Science.gov

Sample records for high-power laser diode

  1. High power, high reliability laser diodes

    NASA Astrophysics Data System (ADS)

    Scifres, D. R.; Welch, D. F.; Craig, R. R.; Zucker, E.; Major, J. S.; Harnagel, G. L.; Sakamoto, M.; Haden, J. M.; Endriz, J. G.; Kung, H.

    1992-06-01

    Results are presented on catastrophic damage limits and life-test measurements for four types of high-power laser diodes operating at wavelengths between 980 nm and 690 nm. The laser diodes under consideration are CW multimode lasers, CW laser bars, quasi-CW bars/2D stacked arrays, and single transverse mode lasers.

  2. Advances in high power semiconductor diode lasers

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyu; Zhong, Li

    2008-03-01

    High power semiconductor lasers have broad applications in the fields of military and industry. Recent advances in high power semiconductor lasers are reviewed mainly in two aspects: improvements of diode lasers performance and optimization of packaging architectures of diode laser bars. Factors which determine the performance of diode lasers, such as power conversion efficiency, temperature of operation, reliability, wavelength stabilization etc., result from a combination of new semiconductor materials, new diode structures, careful material processing of bars. The latest progress of today's high-power diode lasers at home and abroad is briefly discussed and typical data are presented. The packaging process is of decisive importance for the applicability of high-power diode laser bars, not only technically but also economically. The packaging techniques include the material choosing and the structure optimizing of heat-sinks, the bonding between the array and the heat-sink, the cooling and the fiber coupling, etc. The status of packaging techniques is stressed. There are basically three different diode package architectural options according to the integration grade. Since the package design is dominated by the cooling aspect, different effective cooling techniques are promoted by different package architectures and specific demands. The benefit and utility of each package are strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made. Modularity of package for special application requirements is an important developing tendency for high power diode lasers.

  3. High power diode lasers reliability experiment

    NASA Astrophysics Data System (ADS)

    Lu, Guoguang; Xie, Shaofeng; Hao, Mingming; Huang, Yun; En, Yunfei

    2013-12-01

    In order to evaluate and obtain the actual lifetime data of high power laser diodes, an automated high power laser diodes reliability experiment was developed and reported in this paper. This computer controlled setup operates the laser diodes 24 hours a day, the parameters such as output power, wavelength were test once in one hour. The experiment has 60 work stations, the temperature control range is from 25°C to 70°C, and the output power of the aging device is beyond 20W.

  4. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  5. High power coherent polarization locked laser diode.

    PubMed

    Purnawirman; Phua, P B

    2011-03-14

    We have coherently combined a broad area laser diode array to obtain high power single-lobed output by using coherent polarization locking. The single-lobed coherent beam is achieved by spatially combining four diode emitters using walk-off crystals and waveplates while their phases are passively locked via polarization discrimination. While our previous work focused on coherent polarization locking of diode in Gaussian beams, we demonstrate in this paper, the feasibility of the same polarization discrimination for locking multimode beams from broad area diode lasers. The resonator is designed to mitigate the loss from smile effect by using retro-reflection feedback in the cavity. In a 980 nm diode array, we produced 7.2 W coherent output with M2 of 1.5x11.5. The brightness of the diode is improved by more than an order of magnitude.

  6. High power diode and solid state lasers

    NASA Astrophysics Data System (ADS)

    Eichler, H. J.; Fritsche, H.; Lux, O.; Strohmaier, S. G.

    2017-01-01

    Diode lasers are now basic pump sources of crystal, glass fiber and other solid state lasers. Progress in the performance of all these lasers is related. Examples of recently developed diode pumped lasers and Raman frequency converters are described for applications in materials processing, Lidar and medical surgery.

  7. Industrial applications of high power diode lasers in materials processing

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich

    2003-03-01

    Diode lasers are widely used in communication, computer and consumer electronics technology. These applications are based on systems, which provide power in the milliwatt range. However, in the mean time high power diode lasers have reached the kilowatt power range. This became possible by special cooling and mounting as well as beam combination and beam forming technologies. Such units are nowadays used as a direct source for materials processing. High power diode lasers have entered the industrial manufacturing area [Proceedings of the Advanced Laser Technologies Conference 2001, Proc. SPIE, Constanta, Romania, 11-14 September 2001].

  8. High power diode lasers for solid-state laser pumps

    NASA Technical Reports Server (NTRS)

    Linden, Kurt J.; Mcdonnell, Patrick N.

    1994-01-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  9. High power diode lasers for solid-state laser pumps

    NASA Astrophysics Data System (ADS)

    Linden, Kurt J.; McDonnell, Patrick N.

    1994-02-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  10. Scaling brilliance of high power laser diodes

    NASA Astrophysics Data System (ADS)

    König, Harald; Grönninger, Guenther; Lauer, Christian; Reill, Wolfgang; Arzberger, Markus; Strauß, Uwe; Kissel, Heiko; Biesenbach, Jens; Kösters, Arnd; Malchus, Joerg; Krause, Volker K.

    2010-02-01

    New direct diode laser systems and fiber lasers require brilliant fiber coupled laser diodes for efficient operation. In the German funded project HEMILAS different laser bar designs are investigated with tailored beam parameter products adapted for efficient fiber coupling. In this paper we demonstrate results on 9xx and 1020nm bars suitable for coupling into 200μm fibers. With special facet technology and optimised epitaxial structure COD-free laser bars were fabricated with maximum efficiency above 66%. For short bars consisting of five 100μm wide emitters 75W CW maximum output power was reached. In QCW-mode up to 140W are demonstrated. The 10% fill factor bars with 4mm cavity are mounted with hard solder. Lifetime tests in long pulse mode with 35W output power exceed 5000 hours of testing without degradation or spontaneous failures. Slow axis divergence stays below 7° up to power levels of 40W and is suitable for simple fiber coupling into 200μm NA 0.22 fibers with SAC and FAC lenses. For fiber coupling based on beam rearrangement with step mirrors, bars with higher fill factor of 50% were fabricated and tested. The 4mm cavity short bars reach efficiencies above 60%. Lifetime tests at accelerated powers were performed. Finally fiber coupling results with output powers of up to 2.4 kW and beam quality of 30 mm mrad are demonstrated.

  11. Laser welding of polymers using high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich G.; Russek, Ulrich A.

    2002-06-01

    Laser welding of polymers using high power diode lasers offers specific process advantages over conventional technologies, such as short process times while providing optically and qualitatively valuable weld seams, contactless yielding of the joining energy, absence of process induced vibrations, imposing minimal thermal stress and avoiding particle generation. Furthermore, this method exhibits high integration capabilities and automatization potential. Moreover, because of the current favorable cost development within the high power diode laser market laser welding of polymers has become more and more an industrially accepted joining method. This novel technology permits both, reliable high quality joining of mechanically and electronically highly sensitive micro components and hermetic sealing of macro components. There are different welding strategies available, which are adaptable to the current application. Within the frame of this discourse scientific and also application oriented result concerning laser transmission welding of polymers using preferably diode lasers are presented. Besides the sue laser system the fundamental process strategies as well as decisive process parameters are illustrated. The importance of optical, thermal and mechanical properties is discussed. Applications at real technical components will be presented, demonstrating the industrial implementation capability and the advantages of a novel technology.

  12. Laser welding of polymers using high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich G.; Russek, Ulrich A.

    2003-09-01

    Laser welding of polymers using high power diode lasers offers specific process advantages over conventional technologies, such as short process times while providing optically and qualitatively valuable weld seams, contactless yielding of the joining energy, absence of process induced vibrations, imposing minimal thermal stress and avoiding particle generation. Furthermore this method exhibits high integration capabilities and automatization potential. Moreover, because of the current favorable cost development within the high power diode laser market laser welding of polymers has become more and more an industrially accepted joining method. This novel technology permits both, reliable high quality joining of mechanically and electronically highly sensitive micro components and hermetic sealing of macro components. There are different welding strategies available, which are adaptable to the current application. Within the frame of this discourse scientific and also application oriented results concerning laser transmission welding of polymers using preferably diode lasers are presented. Besides the used laser systems the fundamental process strategies as well as decisive process parameters are illustrated. The importance of optical, thermal and mechanical properties is discussed. Applications at real technical components will be presented, demonstrating the industrial implementation capability and the advantages of a novel technology.

  13. Commercial applications of high-powered laser diodes

    NASA Astrophysics Data System (ADS)

    Cunningham, David L.; Jacobs, Richard D.

    1995-04-01

    The development of high power laser diodes using surface emitting distributed feedback (SEDFB) techniques has matured to the point where serious marketing analyses have been conducted. While development of the base technology continues, the initiation of systems applications and manufacturing engineering has begun. This effort, in direct response to growing market demand, is the critical bridge between research and the development of viable products for commercial applications. This paper addresses the history of laser technology development, the current status of high powered laser diode development, the forces defining current and future markets and the role of `conventional wisdom' in laser technology and market development.

  14. Diode pumped alkali vapor lasers for high power applications

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.; Komashko, A.

    2008-02-01

    General Atomics has been engaged in the development of diode pumped alkali vapor lasers. We have been examining the design space looking for designs that are both efficient and easily scalable to high powers. Computationally, we have looked at the effect of pump bandwidth on laser performance. We have also looked at different lasing species. We have used an alexandrite laser to study the relative merits of different designs. We report on the results of our experimental and computational studies.

  15. In-volume heating using high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Denisenkov, Valentin S.; Kiyko, Vadim V.; Vdovin, Gleb V.

    2015-03-01

    High-power lasers are useful instruments suitable for applications in various fields; the most common industrial applications include cutting and welding. We propose a new application of high-power laser diodes as in-bulk heating source for food industry. Current heating processes use surface heating with different approaches to make the heat distribution more uniform and the process more efficient. High-power lasers can in theory provide in-bulk heating which can sufficiently increase the uniformity of heat distribution thus making the process more efficient. We chose two media (vegetable fat and glucose) for feasibility experiments. First, we checked if the media have necessary absorption coefficients on the wavelengths of commercially available laser diodes (940-980 nm). This was done using spectrophotometer at 700-1100 nm which provided the dependences of transmission from the wavelength. The results indicate that vegetable fat has noticeable transmission dip around 925 nm and glucose has sufficient dip at 990 nm. Then, after the feasibility check, we did numerical simulation of the heat distribution in bulk using finite elements method. Based on the results, optimal laser wavelength and illuminator configuration were selected. Finally, we carried out several pilot experiments with high-power diodes heating the chosen media.

  16. Welding of aluminum alloy with high power direct diode laser

    NASA Astrophysics Data System (ADS)

    Abe, Nobuyuki; Morikawa, Atsuhito; Tsukamoto, Masahiro; Maeda, Koichi; Namba, Keizo

    2003-06-01

    Characterized by high conversion efficiency, small size, light weight and a long lifetime, high power diode lasers are currently being developed for application to various types of metal fabrication, such as welding. In this report, a 4kW high power direct diode laser was used to weld aluminum alloys, which are the focus of increasing attention from the automobile industry because of their light weight, high formability and easy recyclability. The applicability of a direct diode laser to aluminum alloy bead-on plate, butt and lap-fillet welding was studied under various welding conditions. A sound bead without cracks was successfully obtained when 1 mm thick aluminum alloy was welded by bead-on welding at a speed of 12m/min. Moreover, the bead cross section was heat conduction welding type rather than the keyhole welding type of conventional laser welding. Investigation of the welding phenomena with a high-speed video camera showed no spattering or laser plasma, so there was no problem with laser plasma damaging the focusing lens despite the diode laser's short focusing distance.

  17. Further development of high-power pump laser diodes

    NASA Astrophysics Data System (ADS)

    Schmidt, Berthold; Lichtenstein, Norbert; Sverdlov, Boris; Matuschek, Nicolai; Mohrdiek, Stefan; Pliska, Tomas; Mueller, Juergen; Pawlik, Susanne; Arlt, Sebastian; Pfeiffer, Hans-Ulrich; Fily, Arnaud; Harder, Christoph

    2003-12-01

    AlGaAs/InGaAs based high power pump laser diodes with wavelength of around 980 nm are key products within erbium doped fiber amplifiers (EDFA) for today's long haul and metro-communication networks, whereas InGaAsP/InP based laser diodes with 14xx nm emission wavelength are relevant for advanced, but not yet widely-used Raman amplifiers. Due to the changing industrial environment cost reduction becomes a crucial factor in the development of new, pump modules. Therefore, pump laser chips were aggressively optimized in terms of power conversion and thermal stability, which allows operation without active cooling at temperatures exceeding 70°C. In addition our submarine-reliable single mode technology was extended to high power multi-mode laser diodes. These light sources can be used in the field of optical amplifiers as well as for medical, printing and industrial applications. Improvements of pump laser diodes in terms of power conversion efficiency, fiber Bragg grating (FBG) locking performance of single mode devices, noise reduction and reliability will be presented.

  18. Progress in efficiency-optimized high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Pietrzak, A.; Hülsewede, R.; Zorn, M.; Hirsekorn, O.; Sebastian, J.; Meusel, J.; Hennig, P.; Crump, P.; Wenzel, H.; Knigge, S.; Maaßdorf, A.; Bugge, F.; Erbert, G.

    2013-10-01

    High-power diode lasers are highly efficient sources of optical energy for industrial and defense applications, either directly or as pump sources for solid state or fiber lasers. We review here how advances in diode laser design and device technology have enabled the performance to be continuously improved. An overview is presented of recent progress at JENOPTIK in the development of commercial diode lasers optimized for peak performance, robust high-yield manufacture and long lifetimes. These diode lasers are tailored to simultaneously operate with reduced vertical carrier leakage, low thermal and electrical resistance and low optical losses. In this way, the highest electro-optical efficiencies are sustained to high currents. For example, 940-nm bars with high fill factor are shown to deliver continuous wave (CW) output powers of 280 W with conversion efficiency of < 60%. These bars have a vertical far field angle with 95% power content of just 40°. In addition, 955-nm single emitters with 90μm stripe width deliver 12 W CW output with power conversion efficiency at the operating point of 69%. In parallel, the Ferdinand-Braun-Institut (FBH) is working to enable the next generation of high power diode lasers, by determining the key limitations to performance and by pioneering new technologies to address these limits. An overview of recent studies at the FBH will therefore also be presented. Examples will include structures with further reduced far field angles, higher lateral beam quality and increased peak power and efficiency. Prospects for further performance improvement will be discussed.

  19. High-power diode lasers and their direct industrial applications

    NASA Astrophysics Data System (ADS)

    Loosen, Peter; Treusch, Hans-Georg; Haas, C. R.; Gardenier, U.; Weck, Manfred; Sinnhoff, V.; Kasperowski, S.; vor dem Esche, R.

    1995-04-01

    The paper summarizes activities of the two Fraunhofer-Institutes ILT and IPT concerning the development of high-power laser-diode stacks and their direct industrial applications. With microchannel coolers in copper technology and ultra-precision machined micro-optics a stack of 330 - 400 W total power with a maximum intensity of the focused beam of 2 104 W/cm2 has been built and tested in first applications. By further improvements of the lens-fabrication and -alignment technology as well as increase of the number of stacked diodes an output power in the kW-range and intensities up to about 105 W/cm2 shall be achieved in the near future. Applications of such laser sources in surface technology, in the processing of plastics, in laser-assisted machining and in brazing are discussed.

  20. Active cooling solutions for high power laser diodes stacks

    NASA Astrophysics Data System (ADS)

    Karni, Yoram; Klumel, Genady; Levy, Moshe; Berk, Yuri; Openhaim, Yaki; Gridish, Yaakov; Elgali, Asher; Avisar, Meir; Blonder, Moshe; Sagy, Hila; Gertsenshtein, Alex

    2008-02-01

    High power water cooled diode lasers find increasing demand in biomedical, cosmetic and industrial applications, where very high brightness and power are required. The high brightness is achieved either by increasing the power of each bar or by reducing the emitting area of the stacks. Two new products will be presented: Horizontal CW stacks with output power as high as 1kW using 80 W bars with emitting area width as low as 50 μm Vertical QCW stacks with output power as high as 1.2kW using 120 W bars. Heat removal from high power laser stacks often requires microchannel coolers operated with finely filtered deionized (DI) water. However, for certain industrial applications the reliability of this cooling method is widely considered insufficient due to leakage failures caused the highly corrosive DI water. Two solutions to the above problem will be discussed. A microchannel cooler-based package, which vastly reduces the corrosion problem, and a novel high-power laser diode stack that completely eliminates it. The latter solution is especially effective for pulsed applications in high duty cycle range.

  1. Two photon absorption in high power broad area laser diodes

    NASA Astrophysics Data System (ADS)

    Dogan, Mehmet; Michael, Christopher P.; Zheng, Yan; Zhu, Lin; Jacob, Jonah H.

    2014-03-01

    Recent advances in thermal management and improvements in fabrication and facet passivation enabled extracting unprecedented optical powers from laser diodes (LDs). However, even in the absence of thermal roll-over or catastrophic optical damage (COD), the maximum achievable power is limited by optical non-linear effects. Due to its non-linear nature, two-photon absorption (TPA) becomes one of the dominant factors that limit efficient extraction of laser power from LDs. In this paper, theoretical and experimental analysis of TPA in high-power broad area laser diodes (BALD) is presented. A phenomenological optical extraction model that incorporates TPA explains the reduction in optical extraction efficiency at high intensities in BALD bars with 100μm-wide emitters. The model includes two contributions associated with TPA: the straightforward absorption of laser photons and the subsequent single photon absorption by the holes and electrons generated by the TPA process. TPA is a fundamental limitation since it is inherent to the LD semiconductor material. Therefore scaling the LDs to high power requires designs that reduce the optical intensity by increasing the mode size.

  2. High power laser diodes for the NASA direct detection laser transceiver experiment

    NASA Technical Reports Server (NTRS)

    Seery, Bernard D.; Holcomb, Terry L.

    1988-01-01

    High-power semiconductor laser diodes selected for use in the NASA space laser communications experiments are discussed. The diode selection rationale is reviewed, and the laser structure is shown. The theory and design of the third mirror lasers used in the experiments are addressed.

  3. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  4. Industrial high-power diode lasers: reliability, power, and brightness

    NASA Astrophysics Data System (ADS)

    Strohmaier, Stephan; An, Haiyan; Vethake, Thilo

    2012-03-01

    High power semiconductor lasers, single emitters and bars are developing fast. During the last decade key parameters of diode lasers, such as beam quality, power, spatial and spectral brightness, efficiency as well as reliability have been greatly improved. However, often only individual parameters have been optimized, accepting an adverse effect in the other key parameters. For demanding industrial applications in most cases it is not sufficient to achieve a record value in one of the parameters, on the contrary it is necessary to optimize all the mentioned parameters simultaneously. To be able to achieve this objective it is highly advantageous to have insight in the whole process chain, from epitaxial device structure design and growth, wafer processing, mounting, heat sink design, product development and finally the customer needs your final product has to fulfill. In this publication an overview of recent advances in industrial diode lasers at TRUMPF will be highlighted enabling advanced applications for both high end pump sources as well as highest brightness direct diode.

  5. High-power diode lasers for optical communications applications

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Goldstein, B.; Channin, D. J.

    1985-01-01

    High-power, single-mode, double-heterojunction AlGaAs diode lasers are being developed to meet source requirements for both fiber optic local area network and free space communications systems. An individual device, based on the channeled-substrate-planar (CSP) structure, has yielded single spatial and longitudinal mode outputs of up to 90 mW CW, and has maintained a single spatial mode to 150 mW CW. Phase-locked arrays of closely spaced index-guided lasers have been designed and fabricated with the aim of multiplying the outputs of the individual devices to even higher power levels in a stable, single-lobe, anastigmatic beam. The optical modes of the lasers in such arrays can couple together in such a way that they appear to be emanating from a single source, and can therefore be efficiently coupled into optical communications systems. This paper will review the state of high-power laser technology and discuss the communication system implications of these devices.

  6. Optical monitoring of high power direct diode laser cladding

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Farahmand, Parisa; Kovacevic, Radovan

    2014-12-01

    Laser cladding is one of the most advanced surface modification techniques which can be used to build and repair high-value components. High power direct diode laser (HPDDL) offers unique quality and cost advantages over other lasers (CO2, Nd:YAG). Especially its rectangular laser beam with top-hat intensity distribution makes HPDDL an ideal tool for large area cladding. In order to utilize this technique successfully, the development of on-line monitoring and process control is necessary. In this study, an optical monitoring system consisting of a high-speed CCD camera, a pyrometer, and an infrared camera was used to analyze the mass- and heat-transfer in the cladding process. The particle transport in flight was viewed by a high-speed CCD camera; the interaction between powder flow and laser beam was observed by an infrared camera; and the thermal behavior of the molten pool was recorded by the pyrometer and the infrared camera. The effects of the processing parameters on the laser attenuation, particle heating and clad properties were investigated based on the obtained signals. The optical monitoring method improved the understanding about mutual interrelated phenomena in the cladding process.

  7. New material options for high-power diode laser packaging

    NASA Astrophysics Data System (ADS)

    Zweben, Carl H.

    2004-06-01

    Traditional materials have serious deficiencies in meeting requirements for thermal management and minimization of thermal stresses in high-power laser diode packaging. Copper, the standard material for applications requiring high thermal conductivity, has a coefficient of thermal expansion (CTE) that is much larger than those of ceramics and laser diodes, giving rise to thermal stresses when packages are subjected to thermal excursions. Traditional materials with low CTEs have thermal conductivities that are little or no better than that of aluminum. There are an increasing number of new packaging materials with low, tailorable CTEs and thermal conductivities up to four times those of copper that overcome these limitations. The ability to tailor material CTE has been used to solve critical warping problems in manufacturing, increasing yield from 5% to over 99%. Advanced materials fall into six categories: monolithic carbonaceous materials, metal matrix composites, carbon/carbon composites, ceramic matrix composites, polymer matrix composites, and advanced metallic alloys. This paper provides an overview of the state of the art of advanced packaging materials, including their key properties, state of maturity, using composites to fix manufacturing problems, cost and applications.

  8. Catastrophic Optical Damage in High-Power, Broad-Area Laser Diodes

    NASA Astrophysics Data System (ADS)

    Chin, Aland K.; Bertaska, Rick K.

    Catastrophic optical damage (COD) is semiconductor material within the optical cavity of laser diodes that is thermally damaged by the laser light. COD results in the failure of laser diodes. The phenomena of COD in high-power, broad-area laser diodes are described along with methods to eliminate it.

  9. Liquid metal heat sink for high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Vetrovec, John; Litt, Amardeep S.; Copeland, Drew A.; Junghans, Jeremy; Durkee, Roger

    2013-02-01

    We report on the development of a novel, ultra-low thermal resistance active heat sink (AHS) for thermal management of high-power laser diodes (HPLD) and other electronic and photonic components. AHS uses a liquid metal coolant flowing at high speed in a miniature closed and sealed loop. The liquid metal coolant receives waste heat from an HPLD at high flux and transfers it at much reduced flux to environment, primary coolant fluid, heat pipe, or structure. Liquid metal flow is maintained electromagnetically without any moving parts. Velocity of liquid metal flow can be controlled electronically, thus allowing for temperature control of HPLD wavelength. This feature also enables operation at a stable wavelength over a broad range of ambient conditions. Results from testing an HPLD cooled by AHS are presented.

  10. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  11. Effect of interface layer on the performance of high power diode laser arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Pu; Wang, Jingwei; Xiong, Lingling; Li, Xiaoning; Hou, Dong; Liu, Xingsheng

    2015-02-01

    Packaging is an important part of high power diode laser (HPLD) development and has become one of the key factors affecting the performance of high power diode lasers. In the package structure of HPLD, the interface layer of die bonding has significant effects on the thermal behavior of high power diode laser packages and most degradations and failures in high power diode laser packages are directly related to the interface layer. In this work, the effects of interface layer on the performance of high power diode laser array were studied numerically by modeling and experimentally. Firstly, numerical simulations using finite element method (FEM) were conducted to analyze the effects of voids in the interface layer on the temperature rise in active region of diode laser array. The correlation between junction temperature rise and voids was analyzed. According to the numerical simulation results, it was found that the local temperature rise of active region originated from the voids in the solder layer will lead to wavelength shift of some emitters. Secondly, the effects of solder interface layer on the spectrum properties of high power diode laser array were studied. It showed that the spectrum shape of diode laser array appeared "right shoulder" or "multi-peaks", which were related to the voids in the solder interface layer. Finally, "void-free" techniques were developed to minimize the voids in the solder interface layer and achieve high power diode lasers with better optical-electrical performances.

  12. Trend of High-Power Laser Diodes for Recordable Optical Disc Drive

    NASA Astrophysics Data System (ADS)

    Yagi, Tetsuya

    Historical development trend of high-power laser diodes for recordable optical disc as CD-R and DVD-R is explained in a view point of not only how to realize highly reliable high-power operation but also how to adopt laser diodes into optical disc drives.

  13. High power diode laser Master Oscillator-Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Andrews, John R.; Mouroulis, P.; Wicks, G.

    1994-01-01

    High power multiple quantum well AlGaAs diode laser master oscillator - power amplifier (MOPA) systems were examined both experimentally and theoretically. For two pass operation, it was found that powers in excess of 0.3 W per 100 micrometers of facet length were achievable while maintaining diffraction-limited beam quality. Internal electrical-to-optical conversion efficiencies as high as 25 percent were observed at an internal amplifier gain of 9 dB. Theoretical modeling of multiple quantum well amplifiers was done using appropriate rate equations and a heuristic model of the carrier density dependent gain. The model gave a qualitative agreement with the experimental results. In addition, the model allowed exploration of a wider design space for the amplifiers. The model predicted that internal electrical-to-optical conversion efficiencies in excess of 50 percent should be achievable with careful system design. The model predicted that no global optimum design exists, but gain, efficiency, and optical confinement (coupling efficiency) can be mutually adjusted to meet a specific system requirement. A three quantum well, low optical confinement amplifier was fabricated using molecular beam epitaxial growth. Coherent beam combining of two high power amplifiers injected from a common master oscillator was also examined. Coherent beam combining with an efficiency of 93 percent resulted in a single beam having diffraction-limited characteristics. This beam combining efficiency is a world record result for such a system. Interferometric observations of the output of the amplifier indicated that spatial mode matching was a significant factor in the less than perfect beam combining. Finally, the system issues of arrays of amplifiers in a coherent beam combining system were investigated. Based upon experimentally observed parameters coherent beam combining could result in a megawatt-scale coherent beam with a 10 percent electrical-to-optical conversion efficiency.

  14. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms

    SciTech Connect

    Hosoya, Toshiyuki; Miranda, Martin; Inoue, Ryotaro; Kozuma, Mikio

    2015-07-15

    We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system does not depend on complex nonlinear frequency-doubling and can be made compact, which will be useful for providing light sources for laser cooling experiments including transportable optical lattice clocks.

  15. Reliability of high power laser diodes with external optical feedback

    NASA Astrophysics Data System (ADS)

    Bonsendorf, Dennis; Schneider, Stephan; Meinschien, Jens; Tomm, Jens W.

    2016-03-01

    Direct diode laser systems gain importance in the fields of material processing and solid-state laser pumping. With increased output power, also the influence of strong optical feedback has to be considered. Uncontrolled optical feedback is known for its spectral and power fluctuation effects, as well as potential emitter damage. We found that even intended feedback by use of volume Bragg gratings (VBG) for spectral stabilization may result in emitter lifetime reduction. To provide stable and reliable laser systems design, guidelines and maximum feedback ratings have to be found. We present a model to estimate the optical feedback power coupled back into the laser diode waveguide. It includes several origins of optical feedback and wide range of optical elements. The failure thresholds of InGaAs and AlGaAs bars have been determined not only at standard operation mode but at various working points. The influence of several feedback levels to laser diode lifetime is investigated up to 4000h. The analysis of the semiconductor itself leads to a better understanding of the degradation process by defect spread. Facet microscopy, LBIC- and electroluminescence measurements deliver detailed information about semiconductor defects before and after aging tests. Laser diode protection systems can monitor optical feedback. With this improved understanding, the emergency shutdown threshold can be set low enough to ensure laser diode reliability but also high enough to provide better machine usability avoiding false alarms.

  16. GaAs Substrates for High-Power Diode Lasers

    NASA Astrophysics Data System (ADS)

    Mueller, Georg; Berwian, Patrick; Buhrig, Eberhard; Weinert, Berndt

    GaAs substrate crystals with low dislocation density (Etch-Pit Density (EPD) < 500,^-2) and Si-doping ( ~10^18,^-3) are required for the epitaxial production of high-power diode-lasers. Large-size wafers (= 3 mathrm{in} -> >=3,) are needed for reducing the manufacturing costs. These requirements can be fulfilled by the Vertical Bridgman (VB) and Vertical Gradient Freeze (VGF) techniques. For that purpose we have developed proper VB/VGF furnaces and optimized the thermal as well as the physico-chemical process conditions. This was strongly supported by extensive numerical process simulation. The modeling of the VGF furnaces and processes was made by using a new computer code called CrysVUN++, which was recently developed in the Crystal Growth Laboratory in Erlangen.GaAs crystals with diameters of 2 and 3in were grown in pyrolytic Boron Nitride (pBN) crucibles having a small-diameter seed section and a conical part. Boric oxide was used to fully encapsulate the crystal and the melt. An initial silicon content in the GaAs melt of c (melt) = 3 x10^19,^-3 has to be used in order to achieve a carrier concentration of n = (0.8- 2) x10^18,^-3, which is the substrate specification of the device manufacturer of the diode-laser. The EPD could be reduced to values between 500,^-2 and 50,^-2 with a Si-doping level of 8 x10^17 to 1 x10^18,^-3. Even the 3in wafers have rather large dislocation-free areas. The lowest EPDs ( <100,^-2) are achieved for long seed wells of the crucible.

