopy, magnetoencephalography, and electroencephalography (EEG); however, most direct measures are not practical to use in operational environments. More practical, albeit indirect measures that are generated by, but removed from the actual neural sources, are movement activity, oculometrics, heart rate, and voice stress signals. The goal of the papers in this section is to describe advances in selected direct and indirect cognitive neurophysiologic monitoring techniques as applied for the ultimate purpose of preventing operational performance failures. These papers present data acquired in a wide variety of environments, including laboratory, simulator, and clinical arenas. The papers discuss cognitive neurophysiologic measures such as digital signal processing wrist-mounted actigraphy; oculometrics including blinks, saccadic eye movements, pupillary movements, the pupil light reflex; and high-frequency EEG. These neurophysiological indices are related to cognitive performance as measured through standard test batteries and simulators with conditions including sleep loss, time on task, and aviation flight-induced fatigue.
NASA Astrophysics Data System (ADS)
Martinez, J. D.; Benlloch, J. M.; Cerda, J.; Lerche, Ch. W.; Pavon, N.; Sebastia, A.
2004-06-01
This paper is framed into the Positron Emission Mammography (PEM) project, whose aim is to develop an innovative gamma ray sensor for early breast cancer diagnosis. Currently, breast cancer is detected using low-energy X-ray screening. However, functional imaging techniques such as PET/FDG could be employed to detect breast cancer and track disease changes with greater sensitivity. Furthermore, a small and less expensive PET camera can be utilized minimizing main problems of whole body PET. To accomplish these objectives, we are developing a new gamma ray sensor based on a newly released photodetector. However, a dedicated PEM detector requires an adequate data acquisition (DAQ) and processing system. The characterization of gamma events needs a free-running analog-to-digital converter (ADC) with sampling rates of more than 50 Ms/s and must achieve event count rates up to 10 MHz. Moreover, comprehensive data processing must be carried out to obtain event parameters necessary for performing the image reconstruction. A new generation digital signal processor (DSP) has been used to comply with these requirements. This device enables us to manage the DAQ system at up to 80 Ms/s and to execute intensive calculi over the detector signals. This paper describes our designed DAQ and processing architecture whose main features are: very high-speed data conversion, multichannel synchronized acquisition with zero dead time, a digital triggering scheme, and high throughput of data with an extensive optimization of the signal processing algorithms.
STAR Performance with SPEAR (Signal Processing Electronic Attack RFIC)
2017-03-01
STAR operation in the presence of 1 kW EIRP power , independently of the choice of transmitter in use. The paper reports on the status of the SPEAR...prototype will be presented. To the authors’ knowledge , the measured results from the prototype already demonstrate state-of-the-art STAR performance...self-generated high power interferers. SPEAR is an innovative approach to the full duplex challenge that meets the high demands of military systems
Rapid Prototyping of High Performance Signal Processing Applications
2011-01-01
understand- ing broadband wireless networking . Prentice Hall, 2007. [4] J.W.M. Baars, L.R. D’Addario, and A.R. Thompson. Radio astronomy in the... wireless sensor net- works. In Proceedings of the IEEE Real-Time Systems Symposium, pages 214–223, Tucson, Arizona, December 2007. 147 [74] C. Shen, H. Wu...computing platforms. In this region of high performance DSP, rapid prototyping is critical for faster time-to-market (e.g., in the wireless
NASA Astrophysics Data System (ADS)
Ocampo Giraldo, Luis A.; Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Cui, Yonggang; De Geronimo, Gianluigi; Gul, Rubi; Fried, Jack; Hossain, Anwar; Unlu, Kenan; Vernon, Emerson; Yang, Ge; James, Ralph B.
2017-05-01
High-resolution position-sensitive detectors have been proposed to correct response non-uniformities in Cadmium Zinc Telluride (CZT) crystals by virtually subdividing the detectors area into small voxels and equalizing responses from each voxel. 3D pixelated detectors coupled with multichannel readout electronics are the most advanced type of CZT devices offering many options in signal processing and enhancing detector performance. One recent innovation proposed for pixelated detectors is to use the induced (transient) signals from neighboring pixels to achieve high sub-pixel position resolution while keeping large pixel sizes. The main hurdle in achieving this goal is the relatively low signal induced on the neighboring pixels because of the electrostatic shielding effect caused by the collecting pixel. In addition, to achieve high position sensitivity one should rely on time-correlated transient signals, which means that digitized output signals must be used. We present the results of our studies to measure the amplitude of the pixel signals so that these can be used to measure positions of the interaction points. This is done with the processing of digitized correlated time signals measured from several adjacent pixels taking into account rise-time and charge-sharing effects. In these measurements we used a focused pulsed laser to generate a 10-micron beam at one milliwatt (650-nm wavelength) over the detector surface while the collecting pixel was moved in cardinal directions. The results include measurements that present the benefits of combining conventional pixel geometry with digital pulse processing for the best approach in achieving sub-pixel position resolution with the pixel dimensions of approximately 2 mm. We also present the sub-pixel resolution measurements at comparable energies from various gamma emitting isotopes.
Non-destructive testing method and apparatus utilizing phase multiplication holography
Collins, H. Dale; Prince, James M.; Davis, Thomas J.
1984-01-01
An apparatus and method for imaging of structural characteristics in test objects using radiation amenable to coherent signal processing methods. Frequency and phase multiplication of received flaw signals is used to simulate a test wavelength at least one to two orders of magnitude smaller than the actual wavelength. The apparent reduction in wavelength between the illumination and recording radiation performs a frequency translation hologram. The hologram constructed with a high synthetic frequency and flaw phase multiplication is similar to a conventional acoustic hologram construction at the high frequency.
Seismic signal processing on heterogeneous supercomputers
NASA Astrophysics Data System (ADS)
Gokhberg, Alexey; Ermert, Laura; Fichtner, Andreas
2015-04-01
The processing of seismic signals - including the correlation of massive ambient noise data sets - represents an important part of a wide range of seismological applications. It is characterized by large data volumes as well as high computational input/output intensity. Development of efficient approaches towards seismic signal processing on emerging high performance computing systems is therefore essential. Heterogeneous supercomputing systems introduced in the recent years provide numerous computing nodes interconnected via high throughput networks, every node containing a mix of processing elements of different architectures, like several sequential processor cores and one or a few graphical processing units (GPU) serving as accelerators. A typical representative of such computing systems is "Piz Daint", a supercomputer of the Cray XC 30 family operated by the Swiss National Supercomputing Center (CSCS), which we used in this research. Heterogeneous supercomputers provide an opportunity for manifold application performance increase and are more energy-efficient, however they have much higher hardware complexity and are therefore much more difficult to program. The programming effort may be substantially reduced by the introduction of modular libraries of software components that can be reused for a wide class of seismology applications. The ultimate goal of this research is design of a prototype for such library suitable for implementing various seismic signal processing applications on heterogeneous systems. As a representative use case we have chosen an ambient noise correlation application. Ambient noise interferometry has developed into one of the most powerful tools to image and monitor the Earth's interior. Future applications will require the extraction of increasingly small details from noise recordings. To meet this demand, more advanced correlation techniques combined with very large data volumes are needed. This poses new computational problems that require dedicated HPC solutions. The chosen application is using a wide range of common signal processing methods, which include various IIR filter designs, amplitude and phase correlation, computing the analytic signal, and discrete Fourier transforms. Furthermore, various processing methods specific for seismology, like rotation of seismic traces, are used. Efficient implementation of all these methods on the GPU-accelerated systems represents several challenges. In particular, it requires a careful distribution of work between the sequential processors and accelerators. Furthermore, since the application is designed to process very large volumes of data, special attention had to be paid to the efficient use of the available memory and networking hardware resources in order to reduce intensity of data input and output. In our contribution we will explain the software architecture as well as principal engineering decisions used to address these challenges. We will also describe the programming model based on C++ and CUDA that we used to develop the software. Finally, we will demonstrate performance improvements achieved by using the heterogeneous computing architecture. This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID d26.
Fault tolerant, radiation hard, high performance digital signal processor
NASA Technical Reports Server (NTRS)
Holmann, Edgar; Linscott, Ivan R.; Maurer, Michael J.; Tyler, G. L.; Libby, Vibeke
1990-01-01
An architecture has been developed for a high-performance VLSI digital signal processor that is highly reliable, fault-tolerant, and radiation-hard. The signal processor, part of a spacecraft receiver designed to support uplink radio science experiments at the outer planets, organizes the connections between redundant arithmetic resources, register files, and memory through a shuffle exchange communication network. The configuration of the network and the state of the processor resources are all under microprogram control, which both maps the resources according to algorithmic needs and reconfigures the processing should a failure occur. In addition, the microprogram is reloadable through the uplink to accommodate changes in the science objectives throughout the course of the mission. The processor will be implemented with silicon compiler tools, and its design will be verified through silicon compilation simulation at all levels from the resources to full functionality. By blending reconfiguration with redundancy the processor implementation is fault-tolerant and reliable, and possesses the long expected lifetime needed for a spacecraft mission to the outer planets.
Micromechanical Signal Processors
NASA Astrophysics Data System (ADS)
Nguyen, Clark Tu-Cuong
Completely monolithic high-Q micromechanical signal processors constructed of polycrystalline silicon and integrated with CMOS electronics are described. The signal processors implemented include an oscillator, a bandpass filter, and a mixer + filter--all of which are components commonly required for up- and down-conversion in communication transmitters and receivers, and all of which take full advantage of the high Q of micromechanical resonators. Each signal processor is designed, fabricated, then studied with particular attention to the performance consequences associated with miniaturization of the high-Q element. The fabrication technology which realizes these components merges planar integrated circuit CMOS technologies with those of polysilicon surface micromachining. The technologies are merged in a modular fashion, where the CMOS is processed in the first module, the microstructures in a following separate module, and at no point in the process sequence are steps from each module intermixed. Although the advantages of such modularity include flexibility in accommodating new module technologies, the developed process constrained the CMOS metallization to a high temperature refractory metal (tungsten metallization with TiSi _2 contact barriers) and constrained the micromachining process to long-term temperatures below 835^circC. Rapid-thermal annealing (RTA) was used to relieve residual stress in the mechanical structures. To reduce the complexity involved with developing this merged process, capacitively transduced resonators are utilized. High-Q single resonator and spring-coupled micromechanical resonator filters are also investigated, with particular attention to noise performance, bandwidth control, and termination design. The noise in micromechanical filters is found to be fairly high due to poor electromechanical coupling on the micro-scale with present-day technologies. Solutions to this high series resistance problem are suggested, including smaller electrode-to-resonator gaps to increase the coupling capacitance. Active Q-control techniques are demonstrated which control the bandwidth of micromechanical filters and simulate filter terminations with little passband distortion. Noise analysis shows that these active techniques are relatively quiet when compared with other resistive techniques. Modulation techniques are investigated whereby a single resonator or a filter constructed from several such resonators can provide both a mixing and a filtering function, or a filtering and amplitude modulation function. These techniques center around the placement of a carrier signal on the micromechanical resonator. Finally, micro oven stabilization is investigated in an attempt to null the temperature coefficient of a polysilicon micromechanical resonator. Here, surface micromachining procedures are utilized to fabricate a polysilicon resonator on a microplatform--two levels of suspension--equipped with heater and temperature sensing resistors, which are then imbedded in a feedback loop to control the platform (and resonator) temperature. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Snoeys, W.; Aglieri Rinella, G.; Hillemanns, H.; Kugathasan, T.; Mager, M.; Musa, L.; Riedler, P.; Reidt, F.; Van Hoorne, J.; Fenigstein, A.; Leitner, T.
2017-11-01
For the upgrade of its Inner Tracking System, the ALICE experiment plans to install a new tracker fully constructed with monolithic active pixel sensors implemented in a standard 180 nm CMOS imaging sensor process, with a deep pwell allowing full CMOS within the pixel. Reverse substrate bias increases the tolerance to non-ionizing energy loss (NIEL) well beyond 1013 1 MeVneq /cm2, but does not allow full depletion of the sensitive layer and hence full charge collection by drift, mandatory for more extreme radiation tolerance. This paper describes a process modification to fully deplete the epitaxial layer even with a small charge collection electrode. It uses a low dose blanket deep high energy n-type implant in the pixel array and does not require significant circuit or layout changes so that the same design can be fabricated both in the standard and modified process. When exposed to a 55 Fe source at a reverse substrate bias of -6 V, pixels implemented in the standard and the modified process in a low and high dose variant for the deep n-type implant respectively yield a signal of about 115 mV, 110 mV and 90 mV at the output of a follower circuit. Signal rise times heavily affected by the speed of this circuit are 27 . 8 + / - 5 ns, 23 . 2 + / - 4 . 2 ns, and 22 . 2 + / - 3 . 7 ns rms, respectively. In a different setup, the single pixel signal from a 90 Sr source only degrades by less than 20% for the modified process after a 1015 1 MeVneq /cm2 irradiation, while the signal rise time only degrades by about 16 + / - 2 ns to 19 + / - 2 . 8 ns rms. From sensors implemented in the standard process no useful signal could be extracted after the same exposure. These first results indicate the process modification maintains low sensor capacitance, improves timing performance and increases NIEL tolerance by at least an order of magnitude.
Load-induced modulation of signal transduction networks.
Jiang, Peng; Ventura, Alejandra C; Sontag, Eduardo D; Merajver, Sofia D; Ninfa, Alexander J; Del Vecchio, Domitilla
2011-10-11
Biological signal transduction networks are commonly viewed as circuits that pass along information--in the process amplifying signals, enhancing sensitivity, or performing other signal-processing tasks--to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load. Specifically, we found that non-intuitive changes in response dynamics occurred for a covalent modification cycle when load was present. Loading altered the response time of a system, depending on whether the activity of one of the enzymes was maximal and the other was operating at its minimal rate or whether both enzymes were operating at submaximal rates. These two conditions, which we call "limit regime" and "intermediate regime," were associated with increased or decreased response times, respectively. The bandwidth, the range of frequency in which the system can process information, decreased in the presence of load, suggesting that downstream targets participate in establishing a balance between noise-filtering capabilities and a circuit's ability to process high-frequency stimulation. Nodes in a signaling network are not independent relay devices, but rather are modulated by their downstream targets.
NASA Astrophysics Data System (ADS)
Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun
2016-05-01
In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.
Pfeifer, Mischa D; Scholkmann, Felix; Labruyère, Rob
2017-01-01
Even though research in the field of functional near-infrared spectroscopy (fNIRS) has been performed for more than 20 years, consensus on signal processing methods is still lacking. A significant knowledge gap exists between established researchers and those entering the field. One major issue regularly observed in publications from researchers new to the field is the failure to consider possible signal contamination by hemodynamic changes unrelated to neurovascular coupling (i.e., scalp blood flow and systemic blood flow). This might be due to the fact that these researchers use the signal processing methods provided by the manufacturers of their measurement device without an advanced understanding of the performed steps. The aim of the present study was to investigate how different signal processing approaches (including and excluding approaches that partially correct for the possible signal contamination) affect the results of a typical functional neuroimaging study performed with fNIRS. In particular, we evaluated one standard signal processing method provided by a commercial company and compared it to three customized approaches. We thereby investigated the influence of the chosen method on the statistical outcome of a clinical data set (task-evoked motor cortex activity). No short-channels were used in the present study and therefore two types of multi-channel corrections based on multiple long-channels were applied. The choice of the signal processing method had a considerable influence on the outcome of the study. While methods that ignored the contamination of the fNIRS signals by task-evoked physiological noise yielded several significant hemodynamic responses over the whole head, the statistical significance of these findings disappeared when accounting for part of the contamination using a multi-channel regression. We conclude that adopting signal processing methods that correct for physiological confounding effects might yield more realistic results in cases where multi-distance measurements are not possible. Furthermore, we recommend using manufacturers' standard signal processing methods only in case the user has an advanced understanding of every signal processing step performed.
MULTI-CORE AND OPTICAL PROCESSOR RELATED APPLICATIONS RESEARCH AT OAK RIDGE NATIONAL LABORATORY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barhen, Jacob; Kerekes, Ryan A; ST Charles, Jesse Lee
2008-01-01
High-speed parallelization of common tasks holds great promise as a low-risk approach to achieving the significant increases in signal processing and computational performance required for next generation innovations in reconfigurable radio systems. Researchers at the Oak Ridge National Laboratory have been working on exploiting the parallelization offered by this emerging technology and applying it to a variety of problems. This paper will highlight recent experience with four different parallel processors applied to signal processing tasks that are directly relevant to signal processing required for SDR/CR waveforms. The first is the EnLight Optical Core Processor applied to matched filter (MF) correlationmore » processing via fast Fourier transform (FFT) of broadband Dopplersensitive waveforms (DSW) using active sonar arrays for target tracking. The second is the IBM CELL Broadband Engine applied to 2-D discrete Fourier transform (DFT) kernel for image processing and frequency domain processing. And the third is the NVIDIA graphical processor applied to document feature clustering. EnLight Optical Core Processor. Optical processing is inherently capable of high-parallelism that can be translated to very high performance, low power dissipation computing. The EnLight 256 is a small form factor signal processing chip (5x5 cm2) with a digital optical core that is being developed by an Israeli startup company. As part of its evaluation of foreign technology, ORNL's Center for Engineering Science Advanced Research (CESAR) had access to a precursor EnLight 64 Alpha hardware for a preliminary assessment of capabilities in terms of large Fourier transforms for matched filter banks and on applications related to Doppler-sensitive waveforms. This processor is optimized for array operations, which it performs in fixed-point arithmetic at the rate of 16 TeraOPS at 8-bit precision. This is approximately 1000 times faster than the fastest DSP available today. The optical core performs the matrix-vector multiplications, where the nominal matrix size is 256x256. The system clock is 125MHz. At each clock cycle, 128K multiply-and-add operations per second (OPS) are carried out, which yields a peak performance of 16 TeraOPS. IBM Cell Broadband Engine. The Cell processor is the extraordinary resulting product of 5 years of sustained, intensive R&D collaboration (involving over $400M investment) between IBM, Sony, and Toshiba. Its architecture comprises one multithreaded 64-bit PowerPC processor element (PPE) with VMX capabilities and two levels of globally coherent cache, and 8 synergistic processor elements (SPEs). Each SPE consists of a processor (SPU) designed for streaming workloads, local memory, and a globally coherent direct memory access (DMA) engine. Computations are performed in 128-bit wide single instruction multiple data streams (SIMD). An integrated high-bandwidth element interconnect bus (EIB) connects the nine processors and their ports to external memory and to system I/O. The Applied Software Engineering Research (ASER) Group at the ORNL is applying the Cell to a variety of text and image analysis applications. Research on Cell-equipped PlayStation3 (PS3) consoles has led to the development of a correlation-based image recognition engine that enables a single PS3 to process images at more than 10X the speed of state-of-the-art single-core processors. NVIDIA Graphics Processing Units. The ASER group is also employing the latest NVIDIA graphical processing units (GPUs) to accelerate clustering of thousands of text documents using recently developed clustering algorithms such as document flocking and affinity propagation.« less
NASA Astrophysics Data System (ADS)
Saxena, Shefali; Hawari, Ayman I.
2017-07-01
Digital signal processing techniques have been widely used in radiation spectrometry to provide improved stability and performance with compact physical size over the traditional analog signal processing. In this paper, field-programmable gate array (FPGA)-based adaptive digital pulse shaping techniques are investigated for real-time signal processing. National Instruments (NI) NI 5761 14-bit, 250-MS/s adaptor module is used for digitizing high-purity germanium (HPGe) detector's preamplifier pulses. Digital pulse processing algorithms are implemented on the NI PXIe-7975R reconfigurable FPGA (Kintex-7) using the LabVIEW FPGA module. Based on the time separation between successive input pulses, the adaptive shaping algorithm selects the optimum shaping parameters (rise time and flattop time of trapezoid-shaping filter) for each incoming signal. A digital Sallen-Key low-pass filter is implemented to enhance signal-to-noise ratio and reduce baseline drifting in trapezoid shaping. A recursive trapezoid-shaping filter algorithm is employed for pole-zero compensation of exponentially decayed (with two-decay constants) preamplifier pulses of an HPGe detector. It allows extraction of pulse height information at the beginning of each pulse, thereby reducing the pulse pileup and increasing throughput. The algorithms for RC-CR2 timing filter, baseline restoration, pile-up rejection, and pulse height determination are digitally implemented for radiation spectroscopy. Traditionally, at high-count-rate conditions, a shorter shaping time is preferred to achieve high throughput, which deteriorates energy resolution. In this paper, experimental results are presented for varying count-rate and pulse shaping conditions. Using adaptive shaping, increased throughput is accepted while preserving the energy resolution observed using the longer shaping times.
Multi-DSP and FPGA based Multi-channel Direct IF/RF Digital receiver for atmospheric radar
NASA Astrophysics Data System (ADS)
Yasodha, Polisetti; Jayaraman, Achuthan; Kamaraj, Pandian; Durga rao, Meka; Thriveni, A.
2016-07-01
Modern phased array radars depend highly on digital signal processing (DSP) to extract the echo signal information and to accomplish reliability along with programmability and flexibility. The advent of ASIC technology has made various digital signal processing steps to be realized in one DSP chip, which can be programmed as per the application and can handle high data rates, to be used in the radar receiver to process the received signal. Further, recent days field programmable gate array (FPGA) chips, which can be re-programmed, also present an opportunity to utilize them to process the radar signal. A multi-channel direct IF/RF digital receiver (MCDRx) is developed at NARL, taking the advantage of high speed ADCs and high performance DSP chips/FPGAs, to be used for atmospheric radars working in HF/VHF bands. Multiple channels facilitate the radar t be operated in multi-receiver modes and also to obtain the wind vector with improved time resolution, without switching the antenna beam. MCDRx has six channels, implemented on a custom built digital board, which is realized using six numbers of ADCs for simultaneous processing of the six input signals, Xilinx vertex5 FPGA and Spartan6 FPGA, and two ADSPTS201 DSP chips, each of which performs one phase of processing. MCDRx unit interfaces with the data storage/display computer via two gigabit ethernet (GbE) links. One of the six channels is used for Doppler beam swinging (DBS) mode and the other five channels are used for multi-receiver mode operations, dedicatedly. Each channel has (i) ADC block, to digitize RF/IF signal, (ii) DDC block for digital down conversion of the digitized signal, (iii) decoding block to decode the phase coded signal, and (iv) coherent integration block for integrating the data preserving phase intact. ADC block consists of Analog devices make AD9467 16-bit ADCs, to digitize the input signal at 80 MSPS. The output of ADC is centered around (80 MHz - input frequency). The digitized data is fed to DDC block, which down converts the data to base-band. The DDC block has NCO, mixer and two chains of Bessel filters (fifth order cascaded integration comb filter, two FIR filters, two half band filters and programmable FIR filters) for in-phase (I) and Quadrature phase (Q) channels. The NCO has 32 bits and is set to match the output frequency of ADC. Further, DDC down samples (decimation) the data and reduces the data rate to 16 MSPS. This data is further decimated and the data rate is reduced down to 4/2/1/0.5/0.25/0.125/0.0625 MSPS for baud lengths 0.25/0.5/1/2/4/8/16 μs respectively. The down sampled data is then fed to decoding block, which performs cross correlation to achieve pulse compression of the binary-phase coded data to obtain better range resolution with maximum possible height coverage. This step improves the signal power by a factor equal to the length of the code. Coherent integration block integrates the decoded data coherently for successive pulses, which improves the signal to noise ratio and reduces the data volume. DDC, decoding and coherent integration blocks are implemented in Xilinx vertex5 FPGA. Till this point, function of all six channels is same for DBS mode and multi-receiver modes. Data from vertex5 FPGA is transferred to PC via GbE-1 interface for multi-modes or to two Analog devices make ADSP-TS201 DSP chips (A and B), via link port for DBS mode. ADSP-TS201 chips perform the normalization, DC removal, windowing, FFT computation and spectral averaging on the data, which is transferred to storage/display PC via GbE-2 interface for real-time data display and data storing. Physical layer of GbE interface is implemented in an external chip (Marvel 88E1111) and MAC layer is implemented internal to vertex5 FPGA. The MCDRx has total 4 GB of DDR2 memory for data storage. Spartan6 FPGA is used for generating timing signals, required for basic operation of the radar and testing of the MCDRx.
Using Imaging Methods to Interrogate Radiation-Induced Cell Signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shankaran, Harish; Weber, Thomas J.; Freiin von Neubeck, Claere H.
2012-04-01
There is increasing emphasis on the use of systems biology approaches to define radiation induced responses in cells and tissues. Such approaches frequently rely on global screening using various high throughput 'omics' platforms. Although these methods are ideal for obtaining an unbiased overview of cellular responses, they often cannot reflect the inherent heterogeneity of the system or provide detailed spatial information. Additionally, performing such studies with multiple sampling time points can be prohibitively expensive. Imaging provides a complementary method with high spatial and temporal resolution capable of following the dynamics of signaling processes. In this review, we utilize specific examplesmore » to illustrate how imaging approaches have furthered our understanding of radiation induced cellular signaling. Particular emphasis is placed on protein co-localization, and oscillatory and transient signaling dynamics.« less
NASA Astrophysics Data System (ADS)
Abdelazim, S.; Santoro, D.; Arend, M.; Moshary, F.; Ahmed, S.
2011-11-01
A field deployable all-fiber eye-safe Coherent Doppler LIDAR is being developed at the Optical Remote Sensing Lab at the City College of New York (CCNY) and is designed to monitor wind fields autonomously and continuously in urban settings. Data acquisition is accomplished by sampling lidar return signals at 400 MHz and performing onboard processing using field programmable gate arrays (FPGAs). The FPGA is programmed to accumulate signal information that is used to calculate the power spectrum of the atmospherically back scattered signal. The advantage of using FPGA is that signal processing will be performed at the hardware level, reducing the load on the host computer and allowing for 100% return signal processing. An experimental setup measured wind speeds at ranges of up to 3 km.
Rath, N; Kato, S; Levesque, J P; Mauel, M E; Navratil, G A; Peng, Q
2014-04-01
Fast, digital signal processing (DSP) has many applications. Typical hardware options for performing DSP are field-programmable gate arrays (FPGAs), application-specific integrated DSP chips, or general purpose personal computer systems. This paper presents a novel DSP platform that has been developed for feedback control on the HBT-EP tokamak device. The system runs all signal processing exclusively on a Graphics Processing Unit (GPU) to achieve real-time performance with latencies below 8 μs. Signals are transferred into and out of the GPU using PCI Express peer-to-peer direct-memory-access transfers without involvement of the central processing unit or host memory. Tests were performed on the feedback control system of the HBT-EP tokamak using forty 16-bit floating point inputs and outputs each and a sampling rate of up to 250 kHz. Signals were digitized by a D-TACQ ACQ196 module, processing done on an NVIDIA GTX 580 GPU programmed in CUDA, and analog output was generated by D-TACQ AO32CPCI modules.
Introduction to the Special Issue on Digital Signal Processing in Radio Astronomy
NASA Astrophysics Data System (ADS)
Price, D. C.; Kocz, J.; Bailes, M.; Greenhill, L. J.
2016-03-01
Advances in astronomy are intimately linked to advances in digital signal processing (DSP). This special issue is focused upon advances in DSP within radio astronomy. The trend within that community is to use off-the-shelf digital hardware where possible and leverage advances in high performance computing. In particular, graphics processing units (GPUs) and field programmable gate arrays (FPGAs) are being used in place of application-specific circuits (ASICs); high-speed Ethernet and Infiniband are being used for interconnect in place of custom backplanes. Further, to lower hurdles in digital engineering, communities have designed and released general-purpose FPGA-based DSP systems, such as the CASPER ROACH board, ASTRON Uniboard, and CSIRO Redback board. In this introductory paper, we give a brief historical overview, a summary of recent trends, and provide an outlook on future directions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce
2015-08-03
Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanismmore » based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.« less
Efficient high-performance ultrasound beamforming using oversampling
NASA Astrophysics Data System (ADS)
Freeman, Steven R.; Quick, Marshall K.; Morin, Marc A.; Anderson, R. C.; Desilets, Charles S.; Linnenbrink, Thomas E.; O'Donnell, Matthew
1998-05-01
High-performance and efficient beamforming circuitry is very important in large channel count clinical ultrasound systems. Current state-of-the-art digital systems using multi-bit analog to digital converters (A/Ds) have matured to provide exquisite image quality with moderate levels of integration. A simplified oversampling beamforming architecture has been proposed that may a low integration of delta-sigma A/Ds onto the same chip as digital delay and processing circuitry to form a monolithic ultrasound beamformer. Such a beamformer may enable low-power handheld scanners for high-end systems with very large channel count arrays. This paper presents an oversampling beamformer architecture that generates high-quality images using very simple; digitization, delay, and summing circuits. Additional performance may be obtained with this oversampled system for narrow bandwidth excitations by mixing the RF signal down in frequency to a range where the electronic signal to nose ratio of the delta-sigma A/D is optimized. An oversampled transmit beamformer uses the same delay circuits as receive and eliminates the need for separate transmit function generators.
NASA Astrophysics Data System (ADS)
Kim, Joo Hyung; Kang, Tae Sung; Yang, Jung Yup; Hong, Jin Pyo
2015-11-01
One long-standing goal in the emerging field of flexible and transparent electronic devices is to meet the demand of key markets, such as enhanced output performance for metal oxide semiconductor thin film transistors (TFTs) prepared by a solution process. While solution-based fabrication techniques are cost-effective and ensure large-area coverage at low temperature, their utilization has the disadvantage of introducing large trap states into TFTs. Such states, the formation of which is induced by intrinsic defects initially produced during preparation, have a significant impact on electrical performance. Therefore, the ability to enhance the electrical characteristics of solution-processed TFTs, along with attaining a firm understanding of their physical nature, remains a key step towards extending their use. In this study, measurements of low-frequency noise and random telegraph signal noise are employed as generic alternative tools to examine the origins of enhanced output performance for solution-processed ZnO TFTs through the control of defect sites by Al evaporation.
NASA Astrophysics Data System (ADS)
Hechenblaikner, Gerald; Flatscher, Reinhold
2013-05-01
The LISA Pathfinder mission to space employs an optical metrology system (OMS) at its core to measure the distance and attitude between two freely floating test-masses to picometer and nanorad accuracy, respectively, within the measurement band of [1 mHz, 30 mHz]. The OMS is based upon an ultra-stable optical bench with 4 heterodyne interferometers from which interference signals are read-out and processed by a digital phase-meter. Laser frequency noise, power fluctuations and optical path-length variations are suppressed to uncritical levels by dedicated control loops so that the measurement performance approaches the sensor limit imposed by the phasemeter. The system design is such that low frequency common mode noise which affects the read-out phase of all four interferometers is generally well suppressed by subtraction of a reference phase from the other interferometer signals. However, high frequency noise directly affects measurement performance and its common mode rejection depends strongly on the relative signal phases. We discuss how the data from recent test campaigns point towards high frequency phase noise as a likely performance limiting factor which explains some important performance features.
An FPGA-based High Speed Parallel Signal Processing System for Adaptive Optics Testbed
NASA Astrophysics Data System (ADS)
Kim, H.; Choi, Y.; Yang, Y.
In this paper a state-of-the-art FPGA (Field Programmable Gate Array) based high speed parallel signal processing system (SPS) for adaptive optics (AO) testbed with 1 kHz wavefront error (WFE) correction frequency is reported. The AO system consists of Shack-Hartmann sensor (SHS) and deformable mirror (DM), tip-tilt sensor (TTS), tip-tilt mirror (TTM) and an FPGA-based high performance SPS to correct wavefront aberrations. The SHS is composed of 400 subapertures and the DM 277 actuators with Fried geometry, requiring high speed parallel computing capability SPS. In this study, the target WFE correction speed is 1 kHz; therefore, it requires massive parallel computing capabilities as well as strict hard real time constraints on measurements from sensors, matrix computation latency for correction algorithms, and output of control signals for actuators. In order to meet them, an FPGA based real-time SPS with parallel computing capabilities is proposed. In particular, the SPS is made up of a National Instrument's (NI's) real time computer and five FPGA boards based on state-of-the-art Xilinx Kintex 7 FPGA. Programming is done with NI's LabView environment, providing flexibility when applying different algorithms for WFE correction. It also facilitates faster programming and debugging environment as compared to conventional ones. One of the five FPGA's is assigned to measure TTS and calculate control signals for TTM, while the rest four are used to receive SHS signal, calculate slops for each subaperture and correction signal for DM. With this parallel processing capabilities of the SPS the overall closed-loop WFE correction speed of 1 kHz has been achieved. System requirements, architecture and implementation issues are described; furthermore, experimental results are also given.
The role of extra-foveal processing in 3D imaging
NASA Astrophysics Data System (ADS)
Eckstein, Miguel P.; Lago, Miguel A.; Abbey, Craig K.
2017-03-01
The field of medical image quality has relied on the assumption that metrics of image quality for simple visual detection tasks are a reliable proxy for the more clinically realistic visual search tasks. Rank order of signal detectability across conditions often generalizes from detection to search tasks. Here, we argue that search in 3D images represents a paradigm shift in medical imaging: radiologists typically cannot exhaustively scrutinize all regions of interest with the high acuity fovea requiring detection of signals with extra-foveal areas (visual periphery) of the human retina. We hypothesize that extra-foveal processing can alter the detectability of certain types of signals in medical images with important implications for search in 3D medical images. We compare visual search of two different types of signals in 2D vs. 3D images. We show that a small microcalcification-like signal is more highly detectable than a larger mass-like signal in 2D search, but its detectability largely decreases (relative to the larger signal) in the 3D search task. Utilizing measurements of observer detectability as a function retinal eccentricity and observer eye fixations we can predict the pattern of results in the 2D and 3D search studies. Our findings: 1) suggest that observer performance findings with 2D search might not always generalize to 3D search; 2) motivate the development of a new family of model observers that take into account the inhomogeneous visual processing across the retina (foveated model observers).
System for Automated Calibration of Vector Modulators
NASA Technical Reports Server (NTRS)
Lux, James; Boas, Amy; Li, Samuel
2009-01-01
Vector modulators are used to impose baseband modulation on RF signals, but non-ideal behavior limits the overall performance. The non-ideal behavior of the vector modulator is compensated using data collected with the use of an automated test system driven by a LabVIEW program that systematically applies thousands of control-signal values to the device under test and collects RF measurement data. The technology innovation automates several steps in the process. First, an automated test system, using computer controlled digital-to-analog converters (DACs) and a computer-controlled vector network analyzer (VNA) systematically can apply different I and Q signals (which represent the complex number by which the RF signal is multiplied) to the vector modulator under test (VMUT), while measuring the RF performance specifically, gain and phase. The automated test system uses the LabVIEW software to control the test equipment, collect the data, and write it to a file. The input to the Lab - VIEW program is either user-input for systematic variation, or is provided in a file containing specific test values that should be fed to the VMUT. The output file contains both the control signals and the measured data. The second step is to post-process the file to determine the correction functions as needed. The result of the entire process is a tabular representation, which allows translation of a desired I/Q value to the required analog control signals to produce a particular RF behavior. In some applications, corrected performance is needed only for a limited range. If the vector modulator is being used as a phase shifter, there is only a need to correct I and Q values that represent points on a circle, not the entire plane. This innovation has been used to calibrate 2-GHz MMIC (monolithic microwave integrated circuit) vector modulators in the High EIRP Cluster Array project (EIRP is high effective isotropic radiated power). These calibrations were then used to create correction tables to allow the commanding of the phase shift in each of four channels used as a phased array for beam steering of a Ka-band (32-GHz) signal. The system also was the basis of a breadboard electronic beam steering system. In this breadboard, the goal was not to make systematic measurements of the properties of a vector modulator, but to drive the breadboard with a series of test patterns varying in phase and amplitude. This is essentially the same calibration process, but with the difference that the data collection process is oriented toward collecting breadboard performance, rather than the measurement of output from a network analyzer.
The SKA1 LOW telescope: system architecture and design performance
NASA Astrophysics Data System (ADS)
Waterson, Mark F.; Labate, Maria Grazia; Schnetler, Hermine; Wagg, Jeff; Turner, Wallace; Dewdney, Peter
2016-07-01
The SKA1-LOW radio telescope will be a low-frequency (50-350 MHz) aperture array located in Western Australia. Its scientific objectives will prioritize studies of the Epoch of Reionization and pulsar physics. Development of the telescope has been allocated to consortia responsible for the aperture array front end, timing distribution, signal and data transport, correlation and beamforming signal processors, infrastructure, monitor and control systems, and science data processing. This paper will describe the system architectural design and key performance parameters of the telescope and summarize the high-level sub-system designs of the consortia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian
The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. Themore » following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on plant parameters and the pump electrical signatures. Additionally, the reactor simulation is being used to generate normal operation data and data with instrumentation faults and process anomalies. A frequency controller was interfaced with the motor power supply in order to vary the electrical supply frequency. The experimental flow control loop was used to generate operational data under varying motor performance characteristics. Coolant leakage events were simulated by varying the bypass loop flow rate. The accuracy of motor power calculation was improved by incorporating the power factor, computed from motor current and voltage in each phase of the induction motor.- A variety of experimental runs were made for steady-state and transient pump operating conditions. Process, vibration, and electrical signatures were measured using a submersible pump with variable supply frequency. High correlation was seen between motor current and pump discharge pressure signal; similar high correlation was exhibited between pump motor power and flow rate. Wide-band analysis indicated high coherence (in the frequency domain) between motor current and vibration signals. - Wide-band operational data from a PWR were acquired from AMS Corporation and used to develop time-series models, and to estimate signal spectrum and sensor time constant. All the data were from different pressure transmitters in the system, including primary and secondary loops. These signals were pre-processed using the wavelet transform for filtering both low-frequency and high-frequency bands. This technique of signal pre-processing provides minimum distortion of the data, and results in a more optimal estimation of time constants of plant sensors using time-series modeling techniques.« less
DOT National Transportation Integrated Search
1969-04-01
Male subjects were tested after extensive training as two five-man 'crews' in an experiment designed to examine the effects of signal rate on the performance of a task involving the monitoring of a dynamic process. Performance was measured using thre...
Verschuur, Carl
2009-03-01
Difficulties in speech recognition experienced by cochlear implant users may be attributed both to information loss caused by signal processing and to information loss associated with the interface between the electrode array and auditory nervous system, including cross-channel interaction. The objective of the work reported here was to attempt to partial out the relative contribution of these different factors to consonant recognition. This was achieved by comparing patterns of consonant feature recognition as a function of channel number and presence/absence of background noise in users of the Nucleus 24 device with normal hearing subjects listening to acoustic models that mimicked processing of that device. Additionally, in the acoustic model experiment, a simulation of cross-channel spread of excitation, or "channel interaction," was varied. Results showed that acoustic model experiments were highly correlated with patterns of performance in better-performing cochlear implant users. Deficits to consonant recognition in this subgroup could be attributed to cochlear implant processing, whereas channel interaction played a much smaller role in determining performance errors. The study also showed that large changes to channel number in the Advanced Combination Encoder signal processing strategy led to no substantial changes in performance.
Signal processing for the profoundly deaf.
Boothyroyd, A
1990-01-01
Profound deafness, defined here as a hearing loss in excess of 90 dB, is characterized by high thresholds, reduced hearing range in the intensity and frequency domains, and poor resolution in the frequency and time domains. The high thresholds call for hearing aids with unusually high gains or remote microphones that can be placed close to the signal source. The former option creates acoustic feedback problems for which digital signal processing may yet offer solutions. The latter option calls for carrier wave technology that is already available. The reduced frequency and intensity ranges would appear to call for frequency and/or amplitude compression. It might also be argued, however, that any attempts to compress the acoustic signal into the limited hearing range of the profoundly deaf will be counterproductive because of poor frequency and time resolution, especially when the signal is present in noise. In experiments with a 2-channel compression system, only 1 of 9 subjects showed an improvement of perception with the introduction of fast-release (20 ms) compression. The other 8 experienced no benefit or a slight deterioration of performance. These results support the concept of providing the profoundly deaf with simpler, rather than more complex, patterns, perhaps through the use of feature extraction hearing aids. Data from users of cochlear implants already employing feature extraction techniques also support this concept.
Power control electronics for cryogenic instrumentation
NASA Technical Reports Server (NTRS)
Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.
1995-01-01
In order to achieve a high-efficiency high-density cryogenic instrumentation system, the power processing electronics should be placed in the cold environment along with the sensors and signal-processing electronics. The typical instrumentation system requires low voltage dc usually obtained from processing line frequency ac power. Switch-mode power conversion topologies such as forward, flyback, push-pull, and half-bridge are used for high-efficiency power processing using pulse-width modulation (PWM) or resonant control. This paper presents several PWM and multiresonant power control circuits, implemented using commercially available CMOS and BiCMOS integrated circuits, and their performance at liquid-nitrogen temperature (77 K) as compared to their room temperature (300 K) performance. The operation of integrated circuits at cryogenic temperatures results in an improved performance in terms of increased speed, reduced latch-up susceptibility, reduced leakage current, and reduced thermal noise. However, the switching noise increased at 77 K compared to 300 K. The power control circuits tested in the laboratory did successfully restart at 77 K.
High dynamic range hyperspectral imaging for camouflage performance test and evaluation
NASA Astrophysics Data System (ADS)
Pearce, D.; Feenan, J.
2016-10-01
This paper demonstrates the use of high dynamic range processing applied to the specific technique of hyper-spectral imaging with linescan spectrometers. The technique provides an improvement in signal to noise for reflectance estimation. This is demonstrated for field measurements of rural imagery collected from a ground-based linescan spectrometer of rural scenes. Once fully developed, the specific application is expected to improve the colour estimation approaches and consequently the test and evaluation accuracy of camouflage performance tests. Data are presented on both field and laboratory experiments that have been used to evaluate the improvements granted by the adoption of high dynamic range data acquisition in the field of hyperspectral imaging. High dynamic ranging imaging is well suited to the hyperspectral domain due to the large variation in solar irradiance across the visible and short wave infra-red (SWIR) spectrum coupled with the wavelength dependence of the nominal silicon detector response. Under field measurement conditions it is generally impractical to provide artificial illumination; consequently, an adaptation of the hyperspectral imaging and re ectance estimation process has been developed to accommodate the solar spectrum. This is shown to improve the signal to noise ratio for the re ectance estimation process of scene materials in the 400-500 nm and 700-900 nm regions.
High Temperature Ultrasonic Transducers : Material Selection and Testing
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Bruno, Alessandro
2012-01-01
The task of my two-months internship was to test different materials to be used to build an high temperature transducer, to develop some prototypes and to test their performance, to assess the reliability of commercial product rated for such a temperature, as well as to collaborate in developing the signal processing code to measure the condensed water levels.
An Alternative to Adaptation by Sexual Selection: Habitat Choice.
Porter, Cody K; Akcali, Christopher K
2018-06-09
Adaptation in mating signals and preferences has generally been explained by sexual selection. We propose that adaptation in such mating traits might also arise via a non-mutually exclusive process wherein individuals preferentially disperse to habitats where they experience high mating performance. Here we explore the evolutionary implications of this process. Copyright © 2018 Elsevier Ltd. All rights reserved.
High-Density Stretchable Electrode Grids for Chronic Neural Recording.
Tybrandt, Klas; Khodagholy, Dion; Dielacher, Bernd; Stauffer, Flurin; Renz, Aline F; Buzsáki, György; Vörös, János
2018-04-01
Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Morie, K P; De Sanctis, P; Foxe, J J
2014-07-25
Task execution almost always occurs in the context of reward-seeking or punishment-avoiding behavior. As such, ongoing task-monitoring systems are influenced by reward anticipation systems. In turn, when a task has been executed either successfully or unsuccessfully, future iterations of that task will be re-titrated on the basis of the task outcome. Here, we examined the neural underpinnings of the task-monitoring and reward-evaluation systems to better understand how they govern reward-seeking behavior. Twenty-three healthy adult participants performed a task where they accrued points that equated to real world value (gift cards) by responding as rapidly as possible within an allotted timeframe, while success rate was titrated online by changing the duration of the timeframe dependent on participant performance. Informative cues initiated each trial, indicating the probability of potential reward or loss (four levels from very low to very high). We manipulated feedback by first informing participants of task success/failure, after which a second feedback signal indicated actual magnitude of reward/loss. High-density electroencephalography (EEG) recordings allowed for examination of event-related potentials (ERPs) to the informative cues and in turn, to both feedback signals. Distinct ERP components associated with reward cues, task-preparatory and task-monitoring processes, and reward feedback processes were identified. Unsurprisingly, participants displayed increased ERP amplitudes associated with task-preparatory processes following cues that predicted higher chances of reward. They also rapidly updated reward and loss prediction information dependent on task performance after the first feedback signal. Finally, upon reward receipt, initial reward probability was no longer taken into account. Rather, ERP measures suggested that only the magnitude of actual reward or loss was now processed. Reward and task-monitoring processes are clearly dissociable, but interact across very fast timescales to update reward predictions as information about task success or failure is accrued. Careful delineation of these processes will be useful in future investigations in clinical groups where such processes are suspected of having gone awry. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Morie, Kristen P.; De Sanctis, Pierfilippo; Foxe, John J.
2014-01-01
Task execution almost always occurs in the context of reward-seeking or punishment-avoiding behavior. As such, ongoing task monitoring systems are influenced by reward anticipation systems. In turn, when a task has been executed either successfully or unsuccessfully, future iterations of that task will be re-titrated on the basis of the task outcome. Here, we examined the neural underpinnings of the task-monitoring and reward-evaluation systems to better understand how they govern reward seeking behavior. Twenty-three healthy adult participants performed a task where they accrued points that equated to real world value (gift cards) by responding as rapidly as possible within an allotted timeframe, while success rate was titrated online by changing the duration of the timeframe dependent on participant performance. Informative cues initiated each trial, indicating the probability of potential reward or loss (four levels from very low to very high). We manipulated feedback by first informing participants of task success/failure, after which a second feedback signal indicated actual magnitude of reward/loss. High-density EEG recordings allowed for examination of event-related potentials (ERPs) to the informative cues and in turn, to both feedback signals. Distinct ERP components associated with reward cues, task preparatory and task monitoring processes, and reward feedback processes were identified. Unsurprisingly, participants displayed increased ERP amplitudes associated with task preparatory processes following cues that predicted higher chances of reward. They also rapidly updated reward and loss prediction information dependent on task performance after the first feedback signal. Finally, upon reward receipt, initial reward probability was no longer taken into account. Rather, ERP measures suggested that only the magnitude of actual reward or loss was now processed. Reward and task monitoring processes are clearly dissociable, but interact across very fast timescales to update reward predictions as information about task success or failure is accrued. Careful delineation of these processes will be useful in future investigations in clinical groups where such processes are suspected of having gone awry. PMID:24836852
Missile signal processing common computer architecture for rapid technology upgrade
NASA Astrophysics Data System (ADS)
Rabinkin, Daniel V.; Rutledge, Edward; Monticciolo, Paul
2004-10-01
Interceptor missiles process IR images to locate an intended target and guide the interceptor towards it. Signal processing requirements have increased as the sensor bandwidth increases and interceptors operate against more sophisticated targets. A typical interceptor signal processing chain is comprised of two parts. Front-end video processing operates on all pixels of the image and performs such operations as non-uniformity correction (NUC), image stabilization, frame integration and detection. Back-end target processing, which tracks and classifies targets detected in the image, performs such algorithms as Kalman tracking, spectral feature extraction and target discrimination. In the past, video processing was implemented using ASIC components or FPGAs because computation requirements exceeded the throughput of general-purpose processors. Target processing was performed using hybrid architectures that included ASICs, DSPs and general-purpose processors. The resulting systems tended to be function-specific, and required custom software development. They were developed using non-integrated toolsets and test equipment was developed along with the processor platform. The lifespan of a system utilizing the signal processing platform often spans decades, while the specialized nature of processor hardware and software makes it difficult and costly to upgrade. As a result, the signal processing systems often run on outdated technology, algorithms are difficult to update, and system effectiveness is impaired by the inability to rapidly respond to new threats. A new design approach is made possible three developments; Moore's Law - driven improvement in computational throughput; a newly introduced vector computing capability in general purpose processors; and a modern set of open interface software standards. Today's multiprocessor commercial-off-the-shelf (COTS) platforms have sufficient throughput to support interceptor signal processing requirements. This application may be programmed under existing real-time operating systems using parallel processing software libraries, resulting in highly portable code that can be rapidly migrated to new platforms as processor technology evolves. Use of standardized development tools and 3rd party software upgrades are enabled as well as rapid upgrade of processing components as improved algorithms are developed. The resulting weapon system will have a superior processing capability over a custom approach at the time of deployment as a result of a shorter development cycles and use of newer technology. The signal processing computer may be upgraded over the lifecycle of the weapon system, and can migrate between weapon system variants enabled by modification simplicity. This paper presents a reference design using the new approach that utilizes an Altivec PowerPC parallel COTS platform. It uses a VxWorks-based real-time operating system (RTOS), and application code developed using an efficient parallel vector library (PVL). A quantification of computing requirements and demonstration of interceptor algorithm operating on this real-time platform are provided.