  17. Characterization of High-power Quasi-cw Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.

    2005-01-01

    NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.

  18. Performance of high-power laser diode arrays for spaceborne lasers.

    PubMed

    Durand, Yannig; Culoma, Alain; Meynart, Roland; Pinsard, Jean-Luc; Volluet, Gerard

    2006-08-01

    The adequacy of commercial quasi-continuous high-power laser diode arrays (HPLDAs) as pump sources for spaceborne lasers has been assessed by endurance tests up to 3 x 10(9) shots under various stress conditions, vacuum operation up to 0.36 x 10(9) shots, and proton radiation tests. Observations of the evolution of the electro-optic parameters and of the near-field patterns of the HPLDAs during endurance tests have revealed that some diode bars could reach the required lifetime of a multibillion shots, suggesting how to build long lifetime HPLDAs by proper selection of the diode bars. The robustness of the HPLDAs against the proton environment experienced in a typical low Earth orbit has been checked. Finally, high-power laser diode arrays have been operated under vacuum, showing a behavior similar to that of HPLDAs operating in atmospheric conditions.

  19. High-power diode-pumped Tm:YLF laser

    NASA Astrophysics Data System (ADS)

    Schellhorn, M.

    2008-04-01

    A high-power, continuous-wave 3.5% Tm3+ doped LiYF4 (Tm:YLF) laser has been developed. Using two Tm:YLF rods in a single cavity, 55 W of laser output at 1910 nm was obtained with a slope efficiency of 49%. The M2 factor was found to be <3. With a single Tm:YLF rod, a maximum laser power of 30 W was obtained with a slope efficiency of 50%. The laser was tuned to the peak absorption wavelength of Ho:YAG of 1907.5 nm by an intracavity quartz etalon with an output power loss < 1 W.

  20. Packaging of complete indium-free high reliable and high power diode laser array

    NASA Astrophysics Data System (ADS)

    Wang, Jingwei; Li, Xiaoning; Feng, Feifei; Liu, Yalong; Hou, Dong; Liu, Xingsheng

    2015-02-01

    High power diode lasers have been widely used in many fields. For many applications, a diode laser needs to be robust under on-off power-cycling as well as environmental thermal cycling conditions. To meet the requirements, the conduction cooled single bar CS-packaged diode laser arrays must have high durability to withstand thermal fatigue and long lifetime. In this paper, a complete indium-free bonding technology is presented for packaging high power diode laser arrays. Numerical simulations on the thermal behavior of CS-packaged diode laser array with different packaging structure were conducted and analyzed. Based on the simulation results, the device structure and packaging process of complete indium-free CS-packaged diode laser array were optimized. A series of high power hard solder CS (HCS) diode laser arrays were fabricated and characterized. Under the harsh working condition of 90s on and 30s off, good lifetime was demonstrated on 825nm 60W single bar CS-packaged diode laser with a lifetime test of more than 6100hours achieved so far with less 5% power degradation and less 1.5nm wavelength shift. Additionally, the measurement results indicated that the lower smile of complete indium-free CS-packaged diode laser arrays were achieved by advanced packaging process.

  1. Lifetest on a high-power laser diode array transmitter

    NASA Astrophysics Data System (ADS)

    Greulich, P.; Hespeler, B.; Spatscheck, Th.

    1991-05-01

    The optical transmiter component of a free space optical communication system is critical, in that it impacts on the mechanical configuration, power requirements, mass, reliability, and transmission bit-rate of the entire system. Attention is presently given to the transmitter output power and beam quality, as well as its electrical-to-optical power conversion efficiency, in view of state-of-the-art high power transmitters for intensity modulation/direct detection and semiconductor laser transmitter systems.

  2. The next generation of high-power semiconductor diode lasers

    NASA Astrophysics Data System (ADS)

    Botez, Dan; Yang, Jane J.

    Progress made in both high-power coherent arrays for space communications and high-power incoherent arrays for efficient pumping of solid-state (Nd-YAG) laser is reviewed. It is concluded that parallel coupling in a strong index-guided structure makes it possible to increase the performance of resonant-optical-waveguide (ROW) arrays by orders of magnitude higher than that of other array types. Preliminary results from ROW arrays show greater than 2,000 h operation at 0.5-W output with little increase in drive current. Edge-emitting POW arrays are likely to reach 2-3 W continuous-wave diffraction limited power. Monolithic solid-state pumps are likely to deliver optical flux densities in excess of 1 kW/sq cm.

  3. Real-time power measurement and control for high power diode laser

    NASA Astrophysics Data System (ADS)

    Qin, Wen-bin; Liu, You-qiang; Cao, Yin-hua; Wang, Zhi-yong

    2011-06-01

    As the continual improvement of technology and beam quality, diode laser, with poor beam quality, no longer just apply to pump solid-state laser. As a kind of implement of laser materials processing, high-power diode laser has been used in manufacture, as a brand new means of laser processing. Due to the influence of inevitable unstable factors, for example, the temperature of water-cooler, the current of power supply, etc, the output power of diode laser will be unstable. And laser output power, as an important parameter, frequently affects the performance of the laser beam and the experimental results of processing, especially in the laser materials processing. Therefore, researching the real-time power measurement and control of high power diode laser has great significance, and for diode laser, it would improve performance of itself. To achieve the purpose of real-time detection, traditional measuring method, placing a power sensor behind the total-reflection mirror of laser resonant cavity, is mainly applied in the system of gas laser and solid-state laser. However, Owing to the high integration level of diode laser, traditional measuring method can't be adopted. A technique for real-time measure output power of high power diode laser is developed to improve quality of the laser in this paper. A lens placed at an angle of 45° in the system was used to sample output light of laser, and a piece of ground glass was used to uniform the beam power density, then the photoelectric detector received an optic signal and converted it into electric signal. This feeble signal was processed by amplification circuit with a filter. Finally, this detected electric signal was applied to accomplish the closed-loop control of power. The performance of power measurement and control system was tested with the 300W diode laser, and the measuring inaccuracy achieved was less than +/-1%.

  4. Case studies of industrial applications of high-power diode laser in Finland

    NASA Astrophysics Data System (ADS)

    Hovikorpi, Jari; Jansson, Anssi; Salminen, Antti

    2003-06-01

    The high power diode laser is a new industrial tool. It has several advantages and disadvantages compared to the conventional industrially used CO2 and Nd:YAG laser. The most promising areas of application of diode laser have been considered to be thin sheet welding and hardening. Quite a few feasibility studies of the use of diode laser have been carried out in Finland. So far there has been some application in which diode laser is the most suitable laser. Typically, the HPDL is integrated to an industrial robot. The welding of stainless steel housing, car door lock and catalytic converters are typical examples of applications in which diode laser has technological as well as economical advantages over the conventional laser and welding techniques. The welding of these products requires good control over the heat input, short through put time and low investment. The weld cross-section of a diode laser weld is, because of conduction limited welding process, more suitable for these applications than the keyhole welding. Hardening of a large gear wheel presents also a good example of an application in which the diode laser makes it possible to economically produce structures that have not earlier been possible. Hardening requires a special form of heat delivery in order to ensure evenly hardened zone and acceptable quality. The application was performed with two high power diode lasers. The case studies of these four applications are presented and discussed in details in this paper.

  5. High-power pulsed 976-nm DFB laser diodes

    NASA Astrophysics Data System (ADS)

    Zeller, Wolfgang; Kamp, Martin; Koeth, Johannes; Worschech, Lukas

    2010-04-01

    Distributed feedback (DFB) laser diodes nowadays provide stable single mode emission for many different applications covering a wide wavelength range. The available output power is usually limited because of catastrophical optical mirror damage (COD) caused by the small facet area. For some applications such as trace gas detection output powers of several ten milliwatts are sufficiently high, other applications like distance measurement or sensing in harsh environments however require much higher output power levels. We present a process combining optimizations of the layer structure with a new lateral design of the ridge waveguide which is fully compatible with standard coating and passivation processes. By implementing a large optical cavity with the active layer positioned not in the middle of the waveguide layers but very close to the upper edge, the lasers' farfield angles can be drastically reduced. Furthermore, the travelling light mode can be pushed down into the large optical cavity by continuously decreasing the ridge waveguide width towards both laser facets. The light mode then spreads over a much larger area, thus reducing the surface power density which leads to significantly higher COD thresholds. Laterally coupled DFB lasers based on this concept emitting at wavelengths around 976 nm yield hitherto unachievable COD thresholds of 1.6 W under pulsed operation. The high mode stability during the 50 ns pulses means such lasers are ideally suited for high precision distance measurement or similar tasks.

  6. Beam shaping design for coupling high power diode laser stack to fiber.

    PubMed

    Ghasemi, Seyed Hamed; Hantehzadeh, Mohammad-Reza; Sabbaghzadeh, Jamshid; Dorranian, Davoud; Lafooti, Majid; Vatani, Vahid; Rezaei-Nasirabad, Reza; Hemmati, Atefeh; Amidian, Ali Asghar; Alavian, Seyed Ali

    2011-06-20

    A beam shaping technique that rearranges the beam for improving the beam symmetry and power density of a ten-bar high power diode laser stack is simulated considering a stripe mirror plate and a V-Stack mirror in the beam shaping system. In this technique, the beam of a high power diode laser stack is effectively coupled into a standard 550 μm core diameter and a NA=0.22 fiber. By this technique, compactness, higher efficiency, and lower cost production of the diode are possible.

  7. Random fiber laser directly pumped by a high-power laser diode.

    PubMed

    Babin, S A; Dontsova, E I; Kablukov, S I

    2013-09-01

    A random lasing based on Rayleigh scattering (RS) in a passive fiber directly pumped by a high-power laser diode (LD) has been demonstrated. Owing to the RS-based random distributed feedback (RDFB) the low-quality LD beam (938 nm) is converted into the high-quality laser output (980 nm). Because of the relatively low excess above the threshold with the available LD, the RDFB laser output is not stationary and limited in power at the 0.5 W level. In the used gradient-index fiber, the output beam has 4.5 lower divergence as compared with the pump beam thus demonstrating a new way for development of high-power fiber lasers with high-quality output.

  8. Reliability of high power/brightness diode lasers emitting from 790 to 980 nm

    NASA Astrophysics Data System (ADS)

    Bao, L.; Bai, J.; Price, K.; Devito, M.; Grimshaw, M.; Dong, W.; Guan, X.; Zhang, S.; Zhou, H.; Bruce, K.; Dawson, D.; Kanskar, M.; Martinsen, R.; Haden, J.

    2013-02-01

    This paper presents recent progress in the development of high power single emitter laser diodes from 790 nm to 980 nm for reliable use in industrial and pumping applications. High performance has been demonstrated on diode lasers from 790 nm to 980 nm, with corresponding peak efficiency ~65%. Reliability has been fully demonstrated on high power diode lasers of 3.8 mm laser cavity at 3 major wavelengths. We report on the correlation between photon-energy (wavelength) and device failure modes (reliability). A newly released laser design demonstrates diode lasers with 5.0 mm laser cavity at 915-980 nm and 790 nm, with efficiency that matches the values achieved with 3.8 mm cavity length. 915-980 nm single emitters with 5.0 mm laser cavity were especially designed for high power and high brightness applications and can be reliably operated at 12 W to 18 W. These pumps have been incorporated into nLIGHT's newly developed fiber coupled pump module, elementTM. Ongoing highly accelerated diode life-tests have accumulated over 200,000 raw device hours, with extremely low failure rate observed to date. High reliability has also been demonstrated from multiple accelerated module-level lifetests.

  9. High power visible diode laser for the treatment of eye diseases by laser coagulation

    NASA Astrophysics Data System (ADS)

    Heinrich, Arne; Hagen, Clemens; Harlander, Maximilian; Nussbaumer, Bernhard

    2015-03-01

    We present a high power visible diode laser enabling a low-cost treatment of eye diseases by laser coagulation, including the two leading causes of blindness worldwide (diabetic retinopathy, age-related macular degeneration) as well as retinopathy of prematurely born children, intraocular tumors and retinal detachment. Laser coagulation requires the exposure of the eye to visible laser light and relies on the high absorption of the retina. The need for treatment is constantly increasing, due to the demographic trend, the increasing average life expectancy and medical care demand in developing countries. The World Health Organization reacts to this demand with global programs like the VISION 2020 "The right to sight" and the following Universal Eye Health within their Global Action Plan (2014-2019). One major point is to motivate companies and research institutes to make eye treatment cheaper and easily accessible. Therefore it becomes capital providing the ophthalmology market with cost competitive, simple and reliable technologies. Our laser is based on the direct second harmonic generation of the light emitted from a tapered laser diode and has already shown reliable optical performance. All components are produced in wafer scale processes and the resulting strong economy of scale results in a price competitive laser. In a broader perspective the technology behind our laser has a huge potential in non-medical applications like welding, cutting, marking and finally laser-illuminated projection.

  10. High-power diode laser versus electrocautery surgery on human papillomavirus lesion treatment.

    PubMed

    Baeder, Fernando Martins; Santos, Maria Teresa Botti R; Pelino, Jose Eduardo Pelizon; Duarte, Danilo Antonio; Genovese, Walter Joao

    2012-05-01

    The use of high-power lasers has facilitated and improved human papillomavirus (HPV) treatment protocols and has also become very popular in recent years. This application has been more frequently used in hospitals, especially in gynecology. The present study aimed to evaluate the effects of high-power diode laser to remove oral lesions caused by HPV and the consequent effects on virus load following the wound tissue healing process compared with one of the most conventional surgical techniques involving electrocautery. Surgeries were performed on 5 patients who had 2 distinct lesions caused by HPV. All patients were submitted to both electrocautery and high-power diode laser. Following a 20-day period, when the area was healed, sample material was collected through curettage for virus load quantitative analysis.Observation verified the presence of virus in all the samples; however, surgeries performed with the laser also revealed a significant reduction in virus load per cell compared with those performed with electrocautery. The ease when handling the diode laser, because of the flexibility of its fibers and precision of its energy delivery system, provides high-accuracy surgery, which facilitates the treatment of large and/or multifocal lesions. The use of high-power diode laser is more effective in treatment protocols of lesions caused by HPV.

  11. Laser remelting of Ti6AL4V using high power diode laser

    NASA Astrophysics Data System (ADS)

    Amaya-Vázquez, M. R.; Sánchez-Amaya, J. M.; Boukha, Z.; El Amrani, K.; Botana, F. J.

    2012-04-01

    Titanium alloys present excellent mechanical and corrosion properties, being widely employed in different industries such as medical, aerospace, automotive, petrochemical, nuclear and power generation, etc. Ti6Al4V is the α-β alloy most employed in industry. The modification of its properties can be achieved with convectional heat treatments and/or with laser processing. Laser remelting (LR) is a technology applied to Ti6Al4V by other authors with excimer and Nd-Yag laser with pure argon shielding gas to prevent risk of oxidation. In the present contribution, laser remelting has been applied for the first time to Ti6Al4V with a high power diode laser (with pure argon as shielding gas). Results showed that remelted samples (with medium energy densities) have higher microhardness and better corrosion resistance than Ti6Al4V base metal.

  12. High-power AlGaAs channeled substrate planar diode lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Goldstein, B.; Pultz, G. N.; Slavin, S. E.; Carlin, D. B.; Ettenberg, M.

    1988-01-01

    A high power channeled substrate planar AlGaAs diode laser with an emission wavelength of 8600 to 8800 A was developed. The optoelectronic behavior (power current, single spatial and spectral behavior, far field characteristics, modulation, and astigmatism properties) and results of computer modeling studies on the performance of the laser are discussed. Lifetest data on these devices at high output power levels is also included. In addition, a new type of channeled substrate planar laser utilizing a Bragg grating to stabilize the longitudinal mode was demonstrated. The fabrication procedures and optoelectronic properties of this new diode laser are described.

  13. DIAL monitoring of atmospheric climate-determining gases employing high-power pulsed laser diodes

    NASA Astrophysics Data System (ADS)

    Penchev, Stoyan P.; Naboko, Sergei V.; Naboko, Vassily N.; Pencheva, Vasilka H.; Donchev, T.; Pavlov, Lyubomir Y.; Simeonov, P.

    2003-11-01

    High-power pulsed laser diodes are employed for determining atmospheric humidity and methane. The proposed DIAL method optimizes the spectral properties of laser radiation within the molecular absorption bands of 0.86 - 0.9 μm of these major greenhouse gases. The explicit absorption spectrum is explored by computational convolution method based on reference data on spectral linestrengths modulated by the characteristic broad laser line of the selected laser diodes. The lidar scheme is ultimately compact, of low-energy consumption and suggests a large potential for ecological monitoring.

  14. Vectorial analytical description of the polarized light of a high-power laser diode.

    PubMed

    Xu, Qiang; Wang, Jiajie; Han, Yiping; Wu, Zhensen

    2013-03-10

    A mathematical model to describe the far-field of a high-power laser diode (LD) beam is presented. The laser beam propagation is studied by the vector Rayleigh-Sommerfeld far-field diffraction integral formula The far-field distribution of the LD beam is studied in detail; the light polarized parallel and perpendicular to the junction plane are all considered. This model is employed to predict the light intensity of high-power LDs. The computed intensity distributions are in a good agreement with the corresponding measurements. This model can be easily used to analyze the propagation properties of the high-power LD beam.

  15. Homogenization of high power diode laser beams for pumping and direct applications

    NASA Astrophysics Data System (ADS)

    Traub, Martin; Hoffmann, Hans-Dieter; Plum, Heinz-Dieter; Wieching, Kristin; Loosen, Peter; Poprawe, Reinhart

    2006-02-01

    High power diode lasers have become an established source for numerous direct applications like metal hardening and polymer welding due to their high efficiency, small size, low cost and high reliability. These laser sources are also used for efficient pumping of solid state lasers as Nd:YAG lasers. To increase the output power of diode lasers up to several kilowatts, the emitters are scaled laterally by forming a diode laser bar and vertically by forming a diode laser stack. For most applications like hardening and illumination, though, the undefined far field distribution of most commercially available high power diode laser stacks states a major drawback of these devices. As single emitters and bars can fail during their lifetime, the near field distribution does not remain constant. To overcome these problems, the intensity distribution can be homogenized by a waveguide or by microoptic devices. The waveguide segments the far field distribution by several total internal reflections, and these segments are overlaid at the waveguide's exit surface. By the microoptic device, the near field is divided into beamlets which are overlaid by a field lens. Both approaches are presented, and realized systems are described.

  16. Scalable high-power and high-brightness fiber coupled diode laser devices

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Ahlert, Sandra; Bayer, Andreas; Kissel, Heiko; Müntz, Holger; Noeske, Axel; Rotter, Karsten; Segref, Armin; Stoiber, Michael; Unger, Andreas; Wolf, Paul; Biesenbach, Jens

    2012-03-01

    The demand for high-power and high-brightness fiber coupled diode laser devices is mainly driven by applications for solid-state laser pumping and materials processing. The ongoing power scaling of fiber lasers requires scalable fibercoupled diode laser devices with increased power and brightness. For applications in materials processing multi-kW output power with beam quality of about 30 mm x mrad is needed. We have developed a modular diode laser concept combining high power, high brightness, wavelength stabilization and optionally low weight, which becomes more and more important for a multitude of applications. In particular the defense technology requires robust but lightweight high-power diode laser sources in combination with high brightness. Heart of the concept is a specially tailored diode laser bar, whose epitaxial and lateral structure is designed such that only standard fast- and slow-axis collimator lenses in combination with appropriate focusing optics are required to couple the beam into a fiber with a core diameter of 200 μm and a numerical aperture (NA) of 0.22. The spectral quality, which is an important issue especially for fiber laser pump sources, is ensured by means of Volume Holographic Gratings (VHG) for wavelength stabilization. In this paper we present a detailed characterization of different diode laser sources based on the scalable modular concept. The optical output power is scaled from 180 W coupled into a 100 μm NA 0.22 fiber up to 1.7 kW coupled into a 400 μm NA 0.22 fiber. In addition we present a lightweight laser unit with an output power of more than 300 W for a 200 μm NA 0.22 fiber with a weight vs. power ratio of only 0.9 kg/kW.

  17. High Power Diode Pumped 1.06 Micron Solid State Laser

    NASA Astrophysics Data System (ADS)

    Arvind, Mukundarajan A.; Martin, Dan W.; Osterhage, R. J.

    1989-07-01

    Diode pumped solid state lasers have been attracting significant interest in recent years due to advances in high power semiconductor diode lasers. They offer considerable advantages over flashlamp pumped lasers such as compact size, high efficiency, lower heat dissipation and solid-state reliability. In this paper, we report on the results of a Nd:YAG laser, transverse pumped by diode laser arrays. We have measured an output power of 1.14 Watts at 1.06 microns with a laser diode power consumption of 40 Watts. This represents the highest reported electrical efficiency (2.85%) for a transverse pumped, CW, TEM00 laser. The diode arrays were selected and tuned to emit at wavelengths close to the peak neodymium absorption line at 0.808 microns with Peltier coolers. Two diode laser bars side pumped a 20 mm long, 1.5 mm diameter Nd:YAG laser rod. The optical cavity is 13.8 cm long consisting of a high reflectivity mirror and a 95% reflectivity output mirror. The output beam divergence was measured to be near diffraction limited at 1.4 milliradians, and the beam diameter was 1 mm.

  18. High-power narrow-vertical-divergence photonic band crystal laser diodes with optimized epitaxial structure

    SciTech Connect

    Liu, Lei; Qu, Hongwei; Liu, Yun; Zhang, Yejin; Zheng, Wanhua; Wang, Yufei; Qi, Aiyi

    2014-12-08

    900 nm longitudinal photonic band crystal (PBC) laser diodes with optimized epitaxial structure are fabricated. With a same calculated fundamental-mode divergence, stronger mode discrimination is achieved by a quasi-periodic index modulation in the PBC waveguide than a periodic one. Experiments show that the introduction of over 5.5 μm-thick PBC waveguide contributes to only 10% increment of the internal loss for the laser diodes. For broad area PBC lasers, output powers of 5.75 W under continuous wave test and over 10 W under quasi-continuous wave test are reported. The vertical divergence angles are 10.5° at full width at half maximum and 21.3° with 95% power content, in conformity with the simulated angles. Such device shows a prospect for high-power narrow-vertical-divergence laser emission from single diode laser and laser bar.

  19. Laser assisted die bending: a new application of high power diode lasers

    NASA Astrophysics Data System (ADS)

    Schuöcker, D.; Schumi, T.; Spitzer, O.; Bammer, F.; Schuöcker, G.; Sperrer, G.

    2015-02-01

    Nowadays high power lasers are mainly used for cutting of sheet metals, for welding, hardening and rapid prototyping. In the forming of sheet metals as bending or deep drawing lasers are not used. Nevertheless a few years ago a new application of high power lasers has been invented, where bending of materials that break at room temperature becomes possible by heating them along the bending edge with high power lasers thus allowing their treatment without cracks and rupture. For this purpose a large number of diode lasers are arranged in the bottom tool of a bending machine (a V-shaped die) which heat up the initially flat sheet metal during the bending process what is performed by pressing it into the die with a knife shaped upper tool where due to the laser heating the material is softened and thus cracks are avoided. For the technical realization of the new process of laser assisted die bending, modules equipped with numerous laser diodes and a total beam power of 2,5 kW are used. The light emitted by these modules enters a tool with a length of 15cm and is deflected towards the workpiece. By using ten of these modules with adjacent dies and by integrating those in a bending press a bending edge of sheet metals with a length of 1500mm can be realized. Such a bending press with laser assistance also needs energization with a power of practically 50kW, a respective water flow, a heat exchanger system and also a control for all functions of this system. Special measures have also been developed to avoid radiating of those tools that are not covered by a workpiece in the case of bending edges shorter than the full length of the bending tools whereas individual short circuiting of diode modules can be performed. Specific measures to ensure a safe operation without any harm to the operational person have been realized. Exploitation of the bending process has been carried out for titanium, where material thicknesses up to 3mm have been bent successfully.

  20. Improving Reliability of High Power Quasi-CW Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data of the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  1. Generation of high-power nanosecond pulses from laser diode-pumped Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Chan, Kinpui

    1988-01-01

    Simulation results are used to compare the pulse energy levels and pulse energy widths that can be achieved with LD-pumped Nd:YAG lasers for both the pulse-transmission mode (PTM) and pulse-reflection mode (PRM) Q-switching methods for pulse energy levels up to hundreds of microjoules and pulse widths as short as 1 ns. It is shown that high-power pulses with pulse widths as short as 1 ns can be generated with PTM Q-switched in LD-pumped Nd:YAG lasers. With the PRM Q-switching method, pulse widths as short as 2 ns and pulse energy at the level of a few hundred microjoules can also be achieved but require pumping with 8-10-mJ AlGaAs laser diode arrays.

  2. Highly reliable high-power AlGaAs/GaAs 808 nm diode laser bars

    NASA Astrophysics Data System (ADS)

    Hülsewede, R.; Schulze, H.; Sebastian, J.; Schröder, D.; Meusel, J.; Hennig, P.

    2007-02-01

    There are strong demands at the market to increase power and reliability for 808 nm diode laser bars. Responding to this JENOPTIK Diode Lab GmbH developed high performance 808 nm diode laser bars in the AlGaAs/GaAs material system with special emphasis to high power operation and long term stability. Optimization of the epitaxy structure and improvements in the diode laser bar design results in very high slope efficiency of >1.2 W/A, low threshold current and small beam divergence in slow axis direction. Including low serial resistance the overall wall plug efficiency is up to 65% for our 20%, 30% and 50% filling factor 10 mm diode laser bars. With the JENOPTIK Diode Lab cleaving and coating technique the maximum output power is 205 W in CW operation and 377 W in QCW operation (200 μs, 2% duty cycle) for bars with 50% filling factor. These bars mounted on micro channel cooled package are showing a very high reliability of >15.000 h. Mounted on conductive cooled package high power operation at 100 W is demonstrated for more than 5000h.

  3. High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers.

    PubMed

    Jackson, Stuart D; Bugge, Frank; Erbert, Götz

    2007-11-15

    We demonstrate high-power operation from a singly Ho3+-doped silica fiber laser that is cladding pumped directly with diode lasers operating at 1150 nm. Internal slope efficiencies approaching the Stokes limit were produced, and the maximum output power was 2.2W. This result was achieved using a low Ho3+-ion concentration and La3+-ion codoping, which together limit the transfer of energy between excited Ho3+ ions.

  4. Coherent addition of high power laser diode array with a V-shape external Talbot cavity.

    PubMed

    Liu, B; Liu, Y; Braiman, Y

    2008-12-08

    We designed a V-shape external Talbot cavity for a broad-area laser diode array and demonstrated coherent laser beam combining at high power with narrow spectral linewidth. The V-shape external Talbot cavity provides good mode-discrimination and does not require a spatial filter. A multi-lobe far-field profile generated by a low filling-factor phase-locked array is confirmed by our numerical simulation.

  5. Injection locking of a low cost high power laser diode at 461 nm.

    PubMed

    Pagett, C J H; Moriya, P H; Celistrino Teixeira, R; Shiozaki, R F; Hemmerling, M; Courteille, Ph W

    2016-05-01

    Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments, this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the master laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.

  6. Injection locking of a low cost high power laser diode at 461 nm

    NASA Astrophysics Data System (ADS)

    Pagett, C. J. H.; Moriya, P. H.; Celistrino Teixeira, R.; Shiozaki, R. F.; Hemmerling, M.; Courteille, Ph. W.

    2016-05-01

    Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments, this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the master laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.

  7. Thermal management, beam control, and packaging designs for high power diode laser arrays and pump cavity designs for diode laser array pumped rod shaped lasers

    NASA Astrophysics Data System (ADS)

    Chung, Te-Yuan

    Several novel techniques for controlling, managing and utilizing high power diode lasers are described. Low pressure water spray cooling for a high heat flux system is developed and proven to be an ideal cooling method for high power diode laser arrays. In order to enable better thermal and optical performance of diode laser arrays, a new and simple optical element, the beam control prism, is invented. It provides the ability to accomplish beam shaping and beam tilting at the same time. Several low thermal resistance diode packaging designs using beam control prisms are proposed, studied and produced. Two pump cavity designs using a diode laser array to uniformly pump rod shape gain media are also investigated.

  8. Performance and reliability of high power 7xx nm laser diodes

    NASA Astrophysics Data System (ADS)

    Bao, Ling; Wang, Jun; Devito, Mark; Xu, Dapeng; Grimshaw, Mike; Dong, Weimin; Guan, Xingguo; Huang, Hua; Leisher, Paul; Zhang, Shiguo; Wise, Damian; Martinsen, Robert; Haden, Jim

    2011-02-01

    High power diode lasers in 7xx-nm region, have been needed for various applications. Compared to 9xx nm lasers that have been developed extensively in the last 20 years, high power lasers at 7xx-nm region presents much more challenges for operation power, efficiency, temperature performance and reliability. This paper will present recent progresses on 7xx nm laser diodes for the above attributes. Two laser designs will be reviewed and high power diode laser performance and reliability will be presented. Single emitter devices, with 200μm wide emitting width, show up to 10W reliable operation power, with peak efficiency more than 65%. Accelerated life testing at 12A, 50°C heatsink temperature has been running for thousands of hours. High temperature performance and high COMD threshold (> 20W) will also be shown. Life-test failure modes will also be discussed. In summary, with advanced epitaxial structure design and MOCVD process, critical facet passivation and advanced heatsink and bonding technology, 7xx-8xx nm devices have been demonstrated with high performance and reliability similar to those of 9xx nm devices.

  9. Tapered fiber bundles for combining high-power diode lasers.

    PubMed

    Kosterin, Andrey; Temyanko, Valery; Fallahi, Mahmoud; Mansuripur, Masud

    2004-07-01

    Tapered fiber bundles are often used to combine the output power of several semiconductor lasers into a multimode optical fiber for the purpose of pumping fiber lasers and amplifiers. It is generally recognized that the brightness of such combiners does not exceed the brightness of the individual input fibers. We report that the brightness of the tapered fibers (and fiber bundles) depends on both the taper ratio and the mode-filling properties of the beams launched into the individual fibers. Brightness, therefore, can be increased by selection of sources that fill a small fraction of the input fiber's modal capacity. As proof of concept, we present the results of measurements on tapered fiber-bundle combiners having a low-output étendue. Under low mode-filling conditions per input multimode fiber (i.e., fraction of filled modes < or =0.29), we report brightness enhancements of 8.0 dB for 19 x 1 bundles, 6.7 dB for 7 x 1 bundles, and 4.0 dB for 3 x 1 combiners. Our measured coupling efficiency variations of approximately 1%-2% among the various fibers in a given bundle confirm the uniformity and quality of the fabricated devices.

  10. Temperature evaluation of dental implant surface irradiated with high-power diode laser.

    PubMed

    Rios, F G; Viana, E R; Ribeiro, G M; González, J C; Abelenda, A; Peruzzo, D C

    2016-09-01

    The prevalence of peri-implantitis and the absence of a standard approach for decontamination of the dental implant surface have led to searches for effective therapies. Since the source of diode lasers is portable, has reduced cost, and does not cause damage to the titanium surface of the implant, high-power diode lasers have been used for this purpose. The effect of laser irradiation on the implants is the elevation of the temperature surface. If this elevation exceeds 47 °C, the bone tissue is irreversibly damaged, so for a safety therapy, the laser parameters should be controlled. In this study, a diode laser of GaAsAl was used to irradiate titanium dental implants, for powers 1.32 to 2.64 W (real) or 2.00 to 4.00 W (nominal), in continuous/pulsed mode DC/AC, with exposure time of 5/10 s, with/without air flow for cooling. The elevation of the temperature was monitored in real time in two positions: cervical and apical. The best results for decontamination using a 968-nm diode laser were obtained for a power of 1.65 and 1.98 W (real) for 10 s, in DC or AC mode, with an air flow of 2.5 l/min. In our perspective in this article, we determine a suggested approach for decontamination of the dental implant surface using a 968-nm diode laser.

  11. High-power laser diodes based on InGaAsP alloys

    NASA Astrophysics Data System (ADS)

    Razeghi, Manijeh

    1994-06-01

    HIGH-POWER, high-coherence solid-state lasers, based on dielectric materials such as ruby or Nd:YAG (yttrium aluminium garnet), have many civilian and military applications. The active media in these lasers are insulating, and must therefore be excited (or `pumped') by optical, rather than electrical, means. Conventional gas-discharge lamps can be used as the pumping source, but semiconductor diode lasers are more efficient, as their wavelength can be tailored to match the absorption properties of the lasing material. Semiconducting AlGaAs alloys are widely used for this purpose1, 2, but oxidation of the aluminium and the spreading of defects during device operation limit the lifetime of the diodes3, and hence the reliability of the system as a whole. Aluminium-free InGaAsP compounds, on the other hand, do not have these lifetime-limiting properties4-8. We report here the fabrication of high-power lasers based on InGaAsP (lattice-matched to GaAs substrates), which operate over the same wavelength range as conventional AlGaAs laser diodes and show significantly improved reliability. The other optical and electrical properties of these diodes are either comparable or superior to those of the AlGaAs system.

  12. High-Power Broad-Area Diode Lasers and Laser Bars

    NASA Astrophysics Data System (ADS)

    Erbert, Goetz; Baerwolff, Arthur; Sebastian, Juergen; Tomm, Jens

    This review presents the basic ideas and some examples of the chip technology of high-power diode lasers ( λ= 650,-1060,) in connection with the achievements of mounted single-stripe emitters in recent years.In the first section the optimization of the epitaxial layer structure for a low facet load and high conversion efficiency is discussed. The so-called broadened waveguide Large Optical Cavity (LOC) concept is described and also some advantages and disadvantages of Al-free material. The next section deals with the processing steps of epitaxial wafers to make single emitters and bars. Several possibilities to realize contact windows (implantation, insulators, and wet chemical oxidation) and laser mirrors are presented. The impact of heating in the CW regime and some aspects of reliability are the following topics. The calculation of thermal distributions in diode lasers, which shows the need for sophisticated mounting, will be given. In the last part the current state-of-the-art of single-stripe emitters will be reviewed.

  13. Water Vapour Propulsion Powered by a High-Power Laser-Diode

    NASA Astrophysics Data System (ADS)

    Minami, Y.; Uchida, S.

    Most of the laser propulsion schemes now being proposed and developed assume neither power supplies nor on-board laser devices and therefore are bound to remote laser stations like a kite via a laser beam “string”. This is a fatal disadvantage for a space vehicle that flies freely though it is often said that no need of installing an energy source is an advantage of a laser propulsion scheme. The possibility of an independent laser propulsion space vehicle that carries a laser source and a power supply on board is discussed. This is mainly due to the latest development of high power laser diode (LD) technology. Both high specific impulse-low thrust mode and high thrust-low specific impulse mode can be selected by controlling the laser output by using vapour or water as a propellant. This mode change can be performed by switching between a high power continuous wave (cw), LD engine for high thrust with a low specific impulse mode and high power LD pumping Q-switched Nd:YAG laser engine for low thrust with the high specific impulse mode. This paper describes an Orbital Transfer Vehicle equipped with the above-mentioned laser engine system and fuel cell that flies to the Moon from a space platform or space hotel in Earth orbit, with cargo shipment from lunar orbit to the surface of the Moon, including the possibility of a sightseeing trip.

  14. Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source

    NASA Astrophysics Data System (ADS)

    Cai, He; Wang, You; Han, Juhong; An, Guofei; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Zhou, Jie; Gao, Ming; Jiang, Zhigang

    2015-03-01

    Diode pumped alkali vapor lasers (DPALs) were first developed by in W. F. Krupke at the beginning of the 21th century. In the recent years, DPALs have been rapidly developed because of their high Stokes efficiency, good beam quality, compact size and near-infrared emission wavelengths. The Stokes efficiency of a DPAL can achieve a miraculous level as high as 95.3% for cesium (Cs), 98.1% for rubidium (Rb), and 99.6% for potassium (K), respectively. The thermal effect of a DPAL is theoretically smaller than that of a normal diode-pumped solid-state laser (DPSSL). Additionally, generated heat of a DPAL can be removed by circulating the gases inside a sealed system. Therefore, the thermal management would be relatively simple for realization of a high-powered DPAL. In the meantime, DPALs combine the advantages of both DPSSLs and normal gas lasers but evade the disadvantages of them. Generally, the collisionally broadened cross sections of both the D1 and the D2 lines for a DPAL are much larger than those for the most conventional solid-state, fiber and gas lasers. Thus, DPALs provide an outstanding potentiality for realization of high-powered laser systems. It has been shown that a DPAL is now becoming one of the most promising candidates for simultaneously achieving good beam quality and high output power. With a lot of marvelous merits, a DPAL becomes one of the most hopeful high-powered laser sources of next generation.

  15. Heat transfer and thermal lensing in large-mode high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Chan, Paddy K. L.; Pipe, Kevin P.; Plant, Jason J.; Swint, Reuel B.; Juodawlkis, Paul W.

    2007-02-01

    In semiconductor lasers, key parameters such as threshold current, efficiency, wavelength, and lifetime are closely related to temperature. These dependencies are especially important for high-power lasers, in which device heating is the main cause of decreased performance and failure. Heat sources such as non-radiative recombination in the active region typically cause the temperature to be highly peaked within the device, potentially leading to large refractive index variation with bias. Here we apply high-resolution charge-coupled device (CCD) thermoreflectance to generate two dimensional (2D) maps of the facet temperatures of a high power laser with 500 nm spatial resolution. The device under test is a slab-coupled optical waveguide laser (SCOWL) which has a large single mode and high power output. These characteristics favor direct butt-coupling the light generated from the laser diode into a single mode optical fiber. From the high spatial resolution temperature map, we can calculate the non-radiative recombination power and the optical mode size by thermal circuit and finite-element model (FEM) respectively. Due to the thermal lensing effect at high bias, the size of the optical mode will decrease and hence the coupling efficiency between the laser diode and the single mode fiber increases. At I=10I th, we found that the optical mode size has 20% decrease and the coupling efficiency has 10% increase when comparing to I=2I th. This suggests SCOWL is very suitable fr optical communication system.

  16. High reliability demonstrated on high-power and high-brightness diode lasers

    NASA Astrophysics Data System (ADS)

    Bao, L.; Kanskar, M.; DeVito, M.; Hemenway, M.; Urbanek, W.; Grimshaw, M.; Chen, Z.; Dong, W.; Guan, X.; Zhang, S.; Dawson, D.; Martinsen, R.

    2015-03-01

    In this paper we present nLIGHT's most recent reliability assessment of both the released and newly developed high power, high brightness single emitter laser diodes for fiber laser pumps and material processing applications. We report on the latest updates of lifetests performed on released 18W-rated diode lasers which have been successfully incorporated into nLIGHT's 210W 200μm/0.18NA elementTM pump module. A total of 371 units of 18W-rated single emitters at 915 nm, were assessed at 22A and 2 A at a junction temperature, Tj~70ºC. Cumulatively, these devices have accrued ~ 6.0 million equivalent device hours at module use conditions. The initial reliability analysis based on these lifetest results support <99% module reliability for 2-year of continuous operation. Industry leading dollars-per-watt elementTM e06, e12 and e18 packages based on these diode lasers are also presented. Two elementTM e18 packages have been lifetested for <5400 hours with only one device failure so far. We also report on the initial lifetest of the newly developed high brightness REM-diodes (Reduced Mode diodes) for new elementTM configuration. Preliminary highly accelerated lifetest on ~15 W REM-diodes show very low failure rate compared to the control diode lasers under the same conditions. The more optimized <15W REM-diodes have been lifetested for almost 4000h with no failures observed so far. Superior performance has already been demonstrated on the initialelementTMe06, e12 and e18 packages with these new REM designs, supporting a 25% increase in power with a minimal degradation in NA. Module level reliability assessment is underway.

  17. Rapid prototyping process using linear array of high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Zhu, Linquan; Cheng, Jun; Zhou, Hanchang

    2000-02-01

    Because of the weak points of the SLS spot Scanning process, a new rapid prototyping process -- SLS line scan using linear array of high power laser diodes regarded as energy sources is researched in this paper. A linear array with requisite length is formed by some high power laser diodes that can be derived individually. Beams of the linear array are transferred to the workplace and imaged some short and light lines by the corresponding optical collimators. They are lined up in a linear laser beam without separation whose length is equal to that of the linear array diodes. When sintering powdered material, the linear laser beam scans in one direction along x axis only. Only if the maximum line length is less than the y axial size of the workpiece, it is necessary that linear laser beam is lapped for some times in the y axis. The Scanning mode of x-y simultaneous guideways are used in this new system which differs entirely from the vibrating mirror scan. The scanning trace of the latter is an arc that will influence processing quality. This new process has higher efficiency and better quality than the traditional spot scanning method.

  18. High Power Laser Diode Arrays for 2-Micron Solid State Coherent Lidars Applications

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron; Kavaya, Michael J.; Singh, Upendra; Sudesh, Vikas; Baker, Nathaniel

    2003-01-01

    Laser diode arrays are critical components of any diode-pumped solid state laser systems, constraining their performance and reliability. Laser diode arrays (LDAs) are used as the pump source for energizing the solid state lasing media to generate an intense coherent laser beam with a high spatial and spectral quality. The solid state laser design and the characteristics of its lasing materials define the operating wavelength, pulse duration, and power of the laser diodes. The pump requirements for high pulse energy 2-micron solid state lasers are substantially different from those of more widely used 1-micron lasers and in many aspects more challenging [1]. Furthermore, the reliability and lifetime demanded by many coherent lidar applications, such as global wind profiling from space and long-range clear air turbulence detection from aircraft, are beyond the capability of currently available LDAs. In addition to the need for more reliable LDAs with longer lifetime, further improvement in the operational parameters of high power quasi-cw LDAs, such as electrical efficiency, brightness, and duty cycle, are also necessary for developing cost-effective 2-micron coherent lidar systems for applications that impose stringent size, heat dissipation, and power constraints. Global wind sounding from space is one of such applications, which is the main driver for this work as part of NASA s Laser Risk Reduction Program. This paper discusses the current state of the 792 nm LDA technology and the technology areas being pursued toward improving their performance. The design and development of a unique characterization facility for addressing the specific issues associated with the LDAs for pumping 2-micron coherent lidar transmitters and identifying areas of technological improvement will be described. Finally, the results of measurements to date on various standard laser diode packages, as well as custom-designed packages with potentially longer lifetime, will be reported.

  19. High power diode pumped solid state laser development at Lawrence Livermore National Laboratory

    SciTech Connect

    Solarz, R.; Albrecht, G.; Hackel, L.

    1994-03-01

    The authors recent developments in high powered diode pumped solid state lasers at Lawrence Livermore National Laboratory. Over the past year the authors have made continued improvements to semiconductor pump array technology which includes the development of higher average power and lower cost pump modules. They report the performance of high power AlGaAs, InGaAs, and AlGaInP arrays. They also report on improvement to the integrated micro-optics designs in conjunction with lensing duct technology which gives rise to very high performance end pumping designs for solid state lasers which have major advantages which they detail. Substantial progress on beam quality improvements to near the diffraction limit at very high power have also been made and will be reported. They also will discuss recent experiments on high power non-linear materials for q-switches, harmonic converters, and parametric oscillators. Advances in diode pumped devices at LLNL which include tunable Cr:LiSrAlF{sub 6}, mid-IR Er:YAG, holmium based lasers and other developments will also be outlined. Concepts for delivering up to 30 kilowatts of average power from a DPSSL oscillator will be described.

  20. High-power diode lasers operating around 1500-nm for eyesafe applications

    NASA Astrophysics Data System (ADS)

    Patterson, Steve; Leisher, Paul; Price, Kirk; Kennedy, Keith; Dong, Weimin; Grimshaw, Mike; Zhang, Shiguo; Patterson, Jason; Das, Suhit; Karlsen, Scott; Martinsen, Rob; Bell, Jake

    2008-04-01

    Er:YAG solid state lasers offer an "eye-safe" alternative to traditional Nd:YAG lasers for use in military and industrial applications such as range-finding, illumination, flash/scanning LADAR, and materials processing. These laser systems are largely based on diode pumped solid state lasers that are subsequently (and inefficiently) frequency-converted using optical parametric oscillators. Direct diode pumping of Er:YAG around 1.5 μm offers the potential for greatly increased system efficiency, reduced system complexity/cost, and further power scalability. Such applications have been driving the development of high-power diode lasers around these wavelengths. For end-pumped rod and fiber applications requiring high brightness, nLIGHT has developed a flexible package format, based on scalable arrays of single-emitter diode lasers and efficiently coupled into a 400 μm core fiber. In this format, a rated power of 25 W is reported for modules operating at 1.47 μm, with a peak electrical to optical conversion efficiency of 38%. In centimeter-bar on copper micro-channel cooler format, maximum continuous wave power in excess of 100 W at room temperature and conversion efficiency of 50% at 6C are reported. Copper heat sink conductively-cooled bars show a peak electrical-to-optical efficiency of 43% with 40 W of maximum continuous wave output power. Also reviewed are recent reliability results at 1907-nm.

  1. High power, 1060-nm diode laser with an asymmetric hetero-waveguide

    SciTech Connect

    Li, T; Zhang, Yu; Hao, E

    2015-07-31

    By introducing an asymmetric hetero-waveguide into the epitaxial structure of a diode laser, a 6.21-W output is achieved at a wavelength of 1060 nm. A different design in p- and n-confinement, based on optimisation of energy bands, is used to reduce voltage loss and meet the requirement of high power and high wall-plug efficiency. A 1060-nm diode laser with a single quantum well and asymmetric hetero-structure waveguide is fabricated and analysed. Measurement results show that the asymmetric hetero-structure waveguide can be efficiently used for reducing voltage loss and improving the confinement of injection carriers and wall-plug efficiency. (lasers)

  2. Thermal modelling of high-power laser diodes mounted using various types of submounts

    SciTech Connect

    Bezotosnyi, V V; Krokhin, O N; Oleshchenko, V A; Pevtsov, V F; Popov, Yu M; Cheshev, E A

    2014-10-31

    Using three-dimensional thermal modelling of a highpower 980-nm laser diode with a stripe contact width of 100 μm as an example, we analyse the thermal parameters of high-power laser diodes mounted using submounts. We consider a range of thermal conductivities of submounts that includes parameters of widely used thermal compensators based on AlN, BeO and SiC, as well as on CuW and CuMo composites and polycrystalline and single-crystal synthetic diamond with high thermal conductivity. Taking into account experimental overall efficiency vs. pump current data, we calculate the temperature of the active layer as a function of the width, thickness and thermal conductivity of the submount at thermal loads corresponding to cw output powers of 10, 15 and 20 W. (lasers)

  3. Advances in 808nm high power diode laser bars and single emitters

    NASA Astrophysics Data System (ADS)

    Morales, J.; Lehkonen, S.; Liu, G.; Schleuning, D.; Acklin, B.

    2016-03-01

    Key applications for 780-830nm high power diode lasers include the pumping of various gas, solid state, and fiber laser media; medical and aesthetic applications including hair removal; direct diode materials processing; and computer-to-plate (CtP) printing. Many of these applications require high brightness fiber coupled beam delivery, in turn requiring high brightness optical output at the bar and chip level. Many require multiple bars per system, with aggregate powers on the order of kWs, placing a premium on high power and high power conversion efficiency. This paper presents Coherent's recent advances in the production of high power, high brightness, high efficiency bars and chips at 780-830nm. Results are presented for bars and single emitters of various geometries. Performance data is presented demonstrating peak power conversion efficiencies of 63% in CW mode. Reliability data is presented demonstrating <50k hours lifetime for products including 60W 18% fill factor and 80W 28% fill factor conduction cooled bars, and <1e9 shots lifetime for 500W QCW bars.

  4. The causes of high power diode laser brazed seams fractures of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Adamiak, Marcin; Czupryński, Artur; Janicki, Damian; Górka, Jacek

    2016-12-01

    Presented in this article are the results of experiments carried out to determine the causes of braze cracking of dissimilar materials brazed with a ROFIN DL 020 high power diode laser with the use of additional powdered EN AW-1070A aluminium alloy to bond thin aluminium sheets with soft, low alloy DC04+ZE75/75 steel plate which was electrolytically coated with zinc on both sides. Presented are the results of metallographic, macroscopic, microscopic, diffractometric phase analyses of the weld joints. Metallurgical problems arising during processing as well as suggestions regarding technical aspects of laser brazing dissimilar materials in regards to their physical characteristics and chemical composition are explored.

  5. Diffractive optical elements fabricated for beam shaping of high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Vogt, Helge; Biertümpfel, Ralf; Pawlowski, Edgar

    2008-02-01

    This paper discusses the use of diffractive optical elements (DOEs) and micro-optics fabricated by precise pressing in glass for beam shaping of high-power diode lasers. The DOEs are used to diffract the light into the point of interest and to improve the laser beam quality. We have realized circular, flat-top and multi-beam intensity profiles. The highest measured diffraction efficiency was higher than 95 %. The new established fabrication process has potential for mass production of DOEs. SCHOTT's precision glass molding process guarantees a very constant quality over the complete production chain.

  6. Advancements in high-power diode laser stacks for defense applications

    NASA Astrophysics Data System (ADS)

    Pandey, Rajiv; Merchen, David; Stapleton, Dean; Patterson, Steve; Kissel, Heiko; Fassbender, Wilhlem; Biesenbach, Jens

    2012-06-01

    This paper reports on the latest advancements in vertical high-power diode laser stacks using micro-channel coolers, which deliver the most compact footprint, power scalability and highest power/bar of any diode laser package. We present electro-optical (E-O) data on water-cooled stacks with wavelengths ranging from 7xx nm to 9xx nm and power levels of up to 5.8kW, delivered @ 200W/bar, CW mode, and a power-conversion efficiency of >60%, with both-axis collimation on a bar-to-bar pitch of 1.78mm. Also, presented is E-O data on a compact, conductively cooled, hardsoldered, stack package based on conventional CuW and AlN materials, with bar-to-bar pitch of 1.8mm, delivering average power/bar >15W operating up to 25% duty cycle, 10ms pulses @ 45C. The water-cooled stacks can be used as pump-sources for diode-pumped alkali lasers (DPALs) or for more traditional diode-pumped solid-state lasers (DPSSL). which are power/brightness scaled for directed energy weapons applications and the conductively-cooled stacks as illuminators.

  7. High-power highly reliable single emitter laser diodes at 808 nm

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Xu, Zuntu; Cheng, Lisen; Luo, Kejian; Mastrovito, Andre; Shen, Kun

    2007-02-01

    High power laser diodes and diode arrays emitting at the wavelength of 808nm are widely used for pumping neodymium (Nd+) doped solid state lasers and fiber lasers, medical surgery, dental treatment and material processing. In general, the power is limited by catastrophic optical mirror damage (COMD) and heat dissipation. In this paper we demonstrate 29W CW output power at 808 nm from a 400 μm single emitter with 2mm cavity length. The device thermally rolls over due to the excess heat. The L-I curve rolls over at 29.5W, the laser is still alive, and we can repeat the test again and again without catastrophic optical mirror-damage (COMD). The device consists of an InAlGaAs/AlGaAs/GaAs, optimized special graded-index separated-confinement heterostructure (GRINSCH) broad waveguide (BW), single quantum well (SQW) and barriers between waveguide and cladding layers. A weak temperature dependence characteristic, which is desirable for high power and reliable operation, is obtained from these devices.

  8. Highly efficient and high-power diode-pumped femtosecond Yb:LYSO laser

    NASA Astrophysics Data System (ADS)

    Tian, Wenlong; Wang, Zhaohua; Zhu, Jiangfeng; Zheng, Lihe; Xu, Jun; Wei, Zhiyi

    2017-04-01

    A diode-pumped high-power femtosecond Yb:LYSO laser with high efficiency is demonstrated. With a semiconductor saturable absorber mirror for passive mode-locking and a Gires–Tournois interferometer mirror for intracavity dispersion compensation, stable mode-locking pulses of 297 fs duration at 1042 nm were obtained. The maximum average power of 3.07 W was realized under 5.17 W absorbed pump power, corresponding to as high as 59.4% opt–opt efficiency. The single pulse energy and peak power are about 35.5 nJ and 119.5 kW, respectively.

  9. Amorphous structure evolution of high power diode laser cladded Fe-Co-B-Si-Nb coatings

    NASA Astrophysics Data System (ADS)

    Zhu, Yanyan; Li, Zhuguo; Huang, Jian; Li, Min; Li, Ruifeng; Wu, Yixiong

    2012-11-01

    Fe-Co-B-Si-Nb coatings were fabricated on the surface of low carbon steel using high power diode laser cladding of [(Fe0.5Co0.5)0.75B0.2Si0.05]95.7Nb4.3 amorphous powders at three different scanning speeds of 6, 17 and 50 m/s. At each scanning speed, laser power was optimized to obtain low dilution ratio. Scanning electron microscopy, X-ray diffraction, transmission electron microscopy with energy dispersive spectrometer and electron probe micro analysis were carried out to characterize the microstructure and chemical composition of the cladded coatings. Differential scanning calorimetry was also carried out to investigate the fraction of the amorphous phase. The results showed that dilution ratio and scanning speed were the two main factors for fabricating Fe-Co-B-Si-Nb amorphous coating by high power diode laser cladding. Low dilution ratio was crucial for the formation of amorphous phase. When the dilution ratio was low, the fraction of amorphous phase in the cladded coatings increased upon increasing the scanning speed.

  10. Effect of welding parameters on high-power diode laser welding on thin sheet

    NASA Astrophysics Data System (ADS)

    Salminen, Antti; Jansson, Anssi; Kujanpaa, Veli

    2003-06-01

    High power diode laser (HPDL) is the newest laser tool for industrial manufacturing. The most promising areas of application of HPDL are thin sheet welding and hardening. The HPDL has several advantages and disadvantages compared to lasers CO2 and Nd:YAG lasers currently used for welding. There is quite a few industrial applications in which diode laser is the most suitable laser. A typical industrial installation consists of a HPDL, an industrial robot, work piece manipulation and safety enclosures. The HPDL welding process is at this moment conduction limited and has therefore different parameters than the keyhole welding. In this study the basic HPDL welding parameters and the effect of the parameters on the welding process, weld quality and efficiency are examined. Joint types tested are butt joint and fillet lap joint. The parameters tested are beam intensity, welding speed, spot size, beam impingement angle. The materials tested are common carbon steel and stainless steel. By the experiments carried out it can be seen that all of these parameters have an effect on the weld quality and the absorption of the laser power during welding. The higher the beam intensity is the shorter also the throughput time is. However, in case of fillet joint the maximum welding speed and best visual out look are achieved with totally different set of parameters. Based on these experiments it can, however, be seen that reliable welding parameters can be established for the welding of various industrial products. The beam quality of the diode laser is not optimum for high speed keyhole welding but it is a flexible tool to be used for different joint types.

  11. Reliability of High Power Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Reliability and lifetime of quasi-CW laser diode arrays are greatly influenced by their thermal characteristics. This paper examines the thermal properties of laser diode arrays operating in long pulse duration regime.

  12. High power, high efficiency, 2D laser diode arrays for pumping solid state lasers

    SciTech Connect

    Rosenberg, A.; McShea, J.C.; Bogdan, A.R.; Petheram, J.C.; Rosen, A.

    1987-11-01

    This document reports the current performance of 2D laser diode arrays operating at 770 nm and 808 nm for pumping promethium and neodymium solid state lasers, respectively. Typical power densities are in excess of 2kw/cm/sup 2/ with overall efficiencies greater than 30%.

  13. High Power Laser Diode Array Qualification and Guidelines for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Eegholm, Niels; Stephen, Mark; Leidecker, Henning; Plante, Jeannette; Meadows, Byron; Amzajerdian, Farzin; Jamison, Tracee; LaRocca, Frank

    2006-01-01

    High-power laser diode arrays (LDAs) are used for a variety of space-based remote sensor laser programs as an energy source for diode-pumped solid-state lasers. LDAs have been flown on NASA missions including MOLA, GLAS and MLA and have continued to be viewed as an important part of the laser-based instrument component suite. There are currently no military or NASA-grade, -specified, or - qualified LDAs available for "off-the-shelf" use by NASA programs. There has also been no prior attempt to define a standard screening and qualification test flow for LDAs for space applications. Initial reliability studies have also produced good results from an optical performance and stability standpoint. Usage experience has shown, howeve that the current designs being offered may be susceptible to catastrophic failures due to their physical construction (packaging) combined with the electro-optical operational modes and the environmental factors of space application. design combined with operational mode was at the root of the failures which have greatly reduced the functionality of the GLAS instrument. The continued need for LDAs for laser-based science instruments and past catastrophic failures of this part type demand examination of LDAs in a manner which enables NASA to select, buy, validate and apply them in a manner which poses as little risk to the success of the mission as possible.

  14. High-power and highly efficient Tm3+-doped silica fiber lasers pumped with diode lasers operating at 1150 nm.

    PubMed

    Jackson, Stuart D; Bugge, Frank; Erbert, Götz

    2007-10-01

    An output power of 1.74 W at 2.03 microm was generated at a slope efficiency of 51% when a double-clad Tm(3+)-doped silica fiber laser was pumped with high-power 1150 nm diode lasers. Pump excited state absorption from the upper laser level populates higher energy levels allowing cross relaxation to repopulate the upper laser level at a quantum efficiency greater than unity and to limit losses relating to additional pump excited state absorption. The output power was scaled to 4.77 W when both ends of the fiber were pumped.

  15. Direct spectroscopic measurement of packaging-induced strains in high-power laser diode arrays

    NASA Astrophysics Data System (ADS)

    Tomm, Jens W.; Mueller, Ralf; Baerwolff, A.; Neuner, M.; Elsaesser, Thomas; Lorenzen, Dirk; Daiminger, Franz X.; Gerhardt, A.; Donecker, J.