Noise-assisted data processing with empirical mode decomposition in biomedical signals.
Karagiannis, Alexandros; Constantinou, Philip
2011-01-01
In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various lengths are processed with EMD in order to extract the intrinsic mode functions (IMFs). A statistical significance test is implemented for the identification of IMFs with high-level noise components and their exclusion from denoising procedures. Simulation campaign results reveal that a decrease of processing time is accomplished with the introduction of preprocessing stage, prior to the application of EMD in biomedical time series. Furthermore, the variation in the number of IMFs according to the type of the preprocessing stage is studied as a function of SNR and time-series length. The application of the methodology in MIT-BIH ECG records is also presented in order to verify the findings in real ECG signals.
A front-end readout Detector Board for the OpenPET electronics system
NASA Astrophysics Data System (ADS)
Choong, W.-S.; Abu-Nimeh, F.; Moses, W. W.; Peng, Q.; Vu, C. Q.; Wu, J.-Y.
2015-08-01
We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is ``time stamped'' by a time-to-digital converter (TDC) implemented inside the FPGA . This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.
A front-end readout Detector Board for the OpenPET electronics system
Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.; ...
2015-08-12
Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less
Pursley, Randall H.; Salem, Ghadi; Devasahayam, Nallathamby; Subramanian, Sankaran; Koscielniak, Janusz; Krishna, Murali C.; Pohida, Thomas J.
2006-01-01
The integration of modern data acquisition and digital signal processing (DSP) technologies with Fourier transform electron paramagnetic resonance (FT-EPR) imaging at radiofrequencies (RF) is described. The FT-EPR system operates at a Larmor frequency (Lf) of 300 MHz to facilitate in vivo studies. This relatively low frequency Lf, in conjunction with our ~10 MHz signal bandwidth, enables the use of direct free induction decay time-locked subsampling (TLSS). This particular technique provides advantages by eliminating the traditional analog intermediate frequency downconversion stage along with the corresponding noise sources. TLSS also results in manageable sample rates that facilitate the design of DSP-based data acquisition and image processing platforms. More specifically, we utilize a high-speed field programmable gate array (FPGA) and a DSP processor to perform advanced real-time signal and image processing. The migration to a DSP-based configuration offers the benefits of improved EPR system performance, as well as increased adaptability to various EPR system configurations (i.e., software configurable systems instead of hardware reconfigurations). The required modifications to the FT-EPR system design are described, with focus on the addition of DSP technologies including the application-specific hardware, software, and firmware developed for the FPGA and DSP processor. The first results of using real-time DSP technologies in conjunction with direct detection bandpass sampling to implement EPR imaging at RF frequencies are presented. PMID:16243552
NASA Astrophysics Data System (ADS)
Daluge, D. R.; Ruedger, W. H.
1981-06-01
Problems encountered in testing onboard signal processing hardware designed to achieve radiometric and geometric correction of satellite imaging data are considered. These include obtaining representative image and ancillary data for simulation and the transfer and storage of a large quantity of image data at very high speed. The high resolution, high speed preprocessing of LANDSAT-D imagery is considered.
Upgraded Readout Electronics for the ATLAS Liquid Argon Calorimeters at the High Luminosity LHC
NASA Astrophysics Data System (ADS)
Andeen, Timothy R.; ATLAS Liquid Argon Calorimeter Group
2012-12-01
The ATLAS liquid-argon calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sum analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up background expected during the high luminosity phases of the LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background rejection rates. For the first upgrade phase in 2018, new Liquid Argon Trigger Digitizer Boards are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new, off-detector digital processing system. The digital processing system applies digital filtering and identifies significant energy depositions. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The general concept of the upgraded liquid-argon calorimeter readout together with the various electronics components to be developed for such a complex system is presented. The research activities and architectural studies undertaken by the ATLAS Liquid Argon Calorimeter Group are described, particularly details of the on-going design of mixed-signal front-end electronics, of radiation tolerant optical-links, and of the high-speed off-detector digital processing system.
Certification of windshear performance with RTCA class D radomes
NASA Technical Reports Server (NTRS)
Mathews, Bruce D.; Miller, Fran; Rittenhouse, Kirk; Barnett, Lee; Rowe, William
1994-01-01
Superposition testing of detection range performance forms a digital signal for input into a simulation of signal and data processing equipment and algorithms to be employed in a sensor system for advanced warning of hazardous windshear. For suitable pulse-Doppler radar, recording of the digital data at the input to the digital signal processor furnishes a realistic operational scenario and environmentally responsive clutter signal including all sidelobe clutter, ground moving target indications (GMTI), and large signal spurious due to mainbeam clutter and/or RFI respective of the urban airport clutter and aircraft scenarios (approach and landing antenna pointing). For linear radar system processes, a signal at the same point in the process from a hazard phenomena may be calculated from models of the scattering phenomena, for example, as represented in fine 3 dimensional reflectivity and velocity grid structures. Superposition testing furnishes a competing signal environment for detection and warning time performance confirmation of phenomena uncontrollable in a natural environment.
Performance assessment of a data processing chain for THz imaging
NASA Astrophysics Data System (ADS)
Catapano, Ilaria; Ludeno, Giovanni; Soldovieri, Francesco
2017-04-01
Nowadays, TeraHertz (THz) imaging is deserving huge attention as very high resolution diagnostic tool in many applicative fields, among which security, cultural heritage, material characterization and civil engineering diagnostics. This widespread use of THz waves is due to their non-ionizing nature, their capability of penetrating into non-metallic opaque materials, as well as to the technological advances, which have allowed the commercialization of compact, flexible and portable systems. However, the effectiveness of THz imaging depends strongly on the adopted data processing aimed at improving the imaging performance of the hardware device. In particular, data processing is required to mitigate detrimental and unavoidable effects like noise, signal attenuation, as well as to correct the sample surface topography. With respect to data processing, we have proposed recently a strategy involving three different steps aimed at reducing noise, filtering out undesired signal introduced by the adopted THz system and performing surface topography correction [1]. The first step regards noise filtering and exploits a procedure based on the Singular Value Decomposition (SVD) [2] of the data matrix, which does not require knowledge of noise level and it does not involve the use of a reference signal. The second step aims at removing the undesired signal that we have experienced to be introduced by the adopted Z-Omega Fiber-Coupled Terahertz Time Domain (FICO) system. Indeed, when the system works in a high-speed mode, an undesired low amplitude peak occurs always at the same time instant from the beginning of the observation time window and needs to be removed from the useful data matrix in order to avoid a wrong interpretation of the imaging results. The third step of the considered data processing chain is a topographic correction, which needs in order to image properly the samples surface and its inner structure. Such a procedure performs an automatic alignment of the first peak of the measured waveforms by exploiting the a-priori information on the focus distance at which the specimen under test must be located during the measurement phase. The usefulness of the proposed data processing chain has been widely assessed in the last few months by surveying several specimens made by different materials and representative of objects of interest for civil engineering and cultural heritage diagnostics. At the conference, we will show in detail the signal processing chain and present several achieved results. REFERENCES [1] I. Catapano, F. Soldovieri, "A Data Processing Chain for Terahertz Imaging and Its Use in Artwork Diagnostics". J Infrared Milli Terahz Waves, pp.13, Nov. 2016. [2] M. Bertero and P. Boccacci (1998), Introduction to Inverse Problems in Imaging, Bristol: Institute of Physics Publishing.
Courtship song preferences in female zebra finches are shaped by developmental auditory experience.
Chen, Yining; Clark, Oliver; Woolley, Sarah C
2017-05-31
The performance of courtship signals provides information about the behavioural state and quality of the signaller, and females can use such information for social decision-making (e.g. mate choice). However, relatively little is known about the degree to which the perception of and preference for differences in motor performance are shaped by developmental experiences. Furthermore, the neural substrates that development could act upon to influence the processing of performance features remains largely unknown. In songbirds, females use song to identify males and select mates. Moreover, female songbirds are often sensitive to variation in male song performance. Consequently, we investigated how developmental exposure to adult male song affected behavioural and neural responses to song in a small, gregarious songbird, the zebra finch. Zebra finch males modulate their song performance when courting females, and previous work has shown that females prefer the high-performance, female-directed courtship song. However, unlike females allowed to hear and interact with an adult male during development, females reared without developmental song exposure did not demonstrate behavioural preferences for high-performance courtship songs. Additionally, auditory responses to courtship and non-courtship song were altered in adult females raised without developmental song exposure. These data highlight the critical role of developmental auditory experience in shaping the perception and processing of song performance. © 2017 The Author(s).
Ultrabroadband phased-array radio frequency (RF) receivers based on optical techniques
NASA Astrophysics Data System (ADS)
Overmiller, Brock M.; Schuetz, Christopher A.; Schneider, Garrett; Murakowski, Janusz; Prather, Dennis W.
2014-03-01
Military operations require the ability to locate and identify electronic emissions in the battlefield environment. However, recent developments in radio detection and ranging (RADAR) and communications technology are making it harder to effectively identify such emissions. Phased array systems aid in discriminating emitters in the scene by virtue of their relatively high-gain beam steering and nulling capabilities. For the purpose of locating emitters, we present an approach realize a broadband receiver based on optical processing techniques applied to the response of detectors in conformal antenna arrays. This approach utilizes photonic techniques that enable us to capture, route, and process the incoming signals. Optical modulators convert the incoming signals up to and exceeding 110 GHz with appreciable conversion efficiency and route these signals via fiber optics to a central processing location. This central processor consists of a closed loop phase control system which compensates for phase fluctuations induced on the fibers due to thermal or acoustic vibrations as well as an optical heterodyne approach for signal conversion down to baseband. Our optical heterodyne approach uses injection-locked paired optical sources to perform heterodyne downconversion/frequency identification of the detected emission. Preliminary geolocation and frequency identification testing of electronic emissions has been performed demonstrating the capabilities of our RF receiver.
Fast-Acquisition/Weak-Signal-Tracking GPS Receiver for HEO
NASA Technical Reports Server (NTRS)
Wintemitz, Luke; Boegner, Greg; Sirotzky, Steve
2004-01-01
A report discusses the technical background and design of the Navigator Global Positioning System (GPS) receiver -- . a radiation-hardened receiver intended for use aboard spacecraft. Navigator is capable of weak signal acquisition and tracking as well as much faster acquisition of strong or weak signals with no a priori knowledge or external aiding. Weak-signal acquisition and tracking enables GPS use in high Earth orbits (HEO), and fast acquisition allows for the receiver to remain without power until needed in any orbit. Signal acquisition and signal tracking are, respectively, the processes of finding and demodulating a signal. Acquisition is the more computationally difficult process. Previous GPS receivers employ the method of sequentially searching the two-dimensional signal parameter space (code phase and Doppler). Navigator exploits properties of the Fourier transform in a massively parallel search for the GPS signal. This method results in far faster acquisition times [in the lab, 12 GPS satellites have been acquired with no a priori knowledge in a Low-Earth-Orbit (LEO) scenario in less than one second]. Modeling has shown that Navigator will be capable of acquiring signals down to 25 dB-Hz, appropriate for HEO missions. Navigator is built using the radiation-hardened ColdFire microprocessor and housing the most computationally intense functions in dedicated field-programmable gate arrays. The high performance of the algorithm and of the receiver as a whole are made possible by optimizing computational efficiency and carefully weighing tradeoffs among the sampling rate, data format, and data-path bit width.
Energy Efficient GNSS Signal Acquisition Using Singular Value Decomposition (SVD).
Bermúdez Ordoñez, Juan Carlos; Arnaldo Valdés, Rosa María; Gómez Comendador, Fernando
2018-05-16
A significant challenge in global navigation satellite system (GNSS) signal processing is a requirement for a very high sampling rate. The recently-emerging compressed sensing (CS) theory makes processing GNSS signals at a low sampling rate possible if the signal has a sparse representation in a certain space. Based on CS and SVD theories, an algorithm for sampling GNSS signals at a rate much lower than the Nyquist rate and reconstructing the compressed signal is proposed in this research, which is validated after the output from that process still performs signal detection using the standard fast Fourier transform (FFT) parallel frequency space search acquisition. The sparse representation of the GNSS signal is the most important precondition for CS, by constructing a rectangular Toeplitz matrix (TZ) of the transmitted signal, calculating the left singular vectors using SVD from the TZ, to achieve sparse signal representation. Next, obtaining the M-dimensional observation vectors based on the left singular vectors of the SVD, which are equivalent to the sampler operator in standard compressive sensing theory, the signal can be sampled below the Nyquist rate, and can still be reconstructed via ℓ 1 minimization with accuracy using convex optimization. As an added value, there is a GNSS signal acquisition enhancement effect by retaining the useful signal and filtering out noise by projecting the signal into the most significant proper orthogonal modes (PODs) which are the optimal distributions of signal power. The algorithm is validated with real recorded signals, and the results show that the proposed method is effective for sampling, reconstructing intermediate frequency (IF) GNSS signals in the time discrete domain.
Energy Efficient GNSS Signal Acquisition Using Singular Value Decomposition (SVD)
Arnaldo Valdés, Rosa María; Gómez Comendador, Fernando
2018-01-01
A significant challenge in global navigation satellite system (GNSS) signal processing is a requirement for a very high sampling rate. The recently-emerging compressed sensing (CS) theory makes processing GNSS signals at a low sampling rate possible if the signal has a sparse representation in a certain space. Based on CS and SVD theories, an algorithm for sampling GNSS signals at a rate much lower than the Nyquist rate and reconstructing the compressed signal is proposed in this research, which is validated after the output from that process still performs signal detection using the standard fast Fourier transform (FFT) parallel frequency space search acquisition. The sparse representation of the GNSS signal is the most important precondition for CS, by constructing a rectangular Toeplitz matrix (TZ) of the transmitted signal, calculating the left singular vectors using SVD from the TZ, to achieve sparse signal representation. Next, obtaining the M-dimensional observation vectors based on the left singular vectors of the SVD, which are equivalent to the sampler operator in standard compressive sensing theory, the signal can be sampled below the Nyquist rate, and can still be reconstructed via ℓ1 minimization with accuracy using convex optimization. As an added value, there is a GNSS signal acquisition enhancement effect by retaining the useful signal and filtering out noise by projecting the signal into the most significant proper orthogonal modes (PODs) which are the optimal distributions of signal power. The algorithm is validated with real recorded signals, and the results show that the proposed method is effective for sampling, reconstructing intermediate frequency (IF) GNSS signals in the time discrete domain. PMID:29772731
SIG. Signal Processing, Analysis, & Display
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, J.; Lager, D.; Azevedo, S.
1992-01-22
SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG; a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time and frequency-domain signals includingmore » operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments, commenting lines, defining commands, and automatic execution for each item in a `repeat` sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less
SIG. Signal Processing, Analysis, & Display
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, J.; Lager, D.; Azevedo, S.
1992-01-22
SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time-and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time and frequency-domain signals includingmore » operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments, commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less
Chowdhury, Shubhajit Roy
2012-04-01
The paper reports of a Field Programmable Gate Array (FPGA) based embedded system for detection of QRS complex in a noisy electrocardiogram (ECG) signal and thereafter differential diagnosis of tachycardia and tachyarrhythmia. The QRS complex has been detected after application of entropy measure of fuzziness to build a detection function of ECG signal, which has been previously filtered to remove power line interference and base line wander. Using the detected QRS complexes, differential diagnosis of tachycardia and tachyarrhythmia has been performed. The entire algorithm has been realized in hardware on an FPGA. Using the standard CSE ECG database, the algorithm performed highly effectively. The performance of the algorithm in respect of QRS detection with sensitivity (Se) of 99.74% and accuracy of 99.5% is achieved when tested using single channel ECG with entropy criteria. The performance of the QRS detection system has been compared and found to be better than most of the QRS detection systems available in literature. Using the system, 200 patients have been diagnosed with an accuracy of 98.5%.
A miniature on-chip multi-functional ECG signal processor with 30 µW ultra-low power consumption.
Liu, Xin; Zheng, Yuan Jin; Phyu, Myint Wai; Zhao, Bin; Je, Minkyu; Yuan, Xiao Jun
2010-01-01
In this paper, a miniature low-power Electrocardiogram (ECG) signal processing application specific integrated circuit (ASIC) chip is proposed. This chip provides multiple critical functions for ECG analysis using a systematic wavelet transform algorithm and a novel SRAM-based ASIC architecture, while achieves low cost and high performance. Using 0.18 µm CMOS technology and 1 V power supply, this ASIC chip consumes only 29 µW and occupies an area of 3 mm(2). This on-chip ECG processor is highly suitable for reliable real-time cardiac status monitoring applications.
Low-cost, high-speed back-end processing system for high-frequency ultrasound B-mode imaging.
Chang, Jin Ho; Sun, Lei; Yen, Jesse T; Shung, K Kirk
2009-07-01
For real-time visualization of the mouse heart (6 to 13 beats per second), a back-end processing system involving high-speed signal processing functions to form and display images has been developed. This back-end system was designed with new signal processing algorithms to achieve a frame rate of more than 400 images per second. These algorithms were implemented in a simple and cost-effective manner with a single field-programmable gate array (FPGA) and software programs written in C++. The operating speed of the back-end system was investigated by recording the time required for transferring an image to a personal computer. Experimental results showed that the back-end system is capable of producing 433 images per second. To evaluate the imaging performance of the back-end system, a complete imaging system was built. This imaging system, which consisted of a recently reported high-speed mechanical sector scanner assembled with the back-end system, was tested by imaging a wire phantom, a pig eye (in vitro), and a mouse heart (in vivo). It was shown that this system is capable of providing high spatial resolution images with fast temporal resolution.
Low-Cost, High-Speed Back-End Processing System for High-Frequency Ultrasound B-Mode Imaging
Chang, Jin Ho; Sun, Lei; Yen, Jesse T.; Shung, K. Kirk
2009-01-01
For real-time visualization of the mouse heart (6 to 13 beats per second), a back-end processing system involving high-speed signal processing functions to form and display images has been developed. This back-end system was designed with new signal processing algorithms to achieve a frame rate of more than 400 images per second. These algorithms were implemented in a simple and cost-effective manner with a single field-programmable gate array (FPGA) and software programs written in C++. The operating speed of the back-end system was investigated by recording the time required for transferring an image to a personal computer. Experimental results showed that the back-end system is capable of producing 433 images per second. To evaluate the imaging performance of the back-end system, a complete imaging system was built. This imaging system, which consisted of a recently reported high-speed mechanical sector scanner assembled with the back-end system, was tested by imaging a wire phantom, a pig eye (in vitro), and a mouse heart (in vivo). It was shown that this system is capable of providing high spatial resolution images with fast temporal resolution. PMID:19574160
Digital Radar-Signal Processors Implemented in FPGAs
NASA Technical Reports Server (NTRS)
Berkun, Andrew; Andraka, Ray
2004-01-01
High-performance digital electronic circuits for onboard processing of return signals in an airborne precipitation- measuring radar system have been implemented in commercially available field-programmable gate arrays (FPGAs). Previously, it was standard practice to downlink the radar-return data to a ground station for postprocessing a costly practice that prevents the nearly-real-time use of the data for automated targeting. In principle, the onboard processing could be performed by a system of about 20 personal- computer-type microprocessors; relative to such a system, the present FPGA-based processor is much smaller and consumes much less power. Alternatively, the onboard processing could be performed by an application-specific integrated circuit (ASIC), but in comparison with an ASIC implementation, the present FPGA implementation offers the advantages of (1) greater flexibility for research applications like the present one and (2) lower cost in the small production volumes typical of research applications. The generation and processing of signals in the airborne precipitation measuring radar system in question involves the following especially notable steps: The system utilizes a total of four channels two carrier frequencies and two polarizations at each frequency. The system uses pulse compression: that is, the transmitted pulse is spread out in time and the received echo of the pulse is processed with a matched filter to despread it. The return signal is band-limited and digitally demodulated to a complex baseband signal that, for each pulse, comprises a large number of samples. Each complex pair of samples (denoted a range gate in radar terminology) is associated with a numerical index that corresponds to a specific time offset from the beginning of the radar pulse, so that each such pair represents the energy reflected from a specific range. This energy and the average echo power are computed. The phase of each range bin is compared to the previous echo by complex conjugate multiplication to obtain the mean Doppler shift (and hence the mean and variance of the velocity of precipitation) of the echo at that range.
Wang, Yulin; Tian, Xuelong
2014-08-01
In order to improve the speech quality and auditory perceptiveness of electronic cochlear implant under strong noise background, a speech enhancement system used for electronic cochlear implant front-end was constructed. Taking digital signal processing (DSP) as the core, the system combines its multi-channel buffered serial port (McBSP) data transmission channel with extended audio interface chip TLV320AIC10, so speech signal acquisition and output with high speed are realized. Meanwhile, due to the traditional speech enhancement method which has the problems as bad adaptability, slow convergence speed and big steady-state error, versiera function and de-correlation principle were used to improve the existing adaptive filtering algorithm, which effectively enhanced the quality of voice communications. Test results verified the stability of the system and the de-noising performance of the algorithm, and it also proved that they could provide clearer speech signals for the deaf or tinnitus patients.
Electronic voltage and current transformers testing device.
Pan, Feng; Chen, Ruimin; Xiao, Yong; Sun, Weiming
2012-01-01
A method for testing electronic instrument transformers is described, including electronic voltage and current transformers (EVTs, ECTs) with both analog and digital outputs. A testing device prototype is developed. It is based on digital signal processing of the signals that are measured at the secondary outputs of the tested transformer and the reference transformer when the same excitation signal is fed to their primaries. The test that estimates the performance of the prototype has been carried out at the National Centre for High Voltage Measurement and the prototype is approved for testing transformers with precision class up to 0.2 at the industrial frequency (50 Hz or 60 Hz). The device is suitable for on-site testing due to its high accuracy, simple structure and low-cost hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandrov, Boian S.; Lliev, Filip L.; Stanev, Valentin G.
This code is a toy (short) version of CODE-2016-83. From a general perspective, the code represents an unsupervised adaptive machine learning algorithm that allows efficient and high performance de-mixing and feature extraction of a multitude of non-negative signals mixed and recorded by a network of uncorrelated sensor arrays. The code identifies the number of the mixed original signals and their locations. Further, the code also allows deciphering of signals that have been delayed in regards to the mixing process in each sensor. This code is high customizable and it can be efficiently used for a fast macro-analyses of data. Themore » code is applicable to a plethora of distinct problems: chemical decomposition, pressure transient decomposition, unknown sources/signal allocation, EM signal decomposition. An additional procedure for allocation of the unknown sources is incorporated in the code.« less
Lau, Sarah J.; Moore, David G.; Stair, Sarah L.; ...
2016-01-01
Ultrasonic analysis is being explored as a way to capture events during melting of highly dispersive wax. Typical events include temperature changes in the material, phase transition of the material, surface flows and reformations, and void filling as the material melts. Melt tests are performed with wax to evaluate the usefulness of different signal processing algorithms in capturing event data. Several algorithm paths are being pursued. The first looks at changes in the velocity of the signal through the material. This is only appropriate when the changes from one ultrasonic signal to the next can be represented by a linearmore » relationship, which is not always the case. The second tracks changes in the frequency content of the signal. The third algorithm tracks changes in the temporal moments of a signal over a full test. This method does not require that the changes in the signal be represented by a linear relationship, but attaching changes in the temporal moments to physical events can be difficult. This study describes the algorithm paths applied to experimental data from ultrasonic signals as wax melts and explores different ways to display the results.« less
Reward alters the perception of time.
Failing, Michel; Theeuwes, Jan
2016-03-01
Recent findings indicate that monetary rewards have a powerful effect on cognitive performance. In order to maximize overall gain, the prospect of earning reward biases visual attention to specific locations or stimulus features improving perceptual sensitivity and processing. The question we addressed in this study is whether the prospect of reward also affects the subjective perception of time. Here, participants performed a prospective timing task using temporal oddballs. The results show that temporal oddballs, displayed for varying durations, presented in a sequence of standard stimuli were perceived to last longer when they signaled a relatively high reward compared to when they signaled no or low reward. When instead of the oddball the standards signaled reward, the perception of the temporal oddball remained unaffected. We argue that by signaling reward, a stimulus becomes subjectively more salient thereby modulating its attentional deployment and distorting how it is perceived in time. Copyright © 2015 Elsevier B.V. All rights reserved.
Signal Processing, Analysis, & Display
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lager, Darrell; Azevado, Stephen
1986-06-01
SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time- and frequency-domain signalsmore » including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments,commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less
SIG. Signal Processing, Analysis, & Display
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, J.; Lager, D.; Azevedo, S.
1992-01-22
SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time- and frequency-domain signalsmore » including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments,commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less
Surface Electromyography Signal Processing and Classification Techniques
Chowdhury, Rubana H.; Reaz, Mamun B. I.; Ali, Mohd Alauddin Bin Mohd; Bakar, Ashrif A. A.; Chellappan, Kalaivani; Chang, Tae. G.
2013-01-01
Electromyography (EMG) signals are becoming increasingly important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, and more. However, noisy EMG signals are the major hurdles to be overcome in order to achieve improved performance in the above applications. Detection, processing and classification analysis in electromyography (EMG) is very desirable because it allows a more standardized and precise evaluation of the neurophysiological, rehabitational and assistive technological findings. This paper reviews two prominent areas; first: the pre-processing method for eliminating possible artifacts via appropriate preparation at the time of recording EMG signals, and second: a brief explanation of the different methods for processing and classifying EMG signals. This study then compares the numerous methods of analyzing EMG signals, in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above. PMID:24048337
Gliotransmitters travel in time and space.
Araque, Alfonso; Carmignoto, Giorgio; Haydon, Philip G; Oliet, Stéphane H R; Robitaille, Richard; Volterra, Andrea
2014-02-19
The identification of the presence of active signaling between astrocytes and neurons in a process termed gliotransmission has caused a paradigm shift in our thinking about brain function. However, we are still in the early days of the conceptualization of how astrocytes influence synapses, neurons, networks, and ultimately behavior. In this Perspective, our goal is to identify emerging principles governing gliotransmission and consider the specific properties of this process that endow the astrocyte with unique functions in brain signal integration. We develop and present hypotheses aimed at reconciling confounding reports and define open questions to provide a conceptual framework for future studies. We propose that astrocytes mainly signal through high-affinity slowly desensitizing receptors to modulate neurons and perform integration in spatiotemporal domains complementary to those of neurons. Copyright © 2014 Elsevier Inc. All rights reserved.
Space Debris Detection on the HPDP, a Coarse-Grained Reconfigurable Array Architecture for Space
NASA Astrophysics Data System (ADS)
Suarez, Diego Andres; Bretz, Daniel; Helfers, Tim; Weidendorfer, Josef; Utzmann, Jens
2016-08-01
Stream processing, widely used in communications and digital signal processing applications, requires high- throughput data processing that is achieved in most cases using Application-Specific Integrated Circuit (ASIC) designs. Lack of programmability is an issue especially in space applications, which use on-board components with long life-cycles requiring applications updates. To this end, the High Performance Data Processor (HPDP) architecture integrates an array of coarse-grained reconfigurable elements to provide both flexible and efficient computational power suitable for stream-based data processing applications in space. In this work the capabilities of the HPDP architecture are demonstrated with the implementation of a real-time image processing algorithm for space debris detection in a space-based space surveillance system. The implementation challenges and alternatives are described making trade-offs to improve performance at the expense of negligible degradation of detection accuracy. The proposed implementation uses over 99% of the available computational resources. Performance estimations based on simulations show that the HPDP can amply match the application requirements.
BPSK Demodulation Using Digital Signal Processing
NASA Technical Reports Server (NTRS)
Garcia, Thomas R.
1996-01-01
A digital communications signal is a sinusoidal waveform that is modified by a binary (digital) information signal. The sinusoidal waveform is called the carrier. The carrier may be modified in amplitude, frequency, phase, or a combination of these. In this project a binary phase shift keyed (BPSK) signal is the communication signal. In a BPSK signal the phase of the carrier is set to one of two states, 180 degrees apart, by a binary (i.e., 1 or 0) information signal. A digital signal is a sampled version of a "real world" time continuous signal. The digital signal is generated by sampling the continuous signal at discrete points in time. The rate at which the signal is sampled is called the sampling rate (f(s)). The device that performs this operation is called an analog-to-digital (A/D) converter or a digitizer. The digital signal is composed of the sequence of individual values of the sampled BPSK signal. Digital signal processing (DSP) is the modification of the digital signal by mathematical operations. A device that performs this processing is called a digital signal processor. After processing, the digital signal may then be converted back to an analog signal using a digital-to-analog (D/A) converter. The goal of this project is to develop a system that will recover the digital information from a BPSK signal using DSP techniques. The project is broken down into the following steps: (1) Development of the algorithms required to demodulate the BPSK signal; (2) Simulation of the system; and (3) Implementation a BPSK receiver using digital signal processing hardware.
Design and Processing of a Novel Chaos-Based Stepped Frequency Synthesized Wideband Radar Signal.
Zeng, Tao; Chang, Shaoqiang; Fan, Huayu; Liu, Quanhua
2018-03-26
The linear stepped frequency and linear frequency shift keying (FSK) signal has been widely used in radar systems. However, such linear modulation signals suffer from the range-Doppler coupling that degrades radar multi-target resolution. Moreover, the fixed frequency-hopping or frequency-coded sequence can be easily predicted by the interception receiver in the electronic countermeasures (ECM) environments, which limits radar anti-jamming performance. In addition, the single FSK modulation reduces the radar low probability of intercept (LPI) performance, for it cannot achieve a large time-bandwidth product. To solve such problems, we propose a novel chaos-based stepped frequency (CSF) synthesized wideband signal in this paper. The signal introduces chaotic frequency hopping between the coherent stepped frequency pulses, and adopts a chaotic frequency shift keying (CFSK) and phase shift keying (PSK) composited coded modulation in a subpulse, called CSF-CFSK/PSK. Correspondingly, the processing method for the signal has been proposed. According to our theoretical analyses and the simulations, the proposed signal and processing method achieve better multi-target resolution and LPI performance. Furthermore, flexible modulation is able to increase the robustness against identification of the interception receiver and improve the anti-jamming performance of the radar.
Multistatic GNSS Receiver Array for Passive Air Surveillance
NASA Astrophysics Data System (ADS)
Wachtl, Stefan; Koch, Volker; Westphal, Robert; Schmidt, Lorenz-Peter
2016-03-01
The performance of a passive air surveillance sensor based on Global Navigation Satellite Systems (GNSS) is mainly limited by the receiver noise efficiency, the achievable signal processing gain and the radar cross section (RCS) of an airplane. For surveillance applications large detection ranges as well as a high probability of detection are crucial parameters. Due to the very low GNSS signal powers received on the earth's surface, high radar cross sections are mandatory to achieve detection ranges for airplanes at some kilometers distance. This paper will discuss a multistatic transmitter and receiver arrangement, which is indispensable to get a reasonable detection rate with respect to a hemispheric field of view. The strong performance dependency of such a sensor on the number of transmitters and receivers will be shown by means of some exemplary simulation results.
NASA Technical Reports Server (NTRS)
Daluge, D. R.; Ruedger, W. H.
1981-01-01
Problems encountered in testing onboard signal processing hardware designed to achieve radiometric and geometric correction of satellite imaging data are considered. These include obtaining representative image and ancillary data for simulation and the transfer and storage of a large quantity of image data at very high speed. The high resolution, high speed preprocessing of LANDSAT-D imagery is considered.
Jan, Shau-Shiun; Sun, Chih-Cheng
2010-01-01
The detection of low received power of global positioning system (GPS) signals in the signal acquisition process is an important issue for GPS applications. Improving the miss-detection problem of low received power signal is crucial, especially for urban or indoor environments. This paper proposes a signal existence verification (SEV) process to detect and subsequently verify low received power GPS signals. The SEV process is based on the time-frequency representation of GPS signal, and it can capture the characteristic of GPS signal in the time-frequency plane to enhance the GPS signal acquisition performance. Several simulations and experiments are conducted to show the effectiveness of the proposed method for low received power signal detection. The contribution of this work is that the SEV process is an additional scheme to assist the GPS signal acquisition process in low received power signal detection, without changing the original signal acquisition or tracking algorithms.
NASA Technical Reports Server (NTRS)
Choi, H. J.; Su, Y. T.
1986-01-01
The User Constraint Measurement System (UCMS) is a hardware/software package developed by NASA Goddard to measure the signal parameter constraints of the user transponder in the TDRSS environment by means of an all-digital signal sampling technique. An account is presently given of the features of UCMS design and of its performance capabilities and applications; attention is given to such important aspects of the system as RF interface parameter definitions, hardware minimization, the emphasis on offline software signal processing, and end-to-end link performance. Applications to the measurement of other signal parameters are also discussed.
NASA Astrophysics Data System (ADS)
Zhou, Zhenggan; Ma, Baoquan; Jiang, Jingtao; Yu, Guang; Liu, Kui; Zhang, Dongmei; Liu, Weiping
2014-10-01
Air-coupled ultrasonic testing (ACUT) technique has been viewed as a viable solution in defect detection of advanced composites used in aerospace and aviation industries. However, the giant mismatch of acoustic impedance in air-solid interface makes the transmission efficiency of ultrasound low, and leads to poor signal-to-noise (SNR) ratio of received signal. The utilisation of signal-processing techniques in non-destructive testing is highly appreciated. This paper presents a wavelet filtering and phase-coded pulse compression hybrid method to improve the SNR and output power of received signal. The wavelet transform is utilised to filter insignificant components from noisy ultrasonic signal, and pulse compression process is used to improve the power of correlated signal based on cross-correction algorithm. For the purpose of reasonable parameter selection, different families of wavelets (Daubechies, Symlet and Coiflet) and decomposition level in discrete wavelet transform are analysed, different Barker codes (5-13 bits) are also analysed to acquire higher main-to-side lobe ratio. The performance of the hybrid method was verified in a honeycomb composite sample. Experimental results demonstrated that the proposed method is very efficient in improving the SNR and signal strength. The applicability of the proposed method seems to be a very promising tool to evaluate the integrity of high ultrasound attenuation composite materials using the ACUT.
Adaptive Fourier decomposition based R-peak detection for noisy ECG Signals.
Ze Wang; Chi Man Wong; Feng Wan
2017-07-01
An adaptive Fourier decomposition (AFD) based R-peak detection method is proposed for noisy ECG signals. Although lots of QRS detection methods have been proposed in literature, most detection methods require high signal quality. The proposed method extracts the R waves from the energy domain using the AFD and determines the R-peak locations based on the key decomposition parameters, achieving the denoising and the R-peak detection at the same time. Validated by clinical ECG signals in the MIT-BIH Arrhythmia Database, the proposed method shows better performance than the Pan-Tompkin (PT) algorithm in both situations of a native PT and the PT with a denoising process.
Development of IR imaging system simulator
NASA Astrophysics Data System (ADS)
Xiang, Xinglang; He, Guojing; Dong, Weike; Dong, Lu
2017-02-01
To overcome the disadvantages of the tradition semi-physical simulation and injection simulation equipment in the performance evaluation of the infrared imaging system (IRIS), a low-cost and reconfigurable IRIS simulator, which can simulate the realistic physical process of infrared imaging, is proposed to test and evaluate the performance of the IRIS. According to the theoretical simulation framework and the theoretical models of the IRIS, the architecture of the IRIS simulator is constructed. The 3D scenes are generated and the infrared atmospheric transmission effects are simulated using OGRE technology in real-time on the computer. The physical effects of the IRIS are classified as the signal response characteristic, modulation transfer characteristic and noise characteristic, and they are simulated on the single-board signal processing platform based on the core processor FPGA in real-time using high-speed parallel computation method.
Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy.
Werle, P W; Mazzinghi, P; D'Amato, F; De Rosa, M; Maurer, K; Slemr, F
2004-07-01
Gas analyzers based on tunable diode-laser spectroscopy (TDLS) provide high sensitivity, fast response and highly specific in situ measurements of several atmospheric trace gases simultaneously. Under optimum conditions even a shot noise limited performance can be obtained. For field applications outside the laboratory practical limitations are important. At ambient mixing ratios below a few parts-per-billion spectrometers become more and more sensitive towards noise, interference, drift effects and background changes associated with low level signals. It is the purpose of this review to address some of the problems which are encountered at these low levels and to describe a signal processing strategy for trace gas monitoring and a concept for in situ system calibration applicable for tunable diode-laser spectroscopy. To meet the requirement of quality assurance for field measurements and monitoring applications, procedures to check the linearity according to International Standard Organization regulations are described and some measurements of calibration functions are presented and discussed.
On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP.
Winkler, Irene; Debener, Stefan; Müller, Klaus-Robert; Tangermann, Michael
2015-01-01
Standard artifact removal methods for electroencephalographic (EEG) signals are either based on Independent Component Analysis (ICA) or they regress out ocular activity measured at electrooculogram (EOG) channels. Successful ICA-based artifact reduction relies on suitable pre-processing. Here we systematically evaluate the effects of high-pass filtering at different frequencies. Offline analyses were based on event-related potential data from 21 participants performing a standard auditory oddball task and an automatic artifactual component classifier method (MARA). As a pre-processing step for ICA, high-pass filtering between 1-2 Hz consistently produced good results in terms of signal-to-noise ratio (SNR), single-trial classification accuracy and the percentage of `near-dipolar' ICA components. Relative to no artifact reduction, ICA-based artifact removal significantly improved SNR and classification accuracy. This was not the case for a regression-based approach to remove EOG artifacts.
NASA Astrophysics Data System (ADS)
Mindur, B.; Alimov, S.; Fiutowski, T.; Schulz, C.; Wilpert, T.
2014-12-01
A two-dimensional (2D) position sensitive detector for neutron scattering applications based on low-pressure gas amplification and micro-strip technology was built and tested with an innovative readout electronics and data acquisition system. This detector contains a thin solid neutron converter and was developed for time- and thus wavelength-resolved neutron detection in single-event counting mode, which improves the image contrast in comparison with integrating detectors. The prototype detector of a Micro-Strip Gas Chamber (MSGC) was built with a solid natGd/CsI thermal neutron converter for spatial resolutions of about 100 μm and counting rates up to 107 neutrons/s. For attaining very high spatial resolutions and counting rates via micro-strip readout with centre-of-gravity evaluation of the signal amplitude distributions, a fast, channel-wise, self-triggering ASIC was developed. The front-end chips (MSGCROCs), which are very first signal processing components, are read out into powerful ADC-FPGA boards for on-line data processing and thereafter via Gigabit Ethernet link into the data receiving PC. The workstation PC is controlled by a modular, high performance dedicated software suite. Such a fast and accurate system is crucial for efficient radiography/tomography, diffraction or imaging applications based on high flux thermal neutron beam. In this paper a brief description of the detector concept with its operation principles, readout electronics requirements and design together with the signals processing stages performed in hardware and software are presented. In more detail the neutron test beam conditions and measurement results are reported. The focus of this paper is on the system integration, two dimensional spatial resolution, the time resolution of the readout system and the imaging capabilities of the overall setup. The detection efficiency of the detector prototype is estimated as well.
NASA-SETI microwave observing project: Targeted Search Element (TSE)
NASA Technical Reports Server (NTRS)
Webster, L. D.
1991-01-01
The Targeted Search Element (TSE) performs one of two complimentary search strategies of the NASA-SETI Microwave Observing Project (MOP): the targeted search. The principle objective of the targeted search strategy is to scan the microwave window between the frequencies of one and three gigahertz for narrowband microwave emissions eminating from the direction of 773 specifically targeted stars. The scanning process is accomplished at a minimum resolution of one or two Hertz at very high sensitivity. Detectable signals will be of a continuous wave or pulsed form and may also drift in frequency. The TSE will possess extensive radio frequency interference (RFI) mitigation and verification capability as the majority of signals detected by the TSE will be of local origin. Any signal passing through RFI classification and classifiable as an extraterrestrial intelligence (ETI) candidate will be further validated at non-MOP observatories using established protocol. The targeted search will be conducted using the capability provided by the TSE. The TSE provides six Targeted Search Systems (TSS) which independently or cooperatively perform automated collection, analysis, storage, and archive of signal data. Data is collected in 10 megahertz chunks and signal processing is performed at a rate of 160 megabits per second. Signal data is obtained utilizing the largest radio telescopes available for the Targeted Search such as those at Arecibo and Nancay or at the dedicated NASA-SETI facility. This latter facility will allow continuous collection of data. The TSE also provides for TSS utilization planning, logistics, remote operation, and for off-line data analysis and permanent archive of both the Targeted Search and Sky Survey data.
Rostami, Javad; Chen, Jingming; Tse, Peter W
2017-02-07
Ultrasonic guided waves have been extensively applied for non-destructive testing of plate-like structures particularly pipes in past two decades. In this regard, if a structure has a simple geometry, obtained guided waves' signals are easy to explain. However, any small degree of complexity in the geometry such as contacting with other materials may cause an extra amount of complication in the interpretation of guided wave signals. The problem deepens if defects have irregular shapes such as natural corrosion. Signal processing techniques that have been proposed for guided wave signals' analysis are generally good for simple signals obtained in a highly controlled experimental environment. In fact, guided wave signals in a real situation such as the existence of natural corrosion in wall-covered pipes are much more complicated. Considering pipes in residential buildings that pass through concrete walls, in this paper we introduced Smooth Empirical Mode Decomposition (SEMD) to efficiently separate overlapped guided waves. As empirical mode decomposition (EMD) which is a good candidate for analyzing non-stationary signals, suffers from some shortcomings, wavelet transform was adopted in the sifting stage of EMD to improve its outcome in SEMD. However, selection of mother wavelet that suits best for our purpose plays an important role. Since in guided wave inspection, the incident waves are well known and are usually tone-burst signals, we tailored a complex tone-burst signal to be used as our mother wavelet. In the sifting stage of EMD, wavelet de-noising was applied to eliminate unwanted frequency components from each IMF. SEMD greatly enhances the performance of EMD in guided wave analysis for highly contaminated signals. In our experiment on concrete covered pipes with natural corrosion, this method not only separates the concrete wall indication clearly in time domain signal, a natural corrosion with complex geometry that was hidden and located inside the concrete section was successfully exposed.
Use and Protection of GPS Sidelobe Signals for Enhanced Navigation Performance in High Earth Orbit
NASA Technical Reports Server (NTRS)
Parker, Joel J. K.; Valdez, Jennifer E.; Bauer, Frank H.; Moreau, Michael C.
2016-01-01
GPS (Global Positioning System) Space Service Volume (SSV) signal environment is from 3,000-36,000 kilometers altitude. Current SSV specifications only capture performance provided by signals transmitted within 23.5(L1) or 26(L2-L5) off-nadir angle. Recent on-orbit data lessons learned show significant PNT (Positioning, Navigation and Timing) performance improvements when the full aggregate signal is used. Numerous military civil operational missions in High Geosynchronous Earth Orbit (HEOGEO) utilize the full signal to enhance vehicle PNT performance
NASA Astrophysics Data System (ADS)
Zhang, Xi
One of the major challenges for single chip radio frequency integrated circuits (RFIC's) built on Si is the RE crosstalk through the Si substrate. Noise from switching transient in digital circuits can be transmitted through Si substrate and degrades the performance of analog circuit elements. A highly conductive moat or Faraday cage type structure of through-the-wafer thickness in the Si substrate was demonstrated to be effective in shielding electromagnetic interference thereby reducing RE cross-talk in high performance mixed signal integrated circuits. Such a structure incorporated into the p- Si substrate was realized by electroless Ni metallization over selected regions with ultra-high-aspect-ratio macropores that was etched electrochemically in p- Si substrates. The metallization process was conducted by immersing the macroporous Si sample in an alkaline aqueous solution containing Ni2+ without a reducing agent. It was found that working at slightly elevated temperature, Ni 2+ was rapidly reduced and deposited in the macropores. During the wet chemical process, conformal metallization on the pore wall was achieved. The entire porous Si skeleton was gradually replaced by Ni along the extended duration of immersion. In a p-/p+ epi Si substrate used for high performance digital CMOS, the suppression of crosstalk by the arrayed metallic Ni via structure fabricated from the front p side was significant that the crosstalk went down to the noise floor of the conventional measurement instruments. The process and mechanism of forming such a Ni structure over the original Si were studied. Theoretical computation relevant to the process was carried out to show a good consistency with the experiments.
Generation of optical OFDM signals using 21.4 GS/s real time digital signal processing.
Benlachtar, Yannis; Watts, Philip M; Bouziane, Rachid; Milder, Peter; Rangaraj, Deepak; Cartolano, Anthony; Koutsoyannis, Robert; Hoe, James C; Püschel, Markus; Glick, Madeleine; Killey, Robert I
2009-09-28
We demonstrate a field programmable gate array (FPGA) based optical orthogonal frequency division multiplexing (OFDM) transmitter implementing real time digital signal processing at a sample rate of 21.4 GS/s. The QPSK-OFDM signal is generated using an 8 bit, 128 point inverse fast Fourier transform (IFFT) core, performing one transform per clock cycle at a clock speed of 167.2 MHz and can be deployed with either a direct-detection or a coherent receiver. The hardware design and the main digital signal processing functions are described, and we show that the main performance limitation is due to the low (4-bit) resolution of the digital-to-analog converter (DAC) and the 8-bit resolution of the IFFT core used. We analyze the back-to-back performance of the transmitter generating an 8.36 Gb/s optical single sideband (SSB) OFDM signal using digital up-conversion, suitable for direct-detection. Additionally, we use the device to transmit 8.36 Gb/s SSB OFDM signals over 200 km of uncompensated standard single mode fiber achieving an overall BER<10(-3).
Signal processing method and system for noise removal and signal extraction
Fu, Chi Yung; Petrich, Loren
2009-04-14
A signal processing method and system combining smooth level wavelet pre-processing together with artificial neural networks all in the wavelet domain for signal denoising and extraction. Upon receiving a signal corrupted with noise, an n-level decomposition of the signal is performed using a discrete wavelet transform to produce a smooth component and a rough component for each decomposition level. The n.sup.th level smooth component is then inputted into a corresponding neural network pre-trained to filter out noise in that component by pattern recognition in the wavelet domain. Additional rough components, beginning at the highest level, may also be retained and inputted into corresponding neural networks pre-trained to filter out noise in those components also by pattern recognition in the wavelet domain. In any case, an inverse discrete wavelet transform is performed on the combined output from all the neural networks to recover a clean signal back in the time domain.
Lakin, Matthew R.; Brown, Carl W.; Horwitz, Eli K.; Fanning, M. Leigh; West, Hannah E.; Stefanovic, Darko; Graves, Steven W.
2014-01-01
The development of large-scale molecular computational networks is a promising approach to implementing logical decision making at the nanoscale, analogous to cellular signaling and regulatory cascades. DNA strands with catalytic activity (DNAzymes) are one means of systematically constructing molecular computation networks with inherent signal amplification. Linking multiple DNAzymes into a computational circuit requires the design of substrate molecules that allow a signal to be passed from one DNAzyme to another through programmed biochemical interactions. In this paper, we chronicle an iterative design process guided by biophysical and kinetic constraints on the desired reaction pathways and use the resulting substrate design to implement heterogeneous DNAzyme signaling cascades. A key aspect of our design process is the use of secondary structure in the substrate molecule to sequester a downstream effector sequence prior to cleavage by an upstream DNAzyme. Our goal was to develop a concrete substrate molecule design to achieve efficient signal propagation with maximal activation and minimal leakage. We have previously employed the resulting design to develop high-performance DNAzyme-based signaling systems with applications in pathogen detection and autonomous theranostics. PMID:25347066
VLSI implementation of a new LMS-based algorithm for noise removal in ECG signal
NASA Astrophysics Data System (ADS)
Satheeskumaran, S.; Sabrigiriraj, M.
2016-06-01
Least mean square (LMS)-based adaptive filters are widely deployed for removing artefacts in electrocardiogram (ECG) due to less number of computations. But they posses high mean square error (MSE) under noisy environment. The transform domain variable step-size LMS algorithm reduces the MSE at the cost of computational complexity. In this paper, a variable step-size delayed LMS adaptive filter is used to remove the artefacts from the ECG signal for improved feature extraction. The dedicated digital Signal processors provide fast processing, but they are not flexible. By using field programmable gate arrays, the pipelined architectures can be used to enhance the system performance. The pipelined architecture can enhance the operation efficiency of the adaptive filter and save the power consumption. This technique provides high signal-to-noise ratio and low MSE with reduced computational complexity; hence, it is a useful method for monitoring patients with heart-related problem.
FPGA-Based Filterbank Implementation for Parallel Digital Signal Processing
NASA Technical Reports Server (NTRS)
Berner, Stephan; DeLeon, Phillip
1999-01-01
One approach to parallel digital signal processing decomposes a high bandwidth signal into multiple lower bandwidth (rate) signals by an analysis bank. After processing, the subband signals are recombined into a fullband output signal by a synthesis bank. This paper describes an implementation of the analysis and synthesis banks using (Field Programmable Gate Arrays) FPGAs.