    1999-04-01

    High-power diode lasers such as `cm-bar arrays' are important for many applications. The `p-side down packaging', i.e. the direct mounting of the epitaxial layer sequence on a heat spreader ensures sufficient thermal properties, however, in such a geometry, additional mechanical strain of the active region represents a central issue, affecting both the laser parameter as well as lifetime and reliability of the device. Thermally induced strain caused by device packaging is studied in high-power semiconductor laser arrays by a novel non-invasive technique. Photocurrent measurements with intentionally strained laser array devices for 808 nm emission reveal spectral shifts of all allowed optical transitions in the active region. These shifts serve as a measure for strain and are compared with model calculations. Depending on the specific heat spreader materials we find compressive or tensile mounting induced strain contributions. For a given packaging architecture, about one quarter of the mounting induced strain is transferred to the quantum well region of the device. Spatially resolved measurements allow to measure lateral strain gradients in the devices. Using this data for calibration we show that polarization resolved electroluminescence scans can be used as convenient measure for strain homogeneity test also in quantum-well devices.

  16. Emission properties of diode laser bars during pulsed high-power operation

    NASA Astrophysics Data System (ADS)

    Hempel, Martin; Tomm, Jens W.; Hennig, Petra; Elsaesser, Thomas

    2011-09-01

    High-power diode laser bars (cm-bars) are subjected to single pulse step tests carried out up to and beyond their ultimate limits of operation. Laser nearfields and thermal behaviour are monitored for pulse widths in the 10-100 µs range with streak- and thermo-cameras, respectively. Thresholds of catastrophic optical damage are determined, and their dependence on the length of the injected current pulses is explained qualitatively. This approach permits testing the hardness of facet coatings of cm-bars with or without consideration of accidental single pre-damaged emitter failure effects and thermal crosstalk between the emitters. This allows for the optimization of pulsed operation parameters, helps limiting sudden degradation and provides insight into the mechanisms governing the device emission behaviour at ultimate output powers.

  17. Removal of graffiti from quarry stone by high power diode laser

    NASA Astrophysics Data System (ADS)

    Penide, J.; Quintero, F.; Riveiro, A.; Sánchez-Castillo, A.; Comesaña, R.; del Val, J.; Lusquiños, F.; Pou, J.

    2013-04-01

    The integrity of architectural monuments in urban areas is threatened by numerous attacks, among which the graffiti is sometimes one of the most important. Particularly, Morelia's historic center (Mexico) (appointed World Heritage Site by UNESCO) suffers, for some years, a high number of graffiti. Most of these monuments in Morelia were built using a local stone called Pink Morelia Quarry. In this paper, we present the results of a study on the feasibility to remove the graffiti from Pink Morelia Quarry using a high power diode laser treatment. An extensive experimental analysis of the operating conditions has been carried out leading to successful results. The optimal parameters to achieve a total removal of graffiti have been determined. We concluded that continuous wave regime leads to better results than modulated wave regime, additionally, a two laser passes process demonstrated a high performance.

  18. Spectroscopic analysis of packaging concepts for high-power diode laser bars

    NASA Astrophysics Data System (ADS)

    Hempel, Martin; Ziegler, Mathias; Schwirzke-Schaaf, Sandy; Tomm, Jens W.; Jankowski, Denny; Schröder, Dominic

    2012-05-01

    Double-side cooled high-power diode laser bars packaged by different techniques on different types of passive heat sinks are analyzed in terms of packaging-induced strain. Reference data from standard devices being single-side cooled only and packaged by conventional soft and hard soldering are also presented. Thermal profiling across the devices complements the results. The most suitable packaging architecture and technique for double-side cooled bars is identified. Measurements of the laser emission near field and electroluminescence pattern provide direct reference to the functionality of the devices. Furthermore, a type of cross calibration of the methods used for strain analysis is made, since all techniques are applied to the same set of bars. This involves micro photoluminescence, micro Raman, and degree-of-polarization electroluminescence spectroscopy.

  19. High-power GaN diode-pumped continuous wave Pr3+-doped LiYF4 laser.

    PubMed

    Hashimoto, Kohei; Kannari, Fumihiko

    2007-09-01

    A cw Pr(3+):LiYF(4) laser at 639 nm pumped by a high-power GaN laser diode (444 nm) is demonstrated. The highest laser power of 112 mW is achieved with an optical-optical conversion efficiency of 33.5%. Characteristics of this laser at elevated temperatures are also investigated for practical applications such as a laser projector.

  20. 2.1 μm high-power laser diode beam combining(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Berrou, Antoine P. C.; Elder, Ian F.; Lamb, Robert A.; Esser, M. J. Daniel

    2016-10-01

    Laser power and brightness scaling, in "eye safe" atmospheric transmission windows, is driving laser system research and development. High power lasers with good beam quality, at wavelength around 2.1 µm, are necessary for optical countermeasure applications. For such applications, focusing on efficiency and compactness of the system is mandatory. In order to cope with these requirements, one must consider the use of laser diodes which emit directly in the desired spectral region. The challenge for these diodes is to maintain a good beam quality factor as the output power increases. 2 µm diodes with excellent beam quality in both axes are available with output powers of 100 mW. Therefore, in order to reach multi-watt of average output power, broad-area single emitters and beam combining becomes relevant. Different solutions have been implemented in the 1.9 to 2 µm wavelength range, one of which is to stack multiple emitter bars reaching more than one hundred watt, while another is a fibre coupled diode module. The beam propagation factor of these systems is too high for long atmospheric propagation applications. Here we describe preliminary results on non-coherent beam combining of 2.1 µm high power Fabry-Perot GaSb laser diodes supplied by Brolis Semiconductors Ltd. First we evaluated single mode diodes (143 mW) with good beam quality (M2 < 1.5 for slow axis and < 1.1 for fast axis). Then we characterized broad-area single emitter diodes (808 mW) with an electrical-to-optical efficiency of 19 %. The emitter width was 90 µm with a cavity length of 1.5 mm. In our experiments we found that the slow axis multimode output beam consisted of two symmetric lobes with a total full width at half maximum (FWHM) divergence angle of 25 degrees, corresponding to a calculated beam quality factor of M2 = 25. The fast axis divergence was specified to be 44 degrees, with an expected beam quality factor close to the diffraction limit, which informed our selection of collimation

  1. High-power high-brightness 808nm QCW laser diode mini bars

    NASA Astrophysics Data System (ADS)

    Huang, Hua; Wang, Jun; DeVito, Mark; Bao, Ling; Hodges, Aaron; Zhang, Shiguo; Wise, Damian; Grimshaw, Mike; Xu, Dapeng; Bai, Chendong

    2010-02-01

    A new class of high power high brightness 808 nm QCW laser diode mini bars has been developed. With nLight's nXLT facet passivation technology and improvements in epitaxial structure, mini bars of 3 mm bar width with high efficiency design have tested to over 280 W peak power with peak efficiency over 64% on conduction cooled CS packages, equivalent to output power density near 130 mW/μm. These mini laser bars open up new applications as compact, portable, and low current pump sources. Liftests have been carried out on conduction cooled CS packages and on QCW stacks. Over 370 million (M) shots lifetest with high efficiency design has been demonstrated on CS so far without failure, and over 80 M shots on QCW stacks with accelerated stress lifetest have also proven high reliability on mini bars with high temperature design. Failure analysis determined that the failure mechanism was related to bulk defects, showing that mini laser bars are not prone to facet failure, which is consistent with the large current pulse test and failure analysis on high power single emitters.

  2. High-power diode lasers between 1.8µm and 3.0µm

    NASA Astrophysics Data System (ADS)

    Hilzensauer, S.; Gilly, J.; Friedmann, P.; Werner, M.; Traub, M.; Patterson, S.; Neukum, J.; Kelemen, M. T.

    2013-03-01

    High-power diode lasers in the mid-infrared wavelength range between 1.8μm and 3.0μm have emerged new possibilities for solid-state pumping and direct material applications based on water absorption with favoured wavelengths at 1.94μm and 2.9μm. GaSb based diode lasers are naturally predestined for this wavelength range. We will present results on MBE grown (AlGaIn)(AsSb) quantum-well diode laser single emitters and laser arrays at different wavelengths between 1.8μm and 3.0μm. At 1.94μm different epitaxial designs have been investigated in order to optimize the GaSb based diode lasers for higher wall-plug efficiency and higher brightness. More than 30% maximum wall-plug efficiency in cw operation for single emitters could be demonstrated for resonator lengths of 1mm. At 2.25μm a high wall-plug efficiency of 24% has been measured. For 2mm resonator length by using asymmetric waveguide structures the wall-plug efficiency could be doubled. Fast axis far field widths of 70 degree (95% power included) have been demonstrated. At 2.9μm emitting wavelength broad-area lasers with 2mm resonator length with 360mW at 10°C heat sink temperature are presented. We have also started to transfer the concepts for higher brightness to this wavelength regime. 19-emitter laser arrays emitting at 1.94μm have been packaged on actively cooled heat sinks. Comparable high wallplug efficiencies have been measured with p-side down and p-side up packaging. In all configurations far field widths are well below 90 degree (95% power included). Finally a record value of 140W have been measured for a stack built of 10x 20% fill factor bars emitting at 1.91μm.

  3. LASER BIOLOGY AND MEDICINE: Medical instruments based on high-power diode and fibre lasers

    NASA Astrophysics Data System (ADS)

    Gapontsev, V. P.; Minaev, V. P.; Savin, V. I.; Samartsev, I. E.

    2002-11-01

    The characteristics and possible applications of scalpels based on diode and fibre lasers emitting at 0.97, 1.06, 1.56, and 1.9 μm, which are produced and developed by the IRE-Polyus Co., are presented. The advantages of such devices and the possibilities for increasing their output power and extending their spectral range are shown.

  4. Optical and Thermal Analyses of High-Power Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Vasilyev, Aleksey; Allan, Graham R.; Schafer, John; Stephen, Mark A.; Young, Stefano

    2004-01-01

    An important need, especially for space-borne applications, is the early identification and rejection of laser diode arrays which may fail prematurely. The search for reliable failure predictors is ongoing and has led to the development of two techniques, infrared imagery and monitoring the Temporally-resolved and Spectrally-Resolved (TSR) optical output from which temperature of the device can be measured. This is in addition to power monitoring on long term burn stations. A direct measurement of the temperature of the active region is an important parameter as the lifetime of Laser Diode Arrays (LDA) decreases exponentially with increasing temperature. We measure the temperature from time-resolving the spectral emission in an analogous method to Voss et al. In this paper we briefly discuss the measurement setup and present temperature data derived from thermal images and TSR data for two differently designed high-power 808 nanometer LDA packages of similar specification operated in an electrical and thermal environment that mimic the expected operational conditions.

  5. Impurity-free quantum well intermixing for large optical cavity high-power laser diode structures

    NASA Astrophysics Data System (ADS)

    Kahraman, Abdullah; Gür, Emre; Aydınlı, Atilla

    2016-08-01

    We report on the correlation of atomic concentration profiles of diffusing species with the blueshift of the quantum well luminescence from both as-grown and impurity free quantum wells intermixed on actual large optical cavity high power laser diode structures. Because it is critical to suppress catastrophic optical mirror damage, sputtered SiO2 and thermally evaporated SrF2 were used both to enhance and suppress quantum well intermixing, respectively, in these (Al)GaAs large optical cavity structures. A luminescence blueshift of 55 nm (130 meV) was obtained for samples with 400 nm thick sputtered SiO2. These layers were used to generate point defects by annealing the samples at 950 °C for 3 min. The ensuing Ga diffusion observed as a shifting front towards the surface at the interface of the GaAs cap and AlGaAs cladding, as well as Al diffusion into the GaAs cap layer, correlates well with the observed luminescence blue shift, as determined by x-ray photoelectron spectroscopy. Although this technique is well-known, the correlation between the photoluminescence peak blue shift and diffusion of Ga and Al during impurity free quantum well intermixing on actual large optical cavity laser diode structures was demonstrated with both x ray photoelectron and photoluminescence spectroscopy, for the first time.

  6. Gradual degradation of red-emitting high-power diode laser bars

    NASA Astrophysics Data System (ADS)

    Ziegler, Mathias; Tien, Tran Quoc; Schwirzke-Schaaf, Sandy; Tomm, Jens W.; Sumpf, Bernd; Erbert, Götz; Oudart, Myriam; Nagle, Julien

    2007-04-01

    The authors analyze early stages of gradual degradation in highly reliable 650nm emitting high-power diode laser arrays with continuous wave emission powers of 2.5W (facet load of 4mW/μm). In all cases the edges of the metallized emitter stripes are identified as the starting points of gradual degradation. The magnitude of the observed degradation signatures, however, is highly correlated with the bar-specific packaging-induced strain at each emitter. We find a bar-specific effect, namely, the presence of packaging-induced strain, to be the driving force of gradual degradation. Our findings point to the significance of proper strain management in advanced device structures.

  7. [Treatment of tracheobronchial malignant tumors using a new high power diode contact laser (GaAlAs) system].

    PubMed

    Ishiguro, Takashi; Sawa, Toshiyuki; Yoshida, Tsutomu; Yokoyama, Mitsuru; Murakawa, Shinji; Azuma, Kenichirou; Tomida, Yoshiteru

    2002-11-01

    We treated ten patients with tracheobronchial malignant tumors using a new high power diode contact laser (GaAlAs) system (DIOMED 25, OLYMPUS) with a flexible bronchofiberscope (OLYMPUS BF IT200 or BF IT240). The total energy of the high power diode laser was 811 J, with a range of 64-3,960 J. With this method 85.7 percent of the symptoms such as dyspnea and hemoptysis were improved, and there was no incidence of massive hemorrhage or serious respiratory failure. The results confirmed the usefulness and safety of this method of treatment for obstructive lesions due to tracheobronchial polypoid malignant tumor and bleeding of the tracheobronchial tree.

  8. High-power directly diode-pumped femtosecond Yb:KGW lasers with optimized parameters

    NASA Astrophysics Data System (ADS)

    Kim, G. H.; Yang, J.; Kulik, A. V.; Sall, E. G.; Chizhov, S. A.; Yashin, V. E.; Kang, U.

    2014-02-01

    We report a diode-pumped Yb:KGW laser that is capable of operating as a Q-switched oscillator or as a regenerative amplifier with average power of more than 20 W. The laser is based on a dual-crystal configuration where the pump thermal load is distributed over relatively long two crystals. It permits a sufficiently large number of passes with low passive losses and maximizes the energy extraction efficiency. The amplification bandwidth was extended by spectral combining of two Yb:KGW crystals with spectrally shifted gain maxima, that allows to mitigate spectral gain narrowing and provides pulse length down to 200 fs after compression in a stretcher-compressor module. The output power saturated with increasing pump power and output beam quality was defined by aberration of thermal lenses. Optimization of laser cavity allows us to compensate thermal lens partially and provide output beams with quality M2<1.2. Efficient frequency doubling and tripling of high-power femtosecond Yb:KGW laser is demonstrated in a nonlinear BBO crystal. Second or third harmonic generation with respective conversion efficiency of 55% or 24% was achieved in a single-pass configuration.

  9. Advances in high-power 9XXnm laser diodes for pumping fiber lasers

    NASA Astrophysics Data System (ADS)

    Skidmore, Jay; Peters, Matthew; Rossin, Victor; Guo, James; Xiao, Yan; Cheng, Jane; Shieh, Allen; Srinivasan, Raman; Singh, Jaspreet; Wei, Cailin; Duesterberg, Richard; Morehead, James J.; Zucker, Erik

    2016-03-01

    A multi-mode 9XXnm-wavelength laser diode was developed to optimize the divergence angle and reliable ex-facet power. Lasers diodes were assembled into a multi-emitter pump package that is fiber coupled via spatial and polarization multiplexing. The pump package has a 135μm diameter output fiber that leverages the same optical train and mechanical design qualified previously. Up to ~ 270W CW power at 22A is achieved at a case temperature ~ 30ºC. Power conversion efficiency is 60% (peak) that drops to 53% at 22A with little thermal roll over. Greater than 90% of the light is collected at < 0.12NA at 16A drive current that produces 3.0W/(mm-mr)2 radiance from the output fiber.

  10. Room temperature high power mid-IR diode laser bars for atmospheric sensing applications

    NASA Astrophysics Data System (ADS)

    Crump, Paul; Patterson, Steve; Dong, Weimin; Grimshaw, Mike; Wang, Jun; Zhang, Shiguo; Elim, Sandrio; Bougher, Mike; Patterson, Jason; Das, Suhit; Wise, Damian; Matson, Triston; Balsley, David; Bell, Jake; DeVito, Mark; Martinsen, Rob

    2007-04-01

    Peak CW optical power from single 1-cm diode laser bars is advancing rapidly across all commercial wavelengths and the available range of emission wavelengths also continues to increase. Both high efficiency ~ 50% and > 100-W power InP-based CW bars have been available in bar format around 1500-nm for some time, as required for eye-safe illuminators and for pumping Er-YAG crystals. There is increasing demand for sources at longer wavelengths. Specifically, 1900-nm sources can be used to pump Holmium doped YAG crystals, to produce 2100-nm emission. Emission near 2100-nm is attractive for free-space communications and range-finding applications as the atmosphere has little absorption at this wavelength. Diode lasers that emit at 2100-nm could eliminate the need for the use of a solid-state laser system, at significant cost savings. 2100-nm sources can also be used as pump sources for Thulium doped solid-state crystals to reach even longer wavelengths. In addition, there are several promising medical applications including dental applications such as bone ablation and medical procedures such as opthamology. These long wavelength sources are also key components in infra-red-counter-measure systems. We have extended our high performance 1500-nm material to longer wavelengths through optimization of design and epitaxial growth conditions and report peak CW output powers from single 1-cm diode laser bars of 37W at 1910-nm and 25W at 2070-nm. 1-cm bars with 20% fill factor were tested under step-stress conditions up to 110-A per bar without failure, confirming reasonable robustness of this technology. Stacks of such bars deliver high powers in a collimated beam suitable for pump applications. We demonstrate the natural spectral width of ~ 18nm of these laser bars can be reduced to < 3-nm with use of an external Volume Bragg Grating, as required for pump applications. We review the developments required to reach these powers, latest advances and prospects for longer

  11. Combining high power diode lasers using fiber bundles for beam delivery in optoacoustic endoscopy applications

    NASA Astrophysics Data System (ADS)

    Gawali, Sandeep Babu; Leggio, Luca; Sánchez, Miguel; Rodríguez, Sergio; Dadrasnia, Ehsan; Gallego, Daniel C.; Lamela, Horacio

    2016-05-01

    Optoacoustic (OA) effect refers to the generation of the acoustic waves due to absorption of light energy in a biological tissue. The incident laser pulse is absorbed by the tissue, resulting in the generation of ultrasound that is typically detected by a piezoelectric detector. Compared to other techniques, the advantage of OA imaging (OAI) technique consists in combining the high resolution of ultrasound technique with the high contrast of optical imaging. Generally, Nd:YAG and OPO systems are used for the generation of OA waves but their use in clinical environment is limited for many aspects. On the other hand, high-power diode lasers (HPDLs) emerge as potential alternative. However, the power of HPDLs is still relatively low compared to solid-state lasers. We show a side-by-side combination of several HPDLs in an optical fiber bundle to increase the amount of power for OA applications. Initially, we combine the output optical power of several HPDLs at 905 nm using two 7 to 1 round optical fiber bundles featuring a 675 μm and 1.2 mm bundle aperture. In a second step, we couple the output light of these fiber bundles to a 600 μm core diameter endoscopic fiber, reporting the corresponding coupling efficiencies. The fiber bundles with reasonable small diameter are likely to be used for providing sufficient light energy to potential OA endoscopy (OAE) applications.

  12. High-power laser diodes at SCD: performance and reliability for defence and space applications

    NASA Astrophysics Data System (ADS)

    Risemberg, Shlomo; Karni, Yoram; Klumel, Genadi; Levy, Moshe; Berk, Yuri; Rech, Markus; Becht, Hubert; Frei, Bruno

    2009-05-01

    High Power Laser Diode Arrays developed and produced at SCD-SemiConductor Devices support a number of advanced defence and space programs. High efficiency and unsurpassed reliability at high operating temperatures are mandatory features for those applications. We report lifetime results of high power bar stacks, operating in QCW mode that rely on a field-proven design comprising Al-free wafer material technology and hard soldering robust packaging. A variety of packaging platforms have been implemented and tested at very harsh environmental conditions. Results include a long operational lifetime study totaling 20 billion pulses monitored in the course of several years for 808 nm QCW bar stacks.. Additionally, we report results of demanding lifetime tests for space qualification performed on these stacks at different levels of current load in a unique combination with operational temperature cycles in the range of -10 ÷60 °C. Novel solutions for highly reliable water cooled devices designed for operation in long pulses at different levels of PRF, are also discussed. The cooling efficiency of microchannel coolers is preserved while reliability is improved.

  13. Asymmetric, nonbroadened waveguide structures for double QW high-power 808nm diode laser

    NASA Astrophysics Data System (ADS)

    Abbasi, S. P.; Mahdieh, M. H.

    2017-01-01

    In this paper, we propose an asymmetric epitaxial layer structre for designing 808nm diode laser. In this asymmetric sructure, the p-waveguide is reduced in thickness and the p-cladding is doped for increasing the thermal conductivity and consequently better heat extraction. The main purpose of using such design is enhancing the laser gain by reduction of loss in laser cavity, and reduction of electrical and thermal resistivity of the diode laser.

  14. Catastrophic optical degradation of the output facet of high-power single-transverse-mode diode lasers. 1. Physical model

    SciTech Connect

    Miftakhutdinov, D R; Bogatov, Alexandr P; Drakin, A E

    2010-09-10

    The physical model of catastrophic optical degradation (COD) of the output facet of high-power single- transverse-mode diode lasers is developed. The model excels other models both in completeness of the physical analysis of the processes leading to COD and in allowance for design feature of lasers used to increase the COD threshold - protective coating of the output facet and current limitations near it. (lasers)

  15. High-power diode lasers at 1178  nm with high beam quality and narrow spectra.

    PubMed

    Paschke, K; Bugge, F; Blume, G; Feise, D; Erbert, G

    2015-01-01

    High-power distributed Bragg reflector tapered diode lasers (DBR-TPLs) at 1180 nm were developed based on highly strained InGaAs quantum wells. The lasers emit a nearly diffraction-limited beam with more than two watts with a narrow spectral width. These features are believed to make this type of diode laser a key component for the manufacturing of miniaturized laser modules in the yellow and orange spectral range by second-harmonic generation to cover a spectral region currently not accessible with direct emitting diode lasers. Future applications might be the laser-cooling of sodium, high-resolution glucose-content measurements, as well as spectroscopy on rare earth elements.

  16. Wavelength switchable high-power diode-side-pumped rod Tm:YAG Laser around 2µm.

    PubMed

    Wang, Caili; Du, Shifeng; Niu, Yanxiong; Wang, Zhichao; Zhang, Chao; Bian, Qi; Guo, Chuan; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Lei, Wenqiang; Xu, Zuyan

    2013-03-25

    We report a high-power diode-side-pumped rod Tm:YAG laser operated at either 2.07 or 2.02 µm depending on the transmission of pumped output coupler. The laser yields 115W of continuous-wave output power at 2.07 µm with 5% output coupling, which is the highest output power for all solid-state 2.07 μm cw rod Tm:YAG laser reported so far. With an output coupler of 10% transmission, the center wavelength of the laser is switched to 2.02 μm with an output power of 77.1 W. This is the first observation of high-power wavelength switchable diode-side-pumped rod Tm:YAG laser around 2 µm.

  17. High-power diode laser marking and engraving of building materials

    NASA Astrophysics Data System (ADS)

    Li, Lin; Lawrence, Jonathan; Spencer, Julian T.

    1997-08-01

    A Diomed 60W-cw high power diode laser (HPDL) has been used for the marking and engraving of various building materials, including; marble, granite, clay tiles, ceramic tiles, roof tiles, ordinary Portland cement (OPC) and clay bricks. Morphological and microstructural characteristics have been investigated. The basic mechanism of marking/engraving and the characteristics of the beam absorption are discussed. The effects of material texture, color and laser processing parameters are reported. The work shows that engraving depths of over 2 mm (0.75 mm for a single pass) can be achieved on marble substrates by thermal disintegration of CaCO3 into loose CaO powder and CO2 gas. Uniform amorphous glazed lines (1 - 3 mm line width) of a color different from the untreated materials can be generated on clay tiles, ceramic tiles, roof tiles, clay bricks and OPC by solidification phase formation after laser melting of these materials. Effects of atmospheric conditions, for instance using O2 and Ar gas shrouds, have been examined, with different colored marks being observed when different shroud gases are used. To demonstrate the practical worth of the process a UMIST crest has been marked on a ceramic tile using the system. Laser beam reflectivity is found to depend not only on material composition but also its color. Reflectivity has been found to range between 12% to 18% for the various construction materials used in the experiment, except for marble (grey) which showed over 27% reflectivity. Since the HPDL is a portable device, on-site application of these processing techniques can be realized, which would be either impossible or difficult when using other types of lasers.

  18. High power 2 {mu}m diode-pumped Tm:YAG laser

    SciTech Connect

    Beach, R.J.; Sutton, S.B.; Honea, E.C.; Skidmore, J.A.; Emanuel, M.A.

    1996-01-01

    Using a scaleable diode end-pumping technology developed at LLNL, we have demonstrated a compact Tm:YAG laser capable of generating more than 50 W of cw 2 {mu}m laser output power. The design and operational characteristics of this laser, which was built originally for use in assessing laser surgical techniques, are discussed.

  19. Beam Profile Improvement of a High-Power Diode Laser Stack for Optoacoustic Applications

    NASA Astrophysics Data System (ADS)

    Sánchez, Miguel; Rodríguez, Sergio; Leggio, Luca; Gawali, Sandeep; Gallego, Daniel; Lamela, Horacio

    2017-04-01

    Recent advances in high-power diode lasers (HPDLs) technology allow their use as potential sources for optoacoustic (OA) applications, due to their high repetition rates (a few kHz), low costs and sizes. However, some OA applications require pulse energies in the order of mJ that cannot be provided by the only HPDLs (several μJ). The employment of diode laser bars (DLBs) and stacks (DLSs) significantly increases the energy per pulse up to several mJ, but they require more optical elements for collimation in fast and slow axes. In this work, we show an 808 nm DLS emitting optical nanosecond pulses with currents of ˜ 200 A and supplied by a customized current driver. We only collimate the beam in the fast axis by disposing the core of 200 μm optical fibers as collimating lenses along each bar of the stack, and we discuss the improvement of the beam profile. The results demonstrate that the beam profile is notably improved with the optical fiber lenses, and a 6.4 mm × 4.3 mm light spot is obtained by using a conventional focusing lens. Measurements report a total energy per pulse of 630 μJ in the spot, considering a pulse width of 850 ns and a repetition rate of 1 kHz. Finally, we focus the light spot into an absorbing inclusion (graphene oxide) hosted in a semi-transparent phantom to generate and detect high OA signals ({˜ }355 mV_{pp}). The results achieved demonstrate the capability of our DLS system to be applied in multispectral OA systems with final application in OA endoscopy and microscopy.

  20. High-Power Diode Laser-Treated 13Cr4Ni Stainless Steel for Hydro Turbines

    NASA Astrophysics Data System (ADS)

    Mann, B. S.

    2014-06-01

    The cast martensitic chromium nickel stainless steels such as 13Cr4Ni, 16Cr5Ni, and 17Cr4Ni PH have found wide application in hydro turbines. These steels have adequate corrosion resistance with good mechanical properties because of chromium content of more than 12%. The 13Cr4Ni stainless steel is most widely used among these steels; however, lacks silt, cavitation, and water impingement erosion resistances (SER, CER, and WIER). This article deals with characterizing 13Cr4Ni stainless steel for silt, cavitation, and water impingement erosion; and studying its improved SER, CER, and WIER behavior after high-power diode laser (HPDL) surface treatment. The WIER and CER have improved significantly after laser treatment, whereas there is a marginal improvement in SER. The main reason for improved WIER and CER is due to its increased surface hardness and formation of fine-grained microstructure after HPDL surface treatment. CER and WIER of HPDL-treated 13Cr4Ni stainless steel samples have been evaluated as per ASTM G32-2003 and ASTM G73-1978, respectively; and these were correlated with microstructure and mechanical properties such as ultimate tensile strength, modified ultimate resilience, and microhardness. The erosion damage mechanism, compared on the basis of scanning electron micrographs and mechanical properties, is discussed and reported in this article.

  1. Emission properties of diode laser bars during pulsed high-power operation

    NASA Astrophysics Data System (ADS)

    Olecki, Marcin; Tomm, Jens W.; Hempel, Martin; Hennig, Petra; Elsaesser, Thomas

    2012-03-01

    High power diode laser bars are subjected to single pulse step tests carried out up to and beyond their ultimate limits of operation. Laser nearfields and thermal behavior are monitored for pulse widths in the 10 μs-2 ms-range with streak- and thermo-cameras, respectively. The final phase of the tests allows the in situ observation of the catastrophic optical damage (COD) effect. We find perfect agreement between the location of COD signatures observed by transient emission and thermo-camera measurements on the one side, and optical inspection of the degraded bars on the other side. COD thresholds are determined and the observed dependence on the pulse length is qualitatively explained. This approach allows for testing hardness and homogeneity of facet coatings on a bar level with or without consideration of accidental early single-emitter failure effects and thermal crosstalk between the emitters. It helps embanking sudden degradation and provides insight into the mechanisms governing the device emission behavior at ultimate output powers.

  2. Feasibility of High-Power Diode Laser Array Surrogate to Support Development of Predictive Laser Lethality Model

    SciTech Connect

    Lowdermilk, W H; Rubenchik, A M; Springer, H K

    2011-01-13

    Predictive modeling and simulation of high power laser-target interactions is sufficiently undeveloped that full-scale, field testing is required to assess lethality of military directed-energy (DE) systems. The cost and complexity of such testing programs severely limit the ability to vary and optimize parameters of the interaction. Thus development of advanced simulation tools, validated by experiments under well-controlled and diagnosed laboratory conditions that are able to provide detailed physics insight into the laser-target interaction and reduce requirements for full-scale testing will accelerate development of DE weapon systems. The ultimate goal is a comprehensive end-to-end simulation capability, from targeting and firing the laser system through laser-target interaction and dispersal of target debris; a 'Stockpile Science' - like capability for DE weapon systems. To support development of advanced modeling and simulation tools requires laboratory experiments to generate laser-target interaction data. Until now, to make relevant measurements required construction and operation of very high power and complex lasers, which are themselves costly and often unique devices, operating in dedicated facilities that don't permit experiments on targets containing energetic materials. High power diode laser arrays, pioneered by LLNL, provide a way to circumvent this limitation, as such arrays capable of delivering irradiances characteristic of De weapon requires are self-contained, compact, light weight and thus easily transportable to facilities, such as the High Explosives Applications Facility (HEAF) at Lawrence Livermore National Laboratory (LLNL) where testing with energetic materials can be performed. The purpose of this study was to establish the feasibility of using such arrays to support future development of advanced laser lethality and vulnerability simulation codes through providing data for materials characterization and laser-material interaction

  3. Reliability of high power diode laser systems based on single emitters

    NASA Astrophysics Data System (ADS)

    Leisher, Paul; Reynolds, Mitch; Brown, Aaron; Kennedy, Keith; Bao, Ling; Wang, Jun; Grimshaw, Mike; DeVito, Mark; Karlsen, Scott; Small, Jay; Ebert, Chris; Martinsen, Rob; Haden, Jim

    2011-03-01

    Diode laser modules based on arrays of single emitters offer a number of advantages over bar-based solutions including enhanced reliability, higher brightness, and lower cost per bright watt. This approach has enabled a rapid proliferation of commercially available high-brightness fiber-coupled diode laser modules. Incorporating ever-greater numbers of emitters within a single module offers a direct path for power scaling while simultaneously maintaining high brightness and minimizing overall cost. While reports of long lifetimes for single emitter diode laser technology are widespread, the complex relationship between the standalone chip reliability and package-induced failure modes, as well as the impact of built-in redundancy offered by multiple emitters, are not often discussed. In this work, we present our approach to the modeling of fiber-coupled laser systems based on single-emitter laser diodes.

  4. Effect of thermal processes on critical operation conditions of high-power laser diodes

    SciTech Connect

    Parashchuk, V V; Vu Doan Mien

    2013-10-31

    Using numerical and analytical techniques in a threedimensional approximation, we have modelled the effect of spatial thermoelastic stress nonuniformity in a laser diode – heat sink system on the output characteristics of the device in different operation modes. We have studied the influence of the pulse duration, the geometry of the laser system and its thermophysical parameters on the critical pump current density, in particular for state-of-the-art heat conductive substrate materials. The proposed approach has been used to optimise the laser diode assembly process in terms of the quality of laser crystal positioning (bonding) on a heat sink. (lasers)

  5. Robust modeling and performance analysis of high-power diode side-pumped solid-state laser systems.

    PubMed

    Kashef, Tamer; Ghoniemy, Samy; Mokhtar, Ayman

    2015-12-20

    In this paper, we present an enhanced high-power extrinsic diode side-pumped solid-state laser (DPSSL) model to accurately predict the dynamic operations and pump distribution under different practical conditions. We introduce a new implementation technique for the proposed model that provides a compelling incentive for the performance assessment and enhancement of high-power diode side-pumped Nd:YAG lasers using cooperative agents and by relying on the MATLAB, GLAD, and Zemax ray tracing software packages. A large-signal laser model that includes thermal effects and a modified laser gain formulation and incorporates the geometrical pump distribution for three radially arranged arrays of laser diodes is presented. The design of a customized prototype diode side-pumped high-power laser head fabricated for the purpose of testing is discussed. A detailed comparative experimental and simulation study of the dynamic operation and the beam characteristics that are used to verify the accuracy of the proposed model for analyzing the performance of high-power DPSSLs under different conditions are discussed. The simulated and measured results of power, pump distribution, beam shape, and slope efficiency are shown under different conditions and for a specific case, where the targeted output power is 140 W, while the input pumping power is 400 W. The 95% output coupler reflectivity showed good agreement with the slope efficiency, which is approximately 35%; this assures the robustness of the proposed model to accurately predict the design parameters of practical, high-power DPSSLs.

  6. High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.

    1991-01-01

    The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.

  7. Nanoscale coatings for erosion and corrosion protection of copper microchannel coolers for high powered laser diodes

    NASA Astrophysics Data System (ADS)

    Flannery, Matthew; Fan, Angie; Desai, Tapan G.

    2014-03-01

    High powered laser diodes are used in a wide variety of applications ranging from telecommunications to industrial applications. Copper microchannel coolers (MCCs) utilizing high velocity, de-ionized water coolant are used to maintain diode temperatures in the recommended range to produce stable optical power output and control output wavelength. However, aggressive erosion and corrosion attack from the coolant limits the lifetime of the cooler to only 6 months of operation. Currently, gold plating is the industry standard for corrosion and erosion protection in MCCs. However, this technique cannot perform a pin-hole free coating and furthermore cannot uniformly cover the complex geometries of current MCCs involving small diameter primary and secondary channels. Advanced Cooling Technologies, Inc., presents a corrosion and erosion resistant coating (ANCERTM) applied by a vapor phase deposition process for enhanced protection of MCCs. To optimize the coating formation and thickness, coated copper samples were tested in 0.125% NaCl solution and high purity de-ionized (DIW) flow loop. The effects of DIW flow rates and qualities on erosion and corrosion of the ANCERTM coated samples were evaluated in long-term erosion and corrosion testing. The robustness of the coating was also evaluated in thermal cycles between 30°C - 75°C. After 1000 hours flow testing and 30 thermal cycles, the ANCERTM coated copper MCCs showed a corrosion rate 100 times lower than the gold plated ones and furthermore were barely affected by flow rates or temperatures thus demonstrating superior corrosion and erosion protection and long term reliability.

  8. High-power single spatial mode AlGaAs channeled-substrate-planar semiconductor diode lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Carlin, D. B.; Ettenberg, M.

    1989-01-01

    A high power single spatial mode channeled substrate planar AlGaAs semiconductor diode laser was developed. The emission wavelength was optimized at 860 to 880 nm. The operating characteristics (power current, single spatial mode behavior, far field radiation patterns, and spectral behavior) and results of computer modeling studies on the performance of the laser are discussed. Reliability assessment at high output levels is included. Performance results on a new type of channeled substrate planar diode laser incorporating current blocking layers, grown by metalorganic chemical vapor deposition, to more effectively focus the operational current to the lasing region was demonstrated. The optoelectronic behavior and fabrication procedures for this new diode laser are discussed. The highlights include single spatial mode devices with up to 160 mW output at 8600 A, and quantum efficiencies of 70 percent (1 W/amp) with demonstrated operating lifetimes of 10,000 h at 50 mW.

  9. 975 nm high power diode lasers with high efficiency and narrow vertical far field enabled by low index quantum barriers

    NASA Astrophysics Data System (ADS)

    Crump, P.; Pietrzak, A.; Bugge, F.; Wenzel, H.; Erbert, G.; Tränkle, G.

    2010-03-01

    For optimal coupled power into fiber, high power diode lasers should operate efficiently with smallest possible vertical far field emission angle. Although waveguide and cladding layers can be designed to achieve small angles, the refractive index profile of the active region itself restricts the minimum achievable value. We show that the use of low index quantum barrier layers leads to substantially reduced far field angles, while sustaining high power conversion efficiency. 90 μm stripe lasers that use such designs have narrow vertical far field angles of 30° (95% power content), power conversion efficiency of 58% and operate reliably at 10 W output.

  10. High-power 2-μm diode-pumped Tm:YAG laser

    NASA Astrophysics Data System (ADS)

    Beach, Raymond J.; Sutton, Steven B.; Honea, Eric C.; Skidmore, Jay A.; Emanuel, Mark A.

    1996-03-01

    Using a scalable diode end-pumping technology developed at Lawrence Livermore National Laboratory we have demonstrated a compact Tm:YAG laser capable of generating greater than 50 W of cw 2 micrometer laser output power. The design and operational characteristics of this laser, which was built originally for use in assessing laser surgical techniques, are discussed. The 2 micrometer radiation produced by the 3F4 - 3H6 transition of Tm3+ has many practical applications because it is strongly absorbed by water and also because it is an 'eye-safe' wavelength. The strong absorption of 2 micrometer radiation by water makes this transition a very attractive candidate for performing laser surgical procedures as most tissue types are predominately composed of liquid water. The fact that 2 micrometer radiation is considered 'eye-safe' makes this transition attractive for laser range finding and remote sensing applications where other laser wavelengths could pose a safety hazard. At sufficiently high doping densities, Tm3+ exhibits a beneficial two-for-one quantum pump efficiency enabling well developed AlGaAs laser diode arrays to be used as efficient excitation sources. Many applications requiring 2 micrometer laser radiation such as remote sensing, laser radar, anti sensor, sensor spoofing, and OPO pumping have driven the development of diode pumped all solid state TM3+ laser systems because of their potential for efficiency, compactness, and ruggedness. Here we focus on Tm3+:YAG and the scalable diode end-pumping technology developed at LLNL which enables higher average power operation of diode pumped Tm3+ laser systems than has previously been possible. To date we have demonstrated cw operation of this laser to power levels of 51 W. The end-pumping technology used is the same as was previously used to demonstrate a 100 mJ Q-switched Nd:YLF laser. (Truncated.)

  11. High power laser diodes at 14xx nm wavelength range for industrial and medical applications

    NASA Astrophysics Data System (ADS)

    Telkkälä, Jarkko; Boucart, Julien; Krejci, Martin; Crum, Trevor; Lichtenstein, Norbert

    2014-03-01

    We report on the development of the latest generation of high power laser diodes at 14xx nm wavelength range suitable for industrial applications such as plastics welding and medical applications including acne treatment, skin rejuvenation and surgery. The paper presents the newest chip generation developed at II-VI Laser Enterprise, increasing the output power and the power conversion efficiency while retaining the reliability of the initial design. At an emission wavelength around 1440 nm we applied the improved design to a variety of assemblies exhibiting maximum power values as high as 7 W for broad-area single emitters. For 1 cm wide bars on conductive coolers and for bars on active micro channel coolers we have obtained 50 W and 72 W in continuous wave (cw) operation respectively. The maximum power measured for a 1 cm bar operated with 50 μs pulse width and 0.01% duty cycle was 184 W, demonstrating the potential of the chip design for optimized cooling. Power conversion efficiency values as high as 50% for a single emitter device and over 40% for mounted bars have been demonstrated, reducing the required power budget to operate the devices. Both active and conductive bar assembly configurations show polarization purity greater than 98%. Life testing has been conducted at 95 A, 50% duty cycle and 0.5 Hz hard pulsed operation for bars which were soldered to conductive copper CS mounts using our hard solder technology. The results after 5500 h, or 10 million "on-off" cycles show stable operation.

  12. High-power diode-side-pumped rod Tm:YAG laser at 2.07 μm.

    PubMed

    Wang, Caili; Niu, Yanxiong; Du, Shifeng; Zhang, Chao; Wang, Zhichao; Li, Fangqin; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Xu, Zuyan

    2013-11-01

    We report a high-power diode-laser (LD) side-pumped rod Tm:YAG laser of around 2 μm. The laser was water-cooled at 8°C and yielded a maximum output power of 267 W at 2.07 μm, which is the highest output power for an all solid-state cw 2.07 μm rod Tm:YAG laser reported as far as we know. The corresponding optical-optical conversion efficiency was 20.7%, and the slope efficiency was about 29.8%, respectively.

  13. Corrosion resistant nickel superalloy coatings laser-clad with a 6 kW high power diode laser (HPDL)

    NASA Astrophysics Data System (ADS)

    Tuominen, Jari; Honkanen, Mari; Hovikorpi, Jari; Vihinen, Jorma; Vuoristo, Petri; Maentylae, Tapio

    2003-03-01

    A series of exerpiments were performed to investigate the one-step laser cladding of Inconel 625 powder, injected off-axially onto Fe37 and 42CrMo4 substrates. The experiments were carried out using a 6 kW high power diode laser (HPDL) mounted to a 6 axis robot system. The rectangular shape of the delivering beam was focused to a spot size of 22 x 5 mm on the work piece. The coating samples were produced using different levels of powder feed rate (77 - 113 g/min), traveling speed (300 - 400 mm/min) and laser power (4.8 - 6 kW). Hot corrosion resistance of laser-clad Inconel 625 coatings were tested in Na2SO4 - V2O5 at 650°C for 1000 hours. Wet corrosion properties of the obtained coatings were tested in immersion tests in 3.5 wt.% NaCl solution. Diode laser power of 6 kW (808 and 940 nm) was high enough to produce 20 mm wide laser-clad tracks with a thickness of 2.5 mm in a single pass, when powder feed rate was more than 6 kg/h and traverse speed was 400 mm/min. Wet corrosion properties of laser-clad Inconel 625 coatings were found to be superior to sprayed and welded coatings. Hot corrosion resistance was even slightly better than corresponding wrought alloy. Finally, one-step HPDL cladding was demonstrated in coating of shaft for hydraulic cylinder with Inconel 625 powder. Due to high coating quality, high deposition rate and traverse speed HPDL devices are very promising for large area cladding applications.

  14. High-power multi-beam diode laser transmitter for a flash imaging lidar

    NASA Astrophysics Data System (ADS)

    Holmlund, Christer; Aitta, Petteri; Kivi, Sini; Mitikka, Risto; Tyni, Lauri; Heikkinen, Veli

    2013-10-01

    VTT Technical Research Centre of Finland is developing the transmitter for the "Flash Optical Sensor for TErrain Relative NAVigation" (FOSTERNAV) multi-beam flash imaging lidar. FOSTERNAV is a concept demonstrator for new guidance, navigation and control (GNC) technologies to fulfil the requirements for landing and docking of spacecraft as well as for navigation of rovers. This paper presents the design, realisation and testing of the multi-beam continuous-wave (CW) laser transmitter to be used in a 256x256 pixel flash imaging lidar. Depending on the target distance, the lidar has three operation modes using either several beams with low divergence or one single beam with a large divergence. This paper describes the transmitter part of the flash imaging lidar with focus on the electronics and especially the laser diode drivers. The transmitter contains eight fibre coupled commercial diode laser modules with a total peak optical power of 32 W at 808 nm. The main requirement for the laser diode drivers was linear modulation up to a frequency of 20 MHz allowing, for example, low distortion chirps or pseudorandom binary sequences. The laser modules contain the laser diode, a monitoring photodiode, a thermo-electric cooler, and a thermistor. The modules, designed for non-modulated and low-frequency operation, set challenging demands on the design of the drivers. Measurement results are presented on frequency response, and eye diagrams for pseudo-random binary sequences.

  15. Macro-channel cooled high power fiber coupled diode lasers exceeding 1.2kW of output power

    NASA Astrophysics Data System (ADS)

    Koenning, Tobias; Alegria, Kim; Wang, Zuolan; Segref, Armin; Stapleton, Dean; Faßbender, Wilhelm; Flament, Marco; Rotter, Karsten; Noeske, Axel; Biesenbach, Jens

    2011-03-01

    We report on a new series of fiber coupled diode laser modules exceeding 1.2kW of single wavelength optical power from a 400um / 0.2NA fiber. The units are constructed from passively cooled laser bars as opposed to other comparably powered, commercially available modules that use micro-channel heat-sinks. Micro-channel heat sinks require cooling water to meet demanding specifications and are therefore prone to failures due to contamination and increase the overall cost to operate and maintain the laser. Dilas' new series of high power fiber coupled diode lasers are designed to eliminate micro channel coolers and their associated failure mechanisms. Low-smile soldering processes were developed to maximize the brightness available from each diode laser bar. The diode laser brightness is optimally conserved using Dilas' recently developed propriety laser bar stacking geometry and optics. A total of 24 bars are coupled into a single fiber core using a polarization multiplexing scheme. The modular design permits further power scaling through wavelength multiplexing. Other customer critical features such as industrial grade fibers, pilot beams, fiber interlocks and power monitoring are standard features on these modules. The optical design and the beam parameter calculations will be presented to explain the inherit design trade offs. Results for single and dual wavelengths modules will be presented.

  16. Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers.

    PubMed

    Fedorova, Ksenia A; Cataluna, Maria Ana; Krestnikov, Igor; Livshits, Daniil; Rafailov, Edik U

    2010-08-30

    A record broadly tunable high-power external cavity InAs/GaAs quantum-dot diode laser with a tuning range of 202 nm (1122 nm-1324 nm) is demonstrated. A maximum output power of 480 mW and a side-mode suppression ratio greater than 45 dB are achieved in the central part of the tuning range. We exploit a number of strategies for enhancing the tuning range of external cavity quantum-dot lasers. Different waveguide designs, laser configurations and operation conditions (pump current and temperature) are investigated for optimization of output power and tunability.

  17. Improving the efficiency of high-power diode lasers using diamond heat sinks

    SciTech Connect

    Parashchuk, Valentin V; Baranov, V V; Telesh, E V; Mien, Vu Doan; Luc, Vu Van; Truong, Pham Van; Belyaeva, A K

    2010-06-23

    Using multifunctional ion beam and magnetron sputtering systems, we have developed chemical and vacuum techniques for producing metallic coatings firmly adherent to various surfaces, with application to copper and diamond heat sinks for diode lasers. Conditions have been optimised for mounting diode lasers and bars using the proposed metallisation processes, and significant improvements in the output parameters of the devices have been achieved. The power output of cw laser diodes on diamond heat sinks increases by up to a factor of 2, the linear (working) portion of their power-current characteristic becomes markedly broader, and their slope efficiency increases by a factor of 1.5 - 2 relative to that of lasers on copper heat spreaders. The use of diamond heat sinks extends the drive current range of pulsed diode bars by a factor of 2 - 3 and enables them to operate at more than one order of magnitude longer pump pulse durations (up to milliseconds) when the pulse repetition rate is at least 10 Hz. (lasers)

  18. Thermal lens shaping in Brewster gain media: A high-power, diode-pumped Nd:GdVO(4) laser.

    PubMed

    Rimington, N; Schieffer, S; Schroeder, W; Brickeen, Brian

    2004-04-05

    A straightforward method is presented for generating a stigmatic spherical thermal lens in laser-diode-pumped, Brewster-cut solid-state gain media by shaping the aspect ratio of the elliptical pumped region. Demonstration of this laser head design with Nd:GdVO(4) as the gain medium yields a stable, efficient, high-power (>20W) diode-pumped laser at 1063nm. Analysis of the spatial mode characteristics of a 67cm-long symmetric resonator both confirms the radially symmetric nature of the pump-induced thermal lens and indicates that laser resonators incorporating this head design can readily generate a high spatial beam quality (M(2) < 2).

  19. Orofacial hereditary haemorrhagic telangiectasia: high power diode laser in early and advanced lesion treatment

    NASA Astrophysics Data System (ADS)

    Tempesta, Angela; Franco, Simonetta; Miccoli, Simona; Suppressa, Patrizia; De Falco, Vincenzo; Crincoli, Vito; Lacaita, Mariagrazia; Giuliani, Michele; Favia, Gianfranco

    2014-01-01

    Hereditary Haemorrhagic Telangiectasia (HHT) is a muco-cutaneous inherited disease. Symptoms are epistaxis, visceral arterio-venous malformations, multiple muco-cutaneous telangiectasia with the risk of number increasing enlargement, bleeding, and super-infection. The aim of this work is to show the dual Diode Laser efficacy in preventive treatment of Early Lesions (EL < 2mm) and therapeutic treatment of Advanced Lesions (AL < 2mm). 21 patients affected by HHT with 822 muco-cutaneous telangiectatic nodules have been treated in several sessions with local anaesthesia and cooling of treated sites. EL preventive treatment consists of single Laser impulse (fibre 320) in ultrapulsed mode (2 mm single point spot). AL therapeutic treatment consists of repeated Laser impulses in pulsed mode (on 200ms / off 400ms). According to the results, Diode Laser used in pulsed and ultra-pulsed mode is very effective as noninvasive treatment both in early and advanced oral and perioral telangiectasia.

  20. Coherent beam combining of high power broad-area laser diode array with near diffraction limited beam quality and high power conversion efficiency.

    PubMed

    Liu, B; Braiman, Y

    2013-12-16

    We explored a path of achieving high quality phase-locking of broad-area laser diode (BALD) array that operates at high electrical to optical power conversion efficiency (PCE). We found that (a) improving single transverse mode control for each individual BALD, (b) employing global Talbot optical coupling among diodes, and (c) enhancing strength of optical coupling among diodes are key factors in achieving high quality phase-locking of high power BALD array. Subsequently, we redesigned and improved a V-shaped external Talbot cavity and employed low reflectivity anti-reflection (AR) coated, low-"smile" BALD array to meet these three important requirements. We demonstrated near-diffraction limit far-field coherent pattern with 19% PCE and 95% visibility. The far-field angle (full-width at half-maximum (FWHM)) of center lobe was measured as 1.5 diffraction angular limited with visibility of 99% for 5A injection current and 1.6 diffraction angular limited with visibility of 95% for 14A injection current. Power scaling of diode array is discussed.

  1. High-power pulsed diode-pumped Er:ZBLAN fiber laser.

    PubMed

    Gorjan, Martin; Petkovšek, Rok; Marinček, Marko; Čopič, Martin

    2011-05-15

    We report on the operation and performance of a gain-switched Er:ZBLAN fiber laser based on an active pulsed diode pump system. The produced laser pulses offer high peak powers while retaining the high average powers and efficiency of the cw regime. The measured pulse duration was about 300 ns and nearly independent of the pump repetition frequency. The maximum obtained 68 W of peak power is the highest reported, to our knowledge, for diode-pumped Er:ZBLAN fiber lasers, and the 2 W of average power at the repetition frequency of 100 kHz is 2 orders of magnitude higher than previously reported average power in a pulsed regime. The obtained slope efficiency was 34%.

  2. Analysis of bulk and facet failures in AlGaAs-based high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Tomm, Jens W.; Hempel, Martin; La Mattina, Fabio; Kießling, Frank M.; Elsaesser, Thomas

    2013-03-01

    Mechanisms are addressed limiting the reliability high-power diode lasers. An overview is given on the kinetics of the Catastrophic Optical Damage (COD) process, which is related to highest output powers. It involves fast defect growth fed by re-absorption of laser light. Local temperatures reach the order of the melting temperature of the waveguide of the device. The process starts either at a facet or at any weak point, e.g., at extended defects in the interior of the cavity.

  3. High-power continuous-wave dual-wavelength operation of a diode-pumped Yb:KGW laser.

    PubMed

    Akbari, Reza; Zhao, Haitao; Major, Arkady

    2016-04-01

    High-power dual-wavelength diode-pumped Yb:KGW laser using a single birefringent filter plate was demonstrated. Two oscillating wavelengths maintained the same polarization and stable dual-wavelength operation at 1014.6 and 1041.3 nm (7.57 THz of frequency offset) with 3.4 W of average output power and a diffraction-limited beam profile was obtained. Dual-wavelength laser operation at shorter- or longer-wavelength pairs with lower average output power could also be realized for other output-coupling transmissions.

  4. High Power 7-GHz Bandwidth External-Cavity Diode Laser Array and Its Use in Optically Pumping Singlet Delta Oxygen

    DTIC Science & Technology

    2006-10-11

    array,” Opt. Lett. 19, 1741 (1994). 2. Stuart MacCormack, Jack Feinberg, and M. H. Garrett , “Injection locking a laser-diode array with a phase...generate O2( 1∆) molecules, frequently called Singlet Delta Oxygen (SDO) molecules. High-power chemical oxygen-iodine lasers ( COIL ) use energy...45 A, thermal roll -over effect starts and output power drops due to high temperature (~30oC) of the DLA. The green data are the DLA’s free-running

  5. High-power diode-end-pumped Tm:LiLuF4 slab lasers.

    PubMed

    Cheng, Xiaojin; Zhang, Shuaiyi; Xu, Jianqui; Peng, Haiyan; Hang, Yin

    2009-08-17

    Diode-end-pumped continuous-wave and acousto-optics Q-switched Tm:LiLuF(4) slab lasers were demonstrated. The a-cut Tm:LiLuF(4) slab with doping concentrations of 2 at.% was pumped by fast-axis collimated laser diodes at room temperature. The maximum continuous-wave output power of 10.4 W was obtained while the absorbed pump power was 31.6 W and the cavity length was 30 mm. For Q-switched operation, we got the maximum pulse energy of 8 mJ with pulse width of 315.2 ns at 1 KHz pulse repetition frequency.

  6. Finite-Element Simulation for Electrothermal Characterization of High-Power Diode Laser Bars

    DTIC Science & Technology

    2010-03-31

    materials. The single electron, time-independent Schrodinger equation is, ( − h̄ 2 2m ∇2 + V ) ψn = Enψn, (37) where m is the appropriate effective...Snowden, and T Boettcher. Solution of the coupled Poisson- Schrodinger equations using the multigrid method. Interna- tional Journal of Numerical Modelling...Simulation of semiconductor diode laser performance involves interaction between multiple physics domains. This report presents the governing equations and

  7. Fiber coupling design of high power cm-bar laser diodes based on Zemax

    NASA Astrophysics Data System (ADS)

    Wang, Kai-ming; Qu, Yi; Zhu, Hong-bo; Li, Hui; Zhang, Jian-jia

    2015-10-01

    In order to further increase the fiber-coupled module output power, eight cm-bar 808 nm laser diodes, 50 w output each, fiber coupling module has been designed by using ZEMAX optical design software through space and polarization beam combination method. The core diameter of output fiber is 400 μm with a numerical aperture of 0.22. Finally the fiber output power is 350.2 W, with a coupling efficiency of 87.6%.

  8. High-power pulsed diode laser for automotive scanning radar sensor

    NASA Astrophysics Data System (ADS)

    Kimura, Yuji; Matsushita, Noriyuki; Kato, Hisaya; Abe, Katsunori; Atsumi, Kinya

    2000-02-01

    High performance pulsed AlGaAs/GaAs wide stripe diode laser has been developed for the automotive distance-measuring scanning radar sensor. The laser diode is required high output power of 15 W and a long time reliability in spite of being used in a harsh environment such as wide temperature range, mechanical vibrations at the front bumper and so on. The device is designed by employing a multiple quantum well structure as an active layer for high output power with low drive current and high temperature operations. Moreover we reduce catastrophic optical damage power level and control the beam divergence angle by introducing optimized optical waveguide layers. In the chips bonding part, we developed a new thin film Au-Sn-Ni solder system. The bonding temperature can be lowered by using this system, whereby the thermal damage to the laser diode can be reduced. Furthermore, highly stable bonding is carried out by improving wetting ability in this system. We have achieved more than 22 W light output power at 20A pulse current under room temperature and more than 16 W light output power under 90 degrees Celsius. High reliability over 10,000 hours is performed for automotive use under pulsed operation at 90 degrees Celsius, 50 ns pulse width, 8 kHz frequency and 15 W light output power.

  9. High-power diode-pumped Tm:YLF slab laser

    NASA Astrophysics Data System (ADS)

    Schellhorn, M.; Ngcobo, S.; Bollig, C.

    2009-02-01

    A 2% Tm3+-doped LiYF4(Tm:YLF) slab is double-end-pumped by two laser diode stacks. The pumped volume has a rectangular cross section. The Tm:YLF laser produced 148 W of continuos-wave output at 1912 nm in a beam with M {/x 2}≈199 and M {/y 2}≈1.7 for 554 W of incident pump power. The slope efficiency with respect to the incident pump power was 32.6%, and the optical-to-optical efficiency was 26.7%.

  10. High-power distributed Bragg reflector ridge-waveguide diode laser with very small spectral linewidth.

    PubMed

    Paschke, K; Spiessberger, S; Kaspari, C; Feise, D; Fiebig, C; Blume, G; Wenzel, H; Wicht, A; Erbert, G

    2010-02-01

    We manufactured and investigated distributed Bragg reflector ridge-waveguide diode lasers having sixth-order surface gratings and an emission wavelength around 974 nm. The single-mode output power of the lasers with a total length of 4 mm exceeded 1 W. A very small spectral linewidth of 1.4 MHz (3 dB) consisting of a Lorentzian part of 146 kHz and a Gaussian part of 1308 MHz was measured using a self-delayed heterodyne measurement technique.

  11. Time-resolved far-field analysis of a high power single emitter laser diode

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Unge, Glenn L.

    1992-01-01

    A system was developed which is capable of measuring the time-resolved far-field radiation patterns from a high-power semiconductor laser under intensity modulated conditions. Angular steering of the fundamental spatial mode was observed, with pointing variations as large as 0.5 deg, or 7.5 percent of the beamwidth, during the time of the optical pulse. The variations in pointing angle were directly related to gradients in the transverse index profile of the laser, which may oscillate based on lateral spatial hole burning of the gain and carrier density.