Warburton, William K.; Momayezi, Michael
2006-06-20
A method and apparatus for processing step-like output signals (primary signals) generated by non-ideal, for example, nominally single-pole ("N-1P ") devices. An exemplary method includes creating a set of secondary signals by directing the primary signal along a plurality of signal paths to a signal summation point, summing the secondary signals reaching the signal summation point after propagating along the signal paths to provide a summed signal, performing a filtering or delaying operation in at least one of said signal paths so that the secondary signals reaching said summing point have a defined time correlation with respect to one another, applying a set of weighting coefficients to the secondary signals propagating along said signal paths, and performing a capturing operation after any filtering or delaying operations so as to provide a weighted signal sum value as a measure of the integrated area QgT of the input signal.
Advanced Digital Signal Processing for Hybrid Lidar FY 2014
2014-10-30
processing steps on raw data, with a PC miming Lab VIEW performing the fmal calculations to obtain range measurements . A MATLAB- based system...regarding the object and it reduces the image contrast and resolution as well as the object ranging measurement accuracy. There have been various...frequency (>100MHz) approach that uses high speed modulation to help suppress backscatter while also providing an unambiguous range measurement . In general
Elschner, Robert; Frey, Felix; Meuer, Christian; Fischer, Johannes Karl; Alreesh, Saleem; Schmidt-Langhorst, Carsten; Molle, Lutz; Tanimura, Takahito; Schubert, Colja
2012-12-17
We experimentally demonstrate the use of data-aided digital signal processing for format-flexible coherent reception of different 28-GBd PDM and 4D modulated signals in WDM transmission experiments over up to 7680 km SSMF by using the same resource-efficient digital signal processing algorithms for the equalization of all formats. Stable and regular performance in the nonlinear transmission regime is confirmed.
Rostami, Javad; Chen, Jingming; Tse, Peter W.
2017-01-01
Ultrasonic guided waves have been extensively applied for non-destructive testing of plate-like structures particularly pipes in past two decades. In this regard, if a structure has a simple geometry, obtained guided waves’ signals are easy to explain. However, any small degree of complexity in the geometry such as contacting with other materials may cause an extra amount of complication in the interpretation of guided wave signals. The problem deepens if defects have irregular shapes such as natural corrosion. Signal processing techniques that have been proposed for guided wave signals’ analysis are generally good for simple signals obtained in a highly controlled experimental environment. In fact, guided wave signals in a real situation such as the existence of natural corrosion in wall-covered pipes are much more complicated. Considering pipes in residential buildings that pass through concrete walls, in this paper we introduced Smooth Empirical Mode Decomposition (SEMD) to efficiently separate overlapped guided waves. As empirical mode decomposition (EMD) which is a good candidate for analyzing non-stationary signals, suffers from some shortcomings, wavelet transform was adopted in the sifting stage of EMD to improve its outcome in SEMD. However, selection of mother wavelet that suits best for our purpose plays an important role. Since in guided wave inspection, the incident waves are well known and are usually tone-burst signals, we tailored a complex tone-burst signal to be used as our mother wavelet. In the sifting stage of EMD, wavelet de-noising was applied to eliminate unwanted frequency components from each IMF. SEMD greatly enhances the performance of EMD in guided wave analysis for highly contaminated signals. In our experiment on concrete covered pipes with natural corrosion, this method not only separates the concrete wall indication clearly in time domain signal, a natural corrosion with complex geometry that was hidden and located inside the concrete section was successfully exposed. PMID:28178220
Ultra-high throughput real-time instruments for capturing fast signals and rare events
NASA Astrophysics Data System (ADS)
Buckley, Brandon Walter
Wide-band signals play important roles in the most exciting areas of science, engineering, and medicine. To keep up with the demands of exploding internet traffic, modern data centers and communication networks are employing increasingly faster data rates. Wide-band techniques such as pulsed radar jamming and spread spectrum frequency hopping are used on the battlefield to wrestle control of the electromagnetic spectrum. Neurons communicate with each other using transient action potentials that last for only milliseconds at a time. And in the search for rare cells, biologists flow large populations of cells single file down microfluidic channels, interrogating them one-by-one, tens of thousands of times per second. Studying and enabling such high-speed phenomena pose enormous technical challenges. For one, parasitic capacitance inherent in analog electrical components limits their response time. Additionally, converting these fast analog signals to the digital domain requires enormous sampling speeds, which can lead to significant jitter and distortion. State-of-the-art imaging technologies, essential for studying biological dynamics and cells in flow, are limited in speed and sensitivity by finite charge transfer and read rates, and by the small numbers of photo-electrons accumulated in short integration times. And finally, ultra-high throughput real-time digital processing is required at the backend to analyze the streaming data. In this thesis, I discuss my work in developing real-time instruments, employing ultrafast optical techniques, which overcome some of these obstacles. In particular, I use broadband dispersive optics to slow down fast signals to speeds accessible to high-bit depth digitizers and signal processors. I also apply telecommunication multiplexing techniques to boost the speeds of confocal fluorescence microscopy. The photonic time stretcher (TiSER) uses dispersive Fourier transformation to slow down analog signals before digitization and processing. The act of time-stretching effectively boosts the performance of the back-end electronics and digital signal processors. The slowed down signals reach the back-end electronics with reduced bandwidth, and are therefore less affected by high-frequency roll-off and distortion. Time-stretching also increases the effective sampling rate of analog-to-digital converters and reduces aperture jitter, thereby improving resolution. Finally, the instantaneous throughputs of digital signal processors are enhanced by the stretch factor to otherwise unattainable speeds. Leveraging these unique capabilities, TiSER becomes the ideal tool for capturing high-speed signals and characterizing rare phenomena. For this thesis, I have developed techniques to improve the spectral efficiency, bandwidth, and resolution of TiSER using polarization multiplexing, all-optical modulation, and coherent dispersive Fourier transformation. To reduce the latency and improve the data handling capacity, I have also designed and implemented a real-time digital signal processing electronic backend, achieving 1.5 tera-bit per second instantaneous processing throughput. Finally, I will present results from experiments highlighting TiSER's impact in real-world applications. Confocal fluorescence microscopy is the most widely used method for unveiling the molecular composition of biological specimens. However, the weak optical emission of fluorescent probes and the tradeoff between imaging speed and sensitivity is problematic for acquiring blur-free images of fast phenomena and cells flowing at high speed. Here I introduce a new fluorescence imaging modality, which leverages techniques from wireless communication to reach record pixel and frame rates. Termed Fluorescence Imaging using Radio-frequency tagged Emission (FIRE), this new imaging modality is capable of resolving never before seen dynamics in living cells - such as action potentials in neurons and metabolic waves in astrocytes - as well as performing high-content image assays of cells and particles in high-speed flow.
Design of a dataway processor for a parallel image signal processing system
NASA Astrophysics Data System (ADS)
Nomura, Mitsuru; Fujii, Tetsuro; Ono, Sadayasu
1995-04-01
Recently, demands for high-speed signal processing have been increasing especially in the field of image data compression, computer graphics, and medical imaging. To achieve sufficient power for real-time image processing, we have been developing parallel signal-processing systems. This paper describes a communication processor called 'dataway processor' designed for a new scalable parallel signal-processing system. The processor has six high-speed communication links (Dataways), a data-packet routing controller, a RISC CORE, and a DMA controller. Each communication link operates at 8-bit parallel in a full duplex mode at 50 MHz. Moreover, data routing, DMA, and CORE operations are processed in parallel. Therefore, sufficient throughput is available for high-speed digital video signals. The processor is designed in a top- down fashion using a CAD system called 'PARTHENON.' The hardware is fabricated using 0.5-micrometers CMOS technology, and its hardware is about 200 K gates.
A digital-receiver for the MurchisonWidefield Array
NASA Astrophysics Data System (ADS)
Prabu, Thiagaraj; Srivani, K. S.; Roshi, D. Anish; Kamini, P. A.; Madhavi, S.; Emrich, David; Crosse, Brian; Williams, Andrew J.; Waterson, Mark; Deshpande, Avinash A.; Shankar, N. Udaya; Subrahmanyan, Ravi; Briggs, Frank H.; Goeke, Robert F.; Tingay, Steven J.; Johnston-Hollitt, Melanie; R, Gopalakrishna M.; Morgan, Edward H.; Pathikulangara, Joseph; Bunton, John D.; Hampson, Grant; Williams, Christopher; Ord, Stephen M.; Wayth, Randall B.; Kumar, Deepak; Morales, Miguel F.; deSouza, Ludi; Kratzenberg, Eric; Pallot, D.; McWhirter, Russell; Hazelton, Bryna J.; Arcus, Wayne; Barnes, David G.; Bernardi, Gianni; Booler, T.; Bowman, Judd D.; Cappallo, Roger J.; Corey, Brian E.; Greenhill, Lincoln J.; Herne, David; Hewitt, Jacqueline N.; Kaplan, David L.; Kasper, Justin C.; Kincaid, Barton B.; Koenig, Ronald; Lonsdale, Colin J.; Lynch, Mervyn J.; Mitchell, Daniel A.; Oberoi, Divya; Remillard, Ronald A.; Rogers, Alan E.; Salah, Joseph E.; Sault, Robert J.; Stevens, Jamie B.; Tremblay, S.; Webster, Rachel L.; Whitney, Alan R.; Wyithe, Stuart B.
2015-03-01
An FPGA-based digital-receiver has been developed for a low-frequency imaging radio interferometer, the Murchison Widefield Array (MWA). The MWA, located at the Murchison Radio-astronomy Observatory (MRO) in Western Australia, consists of 128 dual-polarized aperture-array elements (tiles) operating between 80 and 300 MHz, with a total processed bandwidth of 30.72 MHz for each polarization. Radio-frequency signals from the tiles are amplified and band limited using analog signal conditioning units; sampled and channelized by digital-receivers. The signals from eight tiles are processed by a single digital-receiver, thus requiring 16 digital-receivers for the MWA. The main function of the digital-receivers is to digitize the broad-band signals from each tile, channelize them to form the sky-band, and transport it through optical fibers to a centrally located correlator for further processing. The digital-receiver firmware also implements functions to measure the signal power, perform power equalization across the band, detect interference-like events, and invoke diagnostic modes. The digital-receiver is controlled by high-level programs running on a single-board-computer. This paper presents the digital-receiver design, implementation, current status, and plans for future enhancements.
Detection of Artificially Generated Seismic Signals Using Balloon-Borne Infrasound Sensors
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.; Cutts, James A.; Garcia, Raphael F.; Mimoun, David; Cadu, Alexandre; Sournac, Anthony; Jackson, Jennifer M.; Lai, Voon Hui; Bowman, Daniel C.
2018-04-01
We conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hot air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.
Electronic Voltage and Current Transformers Testing Device
Pan, Feng; Chen, Ruimin; Xiao, Yong; Sun, Weiming
2012-01-01
A method for testing electronic instrument transformers is described, including electronic voltage and current transformers (EVTs, ECTs) with both analog and digital outputs. A testing device prototype is developed. It is based on digital signal processing of the signals that are measured at the secondary outputs of the tested transformer and the reference transformer when the same excitation signal is fed to their primaries. The test that estimates the performance of the prototype has been carried out at the National Centre for High Voltage Measurement and the prototype is approved for testing transformers with precision class up to 0.2 at the industrial frequency (50 Hz or 60 Hz). The device is suitable for on-site testing due to its high accuracy, simple structure and low-cost hardware. PMID:22368510
Structural health monitoring feature design by genetic programming
NASA Astrophysics Data System (ADS)
Harvey, Dustin Y.; Todd, Michael D.
2014-09-01
Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.
Schilbach, Leonhard; Bzdok, Danilo; Timmermans, Bert; Fox, Peter T.; Laird, Angela R.; Vogeley, Kai; Eickhoff, Simon B.
2012-01-01
Previous research suggests overlap between brain regions that show task-induced deactivations and those activated during the performance of social-cognitive tasks. Here, we present results of quantitative meta-analyses of neuroimaging studies, which confirm a statistical convergence in the neural correlates of social and resting state cognition. Based on the idea that both social and unconstrained cognition might be characterized by introspective processes, which are also thought to be highly relevant for emotional experiences, a third meta-analysis was performed investigating studies on emotional processing. By using conjunction analyses across all three sets of studies, we can demonstrate significant overlap of task-related signal change in dorso-medial prefrontal and medial parietal cortex, brain regions that have, indeed, recently been linked to introspective abilities. Our findings, therefore, provide evidence for the existence of a core neural network, which shows task-related signal change during socio-emotional tasks and during resting states. PMID:22319593
Sapir, Shimon; Pud, Dorit
2008-01-01
To assess the effect of tonic pain stimulation on auditory processing of speech-relevant acoustic signals in healthy pain-free volunteers. Sixty university students, randomly assigned to either a thermal pain stimulation (46 degrees C/6 min) group (PS) or no pain stimulation group (NPS), performed a rate change detection task (RCDT) involving sinusoidally frequency-modulated vowel-like signals. Task difficulty was manipulated by changing the rate of the modulated signals (henceforth rate). Perceived pain intensity was evaluated using a visual analog scale (VAS) (0-100). Mean pain rating was approximately 33 in the PS group and approximately 3 in the NPS group. Pain stimulation was associated with poorer performance on the RCDT, but this trend was not statistically significant. Performance worsened with increasing rate of signal modulation in both groups (p < 0.0001), with no pain by rate interaction. The present findings indicate a trend whereby mild or moderate pain appears to affect auditory processing of speech-relevant acoustic signals. This trend, however, was not statistically significant. It is possible that more intense pain would yield more pronounced (deleterious) effects on auditory processing, but this needs to be verified empirically.
Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope.
Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook
2016-04-20
A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments.
A Carrier Estimation Method Based on MLE and KF for Weak GNSS Signals.
Zhang, Hongyang; Xu, Luping; Yan, Bo; Zhang, Hua; Luo, Liyan
2017-06-22
Maximum likelihood estimation (MLE) has been researched for some acquisition and tracking applications of global navigation satellite system (GNSS) receivers and shows high performance. However, all current methods are derived and operated based on the sampling data, which results in a large computation burden. This paper proposes a low-complexity MLE carrier tracking loop for weak GNSS signals which processes the coherent integration results instead of the sampling data. First, the cost function of the MLE of signal parameters such as signal amplitude, carrier phase, and Doppler frequency are used to derive a MLE discriminator function. The optimal value of the cost function is searched by an efficient Levenberg-Marquardt (LM) method iteratively. Its performance including Cramér-Rao bound (CRB), dynamic characteristics and computation burden are analyzed by numerical techniques. Second, an adaptive Kalman filter is designed for the MLE discriminator to obtain smooth estimates of carrier phase and frequency. The performance of the proposed loop, in terms of sensitivity, accuracy and bit error rate, is compared with conventional methods by Monte Carlo (MC) simulations both in pedestrian-level and vehicle-level dynamic circumstances. Finally, an optimal loop which combines the proposed method and conventional method is designed to achieve the optimal performance both in weak and strong signal circumstances.
Worthmann, Brian M; Song, H C; Dowling, David R
2017-01-01
Remote source localization in the shallow ocean at frequencies significantly above 1 kHz is virtually impossible for conventional array signal processing techniques due to environmental mismatch. A recently proposed technique called frequency-difference matched field processing (Δf-MFP) [Worthmann, Song, and Dowling (2015). J. Acoust. Soc. Am. 138(6), 3549-3562] overcomes imperfect environmental knowledge by shifting the signal processing to frequencies below the signal's band through the use of a quadratic product of frequency-domain signal amplitudes called the autoproduct. This paper extends these prior Δf-MFP results to various adaptive MFP processors found in the literature, with particular emphasis on minimum variance distortionless response, multiple constraint method, multiple signal classification, and matched mode processing at signal-to-noise ratios (SNRs) from -20 to +20 dB. Using measurements from the 2011 Kauai Acoustic Communications Multiple University Research Initiative experiment, the localization performance of these techniques is analyzed and compared to Bartlett Δf-MFP. The results show that a source broadcasting a frequency sweep from 11.2 to 26.2 kHz through a 106 -m-deep sound channel over a distance of 3 km and recorded on a 16 element sparse vertical array can be localized using Δf-MFP techniques within average range and depth errors of 200 and 10 m, respectively, at SNRs down to 0 dB.
Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems.
Zhong, Kangping; Zhou, Xian; Gui, Tao; Tao, Li; Gao, Yuliang; Chen, Wei; Man, Jiangwei; Zeng, Li; Lau, Alan Pak Tao; Lu, Chao
2015-01-26
Advanced modulation formats combined with digital signal processing and direct detection is a promising way to realize high capacity, low cost and power efficient short reach optical transmission system. In this paper, we present a detailed investigation on the performance of three advanced modulation formats for 100 Gb/s short reach transmission system. They are PAM-4, CAP-16 and DMT. The detailed digital signal processing required for each modulation format is presented. Comprehensive simulations are carried out to evaluate the performance of each modulation format in terms of received optical power, transmitter bandwidth, relative intensity noise and thermal noise. The performance of each modulation format is also experimentally studied. To the best of our knowledge, we report the first demonstration of a 112 Gb/s transmission over 10km of SSMF employing single band CAP-16 with EML. Finally, a comparison of computational complexity of DSP for the three formats is presented.
Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong
2017-10-23
Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.
Almehmadi, Fares S; Chatterjee, Monish R
2015-01-10
Electrocardiography (ECG) signals are used for both medical purposes and identifying individuals. It is often necessary to encrypt this highly sensitive information before it is transmitted over any channel. A closed-loop acousto-optic hybrid device acting as a chaotic modulator is applied to ECG signals to achieve this encryption. Recently improved modeling of this approach using profiled optical beams has shown it to be very sensitive to key parameters that characterize the encryption and decryption process, exhibiting its potential for secure transmission of analog and digital signals. Here the encryption and decryption is demonstrated for ECG signals, both analog and digital versions, illustrating strong encryption without significant distortion. Performance analysis pertinent to both analog and digital transmission of the ECG waveform is also carried out using output signal-to-noise, signal-to-distortion, and bit-error-rate measures relative to the key parameters and presence of channel noise in the system.
Time-frequency analysis of pediatric murmurs
NASA Astrophysics Data System (ADS)
Lombardo, Joseph S.; Blodgett, Lisa A.; Rosen, Ron S.; Najmi, Amir-Homayoon; Thompson, W. Reid
1998-05-01
Technology has provided many new tools to assist in the diagnosis of pathologic conditions of the heart. Echocardiography, Ultrafast CT, and MRI are just a few. While these tools are a valuable resource, they are typically too expensive, large and complex in operation for use in rural, homecare, and physician's office settings. Recent advances in computer performance, miniaturization, and acoustic signal processing, have yielded new technologies that when applied to heart sounds can provide low cost screening for pathologic conditions. The short duration and transient nature of these signals requires processing techniques that provide high resolution in both time and frequency. Short-time Fourier transforms, Wigner distributions, and wavelet transforms have been applied to signals form hearts with various pathologic conditions. While no single technique provides the ideal solution, the combination of tools provides a good representation of the acoustic features of the pathologies selected.
GLAST Burst Monitor Signal Processing System
NASA Astrophysics Data System (ADS)
Bhat, P. Narayana; Briggs, Michael; Connaughton, Valerie; Diehl, Roland; Fishman, Gerald; Greiner, Jochen; Kippen, R. Marc; von Kienlin, Andreas; Kouveliotou, Chryssa; Lichti, Giselher; Meegan, Charles; Paciesas, William; Persyn, Steven; Preece, Robert; Steinle, Helmut; Wilson-Hodge, Colleen
2007-07-01
The onboard Data Processing Unit (DPU), designed and built by Southwest Research Institute, performs the high-speed data acquisition for GBM. The analog signals from each of the 14 detectors are digitized by high-speed multichannel analog data acquisition architecture. The streaming digital values resulting from a periodic (period of 104.2 ns) sampling of the analog signal by the individual ADCs are fed to a Field-Programmable Gate Array (FPGA). Real-time Digital Signal Processing (DSP) algorithms within the FPGA implement functions like filtering, thresholding, time delay and pulse height measurement. The spectral data with a 12-bit resolution are formatted according to the commandable look-up-table (LUT) and then sent to the High-Speed Science-Date Bus (HSSDB, speed=1.5 MB/s) to be telemetered to ground. The DSP offers a novel feature of a commandable & constant event deadtime. The ADC non-linearities have been calibrated so that the spectral data can be corrected during analysis. The best temporal resolution is 2 μs for the pre-burst & post-trigger time-tagged events (TTE) data. The time resolution of the binned data types is commandable from 64 msec to 1.024 s for the CTIME data (8 channel spectral resolution) and 1.024 to 32.768 s for the CSPEC data (128 channel spectral resolution). The pulse pile-up effects have been studied by Monte Carlo simulations. For a typical GRB, the possible shift in the Epeak value at high-count rates (~100 kHz) is ~1% while the change in the single power-law index could be up to 5%.
High resolution ultrasonic spectroscopy system for nondestructive evaluation
NASA Technical Reports Server (NTRS)
Chen, C. H.
1991-01-01
With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.
Chirped-pulse coherent-OTDR with predistortion
NASA Astrophysics Data System (ADS)
Xiong, Ji; Jiang, Jialin; Wu, Yue; Chen, Yongxiang; Xie, Lianlian; Fu, Yun; Wang, Zinan
2018-03-01
In this paper, a novel method for generating high-quality chirped pulses with IQ modulator is studied theoretically and experimentally, which is a crucial building block for high-performance coherent optical time-domain reflectometry (COTDR). In order to compensate the nonlinearity of the modulator transfer function, we present a predistortion technique for chirped-pulse coherent optical time-domain reflectometry (CP-COTDR), the arcsin predistortion method and the single sideband with a suppressed carrier analog modulation used to generate the high quality chirped optical pulse. The high order sidebands, due to the large amplitude of the modulation signal and the nonlinear transfer function of the IQ modulator, can be relieved by the predistortion process, which means the power and the quality of the generated chirped pulse has been improved. In the experiment, this method increases the peak power of the chirped pulse by 4.2 dB compared to the case without predistortion process, as for the CP-COTDR system, this method increases the signal-to-noise ratio of the demodulated phase variation by 6.3 dB.
Du, Jiaying; Gerdtman, Christer; Lindén, Maria
2018-04-06
Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented.
Gerdtman, Christer
2018-01-01
Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented. PMID:29642412
Reference analysis of the signal + background model in counting experiments
NASA Astrophysics Data System (ADS)
Casadei, D.
2012-01-01
The model representing two independent Poisson processes, labelled as ``signal'' and ``background'' and both contributing additively to the total number of counted events, is considered from a Bayesian point of view. This is a widely used model for the searches of rare or exotic events in presence of a background source, as for example in the searches performed by high-energy physics experiments. In the assumption of prior knowledge about the background yield, a reference prior is obtained for the signal alone and its properties are studied. Finally, the properties of the full solution, the marginal reference posterior, are illustrated with few examples.
NASA Technical Reports Server (NTRS)
Wilson, Lonnie A.
1987-01-01
Bragg-cell receivers are employed in specialized Electronic Warfare (EW) applications for the measurement of frequency. Bragg-cell receiver characteristics are fully characterized for simple RF emitter signals. This receiver is early in its development cycle when compared to the IFM receiver. Functional mathematical models are derived and presented in this report for the Bragg-cell receiver. Theoretical analysis is presented and digital computer signal processing results are presented for the Bragg-cell receiver. Probability density function analysis are performed for output frequency. Probability density function distributions are observed to depart from assumed distributions for wideband and complex RF signals. This analysis is significant for high resolution and fine grain EW Bragg-cell receiver systems.
Application of the high resolution return beam vidicon
NASA Technical Reports Server (NTRS)
Cantella, M. J.
1977-01-01
The Return Beam Vidicon (RBV) is a high-performance electronic image sensor and electrical storage component. It can accept continuous or discrete exposures. Information can be read out with a single scan or with many repetitive scans for either signal processing or display. Resolution capability is 10,000 TV lines/height, and at 100 lp/mm, performance matches or exceeds that of film, particularly with low-contrast imagery. Electronic zoom can be employed effectively for image magnification and data compression. The high performance and flexibility of the RBV permit wide application in systems for reconnaissance, scan conversion, information storage and retrieval, and automatic inspection and test. This paper summarizes the characteristics and performance parameters of the RBV and cites examples of feasible applications.
Age-Dependent Relationships between Prefrontal Cortex Activation and Processing Efficiency
Motes, Michael A.; Biswal, Bharat B.; Rypma, Bart
2012-01-01
fMRI was used in the present study to examine the neural basis for age-related differences in processing efficiency, particularly targeting prefrontal cortex (PFC). During scanning, older and younger participants completed a processing efficiency task in which they determined on each trial whether a symbol-number pair appeared in a simultaneously presented array of nine symbol-number pairs. Estimates of task-related BOLD signal-change were obtained for each participant. These estimates were then correlated with the participants’ performance on the task. For younger participants, BOLD signal-change within PFC decreased with better performance, but for older participants, BOLD signal-change within PFC increased with better performance. The results support the hypothesis that the availability and use of PFC resources mediates age-related changes in processing efficiency. PMID:22792129
Age-Dependent Relationships between Prefrontal Cortex Activation and Processing Efficiency.
Motes, Michael A; Biswal, Bharat B; Rypma, Bart
2011-01-01
fMRI was used in the present study to examine the neural basis for age-related differences in processing efficiency, particularly targeting prefrontal cortex (PFC). During scanning, older and younger participants completed a processing efficiency task in which they determined on each trial whether a symbol-number pair appeared in a simultaneously presented array of nine symbol-number pairs. Estimates of task-related BOLD signal-change were obtained for each participant. These estimates were then correlated with the participants' performance on the task. For younger participants, BOLD signal-change within PFC decreased with better performance, but for older participants, BOLD signal-change within PFC increased with better performance. The results support the hypothesis that the availability and use of PFC resources mediates age-related changes in processing efficiency.
NASA Astrophysics Data System (ADS)
Assous, S.; Humeau, A.; Tartas, M.; Abraham, P.; L'Huillier, J. P.
2005-05-01
Conventional signal processing typically involves frequency selective techniques which are highly inadequate for nonstationary signals. In this paper, we present an approach to perform time-frequency selective processing of laser Doppler flowmetry (LDF) signals using the S-transform. The approach is motivated by the excellent localization, in both time and frequency, afforded by the wavelet basis functions. Suitably chosen Gaussian wavelet functions are used to characterize the subspace of signals that have a given localized time-frequency support, thus enabling a time-frequency partitioning of signals. In this paper, the goal is to study the influence of various pharmacological substances taken by the oral way (celecobix (Celebrex®), indomethacin (Indocid®) and placebo) on the physiological activity behaviour. The results show that no statistical differences are observed in the energy computed from the time-frequency representation of LDF signals, for the myogenic, neurogenic and endothelial related metabolic activities between Celebrex and placebo, and Indocid and placebo. The work therefore proves that these drugs do not affect these physiological activities. For future physiological studies, there will therefore be no need to exclude patients having taken cyclo-oxygenase 1 inhibitions.
Frequency domain laser velocimeter signal processor: A new signal processing scheme
NASA Technical Reports Server (NTRS)
Meyers, James F.; Clemmons, James I., Jr.
1987-01-01
A new scheme for processing signals from laser velocimeter systems is described. The technique utilizes the capabilities of advanced digital electronics to yield a smart instrument that is able to configure itself, based on the characteristics of the input signals, for optimum measurement accuracy. The signal processor is composed of a high-speed 2-bit transient recorder for signal capture and a combination of adaptive digital filters with energy and/or zero crossing detection signal processing. The system is designed to accept signals with frequencies up to 100 MHz with standard deviations up to 20 percent of the average signal frequency. Results from comparative simulation studies indicate measurement accuracies 2.5 times better than with a high-speed burst counter, from signals with as few as 150 photons per burst.
Lv, Yong; Song, Gangbing
2018-01-01
Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal. PMID:29659510
Yuan, Rui; Lv, Yong; Song, Gangbing
2018-04-16
Rolling bearings are important components in rotary machinery systems. In the field of multi-fault diagnosis of rolling bearings, the vibration signal collected from single channels tends to miss some fault characteristic information. Using multiple sensors to collect signals at different locations on the machine to obtain multivariate signal can remedy this problem. The adverse effect of a power imbalance between the various channels is inevitable, and unfavorable for multivariate signal processing. As a useful, multivariate signal processing method, Adaptive-projection has intrinsically transformed multivariate empirical mode decomposition (APIT-MEMD), and exhibits better performance than MEMD by adopting adaptive projection strategy in order to alleviate power imbalances. The filter bank properties of APIT-MEMD are also adopted to enable more accurate and stable intrinsic mode functions (IMFs), and to ease mode mixing problems in multi-fault frequency extractions. By aligning IMF sets into a third order tensor, high order singular value decomposition (HOSVD) can be employed to estimate the fault number. The fault correlation factor (FCF) analysis is used to conduct correlation analysis, in order to determine effective IMFs; the characteristic frequencies of multi-faults can then be extracted. Numerical simulations and the application of multi-fault situation can demonstrate that the proposed method is promising in multi-fault diagnoses of multivariate rolling bearing signal.
NASA Astrophysics Data System (ADS)
The present conference on global telecommunications discusses topics in the fields of Integrated Services Digital Network (ISDN) technology field trial planning and results to date, motion video coding, ISDN networking, future network communications security, flexible and intelligent voice/data networks, Asian and Pacific lightwave and radio systems, subscriber radio systems, the performance of distributed systems, signal processing theory, satellite communications modulation and coding, and terminals for the handicapped. Also discussed are knowledge-based technologies for communications systems, future satellite transmissions, high quality image services, novel digital signal processors, broadband network access interface, traffic engineering for ISDN design and planning, telecommunications software, coherent optical communications, multimedia terminal systems, advanced speed coding, portable and mobile radio communications, multi-Gbit/second lightwave transmission systems, enhanced capability digital terminals, communications network reliability, advanced antimultipath fading techniques, undersea lightwave transmission, image coding, modulation and synchronization, adaptive signal processing, integrated optical devices, VLSI technologies for ISDN, field performance of packet switching, CSMA protocols, optical transport system architectures for broadband ISDN, mobile satellite communications, indoor wireless communication, echo cancellation in communications, and distributed network algorithms.
Lin, Chin-Teng; Ko, Li-Wei; Chang, Meng-Hsiu; Duann, Jeng-Ren; Chen, Jing-Ying; Su, Tung-Ping; Jung, Tzyy-Ping
2010-01-01
Biomedical signal monitoring systems have rapidly advanced in recent years, propelled by significant advances in electronic and information technologies. Brain-computer interface (BCI) is one of the important research branches and has become a hot topic in the study of neural engineering, rehabilitation, and brain science. Traditionally, most BCI systems use bulky, wired laboratory-oriented sensing equipments to measure brain activity under well-controlled conditions within a confined space. Using bulky sensing equipments not only is uncomfortable and inconvenient for users, but also impedes their ability to perform routine tasks in daily operational environments. Furthermore, owing to large data volumes, signal processing of BCI systems is often performed off-line using high-end personal computers, hindering the applications of BCI in real-world environments. To be practical for routine use by unconstrained, freely-moving users, BCI systems must be noninvasive, nonintrusive, lightweight and capable of online signal processing. This work reviews recent online BCI systems, focusing especially on wearable, wireless and real-time systems. Copyright 2009 S. Karger AG, Basel.
Scalable Multiprocessor for High-Speed Computing in Space
NASA Technical Reports Server (NTRS)
Lux, James; Lang, Minh; Nishimoto, Kouji; Clark, Douglas; Stosic, Dorothy; Bachmann, Alex; Wilkinson, William; Steffke, Richard
2004-01-01
A report discusses the continuing development of a scalable multiprocessor computing system for hard real-time applications aboard a spacecraft. "Hard realtime applications" signifies applications, like real-time radar signal processing, in which the data to be processed are generated at "hundreds" of pulses per second, each pulse "requiring" millions of arithmetic operations. In these applications, the digital processors must be tightly integrated with analog instrumentation (e.g., radar equipment), and data input/output must be synchronized with analog instrumentation, controlled to within fractions of a microsecond. The scalable multiprocessor is a cluster of identical commercial-off-the-shelf generic DSP (digital-signal-processing) computers plus generic interface circuits, including analog-to-digital converters, all controlled by software. The processors are computers interconnected by high-speed serial links. Performance can be increased by adding hardware modules and correspondingly modifying the software. Work is distributed among the processors in a parallel or pipeline fashion by means of a flexible master/slave control and timing scheme. Each processor operates under its own local clock; synchronization is achieved by broadcasting master time signals to all the processors, which compute offsets between the master clock and their local clocks.
A real time ECG signal processing application for arrhythmia detection on portable devices
NASA Astrophysics Data System (ADS)
Georganis, A.; Doulgeraki, N.; Asvestas, P.
2017-11-01
Arrhythmia describes the disorders of normal heart rate, which, depending on the case, can even be fatal for a patient with severe history of heart disease. The purpose of this work is to develop an application for heart signal visualization, processing and analysis in Android portable devices e.g. Mobile phones, tablets, etc. The application is able to retrieve the signal initially from a file and at a later stage this signal is processed and analysed within the device so that it can be classified according to the features of the arrhythmia. In the processing and analysing stage, different algorithms are included among them the Moving Average and Pan Tompkins algorithm as well as the use of wavelets, in order to extract features and characteristics. At the final stage, testing is performed by simulating our application in real-time records, using the TCP network protocol for communicating the mobile with a simulated signal source. The classification of ECG beat to be processed is performed by neural networks.
Hernandez, Wilmar
2007-01-01
In this paper a survey on recent applications of optimal signal processing techniques to improve the performance of mechanical sensors is made. Here, a comparison between classical filters and optimal filters for automotive sensors is made, and the current state of the art of the application of robust and optimal control and signal processing techniques to the design of the intelligent (or smart) sensors that today's cars need is presented through several experimental results that show that the fusion of intelligent sensors and optimal signal processing techniques is the clear way to go. However, the switch between the traditional methods of designing automotive sensors and the new ones cannot be done overnight because there are some open research issues that have to be solved. This paper draws attention to one of the open research issues and tries to arouse researcher's interest in the fusion of intelligent sensors and optimal signal processing techniques.
Chow, C W; Lin, Y H
2012-04-09
To provide broadband services in a single and low cost perform, the convergent optical wired and wireless access network is promising. Here, we propose and demonstrate a convergent optical wired and wireless long-reach access networks based on orthogonal wavelength division multiplexing (WDM). Both the baseband signal and the radio-over-fiber (ROF) signal are multiplexed and de-multiplexed in optical domain, hence it is simple and the operation speed is not limited by the electronic bottleneck caused by the digital signal processing (DSP). Error-free de-multiplexing and down-conversion can be achieved for all the signals after 60 km (long-reach) fiber transmission. The scalability of the system for higher bit-rate (60 GHz) is also simulated and discussed.
Graphene radio frequency receiver integrated circuit.
Han, Shu-Jen; Garcia, Alberto Valdes; Oida, Satoshi; Jenkins, Keith A; Haensch, Wilfried
2014-01-01
Graphene has attracted much interest as a future channel material in radio frequency electronics because of its superior electrical properties. Fabrication of a graphene integrated circuit without significantly degrading transistor performance has proven to be challenging, posing one of the major bottlenecks to compete with existing technologies. Here we present a fabrication method fully preserving graphene transistor quality, demonstrated with the implementation of a high-performance three-stage graphene integrated circuit. The circuit operates as a radio frequency receiver performing signal amplification, filtering and downconversion mixing. All circuit components are integrated into 0.6 mm(2) area and fabricated on 200 mm silicon wafers, showing the unprecedented graphene circuit complexity and silicon complementary metal-oxide-semiconductor process compatibility. The demonstrated circuit performance allow us to use graphene integrated circuit to perform practical wireless communication functions, receiving and restoring digital text transmitted on a 4.3-GHz carrier signal.
Graphene radio frequency receiver integrated circuit
NASA Astrophysics Data System (ADS)
Han, Shu-Jen; Garcia, Alberto Valdes; Oida, Satoshi; Jenkins, Keith A.; Haensch, Wilfried
2014-01-01
Graphene has attracted much interest as a future channel material in radio frequency electronics because of its superior electrical properties. Fabrication of a graphene integrated circuit without significantly degrading transistor performance has proven to be challenging, posing one of the major bottlenecks to compete with existing technologies. Here we present a fabrication method fully preserving graphene transistor quality, demonstrated with the implementation of a high-performance three-stage graphene integrated circuit. The circuit operates as a radio frequency receiver performing signal amplification, filtering and downconversion mixing. All circuit components are integrated into 0.6 mm2 area and fabricated on 200 mm silicon wafers, showing the unprecedented graphene circuit complexity and silicon complementary metal-oxide-semiconductor process compatibility. The demonstrated circuit performance allow us to use graphene integrated circuit to perform practical wireless communication functions, receiving and restoring digital text transmitted on a 4.3-GHz carrier signal.
Asymmetric Dual-Band Tracking Technique for Optimal Joint Processing of BDS B1I and B1C Signals
Wang, Chuhan; Cui, Xiaowei; Ma, Tianyi; Lu, Mingquan
2017-01-01
Along with the rapid development of the Global Navigation Satellite System (GNSS), satellite navigation signals have become more diversified, complex, and agile in adapting to increasing market demands. Various techniques have been developed for processing multiple navigation signals to achieve better performance in terms of accuracy, sensitivity, and robustness. This paper focuses on a technique for processing two signals with separate but adjacent center frequencies, such as B1I and B1C signals in the BeiDou global system. The two signals may differ in modulation scheme, power, and initial phase relation and can be processed independently by user receivers; however, the propagation delays of the two signals from a satellite are nearly identical as they are modulated on adjacent frequencies, share the same reference clock, and undergo nearly identical propagation paths to the receiver, resulting in strong coherence between the two signals. Joint processing of these signals can achieve optimal measurement performance due to the increased Gabor bandwidth and power. In this paper, we propose a universal scheme of asymmetric dual-band tracking (ASYM-DBT) to take advantage of the strong coherence, the increased Gabor bandwidth, and power of the two signals in achieving much-reduced thermal noise and more accurate ranging results when compared with the traditional single-band algorithm. PMID:29035350
Asymmetric Dual-Band Tracking Technique for Optimal Joint Processing of BDS B1I and B1C Signals.
Wang, Chuhan; Cui, Xiaowei; Ma, Tianyi; Zhao, Sihao; Lu, Mingquan
2017-10-16
Along with the rapid development of the Global Navigation Satellite System (GNSS), satellite navigation signals have become more diversified, complex, and agile in adapting to increasing market demands. Various techniques have been developed for processing multiple navigation signals to achieve better performance in terms of accuracy, sensitivity, and robustness. This paper focuses on a technique for processing two signals with separate but adjacent center frequencies, such as B1I and B1C signals in the BeiDou global system. The two signals may differ in modulation scheme, power, and initial phase relation and can be processed independently by user receivers; however, the propagation delays of the two signals from a satellite are nearly identical as they are modulated on adjacent frequencies, share the same reference clock, and undergo nearly identical propagation paths to the receiver, resulting in strong coherence between the two signals. Joint processing of these signals can achieve optimal measurement performance due to the increased Gabor bandwidth and power. In this paper, we propose a universal scheme of asymmetric dual-band tracking (ASYM-DBT) to take advantage of the strong coherence, the increased Gabor bandwidth, and power of the two signals in achieving much-reduced thermal noise and more accurate ranging results when compared with the traditional single-band algorithm.
Graphene-assisted multiple-input high-base optical computing
Hu, Xiao; Wang, Andong; Zeng, Mengqi; Long, Yun; Zhu, Long; Fu, Lei; Wang, Jian
2016-01-01
We propose graphene-assisted multiple-input high-base optical computing. We fabricate a nonlinear optical device based on a fiber pigtail cross-section coated with a single-layer graphene grown by chemical vapor deposition (CVD) method. An approach to implementing modulo 4 operations of three-input hybrid addition and subtraction of quaternary base numbers in the optical domain using multiple non-degenerate four-wave mixing (FWM) processes in graphene coated optical fiber device and (differential) quadrature phase-shift keying ((D)QPSK) signals is presented. We demonstrate 10-Gbaud modulo 4 operations of three-input quaternary hybrid addition and subtraction (A + B − C, A + C − B, B + C − A) in the experiment. The measured optical signal-to-noise ratio (OSNR) penalties for modulo 4 operations of three-input quaternary hybrid addition and subtraction (A + B − C, A + C − B, B + C − A) are measured to be less than 7 dB at a bit-error rate (BER) of 2 × 10−3. The BER performance as a function of the relative time offset between three signals (signal offset) is also evaluated showing favorable performance. PMID:27604866
Tivnan, Matthew; Gurjar, Rajan; Wolf, David E; Vishwanath, Karthik
2015-08-12
Diffuse Correlation Spectroscopy (DCS) is a well-established optical technique that has been used for non-invasive measurement of blood flow in tissues. Instrumentation for DCS includes a correlation device that computes the temporal intensity autocorrelation of a coherent laser source after it has undergone diffuse scattering through a turbid medium. Typically, the signal acquisition and its autocorrelation are performed by a correlation board. These boards have dedicated hardware to acquire and compute intensity autocorrelations of rapidly varying input signal and usually are quite expensive. Here we show that a Raspberry Pi minicomputer can acquire and store a rapidly varying time-signal with high fidelity. We show that this signal collected by a Raspberry Pi device can be processed numerically to yield intensity autocorrelations well suited for DCS applications. DCS measurements made using the Raspberry Pi device were compared to those acquired using a commercial hardware autocorrelation board to investigate the stability, performance, and accuracy of the data acquired in controlled experiments. This paper represents a first step toward lowering the instrumentation cost of a DCS system and may offer the potential to make DCS become more widely used in biomedical applications.
Tivnan, Matthew; Gurjar, Rajan; Wolf, David E.; Vishwanath, Karthik
2015-01-01
Diffuse Correlation Spectroscopy (DCS) is a well-established optical technique that has been used for non-invasive measurement of blood flow in tissues. Instrumentation for DCS includes a correlation device that computes the temporal intensity autocorrelation of a coherent laser source after it has undergone diffuse scattering through a turbid medium. Typically, the signal acquisition and its autocorrelation are performed by a correlation board. These boards have dedicated hardware to acquire and compute intensity autocorrelations of rapidly varying input signal and usually are quite expensive. Here we show that a Raspberry Pi minicomputer can acquire and store a rapidly varying time-signal with high fidelity. We show that this signal collected by a Raspberry Pi device can be processed numerically to yield intensity autocorrelations well suited for DCS applications. DCS measurements made using the Raspberry Pi device were compared to those acquired using a commercial hardware autocorrelation board to investigate the stability, performance, and accuracy of the data acquired in controlled experiments. This paper represents a first step toward lowering the instrumentation cost of a DCS system and may offer the potential to make DCS become more widely used in biomedical applications. PMID:26274961
The physics of bat echolocation: Signal processing techniques
NASA Astrophysics Data System (ADS)
Denny, Mark
2004-12-01
The physical principles and signal processing techniques underlying bat echolocation are investigated. It is shown, by calculation and simulation, how the measured echolocation performance of bats can be achieved.
Chen, Guanyu; Yu, Yu; Zhang, Xinliang
2016-08-01
We propose and fabricate an on-chip mode division multiplexed (MDM) photonic interconnection system. Such a monolithically photonic integrated circuit (PIC) is composed of a grating coupler, two micro-ring modulators, mode multiplexer/demultiplexer, and two germanium photodetectors. The signals' generation, multiplexing, transmission, demultiplexing, and detection are successfully demonstrated on the same chip. Twenty Gb/s MDM signals are successfully processed with clear and open eye diagrams, validating the feasibility of the proposed circuit. The measured power penalties show a good performance of the MDM link. The proposed on-chip MDM system can be potentially used for large-capacity optical interconnection in future high-performance computers and big data centers.
Updating Higher Education Expectations and Choices with Learning
ERIC Educational Resources Information Center
Milla, Joniada
2017-01-01
This paper explores how expectations and post-secondary education (PSE) path disruption decisions are affected by a learning process that students experience once enrolled in a PSE program. An unexpected change in grades, between high school and first year PSE program, serves as an informative signal on how well their academic performance and…
FERMI: a digital Front End and Readout MIcrosystem for high resolution calorimetry
NASA Astrophysics Data System (ADS)
Alexanian, H.; Appelquist, G.; Bailly, P.; Benetta, R.; Berglund, S.; Bezamat, J.; Blouzon, F.; Bohm, C.; Breveglieri, L.; Brigati, S.; Cattaneo, P. W.; Dadda, L.; David, J.; Engström, M.; Genat, J. F.; Givoletti, M.; Goggi, V. G.; Gong, S.; Grieco, G. M.; Hansen, M.; Hentzell, H.; Holmberg, T.; Höglund, I.; Inkinen, S. J.; Kerek, A.; Landi, C.; Ledortz, O.; Lippi, M.; Lofstedt, B.; Lund-Jensen, B.; Maloberti, F.; Mutz, S.; Nayman, P.; Piuri, V.; Polesello, G.; Sami, M.; Savoy-Navarro, A.; Schwemling, P.; Stefanelli, R.; Sundblad, R.; Svensson, C.; Torelli, G.; Vanuxem, J. P.; Yamdagni, N.; Yuan, J.; Ödmark, A.; Fermi Collaboration
1995-02-01
We present a digital solution for the front-end electronics of high resolution calorimeters at future colliders. It is based on analogue signal compression, high speed {A}/{D} converters, a fully programmable pipeline and a digital signal processing (DSP) chain with local intelligence and system supervision. This digital solution is aimed at providing maximal front-end processing power by performing waveform analysis using DSP methods. For the system integration of the multichannel device a multi-chip, silicon-on-silicon multi-chip module (MCM) has been adopted. This solution allows a high level of integration of complex analogue and digital functions, with excellent flexibility in mixing technologies for the different functional blocks. This type of multichip integration provides a high degree of reliability and programmability at both the function and the system level, with the additional possibility of customising the microsystem to detector-specific requirements. For enhanced reliability in high radiation environments, fault tolerance strategies, i.e. redundancy, reconfigurability, majority voting and coding for error detection and correction, are integrated into the design.
A digital-signal-processor-based optical tomographic system for dynamic imaging of joint diseases
NASA Astrophysics Data System (ADS)
Lasker, Joseph M.
Over the last decade, optical tomography (OT) has emerged as viable biomedical imaging modality. Various imaging systems have been developed that are employed in preclinical as well as clinical studies, mostly targeting breast imaging, brain imaging, and cancer related studies. Of particular interest are so-called dynamic imaging studies where one attempts to image changes in optical properties and/or physiological parameters as they occur during a system perturbation. To successfully perform dynamic imaging studies, great effort is put towards system development that offers increasingly enhanced signal-to-noise performance at ever shorter data acquisition times, thus capturing high fidelity tomographic data within narrower time periods. Towards this goal, I have developed in this thesis a dynamic optical tomography system that is, unlike currently available analog instrumentation, based on digital data acquisition and filtering techniques. At the core of this instrument is a digital signal processor (DSP) that collects, collates, and processes the digitized data set. Complementary protocols between the DSP and a complex programmable logic device synchronizes the sampling process and organizes data flow. Instrument control is implemented through a comprehensive graphical user interface which integrates automated calibration, data acquisition, and signal post-processing. Real-time data is generated at frame rates as high as 140 Hz. An extensive dynamic range (˜190 dB) accommodates a wide scope of measurement geometries and tissue types. Performance analysis demonstrates very low system noise (˜1 pW rms noise equivalent power), excellent signal precision (˜0.04%--0.2%) and long term system stability (˜1% over 40 min). Experiments on tissue phantoms validate spatial and temporal accuracy of the system. As a potential new application of dynamic optical imaging I present the first application of this method to use vascular hemodynamics as a means of characterizing joint diseases, especially effects of rheumatoid arthritis (RA) in the proximal interphalangeal finger joints. Using a dual-wavelength tomographic imaging system and previously implemented reconstruction scheme, I have performed initial dynamic imaging case studies on healthy volunteers and patients diagnosed with RA. These studies support our hypothesis that differences in the vascular and metabolic reactivity exist between affected and unaffected joints and can be used for diagnostic purposes.
High-performance electronics for time-of-flight PET systems
NASA Astrophysics Data System (ADS)
Choong, W.-S.; Peng, Q.; Vu, C. Q.; Turko, B. T.; Moses, W. W.
2013-01-01
We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.
High-performance electronics for time-of-flight PET systems.
Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W
2013-01-01
We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr 3 crystals respectively.
Enabling Low-Power, Multi-Modal Neural Interfaces Through a Common, Low-Bandwidth Feature Space.