  12. New Class of CW High-Power Diode-Pumped Alkali Lasers (DPALs)

    SciTech Connect

    Krupke, W F; Beach, R J; Kanz, V K; Payne, S A; Early, J T

    2004-03-23

    The new class of diode-pumped alkali vapor lasers (DPALs) offers high efficiency cw laser radiation at near-infrared wavelengths: cesium 895 nm, rubidium 795 nm, and potassium 770 nm. The working physical principles of DPALs will be presented. Initial 795 nm Rb and 895 nm Cs laser experiments performed using a titanium sapphire laser as a surrogate pump source demonstrated DPAL slope power conversion efficiencies in the 50-70% range, in excellent agreement with device models utilizing only literature spectroscopic and kinetic data. Using these benchmarked models for Rb and Cs, optimized DPALs with optical-optical efficiencies >60%, and electrical efficiencies of 25-30% are projected. DPAL device architectures for near-diffraction-limited power scaling into the high kilowatt power regime from a single aperture will be described. DPAL wavelengths of operation offer ideal matches to silicon and gallium arsenide based photovoltaic power conversion cells for efficient power beaming.

  13. Compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode.

    PubMed

    Liu, Hongjun; Gao, Cunxiao; Tao, Jintao; Zhao, Wei; Wang, Yishan

    2008-05-26

    A compact tunable high power picosecond source based on Yb-doped fiber amplification of gain switch laser diode is demonstrated. A multi-stage single mode Yb-doped fiber preamplifier was combined with a single mode double-clad Yb-doped fiber main amplifier to construct the amplification system, which is seeded by a gain switch laser diode. By optimizing preamplifier???s parameters to compensate the seed spectrum gain, a "flat top" broadband spectrum is obtained to realize wavelength tunable output with a self-made tunable filter. The tunable pulses were further amplified to 3.5 W average power 90 ps pulses at 1 MHz repetition rate, and the center wavelength was tunable in the ranges from 1053 nm to 1073 nm with excellent beam quality.

  14. Next generation 9xx/10xx nm high power laser diode bars for multi-kilowatt industrial applications

    NASA Astrophysics Data System (ADS)

    Commin, Paul; Todt, René; Krejci, Martin; Bättig, Rainer; Brunner, Reinhard; Lichtenstein, Norbert

    2013-02-01

    We report on the development of high power, 9xx-10xx nm laser diode bars for use in direct diode systems and for solidstate and fibre laser pumping with applications in industrial markets. For 1 cm wide bars on micro channel cooler (MCC) we have achieved a reliable output power of 250 W across the 900 nm - 1060 nm range. At this output power level we have achieved power conversion efficiencies of 65-66 % and 90 % power content slow axis beam divergence of ~6.5°. Results of a 6400 h life test show an average power degradation of 0.6 % per 1000 h at this operating power level. We will also show results of high power bars assembled on the new OCLARO conductive cooler, the BLM. This new cooler has a small footprint of 12.6 mm × 24.8 mm and is designed for lateral or vertical stacking of diodes in multi kilowatt systems but with the benefits associated with a conductive cooler. The thermal properties are shown to be the same as for a standard CS mount. 1 cm wide high fill factor bars and 0.5 cm wide low fill factor half bars assembled on the BLM operate at 63-64 % power conversion efficiency (PCE) with output powers of up to 250 W and 150 W, respectively.

  15. High power CW (16W) and pulse (145W) laser diodes based on quantum well heterostructures.

    PubMed

    Tarasov, Ilya S; Pikhtin, Nikita A; Slipchenko, Sergey O; Sokolova, Zinaida N; Vinokurov, Dmitry A; Borschev, Kirill S; Kapitonov, Vladimir A; Khomylev, Maxim A; Leshko, Andrey Yu; Lyutetskiy, Andrey V; Stankevich, Alexey L

    2007-04-01

    We suggested and experimentally confirmed the effective method of internal optical loss reduction by high order mode suppression in a separate confinement quantum well laser heterostructure with asymmetric ultra thick waveguide. Manufacturing of InGaAs/GaAs/AlGaAs laser heterostructure with a 1.7 microm-thick asymmetric waveguide allowed attaining super low value of internal optical loss alphai=0.34 cm-1 preserving high efficiency and fundamental transverse mode operation. Record-high 16 W continuous wave (CW) and 145 W pulse room temperature front facet output optical power and 74% wallplug efficiency were attained in 100-microm-aperture 1.06-microm-emitting laser diodes with 3 mm cavity length.

  16. Thermomechanical model for the plastic deformation in high power laser diodes during operation

    NASA Astrophysics Data System (ADS)

    Martín-Martín, A.; Avella, M.; Iñiguez, M. P.; Jiménez, J.; Oudart, M.; Nagle, J.

    2009-10-01

    A thermomechanical model for the mechanism of rapid degradation of AlGaAs based high power laser bars (808 nm) is presented. Thermal stresses induced in the device by local heating around a facet defect by nonradiative recombination and self-absorption of photons are calculated, as well as the conditions for the beginning of plastic deformation, when these thermal stresses overcome the yield strength. The values of the power density and of the local temperature at which the yield limit is surmounted are in agreement with the threshold values for the degradation of Al based lasers given in the literature. The present model can also elucidate the role played by the packaging stress, being able to explain how this stress reduces the optical power density threshold for failure of these lasers.

  17. All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers.

    PubMed

    Klenner, Alexander; Keller, Ursula

    2015-04-06

    Passively modelocked diode-pumped solid-state lasers (DPSSLs) with pulse repetition rates in the gigahertz regime suffer from an increased tendency for Q-switching instabilities. Low saturation fluence intracavity saturable absorbers - such as the semiconductor saturable absorber mirrors (SESAMs) - can solve this problem up to a certain average output power limited by the onset of SESAM damage. Here we present a passive stabilization mechanism, an all-optical Q-switching limiter, to reduce the impact of Q-switching instabilities and increase the potential output power of SESAM modelocked lasers in the gigahertz regime. With a proper cavity design a Kerr lens induced negative saturable absorber clamps the maximum fluence on the SESAM and therefore limits the onset of Q-switching instabilities. No critical cavity alignment is required because this Q-switching limiter acts well within the cavity stability regime. Using a proper cavity design, a high-power diode-pumped Yb:CALGO solid-state laser generated sub-100 fs pulses with an average output power of 4.1 W at a pulse repetition rate of 5 GHz. With a pulse duration of 96 fs we can achieve a peak power as high as 7.5 kW directly from the SESAM modelocked laser oscillator without any further external pulse amplification and/or pulse compression. We present a quantitative analysis of this Kerr lens induced Q-switching limiter and its impact on modelocked operation. Our work provides a route to compact high-power multi-gigahertz frequency combs based on SESAM modelocked diode-pumped solid-state lasers without any additional external amplification or pulse compression.

  18. Three-dimensional failure analysis of high power semiconductor laser diodes operated in vacuum

    NASA Astrophysics Data System (ADS)

    Yeoh, Terence S.; Chaney, John A.; Leung, Martin S.; Ives, Neil A.; Feinberg, Z. D.; Ho, James G.; Wen, Jianguo

    2007-12-01

    The damaged region of a semiconductor laser diode that failed in a vacuum environment was analyzed using focused ion beam (FIB) serial sectioning, time-of-flight secondary ion mass spectrometry (ToF-SIMS), high resolution transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), energy dispersive x-ray spectroscopy (EDS), and nanodiffraction. The FIB nanotomography models and the TEM cross sections show a damage structure extending deep into the core and originating at the diode/antireflective (AR) coating interface. Nanocrystalline gold was detected at this interface using both TEM diffraction and EDS, and the localization of gold along the core at the diode/AR interface was corroborated using 3D ToF-SIMS. A thinning of the AR coating above the failure site was observed by TEM with a corresponding increase in carbon content on the AR surface detected with EELS. It is suggested that failure proceeded by pyrolysis of adsorbed hydrocarbons on the AR coating, which, in the presence of a high optical flux, contributed to carbothermal reduction of the AR coating. As the optical flux increased, thermal gradients facilitate metal migration, leading to larger gold clusters. These clusters are sites for deep level traps and may promote catalytic reactions.

  19. Experimental studies for improvement of thermal effects in a high-power fiber-coupled diode laser module operating at 808 nm

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ashraf F.; Hussein, Khalid; Hassan, Mahmoud F.; Talat, Mahmoud M.

    2012-03-01

    High power diode laser module operating at 808 nm is required for different applications, such as developing an efficient high power Nd3+-doped solid state laser and Tm3+ -doped silica fiber laser, industrial, medical and military applications. Optical and thermal images characterization for a fiber-coupled high power diode laser module is presented experimentally for 6.6 Watt output optical power .An external temperature controller system was designed, which stabilizes the central wavelength at 808 nm at 25°C over a wide range of diode laser driving current from 1A to 6 A. without this cooling system, the wavelength changes by 0.35nm/°C for temperature changes from 20°C to 40°C at the same range of the driving current. In this paper we have present a methodology for temperature reduction of a 808 nm high power diode laser module, based on dynamically thermal control, which is known as dynamic thermal management. Stabilization of the output wavelength has been done by using proportional speed control (PSC) of a CPU cooling fan with certain scheme of straight fins heat sink. Two electronic circuits based on pulse width modulation (PWM) in microcontroller and comparators IC have been used. This technique can be considered as an effective mechanism for reducing temperature and power dissipation to make stabilization of the diode laser output wavelength by preventing heat accumulation from the thermo electric cooling (TEC) inside the diode laser module confirmed by thermal images.

  20. High-power diode-pumped solid-state lasers for optical space communications

    NASA Technical Reports Server (NTRS)

    Koechner, Walter; Burnham, Ralph; Kasinski, Jeff; Bournes, Pat; Dibiase, Don; Le, Khoa; Marshall, Larry; Hays, Alan

    1991-01-01

    The design and performance of a large diode-pumped multi-stage Nd:YAG laser system for space and airborne applications will be described. The laser operates at a repetition rate of 40 Hz and produces an output either at 1.064 micron or 532 nm with an average power in the Q-switched mode of 30 W at the fundamental and 20 W at the second harmonic wavelength. The output beam is diffraction limited (TEM 00 mode) and can optionally also be operated in a single longitudinal mode. The output energy ranges from 1.25 Joule/pulse in the free lasing mode, 0.75 Joule in a 17 nsec Q-switched pulse, to 0.5 Joules/pulse at 532 nm. The overall electrical efficiency for the Q-switched second harmonic output is 4.

  1. Automated alignment of optical components for high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Brecher, C.; Pyschny, N.; Haag, S.; Guerrero Lule, V.

    2012-03-01

    Despite major progress in developing brilliant laser sources a huge potential for cost reductions can be found in simpler setups and automated assembly processes, especially for large volume applications. In this presentation, a concept for flexible automation in optics assembly is presented which is based on standard micro assembly systems with relatively large workspace and modular micromanipulators to enhance the system with additional degrees of freedom and a very high motion resolution. The core component is a compact flexure-based micromanipulator especially designed for the alignment of micro optical components which will be described in detail. The manipulator has been applied in different scenarios to develop and investigate automated alignment processes. This paper focuses on the automated alignment of fast axis collimation (FAC) lenses which is a crucial step during the production of diode lasers. The handling and positioning system, the measuring arrangement for process feedback during active alignment as well as the alignment strategy will be described. The fine alignment of the FAC lens is performed with the micromanipulator under concurrent analysis of the far and the near field intensity distribution. An optimization of the image processing chains for the alignment of a FAC in front of a diode bar led to cycle times of less than 30 seconds. An outlook on other applications and future work regarding the development of automated assembly processes as well as new ideas for flexible assembly systems with desktop robots will close the talk.

  2. High reliability, high power arrays of 808 nm single mode diode lasers employing various quantum well structures

    NASA Astrophysics Data System (ADS)

    Qiu, B. C.; Kowalski, O.; McDougall, S. D.; Liu, X. F.; Marsh, J. H.

    2008-02-01

    Single mode laser diode arrays operating at 808 nm have been designed and fabricated using several different waveguide and quantum well combinations. In order to operate these devices at 200 mW per element a quantum well intermixing process has been used to render their facets non-absorbing and thus they do not suffer from mirror damage related failure. In this paper we demonstrate extremely high levels of reliability for GaAs and AlGaAs quantum well devices with arrays of 64 elements completing over 6000 hours continuous operation without any single laser element failure and a correspondingly low power degradation rate of <1% k/hr. In contrast we show extremely high power degradation rates for arrays using InGaAs and InAlGaAs 808 nm quantum wells laser arrays.

  3. Compact fiber-optic flurosensor using high-power continuous-wave violet diode laser

    NASA Astrophysics Data System (ADS)

    Johansson, Ann; Gustafsson, Ulf; Palsson, Sara; Svanberg, Sune

    2003-10-01

    In this work a compact fluorosensor has been built for point-monitoring and imaging applications. The instrument has been applied in fluorescence studies on green vegetation and on malignant tissue. The instrument is based on a violet diode laser, an integrated spectrometer and optical fibers for light delivery and collection of the fluorescence signal. This combination makes the system very compact. The high laser output power allows for coupling of the laser light into a hyperspectral diagnostic imaging instrument, developed and built by Science and Technology International. In point-monitoring mode, the instrument has been tested on superficial skin tumors and when using δ-aminolevulinic acid induced protoporphyrin IX as a tumor sensitizer, good contrast between normal and malignant tissue was achieved, clearly demonstrating its feasibility in cancer diagnostics. In imaging mode, the instrument functioned solely as a light source, coupling the excitation light into the hyperspectral imaging instrument. The set-up was tested by studying chlorophyll fluorescence from vegetation. The fluorescence signal showed a low signal-to-noise ratio mainly because of inefficient light coupling into the imaging instrument.

  4. Experimental investigation of factors limiting slow axis beam quality in 9xx nm high power broad area diode lasers

    NASA Astrophysics Data System (ADS)

    Winterfeldt, M.; Crump, P.; Wenzel, H.; Erbert, G.; Tränkle, G.

    2014-08-01

    GaAs-based broad-area diode lasers are needed with improved lateral beam parameter product (BPPlat) at high power. An experimental study of the factors limiting BPPlat is therefore presented, using extreme double-asymmetric (EDAS) vertical structures emitting at 910 nm. Continuous wave, pulsed and polarization-resolved measurements are presented and compared to thermal simulation. The importance of thermal and packaging-induced effects is determined by comparing junction -up and -down devices. Process factors are clarified by comparing diodes with and without index-guiding trenches. We show that in all cases studied, BPPlat is limited by a non-thermal BPP ground-level and a thermal BPP, which depends linearly on self-heating. Measurements as a function of pulse width confirm that self-heating rather than bias-level dominates. Diodes without trenches show low BPP ground-level, and a thermal BPP which depends strongly on mounting, due to changes in the temperature profile. The additional lateral guiding in diodes with trenches strongly increases the BPP ground-level, but optically isolates the stripe from the device edges, suppressing the influence of the thermal profile, leading to a BPP-slope that is low and independent of mounting. Trenches are also shown to initiate strain fields that cause parasitic TM-polarized emission with large BPPlat, whose influence on total BPPlat remains small, provided the overall polarization purity is >95%.

  5. Reliability study on high power 638-nm triple emitter broad area laser diode

    NASA Astrophysics Data System (ADS)

    Yagi, T.; Kuramoto, K.; Kadoiwa, K.; Wakamatsu, R.; Miyashita, M.

    2016-03-01

    Reliabilities of the 638-nm triple emitter broad area laser diode (BA-LD) with the window-mirror structure were studied. Methodology to estimate mean time to failure (MTTF) due to catastrophic optical mirror degradation (COMD) in reasonable aging duration was newly proposed. Power at which the LD failed due to COMD (PCOMD) was measured for the aged LDs under the several aging conditions. It was revealed that the PCOMD was proportional to logarithm of aging duration, and MTTF due to COMD (MTTF(COMD)) could be estimated by using this relation. MTTF(COMD) estimated by the methodology with the aging duration of approximately 2,000 hours was consistent with that estimated by the long term aging. By using this methodology, the MTTF of the BA-LD was estimated exceeding 100,000 hours under the output of 2.5 W, duty cycles of 30% .

  6. High-power linearly polarized diode-side-pumped a-cut Nd:GdVO4 rod laser

    NASA Astrophysics Data System (ADS)

    Li, Xiaowen; Qian, Jianqiang; Zhang, Baitao

    2017-03-01

    An efficiently high-power diode-side-pumped Nd:GdVO4 rod laser system was successfully demonstrated, operating in continuous wave (CW) and acousto-optically (AO) Q-switched regime. With a 65 mm-long a-cut Nd:GdVO4 crystal, a maximum linearly polarized CW output power of 60 W at 1063.2 nm was obtained under an absorbed pump power of 180 W, corresponding to a slope efficiency of 50.6%. The output laser beam was linearly polarized with a degree of polarization of 98%. In AO Q-switched operation, the highest output power, minimum pulse width, and highest peak power were achieved to be 42 W, 36 ns, and 58 kW at the pulse repetition frequency of 20 kHz.

  7. Measurement of mounting-induced strain in high-power laser diode arrays

    NASA Astrophysics Data System (ADS)

    Tomm, Jens W.; Mueller, Ralf; Baerwolff, A.; Lorenzen, Dirk

    1999-11-01

    Thermally induced strain caused by device packaging is studied in high-power semiconductor laser arrays by a novel non-invasive technique. Measurements with intentionally strained laser array devices for 808 nm emission reveal spectral shifts of quantum-confined optical transitions in the optical active region. These shifts by up to 10 meV serve as a measure for strain and are compared with model calculations. We demonstrate that different packaging techniques cause different packaging-induced strains. We also show that the packaging-induced strain portion, which gets transmitted through the solder material, differs for different packaging technologies. An intentionally strain- reduced packaging technique is shown to transmit about one quarter of the potential packaging-induced strain towards the optical active layer, whereas another packaging technique, which provides highly reliable 'single-chip' devices is found to transmit about half of the potential amount. Spatially resolved measurements demonstrate strain gradients within the devices. Also temporal strain evolution is monitored. We show that 'the burn-in' is accompanied by strain accumulation whereas for long-term operation strain relaxation occurs.

  8. System analysis of wavelength beam combining of high-power diode lasers for photoacoustic endoscopy

    NASA Astrophysics Data System (ADS)

    Leggio, Luca; Gallego, Daniel C.; Gawali, Sandeep B.; Sánchez, Miguel; Rodriguez, Sergio; Osiński, Marek; Sacher, Joachim; Carpintero, Guillermo; Lamela, Horacio

    2016-04-01

    This paper, originally published on 27 April 2016, was replaced with a corrected/revised version on 8 June 2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. The purpose of wavelength-beam combining (WBC) is to improve the output power of a multi-wavelength laser system while maintaining the quality of the combined beam. This technique has been primarily proposed for industrial applications, such as metal cutting and soldering, which require optical peak power between kilowatts and megawatts. In order to replace the bulkier solid-state lasers, we propose to use the WBC technique for photoacoustic (PA) applications, where a multi-wavelength focused beam with optical peak power between hundreds of watts up to several kilowatts is necessary to penetrate deeply into biological tissues. In this work we present an analytical study about the coupling of light beams emitted by diode laser bars at 808 nm, 880 nm, 910 nm, 940 nm, and 980 nm into a < 600-μm core-diameter optical fiber for PA endoscopy. In order to achieve an efficient coupling it is necessary to collimate the beams in both fast and slow axes by means of cylindrical lenses and to use partial reflection mirrors at 45° tilt. We show an example of beam collimation using cylindrical lenses in both fast and slow axes. In a real PA scenario, the resulting beam should have a sufficient peak power to generate significant PA signals from a turbid tissue>.

  9. Expansion-matched passively cooled heatsinks with low thermal resistance for high-power diode laser bars

    NASA Astrophysics Data System (ADS)

    Leers, Michael; Scholz, Christian; Boucke, Konstantin; Poprawe, Reinhart

    2006-02-01

    The lifetime of high-power diode lasers, which are cooled by standard copper heatsinks, is limited. The reasons are the aging of the indium solder normally employed as well as the mechanical stress caused by the mismatch between the copper heatsink (16 - 17ppm/K) and the GaAs diode laser bars (6 - 7.5 ppm/K). For micro - channel heatsinks corrosion and erosion of the micro channels limit the lifetime additionally. The different thermal behavior and the resulting stress cannot be compensated totally by the solder. Expansion matched heatsink materials like tungsten-copper or aluminum nitride reduce this stress. A further possible solution is a combination of copper and molybdenum layers, but all these materials have a high thermal resistance in common. For high-power electronic or low cost medical applications novel materials like copper/carbon compound, compound diamond or high-conductivity ceramics were developed during recent years. Based on these novel materials, passively cooled heatsinks are designed, and thermal and mechanical simulations are performed to check their properties. The expansion of the heatsink and the induced mechanical stress between laser bar and heatsink are the main tasks for the simulations. A comparison of the simulation with experimental results for different material combinations illustrates the advantages and disadvantages of the different approaches. Together with the boundary conditions the ideal applications for packaging with these materials are defined. The goal of the development of passively-cooled expansion-matched heatsinks has to be a long-term reliability of several 10.000h and a thermal resistance below 1 K/W.

  10. High-power operation of AlGaInP red laser diode for display applications

    NASA Astrophysics Data System (ADS)

    Kuramoto, K.; Nishida, T.; Abe, S.; Miyashita, M.; Mori, K.; Yagi, T.

    2015-03-01

    Substantial limitation of output power in AlGaInP based red broad area (BA) laser diode (LD) originates from an electron thermal overflow from an active layer to a p-cladding layer and fatal failure due to catastrophic optical mirror degradation during the LD operation. New red BA-LD was designed and fabricated. The LD chip had triple emitters in one chip with each stripe width of 60 um, and was assembled on Φ9.0 mm -TO package. The LD emitted exceeding 5.5 W at heat sink temperature of 25 °C and 3.8W at 45 °C under pulsed operation with frequency of 120Hz and duty of 30%, although the current product, which has a 40 um single emitter chip assembled on Φ5.6mm -TO, does 2.0 W at 25 °C. The lasing wavelength at 25 °C and 2.5W output was 638.6 nm. The preliminary aging test under the condition with the operation current of 3.56A, CW, auto-current-control mode (ACC), and the heat sink temperature of 20 °C (almost equal to the output of 3.5 W) indicated that the MTTF due to COMD was longer than 6,600 hours under CW, 22,000 hours under the pulse with duty of 30%.

  11. Miniature long-range light beam transmitter resorting to a high-power broad area laser diode

    NASA Astrophysics Data System (ADS)

    Yue, Wenjing; Lee, Sang-Shin

    2014-08-01

    A miniature long-range light beam transmitter, which taps into a high-power broad area laser diode (BALD), was realized to exhibit a uniform detectable width. An effective model was proposed to practically emulate the multimode characteristics of the beam generated by the BALD. The model, solely based on the emitting region and far-field divergence angle pertaining to the LD, is established through an incoherent superposition of multiple normalized Hermit-Gaussian modes. The feasibility of the proposed model was successfully verified in terms of the calculated and observed irradiance distributions of the light beams. A long-range light beam transmitter was then designed and constructed taking advantage of the BALD source in conjunction with a beam shaper. The manufactured transmitter was corroborated to provide an infrared beam with a constant detectable width of ~1 m, over a distance ranging up to 400 m, for a predefined threshold level.

  12. Intensification of heat transfer in high-power laser diode bars by means of porous metal heat-sink

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Derzhavin, S. I.; Kuzminov, V. V.; Mashkovskiy, D. A.; Timoshkin, V. N.; Philonenko, V.

    1999-01-01

    To intensify a heat transfer in high-power emitters based on laser diode bars we propose the use of a heat sink from a porous permeable material cooled by a fluid flow [1-3]. The main advantage of this class of materials is the possibility of removing significant heat flows with compact heat sink. An analysis of the characteristic values of the thermal loads and their relations with the material and liquid parameters drawn from an one-dimensional model of stationary one-sided heat exchange shows the possibility of heat flow removal of more than 1.5 kW/cm 2 at room temperature in a liquid. Methods for improving the effectiveness of the strategy are considered.

  13. Novel Design of Type I High Power Mid-IR Diode Lasers for Spectral Region 3 - 4.2 Microns

    DTIC Science & Technology

    2014-09-25

    Gregory Belenky. Type- I quantum well cascade diode lasers emitting near 3??m, Applied Physics Letters, (08 2013): 121108. doi: 10.1063/1.4821992...Transfer PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number:   1 Cascade type-I quantum well diode lasers emitting 960 mW near 3 µm. Cascade pumping...comparable to that typically measured for standard GaSb-based type-I QW diode lasers emitting near and above 3 µm [9].The latter observation is

  14. About the physical meaning of the critical temperature for catastrophic optical damage in high power quantum well laser diodes

    NASA Astrophysics Data System (ADS)

    Souto, J.; Pura, J. L.; Jiménez, J.

    2016-02-01

    It is usually assumed that the catastrophic optical damage of high power laser diodes is launched when a critical local temperature (T c) is reached; temperatures ranging from 120 °C to 200 °C were experimentally reported. However, the physical meaning of T c in the degradation process is still unclear. In this work we show that, in the presence of a local heat source in the active region, the temperature of the laser structure, calculated using finite element methods, is widely inhomogeneously distributed among the different layers forming the device. This is due to the impact that the low dimensionality and the thermal boundary resistances have on the thermal transport across the laser structure. When these key factors are explicitly considered, the quantum well (QW) temperature can be several hundred degrees higher than the temperature of the guides and cladding layers. Due to the size of the experimental probes, the measured critical temperature is a weighted average over the QW, guides, and claddings. We show the existence of a large difference between the calculated average temperature, equivalent to the experimentally measured temperature, and the peak temperature localized in the QW. A parallel study on double heterostructure lasers is also included for comparison.

  15. Chemical vapor deposition of highly adherent diamond coatings onto co-cemented tungsten carbides irradiated by high power diode laser.

    PubMed

    Barletta, M; Rubino, G; Valle, R; Polini, R

    2012-02-01

    The present investigation deals with the definition of a new eco-friendly alternative to pretreat Co-cemented tungsten carbide (WC-Co) substrates before diamond deposition by hot filament chemical vapor deposition (HFCVD). In particular, WC-5.8 wt %Co substrates were submitted to a thermal treatment by a continuous wave-high power diode laser to reduce surface Co concentration and promote the reconstruction of the WC grains. Laser pretreatments were performed both in N(2) and Ar atmosphere to prevent substrate oxidation. Diamond coatings were deposited onto the laser pretreated substrates by HFCVD. For comparative purpose, diamond coatings were also deposited on WC-5.8 wt %Co substrates chemically etched by the well-known two-step pretreatment employing Murakami's reagent and Caro's acid. Surface morphology, microstructure, and chemical composition of the WC-5.8 wt %Co substrates after the different pretreatments and the deposition of diamond coatings were assessed by surface profiler, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction analyses. Wear performance of the diamond coatings was checked by dry sliding linear reciprocating tribological tests. The worn volume of the diamond coatings deposited on the laser pretreated substrates was always found lower than the one measured on the chemically etched substrates, with the N(2) atmosphere being particularly promising.

  16. Experimental investigation of factors limiting slow axis beam quality in 9xx nm high power broad area diode lasers

    SciTech Connect

    Winterfeldt, M. Crump, P.; Wenzel, H.; Erbert, G.; Tränkle, G.

    2014-08-14

    GaAs-based broad-area diode lasers are needed with improved lateral beam parameter product (BPP{sub lat}) at high power. An experimental study of the factors limiting BPP{sub lat} is therefore presented, using extreme double-asymmetric (EDAS) vertical structures emitting at 910 nm. Continuous wave, pulsed and polarization-resolved measurements are presented and compared to thermal simulation. The importance of thermal and packaging-induced effects is determined by comparing junction -up and -down devices. Process factors are clarified by comparing diodes with and without index-guiding trenches. We show that in all cases studied, BPP{sub lat} is limited by a non-thermal BPP ground-level and a thermal BPP, which depends linearly on self-heating. Measurements as a function of pulse width confirm that self-heating rather than bias-level dominates. Diodes without trenches show low BPP ground-level, and a thermal BPP which depends strongly on mounting, due to changes in the temperature profile. The additional lateral guiding in diodes with trenches strongly increases the BPP ground-level, but optically isolates the stripe from the device edges, suppressing the influence of the thermal profile, leading to a BPP-slope that is low and independent of mounting. Trenches are also shown to initiate strain fields that cause parasitic TM-polarized emission with large BPP{sub lat}, whose influence on total BPP{sub lat} remains small, provided the overall polarization purity is >95%.

  17. High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 microm.

    PubMed

    Jackson, Stuart D

    2009-08-01

    A high-power diode-cladding-pumped Ho(3+), Pr(3+)-doped fluoride glass fiber laser is demonstrated. The laser produced a maximum output power of 2.5 W at a slope efficiency of 32% using diode lasers emitting at 1,150 nm. The long-emission wavelength of 2.94 microm measured at maximum pump power, which is particularly suited to medical applications, indicates that tailoring of the proportion of Pr(3+) ions can provide specific emission wavelengths while providing sufficient de-excitation of the lower laser level.

  18. High Power Linear Arrays of 1.9 mum Laser Diodes

    DTIC Science & Technology

    2001-04-01

    then cooled under P2 flux to 490°C before starting the growth. 4.2. Laser Fabrication Broad area lasers were fabricated as follows: First, the 100 pm...W = 0.3 pm, 0.6 pm, 0.9 pm were grown. After laser fabrication as described in section 4.2 they were fully characterized with the results, described...4 4.1.2 Growth of 1.9 pm Laser Structure ..................................................... 5 4.2 Laser

  19. Compact high-brightness and high-power diode laser source for materials processing

    NASA Astrophysics Data System (ADS)

    Treusch, Hans-Georg; Harrison, Jim; Morris, Robert; Powers, Jeff J.; Brown, Dennis; Martin, Joey

    2000-03-01

    A compact, reliable semiconductor laser source for materials processing, medical and pumping applications is described. This industrial laser source relies on a combination of technologies that have matured in recent years. In particular, effective means of stacking and imaging monolithic semiconductor laser arrays (a.k.a., bars), together with advances in the design and manufacture of the bars, have enabled the production of robust sources at market-competitive costs. Semiconductor lasers are presently the only lasers known that combine an efficiency of about 50% with compact size and high reliability. Currently the maximum demonstrated output power of a 10-mm-wide semiconductor laser bar exceeds the 260 W level when assembled on an actively cooled heat sink. (The rated power is in the range of 50 to 100 W.) Power levels in the kW range can be reached by stacking such devices. The requirements on the stacking technique and the optic assembly to achieve high brightness are discussed. Optics for beam collimation in fast and slow axis are compared. An example for an optical setup to use in materials processing will be shown. Spot sizes as low as 0.4 mm X 1.2 mm at a numerical aperture of 0.3 and output power of 1 kW are demonstrated. This results in a power density of more than 200 kW/cm2. A setup for further increase in brightness by wavelength and polarization coupling will be outlined. For incoherent coupling of multiple beams into a single core optical fiber, a sophisticated beam-shaping device is needed to homogenize the beam quality of stacked semiconductor lasers.

  20. The study of stability on a laser-diode-pumped high-power high-repetition-rate intracavity frequency-doubled 532-nm laser

    NASA Astrophysics Data System (ADS)

    Zhao, Shi-yong; Yao, Jian-Quan; Xu, De-gang; Zhou, Rui; Zhang, Bai-gang; Zhou, Jia-ning; Wang, Peng

    2005-01-01

    High power laser-diode-pumped 532nm laser sources (including continuous wave and high repetition rate operation) are directly used for precise processing of metals and plastics. Furthermore, high power green laser will be used in some fields such as ocean exploration, laser probe and underwater communication. Recently, we reported a 110W diode-side-pumped Nd:YAG intracavity frequency doubled high stability 532nm laser. In the experiment, we found that the average output power of second harmonic fluctuated acutely with the variety of pumping current. Moreover, the length of arms between the mirrors were very sensitive to this cavity. We consider that one of the reason is the focus length of thermal lens of Nd:YAG rod alter with the variational pumping current, which makes the cavity be unstable. We consider the KTP crystal as a thin lens for its short length. As thermal lensing effect of the Nd:YAG rod is quite severe, so we consider it as thermal lensing medium. By ray matrix methods, we have obtained the stable regions and beam waist radii distribution in the flat-concave cavity. In our experiment, we used a pump head consisting of 80 diode bars with pentagon pump model and employed flat-concave cavity structure in order to achieve high stability output and increase output power. The total cavity length is 505mm. By using an acousto-optic Q-switching with high diffraction loss and the KTP crystal which is type II phase matching, 110 W high stability 532nm laser is achieved. The experimental result is in good agreement with the calculation.

  1. The Use of Large Transparent Ceramics in a High Powered, Diode Pumped Solid State Laser

    SciTech Connect

    Yamamoto, R; Bhachu, B; Cutter, K; Fochs, S; Letts, S; Parks, C; Rotter, M; Soules, T

    2007-09-24

    The advent of large transparent ceramics is one of the key enabling technological advances that have shown that the development of very high average power compact solid state lasers is achievable. Large ceramic neodymium doped yttrium aluminum garnet (Nd:YAG) amplifier slabs are used in Lawrence Livermore National Laboratory's (LLNL) Solid State Heat Capacity Laser (SSHCL), which has achieved world record average output powers in excess of 67 kilowatts. We will describe the attributes of using large transparent ceramics, our present system architecture and corresponding performance; as well as describe our near term future plans.

  2. A high-power all-fiberized Yb-doped laser directly pumped by a laser diode emitting at long wavelength

    NASA Astrophysics Data System (ADS)

    Zhang, Hanwei; Xiao, Hu; Zhou, Pu; Wang, Xiaolin; Xu, Xiaojun

    2013-09-01

    We demonstrate a high power, laser diode pumped, all-fiberized Yb-doped fiber laser operating at 1173 nm wavelength at room temperature by using standard commercial double cladding fiber. A record output power of 15.7 W is obtained with respect to the pump power of 28 W; the slope efficiency is as high as 60%. We have experimentally studied the relationship of the threshold of parasitic lasing to the reflectivity of the output coupler. The results show that high reflectivity of the output coupler has more potential to suppress the parasitic lasing. From our experiments we can learn that long gain fiber has more potential to suppress amplified spontaneous emission (ASE) and increase the efficiency, but the effect decreases after the pump light is totally absorbed. We have also experimentally evaluated that there is no obvious difference between a 915 nm laser diode (LD) and a 976 nm LD as the pump source in suppressing the self-oscillation. All our experiments are demonstrated at room temperature which implies that the high-power long wavelength Yb-doped fiber laser can be achieved without heating the gain fiber.

  3. Alloying the X40CrMoV5-1 steel surface layer with tungsten carbide by the use of a high power diode laser

    NASA Astrophysics Data System (ADS)

    Dobrzański, L. A.; Bonek, M.; Hajduczek, E.; Klimpel, A.

    2005-07-01

    The paper presents the effect of alloying with tungsten carbide on properties of the X40CrMoV5-1 steel surface layer, using the high power diode laser (HPDL). Selection of laser operating conditions is discussed, as well as thickness of the alloying layer, and their influence on structure and chemical composition of the steel. Analysis of the influence of the process conditions on the thicknesses of the alloyed layer and heat-affected zone is presented.

  4. High-temperature operation of 640 nm wavelength high-power laser diode arrays

    NASA Astrophysics Data System (ADS)

    Imanishi, Daisuke

    2017-03-01

    We realized the fabrication of a red semiconductor laser array with high optical power and reliability using an AlGaInP-based compound semiconductor. To obtain a high optical output, the semiconductor laser requires high-quality quantum wells. In this work, we improved quantum well layer abruptness by applying high-temperature growth condition to quantum wells. We obtained a very high optical power of 20.1 W with a wavelength of 644 nm under this growth condition using magnesium as a dopant for a p-type layer. As a results, we achieved a high characteristic temperature of 68 K and a high electrical-to-optical (E–O) conversion efficiency 37% at 15 W optical output. When the laser lifetime at a temperature of 35 °C and an optical output power of 6.6 W for operation is defined as the time when the output power decreases to 50%, which is usually used for defining the lifetime of ultra high-pressure (UHP) lamps in projection display, we can estimate the lifetime of this laser to be longer than 10000 h or more.

  5. Adjustable mounting device for high-volume production of beam-shaping systems for high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Haag, Sebastian; Bernhardt, Henning; Rübenach, Olaf; Haverkamp, Tobias; Müller, Tobias; Zontar, Daniel; Brecher, Christian

    2015-02-01

    In many applications for high-power diode lasers, the production of beam-shaping and homogenizing optical systems experience rising volumes and dynamical market demands. The automation of assembly processes on flexible and reconfigurable machines can contribute to a more responsive and scalable production. The paper presents a flexible mounting device designed for the challenging assembly of side-tab based optical systems. It provides design elements for precisely referencing and fixating two optical elements in a well-defined geometric relation. Side tabs are presented to the machine allowing the application of glue and a rotating mechanism allows the attachment to the optical elements. The device can be adjusted to fit different form factors and it can be used in high-volume assembly machines. The paper shows the utilization of the device for a collimation module consisting of a fast-axis and a slow-axis collimation lens. Results regarding the repeatability and process capability of bonding side tab assemblies as well as estimates from 3D simulation for overall performance indicators achieved such as cycle time and throughput will be discussed.

  6. Investigation of diode-pump absorption efficiency and thermo-optical effects in a high-power Yb:KGW laser

    SciTech Connect

    Kim, G H; Yang, J H; Lee, B; Sall, E G; Chizhov, S A; Kang, U; Yashin, V E

    2015-03-31

    Diode-pump absorption is experimentally studied in a high-power Yb:KGd(WO{sub 4}){sub 2} (Yb:KGW) laser in the presence and absence of lasing. The maximum absorption efficiency in the cw regime exceeds 77% which is by a factor of 1.4 greater than the maximum absorption efficiency in the absence of lasing. The powers of thermo-optical lenses induced in laser crystals during lasing are measured. A strong dependence of the lens power and aberrations on the orientation of laser crystals relative to the propagation direction and polarisation is confirmed. (lasers)

  7. Maximizing coupling-efficiency of high-power diode lasers utilizing hybrid assembly technology

    NASA Astrophysics Data System (ADS)

    Zontar, D.; Dogan, M.; Fulghum, S.; Müller, T.; Haag, S.; Brecher, C.

    2015-03-01

    In this paper, we present hybrid assembly technology to maximize coupling efficiency for spatially combined laser systems. High quality components, such as center-turned focusing units, as well as suitable assembly strategies are necessary to obtain highest possible output ratios. Alignment strategies are challenging tasks due to their complexity and sensitivity. Especially in low-volume production fully automated systems are economically at a disadvantage, as operator experience is often expensive. However reproducibility and quality of automatically assembled systems can be superior. Therefore automated and manual assembly techniques are combined to obtain high coupling efficiency while preserving maximum flexibility. The paper will describe necessary equipment and software to enable hybrid assembly processes. Micromanipulator technology with high step-resolution and six degrees of freedom provide a large number of possible evaluation points. Automated algorithms are necess ary to speed-up data gathering and alignment to efficiently utilize available granularity for manual assembly processes. Furthermore, an engineering environment is presented to enable rapid prototyping of automation tasks with simultaneous data ev aluation. Integration with simulation environments, e.g. Zemax, allows the verification of assembly strategies in advance. Data driven decision making ensures constant high quality, documents the assembly process and is a basis for further improvement. The hybrid assembly technology has been applied on several applications for efficiencies above 80% and will be discussed in this paper. High level coupling efficiency has been achieved with minimized assembly as a result of semi-automated alignment. This paper will focus on hybrid automation for optimizing and attaching turning mirrors and collimation lenses.

  8. High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime

    NASA Astrophysics Data System (ADS)

    Druon, F.; Chénais, S.; Balembois, F.; Georges, P.; Brun, A.; Courjaud, A.; Hönninger, C.; Salin, F.; Zavelani-Rossi, M.; Augé, F.; Chambaret, J. P.; Aron, A.; Mougel, F.; Aka, G.; Vivien, D.

    2002-02-01

    We present an efficient tunable continuous-wave diode-pumped Yb 3+:Ca 4GdO(BO 3) 3 (Yb:GdCOB) laser producing at room temperature up to 3.2 W average power with a slope efficiency of 80% when pumped with a 10 W laser diode. A large tunability from 1017 to 1086 nm is obtained. The broad emission spectrum has been used to develop a diode-pumped Yb:GdCOB femtosecond laser. The laser generated 90 fs pulses, at a center wavelength of 1045 nm. By using a semiconductor saturable absorber mirror (SESAM) for the mode locking, the average power was 40 mW and the repetition rate of 100 MHz.

  9. Experimental and numerical investigation on cladding of corrosion-erosion resistant materials by a high power direct diode laser

    NASA Astrophysics Data System (ADS)

    Farahmand, Parisa

    advantages due to creating coating layers with superior properties in terms of purity, homogeneity, low dilution, hardness, bonding, and microstructure. In the development of modern materials for hardfacing applications, the functionality is often improved by combining materials with different properties into composites. Metal Matrix Composite (MMC) coating is a composite material with two constituent parts, i.e., matrix and the reinforcement. This class of composites are addressing improved mechanical properties such as stiffness, strength, toughness, and tribological and chemical resistance. Fabrication of MMCs is to achieve a combination of properties not achievable by any of the materials acting alone. MMCs have attracted significant attention for decades due to their combination of wear-resistivity, corrosion-resistivity, thermal, electrical and magnetic properties. Presently, there is a strong emphasis on the development of advanced functional coatings for corrosion, erosion, and wear protection for different industrial applications. In this research, a laser cladding system equipped with a high power direct diode laser associated with gas driven metal powder delivery system was used to develop advanced MMC coatings. The high power direct diode laser used in this study offers wider beam spot, shorter wavelength and uniform power distribution. These properties make the cladding set-up ideal for coating due to fewer cladding tracks, lower operation cost, higher laser absorption, and improved coating qualities. In order to prevent crack propagation, porosity, and uniform dispersion of carbides in MMC coating, cladding procedure was assisted by an induction heater as a second heat source. The developed defect free MMC coatings were combined with nano-size particles of WC, rare earth (RE) element (La2O3), and Mo as a refractory metal to enhance mechanical properties, chemical composition, and subsequently improve the tribological performance of the coatings. The resistance

  10. Low-profile flat pack: a high-power fiber coupled laser diode package for low-cost high-reliability applications

    NASA Astrophysics Data System (ADS)

    Singh, Raj; Heminway, Trebor; Krasnick, Richard; Griffin, Peter; Powers, Michael

    2004-06-01

    In recent years, high power diode lasers have become established in many applications like material processing, fiber laser and amplifier pumping, free space communication, direct printing and medical diagnosis and procedures. In particular, advances in laser diode packaging have resulted in devices with high wall-plug efficiency, enhanced reliability and low cost of ownership. Despite the advances of recent years, packaging, testing and reliability assurance still account for a majority of the cost of a fiber coupled laser diode. At MKPA-Panasonic, we are developing new fiber coupled laser diode package designs to enable low cost, high reliability assemblies that are amenable to high volume manufacturing. In this paper, we present a new low-profile, uncooled package for single-emitter high power laser diode packaging applications. Detailed design information, thermal modeling and reliability data for this small footprint, low profile optical flat package (OFP) with 4W output power in a 0.15NA, 100 micron core fiber is presented. The unique packaging technology resulting in good thermal and reliability performance in uncooled environments is discussed. All the assembly processes for the package are performed in a flux-free environment. The package is devoid of epoxy and can be hermetically sealed for high reliability operation. A reduced bill of materials and assembly steps result in significant cost savings. The design eliminates all non-vertical assembly processes for ease of assembly. Other features include passive die attach and integrated fiber mount. This package is specifically designed to address the fiber laser pump, industrial material processing, solid state laser pumping, printing and medical application markets.

  11. High-power 880-nm diode-directly-pumped passively mode-locked Nd:YVO₄ laser at 1342 nm with a semiconductor saturable absorber mirror.

    PubMed

    Li, Fang-Qin; Liu, Ke; Han, Lin; Zong, Nan; Bo, Yong; Zhang, Jing-Yuan; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan

    2011-04-15

    A high-power 880-nm diode-directly-pumped passively mode-locked 1342 nm Nd:YVO₄ laser was demonstrated with a semiconductor saturable absorber mirror (SESAM). The laser mode radii in the laser crystal and on the SESAM were optimized carefully using the ABCD matrix formalism. An average output power of 2.3 W was obtained with a repetition rate of 76 MHz and a pulse width of 29.2 ps under an absorbed pump power of 12.1 W, corresponding to an optical-optical efficiency of 19.0% and a slope efficiency of 23.9%, respectively.

  12. Coherent Beam Combining of High Power Broad-Area Laser Diode Array with a Closed-V-shape External Talbot Cavity

    SciTech Connect

    Liu, Bo; Liu, Yun; Braiman, Yehuda

    2010-01-01

    We have coherently combined a high-power broad-area laser diode array by using a feedback loop closed off-axis external Talbot cavity. The off-axis feedback from two gratings provides transverse-mode control of broad-area lasers. The Talbot configuration of the external cavity implements diffractive coupling among laser diodes. Feedback from two gratings increases external cavity quality factor and spectrum selection capability. As a result, spatial coherence was improved and spectral linewidth was narrowed down. The high visibility of the far-field profile indicates that high spatial coherence was achieved. We also observed symmetric far-field profiles indicating that laser array was phase locked to in-phase and out-of-phase super-modes, respectively. Transition between these super-modes was observed by tuning one grating's tilted angle.

  13. Coherent beam combining of high power broad-area laser diode array with a closed-V-shape external Talbot cavity.

    PubMed

    Liu, B; Liu, Y; Braiman, Y

    2010-03-29

    We have coherently combined a high-power broad-area laser diode array by using a feedback loop closed off-axis external Talbot cavity. The off-axis feedback from two gratings provides transverse-mode control of broad-area lasers. The Talbot configuration of the external cavity implements diffractive coupling among laser diodes. Feedback from two gratings increases external cavity quality factor and spectrum selection capability. As a result, spatial coherence was improved and spectral linewidth was narrowed down. The high visibility of the far-field profile indicates that high spatial coherence was achieved. We also observed symmetric far-field profiles indicating that laser array was phase locked to in-phase and out-of-phase super-modes, respectively. Transition between these super-modes was observed by tuning one grating's tilted angle.

  14. High-power efficient cw and pulsed lasers based on bulk Yb : KYW crystals with end diode pumping

    SciTech Connect

    Kim, G H; Yang, G H; Lee, D S; Kulik, Alexander V; Sall', E G; Chizhov, S A; Yashin, V E; Kang, U

    2012-04-30

    End-diode-pumped lasers based on one and two Yb : KYW crystals operating in cw and Q-switched regimes, as well as in the regime of mode-locking, are studied. The single-crystal laser generated stable ultrashort (shorter than 100 fs) laser pulses at wavelengths of 1035 and 1043 nm with an average power exceeding 1 W. The average output power of the two-crystal laser exceeded 18 W in the cw regime and 16 W in the Q-switched regime with a slope efficiency exceeding 30%.

  15. AlGaInN laser diode bar and array technology for high power and individually addressable applications

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lucja; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz

    2015-05-01

    The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Low defectivity and high uniformity GaN substrates allows arrays and bars of AlGaInN lasers with up to 20 emitters to be fabricated to obtain optical powers up to 4W at 395nm. AlGaInN laser bars are suitable for optical pumps and novel extended cavity systems for a wide range of applications. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be addressed individually allowing complex free-space and/or fibre optic system integration with a very small form-factor.

  16. Diode Laser Arrays

    NASA Astrophysics Data System (ADS)

    Botez, Dan; Scifres, Don R.

    2005-11-01

    Contributors; 1. Monolithic phase-locked semiconductor laser arrays D. Botez; 2. High power coherent, semiconductor laser master oscillator power amplifiers and amplifier arrays D. F. Welch and D. G. Mehuys; 3. Microoptical components applied to incoherent and coherent laser arrays J. R. Leger; 4. Modeling of diode laser arrays G. R. Hadley; 5. Dynamics of coherent semiconductor laser arrays H. G. Winfuland and R. K. Defreez; 6. High average power semiconductor laser arrays and laser array packaging with an emphasis for pumping solid state lasers R. Solarz; 7. High power diode laser arrays and their reliability D. R. Scifres and H. H. Kung; 8. Strained layer quantum well heterostructure laser arrays J. J. Coleman; 9. Vertical cavity surface emitting laser arrays C. J. Chang-Hasnain; 10. Individually addressed arrays of diode lasers D. Carlin.

  17. AlGaInN laser diode bar and array technology for high-power and individual addressable applications

    NASA Astrophysics Data System (ADS)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Boćkowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.

    2016-04-01

    The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well, giving rise to new and novel applications for medical, industrial, display and scientific purposes. Ridge waveguide laser diode structures are fabricated to achieve single mode operation with high optical powers of >100mW with high reliability. Low defectivity and highly uniform GaN substrates allow arrays and bars of nitride lasers to be fabricated. We demonstrate the operation of monolithic AlGaInN laser bars with up to 20 emitters giving optical powers up to 4W cw at ~395nm with a common contact configuration. These bars are suitable for optical pumps and novel extended cavity systems. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space and/or fibre optic system integration within a very small form-factor.

  18. Unveiling laser diode “fossil” and the dynamic analysis for heliotropic growth of catastrophic optical damage in high power laser diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Xiong, Yihan; An, Haiyan; Boucke, Konstantin; Treusch, Georg

    2016-01-01

    Taking advantage of robust facet passivation, we unveil a laser “fossil” buried within a broad area laser diode (LD) cavity when the LD was damaged by applying a high current. For the first time, novel physical phenomena have been observed at these dramatically elevated energy densities within the nanoscale LD waveguide. The observation of the laser “fossil” is interpreted with different mechanisms, including: the origination of bulk catastrophic optical damage (COD) due to locally high energy densities, heliotropic COD growth, solid-liquid-gas phase transformations, strong longitudinal phonon cooling effect on the molten COD wave front, and the formation of patterns due to laser lateral modes. For the first time the COD propagation is analyzed temporally by an acoustic phonon bouncing model and the COD velocity is extrapolated to be exponentially decreasing from more than 800 μm/μs to a few μm/μs within a 20 μs time period as the energy density dissipates.

  19. Unveiling laser diode “fossil” and the dynamic analysis for heliotropic growth of catastrophic optical damage in high power laser diodes

    PubMed Central

    Zhang, Qiang; Xiong, Yihan; An, Haiyan; Boucke, Konstantin; Treusch, Georg

    2016-01-01

    Taking advantage of robust facet passivation, we unveil a laser “fossil” buried within a broad area laser diode (LD) cavity when the LD was damaged by applying a high current. For the first time, novel physical phenomena have been observed at these dramatically elevated energy densities within the nanoscale LD waveguide. The observation of the laser “fossil” is interpreted with different mechanisms, including: the origination of bulk catastrophic optical damage (COD) due to locally high energy densities, heliotropic COD growth, solid-liquid-gas phase transformations, strong longitudinal phonon cooling effect on the molten COD wave front, and the formation of patterns due to laser lateral modes. For the first time the COD propagation is analyzed temporally by an acoustic phonon bouncing model and the COD velocity is extrapolated to be exponentially decreasing from more than 800 μm/μs to a few μm/μs within a 20 μs time period as the energy density dissipates. PMID:26740303

  20. Role of the thermal boundary resistance of the quantum well interfaces on the degradation of high power laser diodes

    NASA Astrophysics Data System (ADS)

    Martín-Martín, A.; Iñiguez, P.; Jiménez, J.; Oudart, M.; Nagle, J.

    2011-08-01

    The influence of the quantum well (QW) interfaces with the barrier layers on the rapid degradation of AlGaAs based high power laser bars (808 nm) is investigated. Thermal stresses induced in the device by the local heating produced by nonradiative recombination areas at the facet mirror are calculated by means of a thermomechanical model. Results show that the laser power density threshold necessary to achieve the plastic deformation, leading to the generation of dislocations and to the failure of these devices, is reduced as the quality of the QW interfaces worsens in terms of thermal boundary resistance.

  1. A CTE matched hard solder passively cooled laser diode package combined with nXLT facet passivation enables high power, high reliability operation

    NASA Astrophysics Data System (ADS)

    Hodges, Aaron; Wang, Jun; DeFranza, Mark; Liu, Xingsheng; Vivian, Bill; Johnson, Curt; Crump, Paul; Leisher, Paul; DeVito, Mark; Martinsen, Robert; Bell, Jacob

    2007-04-01

    A conductively cooled laser diode package design with hard AuSn solder and CTE matched sub mount is presented. We discuss how this platform eliminates the failure mechanisms associated with indium solder. We present the problem of catastrophic optical mirror damage (COMD) and show that nLight's nXLT TM facet passivation technology effectively eliminates facet defect initiated COMD as a failure mechanism for both single emitter and bar format laser diodes. By combining these technologies we have developed a product that has high reliability at high powers, even at increased operation temperatures. We present early results from on-going accelerated life testing of this configuration that suggests an 808nm, 30% fill factor device will have a MTTF of more than 21khrs at 60W CW, 25°C operating conditions and a MTTF of more than 6.4khrs when operated under hard pulsed (1 second on, 1 second off) conditions.

  2. LASERS: High-power single-mode laser diodes based on carbon-doped quantum-well InGaAs/AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Davydova, Evgeniya I.; Ladugin, M. A.; Marmalyuk, Aleksandr A.; Padalitsa, A. A.; Petrovskii, A. V.; Sukharev, A. V.; Uspenskii, Mikhail B.; Shishkin, Viktor A.

    2009-01-01

    Emission parameters of single-mode laser diodes based on InGaAs/GaAs/AlGaAs heterostructures doped with carbon and grown by using the metallorganic vapour phase epitaxy (MOVPE) technique are studied. The obtained results show that maintaining a certain doping profile ensuring optimisation of series resistance and internal optical losses during all fabrication stages of the active element of a diode laser, provides for enhancement of the laser efficiency. Based on laser heterostructures studied in this paper, highly efficient single-transverse-mode laser diodes emitting 300 mW at 980 nm have been manufactured.

  3. High power gain switched laser diodes using a novel compact picosecond switch based on a GaAs bipolar junction transistor structure for pumping

    NASA Astrophysics Data System (ADS)

    Vainshtein, Sergey; Kostamovaara, Juha

    2006-04-01

    A number of up-to-date applications, including advanced optical radars with high single-shot resolution, precise 3 D imaging, laser tomography, time imaging spectroscopy, etc., require low-cost, compact, reliable sources enabling the generation of high-power (1-100 W) single optical pulses in the picosecond range. The well-known technique of using the gain-switching operation mode of laser diodes to generate single picosecond pulses in the mW range fails to generate high-power single picosecond pulses because of a lack of high-current switches operating in the picosecond range. We report here on the achieving of optical pulses of 45W / 70ps, or alternatively 5W / 40ps, with gain-switched commercial quantum well (QW) laser diodes having emitting areas of 250 × 200 μm and 75 × 2 μm, respectively. This was made possible by the use of a novel high-current avalanche switch based on a GaAs bipolar junction transistor (BJT) structure with a switching time (<200ps) comparable to the lasing delay. (The extremely fast transient in this switch is caused by the generation and spread of a comb of powerfully avalanching Gunn domains of ultra-high amplitude in the transistor structure.) A simulation code developed earlier but modified and carefully verified here allowed detailed comparison of the experimental and simulated laser responses and the transient spectrum.

  4. Modular pump head design of diffused, metal, and hybrid pump geometry for diode-side-pumped high power Nd:YAG laser.

    PubMed

    Sundar, R; Ranganathan, K; Hedaoo, P; Bindra, K S

    2016-09-20

    In this paper, we present a comparative study on pump heads for a high power diode-side-pumped Nd:YAG laser. The pump head is a modular type, which is in the form of discs, with each disc holding three pump diodes kept at 120° with respect to each other. Unabsorbed pump light from the active medium is reflected by reflectors mounted adjacent to the pump diodes. The performance of a high power pump head made of modular discs mounted with specular or diffused type reflectors was studied. Hybrid pump geometry was also investigated, where the pump head is made up of discs loaded with metal and diffused reflectors, alternately. The discs are loaded around the active medium in such a way that successive discs are rotated by sixty degrees with respect to each other. Fluorescence profiles, thermal lensing, laser output power, and M2 values were studied for pump heads made up of metal, diffused, and hybrid type reflectors. All of the pump heads were studied for three different resonator lengths to maximize the output power with the best beam quality. The experimental results show that the diffused reflector-based geometry in a sixty degree rotated configuration produced the maximum output power and best beam quality in terms of the M2 value.

  5. High power solid state lasers

    SciTech Connect

    Weber, H.

    1988-01-01

    These proceedings discuss the following subjects: trends in materials processing with laser radiation; slabs and high power systems; glasses and new crystals; solid state lasers at HOYA Corp.; lamps, resonators and transmission; glasses as active materials for high average power solid state lasers; flashlamp pumped GGG-crystals; alexandrite lasers; designing telescope resonators; mode operation of neodymium: YAG lasers; intracavity frequency doubling with KTP crystal and thermal effects in cylinder lasers.

  6. Ex vivo evaluation of safety and efficacy of vaporization of the prostate using a 300 W high-power laser diode with the wavelength of 980 nm

    NASA Astrophysics Data System (ADS)

    Takada, Junya; Honda, Norihiro; Hazama, Hisanao; Awazu, Kunio

    2014-03-01

    Laser vaporization of the prostate is one of the promising technique for less-invasive treatment of benign prostatic hyperplasia. However, shorter operative duration and higher hemostatic ability are expected. The wavelength of 980 nm offers a high simultaneous absorption by water and hemoglobin, so that it combines the efficient vaporization with good hemostasis. Therefore, we have evaluated the safety and efficacy of vaporization of the prostate using a recently developed 300 W high-power laser diode with the wavelength of 980 nm. First, validity of bovine prostate tissue as the sample was confirmed by measuring the optical properties of bovine and human prostate tissue using a double integrating sphere optical system. Next, contact and non-contact ex vivo irradiations were performed for various irradiation powers and times, and vaporized and coagulated depths were measured. In the contact irradiation, the vaporized depth at the power of 300 W was significantly deeper than that at the power of 100 W, while the difference was relatively smaller for the coagulated depths at 300 and 100 W. In the non-contact irradiation, coagulation as thick as that in the contact irradiation was observed almost without vaporization. Therefore, it is suggested that the treatment in the contact irradiation using the high-power laser diode can vaporize the prostate more efficiently without increasing the risk of perforation. Hemostasis with the coagulation would be possible in both irradiation methods. To prevent the postoperative perforation, operators need to understand the relationship between the coagulated depth and the irradiation conditions.