Irwin, Zachary T; Thompson, David E; Schroeder, Karen E; Tat, Derek M; Hassani, Ali; Bullard, Autumn J; Woo, Shoshana L; Urbanchek, Melanie G; Sachs, Adam J; Cederna, Paul S; Stacey, William C; Patil, Parag G; Chestek, Cynthia A
2016-05-01
Brain-Machine Interfaces (BMIs) have shown great potential for generating prosthetic control signals. Translating BMIs into the clinic requires fully implantable, wireless systems; however, current solutions have high power requirements which limit their usability. Lowering this power consumption typically limits the system to a single neural modality, or signal type, and thus to a relatively small clinical market. Here, we address both of these issues by investigating the use of signal power in a single narrow frequency band as a decoding feature for extracting information from electrocorticographic (ECoG), electromyographic (EMG), and intracortical neural data. We have designed and tested the Multi-modal Implantable Neural Interface (MINI), a wireless recording system which extracts and transmits signal power in a single, configurable frequency band. In prerecorded datasets, we used the MINI to explore low frequency signal features and any resulting tradeoff between power savings and decoding performance losses. When processing intracortical data, the MINI achieved a power consumption 89.7% less than a more typical system designed to extract action potential waveforms. When processing ECoG and EMG data, the MINI achieved similar power reductions of 62.7% and 78.8%. At the same time, using the single signal feature extracted by the MINI, we were able to decode all three modalities with less than a 9% drop in accuracy relative to using high-bandwidth, modality-specific signal features. We believe this system architecture can be used to produce a viable, cost-effective, clinical BMI.
Weak signal amplification and detection by higher-order sensory neurons
Longtin, Andre; Maler, Leonard
2016-01-01
Sensory systems must extract behaviorally relevant information and therefore often exhibit a very high sensitivity. How the nervous system reaches such high sensitivity levels is an outstanding question in neuroscience. Weakly electric fish (Apteronotus leptorhynchus/albifrons) are an excellent model system to address this question because detailed background knowledge is available regarding their behavioral performance and its underlying neuronal substrate. Apteronotus use their electrosense to detect prey objects. Therefore, they must be able to detect electrical signals as low as 1 μV while using a sensory integration time of <200 ms. How these very weak signals are extracted and amplified by the nervous system is not yet understood. We studied the responses of cells in the early sensory processing areas, namely, the electroreceptor afferents (EAs) and pyramidal cells (PCs) of the electrosensory lobe (ELL), the first-order electrosensory processing area. In agreement with previous work we found that EAs cannot encode very weak signals with a spike count code. However, PCs can encode prey mimic signals by their firing rate, revealing a huge signal amplification between EAs and PCs and also suggesting differences in their stimulus encoding properties. Using a simple leaky integrate-and-fire (LIF) model we predict that the target neurons of PCs in the midbrain torus semicircularis (TS) are able to detect very weak signals. In particular, TS neurons could do so by assuming biologically plausible convergence rates as well as very simple decoding strategies such as temporal integration, threshold crossing, and combining the inputs of PCs. PMID:26843601
Polcari, J.
2013-08-16
The signal processing concept of signal-to-noise ratio (SNR), in its role as a performance measure, is recast within the more general context of information theory, leading to a series of useful insights. Establishing generalized SNR (GSNR) as a rigorous information theoretic measure inherent in any set of observations significantly strengthens its quantitative performance pedigree while simultaneously providing a specific definition under general conditions. This directly leads to consideration of the log likelihood ratio (LLR): first, as the simplest possible information-preserving transformation (i.e., signal processing algorithm) and subsequently, as an absolute, comparable measure of information for any specific observation exemplar. Furthermore,more » the information accounting methodology that results permits practical use of both GSNR and LLR as diagnostic scalar performance measurements, directly comparable across alternative system/algorithm designs, applicable at any tap point within any processing string, in a form that is also comparable with the inherent performance bounds due to information conservation.« less
Directional dual-tree complex wavelet packet transforms for processing quadrature signals.
Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin
2016-03-01
Quadrature signals containing in-phase and quadrature-phase components are used in many signal processing applications in every field of science and engineering. Specifically, Doppler ultrasound systems used to evaluate cardiovascular disorders noninvasively also result in quadrature format signals. In order to obtain directional blood flow information, the quadrature outputs have to be preprocessed using methods such as asymmetrical and symmetrical phasing filter techniques. These resultant directional signals can be employed in order to detect asymptomatic embolic signals caused by small emboli, which are indicators of a possible future stroke, in the cerebral circulation. Various transform-based methods such as Fourier and wavelet were frequently used in processing embolic signals. However, most of the times, the Fourier and discrete wavelet transforms are not appropriate for the analysis of embolic signals due to their non-stationary time-frequency behavior. Alternatively, discrete wavelet packet transform can perform an adaptive decomposition of the time-frequency axis. In this study, directional discrete wavelet packet transforms, which have the ability to map directional information while processing quadrature signals and have less computational complexity than the existing wavelet packet-based methods, are introduced. The performances of proposed methods are examined in detail by using single-frequency, synthetic narrow-band, and embolic quadrature signals.
High-performance mass storage system for workstations
NASA Technical Reports Server (NTRS)
Chiang, T.; Tang, Y.; Gupta, L.; Cooperman, S.
1993-01-01
Reduced Instruction Set Computer (RISC) workstations and Personnel Computers (PC) are very popular tools for office automation, command and control, scientific analysis, database management, and many other applications. However, when using Input/Output (I/O) intensive applications, the RISC workstations and PC's are often overburdened with the tasks of collecting, staging, storing, and distributing data. Also, by using standard high-performance peripherals and storage devices, the I/O function can still be a common bottleneck process. Therefore, the high-performance mass storage system, developed by Loral AeroSys' Independent Research and Development (IR&D) engineers, can offload a RISC workstation of I/O related functions and provide high-performance I/O functions and external interfaces. The high-performance mass storage system has the capabilities to ingest high-speed real-time data, perform signal or image processing, and stage, archive, and distribute the data. This mass storage system uses a hierarchical storage structure, thus reducing the total data storage cost, while maintaining high-I/O performance. The high-performance mass storage system is a network of low-cost parallel processors and storage devices. The nodes in the network have special I/O functions such as: SCSI controller, Ethernet controller, gateway controller, RS232 controller, IEEE488 controller, and digital/analog converter. The nodes are interconnected through high-speed direct memory access links to form a network. The topology of the network is easily reconfigurable to maximize system throughput for various applications. This high-performance mass storage system takes advantage of a 'busless' architecture for maximum expandability. The mass storage system consists of magnetic disks, a WORM optical disk jukebox, and an 8mm helical scan tape to form a hierarchical storage structure. Commonly used files are kept in the magnetic disk for fast retrieval. The optical disks are used as archive media, and the tapes are used as backup media. The storage system is managed by the IEEE mass storage reference model-based UniTree software package. UniTree software will keep track of all files in the system, will automatically migrate the lesser used files to archive media, and will stage the files when needed by the system. The user can access the files without knowledge of their physical location. The high-performance mass storage system developed by Loral AeroSys will significantly boost the system I/O performance and reduce the overall data storage cost. This storage system provides a highly flexible and cost-effective architecture for a variety of applications (e.g., realtime data acquisition with a signal and image processing requirement, long-term data archiving and distribution, and image analysis and enhancement).
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Elbuluk, Malik; Hammoud, Ahmad; VanKeuls, Frederick W.
2009-01-01
This report discusses the performance of silicon germanium, wideband gain amplifiers under extreme temperatures. The investigated devices include Texas Instruments THS4304-SP and THS4302 amplifiers. Both chips are manufactured using the BiCom3 process based on silicon germanium technology along with silicon-on-insulator (SOI) buried oxide layers. The THS4304-SP device was chosen because it is a Class V radiation-tolerant (150 kRad, TID silicon), voltage-feedback operational amplifier designed for use in high-speed analog signal applications and is very desirable for NASA missions. It operates with a single 5 V power supply [1]. It comes in a 10-pin ceramic flatpack package, and it provides balanced inputs, low offset voltage and offset current, and high common mode rejection ratio. The fixed-gain THS4302 chip, which comes in a 16-pin leadless package, offers high bandwidth, high slew rate, low noise, and low distortion [2]. Such features have made the amplifier useful in a number of applications such as wideband signal processing, wireless transceivers, intermediate frequency (IF) amplifier, analog-to-digital converter (ADC) preamplifier, digital-to-analog converter (DAC) output buffer, measurement instrumentation, and medical and industrial imaging.
Efficient resource allocation scheme for visible-light communication system
NASA Astrophysics Data System (ADS)
Kim, Woo-Chan; Bae, Chi-Sung; Cho, Dong-Ho; Shin, Hong-Seok; Jung, D. K.; Oh, Y. J.
2009-01-01
A visible-light communication utilizing LED has many advantagies such as visibility of information, high SNR (Signal to Noise Ratio), low installation cost, usage of existing illuminators, and high security. Furthermore, exponentially increasing needs and quality of LED have helped the development of visible-light communication. The visibility is the most attractive property in visible-light communication system, but it is difficult to ensure visibility and transmission efficiency simultaneously during initial access because of the small amount of initial access process signals. In this paper, we propose an efficient resource allocation scheme at initial access for ensuring visibility with high resource utilization rate and low data transmission failure rate. The performance has been evaluated through the numerical analysis and simulation results.
A cloud masking algorithm for EARLINET lidar systems
NASA Astrophysics Data System (ADS)
Binietoglou, Ioannis; Baars, Holger; D'Amico, Giuseppe; Nicolae, Doina
2015-04-01
Cloud masking is an important first step in any aerosol lidar processing chain as most data processing algorithms can only be applied on cloud free observations. Up to now, the selection of a cloud-free time interval for data processing is typically performed manually, and this is one of the outstanding problems for automatic processing of lidar data in networks such as EARLINET. In this contribution we present initial developments of a cloud masking algorithm that permits the selection of the appropriate time intervals for lidar data processing based on uncalibrated lidar signals. The algorithm is based on a signal normalization procedure using the range of observed values of lidar returns, designed to work with different lidar systems with minimal user input. This normalization procedure can be applied to measurement periods of only few hours, even if no suitable cloud-free interval exists, and thus can be used even when only a short period of lidar measurements is available. Clouds are detected based on a combination of criteria including the magnitude of the normalized lidar signal and time-space edge detection performed using the Sobel operator. In this way the algorithm avoids misclassification of strong aerosol layers as clouds. Cloud detection is performed using the highest available time and vertical resolution of the lidar signals, allowing the effective detection of low-level clouds (e.g. cumulus humilis). Special attention is given to suppress false cloud detection due to signal noise that can affect the algorithm's performance, especially during day-time. In this contribution we present the details of algorithm, the effect of lidar characteristics (space-time resolution, available wavelengths, signal-to-noise ratio) to detection performance, and highlight the current strengths and limitations of the algorithm using lidar scenes from different lidar systems in different locations across Europe.
NASA Astrophysics Data System (ADS)
Wang, Chong; Wen, Na; Zhou, Guoyun; Wang, Shouxu; He, Wei; Su, Xinhong; Hu, Yongsuan
2017-11-01
A novel method of improving the adhesion between copper and prepreg in high frequency PCB was proposed and studied in this work. This process which aimed to decrease the IEP (isoelectric point) of the copper to obtain higher adhesion, was achieved by depositing a thin tin layer with lower IEP on copper. It was characterized by scanning electron microscopy (SEM), 3D microscope, peel strength test, X-Ray thickness test, grazing incidence X-ray diffraction (GXRD), X-ray photoelectron spectroscopy (XPS), Agilent vector network analyzer (VNA), which confirmed its excellent adhesion performance and outstanding electrical properties in high-frequency signal transmission compared with traditional brown oxide method. Moreover, the mechanism of achieving high adhesion for this method was also investigated.
Sequential Bayesian geoacoustic inversion for mobile and compact source-receiver configuration.
Carrière, Olivier; Hermand, Jean-Pierre
2012-04-01
Geoacoustic characterization of wide areas through inversion requires easily deployable configurations including free-drifting platforms, underwater gliders and autonomous vehicles, typically performing repeated transmissions during their course. In this paper, the inverse problem is formulated as sequential Bayesian filtering to take advantage of repeated transmission measurements. Nonlinear Kalman filters implement a random-walk model for geometry and environment and an acoustic propagation code in the measurement model. Data from MREA/BP07 sea trials are tested consisting of multitone and frequency-modulated signals (bands: 0.25-0.8 and 0.8-1.6 kHz) received on a shallow vertical array of four hydrophones 5-m spaced drifting over 0.7-1.6 km range. Space- and time-coherent processing are applied to the respective signal types. Kalman filter outputs are compared to a sequence of global optimizations performed independently on each received signal. For both signal types, the sequential approach is more accurate but also more efficient. Due to frequency diversity, the processing of modulated signals produces a more stable tracking. Although an extended Kalman filter provides comparable estimates of the tracked parameters, the ensemble Kalman filter is necessary to properly assess uncertainty. In spite of mild range dependence and simplified bottom model, all tracked geoacoustic parameters are consistent with high-resolution seismic profiling, core logging P-wave velocity, and previous inversion results with fixed geometries.
Cates, Joshua W; Bieniosek, Matthew F; Levin, Craig S
2017-01-01
Maintaining excellent timing resolution in the generation of silicon photomultiplier (SiPM)-based time-of-flight positron emission tomography (TOF-PET) systems requires a large number of high-speed, high-bandwidth electronic channels and components. To minimize the cost and complexity of a system's back-end architecture and data acquisition, many analog signals are often multiplexed to fewer channels using techniques that encode timing, energy, and position information. With progress in the development SiPMs having lower dark noise, after pulsing, and cross talk along with higher photodetection efficiency, a coincidence timing resolution (CTR) well below 200 ps FWHM is now easily achievable in single pixel, bench-top setups using 20-mm length, lutetium-based inorganic scintillators. However, multiplexing the output of many SiPMs to a single channel will significantly degrade CTR without appropriate signal processing. We test the performance of a PET detector readout concept that multiplexes 16 SiPMs to two channels. One channel provides timing information with fast comparators, and the second channel encodes both position and energy information in a time-over-threshold-based pulse sequence. This multiplexing readout concept was constructed with discrete components to process signals from a [Formula: see text] array of SensL MicroFC-30035 SiPMs coupled to [Formula: see text] Lu 1.8 Gd 0.2 SiO 5 (LGSO):Ce (0.025 mol. %) scintillators. This readout method yielded a calibrated, global energy resolution of 15.3% FWHM at 511 keV with a CTR of [Formula: see text] FWHM between the 16-pixel multiplexed detector array and a [Formula: see text] LGSO-SiPM reference detector. In summary, results indicate this multiplexing scheme is a scalable readout technique that provides excellent coincidence timing performance.
Characterization of dry biopotential electrodes.
Xie, Li; Yang, Geng; Xu, Linlin; Seoane, Fernando; Chen, Qiang; Zheng, Lirong
2013-01-01
Driven by the increased interest in wearable long-term healthcare monitoring systems, varieties of dry electrodes are proposed based on different materials with different patterns and structures. Most of the studies reported in the literature focus on proposing new electrodes and comparing its performance with commercial electrodes. Few papers are about detailed comparison among different dry electrodes. In this paper, printed metal-plate electrodes, textile based electrodes, and spiked electrodes are for the first time evaluated and compared under the same experimental setup. The contact impedance and noise characterization are measured. The in-vivo electrocardiogram (ECG) measurement is applied to evaluate the overall performance of different electrodes. Textile electrodes and printed electrodes gain comparable high-quality ECG signals. The ECG signal obtained by spiked electrodes is noisier. However, a clear ECG envelope can be observed and the signal quality can be easily improved by backend signal processing. The features of each type of electrodes are analyzed and the suitable application scenario is addressed.
Jin, Yulong; Huang, Yanyan; Xie, Yunfeng; Hu, Wenbing; Wang, Fuyi; Liu, Guoquan; Zhao, Rui
2012-01-30
The cyclic oxidation and reduction of methionine (Met) containing peptides and proteins play important roles in biological system. This work was contributed to analysis the cyclic oxidation and reduction processes of a methionine containing peptide which is very likely to relate in the cell signal transduction pathways. To mimic the biological oxidation condition, hydrogen peroxide was used as the reactive oxygen species to oxidize the peptide. Reversed-phase high-performance liquid chromatography and mass spectrometry were employed to monitor the reactions and characterize the structural changes of the products. A rapid reduction procedure was developed by simply using KI as the reductant, which is green and highly efficient. By investigation of the cyclic oxidation and reduction process, our work provides a new perspective to study the function and mechanism of Met containing peptides and proteins during cell signaling processes as well as diseases. Copyright © 2011 Elsevier B.V. All rights reserved.
Goldstone R/D High Speed Data Acquisition System
NASA Technical Reports Server (NTRS)
Deutsch, L. J.; Jurgens, R. F.; Brokl, S. S.
1984-01-01
A digital data acquisition system that meets the requirements of several users (initially the planetary radar program) is planned for general use at Deep Space Station 14 (DSS 14). The system, now partially complete, is controlled by VAX 11/780 computer that is programmed in high level languages. A DEC Data Controller is included for moderate-speed data acquisition, low speed data display, and for a digital interface to special user-provided devices. The high-speed data acquisition is performed in devices that are being designed and built at JPL. Analog IF signals are converted to a digitized 50 MHz real signal. This signal is filtered and mixed digitally to baseband after which its phase code (a PN sequence in the case of planetary radar) is removed. It may then be accumulated (or averaged) and fed into the VAX through an FPS 5210 array processor. Further data processing before entering the VAX is thus possible (computation and accumulation of the power spectra, for example). The system is to be located in the research and development pedestal at DSS 14 for easy access by researchers in radio astronomy as well as telemetry processing and antenna arraying.
Detection of Artificially Generated Seismic Signals Using Balloon-Borne Infrasound Sensors
Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.; ...
2018-04-24
Here, we conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hotmore » air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.« less
Detection of Artificially Generated Seismic Signals Using Balloon-Borne Infrasound Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.
Here, we conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hotmore » air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.« less
NASA Astrophysics Data System (ADS)
Li, H.; Plink-Bjorklund, P.
2017-12-01
Studies (e.g., Jerolmack and Paola, 2010) have suggested that autogenic processes act as a filter for high-frequency environmental signals, and the underlying assumption is that autogenic processes can cause fluctuations in sediment and water discharge that modify or shred the signal. This assumption, however, fails to recognize that autogenic processes and their final products are dynamic and that they can respond to allogenic forcings. We compile a database containing published field studies, physical experiments, and numerical modeling works, and analyze the data under different boundary conditions. Our analyses suggest different conclusions. Autogenic processes are intrinsic to the sedimentary system, and they possess distinct patterns under steady boundary conditions. Upon changing boundary conditions, the autogenic patterns are also likely to change (depending on the magnitude of the change in the boundary conditions). Therefore, the pattern change provides us with the opportunity to restore the high-frequency signals that may not pass through the transfer zone. Here we present the theoretical basis for using autogenic deposits to infer high-frequency signals as well as modern and ancient field examples, physical experiments, and modeling works to illustrate the autogenic response to allogenic forcings. The field studies show the potential of using autogenic deposits to restore short-term climatic variability. The experiments demonstrate that autogenic processes in rivers are closely linked to sediment and water discharge. The modeling examples reveal the counteracting effects of some autogenic processes to form a self-organized pattern under a set of specific boundary conditions. We also highlight the limitations and challenges that need more research efforts to restore high-frequency signals. Some critical issues include the magnitude of the signals, the effect of the interference between different signals, and the incompleteness of the autogenic deposits.
System and method for high power diode based additive manufacturing
El-Dasher, Bassem S.; Bayramian, Andrew; Demuth, James A.; Farmer, Joseph C.; Torres, Sharon G.
2018-01-02
A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array.
System and method for high power diode based additive manufacturing
El-Dasher, Bassem S.; Bayramian, Andrew; Demuth, James A.; Farmer, Joseph C.; Torres, Sharon G.
2016-04-12
A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array.
Chavali, Venkata P; Riedy, Samantha M; Van Dongen, Hans P A
2017-03-01
There is a long-standing debate about the best way to characterize performance deficits on the psychomotor vigilance test (PVT), a widely used assay of cognitive impairment in human sleep deprivation studies. Here, we address this issue through the theoretical framework of the diffusion model and propose to express PVT performance in terms of signal-to-noise ratio (SNR). From the equations of the diffusion model for one-choice, reaction-time tasks, we derived an expression for a novel SNR metric for PVT performance. We also showed that LSNR-a commonly used log-transformation of SNR-can be reasonably well approximated by a linear function of the mean response speed, LSNRapx. We computed SNR, LSNR, LSNRapx, and number of lapses for 1284 PVT sessions collected from 99 healthy young adults who participated in laboratory studies with 38 hr of total sleep deprivation. All four PVT metrics captured the effects of time awake and time of day on cognitive performance during sleep deprivation. The LSNR had the best psychometric properties, including high sensitivity, high stability, high degree of normality, absence of floor and ceiling effects, and no bias in the meaning of change scores related to absolute baseline performance. The theoretical motivation of SNR and LSNR permits quantitative interpretation of PVT performance as an assay of the fidelity of information processing in cognition. Furthermore, with a conceptual and statistical meaning grounded in information theory and generalizable across scientific fields, LSNR in particular is a useful tool for systems-integrated fatigue risk management. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Wilson, J Adam; Williams, Justin C
2009-01-01
The clock speeds of modern computer processors have nearly plateaued in the past 5 years. Consequently, neural prosthetic systems that rely on processing large quantities of data in a short period of time face a bottleneck, in that it may not be possible to process all of the data recorded from an electrode array with high channel counts and bandwidth, such as electrocorticographic grids or other implantable systems. Therefore, in this study a method of using the processing capabilities of a graphics card [graphics processing unit (GPU)] was developed for real-time neural signal processing of a brain-computer interface (BCI). The NVIDIA CUDA system was used to offload processing to the GPU, which is capable of running many operations in parallel, potentially greatly increasing the speed of existing algorithms. The BCI system records many channels of data, which are processed and translated into a control signal, such as the movement of a computer cursor. This signal processing chain involves computing a matrix-matrix multiplication (i.e., a spatial filter), followed by calculating the power spectral density on every channel using an auto-regressive method, and finally classifying appropriate features for control. In this study, the first two computationally intensive steps were implemented on the GPU, and the speed was compared to both the current implementation and a central processing unit-based implementation that uses multi-threading. Significant performance gains were obtained with GPU processing: the current implementation processed 1000 channels of 250 ms in 933 ms, while the new GPU method took only 27 ms, an improvement of nearly 35 times.
Analysis on electronic control unit of continuously variable transmission
NASA Astrophysics Data System (ADS)
Cao, Shuanggui
Continuously variable transmission system can ensure that the engine work along the line of best fuel economy, improve fuel economy, save fuel and reduce harmful gas emissions. At the same time, continuously variable transmission allows the vehicle speed is more smooth and improves the ride comfort. Although the CVT technology has made great development, but there are many shortcomings in the CVT. The CVT system of ordinary vehicles now is still low efficiency, poor starting performance, low transmission power, and is not ideal controlling, high cost and other issues. Therefore, many scholars began to study some new type of continuously variable transmission. The transmission system with electronic systems control can achieve automatic control of power transmission, give full play to the characteristics of the engine to achieve optimal control of powertrain, so the vehicle is always traveling around the best condition. Electronic control unit is composed of the core processor, input and output circuit module and other auxiliary circuit module. Input module collects and process many signals sent by sensor and , such as throttle angle, brake signals, engine speed signal, speed signal of input and output shaft of transmission, manual shift signals, mode selection signals, gear position signal and the speed ratio signal, so as to provide its corresponding processing for the controller core.
Tjolleng, Amir; Jung, Kihyo; Hong, Wongi; Lee, Wonsup; Lee, Baekhee; You, Heecheon; Son, Joonwoo; Park, Seikwon
2017-03-01
An artificial neural network (ANN) model was developed in the present study to classify the level of a driver's cognitive workload based on electrocardiography (ECG). ECG signals were measured on 15 male participants while they performed a simulated driving task as a primary task with/without an N-back task as a secondary task. Three time-domain ECG measures (mean inter-beat interval (IBI), standard deviation of IBIs, and root mean squared difference of adjacent IBIs) and three frequencydomain ECG measures (power in low frequency, power in high frequency, and ratio of power in low and high frequencies) were calculated. To compensate for individual differences in heart response during the driving tasks, a three-step data processing procedure was performed to ECG signals of each participant: (1) selection of two most sensitive ECG measures, (2) definition of three (low, medium, and high) cognitive workload levels, and (3) normalization of the selected ECG measures. An ANN model was constructed using a feed-forward network and scaled conjugate gradient as a back-propagation learning rule. The accuracy of the ANN classification model was found satisfactory for learning data (95%) and testing data (82%). Copyright © 2016 Elsevier Ltd. All rights reserved.
A Robust High-Performance GPS L1 Receiver with Single-stage Quadrature Redio-Frequency Circuit
NASA Astrophysics Data System (ADS)
Liu, Jianghua; Xu, Weilin; Wan, Qinq; Liu, Tianci
2018-03-01
A low power current reuse single-stage quadrature raido-frequency part (SQRF) is proposed for GPS L1 receiver in 180nm CMOS process. The proposed circuit consists of LNA, Mixer, QVCO, is called the QLMV cell. A two blocks stacked topology is adopted in this design. The parallel QVCO and mixer placed on the top forms the upper stacked block, and the LNA placed on the bottom forms the other stacked block. The two blocks share the current and achieve low power performance. To improve the stability, a float current source is proposed. The float current isolated the local oscillation signal and the input RF signal, which bring the whole circuit robust high-performance. The result shows conversion gain is 34 dB, noise figure is three dB, the phase noise is -110 dBc/Hz at 1MHz and IIP3 is -20 dBm. The proposed circuit dissipated 1.7mW with 1 V supply voltage.
Development of a compact and cost effective multi-input digital signal processing system
NASA Astrophysics Data System (ADS)
Darvish-Molla, Sahar; Chin, Kenrick; Prestwich, William V.; Byun, Soo Hyun
2018-01-01
A prototype digital signal processing system (DSP) was developed using a microcontroller interfaced with a 12-bit sampling ADC, which offers a considerably inexpensive solution for processing multiple detectors with high throughput. After digitization of the incoming pulses, in order to maximize the output counting rate, a simple algorithm was employed for pulse height analysis. Moreover, an algorithm aiming at the real-time pulse pile-up deconvolution was implemented. The system was tested using a NaI(Tl) detector in comparison with a traditional analogue and commercial digital systems for a variety of count rates. The performance of the prototype system was consistently superior to the analogue and the commercial digital systems up to the input count rate of 61 kcps while was slightly inferior to the commercial digital system but still superior to the analogue system in the higher input rates. Considering overall cost, size and flexibility, this custom made multi-input digital signal processing system (MMI-DSP) was the best reliable choice for the purpose of the 2D microdosimetric data collection, or for any measurement in which simultaneous multi-data collection is required.
Research on the Wire Network Signal Prediction Based on the Improved NNARX Model
NASA Astrophysics Data System (ADS)
Zhang, Zipeng; Fan, Tao; Wang, Shuqing
It is difficult to obtain accurately the wire net signal of power system's high voltage power transmission lines in the process of monitoring and repairing. In order to solve this problem, the signal measured in remote substation or laboratory is employed to make multipoint prediction to gain the needed data. But, the obtained power grid frequency signal is delay. In order to solve the problem, an improved NNARX network which can predict frequency signal based on multi-point data collected by remote substation PMU is describes in this paper. As the error curved surface of the NNARX network is more complicated, this paper uses L-M algorithm to train the network. The result of the simulation shows that the NNARX network has preferable predication performance which provides accurate real time data for field testing and maintenance.
NASA Astrophysics Data System (ADS)
Holland, S. Douglas
1992-09-01
A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.
NASA Technical Reports Server (NTRS)
Holland, S. Douglas (Inventor)
1992-01-01
A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.
Design and evaluation of a parametric model for cardiac sounds.
Ibarra-Hernández, Roilhi F; Alonso-Arévalo, Miguel A; Cruz-Gutiérrez, Alejandro; Licona-Chávez, Ana L; Villarreal-Reyes, Salvador
2017-10-01
Heart sound analysis plays an important role in the auscultative diagnosis process to detect the presence of cardiovascular diseases. In this paper we propose a novel parametric heart sound model that accurately represents normal and pathological cardiac audio signals, also known as phonocardiograms (PCG). The proposed model considers that the PCG signal is formed by the sum of two parts: one of them is deterministic and the other one is stochastic. The first part contains most of the acoustic energy. This part is modeled by the Matching Pursuit (MP) algorithm, which performs an analysis-synthesis procedure to represent the PCG signal as a linear combination of elementary waveforms. The second part, also called residual, is obtained after subtracting the deterministic signal from the original heart sound recording and can be accurately represented as an autoregressive process using the Linear Predictive Coding (LPC) technique. We evaluate the proposed heart sound model by performing subjective and objective tests using signals corresponding to different pathological cardiac sounds. The results of the objective evaluation show an average Percentage of Root-Mean-Square Difference of approximately 5% between the original heart sound and the reconstructed signal. For the subjective test we conducted a formal methodology for perceptual evaluation of audio quality with the assistance of medical experts. Statistical results of the subjective evaluation show that our model provides a highly accurate approximation of real heart sound signals. We are not aware of any previous heart sound model rigorously evaluated as our proposal. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsai, Shih-Chiao; Chen, Jenn-Shyong; Chu, Yen-Hsyang; Su, Ching-Lun; Chen, Jui-Hsiang
2018-01-01
Multi-frequency range imaging (RIM) has been operated in the Chung-Li very high-frequency (VHF) radar, located on the campus of National Central University, Taiwan, since 2008. RIM processes the echo signals with a group of closely spaced transmitting frequencies through appropriate inversion methods to obtain high-resolution distribution of echo power in the range direction. This is beneficial to the investigation of the small-scale structure embedded in dynamic atmosphere. Five transmitting frequencies were employed in the radar experiment for observation of the precipitating atmosphere during the period between 21 and 23 August 2013. Using the Capon and Fourier methods, the radar echoes were synthesized to retrieve the temporal signals at a smaller range step than the original range resolution defined by the pulse width, and such retrieved temporal signals were then processed in the Doppler frequency domain to identify the atmosphere and precipitation echoes. An analysis called conditional averaging was further executed for echo power, Doppler velocity, and spectral width to verify the potential capabilities of the retrieval processing in resolving small-scale precipitation and atmosphere structures. Point-by-point correction of range delay combined with compensation of range-weighting function effect has been performed during the retrieval of temporal signals to improve the continuity of power spectra at gate boundaries, making the small-scale structures in the power spectra more natural and reasonable. We examined stratiform and convective precipitation and demonstrated their different structured characteristics by means of the Capon-processed results. The new element in this study is the implementation of RIM on spectral analysis, especially for precipitation echoes.
Miyamoto, Kenji; Kuwano, Shigeru; Terada, Jun; Otaka, Akihiro
2016-01-25
We analyze the mobile fronthaul (MFH) bandwidth and the wireless transmission performance in the split-PHY processing (SPP) architecture, which redefines the functional split of centralized/cloud RAN (C-RAN) while preserving high wireless coordinated multi-point (CoMP) transmission/reception performance. The SPP architecture splits the base stations (BS) functions between wireless channel coding/decoding and wireless modulation/demodulation, and employs its own CoMP joint transmission and reception schemes. Simulation results show that the SPP architecture reduces the MFH bandwidth by up to 97% from conventional C-RAN while matching the wireless bit error rate (BER) performance of conventional C-RAN in uplink joint reception with only 2-dB signal to noise ratio (SNR) penalty.
NASA Astrophysics Data System (ADS)
Napoli, Jay
2016-05-01
Precision fiber optic gyroscopes (FOGs) are critical components for an array of platforms and applications ranging from stabilization and pointing orientation of payloads and platforms to navigation and control for unmanned and autonomous systems. In addition, FOG-based inertial systems provide extremely accurate data for geo-referencing systems. Significant improvements in the performance of FOGs and FOG-based inertial systems at KVH are due, in large part, to advancements in the design and manufacture of optical fiber, as well as in manufacturing operations and signal processing. Open loop FOGs, such as those developed and manufactured by KVH Industries, offer tactical-grade performance in a robust, small package. The success of KVH FOGs and FOG-based inertial systems is due to innovations in key fields, including the development of proprietary D-shaped fiber with an elliptical core, and KVH's unique ThinFiber. KVH continually improves its FOG manufacturing processes and signal processing, which result in improved accuracies across its entire FOG product line. KVH acquired its FOG capabilities, including its patented E•Core fiber, when the company purchased Andrew Corporation's Fiber Optic Group in 1997. E•Core fiber is unique in that the light-guiding core - critical to the FOG's performance - is elliptically shaped. The elliptical core produces a fiber that has low loss and high polarization-maintaining ability. In 2010, KVH developed its ThinFiber, a 170-micron diameter fiber that retains the full performance characteristics of E•Core fiber. ThinFiber has enabled the development of very compact, high-performance open-loop FOGs, which are also used in a line of FOG-based inertial measurement units and inertial navigation systems.
A low-power small-area ADC array for IRFPA readout
NASA Astrophysics Data System (ADS)
Zhong, Shengyou; Yao, Libin
2013-09-01
The readout integrated circuit (ROIC) is a bridge between the infrared focal plane array (IRFPA) and image processing circuit in an infrared imaging system. The ROIC is the first part of signal processing circuit and connected to detectors directly, so its performance will greatly affect the detector or even the whole imaging system performance. With the development of CMOS technologies, it's possible to digitalize the signal inside the ROIC and develop the digital ROIC. Digital ROIC can reduce complexity of the whole system and improve the system reliability. More importantly, it can accommodate variety of digital signal processing techniques which the traditional analog ROIC cannot achieve. The analog to digital converter (ADC) is the most important building block in the digital ROIC. The requirements for ADCs inside the ROIC are low power, high dynamic range and small area. In this paper we propose an RC hybrid Successive Approximation Register (SAR) ADC as the column ADC for digital ROIC. In our proposed ADC structure, a resistor ladder is used to generate several voltages. The proposed RC hybrid structure not only reduces the area of capacitor array but also releases requirement for capacitor array matching. Theory analysis and simulation show RC hybrid SAR ADC is suitable for ADC array applications
NASA Astrophysics Data System (ADS)
Shao, Liyang; Zhang, Yunpeng; Li, Zonglei; Zhang, Zhiyong; Zou, Xihua; Luo, Bin; Pan, Wei; Yan, Lianshan
2016-11-01
Logarithmic detectors (LogDs) have been used in coherent Brillouin optical time-domain analysis (BOTDA) sensors to reduce the effect of phase fluctuation, demodulation complexities, and measurement time. However, because of the inherent properties of LogDs, a DC component at the level of hundreds of millivolts that prohibits high-gain signal amplification (SA) could be generated, resulting in unacceptable data acquisition (DAQ) inaccuracies and decoding errors in the process of prototype integration. By generating a reference light at a level similar to the probe light, differential detection can be applied to remove the DC component automatically using a differential amplifier before the DAQ process. Therefore, high-gain SA can be employed to reduce quantization errors. The signal-to-noise ratio of the weak Brillouin gain signal is improved from ˜11.5 to ˜21.8 dB. A BOTDA prototype is implemented based on the proposed scheme. The experimental results show that the measurement accuracy of the Brillouin frequency shift (BFS) is improved from ±1.9 to ±0.8 MHz at the end of a 40-km sensing fiber.
FPGA-Based Front-End Electronics for Positron Emission Tomography
Haselman, Michael; DeWitt, Don; McDougald, Wendy; Lewellen, Thomas K.; Miyaoka, Robert; Hauck, Scott
2010-01-01
Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates above 100MHz. This combined with FPGA’s low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data acquisition system for positron emission tomography (PET) scanners. Our laboratory is producing a high-resolution, small-animal PET scanner that utilizes FPGAs as the core of the front-end electronics. For this next generation scanner, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper two such processes, sub-clock rate pulse timing and event localization, will be discussed in detail. We show that timing performed in the FPGA can achieve a resolution that is suitable for small-animal scanners, and will outperform the analog version given a low enough sampling period for the ADC. We will also show that the position of events in the scanner can be determined in real time using a statistical positioning based algorithm. PMID:21961085
Strategies for concurrent processing of complex algorithms in data driven architectures
NASA Technical Reports Server (NTRS)
Som, Sukhamoy; Stoughton, John W.; Mielke, Roland R.
1990-01-01
Performance modeling and performance enhancement for periodic execution of large-grain, decision-free algorithms in data flow architectures are discussed. Applications include real-time implementation of control and signal processing algorithms where performance is required to be highly predictable. The mapping of algorithms onto the specified class of data flow architectures is realized by a marked graph model called algorithm to architecture mapping model (ATAMM). Performance measures and bounds are established. Algorithm transformation techniques are identified for performance enhancement and reduction of resource (computing element) requirements. A systematic design procedure is described for generating operating conditions for predictable performance both with and without resource constraints. An ATAMM simulator is used to test and validate the performance prediction by the design procedure. Experiments on a three resource testbed provide verification of the ATAMM model and the design procedure.
A Versatile Multichannel Digital Signal Processing Module for Microcalorimeter Arrays
NASA Astrophysics Data System (ADS)
Tan, H.; Collins, J. W.; Walby, M.; Hennig, W.; Warburton, W. K.; Grudberg, P.
2012-06-01
Different techniques have been developed for reading out microcalorimeter sensor arrays: individual outputs for small arrays, and time-division or frequency-division or code-division multiplexing for large arrays. Typically, raw waveform data are first read out from the arrays using one of these techniques and then stored on computer hard drives for offline optimum filtering, leading not only to requirements for large storage space but also limitations on achievable count rate. Thus, a read-out module that is capable of processing microcalorimeter signals in real time will be highly desirable. We have developed multichannel digital signal processing electronics that are capable of on-board, real time processing of microcalorimeter sensor signals from multiplexed or individual pixel arrays. It is a 3U PXI module consisting of a standardized core processor board and a set of daughter boards. Each daughter board is designed to interface a specific type of microcalorimeter array to the core processor. The combination of the standardized core plus this set of easily designed and modified daughter boards results in a versatile data acquisition module that not only can easily expand to future detector systems, but is also low cost. In this paper, we first present the core processor/daughter board architecture, and then report the performance of an 8-channel daughter board, which digitizes individual pixel outputs at 1 MSPS with 16-bit precision. We will also introduce a time-division multiplexing type daughter board, which takes in time-division multiplexing signals through fiber-optic cables and then processes the digital signals to generate energy spectra in real time.
NASA Astrophysics Data System (ADS)
Ji, Zhan-Huai; Yan, Sheng-Gang
2017-12-01
This paper presents an analytical study of the complete transform of improved Gabor wavelets (IGWs), and discusses its application to the processing and interpretation of seismic signals. The complete Gabor wavelet transform has the following properties. First, unlike the conventional transform, the improved Gabor wavelet transform (IGWT) maps time domain signals to the time-frequency domain instead of the time-scale domain. Second, the IGW's dominant frequency is fixed, so the transform can perform signal frequency division, where the dominant frequency components of the extracted sub-band signal carry essentially the same information as the corresponding components of the original signal, and the subband signal bandwidth can be regulated effectively by the transform's resolution factor. Third, a time-frequency filter consisting of an IGWT and its inverse transform can accurately locate target areas in the time-frequency field and perform filtering in a given time-frequency range. The complete IGW transform's properties are investigated using simulation experiments and test cases, showing positive results for seismic signal processing and interpretation, such as enhancing seismic signal resolution, permitting signal frequency division, and allowing small faults to be identified.
ERTS direct readout ground station study
NASA Technical Reports Server (NTRS)
1971-01-01
A system configuration which provides for a wide variety of user requirements is described. Two distinct user types are considered and optimized configurations are provided. Independent satellite transmission systems allow simultaneous signal transmission to Regional Collection Centers via a high data rate channel and to local users who require near real time consumption of lower rate data. In order to maximize the ultimate utility of this study effort, a parametric system description is given such that in essence a shopping list is provided. To achieve these results, it was necessary to consider all technical disciplines associated with high resolution satellite imaging systems including signal processing, modulation and coding, recording, and display techniques. A total systems study was performed.
SISYPHUS: A high performance seismic inversion factory
NASA Astrophysics Data System (ADS)
Gokhberg, Alexey; Simutė, Saulė; Boehm, Christian; Fichtner, Andreas
2016-04-01
In the recent years the massively parallel high performance computers became the standard instruments for solving the forward and inverse problems in seismology. The respective software packages dedicated to forward and inverse waveform modelling specially designed for such computers (SPECFEM3D, SES3D) became mature and widely available. These packages achieve significant computational performance and provide researchers with an opportunity to solve problems of bigger size at higher resolution within a shorter time. However, a typical seismic inversion process contains various activities that are beyond the common solver functionality. They include management of information on seismic events and stations, 3D models, observed and synthetic seismograms, pre-processing of the observed signals, computation of misfits and adjoint sources, minimization of misfits, and process workflow management. These activities are time consuming, seldom sufficiently automated, and therefore represent a bottleneck that can substantially offset performance benefits provided by even the most powerful modern supercomputers. Furthermore, a typical system architecture of modern supercomputing platforms is oriented towards the maximum computational performance and provides limited standard facilities for automation of the supporting activities. We present a prototype solution that automates all aspects of the seismic inversion process and is tuned for the modern massively parallel high performance computing systems. We address several major aspects of the solution architecture, which include (1) design of an inversion state database for tracing all relevant aspects of the entire solution process, (2) design of an extensible workflow management framework, (3) integration with wave propagation solvers, (4) integration with optimization packages, (5) computation of misfits and adjoint sources, and (6) process monitoring. The inversion state database represents a hierarchical structure with branches for the static process setup, inversion iterations, and solver runs, each branch specifying information at the event, station and channel levels. The workflow management framework is based on an embedded scripting engine that allows definition of various workflow scenarios using a high-level scripting language and provides access to all available inversion components represented as standard library functions. At present the SES3D wave propagation solver is integrated in the solution; the work is in progress for interfacing with SPECFEM3D. A separate framework is designed for interoperability with an optimization module; the workflow manager and optimization process run in parallel and cooperate by exchanging messages according to a specially designed protocol. A library of high-performance modules implementing signal pre-processing, misfit and adjoint computations according to established good practices is included. Monitoring is based on information stored in the inversion state database and at present implements a command line interface; design of a graphical user interface is in progress. The software design fits well into the common massively parallel system architecture featuring a large number of computational nodes running distributed applications under control of batch-oriented resource managers. The solution prototype has been implemented on the "Piz Daint" supercomputer provided by the Swiss Supercomputing Centre (CSCS).
pySPACE—a signal processing and classification environment in Python
Krell, Mario M.; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Teiwes, Johannes; Metzen, Jan H.; Kirchner, Elsa A.; Kirchner, Frank
2013-01-01
In neuroscience large amounts of data are recorded to provide insights into cerebral information processing and function. The successful extraction of the relevant signals becomes more and more challenging due to increasing complexities in acquisition techniques and questions addressed. Here, automated signal processing and machine learning tools can help to process the data, e.g., to separate signal and noise. With the presented software pySPACE (http://pyspace.github.io/pyspace), signal processing algorithms can be compared and applied automatically on time series data, either with the aim of finding a suitable preprocessing, or of training supervised algorithms to classify the data. pySPACE originally has been built to process multi-sensor windowed time series data, like event-related potentials from the electroencephalogram (EEG). The software provides automated data handling, distributed processing, modular build-up of signal processing chains and tools for visualization and performance evaluation. Included in the software are various algorithms like temporal and spatial filters, feature generation and selection, classification algorithms, and evaluation schemes. Further, interfaces to other signal processing tools are provided and, since pySPACE is a modular framework, it can be extended with new algorithms according to individual needs. In the presented work, the structural hierarchies are described. It is illustrated how users and developers can interface the software and execute offline and online modes. Configuration of pySPACE is realized with the YAML format, so that programming skills are not mandatory for usage. The concept of pySPACE is to have one comprehensive tool that can be used to perform complete signal processing and classification tasks. It further allows to define own algorithms, or to integrate and use already existing libraries. PMID:24399965
pySPACE-a signal processing and classification environment in Python.
Krell, Mario M; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Teiwes, Johannes; Metzen, Jan H; Kirchner, Elsa A; Kirchner, Frank
2013-01-01
In neuroscience large amounts of data are recorded to provide insights into cerebral information processing and function. The successful extraction of the relevant signals becomes more and more challenging due to increasing complexities in acquisition techniques and questions addressed. Here, automated signal processing and machine learning tools can help to process the data, e.g., to separate signal and noise. With the presented software pySPACE (http://pyspace.github.io/pyspace), signal processing algorithms can be compared and applied automatically on time series data, either with the aim of finding a suitable preprocessing, or of training supervised algorithms to classify the data. pySPACE originally has been built to process multi-sensor windowed time series data, like event-related potentials from the electroencephalogram (EEG). The software provides automated data handling, distributed processing, modular build-up of signal processing chains and tools for visualization and performance evaluation. Included in the software are various algorithms like temporal and spatial filters, feature generation and selection, classification algorithms, and evaluation schemes. Further, interfaces to other signal processing tools are provided and, since pySPACE is a modular framework, it can be extended with new algorithms according to individual needs. In the presented work, the structural hierarchies are described. It is illustrated how users and developers can interface the software and execute offline and online modes. Configuration of pySPACE is realized with the YAML format, so that programming skills are not mandatory for usage. The concept of pySPACE is to have one comprehensive tool that can be used to perform complete signal processing and classification tasks. It further allows to define own algorithms, or to integrate and use already existing libraries.
NASA Astrophysics Data System (ADS)
Meng, X. T.; Levin, D. S.; Chapman, J. W.; Li, D. C.; Yao, Z. E.; Zhou, B.
2017-02-01
The High Performance Time to Digital Converter (HPTDC), a multi-channel ASIC designed by the CERN Microelectronics group, has been proposed for the digitization of the thin-Resistive Plate Chambers (tRPC) in the ATLAS Muon Spectrometer Phase-1 upgrade project. These chambers, to be staged for higher luminosity LHC operation, will increase trigger acceptance and reduce or eliminate the fake muon trigger rates in the barrel-endcap transition region, corresponding to pseudo-rapidity range 1<|η|<1.3. Low level trigger candidates must be flagged within a maximum latency of 1075 ns, thus imposing stringent signal processing time performance requirements on the readout system in general, and on the digitization electronics in particular. This paper investigates the HPTDC signal latency performance based on a specially designed evaluation board coupled with an external FPGA evaluation board, when operated in triggerless mode, and under hit rate conditions expected in Phase-I. This hardware based study confirms previous simulations and demonstrates that the HPTDC in triggerless operation satisfies the digitization timing requirements in both leading edge and pair modes.
GLAST Burst Monitor Signal Processing System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, P. Narayana; Briggs, Michael; Connaughton, Valerie
The onboard Data Processing Unit (DPU), designed and built by Southwest Research Institute, performs the high-speed data acquisition for GBM. The analog signals from each of the 14 detectors are digitized by high-speed multichannel analog data acquisition architecture. The streaming digital values resulting from a periodic (period of 104.2 ns) sampling of the analog signal by the individual ADCs are fed to a Field-Programmable Gate Array (FPGA). Real-time Digital Signal Processing (DSP) algorithms within the FPGA implement functions like filtering, thresholding, time delay and pulse height measurement. The spectral data with a 12-bit resolution are formatted according to the commandablemore » look-up-table (LUT) and then sent to the High-Speed Science-Date Bus (HSSDB, speed=1.5 MB/s) to be telemetered to ground. The DSP offers a novel feature of a commandable and constant event deadtime. The ADC non-linearities have been calibrated so that the spectral data can be corrected during analysis. The best temporal resolution is 2 {mu}s for the pre-burst and post-trigger time-tagged events (TTE) data. The time resolution of the binned data types is commandable from 64 msec to 1.024 s for the CTIME data (8 channel spectral resolution) and 1.024 to 32.768 s for the CSPEC data (128 channel spectral resolution). The pulse pile-up effects have been studied by Monte Carlo simulations. For a typical GRB, the possible shift in the Epeak value at high-count rates ({approx}100 kHz) is {approx}1% while the change in the single power-law index could be up to 5%.« less
Technical Assessment: Integrated Photonics
2015-10-01
in global internet protocol traffic as a function of time by local access technology. Photonics continues to play a critical role in enabling this...communication networks. This has enabled services like the internet , high performance computing, and power-efficient large-scale data centers. The...signal processing, quantum information science, and optics for free space applications. However major obstacles challenge the implementation of
Yildirim, Özal
2018-05-01
Long-short term memory networks (LSTMs), which have recently emerged in sequential data analysis, are the most widely used type of recurrent neural networks (RNNs) architecture. Progress on the topic of deep learning includes successful adaptations of deep versions of these architectures. In this study, a new model for deep bidirectional LSTM network-based wavelet sequences called DBLSTM-WS was proposed for classifying electrocardiogram (ECG) signals. For this purpose, a new wavelet-based layer is implemented to generate ECG signal sequences. The ECG signals were decomposed into frequency sub-bands at different scales in this layer. These sub-bands are used as sequences for the input of LSTM networks. New network models that include unidirectional (ULSTM) and bidirectional (BLSTM) structures are designed for performance comparisons. Experimental studies have been performed for five different types of heartbeats obtained from the MIT-BIH arrhythmia database. These five types are Normal Sinus Rhythm (NSR), Ventricular Premature Contraction (VPC), Paced Beat (PB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The results show that the DBLSTM-WS model gives a high recognition performance of 99.39%. It has been observed that the wavelet-based layer proposed in the study significantly improves the recognition performance of conventional networks. This proposed network structure is an important approach that can be applied to similar signal processing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope
Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook
2016-01-01
A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments. PMID:27104539
Optimal Signal Processing in Small Stochastic Biochemical Networks
Ziv, Etay; Nemenman, Ilya; Wiggins, Chris H.
2007-01-01
We quantify the influence of the topology of a transcriptional regulatory network on its ability to process environmental signals. By posing the problem in terms of information theory, we do this without specifying the function performed by the network. Specifically, we study the maximum mutual information between the input (chemical) signal and the output (genetic) response attainable by the network in the context of an analytic model of particle number fluctuations. We perform this analysis for all biochemical circuits, including various feedback loops, that can be built out of 3 chemical species, each under the control of one regulator. We find that a generic network, constrained to low molecule numbers and reasonable response times, can transduce more information than a simple binary switch and, in fact, manages to achieve close to the optimal information transmission fidelity. These high-information solutions are robust to tenfold changes in most of the networks' biochemical parameters; moreover they are easier to achieve in networks containing cycles with an odd number of negative regulators (overall negative feedback) due to their decreased molecular noise (a result which we derive analytically). Finally, we demonstrate that a single circuit can support multiple high-information solutions. These findings suggest a potential resolution of the “cross-talk” phenomenon as well as the previously unexplained observation that transcription factors that undergo proteolysis are more likely to be auto-repressive. PMID:17957259
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Junhwan; Hwang, Sungui; Park, Kyihwan, E-mail: khpark@gist.ac.kr
To utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work. Intensity control is also considered to solve the problem of a phase-shift variation in the signal processing circuit caused by object reflectivity. The experimental results for optical systemmore » and signal processing design are performed using 3D measurements.« less
EFQPSK Versus CERN: A Comparative Study
NASA Technical Reports Server (NTRS)
Borah, Deva K.; Horan, Stephen
2001-01-01
This report presents a comparative study on Enhanced Feher's Quadrature Phase Shift Keying (EFQPSK) and Constrained Envelope Root Nyquist (CERN) techniques. These two techniques have been developed in recent times to provide high spectral and power efficiencies under nonlinear amplifier environment. The purpose of this study is to gain insights into these techniques and to help system planners and designers with an appropriate set of guidelines for using these techniques. The comparative study presented in this report relies on effective simulation models and procedures. Therefore, a significant part of this report is devoted to understanding the mathematical and simulation models of the techniques and their set-up procedures. In particular, mathematical models of EFQPSK and CERN, effects of the sampling rate in discrete time signal representation, and modeling of nonlinear amplifiers and predistorters have been considered in detail. The results of this study show that both EFQPSK and CERN signals provide spectrally efficient communications compared to filtered conventional linear modulation techniques when a nonlinear power amplifier is used. However, there are important differences. The spectral efficiency of CERN signals, with a small amount of input backoff, is significantly better than that of EFQPSK signals if the nonlinear amplifier is an ideal clipper. However, to achieve such spectral efficiencies with a practical nonlinear amplifier, CERN processing requires a predistorter which effectively translates the amplifier's characteristics close to those of an ideal clipper. Thus, the spectral performance of CERN signals strongly depends on the predistorter. EFQPSK signals, on the other hand, do not need such predistorters since their spectra are almost unaffected by the nonlinear amplifier, Ibis report discusses several receiver structures for EFQPSK signals. It is observed that optimal receiver structures can be realized for both coded and uncoded EFQPSK signals with not too much increase in computational complexity. When a nonlinear amplifier is used, the bit error rate (BER) performance of the CERN signals with a matched filter receiver is found to be more than one decibel (dB) worse compared to the bit error performance of EFQPSK signals. Although channel coding is found to provide BER performance improvement for both EFQPSK and CERN signals, the performance of EFQPSK signals remains better than that of CERN. Optimal receiver structures for CERN signals with nonlinear equalization is left as a possible future work. Based on the numerical results, it is concluded that, in nonlinear channels, CERN processing leads towards better bandwidth efficiency with a compromise in power efficiency. Hence for bandwidth efficient communications needs, CERN is a good solution provided effective adaptive predistorters can be realized. On the other hand, EFQPSK signals provide a good power efficient solution with a compromise in band width efficiency.
High accuracy GNSS based navigation in GEO
NASA Astrophysics Data System (ADS)
Capuano, Vincenzo; Shehaj, Endrit; Blunt, Paul; Botteron, Cyril; Farine, Pierre-André
2017-07-01
Although significant improvements in efficiency and performance of communication satellites have been achieved in the past decades, it is expected that the demand for new platforms in Geostationary Orbit (GEO) and for the On-Orbit Servicing (OOS) on the existing ones will continue to rise. Indeed, the GEO orbit is used for many applications including direct broadcast as well as communications. At the same time, Global Navigation Satellites System (GNSS), originally designed for land, maritime and air applications, has been successfully used as navigation system in Low Earth Orbit (LEO) and its further utilization for navigation of geosynchronous satellites becomes a viable alternative offering many advantages over present ground based methods. Following our previous studies of GNSS signal characteristics in Medium Earth Orbit (MEO), GEO and beyond, in this research we specifically investigate the processing of different GNSS signals, with the goal to determine the best navigation performance they can provide in a GEO mission. Firstly, a detailed selection among different GNSS signals and different combinations of them is discussed, taking into consideration the L1 and L5 frequency bands, and the GPS and Galileo constellations. Then, the implementation of an Orbital Filter is summarized, which adaptively fuses the GN1SS observations with an accurate orbital forces model. Finally, simulation tests of the navigation performance achievable by processing the selected combination of GNSS signals are carried out. The results obtained show an achievable positioning accuracy of less than one meter. In addition, hardware-in-the-loop tests are presented using a COTS receiver connected to our GNSS Spirent simulator, in order to collect real-time hardware-in-the-loop observations and process them by the proposed navigation module.
Continuous high PRF waveforms for challenging environments
NASA Astrophysics Data System (ADS)
Jaroszewski, Steven; Corbeil, Allan; Ryland, Robert; Sobota, David
2017-05-01
Current airborne radar systems segment the available time-on-target during each beam dwell into multiple Coherent Processing Intervals (CPIs) in order to eliminate range eclipsing, solve for unambiguous range, and increase the detection performance against larger Radar Cross Section (RCS) targets. As a consequence, these radars do not realize the full Signal-to-Noise Ratio (SNR) increase and detection performance improvement that is possible. Continuous High Pulse Repetition Frequency (HPRF) waveforms and processing enables the coherent integration of all available radar data over the full time-on-target. This can greatly increase the SNR for air targets at long range and/or with weak radar returns and significantly improve the detection performance against such targets. TSC worked with its partner KeyW to implement a Continuous HPRF waveform in their Sahara radar testbed and obtained measured radar data on both a ground vehicle target and an airborne target of opportunity. This experimental data was processed by TSC to validate the expected benefits of Continuous HPRF waveforms.
NASA Astrophysics Data System (ADS)
Hibert, C.; Michéa, D.; Provost, F.; Malet, J. P.; Geertsema, M.
2017-12-01
Detection of landslide occurrences and measurement of their dynamics properties during run-out is a high research priority but a logistical and technical challenge. Seismology has started to help in several important ways. Taking advantage of the densification of global, regional and local networks of broadband seismic stations, recent advances now permit the seismic detection and location of landslides in near-real-time. This seismic detection could potentially greatly increase the spatio-temporal resolution at which we study landslides triggering, which is critical to better understand the influence of external forcings such as rainfalls and earthquakes. However, detecting automatically seismic signals generated by landslides still represents a challenge, especially for events with small mass. The low signal-to-noise ratio classically observed for landslide-generated seismic signals and the difficulty to discriminate these signals from those generated by regional earthquakes or anthropogenic and natural noises are some of the obstacles that have to be circumvented. We present a new method for automatically constructing instrumental landslide catalogues from continuous seismic data. We developed a robust and versatile solution, which can be implemented in any context where a seismic detection of landslides or other mass movements is relevant. The method is based on a spectral detection of the seismic signals and the identification of the sources with a Random Forest machine learning algorithm. The spectral detection allows detecting signals with low signal-to-noise ratio, while the Random Forest algorithm achieve a high rate of positive identification of the seismic signals generated by landslides and other seismic sources. The processing chain is implemented to work in a High Performance Computers centre which permits to explore years of continuous seismic data rapidly. We present here the preliminary results of the application of this processing chain for years of continuous seismic record by the Alaskan permanent seismic network and Hi-Climb trans-Himalayan seismic network. The processing chain we developed also opens the possibility for a near-real time seismic detection of landslides, in association with remote-sensing automated detection from Sentinel 2 images for example.
Low-complexity camera digital signal imaging for video document projection system
NASA Astrophysics Data System (ADS)
Hsia, Shih-Chang; Tsai, Po-Shien
2011-04-01
We present high-performance and low-complexity algorithms for real-time camera imaging applications. The main functions of the proposed camera digital signal processing (DSP) involve color interpolation, white balance, adaptive binary processing, auto gain control, and edge and color enhancement for video projection systems. A series of simulations demonstrate that the proposed method can achieve good image quality while keeping computation cost and memory requirements low. On the basis of the proposed algorithms, the cost-effective hardware core is developed using Verilog HDL. The prototype chip has been verified with one low-cost programmable device. The real-time camera system can achieve 1270 × 792 resolution with the combination of extra components and can demonstrate each DSP function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yin; Wang, Wen; Wysocki, Gerard, E-mail: gwysocki@princeton.edu
In this Letter, we present a method of performing broadband mid-infrared spectroscopy with conventional, free-running, continuous wave Fabry-Perot quantum cascade lasers (FP-QCLs). The measurement method is based on multi-heterodyne down-conversion of optical signals. The sample transmission spectrum probed by one multi-mode FP-QCL is down-converted to the radio-frequency domain through an optical multi-heterodyne process using a second FP-QCL as the local oscillator. Both a broadband multi-mode spectral measurement as well as high-resolution (∼15 MHz) spectroscopy of molecular absorption are demonstrated and show great potential for development of high performance FP-laser-based spectrometers for chemical sensing.
Investigation of the jet-wake flow of a highly loaded centrifugal compressor impeller
NASA Technical Reports Server (NTRS)
Eckardt, D.
1978-01-01
Investigations, aimed at developing a better understanding of the complex flow field in high performance centrifugal compressors were performed. Newly developed measuring techniques for unsteady static and total pressures as well as flow directions, and a digital data analysis system for fluctuating signals were thoroughly tested. The loss-affected mixing process of the distorted impeller discharge flow was investigated in detail, in the absolute and relative system, at impeller tip speeds up to 380 m/s. A theoretical analysis proved good coincidence of the test results with the DEAN-SENOO theory, which was extended to compressible flows.
NASA Astrophysics Data System (ADS)
Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.
2014-05-01
In recent years, the automotive industry has experienced an evolution toward more powerful driver assistance systems that provide enhanced vehicle safety. These systems typically operate in the optical and microwave regions of the electromagnetic spectrum and have demonstrated high efficiency in collision and risk avoidance. Microwave radar systems are particularly relevant due to their operational robustness under adverse weather or illumination conditions. Our objective is to study different signal processing techniques suitable for extraction of accurate micro-Doppler signatures of slow moving objects in dense urban environments. Selection of the appropriate signal processing technique is crucial for the extraction of accurate micro-Doppler signatures that will lead to better results in a radar classifier system. For this purpose, we perform simulations of typical radar detection responses in common driving situations and conduct the analysis with several signal processing algorithms, including short time Fourier Transform, continuous wavelet or Kernel based analysis methods. We take into account factors such as the relative movement between the host vehicle and the target, and the non-stationary nature of the target's movement. A comparison of results reveals that short time Fourier Transform would be the best approach for detection and tracking purposes, while the continuous wavelet would be the best suited for classification purposes.
Coherent broadband sonar signal processing with the environmentally corrected matched filter
NASA Astrophysics Data System (ADS)
Camin, Henry John, III
The matched filter is the standard approach for coherently processing active sonar signals, where knowledge of the transmitted waveform is used in the detection and parameter estimation of received echoes. Matched filtering broadband signals provides higher levels of range resolution and reverberation noise suppression than can be realized through narrowband processing. Since theoretical processing gains are proportional to the signal bandwidth, it is typically desirable to utilize the widest band signals possible. However, as signal bandwidth increases, so do environmental effects that tend to decrease correlation between the received echo and the transmitted waveform. This is especially true for ultra wideband signals, where the bandwidth exceeds an octave or approximately 70% fractional bandwidth. This loss of coherence often results in processing gains and range resolution much lower than theoretically predicted. Wiener filtering, commonly used in image processing to improve distorted and noisy photos, is investigated in this dissertation as an approach to correct for these environmental effects. This improved signal processing, Environmentally Corrected Matched Filter (ECMF), first uses a Wiener filter to estimate the environmental transfer function and then again to correct the received signal using this estimate. This process can be viewed as a smarter inverse or whitening filter that adjusts behavior according to the signal to noise ratio across the spectrum. Though the ECMF is independent of bandwidth, it is expected that ultra wideband signals will see the largest improvement, since they tend to be more impacted by environmental effects. The development of the ECMF and demonstration of improved parameter estimation with its use are the primary emphases in this dissertation. Additionally, several new contributions to the field of sonar signal processing made in conjunction with the development of the ECMF are described. A new, nondimensional wideband ambiguity function is presented as a way to view the behavior of the matched filter with and without the decorrelating environmental effects; a new, integrated phase broadband angle estimation method is developed and compared to existing methods; and a new, asymptotic offset phase angle variance model is presented. Several data sets are used to demonstrate these new contributions. High fidelity Sonar Simulation Toolset (SST) synthetic data is used to characterize the theoretical performance. Two in-water data sets were used to verify assumptions that were made during the development of the ECMF. Finally, a newly collected in-air data set containing ultra wideband signals was used in lieu of a cost prohibitive underwater experiment to demonstrate the effectiveness of the ECMF at improving parameter estimates.
Single baseline GLONASS observations with VLBI: data processing and first results
NASA Astrophysics Data System (ADS)
Tornatore, V.; Haas, R.; Duev, D.; Pogrebenko, S.; Casey, S.; Molera Calvés, G.; Keimpema, A.
2011-07-01
Several tests to observe signals transmitted by GLONASS (GLObal NAvigation Satellite System) satellites have been performed using the geodetic VLBI (Very Long Baseline Interferometry) technique. The radio telescopes involved in these experiments were Medicina (Italy) and Onsala (Sweden), both equipped with L-band receivers. Observations at the stations were performed using the standard Mark4 VLBI data acquisition rack and Mark5A disk-based recorders. The goals of the observations were to develop and test the scheduling, signal acquisition and processing routines to verify the full tracking pipeline, foreseeing the cross-correlation of the recorded data on the baseline Onsala-Medicina. The natural radio source 3c286 was used as a calibrator before the starting of the satellite observation sessions. Delay models, including the tropospheric and ionospheric corrections, which are consistent for both far- and near-field sources are under development. Correlation of the calibrator signal has been performed using the DiFX software, while the satellite signals have been processed using the narrow band approach with the Metsaehovi software and analysed with a near-field delay model. Delay models both for the calibrator signals and the satellites signals, using the same geometrical, tropospheric and ionospheric models, are under investigation to make a correlation of the satellite signals possible.
Pump RIN-induced impairments in unrepeatered transmission systems using distributed Raman amplifier.
Cheng, Jingchi; Tang, Ming; Lau, Alan Pak Tao; Lu, Chao; Wang, Liang; Dong, Zhenhua; Bilal, Syed Muhammad; Fu, Songnian; Shum, Perry Ping; Liu, Deming
2015-05-04
High spectral efficiency modulation format based unrepeatered transmission systems using distributed Raman amplifier (DRA) have attracted much attention recently. To enhance the reach and optimize system performance, careful design of DRA is required based on the analysis of various types of impairments and their balance. In this paper, we study various pump RIN induced distortions on high spectral efficiency modulation formats. The vector theory of both 1st and higher-order stimulated Raman scattering (SRS) effect using Jones-matrix formalism is presented. The pump RIN will induce three types of distortion on high spectral efficiency signals: intensity noise stemming from SRS, phase noise stemming from cross phase modulation (XPM), and polarization crosstalk stemming from cross polarization modulation (XPolM). An analytical model for the statistical property of relative phase noise (RPN) in higher order DRA without dealing with complex vector theory is derived. The impact of pump RIN induced impairments are analyzed in polarization-multiplexed (PM)-QPSK and PM-16QAM-based unrepeatered systems simulations using 1st, 2nd and 3rd-order forward pumped Raman amplifier. It is shown that at realistic RIN levels, negligible impairments will be induced to PM-QPSK signals in 1st and 2nd order DRA, while non-negligible impairments will occur in 3rd order case. PM-16QAM signals suffer more penalties compared to PM-QPSK with the same on-off gain where both 2nd and 3rd order DRA will cause non-negligible performance degradations. We also investigate the performance of digital signal processing (DSP) algorithms to mitigate such impairments.
Research and design on orthogonal diffraction grating-based 3D nanometer displacement sensor
NASA Astrophysics Data System (ADS)
Liu, Baoshuai; Yuan, Yibao; Yin, Zhehao
2017-10-01
This study concerns an orthogonal diffraction grating-based nanometer displacement sensor. In this study, we performed calculation of displacements in the XYZ directions. In the optical measured path part, we used a two-dimensional orthogonal motion grating and a two-dimensional orthogonal reference grating with the pitch of 0.5um to measure the displacement of XYZ in three directions by detecting ±1st diffraction fringes. The self-collimated structure of the grating greatly extended the Z-axis range. We also simulated the optical path of the sensor with ZEMAX software and verified the feasibility of the scheme. For signal subdivision and processing, we combined large number counting (completed grating line) with small number counting (digital subdivision), realizing high multiples of subdivision of grating interference signals. We used PC to process the interference fringes and greatly improved the processing speed. In the scheme, the theoretical multiples of subdivision could reach 1024 with 10-bit AD conversion, but the actual multiples of subdivision was limited by the quality of the grating interference signals. So we introduced an orthogonal compensation circuit and a filter circuit to improve the signal quality.
Sparse signal representation and its applications in ultrasonic NDE.
Zhang, Guang-Ming; Zhang, Cheng-Zhong; Harvey, David M
2012-03-01
Many sparse signal representation (SSR) algorithms have been developed in the past decade. The advantages of SSR such as compact representations and super resolution lead to the state of the art performance of SSR for processing ultrasonic non-destructive evaluation (NDE) signals. Choosing a suitable SSR algorithm and designing an appropriate overcomplete dictionary is a key for success. After a brief review of sparse signal representation methods and the design of overcomplete dictionaries, this paper addresses the recent accomplishments of SSR for processing ultrasonic NDE signals. The advantages and limitations of SSR algorithms and various overcomplete dictionaries widely-used in ultrasonic NDE applications are explored in depth. Their performance improvement compared to conventional signal processing methods in many applications such as ultrasonic flaw detection and noise suppression, echo separation and echo estimation, and ultrasonic imaging is investigated. The challenging issues met in practical ultrasonic NDE applications for example the design of a good dictionary are discussed. Representative experimental results are presented for demonstration. Copyright © 2011 Elsevier B.V. All rights reserved.
Strategies for concurrent processing of complex algorithms in data driven architectures
NASA Technical Reports Server (NTRS)
Stoughton, John W.; Mielke, Roland R.; Som, Sukhamony
1990-01-01
The performance modeling and enhancement for periodic execution of large-grain, decision-free algorithms in data flow architectures is examined. Applications include real-time implementation of control and signal processing algorithms where performance is required to be highly predictable. The mapping of algorithms onto the specified class of data flow architectures is realized by a marked graph model called ATAMM (Algorithm To Architecture Mapping Model). Performance measures and bounds are established. Algorithm transformation techniques are identified for performance enhancement and reduction of resource (computing element) requirements. A systematic design procedure is described for generating operating conditions for predictable performance both with and without resource constraints. An ATAMM simulator is used to test and validate the performance prediction by the design procedure. Experiments on a three resource testbed provide verification of the ATAMM model and the design procedure.
Shuttle payload S-band communications study
NASA Technical Reports Server (NTRS)
Springett, J. C.
1979-01-01
The work to identify, evaluate, and make recommendations concerning the functions and interfaces of those orbiter avionic subsystems which are dedicated to, or play some part in, handling communication signals (telemetry and command) to/from payloads (spacecraft) that will be carried into orbit by the shuttle is reported. Some principal directions of the research are: (1) analysis of the ability of the various avionic equipment to interface with and appropriately process payload signals; (2) development of criteria which will foster equipment compatibility with diverse types of payloads and signals; (3) study of operational procedures, especially those affecting signal acquisition; (4) trade-off analysis for end-to-end data link performance optimization; (5) identification of possible hardware design weakness which might degrade signal processing performance.
A de-noising method using the improved wavelet threshold function based on noise variance estimation
NASA Astrophysics Data System (ADS)
Liu, Hui; Wang, Weida; Xiang, Changle; Han, Lijin; Nie, Haizhao
2018-01-01
The precise and efficient noise variance estimation is very important for the processing of all kinds of signals while using the wavelet transform to analyze signals and extract signal features. In view of the problem that the accuracy of traditional noise variance estimation is greatly affected by the fluctuation of noise values, this study puts forward the strategy of using the two-state Gaussian mixture model to classify the high-frequency wavelet coefficients in the minimum scale, which takes both the efficiency and accuracy into account. According to the noise variance estimation, a novel improved wavelet threshold function is proposed by combining the advantages of hard and soft threshold functions, and on the basis of the noise variance estimation algorithm and the improved wavelet threshold function, the research puts forth a novel wavelet threshold de-noising method. The method is tested and validated using random signals and bench test data of an electro-mechanical transmission system. The test results indicate that the wavelet threshold de-noising method based on the noise variance estimation shows preferable performance in processing the testing signals of the electro-mechanical transmission system: it can effectively eliminate the interference of transient signals including voltage, current, and oil pressure and maintain the dynamic characteristics of the signals favorably.
CO2 laser ranging systems study
NASA Technical Reports Server (NTRS)
Filippi, C. A.
1975-01-01
The conceptual design and error performance of a CO2 laser ranging system are analyzed. Ranging signal and subsystem processing alternatives are identified, and their comprehensive evaluation yields preferred candidate solutions which are analyzed to derive range and range rate error contributions. The performance results are presented in the form of extensive tables and figures which identify the ranging accuracy compromises as a function of the key system design parameters and subsystem performance indexes. The ranging errors obtained are noted to be within the high accuracy requirements of existing NASA/GSFC missions with a proper system design.
NASA Technical Reports Server (NTRS)
Powell, Wesley; Dabney, Philip; Hicks, Edward; Pinchinat, Maxime; Day, John H. (Technical Monitor)
2002-01-01
The Multi-KiloHertz Micro-Laser Altimeter (MMLA) is an aircraft based instrument developed by NASA Goddard Space Flight Center with several potential spaceflight applications. This presentation describes how reconfigurable computing technology was employed to perform MMLA signal extraction in real-time under realistic operating constraints. The MMLA is a "single-photon-counting" airborne laser altimeter that is used to measure land surface features such as topography and vegetation canopy height. This instrument has to date flown a number of times aboard the NASA P3 aircraft acquiring data at a number of sites in the Mid-Atlantic region. This instrument pulses a relatively low-powered laser at a very high rate (10 kHz) and then measures the time-of-flight of discrete returns from the target surface. The instrument then bins these measurements into a two-dimensional array (vertical height vs. horizontal ground track) and selects the most likely signal path through the array. Return data that does not correspond to the selected signal path are classified as noise returns and are then discarded. The MMLA signal extraction algorithm is very compute intensive in that a score must be computed for every possible path through the two dimensional array in order to select the most likely signal path. Given a typical array size with 50 x 6, up to 33 arrays must be processed per second. And for each of these arrays, roughly 12,000 individual paths must be scored. Furthermore, the number of paths increases exponentially with the horizontal size of the array, and linearly with the vertical size. Yet, increasing the horizontal and vertical sizes of the array offer science advantages such as improved range, resolution, and noise rejection. Due to the volume of return data and the compute intensive signal extraction algorithm, the existing PC-based MMLA data system has been unable to perform signal extraction in real-time unless the array is limited in size to one column, This limits the ability of the MMLA to operate in environments with sparse signal returns and a high number of noise return. However, under an IR&D project, an FPGA-based, reconfigurable computing data system has been developed that has been demonstrated to perform real-time signal extraction under realistic operating constraints. This reconfigurable data system is based on the commercially available Firebird Board from Annapolis Microsystems. This PCI board consists of a Xilinx Virtex 2000E FPGA along with 36 MB of SRAM arranged in five separately addressable banks. This board is housed in a rackmount PC with dual 850MHz Pentium processors running the Windows 2000 operating system. This data system performs all signal extraction in hardware on the Firebird, but also runs the existing "software based" signal extraction in tandem for comparison purposes. Using a relatively small amount of the Virtex XCV2000E resources, the reconfigurable data system has demonstrated to improve performance improvement over the existing software based data system by an order of magnitude. Performance could be further improved by employing parallelism. Ground testing and a preliminary engineering test flight aboard the NASA P3 has been performed, during which the reconfigurable data system has been demonstrated to match the results of the existing data system.
Independent component analysis algorithm FPGA design to perform real-time blind source separation
NASA Astrophysics Data System (ADS)
Meyer-Baese, Uwe; Odom, Crispin; Botella, Guillermo; Meyer-Baese, Anke
2015-05-01
The conditions that arise in the Cocktail Party Problem prevail across many fields creating a need for of Blind Source Separation. The need for BSS has become prevalent in several fields of work. These fields include array processing, communications, medical signal processing, and speech processing, wireless communication, audio, acoustics and biomedical engineering. The concept of the cocktail party problem and BSS led to the development of Independent Component Analysis (ICA) algorithms. ICA proves useful for applications needing real time signal processing. The goal of this research was to perform an extensive study on ability and efficiency of Independent Component Analysis algorithms to perform blind source separation on mixed signals in software and implementation in hardware with a Field Programmable Gate Array (FPGA). The Algebraic ICA (A-ICA), Fast ICA, and Equivariant Adaptive Separation via Independence (EASI) ICA were examined and compared. The best algorithm required the least complexity and fewest resources while effectively separating mixed sources. The best algorithm was the EASI algorithm. The EASI ICA was implemented on hardware with Field Programmable Gate Arrays (FPGA) to perform and analyze its performance in real time.
Time Reversal Acoustic Communication Using Filtered Multitone Modulation
Sun, Lin; Chen, Baowei; Li, Haisen; Zhou, Tian; Li, Ruo
2015-01-01
The multipath spread in underwater acoustic channels is severe and, therefore, when the symbol rate of the time reversal (TR) acoustic communication using single-carrier (SC) modulation is high, the large intersymbol interference (ISI) span caused by multipath reduces the performance of the TR process and needs to be removed using the long adaptive equalizer as the post-processor. In this paper, a TR acoustic communication method using filtered multitone (FMT) modulation is proposed in order to reduce the residual ISI in the processed signal using TR. In the proposed method, FMT modulation is exploited to modulate information symbols onto separate subcarriers with high spectral containment and TR technique, as well as adaptive equalization is adopted at the receiver to suppress ISI and noise. The performance of the proposed method is assessed through simulation and real data from a trial in an experimental pool. The proposed method was compared with the TR acoustic communication using SC modulation with the same spectral efficiency. Results demonstrate that the proposed method can improve the performance of the TR process and reduce the computational complexity of adaptive equalization for post-process. PMID:26393586
Time Reversal Acoustic Communication Using Filtered Multitone Modulation.
Sun, Lin; Chen, Baowei; Li, Haisen; Zhou, Tian; Li, Ruo
2015-09-17
The multipath spread in underwater acoustic channels is severe and, therefore, when the symbol rate of the time reversal (TR) acoustic communication using single-carrier (SC) modulation is high, the large intersymbol interference (ISI) span caused by multipath reduces the performance of the TR process and needs to be removed using the long adaptive equalizer as the post-processor. In this paper, a TR acoustic communication method using filtered multitone (FMT) modulation is proposed in order to reduce the residual ISI in the processed signal using TR. In the proposed method, FMT modulation is exploited to modulate information symbols onto separate subcarriers with high spectral containment and TR technique, as well as adaptive equalization is adopted at the receiver to suppress ISI and noise. The performance of the proposed method is assessed through simulation and real data from a trial in an experimental pool. The proposed method was compared with the TR acoustic communication using SC modulation with the same spectral efficiency. Results demonstrate that the proposed method can improve the performance of the TR process and reduce the computational complexity of adaptive equalization for post-process.
[Absorption spectrum of Quasi-continuous laser modulation demodulation method].
Shao, Xin; Liu, Fu-Gui; Du, Zhen-Hui; Wang, Wei
2014-05-01
A software phase-locked amplifier demodulation method is proposed in order to demodulate the second harmonic (2f) signal of quasi-continuous laser wavelength modulation spectroscopy (WMS) properly, based on the analysis of its signal characteristics. By judging the effectiveness of the measurement data, filter, phase-sensitive detection, digital filtering and other processing, the method can achieve the sensitive detection of quasi-continuous signal The method was verified by using carbon dioxide detection experiments. The WMS-2f signal obtained by the software phase-locked amplifier and the high-performance phase-locked amplifier (SR844) were compared simultaneously. The results show that the Allan variance of WMS-2f signal demodulated by the software phase-locked amplifier is one order of magnitude smaller than that demodulated by SR844, corresponding two order of magnitude lower of detection limit. And it is able to solve the unlocked problem caused by the small duty cycle of quasi-continuous modulation signal, with a small signal waveform distortion.
Behavioral and molecular studies of quantitative differences in hygienic behavior in honeybees.
Gempe, Tanja; Stach, Silke; Bienefeld, Kaspar; Otte, Marianne; Beye, Martin
2016-10-21
Hygienic behavior (HB) enables honeybees to tolerate parasites, including infection with the parasitic mite Varroa destructor, and it is a well-known example of a quantitative genetic trait. The understanding of the molecular processes underpinning the quantitative differences in this behavior remains limited. We performed gene expression studies in worker bees that displayed quantitative genetic differences in HB. We established a high and low genetic source of HB performance and studied the engagements into HB of single worker bees under the same environmental conditions. We found that the percentage of worker bees that engaged in a hygienic behavioral task tripled in the high versus low HB sources, thus suggesting that genetic differences may mediate differences in stimulated states to perform HB. We found 501 differently expressed genes (DEGs) in the brains of hygienic and non-hygienic performing workers in the high HB source bees, and 342 DEGs in the brains of hygienic performing worker bees, relative to the gene expression in non-hygienic worker bees from the low HB source group. "Cell surface receptor ligand signal transduction" in the high and "negative regulation of cell communication" in the low HB source were overrepresented molecular processes, suggesting that these molecular processes in the brain may play a role in the regulation of quantitative differences in HB. Moreover, only 21 HB-associated DEGs were common between the high and low HB sources. The better HB colony performance is primarily achieved by a high number of bees engaging in the hygienic tasks that associate with distinct molecular processes in the brain. We propose that different gene products and pathways may mediate the quantitative genetic differences of HB.
Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling.
Schmogrow, R; Meyer, M; Schindler, P C; Nebendahl, B; Dreschmann, M; Meyer, J; Josten, A; Hillerkuss, D; Ben-Ezra, S; Becker, J; Koos, C; Freude, W; Leuthold, J
2014-01-13
We demonstrate two efficient processing techniques for Nyquist signals, namely computation of signals using dynamic precision as well as arbitrary rational oversampling factors. With these techniques along with massively parallel processing it becomes possible to generate and receive high data rate Nyquist signals with flexible symbol rates and bandwidths, a feature which is highly desirable for novel flexgrid networks. We achieved maximum bit rates of 252 Gbit/s in real-time.
Superconducting Vacuum-Gap Crossovers for High Performance Microwave Applications
NASA Technical Reports Server (NTRS)
Denis, Kevin L.; Brown, Ari D.; Chang, Meng-Ping; Hu, Ron; U-Yen, Kongpop; Wollack, Edward J.
2016-01-01
The design and fabrication of low-loss wide-bandwidth superconducting vacuum-gap crossovers for high performance millimeter wave applications are described. In order to reduce ohmic and parasitic losses at millimeter wavelengths a vacuum gap is preferred relative to dielectric spacer. Here, vacuum-gap crossovers were realized by using a sacrificial polymer layer followed by niobium sputter deposition optimized for coating coverage over an underlying niobium signal layer. Both coplanar waveguide and microstrip crossover topologies have been explored in detail. The resulting fabrication process is compatible with a bulk micro-machining process for realizing waveguide coupled detectors, which includes sacrificial wax bonding, and wafer backside deep reactive ion etching for creation of leg isolated silicon membrane structures. Release of the vacuum gap structures along with the wax bonded wafer after DRIE is implemented in the same process step used to complete the detector fabrication. ?
Research for the jamming mechanism of high-frequency laser to the laser seeker
NASA Astrophysics Data System (ADS)
Zheng, Xingyuan; Zhang, Haiyang; Wang, Yunping; Feng, Shuang; Zhao, Changming
2013-08-01
High-frequency laser will be able to enter the enemy laser signal processing systems without encoded identification and a copy. That makes it one of the research directions of new interference sources. In order to study the interference mechanism of high-frequency laser to laser guided weapons. According to the principle of high-frequency laser interference, a series of related theoretical models such as a semi-active laser seeker coded identification model, a time door model, multi-signal processing model and a interference signal modulation processing model are established. Then seeker interfere with effective 3σ criterion is proposed. Based on this, the study of the effect of multi-source interference and signal characteristics of the effect of high repetition frequency laser interference are key research. According to the simulation system testing, the results show that the multi-source interference and interference signal frequency modulation can effectively enhance the interference effect. While the interference effect of the interference signal amplitude modulation is not obvious. The research results will provide the evaluation of high-frequency laser interference effect and provide theoretical references for high-frequency laser interference system application.
Weak signal amplification and detection by higher-order sensory neurons.
Jung, Sarah N; Longtin, Andre; Maler, Leonard
2016-04-01
Sensory systems must extract behaviorally relevant information and therefore often exhibit a very high sensitivity. How the nervous system reaches such high sensitivity levels is an outstanding question in neuroscience. Weakly electric fish (Apteronotus leptorhynchus/albifrons) are an excellent model system to address this question because detailed background knowledge is available regarding their behavioral performance and its underlying neuronal substrate. Apteronotus use their electrosense to detect prey objects. Therefore, they must be able to detect electrical signals as low as 1 μV while using a sensory integration time of <200 ms. How these very weak signals are extracted and amplified by the nervous system is not yet understood. We studied the responses of cells in the early sensory processing areas, namely, the electroreceptor afferents (EAs) and pyramidal cells (PCs) of the electrosensory lobe (ELL), the first-order electrosensory processing area. In agreement with previous work we found that EAs cannot encode very weak signals with a spike count code. However, PCs can encode prey mimic signals by their firing rate, revealing a huge signal amplification between EAs and PCs and also suggesting differences in their stimulus encoding properties. Using a simple leaky integrate-and-fire (LIF) model we predict that the target neurons of PCs in the midbrain torus semicircularis (TS) are able to detect very weak signals. In particular, TS neurons could do so by assuming biologically plausible convergence rates as well as very simple decoding strategies such as temporal integration, threshold crossing, and combining the inputs of PCs. Copyright © 2016 the American Physiological Society.
Signal and image processing algorithm performance in a virtual and elastic computing environment
NASA Astrophysics Data System (ADS)
Bennett, Kelly W.; Robertson, James
2013-05-01
The U.S. Army Research Laboratory (ARL) supports the development of classification, detection, tracking, and localization algorithms using multiple sensing modalities including acoustic, seismic, E-field, magnetic field, PIR, and visual and IR imaging. Multimodal sensors collect large amounts of data in support of algorithm development. The resulting large amount of data, and their associated high-performance computing needs, increases and challenges existing computing infrastructures. Purchasing computer power as a commodity using a Cloud service offers low-cost, pay-as-you-go pricing models, scalability, and elasticity that may provide solutions to develop and optimize algorithms without having to procure additional hardware and resources. This paper provides a detailed look at using a commercial cloud service provider, such as Amazon Web Services (AWS), to develop and deploy simple signal and image processing algorithms in a cloud and run the algorithms on a large set of data archived in the ARL Multimodal Signatures Database (MMSDB). Analytical results will provide performance comparisons with existing infrastructure. A discussion on using cloud computing with government data will discuss best security practices that exist within cloud services, such as AWS.
Punishment sensitivity modulates the processing of negative feedback but not error-induced learning.
Unger, Kerstin; Heintz, Sonja; Kray, Jutta
2012-01-01
Accumulating evidence suggests that individual differences in punishment and reward sensitivity are associated with functional alterations in neural systems underlying error and feedback processing. In particular, individuals highly sensitive to punishment have been found to be characterized by larger mediofrontal error signals as reflected in the error negativity/error-related negativity (Ne/ERN) and the feedback-related negativity (FRN). By contrast, reward sensitivity has been shown to relate to the error positivity (Pe). Given that Ne/ERN, FRN, and Pe have been functionally linked to flexible behavioral adaptation, the aim of the present research was to examine how these electrophysiological reflections of error and feedback processing vary as a function of punishment and reward sensitivity during reinforcement learning. We applied a probabilistic learning task that involved three different conditions of feedback validity (100%, 80%, and 50%). In contrast to prior studies using response competition tasks, we did not find reliable correlations between punishment sensitivity and the Ne/ERN. Instead, higher punishment sensitivity predicted larger FRN amplitudes, irrespective of feedback validity. Moreover, higher reward sensitivity was associated with a larger Pe. However, only reward sensitivity was related to better overall learning performance and higher post-error accuracy, whereas highly punishment sensitive participants showed impaired learning performance, suggesting that larger negative feedback-related error signals were not beneficial for learning or even reflected maladaptive information processing in these individuals. Thus, although our findings indicate that individual differences in reward and punishment sensitivity are related to electrophysiological correlates of error and feedback processing, we found less evidence for influences of these personality characteristics on the relation between performance monitoring and feedback-based learning.
Efficient heart beat detection using embedded system electronics
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Oh, Sechang; Varadan, Vijay K.
2014-04-01
The present day bio-technical field concentrates on developing various types of innovative ambulatory and wearable devices to monitor several bio-physical, physio-pathological, bio-electrical and bio-potential factors to assess a human body's health condition without intruding quotidian activities. One of the most important aspects of this evolving technology is monitoring heart beat rate and electrocardiogram (ECG) from which many other subsidiary results can be derived. Conventionally, the devices and systems consumes a lot of power since the acquired signals are always processed on the receiver end. Because of this back end processing, the unprocessed raw data is transmitted resulting in usage of more power, memory and processing time. This paper proposes an innovative technique where the acquired signals are processed by a microcontroller in the front end of the module and just the processed signal is then transmitted wirelessly to the display unit. Therefore, power consumption is considerably reduced and clearer data analysis is performed within the module. This also avoids the need for the user to be educated about usage of the device and signal/system analysis, since only the number of heart beats will displayed at the user end. Additionally, the proposed concept also eradicates the other disadvantages like obtrusiveness, high power consumption and size. To demonstrate the above said factors, a commercial controller board was used to extend the monitoring method by using the saved ECG data from a computer.
Research on signal processing of shock absorber test bench based on zero-phase filter
NASA Astrophysics Data System (ADS)
Wu, Yi; Ding, Guoqing
2017-10-01
The quality of force-displacement diagram is significant to help evaluate the performance of shock absorbers. Damping force sampling data is often interfered by Gauss white noise, 50Hz power interference and its harmonic wave during the process of testing; data de-noising has become the core problem of drawing true, accurate and real-time indicator diagram. The noise and interference can be filtered out through generic IIR or FIR low-pass filter, but addition phase lag of useful signal will be caused due to the inherent attribute of IIR and FIR filter. The paper uses FRR method to realize zero-phase digital filtering in a software way based on mutual cancellation of phase lag between the forward and reverse sequences after through the filter. High-frequency interference above 40Hz are filtered out completely and noise attenuation is more than -40dB, with no additional phase lag. The method is able to restore the true signal as far as possible. Theoretical simulation and practical test indicate high-frequency noises have been effectively inhibited in multiple typical speed cases, signal-to-noise ratio being greatly improved; the curve in indicator diagram has better smoothness and fidelity. The FRR algorithm has low computational complexity, fast running time, and can be easily transplanted in multiple platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gongzhang, R.; Xiao, B.; Lardner, T.
2014-02-18
This paper presents a robust frequency diversity based algorithm for clutter reduction in ultrasonic A-scan waveforms. The performance of conventional spectral-temporal techniques like Split Spectrum Processing (SSP) is highly dependent on the parameter selection, especially when the signal to noise ratio (SNR) is low. Although spatial beamforming offers noise reduction with less sensitivity to parameter variation, phased array techniques are not always available. The proposed algorithm first selects an ascending series of frequency bands. A signal is reconstructed for each selected band in which a defect is present when all frequency components are in uniform sign. Combining all reconstructed signalsmore » through averaging gives a probability profile of potential defect position. To facilitate data collection and validate the proposed algorithm, Full Matrix Capture is applied on the austenitic steel and high nickel alloy (HNA) samples with 5MHz transducer arrays. When processing A-scan signals with unrefined parameters, the proposed algorithm enhances SNR by 20dB for both samples and consequently, defects are more visible in B-scan images created from the large amount of A-scan traces. Importantly, the proposed algorithm is considered robust, while SSP is shown to fail on the austenitic steel data and achieves less SNR enhancement on the HNA data.« less
Filter design for cancellation of baseline-fluctuation in needle EMG recordings.
Rodríguez-Carreño, I; Malanda-Trigueros, A; Gila-Useros, L; Navallas-Irujo, J; Rodríguez-Falces, J
2006-01-01
Appropriate cancellation of the baseline fluctuation (BLF) is an important issue when recording EMG signals as it may degrade signal quality and distort qualitative and quantitative analysis. We present a novel filter-design approach for automatic cancellation of the BLF based on several signal processing techniques used sequentially. The methodology is to estimate the spectral content of the BLF, and then to use this estimation to design a high-pass FIR filter that cancel the BLF present in the signal. Two merit figures are devised for measuring the degree of BLF present in an EMG record. These figures are used to compare our method with the conventional approach, which naively considers the baseline course to be of constant (without any fluctuation) potential shift. Applications of the technique on real and simulated EMG signals show the superior performance of our approach in terms of both visual inspection and the merit figures.
Acousto-optic time- and space-integrating spotlight-mode SAR processor
NASA Astrophysics Data System (ADS)
Haney, Michael W.; Levy, James J.; Michael, Robert R., Jr.
1993-09-01
The technical approach and recent experimental results for the acousto-optic time- and space- integrating real-time SAR image formation processor program are reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results include a demonstration of the processor's ability to perform high-resolution spotlight-mode SAR imaging by simultaneously compensating for range migration and range/azimuth coupling in the analog optical domain, thereby avoiding a highly power-consuming digital interpolation or reformatting operation usually required in all-electronic approaches.
A Multi-Method Approach for Proteomic Network Inference in 11 Human Cancers.
Şenbabaoğlu, Yasin; Sümer, Selçuk Onur; Sánchez-Vega, Francisco; Bemis, Debra; Ciriello, Giovanni; Schultz, Nikolaus; Sander, Chris
2016-02-01
Protein expression and post-translational modification levels are tightly regulated in neoplastic cells to maintain cellular processes known as 'cancer hallmarks'. The first Pan-Cancer initiative of The Cancer Genome Atlas (TCGA) Research Network has aggregated protein expression profiles for 3,467 patient samples from 11 tumor types using the antibody based reverse phase protein array (RPPA) technology. The resultant proteomic data can be utilized to computationally infer protein-protein interaction (PPI) networks and to study the commonalities and differences across tumor types. In this study, we compare the performance of 13 established network inference methods in their capacity to retrieve the curated Pathway Commons interactions from RPPA data. We observe that no single method has the best performance in all tumor types, but a group of six methods, including diverse techniques such as correlation, mutual information, and regression, consistently rank highly among the tested methods. We utilize the high performing methods to obtain a consensus network; and identify four robust and densely connected modules that reveal biological processes as well as suggest antibody-related technical biases. Mapping the consensus network interactions to Reactome gene lists confirms the pan-cancer importance of signal transduction pathways, innate and adaptive immune signaling, cell cycle, metabolism, and DNA repair; and also suggests several biological processes that may be specific to a subset of tumor types. Our results illustrate the utility of the RPPA platform as a tool to study proteomic networks in cancer.
Influence of signal processing strategy in auditory abilities.
Melo, Tatiana Mendes de; Bevilacqua, Maria Cecília; Costa, Orozimbo Alves; Moret, Adriane Lima Mortari
2013-01-01
The signal processing strategy is a parameter that may influence the auditory performance of cochlear implant and is important to optimize this parameter to provide better speech perception, especially in difficult listening situations. To evaluate the individual's auditory performance using two different signal processing strategy. Prospective study with 11 prelingually deafened children with open-set speech recognition. A within-subjects design was used to compare performance with standard HiRes and HiRes 120 in three different moments. During test sessions, subject's performance was evaluated by warble-tone sound-field thresholds, speech perception evaluation, in quiet and in noise. In the silence, children S1, S4, S5, S7 showed better performance with the HiRes 120 strategy and children S2, S9, S11 showed better performance with the HiRes strategy. In the noise was also observed that some children performed better using the HiRes 120 strategy and other with HiRes. Not all children presented the same pattern of response to the different strategies used in this study, which reinforces the need to look at optimizing cochlear implant clinical programming.
Sun, Xishan; Lan, Allan K.; Bircher, Chad; Deng, Zhi; Liu, Yinong; Shao, Yiping
2011-01-01
A new signal processing method for PET application has been developed, with discrete circuit components to measure energy and timing of a gamma interaction based solely on digital timing processing without using an amplitude-to-digital convertor (ADC) or a constant fraction discriminator (CFD). A single channel discrete component time-based readout (TBR) circuit was implemented in a PC board. Initial circuit functionality and performance evaluations have been conducted. Accuracy and linearity of signal amplitude measurement were excellent, as measured with test pulses. The measured timing accuracy from test pulses reached to less than 300 ps, a value limited mainly by the timing jitter of the prototype electronics circuit. Both suitable energy and coincidence timing resolutions (~18% and ~1.0 ns) have been achieved with 3 × 3 × 20 mm3 LYSO scintillator and photomultiplier tube-based detectors. With its relatively simple circuit and low cost, TBR is expected to be a suitable front-end signal readout electronics for compact PET or other radiation detectors requiring the reading of a large number of detector channels and demanding high performance for energy and timing measurement. PMID:21743761
Rotating permanent magnet excitation for blood flow measurement.
Nair, Sarath S; Vinodkumar, V; Sreedevi, V; Nagesh, D S
2015-11-01
A compact, portable and improved blood flow measurement system for an extracorporeal circuit having a rotating permanent magnetic excitation scheme is described in this paper. The system consists of a set of permanent magnets rotating near blood or any conductive fluid to create high-intensity alternating magnetic field in it and inducing a sinusoidal varying voltage across the column of fluid. The induced voltage signal is acquired, conditioned and processed to determine its flow rate. Performance analysis shows that a sensitivity of more than 250 mV/lpm can be obtained, which is more than five times higher than conventional flow measurement systems. Choice of rotating permanent magnet instead of an electromagnetic core generates alternate magnetic field of smooth sinusoidal nature which in turn reduces switching and interference noises. These results in reduction in complex electronic circuitry required for processing the signal to a great extent and enable the flow measuring device to be much less costlier, portable and light weight. The signal remains steady even with changes in environmental conditions and has an accuracy of greater than 95%. This paper also describes the construction details of the prototype, the factors affecting sensitivity and detailed performance analysis at various operating conditions.
High-Speed Imaging Optical Pyrometry for Study of Boron Nitride Nanotube Generation
NASA Technical Reports Server (NTRS)
Inman, Jennifer A.; Danehy, Paul M.; Jones, Stephen B.; Lee, Joseph W.
2014-01-01
A high-speed imaging optical pyrometry system is designed for making in-situ measurements of boron temperature during the boron nitride nanotube synthesis process. Spectrometer measurements show molten boron emission to be essentially graybody in nature, lacking spectral emission fine structure over the visible range of the electromagnetic spectrum. Camera calibration experiments are performed and compared with theoretical calculations to quantitatively establish the relationship between observed signal intensity and temperature. The one-color pyrometry technique described herein involves measuring temperature based upon the absolute signal intensity observed through a narrowband spectral filter, while the two-color technique uses the ratio of the signals through two spectrally separated filters. The present study calibrated both the one- and two-color techniques at temperatures between 1,173 K and 1,591 K using a pco.dimax HD CMOS-based camera along with three such filters having transmission peaks near 550 nm, 632.8 nm, and 800 nm.
Implication of high dynamic range and wide color gamut content distribution
NASA Astrophysics Data System (ADS)
Lu, Taoran; Pu, Fangjun; Yin, Peng; Chen, Tao; Husak, Walt
2015-09-01
High Dynamic Range (HDR) and Wider Color Gamut (WCG) content represents a greater range of luminance levels and a more complete reproduction of colors found in real-world scenes. The current video distribution environments deliver Standard Dynamic Range (SDR) signal. Therefore, there might be some significant implication on today's end-to-end ecosystem from content creation to distribution and finally to consumption. For SDR content, the common practice is to apply compression on Y'CbCr 4:2:0 using gamma transfer function and non-constant luminance 4:2:0 chroma subsampling. For HDR and WCG content, it is desirable to examine if such signal format still works well for compression, and it is interesting to know if the overall system performance can be further improved by exploring different signal formats and processing workflows. In this paper, we will provide some of our insight into those problems.
First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals
NASA Astrophysics Data System (ADS)
Li, Weiqiang; Cardellach, Estel; Fabra, Fran; Rius, Antonio; Ribó, Serni; Martín-Neira, Manuel
2017-08-01
A track of sea ice reflected Global Navigation Satellite System (GNSS) signal collected by the TechDemoSat-1 mission is processed to perform phase altimetry over sea ice. High-precision carrier phase measurements are extracted from coherent GNSS reflections at a high angle of elevation (>57°). The altimetric results show good consistency with a mean sea surface (MSS) model, and the root-mean-square difference is 4.7 cm with an along-track sampling distance of ˜140 m and a spatial resolution of ˜400 m. The difference observed between the altimetric results and the MSS shows good correlation with the colocated sea ice thickness data from Soil Moisture and Ocean Salinity. This is consistent with the reflecting surface aligned with the bottom of the ice-water interface, due to the penetration of the GNSS signal into the sea ice. Therefore, these high-precision altimetric results have potential to be used for determination of sea ice thickness.
ERP correlates of error processing during performance on the Halstead Category Test.
Santos, I M; Teixeira, A R; Tomé, A M; Pereira, A T; Rodrigues, P; Vagos, P; Costa, J; Carrito, M L; Oliveira, B; DeFilippis, N A; Silva, C F
2016-08-01
The Halstead Category Test (HCT) is a neuropsychological test that measures a person's ability to formulate and apply abstract principles. Performance must be adjusted based on feedback after each trial and errors are common until the underlying rules are discovered. Event-related potential (ERP) studies associated with the HCT are lacking. This paper demonstrates the use of a methodology inspired on Singular Spectrum Analysis (SSA) applied to EEG signals, to remove high amplitude ocular and movement artifacts during performance on the test. This filtering technique introduces no phase or latency distortions, with minimum loss of relevant EEG information. Importantly, the test was applied in its original clinical format, without introducing adaptations to ERP recordings. After signal treatment, the feedback-related negativity (FRN) wave, which is related to error-processing, was identified. This component peaked around 250ms, after feedback, in fronto-central electrodes. As expected, errors elicited more negative amplitudes than correct responses. Results are discussed in terms of the increased clinical potential that coupling ERP information with behavioral performance data can bring to the specificity of the HCT in diagnosing different types of impairment in frontal brain function. Copyright © 2016. Published by Elsevier B.V.
Materials-Process Interactions in Ternary Alloy Semiconductors.
1984-08-01
high, the surface potential can be * modulated . PECVD SiO. appears to be a viable candidate as a gate dielectric for * Irf ,fO-4A)s MISFETs...it is desirable to integrate the detectors with circuits capable of performing signal processing functions. These circuits can either be fabricated in...to be a major problem in In0. 5 3Ga 0.* 47 s. 25 S. . . . . 13821 -1 R I (a) CROSS SECTION KEYBOARD 210M ANNEALING CHAMBER GATE TRIGG TRIAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, K; Lu, Z; MacMahon, H
Purpose: To investigate the effect of varying system image processing parameters on lung nodule detectability in digital radiography. Methods: An anthropomorphic chest phantom was imaged in the posterior-anterior position using a GE Discovery XR656 digital radiography system. To simulate lung nodules, a polystyrene board with 6.35mm diameter PMMA spheres was placed adjacent to the phantom (into the x-ray path). Due to magnification, the projected simulated nodules had a diameter in the radiographs of approximately 7.5 mm. The images were processed using one of GE’s default chest settings (Factory3) and reprocessed by varying the “Edge” and “Tissue Contrast” processing parameters, whichmore » were the two user-configurable parameters for a single edge and contrast enhancement algorithm. For each parameter setting, the nodule signals were calculated by subtracting the chest-only image from the image with simulated nodules. Twenty nodule signals were averaged, Gaussian filtered, and radially averaged in order to generate an approximately noiseless signal. For each processing parameter setting, this noise-free signal and 180 background samples from across the lung were used to estimate ideal observer performance in a signal-known-exactly detection task. Performance was estimated using a channelized Hotelling observer with 10 Laguerre-Gauss channel functions. Results: The “Edge” and “Tissue Contrast” parameters each had an effect on the detectability as calculated by the model observer. The CHO-estimated signal detectability ranged from 2.36 to 2.93 and was highest for “Edge” = 4 and “Tissue Contrast” = −0.15. In general, detectability tended to decrease as “Edge” was increased and as “Tissue Contrast” was increased. A human observer study should be performed to validate the relation to human detection performance. Conclusion: Image processing parameters can affect lung nodule detection performance in radiography. While validation with a human observer study is needed, model observer detectability for common tasks could provide a means for optimizing image processing parameters.« less
The effect of hearing aid technologies on listening in an automobile.
Wu, Yu-Hsiang; Stangl, Elizabeth; Bentler, Ruth A; Stanziola, Rachel W
2013-06-01
Communication while traveling in an automobile often is very difficult for hearing aid users. This is because the automobile/road noise level is usually high, and listeners/drivers often do not have access to visual cues. Since the talker of interest usually is not located in front of the listener/driver, conventional directional processing that places the directivity beam toward the listener's front may not be helpful and, in fact, could have a negative impact on speech recognition (when compared to omnidirectional processing). Recently, technologies have become available in commercial hearing aids that are designed to improve speech recognition and/or listening effort in noisy conditions where talkers are located behind or beside the listener. These technologies include (1) a directional microphone system that uses a backward-facing directivity pattern (Back-DIR processing), (2) a technology that transmits audio signals from the ear with the better signal-to-noise ratio (SNR) to the ear with the poorer SNR (Side-Transmission processing), and (3) a signal processing scheme that suppresses the noise at the ear with the poorer SNR (Side-Suppression processing). The purpose of the current study was to determine the effect of (1) conventional directional microphones and (2) newer signal processing schemes (Back-DIR, Side-Transmission, and Side-Suppression) on listener's speech recognition performance and preference for communication in a traveling automobile. A single-blinded, repeated-measures design was used. Twenty-five adults with bilateral symmetrical sensorineural hearing loss aged 44 through 84 yr participated in the study. The automobile/road noise and sentences of the Connected Speech Test (CST) were recorded through hearing aids in a standard van moving at a speed of 70 mph on a paved highway. The hearing aids were programmed to omnidirectional microphone, conventional adaptive directional microphone, and the three newer schemes. CST sentences were presented from the side and back of the hearing aids, which were placed on the ears of a manikin. The recorded stimuli were presented to listeners via earphones in a sound-treated booth to assess speech recognition performance and preference with each programmed condition. Compared to omnidirectional microphones, conventional adaptive directional processing had a detrimental effect on speech recognition when speech was presented from the back or side of the listener. Back-DIR and Side-Transmission processing improved speech recognition performance (relative to both omnidirectional and adaptive directional processing) when speech was from the back and side, respectively. The performance with Side-Suppression processing was better than with adaptive directional processing when speech was from the side. The participants' preferences for a given processing scheme were generally consistent with speech recognition results. The finding that performance with adaptive directional processing was poorer than with omnidirectional microphones demonstrates the importance of selecting the correct microphone technology for different listening situations. The results also suggest the feasibility of using hearing aid technologies to provide a better listening experience for hearing aid users in automobiles. American Academy of Audiology.
IoGET: Internet of Geophysical and Environmental Things
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudunuru, Maruti Kumar
The objective of this project is to provide novel and fast reduced-order models for onboard computation at sensor nodes for real-time analysis. The approach will require that LANL perform high-fidelity numerical simulations, construct simple reduced-order models (ROMs) using machine learning and signal processing algorithms, and use real-time data analysis for ROMs and compressive sensing at sensor nodes.
Information efficiency in visual communication
NASA Astrophysics Data System (ADS)
Alter-Gartenberg, Rachel; Rahman, Zia-ur
1993-08-01
This paper evaluates the quantization process in the context of the end-to-end performance of the visual-communication channel. Results show that the trade-off between data transmission and visual quality revolves around the information in the acquired signal, not around its energy. Improved information efficiency is gained by frequency dependent quantization that maintains the information capacity of the channel and reduces the entropy of the encoded signal. Restorations with energy bit-allocation lose both in sharpness and clarity relative to restorations with information bit-allocation. Thus, quantization with information bit-allocation is preferred for high information efficiency and visual quality in optimized visual communication.
Information efficiency in visual communication
NASA Technical Reports Server (NTRS)
Alter-Gartenberg, Rachel; Rahman, Zia-Ur
1993-01-01
This paper evaluates the quantization process in the context of the end-to-end performance of the visual-communication channel. Results show that the trade-off between data transmission and visual quality revolves around the information in the acquired signal, not around its energy. Improved information efficiency is gained by frequency dependent quantization that maintains the information capacity of the channel and reduces the entropy of the encoded signal. Restorations with energy bit-allocation lose both in sharpness and clarity relative to restorations with information bit-allocation. Thus, quantization with information bit-allocation is preferred for high information efficiency and visual quality in optimized visual communication.
Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes
NASA Astrophysics Data System (ADS)
O'Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul
2016-08-01
Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact. This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface.
Fundamental performance differences between CMOS and CCD imagers: part III
NASA Astrophysics Data System (ADS)
Janesick, James; Pinter, Jeff; Potter, Robert; Elliott, Tom; Andrews, James; Tower, John; Cheng, John; Bishop, Jeanne
2009-08-01
This paper is a status report on recent scientific CMOS imager developments since when previous publications were written. Focus today is being given on CMOS design and process optimization because fundamental problems affecting performance are now reasonably well understood. Topics found in this paper include discussions on a low cost custom scientific CMOS fabrication approach, substrate bias for deep depletion imagers, near IR and x-ray point-spread performance, custom fabricated high resisitivity epitaxial and SOI silicon wafers for backside illuminated imagers, buried channel MOSFETs for ultra low noise performance, 1 e- charge transfer imagers, high speed transfer pixels, RTS/ flicker noise versus MOSFET geometry, pixel offset and gain non uniformity measurements, high S/N dCDS/aCDS signal processors, pixel thermal dark current sources, radiation damage topics, CCDs fabricated in CMOS and future large CMOS imagers planned at Sarnoff.
High pressure liquid level monitor
Bean, Vern E.; Long, Frederick G.
1984-01-01
A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.
NULL Convention Floating Point Multiplier
Ramachandran, Seshasayanan
2015-01-01
Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation. PMID:25879069
NULL convention floating point multiplier.
Albert, Anitha Juliette; Ramachandran, Seshasayanan
2015-01-01
Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation.
Fibre optic connectors with high-return-loss performance
NASA Astrophysics Data System (ADS)
Knott, Michael P.; Johnson, R.; Cooke, K.; Longhurst, P. C.
1990-09-01
This paper describes the development of a single mode fibre optic connector with high return loss performance without the use of index matching. Partial reflection of incident light at a fibre optic connector interface is a recognised problem where the result can be increased noise and waveform distortion. This is particularly important for video transmission in subscriber networks which requires a high signal to noise ratio. A number of methods can be used to improve the return loss. The method described here uses a process which angles the connector endfaces. Measurements show typical return losses of -55dB can be achieved for an end angle of 6 degrees. Insertion loss results are also presented.
2009-04-18
intake and sophisticated signal processing of electroencephalographic (EEG), electrooculographic ( EOG ), electrocardiographic (ECG), and...electroencephalographic (EEG), electrooculographic ( EOG ), electrocardiographic (ECG), and electromyographic (EMG) physiological signals . It also has markedly...ambulatory physiological acquisition and quantitative signal processing; (2) Brain Amp MR Plus 32 and BrainVision Recorder Professional Software Package for
Biomolecular logic systems: applications to biosensors and bioactuators
NASA Astrophysics Data System (ADS)
Katz, Evgeny
2014-05-01
The paper presents an overview of recent advances in biosensors and bioactuators based on the biocomputing concept. Novel biosensors digitally process multiple biochemical signals through Boolean logic networks of coupled biomolecular reactions and produce output in the form of YES/NO response. Compared to traditional single-analyte sensing devices, biocomputing approach enables a high-fidelity multi-analyte biosensing, particularly beneficial for biomedical applications. Multi-signal digital biosensors thus promise advances in rapid diagnosis and treatment of diseases by processing complex patterns of physiological biomarkers. Specifically, they can provide timely detection and alert to medical emergencies, along with an immediate therapeutic intervention. Application of the biocomputing concept has been successfully demonstrated for systems performing logic analysis of biomarkers corresponding to different injuries, particularly exemplified for liver injury. Wide-ranging applications of multi-analyte digital biosensors in medicine, environmental monitoring and homeland security are anticipated. "Smart" bioactuators, for example for signal-triggered drug release, were designed by interfacing switchable electrodes and biocomputing systems. Integration of novel biosensing and bioactuating systems with the biomolecular information processing systems keeps promise for further scientific advances and numerous practical applications.
Chang, Hing-Chiu; Bilgin, Ali; Bernstein, Adam; Trouard, Theodore P.
2018-01-01
Over the past several years, significant efforts have been made to improve the spatial resolution of diffusion-weighted imaging (DWI), aiming at better detecting subtle lesions and more reliably resolving white-matter fiber tracts. A major concern with high-resolution DWI is the limited signal-to-noise ratio (SNR), which may significantly offset the advantages of high spatial resolution. Although the SNR of DWI data can be improved by denoising in post-processing, existing denoising procedures may potentially reduce the anatomic resolvability of high-resolution imaging data. Additionally, non-Gaussian noise induced signal bias in low-SNR DWI data may not always be corrected with existing denoising approaches. Here we report an improved denoising procedure, termed diffusion-matched principal component analysis (DM-PCA), which comprises 1) identifying a group of (not necessarily neighboring) voxels that demonstrate very similar magnitude signal variation patterns along the diffusion dimension, 2) correcting low-frequency phase variations in complex-valued DWI data, 3) performing PCA along the diffusion dimension for real- and imaginary-components (in two separate channels) of phase-corrected DWI voxels with matched diffusion properties, 4) suppressing the noisy PCA components in real- and imaginary-components, separately, of phase-corrected DWI data, and 5) combining real- and imaginary-components of denoised DWI data. Our data show that the new two-channel (i.e., for real- and imaginary-components) DM-PCA denoising procedure performs reliably without noticeably compromising anatomic resolvability. Non-Gaussian noise induced signal bias could also be reduced with the new denoising method. The DM-PCA based denoising procedure should prove highly valuable for high-resolution DWI studies in research and clinical uses. PMID:29694400
Development of performance criteria for advanced Viking seismic experiments
NASA Technical Reports Server (NTRS)
1972-01-01
The characteristics and requirements of the seismic instrument for mapping the internal structure of the planet Mars are briefly described. The types of signals expected to exist are microseismic background generated by wind and pressure variations and thermal effects, disturbances of or in the landed vehicle, signals caused by faulting and volcanic activity, and signals due to meteoritic impacts. The advanced instrument package should include a short-period vertical component system, a long-period or wide-band 3-component system, a high frequency vertical component system, and a system for detection and rejection of lander noises. The Viking '75, Surveyor, and Apollo systems are briefly described as potential instruments to be considered for modification. Data processing and control systems are also summarized.
Communication system with adaptive noise suppression
NASA Technical Reports Server (NTRS)
Kozel, David (Inventor); Devault, James A. (Inventor); Birr, Richard B. (Inventor)
2007-01-01
A signal-to-noise ratio dependent adaptive spectral subtraction process eliminates noise from noise-corrupted speech signals. The process first pre-emphasizes the frequency components of the input sound signal which contain the consonant information in human speech. Next, a signal-to-noise ratio is determined and a spectral subtraction proportion adjusted appropriately. After spectral subtraction, low amplitude signals can be squelched. A single microphone is used to obtain both the noise-corrupted speech and the average noise estimate. This is done by determining if the frame of data being sampled is a voiced or unvoiced frame. During unvoiced frames an estimate of the noise is obtained. A running average of the noise is used to approximate the expected value of the noise. Spectral subtraction may be performed on a composite noise-corrupted signal, or upon individual sub-bands of the noise-corrupted signal. Pre-averaging of the input signal's magnitude spectrum over multiple time frames may be performed to reduce musical noise.
A new OTDR based on probe frequency multiplexing
NASA Astrophysics Data System (ADS)
Lu, Lidong; Liang, Yun; Li, Binglin; Guo, Jinghong; Zhang, Xuping
2013-12-01
Two signal multiplexing methods are proposed and experimentally demonstrated in optical time domain reflectometry (OTDR) for fault location of optical fiber transmission line to obtain high measurement efficiency. Probe signal multiplexing is individually obtained by phase modulation for generation of multi-frequency and time sequential frequency probe pulses. The backscattered Rayleigh light of the multiplexing probe signals is transferred to corresponding heterodyne intermediate frequency (IF) through heterodyning with the single frequency local oscillator (LO). Then the IFs are simultaneously acquired by use of a data acquisition card (DAQ) with sampling rate of 100Msps, and the obtained data are processed by digital band pass filtering (BPF), digital down conversion (DDC) and digital low pass filtering (BPF) procedure. For each probe frequency of the detected signals, the extraction of the time domain reflecting signal power is performed by parallel computing method. For a comprehensive performance comparison with conventional coherent OTDR on the probe frequency multiplexing methods, the potential for enhancement of dynamic range, spatial resolution and measurement time are analyzed and discussed. Experimental results show that by use of the probe frequency multiplexing method, the measurement efficiency of coherent OTDR can be enhanced by nearly 40 times.
Improvement in detection of small wildfires
NASA Astrophysics Data System (ADS)
Sleigh, William J.
1991-12-01
Detecting and imaging small wildfires with an Airborne Scanner is done against generally high background levels. The Airborne Scanner System used is a two-channel thermal IR scanner, with one channel selected for imaging the terrain and the other channel sensitive to hotter targets. If a relationship can be determined between the two channels that quantifies the background signal for hotter targets, then an algorithm can be determined that removes the background signal in that channel leaving only the fire signal. The relationship can be determined anywhere between various points in the signal processing of the radiometric data from the radiometric input to the quantized output of the system. As long as only linear operations are performed on the signal, the relationship will only depend on the system gain and offsets within the range of interest. The algorithm can be implemented either by using a look-up table or performing the calculation in the system computer. The current presentation will describe the algorithm, its derivation, and its implementation in the Firefly Wildfire Detection System by means of an off-the-shelf commercial scanner. Improvement over the previous algorithm used and the margin gained for improving the imaging of the terrain will be demonstrated.
Improvement in detection of small wildfires
NASA Technical Reports Server (NTRS)
Sleigh, William J.
1991-01-01
Detecting and imaging small wildfires with an Airborne Scanner is done against generally high background levels. The Airborne Scanner System used is a two-channel thermal IR scanner, with one channel selected for imaging the terrain and the other channel sensitive to hotter targets. If a relationship can be determined between the two channels that quantifies the background signal for hotter targets, then an algorithm can be determined that removes the background signal in that channel leaving only the fire signal. The relationship can be determined anywhere between various points in the signal processing of the radiometric data from the radiometric input to the quantized output of the system. As long as only linear operations are performed on the signal, the relationship will only depend on the system gain and offsets within the range of interest. The algorithm can be implemented either by using a look-up table or performing the calculation in the system computer. The current presentation will describe the algorithm, its derivation, and its implementation in the Firefly Wildfire Detection System by means of an off-the-shelf commercial scanner. Improvement over the previous algorithm used and the margin gained for improving the imaging of the terrain will be demonstrated.
Performance Analysis for Channel Estimation With 1-Bit ADC and Unknown Quantization Threshold
NASA Astrophysics Data System (ADS)
Stein, Manuel S.; Bar, Shahar; Nossek, Josef A.; Tabrikian, Joseph
2018-05-01
In this work, the problem of signal parameter estimation from measurements acquired by a low-complexity analog-to-digital converter (ADC) with $1$-bit output resolution and an unknown quantization threshold is considered. Single-comparator ADCs are energy-efficient and can be operated at ultra-high sampling rates. For analysis of such systems, a fixed and known quantization threshold is usually assumed. In the symmetric case, i.e., zero hard-limiting offset, it is known that in the low signal-to-noise ratio (SNR) regime the signal processing performance degrades moderately by ${2}/{\\pi}$ ($-1.96$ dB) when comparing to an ideal $\\infty$-bit converter. Due to hardware imperfections, low-complexity $1$-bit ADCs will in practice exhibit an unknown threshold different from zero. Therefore, we study the accuracy which can be obtained with receive data processed by a hard-limiter with unknown quantization level by using asymptotically optimal channel estimation algorithms. To characterize the estimation performance of these nonlinear algorithms, we employ analytic error expressions for different setups while modeling the offset as a nuisance parameter. In the low SNR regime, we establish the necessary condition for a vanishing loss due to missing offset knowledge at the receiver. As an application, we consider the estimation of single-input single-output wireless channels with inter-symbol interference and validate our analysis by comparing the analytic and experimental performance of the studied estimation algorithms. Finally, we comment on the extension to multiple-input multiple-output channel models.
DSP/FPGA Design for a High-Speed Programmable S-Band Space Transceiver
NASA Technical Reports Server (NTRS)
Janicik, Jeffrey; Friedman, Assi
2013-01-01
Traditional command uplink receivers are very limited in performance capability, take a long time to acquire, cannot operate on both uplink bands (NASA & AFSCN), and only support low-rate communications. As a result, transceivers end up on many programs critical paths, even though they should be a standard purchased spacecraft subsystem. Also, many missions are impacted by the low effective uplink throughput. In order to tackle these challenges, a transceiver was developed that will provide on-site frequency agility, support of high uplink rates, and operation on both NASA and AFSCN frequency bands. The device is a low-power, high-reliability, and high-performance digital signal processing (DSP) demodulator for an on-orbit programmable command receiver.
Coherent detection and digital signal processing for fiber optic communications
NASA Astrophysics Data System (ADS)
Ip, Ezra
The drive towards higher spectral efficiency in optical fiber systems has generated renewed interest in coherent detection. We review different detection methods, including noncoherent, differentially coherent, and coherent detection, as well as hybrid detection methods. We compare the modulation methods that are enabled and their respective performances in a linear regime. An important system parameter is the number of degrees of freedom (DOF) utilized in transmission. Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency as it uses all four available DOF contained in the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Software based receivers benefit from the robustness of DSP, flexibility in design, and ease of adaptation to time-varying channels. Linear impairments, including chromatic dispersion (CD) and polarization-mode dispersion (PMD), can be compensated quasi-exactly using finite impulse response filters. In practical systems, sampling the received signal at 3/2 times the symbol rate is sufficient to enable an arbitrary amount of CD and PMD to be compensated for a sufficiently long equalizer whose tap length scales linearly with transmission distance. Depending on the transmitted constellation and the target bit error rate, the analog-to-digital converter (ADC) should have around 5 to 6 bits of resolution. Digital coherent receivers are naturally suited for the implementation of feedforward carrier recovery, which has superior linewidth tolerance than phase-locked loops, and does not suffer from feedback delay constraints. Differential bit encoding can be used to prevent catastrophic receiver failure due to cycle slips. In systems where nonlinear effects are concentrated mostly at fiber locations with small accumulated dispersion, nonlinear phase de-rotation is a low-complexity algorithm that can partially mitigate nonlinear effects. For systems with arbitrary dispersion maps, however, backpropagation is the only universal technique that can jointly compensate dispersion and fiber nonlinearity. Backpropagation requires solving the nonlinear Schrodinger equation at the receiver, and has high computational cost. Backpropagation is most effective when dispersion compensation fibers are removed, and when signal processing is performed at three times oversampling. Backpropagation can improve system performance and increase transmission distance. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gb/s should become practical in the near future.
A Software Defined Radio Based Airplane Communication Navigation Simulation System
NASA Astrophysics Data System (ADS)
He, L.; Zhong, H. T.; Song, D.
2018-01-01
Radio communication and navigation system plays important role in ensuring the safety of civil airplane in flight. Function and performance should be tested before these systems are installed on-board. Conventionally, a set of transmitter and receiver are needed for each system, thus all the equipment occupy a lot of space and are high cost. In this paper, software defined radio technology is applied to design a common hardware communication and navigation ground simulation system, which can host multiple airplane systems with different operating frequency, such as HF, VHF, VOR, ILS, ADF, etc. We use a broadband analog frontend hardware platform, universal software radio peripheral (USRP), to transmit/receive signal of different frequency band. Software is compiled by LabVIEW on computer, which interfaces with USRP through Ethernet, and is responsible for communication and navigation signal processing and system control. An integrated testing system is established to perform functional test and performance verification of the simulation signal, which demonstrate the feasibility of our design. The system is a low-cost and common hardware platform for multiple airplane systems, which provide helpful reference for integrated avionics design.
Reduced specificity in emotion judgment in people with autism spectrum disorder
Wang, Shuo; Adolphs, Ralph
2017-01-01
There is a conflicting literature on facial emotion processing in autism spectrum disorder (ASD): both typical and atypical performance have been reported, and inconsistencies in the literature may stem from different processes examined (emotion judgment, face perception, fixations) as well as differences in participant populations. Here we conducted a detailed investigation of the ability to discriminate graded emotions shown in morphs of fear-happy faces, in a well-characterized high-functioning sample of participants with ASD and matched controls. Signal detection approaches were used in the analyses, and concurrent high-resolution eye-tracking was collected. Although people with ASD had typical thresholds for categorical fear and confidence judgments, their psychometric specificity to detect emotions across the entire range of intensities was reduced. However, fixation patterns onto the stimuli were typical and could not account for the reduced specificity of emotion judgment. Together, our results argue for a subtle and specific deficit in emotion perception in ASD that, from a signal detection perspective, is best understood as a reduced specificity due to increased noise in central processing of the face stimuli. PMID:28343960
Single sensor processing to obtain high resolution color component signals
NASA Technical Reports Server (NTRS)
Glenn, William E. (Inventor)
2010-01-01
A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.
Brain processing of visual information during fast eye movements maintains motor performance.
Panouillères, Muriel; Gaveau, Valérie; Socasau, Camille; Urquizar, Christian; Pélisson, Denis
2013-01-01
Movement accuracy depends crucially on the ability to detect errors while actions are being performed. When inaccuracies occur repeatedly, both an immediate motor correction and a progressive adaptation of the motor command can unfold. Of all the movements in the motor repertoire of humans, saccadic eye movements are the fastest. Due to the high speed of saccades, and to the impairment of visual perception during saccades, a phenomenon called "saccadic suppression", it is widely believed that the adaptive mechanisms maintaining saccadic performance depend critically on visual error signals acquired after saccade completion. Here, we demonstrate that, contrary to this widespread view, saccadic adaptation can be based entirely on visual information presented during saccades. Our results show that visual error signals introduced during saccade execution--by shifting a visual target at saccade onset and blanking it at saccade offset--induce the same level of adaptation as error signals, presented for the same duration, but after saccade completion. In addition, they reveal that this processing of intra-saccadic visual information for adaptation depends critically on visual information presented during the deceleration phase, but not the acceleration phase, of the saccade. These findings demonstrate that the human central nervous system can use short intra-saccadic glimpses of visual information for motor adaptation, and they call for a reappraisal of current models of saccadic adaptation.
Olympus receiver evaluation and phase noise measurements
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Wang, Huailiang; Sweeney, Dennis
1990-01-01
A set of measurements performed by the Michigan Tech Sensing and Signal Processing Group on the analog receiver built by the Virginia Polytechnic Institute (VPI) and the Jet Propulsion Laboratory (JPL) for propagation measurements using the Olympus Satellite is described. Measurements of local oscillator (LO) phase noise were performed for all of the LOs supplied by JPL. In order to obtain the most useful set of measurements, LO phase noise measurements were made using the complete VPI receiver front end. This set of measurements demonstrates the performance of the receiver from the Radio Frequency (RF) input through the high Intermediate Frequency (IF) output. Three different measurements were made: LO phase noise with DC on the voltage controlled crystal oscillator (VCXO) port; LO phase noise with the 11.381 GHz LO locked to the reference signal generator; and a reference measurement with the JPL LOs out of the system.
Duque, Julie; Labruna, Ludovica; Cazares, Christian; Ivry, Richard B.
2014-01-01
Motor behavior requires selecting between potential actions. The role of inhibition in response selection has frequently been examined in tasks in which participants are engaged in some advance preparation prior to the presentation of an imperative signal. Under such conditions, inhibition could be related to processes associated with response selection, or to more general inhibitory processes that are engaged in high states of anticipation. In Experiment 1, we manipulated the degree of anticipatory preparation. Participants performed a choice reaction time task that required choosing between a movement of the left or right index finger, and used transcranial magnetic stimulation (TMS) to elicit motor evoked potentials (MEPs) in the left hand agonist. In high anticipation blocks, a non-informative cue (e.g., fixation marker) preceded the imperative; in low anticipation blocks, there was no cue and participants were required to divide their attention between two tasks to further reduce anticipation. MEPs were substantially reduced before the imperative signal in high anticipation blocks. In contrast, in low anticipation blocks, MEPs remained unchanged before the imperative signal but showed a marked suppression right after the onset of the imperative. This effect occurred regardless of whether the imperative had signaled a left or right hand response. After this initial inhibition, left MEPs increased when the left hand was selected and remained suppressed when the right hand was selected. We obtained similar results in Experiment 2 except that the persistent left MEP suppression when the left hand was not selected was attenuated when the alternative response involved a non-homologous effector (right foot). These results indicate that, even in the absence of an anticipatory period, inhibitory mechanisms are engaged during response selection, possibly to prevent the occurrence of premature and inappropriate responses during a competitive selection process. PMID:25128431
NAVIGATION PERFORMANCE IN HIGH EARTH ORBITS USING NAVIGATOR GPS RECEIVER
NASA Technical Reports Server (NTRS)
Bamford, William; Naasz, Bo; Moreau, Michael C.
2006-01-01
NASA GSFC has developed a GPS receiver that can acquire and track GPS signals with sensitivity significantly lower than conventional GPS receivers. This opens up the possibility of using GPS based navigation for missions in high altitude orbit, such as Geostationary Operational Environmental Satellites (GOES) in a geostationary orbit, and the Magnetospheric MultiScale (MMS) Mission, in highly eccentric orbits extending to 12 Earth radii and higher. Indeed much research has been performed to study the feasibility of using GPS navigation in high Earth orbits and the performance achievable. Recently, GSFC has conducted a series of hardware in-the-loop tests to assess the performance of this new GPS receiver in various high Earth orbits of interest. Tracking GPS signals to down to approximately 22-25 dB-Hz, including signals from the GPS transmitter side-lobes, steady-state navigation performance in a geostationary orbit is on the order of 10 meters. This paper presents the results of these tests, as well as sensitivity analysis to such factors as ionosphere masks, use of GPS side-lobe signals, and GPS receiver sensitivity.
32-channel single photon counting module for ultrasensitive detection of DNA sequences
NASA Astrophysics Data System (ADS)
Gudkov, Georgiy; Dhulla, Vinit; Borodin, Anatoly; Gavrilov, Dmitri; Stepukhovich, Andrey; Tsupryk, Andrey; Gorbovitski, Boris; Gorfinkel, Vera
2006-10-01
We continue our work on the design and implementation of multi-channel single photon detection systems for highly sensitive detection of ultra-weak fluorescence signals, for high-performance, multi-lane DNA sequencing instruments. A fiberized, 32-channel single photon detection (SPD) module based on single photon avalanche diode (SPAD), model C30902S-DTC, from Perkin Elmer Optoelectronics (PKI) has been designed and implemented. Unavailability of high performance, large area SPAD arrays and our desire to design high performance photon counting systems drives us to use individual diodes. Slight modifications in our quenching circuit has doubled the linear range of our system from 1MHz to 2MHz, which is the upper limit for these devices and the maximum saturation count rate has increased to 14 MHz. The detector module comprises of a single board computer PC-104 that enables data visualization, recording, processing, and transfer. Very low dark count (300-1000 counts/s), robust, efficient, simple data collection and processing, ease of connectivity to any other application demanding similar requirements and similar performance results to the best commercially available single photon counting module (SPCM from PKI) are some of the features of this system.
Embodied neurofeedback with an anthropomorphic robotic hand
Braun, Niclas; Emkes, Reiner; Thorne, Jeremy D.; Debener, Stefan
2016-01-01
Neurofeedback-guided motor imagery training (NF-MIT) has been suggested as a promising therapy for stroke-induced motor impairment. Whereas much NF-MIT research has aimed at signal processing optimization, the type of sensory feedback given to the participant has received less attention. Often the feedback signal is highly abstract and not inherently coupled to the mental act performed. In this study, we asked whether an embodied feedback signal is more efficient for neurofeedback operation than a non-embodiable feedback signal. Inspired by the rubber hand illusion, demonstrating that an artificial hand can be incorporated into one’s own body scheme, we used an anthropomorphic robotic hand to visually guide the participants’ motor imagery act and to deliver neurofeedback. Using two experimental manipulations, we investigated how a participant’s neurofeedback performance and subjective experience were influenced by the embodiability of the robotic hand, and by the neurofeedback signal’s validity. As pertains to embodiment, we found a promoting effect of robotic-hand embodiment in subjective, behavioral, electrophysiological and electrodermal measures. Regarding neurofeedback signal validity, we found some differences between real and sham neurofeedback in terms of subjective and electrodermal measures, but not in terms of behavioral and electrophysiological measures. This study motivates the further development of embodied feedback signals for NF-MIT. PMID:27869190
Aucouturier, Jean-Julien; Defreville, Boris; Pachet, François
2007-08-01
The "bag-of-frames" approach (BOF) to audio pattern recognition represents signals as the long-term statistical distribution of their local spectral features. This approach has proved nearly optimal for simulating the auditory perception of natural and human environments (or soundscapes), and is also the most predominent paradigm to extract high-level descriptions from music signals. However, recent studies show that, contrary to its application to soundscape signals, BOF only provides limited performance when applied to polyphonic music signals. This paper proposes to explicitly examine the difference between urban soundscapes and polyphonic music with respect to their modeling with the BOF approach. First, the application of the same measure of acoustic similarity on both soundscape and music data sets confirms that the BOF approach can model soundscapes to near-perfect precision, and exhibits none of the limitations observed in the music data set. Second, the modification of this measure by two custom homogeneity transforms reveals critical differences in the temporal and statistical structure of the typical frame distribution of each type of signal. Such differences may explain the uneven performance of BOF algorithms on soundscapes and music signals, and suggest that their human perception rely on cognitive processes of a different nature.
1979-12-01
intelligent graphics terminals in real-tim processing S (e) 5-1 to 5-9 MIel ita|ger The application of high-speed processors to propagation e.piriamnts...interface SACLANTCEN CP-25 5-2 M IM M STEIGER: Intelligent graphics terminals The less desirable features of the terminal are listed below. reiatively small...hours. Dismantling of the equipment is normally performed in less than one-half hour and often while waiting to clear customs. Transportation of the
Noise analysis for near-field 3D FM-CW radar imaging systems
NASA Astrophysics Data System (ADS)
Sheen, David M.
2015-05-01
Near field radar imaging systems are used for demanding security applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit performance in several ways. Practical imaging systems can employ arrays with low gain antennas and relatively large signal distribution networks that have substantial losses which limit transmit power and increase the effective noise figure of the receiver chain, resulting in substantial thermal noise. Phase noise can also limit system performance. The signal coupled from transmitter to receiver is much larger than expected target signals. Phase noise from this coupled signal can set the system noise floor if the oscillator is too noisy. Frequency modulated continuous wave (FM-CW) radar transceivers used in short range systems are relatively immune to the effects of the coupled phase noise due to range correlation effects. This effect can reduce the phase-noise floor such that it is below the thermal noise floor for moderate performance oscillators. Phase noise is also manifested in the range response around bright targets, and can cause smaller targets to be obscured. Noise in synthetic aperture imaging systems is mitigated by the processing gain of the system. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.
High perceptual load leads to both reduced gain and broader orientation tuning
Stolte, Moritz; Bahrami, Bahador; Lavie, Nilli
2014-01-01
Due to its limited capacity, visual perception depends on the allocation of attention. The resultant phenomena of inattentional blindness, accompanied by reduced sensory visual cortex response to unattended stimuli in conditions of high perceptual load in the attended task, are now well established (Lavie, 2005; Lavie, 2010, for reviews). However, the underlying mechanisms for these effects remain to be elucidated. Specifically, is reduced perceptual processing under high perceptual load a result of reduced sensory signal gain, broader tuning, or both? We examined this question with psychophysical measures of orientation tuning under different levels of perceptual load in the task performed. Our results show that increased perceptual load leads to both reduced sensory signal and broadening of tuning. These results clarify the effects of attention on elementary visual perception and suggest that high perceptual load is critical for attentional effects on sensory tuning. PMID:24610952
High resolution, high rate x-ray spectrometer
Goulding, F.S.; Landis, D.A.
1983-07-14
It is an object of the invention to provide a pulse processing system for use with detected signals of a wide dynamic range which is capable of very high counting rates, with high throughput, with excellent energy resolution and a high signal-to-noise ratio. It is a further object to provide a pulse processing system wherein the fast channel resolving time is quite short and substantially independent of the energy of the detected signals. Another object is to provide a pulse processing system having a pile-up rejector circuit which will allow the maximum number of non-interfering pulses to be passed to the output. It is also an object of the invention to provide new methods for generating substantially symmetrically triangular pulses for use in both the main and fast channels of a pulse processing system.
A method for discrimination of noise and EMG signal regions recorded during rhythmic behaviors.
Ying, Rex; Wall, Christine E
2016-12-08
Analyses of muscular activity during rhythmic behaviors provide critical data for biomechanical studies. Electrical potentials measured from muscles using electromyography (EMG) require discrimination of noise regions as the first step in analysis. An experienced analyst can accurately identify the onset and offset of EMG but this process takes hours to analyze a short (10-15s) record of rhythmic EMG bursts. Existing computational techniques reduce this time but have limitations. These include a universal threshold for delimiting noise regions (i.e., a single signal value for identifying the EMG signal onset and offset), pre-processing using wide time intervals that dampen sensitivity for EMG signal characteristics, poor performance when a low frequency component (e.g., DC offset) is present, and high computational complexity leading to lack of time efficiency. We present a new statistical method and MATLAB script (EMG-Extractor) that includes an adaptive algorithm to discriminate noise regions from EMG that avoids these limitations and allows for multi-channel datasets to be processed. We evaluate the EMG-Extractor with EMG data on mammalian jaw-adductor muscles during mastication, a rhythmic behavior typified by low amplitude onsets/offsets and complex signal pattern. The EMG-Extractor consistently and accurately distinguishes noise from EMG in a manner similar to that of an experienced analyst. It outputs the raw EMG signal region in a form ready for further analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
2015-04-01
Current routine MRI examinations rely on the acquisition of qualitative images that have a contrast "weighted" for a mixture of (magnetic) tissue properties. Recently, a novel approach was introduced, namely MR Fingerprinting (MRF) with a completely different approach to data acquisition, post-processing and visualization. Instead of using a repeated, serial acquisition of data for the characterization of individual parameters of interest, MRF uses a pseudo randomized acquisition that causes the signals from different tissues to have a unique signal evolution or 'fingerprint' that is simultaneously a function of the multiple material properties under investigation. The processing after acquisition involves a pattern recognition algorithm to match the fingerprints to a predefined dictionary of predicted signal evolutions. These can then be translated into quantitative maps of the magnetic parameters of interest. MR Fingerprinting (MRF) is a technique that could theoretically be applied to most traditional qualitative MRI methods and replaces them with acquisition of truly quantitative tissue measures. MRF is, thereby, expected to be much more accurate and reproducible than traditional MRI and should improve multi-center studies and significantly reduce reader bias when diagnostic imaging is performed. Key Points • MR fingerprinting (MRF) is a new approach to data acquisition, post-processing and visualization.• MRF provides highly accurate quantitative maps of T1, T2, proton density, diffusion.• MRF may offer multiparametric imaging with high reproducibility, and high potential for multicenter/ multivendor studies.
NASA Astrophysics Data System (ADS)
Zhang, Guang-Ming; Harvey, David M.
2012-03-01
Various signal processing techniques have been used for the enhancement of defect detection and defect characterisation. Cross-correlation, filtering, autoregressive analysis, deconvolution, neural network, wavelet transform and sparse signal representations have all been applied in attempts to analyse ultrasonic signals. In ultrasonic nondestructive evaluation (NDE) applications, a large number of materials have multilayered structures. NDE of multilayered structures leads to some specific problems, such as penetration, echo overlap, high attenuation and low signal-to-noise ratio. The signals recorded from a multilayered structure are a class of very special signals comprised of limited echoes. Such signals can be assumed to have a sparse representation in a proper signal dictionary. Recently, a number of digital signal processing techniques have been developed by exploiting the sparse constraint. This paper presents a review of research to date, showing the up-to-date developments of signal processing techniques made in ultrasonic NDE. A few typical ultrasonic signal processing techniques used for NDE of multilayered structures are elaborated. The practical applications and limitations of different signal processing methods in ultrasonic NDE of multilayered structures are analysed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behbahani, R. A.; Aghamir, F. M.
Multi ion beam and hard x-ray emissions were detected in a high inductance (more than 100 nH) Mather type plasma focus (PF) device at different filling gas pressures and charging voltages. The signal analysis was performed through the current trace, as it is the fundamental signal from which all of the phenomena in a PF device can be extracted. Two different fitting processes were carried out according to Lee's computational (snow-plow) model. In the first process, only plasma dynamics and classical (Spitzer) resistances were considered as energy consumer parameters for plasma. This led to an unsuccessful fitting and did notmore » answer the energy transfer mechanism into plasma. A second fitting process was considered through the addition of anomalous resistance, which provided the best fit. Anomalous resistance was the source of long decrease in current trace, and multi dips and multi peaks of high voltage probe. Multi-peak features were interpreted considering the second fitting process along with the mechanisms for ion beam production and hard x-ray emission. To show the important role of the anomalous resistance, the duration of the current drop was discussed.« less
Li, Qing-Bo; Xu, Yu-Po; Zhang, Chao-Hang; Zhang, Guang-Jun; Wu, Jin-Guang
2009-10-01
A portable nondestructive measuring instrument for plant chlorophyll was developed, which can perform real-time, quick and nondestructive measurement of chlorophyll. The instrument is mainly composed of four parts, including leaves clamp, driving circuit of light source, photoelectric detection and signal conditioning circuit and micro-control system. A new scheme of light source driving was proposed, which can not only achieve constant current, but also control the current by digital signal. The driving current can be changed depending on different light source and measurement situation by actual operation, which resolves the matching problem of output intensity of light source and input range of photoelectric detector. In addition, an integrative leaves clamp was designed, which simplified the optical structure, enhanced the stability of apparatus, decreased the loss of incident light and improved the signal-to-noise ratio and precision. The photoelectric detection and signal conditioning circuit achieve the conversion between optical signal and electrical signal, and make the electrical signal meet the requirement of AD conversion, and the photo detector is S1133-14 of Hamamatsu Company, with a high detection precision. The micro-control system mainly achieves control function, dealing with data, data storage and so on. As the most important component, microprocessor MSP430F149 of TI Company has many advantages, such as high processing speed, low power, high stability and so on. And it has an in-built 12 bit AD converter, so the data-acquisition circuit is simpler. MSP430F149 is suitable for portable instrument. In the calibration experiment of the instrument, the standard value was measured by chlorophyll meter SPAD-502, multiple linear calibration models were built, and the instrument performance was evaluated. The correlation coefficient between chlorophyll prediction value and standard value is 0.97, and the root mean square error of prediction is about 1.3 SPAD. In the evaluation experiment of the instrument repeatability, the root mean square error is 0.1 SPAD. Results of the calibration experiment show that the instrument has high measuring precision and high stability.
Cereal phytochromes: targets of selection, targets for manipulation?
Sawers, Ruairidh J H; Sheehan, Moira J; Brutnell, Thomas P
2005-03-01
Plants respond to shading through an adaptive syndrome termed shade avoidance. In high-density crop plantings, shade avoidance generally increases extension growth at the expense of yield and can be at odds with the agronomic performance of the crop as a whole. Studies in Arabidopsis are beginning to reveal the essential role phytochromes play in regulating this process and to identify genes underlying the response. In this article, we focus on how phytochrome signaling networks have been targeted in cereal breeding programs in the past and discuss the potential to alter these pathways through breeding and transgenic manipulation to develop crops that perform better under typical high density conditions.
NASA Astrophysics Data System (ADS)
Wang, Huarui; Shen, Jianqi
2014-05-01
The size of nanoparticles is measured by laser diode self-mixing interferometry, which employs a sensitive, compact, and simple optical setup. However, the signal processing of the interferometry is slow or expensive. In this article, a fast and economic signal processing technique is introduced, in which the self-mixing AC signal is transformed into DC signals with an analog circuit consisting of 16 channels. These DC signals are obtained as a spectrum from which the size of nanoparticles can be retrieved. The technique is examined by measuring the standard nanoparticles. Further experiments are performed to compare the skimmed milk and whole milk, and also the fresh skimmed milk and rotten skimmed milk.
"Chemical transformers" from nanoparticle ensembles operated with logic.
Motornov, Mikhail; Zhou, Jian; Pita, Marcos; Gopishetty, Venkateshwarlu; Tokarev, Ihor; Katz, Evgeny; Minko, Sergiy
2008-09-01
The pH-responsive nanoparticles were coupled with information-processing enzyme-based systems to yield "smart" signal-responsive hybrid systems with built-in Boolean logic. The enzyme systems performed AND/OR logic operations, transducing biochemical input signals into reversible structural changes (signal-directed self-assembly) of the nanoparticle assemblies, thus resulting in the processing and amplification of the biochemical signals. The hybrid system mimics biological systems in effective processing of complex biochemical information, resulting in reversible changes of the self-assembled structures of the nanoparticles. The bioinspired approach to the nanostructured morphing materials could be used in future self-assembled molecular robotic systems.
Evaluation of Magnetic Diagnostics for MHD Equilibrium Reconstruction of LHD Discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sontag, Aaron C; Hanson, James D.; Lazerson, Sam
2011-01-01
Equilibrium reconstruction is the process of determining the set of parameters of an MHD equilibrium that minimize the difference between expected and experimentally observed signals. This is routinely performed in axisymmetric devices, such as tokamaks, and the reconstructed equilibrium solution is then the basis for analysis of stability and transport properties. The V3FIT code [1] has been developed to perform equilibrium reconstruction in cases where axisymmetry cannot be assumed, such as in stellarators. The present work is focused on using V3FIT to analyze plasmas in the Large Helical Device (LHD) [2], a superconducting, heliotron type device with over 25 MWmore » of heating power that is capable of achieving both high-beta ({approx}5%) and high density (>1 x 10{sup 21}/m{sup 3}). This high performance as well as the ability to drive tens of kiloamperes of toroidal plasma current leads to deviations in the equilibrium state from the vacuum flux surfaces. This initial study examines the effectiveness of using magnetic diagnostics as the observed signals in reconstructing experimental plasma parameters for LHD discharges. V3FIT uses the VMEC [3] 3D equilibrium solver to calculate an initial equilibrium solution with closed, nested flux surfaces based on user specified plasma parameters. This equilibrium solution is then used to calculate the expected signals for specified diagnostics. The differences between these expected signal values and the observed values provides a starting {chi}{sup 2} value. V3FIT then varies all of the fit parameters independently, calculating a new equilibrium and corresponding {chi}{sup 2} for each variation. A quasi-Newton algorithm [1] is used to find the path in parameter space that leads to a minimum in {chi}{sup 2}. Effective diagnostic signals must vary in a predictable manner with the variations of the plasma parameters and this signal variation must be of sufficient amplitude to be resolved from the signal noise. Signal effectiveness can be defined for a specific signal and specific reconstruction parameter as the dimensionless fractional reduction in the posterior parameter variance with respect to the signal variance. Here, {sigma}{sub i}{sup sig} is the variance of the ith signal and {sigma}{sub j}{sup param} param is the posterior variance of the jth fit parameter. The sum of all signal effectiveness values for a given reconstruction parameter is normalized to one. This quantity will be used to determine signal effectiveness for various reconstruction cases. The next section will examine the variation of the expected signals with changes in plasma pressure and the following section will show results for reconstructing model plasmas using these signals.« less
Guo, Qi; Tran, An V
2012-12-17
In this paper, we investigate the transmission impairments in a high-speed single-feeder wavelength-division-multiplexed passive optical network (WDM-PON) employing low-bandwidth upstream transmitter. A 1-GHz reflective semiconductor optical amplifier (RSOA) is operated at the rates of 10 Gb/s and 20 Gb/s in the proposed WDM-PON. Since the system performance is seriously limited by its uplink in both capacity and reach owing to inter-symbol interference and reflection noise, we present a novel technique with simultaneous capability of spectral efficiency enhancement and transmission distance extension in the uplink via coding and equalization that exploit the principles of partial-response (PR) signal. It is experimentally demonstrated that the proposed system supports the delivery of 10 Gb/s and 20 Gb/s upstream signals over 75-km and 25-km bidirectional fiber, respectively. The configuration of PR equalizer is optimized for its best performance-complexity trade-off. The reflection tolerance of 10 Gb/s and 20 Gb/s channels is improved by 8 dB and 6 dB, respectively, with PR coding. The proposed cost-effective signal processing scheme has great potential for the next-generation access networks.
Combinatorial FSK modulation for power-efficient high-rate communications
NASA Technical Reports Server (NTRS)
Wagner, Paul K.; Budinger, James M.; Vanderaar, Mark J.
1991-01-01
Deep-space and satellite communications systems must be capable of conveying high-rate data accurately with low transmitter power, often through dispersive channels. A class of noncoherent Combinatorial Frequency Shift Keying (CFSK) modulation schemes is investigated which address these needs. The bit error rate performance of this class of modulation formats is analyzed and compared to the more traditional modulation types. Candidate modulator, demodulator, and digital signal processing (DSP) hardware structures are examined in detail. System-level issues are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washeleski, Robert L.; Meyer, Edmond J. IV; King, Lyon B.
2013-10-15
Laser Thomson scattering (LTS) is an established plasma diagnostic technique that has seen recent application to low density plasmas. It is difficult to perform LTS measurements when the scattered signal is weak as a result of low electron number density, poor optical access to the plasma, or both. Photon counting methods are often implemented in order to perform measurements in these low signal conditions. However, photon counting measurements performed with photo-multiplier tubes are time consuming and multi-photon arrivals are incorrectly recorded. In order to overcome these shortcomings a new data analysis method based on maximum likelihood estimation was developed. Themore » key feature of this new data processing method is the inclusion of non-arrival events in determining the scattered Thomson signal. Maximum likelihood estimation and its application to Thomson scattering at low signal levels is presented and application of the new processing method to LTS measurements performed in the plume of a 2-kW Hall-effect thruster is discussed.« less
Washeleski, Robert L; Meyer, Edmond J; King, Lyon B
2013-10-01
Laser Thomson scattering (LTS) is an established plasma diagnostic technique that has seen recent application to low density plasmas. It is difficult to perform LTS measurements when the scattered signal is weak as a result of low electron number density, poor optical access to the plasma, or both. Photon counting methods are often implemented in order to perform measurements in these low signal conditions. However, photon counting measurements performed with photo-multiplier tubes are time consuming and multi-photon arrivals are incorrectly recorded. In order to overcome these shortcomings a new data analysis method based on maximum likelihood estimation was developed. The key feature of this new data processing method is the inclusion of non-arrival events in determining the scattered Thomson signal. Maximum likelihood estimation and its application to Thomson scattering at low signal levels is presented and application of the new processing method to LTS measurements performed in the plume of a 2-kW Hall-effect thruster is discussed.
NASA Astrophysics Data System (ADS)
Chang, Seung Jin; Lee, Chun Ku; Shin, Yong-June; Park, Jin Bae
2016-12-01
A multiple chirp reflectometry system with a fault estimation process is proposed to obtain multiple resolution and to measure the degree of fault in a target cable. A multiple resolution algorithm has the ability to localize faults, regardless of fault location. The time delay information, which is derived from the normalized cross-correlation between the incident signal and bandpass filtered reflected signals, is converted to a fault location and cable length. The in-phase and quadrature components are obtained by lowpass filtering of the mixed signal of the incident signal and the reflected signal. Based on in-phase and quadrature components, the reflection coefficient is estimated by the proposed fault estimation process including the mixing and filtering procedure. Also, the measurement uncertainty for this experiment is analyzed according to the Guide to the Expression of Uncertainty in Measurement. To verify the performance of the proposed method, we conduct comparative experiments to detect and measure faults under different conditions. Considering the installation environment of the high voltage cable used in an actual vehicle, target cable length and fault position are designed. To simulate the degree of fault, the variety of termination impedance (10 Ω , 30 Ω , 50 Ω , and 1 \\text{k} Ω ) are used and estimated by the proposed method in this experiment. The proposed method demonstrates advantages in that it has multiple resolution to overcome the blind spot problem, and can assess the state of the fault.
Algorithmic and heuristic processing of information by the nervous system.
Restian, A
1980-01-01
Starting from the fact that the nervous system must discover the information it needs, the author describes the way it decodes the received message. The logical circuits of the nervous system, submitting the received signals to a process by means of which information brought is discovered step by step, participates in decoding the message. The received signals, as information, can be algorithmically or heuristically processed. Algorithmic processing is done according to precise rules, which must be fulfilled step by step. By algorithmic processing, one develops somatic and vegetative reflexes as blood pressure, heart frequency or water metabolism control. When it does not dispose of precise rules of information processing or when algorithmic processing needs a very long time, the nervous system must use heuristic processing. This is the feature that differentiates the human brain from the electronic computer that can work only according to some extremely precise rules. The human brain can work according to less precise rules because it can resort to trial and error operations, and because it works according to a form of logic. Working with superior order signals which represent the class of all inferior type signals from which they begin, the human brain need not perform all the operations that it would have to perform by superior type of signals. Therefore the brain tries to submit the received signals to intensive as possible superization. All informational processing, and especially heuristical processing, is accompanied by a certain affective color and the brain cannot operate without it. Emotions, passions and sentiments usually complete the lack of precision of the heuristical programmes. Finally, the author shows that informational and especially heuristical processes study can contribute to a better understanding of the transition from neurological to psychological activity.
Signal Processing in Reverberation- A Summary of Performance Capability
1972-08-30
34 LkP+52-DOGLB. UNCLASSIFIED N, TM No. TC- 173-72 LC INAVAL UNDERWATER SYSTEMS CENTER Technical Memorandum SIGNAL PROCESSING IN REVERBERATION- A...SUMMARY OF PERFORMANCE CAPABILITY Date: 30 August 1972 Prepared by: -- v i Alert H. Nuttall Office of the Director of Science and Technology 2TICELECTEI...Nuffall Office of the Director of Science and Technology Approved for public release; distribution unlimited UNCLASSIFIED TM No. TC- I7P-72 NAVAL
Optimization of MLS receivers for multipath environments
NASA Technical Reports Server (NTRS)
Mcalpine, G. A.; Highfill, J. H., III
1976-01-01
The design of a microwave landing system (MLS) aircraft receiver, capable of optimal performance in multipath environments found in air terminal areas, is reported. Special attention was given to the angle tracking problem of the receiver and includes tracking system design considerations, study and application of locally optimum estimation involving multipath adaptive reception and then envelope processing, and microcomputer system design. Results show processing is competitive in this application with i-f signal processing performance-wise and is much more simple and cheaper. A summary of the signal model is given.
NASA Astrophysics Data System (ADS)
Mahmud, M. S.; Lambert, A.; Benson, C.
2015-07-01
GNSS signals have been proposed as emitters of opportunity to enhance Space Situational Awareness (SSA) by tracking small items of space debris using bistatic radar. Although the scattered GNSS signal levels from small items of space debris are incredibly low, the dynamic disturbances of the observed object are very small, and the phase of the scattered signals is well behaved. It is therefore plausible that coherent integration periods on the order of many minutes could be achieved. However, even with long integration periods, very large receiver arrays with extensive, but probably viable, processing are required to recover the scattered signal. Such large arrays will be expensive, and smaller more affordable arrays will collect insufficient signal power to detect the small objects (relative to wavelength) that are necessary to maintain the necessary phase coherency. The investments necessary to build a large receiver array are unlikely without substantial risk reduction. Pini and Akos have previously reported on use of very large radio telescopes to analyse the short-term modulation performance of GNSS satellite signals. In this work we report on tracking of GPS satellites with a radio-astronomy VLBI antenna system to assess the stability of the observed GPS signal over a time period indicative of that proposed for passive radar. We also confirm some of the processing techniques that may be used in both demonstrations and the final system. We conclude from the limited data set that the signal stability when observed by a high-gain tracking antenna and compared against a high quality, low phase-noise clock is excellent, as expected. We conclude by framing further works to reduce risk for a passive radar SSA capability using GNSS signals. http://www.ignss.org/Conferences/PastConferencePapers/2015ConferencePastPapers/2015PeerReviewedPapers/tabid/147/Default.aspx
A proposed model for the flowering signaling pathway of sugarcane under photoperiodic control.
Coelho, C P; Costa Netto, A P; Colasanti, J; Chalfun-Júnior, A
2013-04-25
Molecular analysis of floral induction in Arabidopsis has identified several flowering time genes related to 4 response networks defined by the autonomous, gibberellin, photoperiod, and vernalization pathways. Although grass flowering processes include ancestral functions shared by both mono- and dicots, they have developed their own mechanisms to transmit floral induction signals. Despite its high production capacity and its important role in biofuel production, almost no information is available about the flowering process in sugarcane. We searched the Sugarcane Expressed Sequence Tags database to look for elements of the flowering signaling pathway under photoperiodic control. Sequences showing significant similarity to flowering time genes of other species were clustered, annotated, and analyzed for conserved domains. Multiple alignments comparing the sequences found in the sugarcane database and those from other species were performed and their phylogenetic relationship assessed using the MEGA 4.0 software. Electronic Northerns were run with Cluster and TreeView programs, allowing us to identify putative members of the photoperiod-controlled flowering pathway of sugarcane.
1982-06-23
Administration Systems Research and Development Service 14, Spseq Aese Ce ’ Washington, D.C. 20591 It. SeppkW•aae metm The work reported in this document was...consider sophisticated signal processing techniques as an alternative method of improving system performanceH Some work in this area has already taken place...demands on the frequency spectrum. As noted in Table 1-1, there has been considerable work on advanced signal processing in the MLS context
Advanced Engine Health Management Applications of the SSME Real-Time Vibration Monitoring System
NASA Technical Reports Server (NTRS)
Fiorucci, Tony R.; Lakin, David R., II; Reynolds, Tracy D.; Turner, James E. (Technical Monitor)
2000-01-01
The Real Time Vibration Monitoring System (RTVMS) is a 32-channel high speed vibration data acquisition and processing system developed at Marshall Space Flight Center (MSFC). It Delivers sample rates as high as 51,200 samples/second per channel and performs Fast Fourier Transform (FFT) processing via on-board digital signal processing (DSP) chips in a real-time format. Advanced engine health assessment is achieved by utilizing the vibration spectra to provide accurate sensor validation and enhanced engine vibration redlines. Discrete spectral signatures (such as synchronous) that are indicators of imminent failure can be assessed and utilized to mitigate catastrophic engine failures- a first in rocket engine health assessment. This paper is presented in viewgraph form.
Development of signal processing system of avalanche photo diode for space observations by Astro-H
NASA Astrophysics Data System (ADS)
Ohno, M.; Goto, K.; Hanabata, Y.; Takahashi, H.; Fukazawa, Y.; Yoshino, M.; Saito, T.; Nakamori, T.; Kataoka, J.; Sasano, M.; Torii, S.; Uchiyama, H.; Nakazawa, K.; Watanabe, S.; Kokubun, M.; Ohta, M.; Sato, T.; Takahashi, T.; Tajima, H.
2013-01-01
Astro-H is the sixth Japanese X-ray space observatory which will be launched in 2014. Two of onboard instruments of Astro-H, Hard X-ray Imager and Soft Gamma-ray Detector are surrounded by many number of large Bismuth Germanate (Bi4Ge3O12; BGO) scintillators. Optimum readout system of scintillation lights from these BGOs are essential to reduce the background signals and achieve high performance for main detectors because most of gamma-rays from out of field-of-view of main detectors or radio-isotopes produced inside them due to activation can be eliminated by anti-coincidence technique using BGO signals. We apply Avalanche Photo Diode (APD) for light sensor of these BGO detectors since their compactness and high quantum efficiency make it easy to design such large number of BGO detector system. For signal processing from APDs, digital filter and other trigger logics on the Field-Programmable Gate Array (FPGA) is used instead of discrete analog circuits due to limitation of circuit implementation area on spacecraft. For efficient observations, we have to achieve as low threshold of anti-coincidence signal as possible by utilizing the digital filtering. In addition, such anti-coincident signals should be sent to the main detector within 5 μs to make it in time to veto the A-D conversion. Considering this requirement and constraint from logic size of FPGA, we adopt two types of filter, 8 delay taps filter with only 2 bit precision coefficient and 16 delay taps filter with 8 bit precision coefficient. The data after former simple filter provides anti-coincidence signal quickly in orbit, and the latter filter is used for detail analysis after the data is down-linked.
Clemens, Benjamin; Regenbogen, Christina; Koch, Kathrin; Backes, Volker; Romanczuk-Seiferth, Nina; Pauly, Katharina; Shah, N Jon; Schneider, Frank; Habel, Ute; Kellermann, Thilo
2015-01-01
In functional magnetic resonance imaging (fMRI) studies that apply a "subsequent memory" approach, successful encoding is indicated by increased fMRI activity during the encoding phase for hits vs. misses, in areas underlying memory encoding such as the hippocampal formation. Signal-detection theory (SDT) can be used to analyze memory-related fMRI activity as a function of the participant's memory trace strength (d(')). The goal of the present study was to use SDT to examine the relationship between fMRI activity during incidental encoding and participants' recognition performance. To implement a new approach, post-experimental group assignment into High- or Low Performers (HP or LP) was based on 29 healthy participants' recognition performance, assessed with SDT. The analyses focused on the interaction between the factors group (HP vs. LP) and recognition performance (hits vs. misses). A whole-brain analysis revealed increased activation for HP vs. LP during incidental encoding for remembered vs. forgotten items (hits > misses) in the insula/temporo-parietal junction (TPJ) and the fusiform gyrus (FFG). Parameter estimates in these regions exhibited a significant positive correlation with d('). As these brain regions are highly relevant for salience detection (insula), stimulus-driven attention (TPJ), and content-specific processing of mnemonic stimuli (FFG), we suggest that HPs' elevated memory performance was associated with enhanced attentional and content-specific sensory processing during the encoding phase. We provide first correlative evidence that encoding-related activity in content-specific sensory areas and content-independent attention and salience detection areas influences memory performance in a task with incidental encoding of facial stimuli. Based on our findings, we discuss whether the aforementioned group differences in brain activity during incidental encoding might constitute the basis of general differences in memory performance between HP and LP.
Mailloux, Shay; Halámek, Jan; Katz, Evgeny
2014-03-07
A new Sense-and-Act system was realized by the integration of a biocomputing system, performing analytical processes, with a signal-responsive electrode. A drug-mimicking release process was triggered by biomolecular signals processed by different logic networks, including three concatenated AND logic gates or a 3-input OR logic gate. Biocatalytically produced NADH, controlled by various combinations of input signals, was used to activate the electrochemical system. A biocatalytic electrode associated with signal-processing "biocomputing" systems was electrically connected to another electrode coated with a polymer film, which was dissolved upon the formation of negative potential releasing entrapped drug-mimicking species, an enzyme-antibody conjugate, operating as a model for targeted immune-delivery and consequent "prodrug" activation. The system offers great versatility for future applications in controlled drug release and personalized medicine.
1988-10-01
A statistical analysis on the output signals of an acousto - optic spectrum analyzer (AOSA) is performed for the case when the input signal is a...processing, Electronic warfare, Radar countermeasures, Acousto - optic , Spectrum analyzer, Statistical analysis, Detection, Estimation, Canada, Modelling.
Brain Signal Variability Differentially Affects Cognitive Flexibility and Cognitive Stability.
Armbruster-Genç, Diana J N; Ueltzhöffer, Kai; Fiebach, Christian J
2016-04-06
Recent research yielded the intriguing conclusion that, in healthy adults, higher levels of variability in neuronal processes are beneficial for cognitive functioning. Beneficial effects of variability in neuronal processing can also be inferred from neurocomputational theories of working memory, albeit this holds only for tasks requiring cognitive flexibility. However, cognitive stability, i.e., the ability to maintain a task goal in the face of irrelevant distractors, should suffer under high levels of brain signal variability. To directly test this prediction, we studied both behavioral and brain signal variability during cognitive flexibility (i.e., task switching) and cognitive stability (i.e., distractor inhibition) in a sample of healthy human subjects and developed an efficient and easy-to-implement analysis approach to assess BOLD-signal variability in event-related fMRI task paradigms. Results show a general positive effect of neural variability on task performance as assessed by accuracy measures. However, higher levels of BOLD-signal variability in the left inferior frontal junction area result in reduced error rate costs during task switching and thus facilitate cognitive flexibility. In contrast, variability in the same area has a detrimental effect on cognitive stability, as shown in a negative effect of variability on response time costs during distractor inhibition. This pattern was mirrored at the behavioral level, with higher behavioral variability predicting better task switching but worse distractor inhibition performance. Our data extend previous results on brain signal variability by showing a differential effect of brain signal variability that depends on task context, in line with predictions from computational theories. Recent neuroscientific research showed that the human brain signal is intrinsically variable and suggested that this variability improves performance. Computational models of prefrontal neural networks predict differential effects of variability for different behavioral situations requiring either cognitive flexibility or stability. However, this hypothesis has so far not been put to an empirical test. In this study, we assessed cognitive flexibility and cognitive stability, and, besides a generally positive effect of neural variability on accuracy measures, we show that neural variability in a prefrontal brain area at the inferior frontal junction is differentially associated with performance: higher levels of variability are beneficial for the effectiveness of task switching (cognitive flexibility) but detrimental for the efficiency of distractor inhibition (cognitive stability). Copyright © 2016 the authors 0270-6474/16/363978-10$15.00/0.
GaAs Supercomputing: Architecture, Language, And Algorithms For Image Processing
NASA Astrophysics Data System (ADS)
Johl, John T.; Baker, Nick C.
1988-10-01
The application of high-speed GaAs processors in a parallel system matches the demanding computational requirements of image processing. The architecture of the McDonnell Douglas Astronautics Company (MDAC) vector processor is described along with the algorithms and language translator. Most image and signal processing algorithms can utilize parallel processing and show a significant performance improvement over sequential versions. The parallelization performed by this system is within each vector instruction. Since each vector has many elements, each requiring some computation, useful concurrent arithmetic operations can easily be performed. Balancing the memory bandwidth with the computation rate of the processors is an important design consideration for high efficiency and utilization. The architecture features a bus-based execution unit consisting of four to eight 32-bit GaAs RISC microprocessors running at a 200 MHz clock rate for a peak performance of 1.6 BOPS. The execution unit is connected to a vector memory with three buses capable of transferring two input words and one output word every 10 nsec. The address generators inside the vector memory perform different vector addressing modes and feed the data to the execution unit. The functions discussed in this paper include basic MATRIX OPERATIONS, 2-D SPATIAL CONVOLUTION, HISTOGRAM, and FFT. For each of these algorithms, assembly language programs were run on a behavioral model of the system to obtain performance figures.
Advanced Digital Signal Processing for Hybrid Lidar
2014-09-30
with a PC running LabVIEW performing the final calculations to obtain range measurements . A MATLAB- based system developed at Clarkson University in...the image contrast and resolution as well as the object ranging measurement accuracy. There have been various methods that attempt to reduce the...high speed modulation to help suppress backscatter while also providing an unambiguous range measurement . In general, it is desired to determine which
Modeling of Habitat and Foraging Behavior of Beaked Whales in the Southern California Bight
2014-09-30
preference. APPROACH High-Frequency Acoustic Recording Packages ( HARPs , Wiggins & Hildebrand 2007) have collected acoustic data at 17 sites...signal processing for HARP data is performed using the MATLAB (Mathworks, Natick, MA) based custom program Triton (Wiggins & Hildebrand 2007) and... HARP data are stored with the remainder of metadata (e.g. project name, instrument location, detection settings, detection effort) in the database
A smart multisensor approach to assist blind people in specific urban navigation tasks.
Ando, B
2008-12-01
Visually impaired people are often discouraged in using electronic aids due to complexity of operation, large amount of training, nonoptimized degree of information provided to the user, and high cost. In this paper, a new multisensor architecture is discussed, which would help blind people to perform urban mobility tasks. The device is based on a multisensor strategy and adopts smart signal processing.
QI2S - Quick Image Interpretation System
NASA Astrophysics Data System (ADS)
Naghmouchi, Jamin; Aviely, Peleg; Ginosar, Ran; Ober, Giovanna; Bischoff, Ole; Nadler, Ron; Guiser, David; Citroen, Meira; Freddi, Riccardo; Berekovic, Mladen
2015-09-01
The evolution of the Earth Observation mission will be driven by many factors, and the deveploment of new processing paradigms to facilitate data downlink, handling and storage will be a key factor. Next generation EO satellites will generate a great amount of data at a very high data rate, both radar and optical. Real-time onboard processing can be the solution to reduce data downlink and management on ground. Radiometric, geometric, and atmospheric corrections of EO data as well as material/object detection in addition to the well-known needs for image compression and signal processing can be performed directly on board and the aim of QI2S project is to demonstrate this. QI2S, a concept prototype system for novel onboard image processing and image interpretation which has been designed, developed and validated in the framework of an EU FP7 project, targets these needs and makes a significant step towards exceeding current roadmaps of leading space agencies for future payload processors. The QI2S system features multiple chip components of the RC64, a novel rad-hard 64-core signal processing chip, which targets DSP performance of 75 GMACs (16bit), 150 GOPS and 38 single precision GFLOPS while dissipating less than 10 Watts. It integrates advanced DSP cores with a multibank shared memory and a hardware scheduler, also supporting DDR2/3 memory and twelve 3.125 Gbps full duplex high-speed serial links using SpaceFibre and other protocols. The processor is being developed within the European FP7 Framework Program and will be qualified to the highest space standards.
High frequency signal acquisition and control system based on DSP+FPGA
NASA Astrophysics Data System (ADS)
Liu, Xiao-qi; Zhang, Da-zhi; Yin, Ya-dong
2017-10-01
This paper introduces a design and implementation of high frequency signal acquisition and control system based on DSP + FPGA. The system supports internal/external clock and internal/external trigger sampling. It has a maximum sampling rate of 400MBPS and has a 1.4GHz input bandwidth for the ADC. Data can be collected continuously or periodically in systems and they are stored in DDR2. At the same time, the system also supports real-time acquisition, the collected data after digital frequency conversion and Cascaded Integrator-Comb (CIC) filtering, which then be sent to the CPCI bus through the high-speed DSP, can be assigned to the fiber board for subsequent processing. The system integrates signal acquisition and pre-processing functions, which uses high-speed A/D, high-speed DSP and FPGA mixed technology and has a wide range of uses in data acquisition and recording. In the signal processing, the system can be seamlessly connected to the dedicated processor board. The system has the advantages of multi-selectivity, good scalability and so on, which satisfies the different requirements of different signals in different projects.
Leon-Bejarano, Maritza; Dorantes-Mendez, Guadalupe; Ramirez-Elias, Miguel; Mendez, Martin O; Alba, Alfonso; Rodriguez-Leyva, Ildefonso; Jimenez, M
2016-08-01
Raman spectroscopy of biological tissue presents fluorescence background, an undesirable effect that generates false Raman intensities. This paper proposes the application of the Empirical Mode Decomposition (EMD) method to baseline correction. EMD is a suitable approach since it is an adaptive signal processing method for nonlinear and non-stationary signal analysis that does not require parameters selection such as polynomial methods. EMD performance was assessed through synthetic Raman spectra with different signal to noise ratio (SNR). The correlation coefficient between synthetic Raman spectra and the recovered one after EMD denoising was higher than 0.92. Additionally, twenty Raman spectra from skin were used to evaluate EMD performance and the results were compared with Vancouver Raman algorithm (VRA). The comparison resulted in a mean square error (MSE) of 0.001554. High correlation coefficient using synthetic spectra and low MSE in the comparison between EMD and VRA suggest that EMD could be an effective method to remove fluorescence background in biological Raman spectra.
A New Strategy for ECG Baseline Wander Elimination Using Empirical Mode Decomposition
NASA Astrophysics Data System (ADS)
Shahbakhti, Mohammad; Bagheri, Hamed; Shekarchi, Babak; Mohammadi, Somayeh; Naji, Mohsen
2016-06-01
Electrocardiogram (ECG) signals might be affected by various artifacts and noises that have biological and external sources. Baseline wander (BW) is a low-frequency artifact that may be caused by breathing, body movements and loose sensor contact. In this paper, a novel method based on empirical mode decomposition (EMD) for removal of baseline noise from ECG is presented. When compared to other EMD-based methods, the novelty of this research is to reach the optimized number of decomposed levels for ECG BW de-noising using mean power frequency (MPF), while the reduction of processing time is considered. To evaluate the performance of the proposed method, a fifth-order Butterworth high pass filtering (BHPF) with cut-off frequency at 0.5Hz and wavelet approach are applied. Three performance indices, signal-to-noise ratio (SNR), mean square error (MSE) and correlation coefficient (CC), between pure and filtered signals have been utilized for qualification of presented techniques. Results suggest that the EMD-based method outperforms the other filtering method.
Advancing the Technology of Monolithic CMOS detectors for their use as X-ray Imaging Spectrometers
NASA Astrophysics Data System (ADS)
Kenter, Almus
The Smithsonian Astrophysical Observatory (SAO) proposes a two year program to further advance the scientific capabilities of monolithic CMOS detectors for use as x-ray imaging spectrometers. This proposal will build upon the progress achieved with funding from a previous APRA proposal that ended in 2013. As part of that previous proposal, x- ray optimized, highly versatile, monolithic CMOS imaging detectors and technology were developed and tested. The performance and capabilities of these devices were then demonstrated, with an emphasis on the performance advantages these devices have over CCDs and other technologies. The developed SAO/SRI-Sarnoff CMOS devices incorporate: Low noise, high sensitivity ("gain") pixels; Highly parallel on-chip signal chains; Standard and very high resistivity (30,000Ohm-cm) Si; Back-Side thinning and passivation. SAO demonstrated the performance benefits of each of these features in these devices. This new proposal high-lights the performance of this previous generation of devices, and segues into new technology and capability. The high sensitivity ( 135uV/e) 6 Transistor (6T) Pinned Photo Diode (PPD) pixels provided a large charge to voltage conversion gain to the detect and resolve even small numbers of photo electrons produced by x-rays. The on-chip, parallel signal chain processed an entire row of pixels in the same time that a CCD requires to processes a single pixel. The resulting high speed operation ( 1000 times faster than CCD) provide temporal resolution while mitigating dark current and allowed room temperature operation. The high resistivity Si provided full (over) depletion for thicker devices which increased QE for higher energy x-rays. In this proposal, SAO will investigate existing NMOS and existing PMOS devices as xray imaging spectrometers. Conventional CMOS imagers are NMOS. NMOS devices collect and measure photo-electrons. In contrast, PMOS devices collect and measure photo-holes. PMOS devices have various attributes that would make them superior for use in X-ray astronomy. In particular, PMOS has: "no" photo-charge recombination; "no" Random Telegraph Signal noise (RTS); and lower read noise. The existing SRI/Sarnoff PMOS devices are small and have been developed for non-intensified night vision applications, however, no x-ray evaluation of a monolithic PMOS device has ever been made. In addition to these PMOS devices, SAO will also evaluate existing NMOS scale-able format devices that can be fabricated in any rectangular size/shape using stitchable reticles. These "Mk by Nk" devices would be ideal for large X-ray focal planes or long grating readouts. The Sarnoff/SRI Mk by Nk format devices have been designed, with foresight, so that they can be fabricated in either PMOS or NMOS by changing a single fabrication reticle and by changing the type of Si substrate. If X-ray performance results are expected, this proposal will lead the way to future fabrication of Mk by Nk PMOS devices that would be ideal for X-ray astronomy missions such as "X-ray Surveyor". SAO will also investigate the interaction of directly deposited Optical Blocking Filters (OBFs) on various back side passivated devices, and their resultant effects on very "soft" x-ray response. The latest CMOS processes and very fast on-chip, and off-chip digital readout signal chains and camera systems will be demonstrated.
A new similarity index for nonlinear signal analysis based on local extrema patterns
NASA Astrophysics Data System (ADS)
Niknazar, Hamid; Motie Nasrabadi, Ali; Shamsollahi, Mohammad Bagher
2018-02-01
Common similarity measures of time domain signals such as cross-correlation and Symbolic Aggregate approximation (SAX) are not appropriate for nonlinear signal analysis. This is because of the high sensitivity of nonlinear systems to initial points. Therefore, a similarity measure for nonlinear signal analysis must be invariant to initial points and quantify the similarity by considering the main dynamics of signals. The statistical behavior of local extrema (SBLE) method was previously proposed to address this problem. The SBLE similarity index uses quantized amplitudes of local extrema to quantify the dynamical similarity of signals by considering patterns of sequential local extrema. By adding time information of local extrema as well as fuzzifying quantized values, this work proposes a new similarity index for nonlinear and long-term signal analysis, which extends the SBLE method. These new features provide more information about signals and reduce noise sensitivity by fuzzifying them. A number of practical tests were performed to demonstrate the ability of the method in nonlinear signal clustering and classification on synthetic data. In addition, epileptic seizure detection based on electroencephalography (EEG) signal processing was done by the proposed similarity to feature the potentials of the method as a real-world application tool.
NASA Technical Reports Server (NTRS)
Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark
2016-01-01
Radio-frequency interference (RFI) is a known problem for passive remote sensing as evidenced in the L-band radiometers SMOS, Aquarius and more recently, SMAP. Various algorithms have been developed and implemented on SMAP to improve science measurements. This was achieved by the use of a digital microwave radiometer. RFI mitigation becomes more challenging for microwave radiometers operating at higher frequencies in shared allocations. At higher frequencies larger bandwidths are also desirable for lower measurement noise further adding to processing challenges. This work focuses on finding improved RFI mitigation techniques that will be effective at additional frequencies and at higher bandwidths. To aid the development and testing of applicable detection and mitigation techniques, a wide-band RFI algorithm testing environment has been developed using the Reconfigurable Open Architecture Computing Hardware System (ROACH) built by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) Group. The testing environment also consists of various test equipment used to reproduce typical signals that a radiometer may see including those with and without RFI. The testing environment permits quick evaluations of RFI mitigation algorithms as well as show that they are implementable in hardware. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The complex signal kurtosis detector showed improved performance over the real kurtosis detector under certain conditions. The real kurtosis is implemented on SMAP at 24 MHz bandwidth. The complex signal kurtosis algorithm was then implemented in hardware at 200 MHz bandwidth using the ROACH. In this work, performance of the complex signal kurtosis and the real signal kurtosis are compared. Performance evaluations and comparisons in both simulation as well as experimental hardware implementations were done with the use of receiver operating characteristic (ROC) curves. The complex kurtosis algorithm has the potential to reduce data rate due to onboard processing in addition to improving RFI detection performance.
Parallel Signal Processing and System Simulation using aCe
NASA Technical Reports Server (NTRS)
Dorband, John E.; Aburdene, Maurice F.
2003-01-01
Recently, networked and cluster computation have become very popular for both signal processing and system simulation. A new language is ideally suited for parallel signal processing applications and system simulation since it allows the programmer to explicitly express the computations that can be performed concurrently. In addition, the new C based parallel language (ace C) for architecture-adaptive programming allows programmers to implement algorithms and system simulation applications on parallel architectures by providing them with the assurance that future parallel architectures will be able to run their applications with a minimum of modification. In this paper, we will focus on some fundamental features of ace C and present a signal processing application (FFT).
High-performance electronic image stabilisation for shift and rotation correction
NASA Astrophysics Data System (ADS)
Parker, Steve C. J.; Hickman, D. L.; Wu, F.
2014-06-01
A novel low size, weight and power (SWaP) video stabiliser called HALO™ is presented that uses a SoC to combine the high processing bandwidth of an FPGA, with the signal processing flexibility of a CPU. An image based architecture is presented that can adapt the tiling of frames to cope with changing scene dynamics. A real-time implementation is then discussed that can generate several hundred optical flow vectors per video frame, to accurately calculate the unwanted rigid body translation and rotation of camera shake. The performance of the HALO™ stabiliser is comprehensively benchmarked against the respected Deshaker 3.0 off-line stabiliser plugin to VirtualDub. Eight different videos are used for benchmarking, simulating: battlefield, surveillance, security and low-level flight applications in both visible and IR wavebands. The results show that HALO™ rivals the performance of Deshaker within its operating envelope. Furthermore, HALO™ may be easily reconfigured to adapt to changing operating conditions or requirements; and can be used to host other video processing functionality like image distortion correction, fusion and contrast enhancement.
DFT algorithms for bit-serial GaAs array processor architectures
NASA Technical Reports Server (NTRS)
Mcmillan, Gary B.
1988-01-01
Systems and Processes Engineering Corporation (SPEC) has developed an innovative array processor architecture for computing Fourier transforms and other commonly used signal processing algorithms. This architecture is designed to extract the highest possible array performance from state-of-the-art GaAs technology. SPEC's architectural design includes a high performance RISC processor implemented in GaAs, along with a Floating Point Coprocessor and a unique Array Communications Coprocessor, also implemented in GaAs technology. Together, these data processors represent the latest in technology, both from an architectural and implementation viewpoint. SPEC has examined numerous algorithms and parallel processing architectures to determine the optimum array processor architecture. SPEC has developed an array processor architecture with integral communications ability to provide maximum node connectivity. The Array Communications Coprocessor embeds communications operations directly in the core of the processor architecture. A Floating Point Coprocessor architecture has been defined that utilizes Bit-Serial arithmetic units, operating at very high frequency, to perform floating point operations. These Bit-Serial devices reduce the device integration level and complexity to a level compatible with state-of-the-art GaAs device technology.
Cates, Joshua W.; Bieniosek, Matthew F.; Levin, Craig S.
2017-01-01
Abstract. Maintaining excellent timing resolution in the generation of silicon photomultiplier (SiPM)-based time-of-flight positron emission tomography (TOF-PET) systems requires a large number of high-speed, high-bandwidth electronic channels and components. To minimize the cost and complexity of a system’s back-end architecture and data acquisition, many analog signals are often multiplexed to fewer channels using techniques that encode timing, energy, and position information. With progress in the development SiPMs having lower dark noise, after pulsing, and cross talk along with higher photodetection efficiency, a coincidence timing resolution (CTR) well below 200 ps FWHM is now easily achievable in single pixel, bench-top setups using 20-mm length, lutetium-based inorganic scintillators. However, multiplexing the output of many SiPMs to a single channel will significantly degrade CTR without appropriate signal processing. We test the performance of a PET detector readout concept that multiplexes 16 SiPMs to two channels. One channel provides timing information with fast comparators, and the second channel encodes both position and energy information in a time-over-threshold-based pulse sequence. This multiplexing readout concept was constructed with discrete components to process signals from a 4×4 array of SensL MicroFC-30035 SiPMs coupled to 2.9×2.9×20 mm3 Lu1.8Gd0.2SiO5 (LGSO):Ce (0.025 mol. %) scintillators. This readout method yielded a calibrated, global energy resolution of 15.3% FWHM at 511 keV with a CTR of 198±2 ps FWHM between the 16-pixel multiplexed detector array and a 2.9×2.9×20 mm3 LGSO-SiPM reference detector. In summary, results indicate this multiplexing scheme is a scalable readout technique that provides excellent coincidence timing performance. PMID:28382312
Level indicator for pressure vessels
Not Available
1982-04-28
A liquid-level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic-field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal-processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreyer, J
2007-09-18
During my internship at Lawrence Livermore National Laboratory I worked with microcalorimeter gamma-ray and fast-neutron detectors based on superconducting Transition Edge Sensors (TESs). These instruments are being developed for fundamental science and nuclear non-proliferation applications because of their extremely high energy resolution; however, this comes at the expense of a small pixel size and slow decay times. The small pixel sizes are being addressed by developing detector arrays while the low count rate is being addressed by developing Digital Signal Processors (DSPs) that allow higher throughput than traditional pulse processing algorithms. Traditionally, low-temperature microcalorimeter pulses have been processed off-line withmore » optimum filtering routines based on the measured spectral characteristics of the signal and the noise. These optimum filters rely on the spectral content of the signal being identical for all events, and therefore require capturing the entire pulse signal without pile-up. In contrast, the DSP algorithm being developed is based on differences in signal levels before and after a trigger event, and therefore does not require the waveform to fully decay, or even the signal level to be close to the base line. The readout system allows for real time data acquisition and analysis at count rates exceeding 100 Hz for pulses with several {approx}ms decay times with minimal loss of energy resolution. Originally developed for gamma-ray analysis with HPGe detectors we have modified the hardware and firmware of the system to accommodate the slower TES signals and optimized the parameters of the filtering algorithm to maximize either resolution or throughput. The following presents an overview of the digital signal processing hardware and discusses the results of characterization measurements made to determine the systems performance.« less
Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.
He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P
2013-09-18
The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.
Higher Order Modulation Intersymbol Interference Caused by Traveling-wave Tube Amplifiers
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty; Williams, W. D. (Technical Monitor)
2002-01-01
For the first time, a time-dependent, physics-based computational model has been used to provide a direct description of the effects of the traveling wave tube amplifier (TWTA) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves, Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry and operating characteristics of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept-amplitude and/or swept-frequency data. First, the TWT model using the three dimensional (3D) electromagnetic code MAFIA is presented. Then, this comprehensive model is used to investigate approximations made in conventional TWT black-box models used in communication system level simulations, To quantitatively demonstrate the effects these approximations have on digital signal performance predictions, including intersymbol interference (ISI), the MAFIA results are compared to the system level analysis tool, Signal Processing, Workstation (SPW), using high order modulation schemes including 16 and 64-QAM.
Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty
2002-01-01
For the first time, a time-dependent, physics-based computational model has been used to provide a direct description of the effects of the traveling wave tube amplifier (TWTA) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry and operating characteristics of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept- amplitude and/or swept-frequency data. First, the TWT model using the three dimensional (3D) electromagnetic code MAFIA is presented. Then, this comprehensive model is used to investigate approximations made in conventional TWT black-box models used in communication system level simulations. To quantitatively demonstrate the effects these approximations have on digital signal performance predictions, including intersymbol interference (ISI), the MAFIA results are compared to the system level analysis tool, Signal Processing Workstation (SPW), using high order modulation schemes including 16 and 64-QAM.
A configurable and low-power mixed signal SoC for portable ECG monitoring applications.
Kim, Hyejung; Kim, Sunyoung; Van Helleputte, Nick; Artes, Antonio; Konijnenburg, Mario; Huisken, Jos; Van Hoof, Chris; Yazicioglu, Refet Firat
2014-04-01
This paper describes a mixed-signal ECG System-on-Chip (SoC) that is capable of implementing configurable functionality with low-power consumption for portable ECG monitoring applications. A low-voltage and high performance analog front-end extracts 3-channel ECG signals and single channel electrode-tissue-impedance (ETI) measurement with high signal quality. This can be used to evaluate the quality of the ECG measurement and to filter motion artifacts. A custom digital signal processor consisting of 4-way SIMD processor provides the configurability and advanced functionality like motion artifact removal and R peak detection. A built-in 12-bit analog-to-digital converter (ADC) is capable of adaptive sampling achieving a compression ratio of up to 7, and loop buffer integration reduces the power consumption for on-chip memory access. The SoC is implemented in 0.18 μm CMOS process and consumes 32 μ W from a 1.2 V while heart beat detection application is running, and integrated in a wireless ECG monitoring system with Bluetooth protocol. Thanks to the ECG SoC, the overall system power consumption can be reduced significantly.
A research of a high precision multichannel data acquisition system
NASA Astrophysics Data System (ADS)
Zhong, Ling-na; Tang, Xiao-ping; Yan, Wei
2013-08-01
The output signals of the focusing system in lithography are analog. To convert the analog signals into digital ones which are more flexible and stable to process, a desirable data acquisition system is required. The resolution of data acquisition, to some extent, affects the accuracy of focusing. In this article, we first compared performance between the various kinds of analog-to-digital converters (ADC) available on the market at the moment. Combined with the specific requirements (sampling frequency, converting accuracy, numbers of channels etc) and the characteristics (polarization, amplitude range etc) of the analog signals, the model of the ADC to be used as the core chip in our hardware design was determined. On this basis, we chose other chips needed in the hardware circuit that would well match with ADC, then the overall hardware design was obtained. Validation of our data acquisition system was verified through experiments and it can be demonstrated that the system can effectively realize the high resolution conversion of the multi-channel analog signals and give the accurate focusing information in lithography.
A complexity-scalable software-based MPEG-2 video encoder.
Chen, Guo-bin; Lu, Xin-ning; Wang, Xing-guo; Liu, Ji-lin
2004-05-01
With the development of general-purpose processors (GPP) and video signal processing algorithms, it is possible to implement a software-based real-time video encoder on GPP, and its low cost and easy upgrade attract developers' interests to transfer video encoding from specialized hardware to more flexible software. In this paper, the encoding structure is set up first to support complexity scalability; then a lot of high performance algorithms are used on the key time-consuming modules in coding process; finally, at programming level, processor characteristics are considered to improve data access efficiency and processing parallelism. Other programming methods such as lookup table are adopted to reduce the computational complexity. Simulation results showed that these ideas could not only improve the global performance of video coding, but also provide great flexibility in complexity regulation.
Optimized design of embedded DSP system hardware supporting complex algorithms
NASA Astrophysics Data System (ADS)
Li, Yanhua; Wang, Xiangjun; Zhou, Xinling
2003-09-01
The paper presents an optimized design method for a flexible and economical embedded DSP system that can implement complex processing algorithms as biometric recognition, real-time image processing, etc. It consists of a floating-point DSP, 512 Kbytes data RAM, 1 Mbytes FLASH program memory, a CPLD for achieving flexible logic control of input channel and a RS-485 transceiver for local network communication. Because of employing a high performance-price ratio DSP TMS320C6712 and a large FLASH in the design, this system permits loading and performing complex algorithms with little algorithm optimization and code reduction. The CPLD provides flexible logic control for the whole DSP board, especially in input channel, and allows convenient interface between different sensors and DSP system. The transceiver circuit can transfer data between DSP and host computer. In the paper, some key technologies are also introduced which make the whole system work efficiently. Because of the characters referred above, the hardware is a perfect flat for multi-channel data collection, image processing, and other signal processing with high performance and adaptability. The application section of this paper presents how this hardware is adapted for the biometric identification system with high identification precision. The result reveals that this hardware is easy to interface with a CMOS imager and is capable of carrying out complex biometric identification algorithms, which require real-time process.
High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications
NASA Technical Reports Server (NTRS)
Taveniku, Mikael
2013-01-01
A high-speed data recorder and replay equipment has been developed for reliable high-data-rate recording to disk media. It solves problems with slow or faulty disks, multiple disk insertions, high-altitude operation, reliable performance using COTS hardware, and long-term maintenance and upgrade path challenges. The current generation data recor - ders used within the VLBI community are aging, special-purpose machines that are both slow (do not meet today's requirements) and are very expensive to maintain and operate. Furthermore, they are not easily upgraded to take advantage of commercial technology development, and are not scalable to multiple 10s of Gbit/s data rates required by new applications. The innovation provides a softwaredefined, high-speed data recorder that is scalable with technology advances in the commercial space. It maximally utilizes current technologies without being locked to a particular hardware platform. The innovation also provides a cost-effective way of streaming large amounts of data from sensors to disk, enabling many applications to store raw sensor data and perform post and signal processing offline. This recording system will be applicable to many applications needing realworld, high-speed data collection, including electronic warfare, softwaredefined radar, signal history storage of multispectral sensors, development of autonomous vehicles, and more.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Sarah J.; Moore, David G.; Stair, Sarah L.
Ultrasonic analysis is being explored as a way to capture events during melting of highly dispersive wax. Typical events include temperature changes in the material, phase transition of the material, surface flows and reformations, and void filling as the material melts. Melt tests are performed with wax to evaluate the usefulness of different signal processing algorithms in capturing event data. Several algorithm paths are being pursued. The first looks at changes in the velocity of the signal through the material. This is only appropriate when the changes from one ultrasonic signal to the next can be represented by a linearmore » relationship, which is not always the case. The second tracks changes in the frequency content of the signal. The third algorithm tracks changes in the temporal moments of a signal over a full test. This method does not require that the changes in the signal be represented by a linear relationship, but attaching changes in the temporal moments to physical events can be difficult. This study describes the algorithm paths applied to experimental data from ultrasonic signals as wax melts and explores different ways to display the results.« less
Challenges in Extracting Information From Large Hydrogeophysical-monitoring Datasets
NASA Astrophysics Data System (ADS)
Day-Lewis, F. D.; Slater, L. D.; Johnson, T.
2012-12-01
Over the last decade, new automated geophysical data-acquisition systems have enabled collection of increasingly large and information-rich geophysical datasets. Concurrent advances in field instrumentation, web services, and high-performance computing have made real-time processing, inversion, and visualization of large three-dimensional tomographic datasets practical. Geophysical-monitoring datasets have provided high-resolution insights into diverse hydrologic processes including groundwater/surface-water exchange, infiltration, solute transport, and bioremediation. Despite the high information content of such datasets, extraction of quantitative or diagnostic hydrologic information is challenging. Visual inspection and interpretation for specific hydrologic processes is difficult for datasets that are large, complex, and (or) affected by forcings (e.g., seasonal variations) unrelated to the target hydrologic process. New strategies are needed to identify salient features in spatially distributed time-series data and to relate temporal changes in geophysical properties to hydrologic processes of interest while effectively filtering unrelated changes. Here, we review recent work using time-series and digital-signal-processing approaches in hydrogeophysics. Examples include applications of cross-correlation, spectral, and time-frequency (e.g., wavelet and Stockwell transforms) approaches to (1) identify salient features in large geophysical time series; (2) examine correlation or coherence between geophysical and hydrologic signals, even in the presence of non-stationarity; and (3) condense large datasets while preserving information of interest. Examples demonstrate analysis of large time-lapse electrical tomography and fiber-optic temperature datasets to extract information about groundwater/surface-water exchange and contaminant transport.
NASA Astrophysics Data System (ADS)
Wiggins, B. B.; deSouza, Z. O.; Vadas, J.; Alexander, A.; Hudan, S.; deSouza, R. T.
2017-11-01
A second generation position-sensitive microchannel plate detector using the induced signal approach has been realized. This detector is presently capable of measuring the incident position of electrons, photons, or ions. To assess the spatial resolution, the masked detector was illuminated by electrons. The initial, measured spatial resolution of 276 μm FWHM was improved by requiring a minimum signal amplitude on the anode and by employing digital signal processing techniques. The resulting measured spatial resolution of 119 μm FWHM corresponds to an intrinsic resolution of 98 μm FWHM when the effect of the finite slit width is de-convoluted. This measurement is a substantial improvement from the last reported spatial resolution of 466 μm FWHM using the induced signal approach. To understand the factors that limit the measured resolution, the performance of the detector is simulated.
Development of gait segmentation methods for wearable foot pressure sensors.
Crea, S; De Rossi, S M M; Donati, M; Reberšek, P; Novak, D; Vitiello, N; Lenzi, T; Podobnik, J; Munih, M; Carrozza, M C
2012-01-01
We present an automated segmentation method based on the analysis of plantar pressure signals recorded from two synchronized wireless foot insoles. Given the strict limits on computational power and power consumption typical of wearable electronic components, our aim is to investigate the capability of a Hidden Markov Model machine-learning method, to detect gait phases with different levels of complexity in the processing of the wearable pressure sensors signals. Therefore three different datasets are developed: raw voltage values, calibrated sensor signals and a calibrated estimation of total ground reaction force and position of the plantar center of pressure. The method is tested on a pool of 5 healthy subjects, through a leave-one-out cross validation. The results show high classification performances achieved using estimated biomechanical variables, being on average the 96%. Calibrated signals and raw voltage values show higher delays and dispersions in phase transition detection, suggesting a lower reliability for online applications.
Digital signal processing for the ATLAS/LUCID detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-07-01
Both the detector and the associated read-out electronics have been improved in order to cope with the LHC luminosity increase foreseen for RUN 2 and RUN 3. The new operating conditions require a careful tuning of the read-out electronics in order to optimize the signal-to-noise ratio. The new read-out electronics will allow the use of digital filtering of the photo multiplier tube signals. In this talk, we will present the first results that we obtained in the optimization of the signal-to-noise ratio. In addition, we will introduce the next steps to adapt this system to high performance read-out chains formore » low energy gamma rays. Such systems are based, for instance, on Silicon Drift Detector devices and can be used in applications at Free-Electron-Laser facilities such as the XFEL under construction at DESY. (authors)« less
NASA Astrophysics Data System (ADS)
Hirao, Akihiro; Sato, Shunichi; Saitoh, Daizoh; Shinomiya, Nariyoshi; Ashida, Hiroshi; Obara, Minoru
2009-02-01
To obtain efficient antibacterial photodynamic effect in traumatic injuries such as burns, depth-resolved dosimetry of photosensitizer is required. In this study, we performed dual-wavelength photoacoustic (PA) measurement for rat burned skins injected with a photosensitizer. As a photosensitizer, methylene blue (MB) or porfimer sodium was injected into the subcutaneous tissue in rats with deep dermal burn. The wound was irradiated with red (665 nm or 630 nm) pulsed light to excite photosensitizers and green (532 nm) pulsed light to excite blood in the tissue; the latter signal was used to eliminate blood-associated component involved in the former signal. Acoustic attenuation was also compensated from the photosensitizer-associated PA signals. These signal processing was effective to obtain high-contrast image of a photosensitizer in the tissue. Behaviors of MB and porfimer sodium in the tissue were compared.
Magnetoencephalographic imaging of deep corticostriatal network activity during a rewards paradigm.
Kanal, Eliezer Y; Sun, Mingui; Ozkurt, Tolga E; Jia, Wenyan; Sclabassi, Robert
2009-01-01
The human rewards network is a complex system spanning both cortical and subcortical regions. While much is known about the functions of the various components of the network, research on the behavior of the network as a whole has been stymied due to an inability to detect signals at a high enough temporal resolution from both superficial and deep network components simultaneously. In this paper, we describe the application of magnetoencephalographic imaging (MEG) combined with advanced signal processing techniques to this problem. Using data collected while subjects performed a rewards-related gambling paradigm demonstrated to activate the rewards network, we were able to identify neural signals which correspond to deep network activity. We also show that this signal was not observable prior to filtration. These results suggest that MEG imaging may be a viable tool for the detection of deep neural activity.
A source number estimation method for single optical fiber sensor
NASA Astrophysics Data System (ADS)
Hu, Junpeng; Huang, Zhiping; Su, Shaojing; Zhang, Yimeng; Liu, Chunwu
2015-10-01
The single-channel blind source separation (SCBSS) technique makes great significance in many fields, such as optical fiber communication, sensor detection, image processing and so on. It is a wide range application to realize blind source separation (BSS) from a single optical fiber sensor received data. The performance of many BSS algorithms and signal process methods will be worsened with inaccurate source number estimation. Many excellent algorithms have been proposed to deal with the source number estimation in array signal process which consists of multiple sensors, but they can not be applied directly to the single sensor condition. This paper presents a source number estimation method dealing with the single optical fiber sensor received data. By delay process, this paper converts the single sensor received data to multi-dimension form. And the data covariance matrix is constructed. Then the estimation algorithms used in array signal processing can be utilized. The information theoretic criteria (ITC) based methods, presented by AIC and MDL, Gerschgorin's disk estimation (GDE) are introduced to estimate the source number of the single optical fiber sensor's received signal. To improve the performance of these estimation methods at low signal noise ratio (SNR), this paper make a smooth process to the data covariance matrix. By the smooth process, the fluctuation and uncertainty of the eigenvalues of the covariance matrix are reduced. Simulation results prove that ITC base methods can not estimate the source number effectively under colored noise. The GDE method, although gets a poor performance at low SNR, but it is able to accurately estimate the number of sources with colored noise. The experiments also show that the proposed method can be applied to estimate the source number of single sensor received data.
Separating higher-order nonlinearities in transient absorption microscopy
NASA Astrophysics Data System (ADS)
Wilson, Jesse W.; Anderson, Miguel; Park, Jong Kang; Fischer, Martin C.; Warren, Warren S.
2015-08-01
The transient absorption response of melanin is a promising optically-accessible biomarker for distinguishing malignant melanoma from benign pigmented lesions, as demonstrated by earlier experiments on thin sections from biopsied tissue. The technique has also been demonstrated in vivo, but the higher optical intensity required for detecting these signals from backscattered light introduces higher-order nonlinearities in the transient response of melanin. These components that are higher than linear with respect to the pump or the probe introduce intensity-dependent changes to the overall response that complicate data analysis. However, our data also suggest these nonlinearities might be advantageous to in vivo imaging, in that different types of melanins have different nonlinear responses. Therefore, methods to separate linear from nonlinear components in transient absorption measurements might provide additional information to aid in the diagnosis of melanoma. We will discuss numerical methods for analyzing the various nonlinear contributions to pump-probe signals, with the ultimate objective of real time analysis using digital signal processing techniques. To that end, we have replaced the lock-in amplifier in our pump-probe microscope with a high-speed data acquisition board, and reprogrammed the coprocessor field-programmable gate array (FPGA) to perform lock-in detection. The FPGA lock-in offers better performance than the commercial instrument, in terms of both signal to noise ratio and speed. In addition, the flexibility of the digital signal processing approach enables demodulation of more complicated waveforms, such as spread-spectrum sequences, which has the potential to accelerate microscopy methods that rely on slow relaxation phenomena, such as photo-thermal and phosphorescence lifetime imaging.
Injection-depth-locking axial motion guided handheld micro-injector using CP-SSOCT.
Cheon, Gyeong Woo; Huang, Yong; Kwag, Hye Rin; Kim, Ki-Young; Taylor, Russell H; Gehlbach, Peter L; Kang, Jin U
2014-01-01
This paper presents a handheld micro-injector system using common-path swept source optical coherence tomography (CP-SSOCT) as a distal sensor with highly accurate injection-depth-locking. To achieve real-time, highly precise, and intuitive freehand control, the system used graphics processing unit (GPU) to process the oversampled OCT signal with high throughput and a smart customized motion monitoring control algorithm. A performance evaluation was conducted with 60-insertions and fluorescein dye injection tests to show how accurately the system can guide the needle and lock to the target depth. The evaluation tests show our system can guide the injection needle into the desired depth with 4.12 um average deviation error while injecting 50 nl of fluorescein dye.
Dreisbach, Gesine; Reindl, Anna-Lena; Fischer, Rico
2018-03-01
Context-specific processing adjustments are one signature feature of flexible human action control. However, up to now the precise mechanisms underlying these adjustments are not fully understood. Here it is argued that aversive signals produced by conflict- or disfluency-experience originally motivate such context-specific processing adjustments. We tested whether the efficiency of the aversive conflict signal for control adaptation depends on the affective nature of the context it is presented in. In two experiments, high vs. low proportions of aversive signals (Experiment 1: conflict trials; Experiment 2: disfluent trials) were presented either above or below the screen center. This location manipulation was motivated by existing evidence that verticality is generally associated with affective valence with up being positive and down being negative. From there it was hypothesized that the aversive signals would lose their trigger function for processing adjustments when presented at the lower (i.e., more negative) location. This should then result in a reduced context-specific proportion effect when the high proportion of aversive signals was presented at the lower location. Results fully confirmed the predictions. In both experiments, the location-specific proportion effects were only present when the high proportion of aversive signals occurred at the more positive location above but were reduced (Experiment 1) or even eliminated (Experiment 2) when the high proportion occurred at the more negative location below. This interaction of processing adjustments with affective background contexts can thus be taken as further hint for an affective origin of control adaptations.
An Interactive Graphics Program for Investigating Digital Signal Processing.
ERIC Educational Resources Information Center
Miller, Billy K.; And Others
1983-01-01
Describes development of an interactive computer graphics program for use in teaching digital signal processing. The program allows students to interactively configure digital systems on a monitor display and observe their system's performance by means of digital plots on the system's outputs. A sample program run is included. (JN)
ALMA Correlator Real-Time Data Processor
NASA Astrophysics Data System (ADS)
Pisano, J.; Amestica, R.; Perez, J.
2005-10-01
The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem with the correlator hardware which presents software engineering challenges as the hardware evolves. The current status of this project and future goals are also presented.
Skeletal Muscle Function during Exercise—Fine-Tuning of Diverse Subsystems by Nitric Oxide
Suhr, Frank; Gehlert, Sebastian; Grau, Marijke; Bloch, Wilhelm
2013-01-01
Skeletal muscle is responsible for altered acute and chronic workload as induced by exercise. Skeletal muscle adaptations range from immediate change of contractility to structural adaptation to adjust the demanded performance capacities. These processes are regulated by mechanically and metabolically induced signaling pathways, which are more or less involved in all of these regulations. Nitric oxide is one of the central signaling molecules involved in functional and structural adaption in different cell types. It is mainly produced by nitric oxide synthases (NOS) and by non-enzymatic pathways also in skeletal muscle. The relevance of a NOS-dependent NO signaling in skeletal muscle is underlined by the differential subcellular expression of NOS1, NOS2, and NOS3, and the alteration of NO production provoked by changes of workload. In skeletal muscle, a variety of highly relevant tasks to maintain skeletal muscle integrity and proper signaling mechanisms during adaptation processes towards mechanical and metabolic stimulations are taken over by NO signaling. The NO signaling can be mediated by cGMP-dependent and -independent signaling, such as S-nitrosylation-dependent modulation of effector molecules involved in contractile and metabolic adaptation to exercise. In this review, we describe the most recent findings of NO signaling in skeletal muscle with a special emphasis on exercise conditions. However, to gain a more detailed understanding of the complex role of NO signaling for functional adaptation of skeletal muscle (during exercise), additional sophisticated studies are needed to provide deeper insights into NO-mediated signaling and the role of non-enzymatic-derived NO in skeletal muscle physiology. PMID:23538841
NASA Astrophysics Data System (ADS)
Yokoyama, Ryouta; Yagi, Shin-ichi; Tamura, Kiyoshi; Sato, Masakazu
2009-07-01
Ultrahigh speed dynamic elastography has promising potential capabilities in applying clinical diagnosis and therapy of living soft tissues. In order to realize the ultrahigh speed motion tracking at speeds of over thousand frames per second, synthetic aperture (SA) array signal processing technology must be introduced. Furthermore, the overall system performance should overcome the fine quantitative evaluation in accuracy and variance of echo phase changes distributed across a tissue medium. On spatial evaluation of local phase changes caused by pulsed excitation on a tissue phantom, investigation was made with the proposed SA signal system utilizing different virtual point sources that were generated by an array transducer to probe each component of local tissue displacement vectors. The final results derived from the cross-correlation method (CCM) brought about almost the same performance as obtained by the constrained least square method (LSM) extended to successive echo frames. These frames were reconstructed by SA processing after the real-time acquisition triggered by the pulsed irradiation from a point source. The continuous behavior of spatial motion vectors demonstrated the dynamic generation and traveling of the pulsed shear wave at a speed of one thousand frames per second.
Highly accurate and fast optical penetration-based silkworm gender separation system
NASA Astrophysics Data System (ADS)
Kamtongdee, Chakkrit; Sumriddetchkajorn, Sarun; Chanhorm, Sataporn
2015-07-01
Based on our research work in the last five years, this paper highlights our innovative optical sensing system that can identify and separate silkworm gender highly suitable for sericulture industry. The key idea relies on our proposed optical penetration concepts and once combined with simple image processing operations leads to high accuracy in identifying of silkworm gender. Inside the system, there are electronic and mechanical parts that assist in controlling the overall system operation, processing the optical signal, and separating the female from male silkworm pupae. With current system performance, we achieve a very highly accurate more than 95% in identifying gender of silkworm pupae with an average system operational speed of 30 silkworm pupae/minute. Three of our systems are already in operation at Thailand's Queen Sirikit Sericulture Centers.
AlliedSignal driver's viewer enhancement (DVE) for paramilitary and commercial applications
NASA Astrophysics Data System (ADS)
Emanuel, Michael; Caron, Hubert; Kovacevic, Branislav; Faina-Cherkaoui, Marcela; Wrobel, Leslie; Turcotte, Gilles
1999-07-01
AlliedSignal Driver's Viewer Enhancement (DVE) system is a thermal imager using a 320 X 240 uncooled microbolometer array. This high performance system was initially developed for military combat and tactical wheeled vehicles. It features a very small sensor head remotely mounted from the display, control and processing module. The sensor head has a modular design and is being adapted to various commercial applications such as truck and car-driving aid, using specifically designed low cost optics. Tradeoffs in the system design, system features and test results are discussed in this paper. A short video shows footage of the DVE system while driving at night.
A wideband, high-resolution spectrum analyzer
NASA Technical Reports Server (NTRS)
Quirk, M. P.; Wilck, H. C.; Garyantes, M. F.; Grimm, M. J.
1988-01-01
A two-million-channel, 40 MHz bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory is described. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2 (sup 21) point Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple signal detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis.
A wide-band high-resolution spectrum analyzer.
Quirk, M P; Garyantes, M F; Wilck, H C; Grimm, M J
1988-12-01
This paper describes a two-million-channel 40-MHz-bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2(21)-point, Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple signal detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis and detection.
1979-12-01
ACTIVATED, SYSTEM OPERATION AND TESTING MASCOT PROVIDES: 1. SYSTEM BUILD SOFTWARE COMPILE-TIME CHECKS,a. 2. RUN-TIME SUPERVISOR KERNEL, 3, MONITOR AND...p AD-AOBI 851 SACLANT ASW RESEARCH CENTRE LA SPEZIA 11ITALY) F/B 1711 REAL-TIME, GENERAL-PURPOSE, HIGH-SPEED SIGNAL PROCESSING SYSTEM -- ETC (U) DEC 79...Table of Contents Table of Contents (Cont’d) Page Signal processing language and operating system (w) 23-1 to 23-12 by S. Weinstein A modular signal
NASA Astrophysics Data System (ADS)
Carrad, Damon J.; Mostert, Bernard; Meredith, Paul; Micolich, Adam P.
2016-09-01
A key task in bioelectronics is the transduction between ionic/protonic signals and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics. We present our work on a new class of organic-inorganic transducing interface utilising semiconducting InAs and GaAs nanowires directly gated with a proton transporting hygroscopic polymer consisting of undoped polyethylene oxide (PEO) patterned to nanoscale dimensions by a newly developed electron-beam lithography process [1]. Remarkably, we find our undoped PEO polymer electrolyte gate dielectric [2] gives equivalent electrical performance to the more traditionally used LiClO4-doped PEO [3], with an ionic conductivity three orders of magnitude higher than previously reported for undoped PEO [4]. The observed behaviour is consistent with proton conduction in PEO. We attribute our undoped PEO-based devices' performance to the small external surface and high surface-to-volume ratio of both the nanowire conducting channel and patterned PEO dielectric in our devices, as well as the enhanced hydration afforded by device processing and atmospheric conditions. In addition to studying the basic transducing mechanisms, we also demonstrate high-fidelity ionic to electronic conversion of a.c. signals at frequencies up to 50 Hz. Moreover, by combining complementary n- and p-type transducers we demonstrate functional hybrid ionic-electronic circuits can achieve logic (NOT operation), and with some further engineering of the nanowire contacts, potentially also amplification. Our device structures have significant potential to be scaled towards realising integrated bioelectronic circuitry. [1] D.J. Carrad et al., Nano Letters 14, 94 (2014). [2] D.J. Carrad et al., Manuscript in preparation (2016). [3] S.H. Kim et al., Advanced Materials 25, 1822 (2013). [4] S.K. Fullerton-Shirey et al., Macromolecules 42, 2142 (2009).
Low Temperature Performance of High-Speed Neural Network Circuits
NASA Technical Reports Server (NTRS)
Duong, T.; Tran, M.; Daud, T.; Thakoor, A.
1995-01-01
Artificial neural networks, derived from their biological counterparts, offer a new and enabling computing paradigm specially suitable for such tasks as image and signal processing with feature classification/object recognition, global optimization, and adaptive control. When implemented in fully parallel electronic hardware, it offers orders of magnitude speed advantage. Basic building blocks of the new architecture are the processing elements called neurons implemented as nonlinear operational amplifiers with sigmoidal transfer function, interconnected through weighted connections called synapses implemented using circuitry for weight storage and multiply functions either in an analog, digital, or hybrid scheme.
A portable system for acquiring and removing motion artefact from ECG signals
NASA Astrophysics Data System (ADS)
Griffiths, A.; Das, A.; Fernandes, B.; Gaydecki, P.
2007-07-01
A novel electrocardiograph (ECG) signal acquisition and display system is under development. It is designed for patients ranging from the elderly to athletes. The signals are obtained from electrodes integrated into a vest, amplified, digitally processed and transmitted via Bluetooth to a PC with a Labview ® interface. Digital signal processing is performed to remove movement artefact and electromyographic (EMG) noise, which severely distorts signal morphology and complicates clinical diagnosis. Independent component analysis (ICA) is also used to improve the signal quality. The complete system will integrate the electronics into a single module which will be embedded in the vest.
The effect of hearing aid technologies on listening in an automobile
Wu, Yu-Hsiang; Stangl, Elizabeth; Bentler, Ruth A.; Stanziola, Rachel W.
2014-01-01
Background Communication while traveling in an automobile often is very difficult for hearing aid users. This is because the automobile /road noise level is usually high, and listeners/drivers often do not have access to visual cues. Since the talker of interest usually is not located in front of the driver/listener, conventional directional processing that places the directivity beam toward the listener’s front may not be helpful, and in fact, could have a negative impact on speech recognition (when compared to omnidirectional processing). Recently, technologies have become available in commercial hearing aids that are designed to improve speech recognition and/or listening effort in noisy conditions where talkers are located behind or beside the listener. These technologies include (1) a directional microphone system that uses a backward-facing directivity pattern (Back-DIR processing), (2) a technology that transmits audio signals from the ear with the better signal-to-noise ratio (SNR) to the ear with the poorer SNR (Side-Transmission processing), and (3) a signal processing scheme that suppresses the noise at the ear with the poorer SNR (Side-Suppression processing). Purpose The purpose of the current study was to determine the effect of (1) conventional directional microphones and (2) newer signal processing schemes (Back-DIR, Side-Transmission, and Side-Suppression) on listener’s speech recognition performance and preference for communication in a traveling automobile. Research design A single-blinded, repeated-measures design was used. Study Sample Twenty-five adults with bilateral symmetrical sensorineural hearing loss aged 44 through 84 years participated in the study. Data Collection and Analysis The automobile/road noise and sentences of the Connected Speech Test (CST) were recorded through hearing aids in a standard van moving at a speed of 70 miles/hour on a paved highway. The hearing aids were programmed to omnidirectional microphone, conventional adaptive directional microphone, and the three newer schemes. CST sentences were presented from the side and back of the hearing aids, which were placed on the ears of a manikin. The recorded stimuli were presented to listeners via earphones in a sound treated booth to assess speech recognition performance and preference with each programmed condition. Results Compared to omnidirectional microphones, conventional adaptive directional processing had a detrimental effect on speech recognition when speech was presented from the back or side of the listener. Back-DIR and Side-Transmission processing improved speech recognition performance (relative to both omnidirectional and adaptive directional processing) when speech was from the back and side, respectively. The performance with Side-Suppression processing was better than with adaptive directional processing when speech was from the side. The participants’ preferences for a given processing scheme were generally consistent with speech recognition results. Conclusions The finding that performance with adaptive directional processing was poorer than with omnidirectional microphones demonstrates the importance of selecting the correct microphone technology for different listening situations. The results also suggest the feasibility of using hearing aid technologies to provide a better listening experience for hearing aid users in automobiles. PMID:23886425
Ecological prediction with nonlinear multivariate time-frequency functional data models
Yang, Wen-Hsi; Wikle, Christopher K.; Holan, Scott H.; Wildhaber, Mark L.
2013-01-01
Time-frequency analysis has become a fundamental component of many scientific inquiries. Due to improvements in technology, the amount of high-frequency signals that are collected for ecological and other scientific processes is increasing at a dramatic rate. In order to facilitate the use of these data in ecological prediction, we introduce a class of nonlinear multivariate time-frequency functional models that can identify important features of each signal as well as the interaction of signals corresponding to the response variable of interest. Our methodology is of independent interest and utilizes stochastic search variable selection to improve model selection and performs model averaging to enhance prediction. We illustrate the effectiveness of our approach through simulation and by application to predicting spawning success of shovelnose sturgeon in the Lower Missouri River.
NASA Technical Reports Server (NTRS)
Harrison, D. A., III; Chladek, J. T.
1983-01-01
A real-time signal processor was developed for the NASA/JSC L-and C-band airborne radar scatterometer sensor systems. The purpose of the effort was to reduce ground data processing costs. Conversion of two quadrature channels of data (like and cross polarized) was made to obtain Power Spectral Density (PSD) values. A chirp-z transform (CZT) approach was used to filter the Doppler return signal and improved high frequency and angular resolution was realized. The processors have been tested with record signals and excellent results were obtained. CZT filtering can be readily applied to scatterometers operating at other wavelengths by altering the sample frequency. The design of the hardware and software and the results of the performance tests are described in detail.
Sun, Chao; Feng, Wenquan; Du, Songlin
2018-01-01
As multipath is one of the dominating error sources for high accuracy Global Navigation Satellite System (GNSS) applications, multipath mitigation approaches are employed to minimize this hazardous error in receivers. Binary offset carrier modulation (BOC), as a modernized signal structure, is adopted to achieve significant enhancement. However, because of its multi-peak autocorrelation function, conventional multipath mitigation techniques for binary phase shift keying (BPSK) signal would not be optimal. Currently, non-parametric and parametric approaches have been studied specifically aiming at multipath mitigation for BOC signals. Non-parametric techniques, such as Code Correlation Reference Waveforms (CCRW), usually have good feasibility with simple structures, but suffer from low universal applicability for different BOC signals. Parametric approaches can thoroughly eliminate multipath error by estimating multipath parameters. The problems with this category are at the high computation complexity and vulnerability to the noise. To tackle the problem, we present a practical parametric multipath estimation method in the frequency domain for BOC signals. The received signal is transferred to the frequency domain to separate out the multipath channel transfer function for multipath parameter estimation. During this process, we take the operations of segmentation and averaging to reduce both noise effect and computational load. The performance of the proposed method is evaluated and compared with the previous work in three scenarios. Results indicate that the proposed averaging-Fast Fourier Transform (averaging-FFT) method achieves good robustness in severe multipath environments with lower computational load for both low-order and high-order BOC signals. PMID:29495589
Error-Rate Bounds for Coded PPM on a Poisson Channel
NASA Technical Reports Server (NTRS)
Moision, Bruce; Hamkins, Jon
2009-01-01
Equations for computing tight bounds on error rates for coded pulse-position modulation (PPM) on a Poisson channel at high signal-to-noise ratio have been derived. These equations and elements of the underlying theory are expected to be especially useful in designing codes for PPM optical communication systems. The equations and the underlying theory apply, more specifically, to a case in which a) At the transmitter, a linear outer code is concatenated with an inner code that includes an accumulator and a bit-to-PPM-symbol mapping (see figure) [this concatenation is known in the art as "accumulate-PPM" (abbreviated "APPM")]; b) The transmitted signal propagates on a memoryless binary-input Poisson channel; and c) At the receiver, near-maximum-likelihood (ML) decoding is effected through an iterative process. Such a coding/modulation/decoding scheme is a variation on the concept of turbo codes, which have complex structures, such that an exact analytical expression for the performance of a particular code is intractable. However, techniques for accurately estimating the performances of turbo codes have been developed. The performance of a typical turbo code includes (1) a "waterfall" region consisting of a steep decrease of error rate with increasing signal-to-noise ratio (SNR) at low to moderate SNR, and (2) an "error floor" region with a less steep decrease of error rate with increasing SNR at moderate to high SNR. The techniques used heretofore for estimating performance in the waterfall region have differed from those used for estimating performance in the error-floor region. For coded PPM, prior to the present derivations, equations for accurate prediction of the performance of coded PPM at high SNR did not exist, so that it was necessary to resort to time-consuming simulations in order to make such predictions. The present derivation makes it unnecessary to perform such time-consuming simulations.
Data processing method for a weak, moving telemetry signal
NASA Technical Reports Server (NTRS)
Kendall, W. B.; Levy, G. S.; Nixon, D. L.; Panson, P. L.
1969-01-01
Method of processing data from a spacecraft, where the carrier has a low signal-to-noise ratio and wide unpredictable frequency shifts, consists of analogue recording of the noisy signal along with a high-frequency tone that is used as a clock to trigger a digitizer.
Automated filtering of common-mode artifacts in multichannel physiological recordings.
Kelly, John W; Siewiorek, Daniel P; Smailagic, Asim; Wang, Wei
2013-10-01
The removal of spatially correlated noise is an important step in processing multichannel recordings. Here, a technique termed the adaptive common average reference (ACAR) is presented as an effective and simple method for removing this noise. The ACAR is based on a combination of the well-known common average reference (CAR) and an adaptive noise canceling (ANC) filter. In a convergent process, the CAR provides a reference to an ANC filter, which in turn provides feedback to enhance the CAR. This method was effective on both simulated and real data, outperforming the standard CAR when the amplitude or polarity of the noise changes across channels. In many cases, the ACAR even outperformed independent component analysis. On 16 channels of simulated data, the ACAR was able to attenuate up to approximately 290 dB of noise and could improve signal quality if the original SNR was as high as 5 dB. With an original SNR of 0 dB, the ACAR improved signal quality with only two data channels and performance improved as the number of channels increased. It also performed well under many different conditions for the structure of the noise and signals. Analysis of contaminated electrocorticographic recordings further showed the effectiveness of the ACAR.
Automated Filtering of Common Mode Artifacts in Multi-Channel Physiological Recordings
Kelly, John W.; Siewiorek, Daniel P.; Smailagic, Asim; Wang, Wei
2014-01-01
The removal of spatially correlated noise is an important step in processing multi-channel recordings. Here, a technique termed the adaptive common average reference (ACAR) is presented as an effective and simple method for removing this noise. The ACAR is based on a combination of the well-known common average reference (CAR) and an adaptive noise canceling (ANC) filter. In a convergent process, the CAR provides a reference to an ANC filter, which in turn provides feedback to enhance the CAR. This method was effective on both simulated and real data, outperforming the standard CAR when the amplitude or polarity of the noise changes across channels. In many cases the ACAR even outperformed independent component analysis (ICA). On 16 channels of simulated data the ACAR was able to attenuate up to approximately 290 dB of noise and could improve signal quality if the original SNR was as high as 5 dB. With an original SNR of 0 dB, the ACAR improved signal quality with only two data channels and performance improved as the number of channels increased. It also performed well under many different conditions for the structure of the noise and signals. Analysis of contaminated electrocorticographic (ECoG) recordings further showed the effectiveness of the ACAR. PMID:23708770
Modeling and system design for the LOFAR station digital processing
NASA Astrophysics Data System (ADS)
Alliot, Sylvain; van Veelen, Martijn
2004-09-01
In the context of the LOFAR preliminary design phase and in particular for the specification of the Station Digital Processing (SDP), a performance/cost model of the system was used. We present here the framework and the trajectory followed in this phase when going from requirements to specification. In the phased array antenna concepts for the next generation of radio telescopes (LOFAR, ATA, SKA) signal processing (multi-beaming and RFI mitigation) replaces the large antenna dishes. The embedded systems for these telescopes are major infrastructure cost items. Moreover, the flexibility and overall performance of the instrument depend greatly on them, therefore alternative solutions need to be investigated. In particular, the technology and the various data transport selections play a fundamental role in the optimization of the architecture. We proposed a formal method [1] of exploring these alternatives that has been followed during the SDP developments. Different scenarios were compared for the specification of the application (selection of the algorithms as well as detailed signal processing techniques) and in the specification of the system architecture (selection of high level topologies, platforms and components). It gave us inside knowledge on the possible trade-offs in the application and architecture domains. This was successful in providing firm basis for the design choices that are demanded by technical review committees.
1988 IEEE Aerospace Applications Conference, Park City, UT, Feb. 7-12, 1988, Digest
NASA Astrophysics Data System (ADS)
The conference presents papers on microwave applications, data and signal processing applications, related aerospace applications, and advanced microelectronic products for the aerospace industry. Topics include a high-performance antenna measurement system, microwave power beaming from earth to space, the digital enhancement of microwave component performance, and a GaAs vector processor based on parallel RISC microprocessors. Consideration is also given to unique techniques for reliable SBNR architectures, a linear analysis subsystem for CSSL-IV, and a structured singular value approach to missile autopilot analysis.
Optical Signal Processing: Poisson Image Restoration and Shearing Interferometry
NASA Technical Reports Server (NTRS)
Hong, Yie-Ming
1973-01-01
Optical signal processing can be performed in either digital or analog systems. Digital computers and coherent optical systems are discussed as they are used in optical signal processing. Topics include: image restoration; phase-object visualization; image contrast reversal; optical computation; image multiplexing; and fabrication of spatial filters. Digital optical data processing deals with restoration of images degraded by signal-dependent noise. When the input data of an image restoration system are the numbers of photoelectrons received from various areas of a photosensitive surface, the data are Poisson distributed with mean values proportional to the illuminance of the incoherently radiating object and background light. Optical signal processing using coherent optical systems is also discussed. Following a brief review of the pertinent details of Ronchi's diffraction grating interferometer, moire effect, carrier-frequency photography, and achromatic holography, two new shearing interferometers based on them are presented. Both interferometers can produce variable shear.
Software for biomedical engineering signal processing laboratory experiments.
Tompkins, Willis J; Wilson, J
2009-01-01
In the early 1990's we developed a special computer program called UW DigiScope to provide a mechanism for anyone interested in biomedical digital signal processing to study the field without requiring any other instrument except a personal computer. There are many digital filtering and pattern recognition algorithms used in processing biomedical signals. In general, students have very limited opportunity to have hands-on access to the mechanisms of digital signal processing. In a typical course, the filters are designed non-interactively, which does not provide the student with significant understanding of the design constraints of such filters nor their actual performance characteristics. UW DigiScope 3.0 is the first major update since version 2.0 was released in 1994. This paper provides details on how the new version based on MATLAB! works with signals, including the filter design tool that is the programming interface between UW DigiScope and processing algorithms.
Nikolaou, Kyriaki; Critchley, Hugo; Duka, Theodora
2013-01-01
Alcohol impairs inhibitory control, including the ability to terminate an initiated action. While there is increasing knowledge about neural mechanisms involved in response inhibition, the level at which alcohol impairs such mechanisms remains poorly understood. Thirty-nine healthy social drinkers received either 0.4 g/kg or 0.8 g/kg of alcohol, or placebo, and performed two variants of a Visual Stop-signal task during acquisition of functional magnetic resonance imaging (fMRI) data. The two task variants differed only in their instructions: in the classic variant (VSST), participants inhibited their response to a "Go-stimulus" when it was followed by a "Stop-stimulus". In the control variant (VSST_C), participants responded to the "Go-stimulus" even if it was followed by a "Stop-stimulus". Comparison of successful Stop-trials (Sstop)>Go, and unsuccessful Stop-trials (Ustop)>Sstop between the three beverage groups enabled the identification of alcohol effects on functional neural circuits supporting inhibitory behaviour and error processing. Alcohol impaired inhibitory control as measured by the Stop-signal reaction time, but did not affect other aspects of VSST performance, nor performance on the VSST_C. The low alcohol dose evoked changes in neural activity within prefrontal, temporal, occipital and motor cortices. The high alcohol dose evoked changes in activity in areas affected by the low dose but importantly induced changes in activity within subcortical centres including the globus pallidus and thalamus. Alcohol did not affect neural correlates of perceptual processing of infrequent cues, as revealed by conjunction analyses of VSST and VSST_C tasks. Alcohol ingestion compromises the inhibitory control of action by modulating cortical regions supporting attentional, sensorimotor and action-planning processes. At higher doses the impact of alcohol also extends to affect subcortical nodes of fronto-basal ganglia- thalamo-cortical motor circuits. In contrast, alcohol appears to have little impact on the early visual processing of infrequent perceptual cues. These observations clarify clinically-important effects of alcohol on behaviour.
Muszynski, C; Happillon, T; Azudin, K; Tylcz, J-B; Istrate, D; Marque, C
2018-05-08
Preterm birth is a major public health problem in developed countries. In this context, we have conducted research into outpatient monitoring of uterine electrical activity in women at risk of preterm delivery. The objective of this preliminary study was to perform automated detection of uterine contractions (without human intervention or tocographic signal, TOCO) by processing the EHG recorded on the abdomen of pregnant women. The feasibility and accuracy of uterine contraction detection based on EHG processing were tested and compared to expert decision using external tocodynamometry (TOCO) . The study protocol was approved by local Ethics Committees under numbers ID-RCB 2016-A00663-48 for France and VSN 02-0006-V2 for Iceland. Two populations of women were included (threatened preterm birth and labour) in order to test our system of recognition of the various types of uterine contractions. EHG signal acquisition was performed according to a standardized protocol to ensure optimal reproducibility of EHG recordings. A system of 18 Ag/AgCl surface electrodes was used by placing 16 recording electrodes between the woman's pubis and umbilicus according to a 4 × 4 matrix. TOCO was recorded simultaneously with EHG recording. EHG signals were analysed in real-time by calculation of the nonlinear correlation coefficient H 2 . A curve representing the number of correlated pairs of signals according to the value of H 2 calculated between bipolar signals was then plotted. High values of H 2 indicated the presence of an event that may correspond to a contraction. Two tests were performed after detection of an event (fusion and elimination of certain events) in order to increase the contraction detection rate. The EHG database contained 51 recordings from pregnant women, with a total of 501 contractions previously labelled by analysis of the corresponding tocographic recording. The percentage recognitions obtained by application of the method based on coefficient H 2 was 100% with 782% of false alarms. Addition of fusion and elimination tests to the previously obtained detections allowed the false alarm rate to be divided by 8.5, while maintaining an excellent detection rate (96%). These preliminary results appear to be encouraging for monitoring of uterine contractions by algorithm-based automated detection to process the electrohysterographic signal (EHG). This compact recording system, based on the use of surface electrodes attached to the skin, appears to be particularly suitable for outpatient monitoring of uterine contractions, possibly at home, allowing telemonitoring of pregnancies. One of the advantages of EHG processing is that useful information concerning contraction efficiency can be extracted from this signal, which is not possible with the TOCO signal.
Liang, Zhenwei; Li, Yaoming; Zhao, Zhan; Xu, Lizhang
2015-01-01
Grain separation losses is a key parameter to weigh the performance of combine harvesters, and also a dominant factor for automatically adjusting their major working parameters. The traditional separation losses monitoring method mainly rely on manual efforts, which require a high labor intensity. With recent advancements in sensor technology, electronics and computational processing power, this paper presents an indirect method for monitoring grain separation losses in tangential-axial combine harvesters in real-time. Firstly, we developed a mathematical monitoring model based on detailed comparative data analysis of different feeding quantities. Then, we developed a grain impact piezoelectric sensor utilizing a YT-5 piezoelectric ceramic as the sensing element, and a signal process circuit designed according to differences in voltage amplitude and rise time of collision signals. To improve the sensor performance, theoretical analysis was performed from a structural vibration point of view, and the optimal sensor structural has been selected. Grain collide experiments have shown that the sensor performance was greatly improved. Finally, we installed the sensor on a tangential-longitudinal axial combine harvester, and grain separation losses monitoring experiments were carried out in North China, which results have shown that the monitoring method was feasible, and the biggest measurement relative error was 4.63% when harvesting rice. PMID:25594592
Liang, Zhenwei; Li, Yaoming; Zhao, Zhan; Xu, Lizhang
2015-01-14
Grain separation losses is a key parameter to weigh the performance of combine harvesters, and also a dominant factor for automatically adjusting their major working parameters. The traditional separation losses monitoring method mainly rely on manual efforts, which require a high labor intensity. With recent advancements in sensor technology, electronics and computational processing power, this paper presents an indirect method for monitoring grain separation losses in tangential-axial combine harvesters in real-time. Firstly, we developed a mathematical monitoring model based on detailed comparative data analysis of different feeding quantities. Then, we developed a grain impact piezoelectric sensor utilizing a YT-5 piezoelectric ceramic as the sensing element, and a signal process circuit designed according to differences in voltage amplitude and rise time of collision signals. To improve the sensor performance, theoretical analysis was performed from a structural vibration point of view, and the optimal sensor structural has been selected. Grain collide experiments have shown that the sensor performance was greatly improved. Finally, we installed the sensor on a tangential-longitudinal axial combine harvester, and grain separation losses monitoring experiments were carried out in North China, which results have shown that the monitoring method was feasible, and the biggest measurement relative error was 4.63% when harvesting rice.
Processing of simple and complex acoustic signals in a tonotopically organized ear
Hummel, Jennifer; Wolf, Konstantin; Kössl, Manfred; Nowotny, Manuela
2014-01-01
Processing of complex signals in the hearing organ remains poorly understood. This paper aims to contribute to this topic by presenting investigations on the mechanical and neuronal response of the hearing organ of the tropical bushcricket species Mecopoda elongata to simple pure tone signals as well as to the conspecific song as a complex acoustic signal. The high-frequency hearing organ of bushcrickets, the crista acustica (CA), is tonotopically tuned to frequencies between about 4 and 70 kHz. Laser Doppler vibrometer measurements revealed a strong and dominant low-frequency-induced motion of the CA when stimulated with either pure tone or complex stimuli. Consequently, the high-frequency distal area of the CA is more strongly deflected by low-frequency-induced waves than by high-frequency-induced waves. This low-frequency dominance will have strong effects on the processing of complex signals. Therefore, we additionally studied the neuronal response of the CA to native and frequency-manipulated chirps. Again, we found a dominant influence of low-frequency components within the conspecific song, indicating that the mechanical vibration pattern highly determines the neuronal response of the sensory cells. Thus, we conclude that the encoding of communication signals is modulated by ear mechanics. PMID:25339727
Noise in any frequency range can enhance information transmission in a sensory neuron
NASA Astrophysics Data System (ADS)
Levin, Jacob E.
1997-05-01
The effect of noise on the neural encoding of broadband signals was investigated in the cricket cercal system, a mechanosensory system sensitive to small near-field air particle disturbances. Known air current stimuli were presented to the cricket through audio speakers in a controlled environment in a variety of background noise conditions. Spike trains from the second layer of neuronal processing, the primary sensory interneurons, were recorded with intracellular Electrodes and the performance of these neurons characterized with the tools of information theory. SNR, mutual information rates, and other measures of encoding accuracy were calculated for single frequency, narrowband, and broadband signals over the entire amplitude sensitivity range of the cells, in the presence of uncorrelated noise background also spanning the cells' frequency and amplitude sensitivity range. Significant enhancements of transmitted information through the addition of external noise were observed regardless of the frequency range of either the signal or noise waveforms, provided both were within the operating range of the cell. Considerable improvements in signal encoding were observed for almost an entire order of magnitude of near-threshold signal amplitudes. This included sinusoidal signals embedded in broadband white noise, broadband signals in broadband noise, and even broadband signals presented with narrowband noise in a completely non-overlapping frequency range. The noise related increases in mutual information rate for broadband signals were as high as 150%, and up to 600% increases in SNR were observed for sinusoidal signals. Additionally, it was shown that the amount of information about the signal carried, on average, by each spike was INCREASED for small signals when presented with noise—implying that added input noise can, in certain situations, actually improve the accuracy of the encoding process itself.
NASA Astrophysics Data System (ADS)
Suryadi; Puranto, P.; Adinanta, H.; Waluyo, T. B.; Priambodo, P. S.
2017-04-01
Microcontroller based acquisition and processing unit (MAPU) has been developed to measure vibration signal from fiber optic vibration sensor. The MAPU utilizes a 32-bit ARM microcontroller to perform acquisition and processing of the input signal. The input signal is acquired with 12 bit ADC and processed using FFT method to extract frequency information. Stability of MAPU is characterized by supplying a constant input signal at 500 Hz for 29 hours and shows a stable operation. To characterize the frequency response, input signal is swapped from 20 to 1000 Hz with 20 Hz interval. The characterization result shows that MAPU can detect input signal from 20 to 1000 Hz with minimum signal of 4 mV RMS. The experiment has been set that utilizes the MAPU with singlemode-multimode-singlemode (SMS) fiber optic sensor to detect vibration which is induced by a transducer in a wooden platform. The experimental result indicates that vibration signal from 20 to 600 Hz has been successfully detected. Due to the limitation of the vibration source used in the experiment, vibration signal above 600 Hz is undetected.
Colt: an experiment in wormhole run-time reconfiguration
NASA Astrophysics Data System (ADS)
Bittner, Ray; Athanas, Peter M.; Musgrove, Mark
1996-10-01
Wormhole run-time reconfiguration (RTR) is an attempt to create a refined computing paradigm for high performance computational tasks. By combining concepts from field programmable gate array (FPGA) technologies with data flow computing, the Colt/Stallion architecture achieves high utilization of hardware resources, and facilitates rapid run-time reconfiguration. Targeted mainly at DSP-type operations, the Colt integrated circuit -- a prototype wormhole RTR device -- compares favorably to contemporary DSP alternatives in terms of silicon area consumed per unit computation and in computing performance. Although emphasis has been placed on signal processing applications, general purpose computation has not been overlooked. Colt is a prototype that defines an architecture not only at the chip level but also in terms of an overall system design. As this system is realized, the concept of wormhole RTR will be applied to numerical computation and DSP applications including those common to image processing, communications systems, digital filters, acoustic processing, real-time control systems and simulation acceleration.
Ce(III, IV)-MOF electrocatalyst as signal-amplifying tag for sensitive electrochemical aptasensing.
Yu, Hua; Han, Jing; An, Shangjie; Xie, Gang; Chen, Sanping
2018-06-30
Metal-organic frameworks (MOFs) as a new class of porous materials have attracted increasing attention in the field of biomimetic catalysis. This study firstly reports a mixed valence state Ce-MOF possessing intrinsic catalytic activity towards thionine (Thi), and its application in constructing an amplified electrochemical aptasensor for thrombin detection. As noticed, the novel catalytic process combines the advantages of 3D infinite extension of the Ce(III, IV)-MOF skeleton containing large amounts of catalytic sites and spontaneous recycling of the Ce(III)/Ce(IV) for electrochemical reduction of Thi, thereby presenting amplified electrochemical signals. To further improve the aptasensor performance, the high selectivity of proximity binding-induced DNA strand displacement and high efficiency of exonuclease III-assisted recycling amplification were incorporated into the assay. The aptasensor was employed to detect thrombin in complex serum samples, which shows high sensitivity, specificity, stability and reproducibility. This work offers an opportunity to develop MOF-based electrocatalyst as signal-amplifying tag for versatile bioassays and catalytic applications. Copyright © 2018 Elsevier B.V. All rights reserved.
High stability integrated Tri-axial fluxgate sensor with suspended technology
NASA Astrophysics Data System (ADS)
Wang, Chen; Teng, Yuntian; Wang, Xiaomei; Fan, Xiaoyong; Wu, Qiong
2017-04-01
The relative geomagnetic record of China Geomagnetic Network of China(GNC) has been digitized, network, meanwhile achieving second data acquisition and storage during after 9th five-year and 10th five-year plan upgraded. Currently the relative record in geomagnetic observatories are generally two sets of the same type instrument with parallel observation, which could distinguish the differential between observation instrument failures and environmental interference, and ensure the continuity and integrity of the observation data. Fluxgate magnetometer has become mainstream equipment for relative geomagnetic record because of its low noise, high sensitivity, and fast response. There is a problem about data inconsistency by the same type of instrument in the same station though few years observation data analysis. The researchers have done a lot of experiments and found three main error sources:1. The instrument performances, due to the limitation of manufacturing and assembly process level it is difficult to ensure the orthogonality of the instrument; other performances of scale, zero offset and temperature coefficient; 2. horizontal error, which introduced by the initial installation process due to horizontal adjustment and pillar tilling due to long-term observations; 3.The observation environment, the temperature and humidity, power supply system. The new fluxgate magnetometer uses special nonmagnetic gimbaled (made by beryllium / bronze material) construction for suspension, so the fluxgate sensor is fixed at the suspended platform in order to automatically keep the horizontal level. The advantage of this design is to eliminate horizontal error introduced by the initial installation process due to horizontal adjustment and pillar tilling due to long-term observations. The signal processing circuit board is fixed on the top of the suspended platform with certain distance to ensure the static and dynamic magnetic field produced by circuit board no effect to the sensor, so we could get flexible instrument due to signal attenuation resulting signal transmission cable limited length.
Cao, Lu; Graauw, Marjo de; Yan, Kuan; Winkel, Leah; Verbeek, Fons J
2016-05-03
Endocytosis is regarded as a mechanism of attenuating the epidermal growth factor receptor (EGFR) signaling and of receptor degradation. There is increasing evidence becoming available showing that breast cancer progression is associated with a defect in EGFR endocytosis. In order to find related Ribonucleic acid (RNA) regulators in this process, high-throughput imaging with fluorescent markers is used to visualize the complex EGFR endocytosis process. Subsequently a dedicated automatic image and data analysis system is developed and applied to extract the phenotype measurement and distinguish different developmental episodes from a huge amount of images acquired through high-throughput imaging. For the image analysis, a phenotype measurement quantifies the important image information into distinct features or measurements. Therefore, the manner in which prominent measurements are chosen to represent the dynamics of the EGFR process becomes a crucial step for the identification of the phenotype. In the subsequent data analysis, classification is used to categorize each observation by making use of all prominent measurements obtained from image analysis. Therefore, a better construction for a classification strategy will support to raise the performance level in our image and data analysis system. In this paper, we illustrate an integrated analysis method for EGFR signalling through image analysis of microscopy images. Sophisticated wavelet-based texture measurements are used to obtain a good description of the characteristic stages in the EGFR signalling. A hierarchical classification strategy is designed to improve the recognition of phenotypic episodes of EGFR during endocytosis. Different strategies for normalization, feature selection and classification are evaluated. The results of performance assessment clearly demonstrate that our hierarchical classification scheme combined with a selected set of features provides a notable improvement in the temporal analysis of EGFR endocytosis. Moreover, it is shown that the addition of the wavelet-based texture features contributes to this improvement. Our workflow can be applied to drug discovery to analyze defected EGFR endocytosis processes.
Unattended Radiation Sensor Systems for Remote Terrestrial Applications and Nuclear Nonproliferation
NASA Astrophysics Data System (ADS)
van den Berg, Lodewijk; Proctor, Alan E.; Pohl, Ken R.; Bolozdynya, Alex; De Vito, Raymond
2002-10-01
The design of instrumentation for remote sensing presents special requirements in the areas of power consumption, long-term stability, and compactness. At the same time, the high sensitivity and resolution of the devices needs to be preserved. This paper will describe several instruments suitable for remote sensing developed under the sponsorship of the Defense Threat Reduction Agency (DTRA). The first is a system consisting of a mechanical cryocooler coupled with a high-purity germanium (HPGe) detector. The system is portable and can be operated for extended periods of time at remote locations without servicing. The second is a hand-held radiation intensity meter with high sensitivity that can operate for several months on two small batteries. Intensity signals above a set limit can be transmitted to a central monitoring station by cable or radio transmission. The third is a small module incorporating one or more high resolution mercuric iodide detectors and front end electronics. This unit can be operated using standard electronic systems, or it can be connected to a separately designed, pocket-size module that can provide power to any detector system and can process detector signals. It incorporates a shaping amplifier, a multichannel analyzer, and gated integrator electronics to process the slow signal pulses generated by room temperature solid state detectors. The fourth is a high pressure xenon (HPXe) ionization chamber filled with very pure xenon gas at high pressure, so that the efficiency and spectral resolution are increased above the normally available gas-filled tubes. The performance of these systems will be described and discussed.
Chiew, Kimberly S.; Braver, Todd S.
2013-01-01
Motivational manipulations, such as the presence of performance-contingent reward incentives, can have substantial influences on cognitive control. Previous evidence suggests that reward incentives may enhance cognitive performance specifically through increased preparatory, or proactive, control processes. The present study examined reward influences on cognitive control dynamics in the AX-Continuous Performance Task (AX-CPT), using high-resolution pupillometry. In the AX-CPT, contextual cues must be actively maintained over a delay in order to appropriately respond to ambiguous target probes. A key feature of the task is that it permits dissociable characterization of preparatory, proactive control processes (i.e., utilization of context) and reactive control processes (i.e., target-evoked interference resolution). Task performance profiles suggested that reward incentives enhanced proactive control (context utilization). Critically, pupil dilation was also increased on reward incentive trials during context maintenance periods, suggesting trial-specific shifts in proactive control, particularly when context cues indicated the need to overcome the dominant target response bias. Reward incentives had both transient (i.e., trial-by-trial) and sustained (i.e., block-based) effects on pupil dilation, which may reflect distinct underlying processes. The transient pupillary effects were present even when comparing against trials matched in task performance, suggesting a unique motivational influence of reward incentives. These results suggest that pupillometry may be a useful technique for investigating reward motivational signals and their dynamic influence on cognitive control. PMID:23372557