  7. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  8. Reliable operation of 976nm high power DFB broad area diode lasers with over 60% power conversion efficiency

    NASA Astrophysics Data System (ADS)

    Crump, P.; Schultz, C. M.; Wenzel, H.; Knigge, S.; Brox, O.; Maaßdorf, A.; Bugge, F.; Erbert, G.

    2011-02-01

    Diode lasers that deliver high continuous wave optical output powers (> 5W) within a narrow, temperature-stable spectral window are required for many applications. One technical solution is to bury Bragg-gratings within the semiconductor itself, using epitaxial overgrowth techniques to form distributed-feedback broad-area (DFB-BA) lasers. However, such stabilization is only of interest when reliability, operating power and power conversion efficiency are not compromised. Results will be presented from the ongoing optimization of such DFB-BA lasers at the Ferdinand-Braun- Institut (FBH). Our development work focused on 976nm devices with 90μm stripe width, as required for pumping Nd:YAG, as well as for direct applications. Such devices operate with a narrow spectral width of < 1nm (95% power content) to over 10W continuous wave (CW) optical output. Further optimization of epitaxial growth and device design has now largely eliminated the excess optical loss and electrical resistance typically associated with the overgrown grating layer. These developments have enabled, for the first time, DFB-BA lasers with peak CW power conversion efficiency of > 60% with < 1nm spectral width (95% power content). Reliable operation has also been demonstrated, with 90μm stripe devices operating for over 4000 hours to date without failure at 7W (CW). We detail the technological developments required to achieve these results and discuss the options for further improvements.

  9. High-power direct green laser oscillation of 598 mW in Pr(3+)-doped waterproof fluoroaluminate glass fiber excited by two-polarization-combined GaN laser diodes.

    PubMed

    Nakanishi, Jun; Horiuchi, Yuya; Yamada, Tsuyoshi; Ishii, Osamu; Yamazaki, Masaaki; Yoshida, Minoru; Fujimoto, Yasushi

    2011-05-15

    We demonstrated a high-power and highly efficient Pr-doped waterproof fluoride glass fiber laser at 522.2 nm excited by two-polarization-combined GaN laser diodes and achieved a subwatt output power of 598 mW and slope efficiency of 43.0%. This system will enable us to make a vivid laser display, a photocoagulation laser for eye surgery, a color confocal scanning laser microscope, and an effective laser for material processing. Direct visible ultrashort pulse generation is also expected.

  10. The future of high power laser techniques

    NASA Astrophysics Data System (ADS)

    Poprawe, Reinhart; Loosen, Peter; Hoffmann, Hans-Dieter

    2007-05-01

    High Power Lasers have been used for years in corresponding applications. Constantly new areas and new processes have been demonstrated, developed and transferred to fruitful use in industry. With the advent of diode pumped solid state lasers in the multi-kW-power regime at beam qualities not far away from the diffraction limit, a new area of applicability has opened. In welding applications speeds could be increased and systems could be developed with higher efficiently leading also to new perspectives for increased productivity, e.g. in combined processing. Quality control is increasingly demanded by the applying industries, however applications still are rare. Higher resolution of coaxial process control systems in time and space combined with new strategies in signal processing could give rise to new applications. The general approach described in this paper emphasizes the fact, that laser applications can be developed more efficiently, more precisely and with higher quality, if the laser radiation is tailored properly to the corresponding application. In applying laser sources, the parameter ranges applicable are by far wider and more flexible compared to heat, mechanical or even electrical energy. The time frame ranges from several fs to continuous wave and this spans approximately 15 orders of magnitude. Spacewise, the foci range from several µm to cm and the resulting intensities suitable for materials processing span eight orders of magnitude from 10 3 to 10 11 W/cm2. In addition to space (power, intensity) and time (pulse) the wavelength can be chosen as a further parameter of optimization. As a consequence, the resulting new applications are vast and can be utilized in almost every market segment of our global economy (Fig. 1). In the past and only partly today, however, this flexibility of laser technology is not exploited in full in materials processing, basically because in the high power regime the lasers with tailored beam properties are not

  11. High-Power Single-Mode 2.65-micron InGaAsSb/AlInGaAsSb Diode Lasers

    NASA Technical Reports Server (NTRS)

    Frez, Clifford F.; Briggs, Ryan M.; Forouhar, Siamak; Borgentun, Carl E.; Gupta, James

    2013-01-01

    Central to the advancement of both satellite and in-situ science are improvements in continuous-wave and pulsed infrared laser systems coupled with integrated miniaturized optics and electronics, allowing for the use of powerful, single-mode light sources aboard both satellite and unmanned aerial vehicle platforms. There is a technological gap in supplying adequate laser sources to address the mid-infrared spectral window for spectroscopic characterization of important atmospheric gases. For high-power applications between 2 to 3 micron, commercial laser technologies are unsuitable because of limitations in output power. For instance, existing InP-based laser systems developed for fiber-based telecommunications cannot be extended to wavelengths longer than 2 micron. For emission wavelengths shorter than 3 micron, intersubband devices, such as infrared quantum cascade lasers, become inefficient due to band-offset limitations. To date, successfully demonstrated singlemode GaSb-based laser diodes emitting between 2 and 3 micron have employed lossy metal Bragg gratings for distributed- feedback coupling, which limits output power due to optical absorption. By optimizing both the quantum well design and the grating fabrication process, index-coupled distributed-feedback 2.65-micron lasers capable of emitting in excess of 25 mW at room temperature have been demonstrated. Specifically, lasers at 3,777/cm (2.65 micron) have been realized to interact with strong absorption lines of HDO and other isotopologues of H2O. With minor modifications of the optical cavity and quantum well designs, lasers can be fabricated at any wavelength within the 2-to-3-micron spectral window with similar performance. At the time of this reporting, lasers with this output power and wavelength accuracy are not commercially available. Monolithic ridge-waveguide GaSb lasers were fabricated that utilize secondorder lateral Bragg gratings to generate single-mode emission from InGaAsSb/ Al

  12. Optoacoustic response from graphene-based solutions embedded in optical phantoms by using 905-nm high-power diode-laser assemblies

    NASA Astrophysics Data System (ADS)

    Leggio, Luca; Gallego, Daniel C.; Gawali, Sandeep Babu; Dadrasnia, Ehsan; Sánchez, Miguel; Rodríguez, Sergio; González, Marta; Carpintero, Guillermo; Osiński, Marek; Lamela, Horacio

    2016-03-01

    During the last two decades, optoacoustic imaging has been developed as a novel biomedical imaging technique based on the generation of ultrasound waves by means of laser light. In this work, we investigate the optoacoustic response from graphene-based solutions by using a compact and cost-effective system based on an assembly of several 905-nm pulsed high-power diode lasers coupled to a bundle of 200-μm diameter- core optical fibers. The coupled light is conveyed into a lens system and focused on an absorber consisting of graphene-based nanomaterials (graphene oxide, reduced graphene oxide, and reduced graphene-oxide/gold-nanoparticle hybrid, respectively) diluted in ethanol and hosted in slightly scattering optical phantoms. The high absorption of these graphene-based solutions suggests their potential future use in optoacoustic applications as contrast agents.

  13. Degradation behavior and thermal properties of red (650 nm) high-power diode single emitters and laser bars

    NASA Astrophysics Data System (ADS)

    Tomm, Jens W.; Tien, Tran Q.; Ziegler, Mathias; Weik, Fritz; Sumpf, Bernd; Zorn, Martin; Zeimer, Ute; Erbert, Götz

    2007-02-01

    The degradation behavior of broad-area laser diodes and bars emitting at 650 nm under constant power operation is investigated. In addition to the increase in operation current the temperature of the laser facets was monitored using Raman spectroscopy. The formation of defects was studied using photocurrent spectroscopy while cathodoluminescence provided insight into the position of extended non-radiative defects at different stages of degradation. Although the facet does not show any visible alteration even for failed devices, its immediate vicinity appears to be the starting point of the observed gradual degradation effects. At the same time the local facet temperature is increased. The observed aging behavior is compared to the known degradation scenarios for devices emitting at 808 nm. In both cases there is a clear correlation between packaging-induced strain and observed degradation effects as demonstrated by the results obtained for bars. For the red devices a correlation between optical load and facet temperature exists which proves that here facet heating is indeed caused by re-absorption processes. Furthermore, the gradual degradation process is not accompanied by the creation of dark bands along 100 directions as observed earlier for 808 nm devices. The observed gradual degradation of the 650 nm devices is primarily accompanied by the formation of deep-level point defects, followed by the creation of macroscopic areas of reduced luminescence intensity. Packaging induced strains become important when gradual bar degradation is monitored at early stages.

  14. High power gas laser amplifier

    DOEpatents

    Leland, Wallace T.; Stratton, Thomas F.

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  15. Development of high-power diode lasers with beam parameter product below 2 mm×mrad within the BRIDLE project

    NASA Astrophysics Data System (ADS)

    Crump, P.; Decker, J.; Winterfeldt, M.; Fricke, J.; Maaßdorf, A.; Erbert, G.; Tränkle, G.

    2015-03-01

    High power broad-area diode lasers are the most efficient source of optical energy, but cannot directly address many applications due to their high lateral beam parameter product BPP = 0.25 × ΘL 95%× W95% (ΘL95% and W95% are emission angle and aperture at 95% power content), with BPP > 3 mm×mrad for W95%~90μm. We review here progress within the BRIDLE project, that is developing diode lasers with BPP < 2 mm×mrad for use in direct metal cutting systems, where the highest efficiencies and powers are required. Two device concepts are compared: narrow-stripe broad-area (NBA) and tapered lasers (TPL), both with monolithically integrated gratings. NBAs use W95% ~ 30 μm to cut-off higher order lateral modes and reduce BPP. TPLs monolithically combine a single mode region at the rear facet with a tapered amplifier, restricting the device to one lateral mode for lowest BPP. TPLs fabricated using ELoD (Extremely Low Divergence) epitaxial designs are shown to operate with BPP below 2mm×mrad, but at cost of low efficiency (<35%, due to high threshold current). In contrast, NBAs operate with BPP < 2 mm×mrad, but maintain efficiency >50% to output of > 7 W, so are currently the preferred design. In studies to further reduce BPP, lateral resonant anti-guiding structures have also been assessed. Optimized anti-guiding designs are shown to reduce BPP by 1 mm×mrad in conventional 90 μm stripe BA-lasers, without power penalty. In contrast, no BPP improvement is observed in NBA lasers, even though their spectrum indicates they are restricted to single mode operation. Mode filtering alone is therefore not sufficient, and further measures will be needed for reduced BPP.

  16. High-power blue laser diodes with indium tin oxide cladding on semipolar (202{sup ¯}1{sup ¯}) GaN substrates

    SciTech Connect

    Pourhashemi, A. Farrell, R. M.; Cohen, D. A.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.

    2015-03-16

    We demonstrate a high power blue laser diode (LD) using indium tin oxide as a cladding layer on semipolar oriented GaN. These devices show peak output powers and external quantum efficiencies comparable to state-of-the-art commercial c-plane devices. Ridge waveguide LDs were fabricated on (202{sup ¯}1{sup ¯}) oriented GaN substrates using InGaN waveguiding layers and GaN cladding layers. At a lasing wavelength of 451 nm at room temperature, an output power of 2.52 W and an external quantum efficiency of 39% were measured from a single facet under a pulsed injection current of 2.34 A. The measured differential quantum efficiency was 50%.

  17. 915nm high-power broad area laser diodes with ultra-small optical confinement based on Asymmetric Decoupled Confinement Heterostructure (ADCH)

    NASA Astrophysics Data System (ADS)

    Yamagata, Yuji; Yamada, Yumi; Muto, Masanori; Sato, Syunta; Nogawa, Ryozaburo; Sakamoto, Akira; Yamaguchi, Masayuki

    2015-03-01

    915nm high-power and high-reliability single emitter laser diodes based on Asymmetric Decoupled Confinement Heterostructure (ADCH) are demonstrated. Advantage of ADCH is that it can optimize active layer confinement (?) and confinement ratio of p- to n-doped layer (?p/?n), independently, to manage large effective spot size and low internal loss without any penalty in carrier confinement. 4mm-cavity, 100μm wide stripe LDs with large effective spot size of 1.5μm demonstrates record high Catastrophic-optical-damage (COD) free operation over 42W output. Accelerated aging tests are conducted for 325 devices in total with 1.8 million device hours. Mean time to failure of random failure mode is estimated to be 1.1 million hours for 12W at room temperature.

  18. Simultaneous quantitative determination of strain and defect profiles within the active region along high-power diode laser bars by micro-photocurrent mapping

    NASA Astrophysics Data System (ADS)

    Gerhardt, A.; Tomm, J. W.; Schwirzke-Schaaf, S.; Nagle, J.; Oudart, M.; Sainte-Marie, Y.

    2004-07-01

    We present microscopically-resolved photocurrent spectroscopy as a new powerful analytical tool for the simultaneous detection of packaging-induced strain and defects in GaAs-based high-power laser diode arrays (cm-bars). Using the Fourier-transform (FT) technique we measure photocurrent (PC) spectra with a high spatial resolution of better than 50 μm at the active layer of the device. By analyzing this data, spatially resolved distributions of strain as well as of defects are obtained. So far, PC measurements at cm-bars have only provided an overview of the distribution of strain and defects in the device on an emitter-by-emitter scale. The high spatial resolution now allows examination of the distribution of strain and defects even within one single emitter. This is essential for obtaining insights into device failure mechanisms and also makes a substantial contribution for improving device performance and reliability.

  19. Pulsed high-power AlGaN-cladding-free blue laser diodes on semipolar (202xAF1xAF) GaN substrates

    NASA Astrophysics Data System (ADS)

    Pourhashemi, A.; Farrell, R. M.; Hardy, M. T.; Hsu, P. S.; Kelchner, K. M.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.

    2013-10-01

    We demonstrate high-power AlGaN-cladding-free blue laser diodes (LDs) on semipolar (202¯1¯) GaN substrates with peak output powers and external quantum efficiencies (EQEs) that are comparable to state-of-the-art commercial c-plane devices. Ridge waveguide LDs were fabricated on (202¯1¯) GaN substrates using InGaN waveguiding layers and GaN cladding layers. The devices lased at 454 nm at room temperature. We measured an output power of 2.15 W, an EQE of 39%, and a differential quantum efficiency of 49% from a single facet with a pulsed drive current (current density) of 2.02 A (28.1 kA/cm2).

  20. Tunable high-power narrow-spectrum external-cavity diode laser at 675 nm as a pump source for UV generation.

    PubMed

    Chi, Mingjun; Jensen, Ole Bjarlin; Erbert, Götz; Sumpf, Bernd; Petersen, Paul Michael

    2011-01-01

    High-power narrow-spectrum diode laser systems based on tapered gain media in an external cavity are demonstrated at 675 nm. Two 2 mm long amplifiers are used, one with a 500 μm long ridge-waveguide section (device A), the other with a 750 μm long ridge-waveguide section (device B). Laser system A based on device A is tunable from 663 to 684 nm with output power higher than 0.55 W in the tuning range; as high as 1.25 W output power is obtained at 675.34 nm. The emission spectral bandwidth is less than 0.05 nm throughout the tuning range, and the beam quality factor M(2) is 2.07 at an output power of 1.0 W. Laser system B based on device B is tunable from 666 to 685 nm. As high as 1.05 W output power is obtained around 675.67 nm. The emission spectral bandwidth is less than 0.07 nm throughout the tuning range, and the beam quality factor M(2) is 1.13 at an output power of 0.93 W. Laser system B is used as a pump source for the generation of 337.6 nm UV light by single-pass frequency doubling in a bismuth triborate (BIBO) crystal. An output power of 109 μW UV light, corresponding to a conversion efficiency of 0.026% W(-1), is attained.

  1. LASERS: High-power laser diodes based on triple integrated InGaAs/AlGaAs/GaAs structures emitting at 0.9 μm

    NASA Astrophysics Data System (ADS)

    Davydova, Evgeniya I.; Zverkov, M. V.; Konyaev, V. P.; Krichevskii, V. V.; Ladugin, M. A.; Marmalyuk, Aleksandr A.; Padalitsa, A. A.; Simakov, V. A.; Sukharev, A. V.; Uspenskii, Mikhail B.

    2009-08-01

    Ternary vertically integrated lasers based on the InGaAs/AlGaAs/GaAs heterostructure grown by the method of MOS hydride epitaxy in a single epitaxial process are studied. The typical slope of the watt—ampere characteristic for a triple laser diode is 2.6 W A-1. The frequency characteristics and temperature dependences of the optical power on the pump power demonstrate good homogeneity of the grown structures. Laser diodes based on the triple laser heterostructure (the stripe contact width is 200 μm and the cavity length is 1 mm) emit 80 W at 0.9 μm in the pulsed regime at the injection current of 40 A.

  2. A compact multi-wavelength optoacoustic system based on high-power diode lasers for characterization of double-walled carbon nanotubes (DWCNTs) for biomedical applications

    NASA Astrophysics Data System (ADS)

    Leggio, Luca; de Varona, Omar; Escudero, Pedro; Carpintero del Barrio, Guillermo; Osiński, Marek; Lamela Rivera, Horacio

    2015-06-01

    During the last decade, Optoacoustic Imaging (OAI), or Optoacoustic Tomography (OAT), has evolved as a novel imaging technique based on the generation of ultrasound waves with laser light. OAI may become a valid alternative to techniques currently used for the detection of diseases at their early stages. It has been shown that OAI combines the high contrast of optical imaging techniques with high spatial resolution of ultrasound systems in deep tissues. In this way, the use of nontoxic biodegradable contrast agents that mark the presence of diseases in near-infrared (NIR) wavelengths range (0.75-1.4 um) has been considered. The presence of carcinomas and harmful microorganisms can be revealed by means of the fluorescence effect exhibited by biopolymer nanoparticles. A different approach is to use carbon nanotubes (CNTs) which are a contrast agent in NIR range due to their absorption characteristics in the range between 800 to 1200 nm. We report a multi-wavelength (870 and 905 nm) laser diode-based optoacoustic (OA) system generating ultrasound signals from a double-walled carbon nanotubes (DWCNTs) solution arranged inside a tissue-like phantom, mimicking the scattering of a biological soft tissue. Optoacoustic signals obtained with DWCNTs inclusions within a tissue-like phantom are compared with the case of ink-filled inclusions, with the aim to assess their absorption. These measurements are done at both 870 and 905 nm, by using high power laser diodes as light sources. The results show that the absorption is relatively high when the inclusion is filled with ink and appreciable with DWCNTs.

  3. High-power diode laser at 980 nm for the treatment of benign prostatic hyperplasia: ex vivo investigations on porcine kidneys and human cadaver prostates.

    PubMed

    Seitz, Michael; Reich, Oliver; Gratzke, Christian; Schlenker, Boris; Karl, Alexander; Bader, Markus; Khoder, Wael; Fischer, Florian; Stief, Christian; Sroka, Ronald

    2009-03-01

    Diode laser systems at 980 nm have been introduced for the treatment of lower-urinary-tract-symptoms (LUTS) suggestive of benign prostatic enlargement (BPE). However, the coagulation and vaporization properties are unknown. We therefore aimed to evaluate these properties in ex vivo models in comparison with the kalium-titanyl-phosphate-(KTP) laser. The diode laser treatment was applied to isolated, blood-perfused porcine kidneys and fresh human cadaver prostates (HCPs) at different generator settings. We performed histological examination to compare the depth of coagulation and vaporization. The diode laser showed larger ablation and coagulation characteristics than the KTP laser did. Ablation of the diode laser was found to be 1.79-times (120 W in porcine kidney, P < 0.0001) and 3.0-5 times (200 W in HCP, P < 0.0005) larger. The diode laser created a nine-times (120 W in porcine kidney, P < 0.0001) and seven-times (200 W in HCP, P < 0.0001) deeper necrosis zone. The diode laser vaporization was highly effective ex vivo. Owing to the laser's deep coagulation zones, in vivo animal experiments are mandatory before the diode laser (980 nm) is applied in a clinical setting, so that damage to underlying structures is prevented.

  4. Optics assembly for high power laser tools

    DOEpatents

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  5. Assessing the influence of the vertical epitaxial layer design on the lateral beam quality of high-power broad area diode lasers

    NASA Astrophysics Data System (ADS)

    Winterfeldt, M.; Rieprich, J.; Knigge, S.; Maaßdorf, A.; Hempel, M.; Kernke, R.; Tomm, J. W.; Erbert, G.; Crump, P.

    2016-03-01

    GaAs-based high-power broad-area diode lasers deliver optical output powers Popt > 10W with efficiency > 60%. However, their application is limited due to poor in-plane beam parameter product BPPlat=0.25×Θ95%×w95% (Θ95% and w95% are emission angle and aperture, 95% power content). We present experimental investigations on λ = 9xx nm broad area lasers that aim to identify regulating factors of the BPPlat connected to the epitaxial layer design. First, we assess the thermal lens of vertical designs with varying asymmetry, using thermal camera images to determine its strength. Under study are an extreme-double-asymmetric (EDAS) vertical structure and a reference (i.e. more symmetric) design. The lateral thermal profiles clearly show that BPPlat increase is correlated to the bowing of the thermal lens. The latter is derived out of a quadratic temperature fit in the active region beneath the current injection of the laser device and depends on the details of the epitaxial layers. Second, we test the benefit of low modal gain factor Γg0, predicted to improve BPPlat via a suppression of filamentation. EDAS-based lasers with single quantum well (SQW) and double quantum well (DQW) active regions were compared, with 2.5x reduced Γg0, for 2.2x reduced filament gain. However, no difference is seen in measured BPPlat, giving evidence that filamentary processes are no longer a limit. In contrast, devices with lower Γg0 demonstrate an up to twofold reduced near field modulation depth, potentially enabling higher facet loads and increased device facet reliability, when operated near to the COD limit.

  6. Rapid sealing and cutting of porcine blood vessels, ex vivo, using a high-power, 1470-nm diode laser.

    PubMed

    Giglio, Nicholas C; Hutchens, Thomas C; Perkins, William C; Latimer, Cassandra; Ward, Arlen; Nau, William H; Fried, Nathaniel M

    2014-03-01

    Suture ligation with subsequent cutting of blood vessels to maintain hemostasis during surgery is time consuming and skill intensive. Energy-based electrosurgical and ultrasonic devices are often used to replace sutures and mechanical clips to provide rapid hemostasis and decrease surgery time. Some of these devices may create undesirably large collateral zones of thermal damage and tissue necrosis, or require separate mechanical blades for cutting. Infrared lasers are currently being explored as alternative energy sources for vessel sealing applications. In a previous study, a 1470-nm laser was used to seal vessels 1 to 6 mm in diameter in 5 s, yielding burst pressures of ∼500  mmHg. The purpose of this study was to provide vessel sealing times comparable with current energy-based devices, incorporate transection of sealed vessels, and demonstrate high vessel burst pressures to provide a safety margin for future clinical use. A 110-W, 1470-nm laser beam was transmitted through a fiber and beam shaping optics, producing a 90-W linear beam 3.0 by 9.5 mm for sealing (400  W/cm2), and 1.1 by 9.6 mm for cutting (1080  W/cm2). A two-step process sealed and then transected ex vivo porcine renal vessels (1.5 to 8.5 mm diameter) in a bench top setup. Seal and cut times were 1.0 s each. A burst pressure system measured seal strength, and histologic measurements of lateral thermal spread were also recorded. All blood vessels tested (n=55 seal samples) were sealed and cut, with total irradiation times of 2.0 s and mean burst pressures of 1305±783  mmHg. Additional unburst vessels were processed for histological analysis, showing a lateral thermal spread of 0.94±0.48  mm (n=14 seal samples). This study demonstrated that an optical-based system is capable of precisely sealing and cutting a wide range of porcine renal vessel sizes and, with further development, may provide an alternative to radiofrequency- and ultrasonic-based vessel sealing devices.

  7. Improving the Reliability and Modal Stability of High Power 870 nm AlGaAs CSP Laser Diodes for Applications to Free Space Communication Systems

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Alphonse, G. A.; Carlin, D. B.; Ettenberg, M.

    1991-01-01

    The operating characteristics (power-current, beam divergence, etc.) and reliability assessment of high-power CSP lasers is discussed. The emission wavelength of these lasers was optimized at 860 to 880 nm. The operational characteristics of a new laser, the inverse channel substrate planar (ICSP) laser, grown by metalorganic chemical vapor deposition (MOCVD), is discussed and the reliability assessment of this laser is reported. The highlights of this study include a reduction in the threshold current value for the laser to 15 mA and a degradation rate of less than 2 kW/hr for the lasers operating at 60 mW of peak output power.

  8. Catastrophic optical degradation of the output facet of high-power single-transverse-mode diode lasers. 2. Calculation of the spatial temperature distribution and threshold of the catastrophic optical degradation

    SciTech Connect

    Miftakhutdinov, D R; Bogatov, Alexandr P; Drakin, A E

    2010-09-10

    The temperature distribution and the power threshold during the catastrophic optical degradation are calculated within the framework of the developed model of the COD of the output facet in high-power single-transverse-mode diode lasers. Comparison of the calculation results and the experiment show the model adequacy. The contribution of different physical mechanisms into the heating of the laser output facet is analysed. It is shown that the model under study can help to develop the method for predicting the laser lifetime by the accelerated ageing tests. (lasers)

  9. High-power semiconductor lasers at eye-safe wavelengths

    NASA Astrophysics Data System (ADS)

    Osowski, Mark L.; Gewirtz, Yossi; Lammert, Robert M.; Oh, Se W.; Panja, Chameli; Elarde, Victor C.; Vaissie, Laurent; Patel, Falgun D.; Ungar, Jeffrey E.

    2009-05-01

    InP based diode lasers are required to realize the next generation of eyesafe applications, including direct rangefinding and HEL weapons systems. We report on the progress of high power eyesafe single spatial and longitudinal mode 1550nm MOPA devices, where we have achieved peak powers in excess of 10W with 50ns pulse widths. A conceptual model based on our recent MOPA results show the path towards scaling to high powers based on spatial beam combination with operating conditions suitable for direct rangefinding applications. We also report on the progress towards high power 14xx and 15xx nm pump lasers for eyesafe HEL systems.

  10. High power laser perforating tools and systems

    SciTech Connect

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  11. High-power semiconductor laser array packaged on microchannel cooler using gold-tin soldering technology

    NASA Astrophysics Data System (ADS)

    Wang, Jingwei; Kang, Lijun; Zhang, Pu; Nie, Zhiqiang; Li, Xiaoning; Xiong, Lingling; Liu, Xingsheng

    2012-03-01

    High power semiconductor laser arrays have found increased applications in many fields. In this work, a hard soldering microchannel cooler (HSMCC) technology was developed for packaging high power diode laser array. Numerical simulations of the thermal behavior characteristics of hard solder and indium solder MCC-packaged diode lasers were conducted and analyzed. Based on the simulated results, a series of high power HSMCC packaged diode laser arrays were fabricated and characterized. The test and statistical results indicated that under the same output power the HSMCC packaged laser bar has lower smile and high reliability in comparison with the conventional copper MCC packaged laser bar using indium soldering technology.

  12. Fabrication and optimization of 1.55-μm InGaAsP/InP high-power semiconductor diode laser

    NASA Astrophysics Data System (ADS)

    Qing, Ke; Shaoyang, Tan; Songtao, Liu; Dan, Lu; Ruikang, Zhang; Wei, Wang; Chen, Ji

    2015-09-01

    A comprehensive design optimization of 1.55-μm high power InGaAsP/InP board area lasers is performed aiming at increasing the internal quantum efficiency (ηi) while maintaining the low internal loss (αi) of the device, thereby achieving high power operation. Four different waveguide structures of broad area lasers were fabricated and characterized in depth. Through theoretical analysis and experiment verifications, we show that laser structures with stepped waveguide and thin upper separate confinement layer will result in high ηi and overall slope efficiency. A continuous wave (CW) single side output power of 160 mW was obtained for an uncoated laser with a 50-μm active area width and 1 mm cavity length. Project supported by the National Natural Science Foundation of China (Nos. 61274046, 61201103) and the National High Technology Research and Development Program of China (No. 2013AA014202).

  13. High-power 808 nm ridge-waveguide diode lasers with very small divergence, wavelength-stabilized by an external volume Bragg grating.

    PubMed

    Wenzel, H; Häusler, K; Blume, G; Fricke, J; Spreemann, M; Zorn, M; Erbert, G

    2009-06-01

    We present data on ridge-waveguide diode lasers having a vertical far-field divergence of only 11.5 degrees (FWHM) owing to an appropriate waveguide design. The lasers emitted an optical power of more than 1 W into the spatial fundamental mode from a ridge width of 5 microm. The emission wavelength was stabilized to a narrow range around 808 nm by placing a volume Bragg grating in front of the outcoupling facet.

  14. Improvement and characterization of high-reflective and anti-reflective nanostructured mirrors by ion beam assisted deposition for 944 nm high power diode laser

    NASA Astrophysics Data System (ADS)

    Ghadimi-Mahani, A.; Farsad, E.; Goodarzi, A.; Tahamtan, S.; Abbasi, S. P.; Zabihi, M. S.

    2015-11-01

    Single-layer and multi-layer coatings were applied on the surface of diode laser facets as mirrors. This thin film mirrors were designed, deposited, optimized and characterized. The effects of mirrors on facet passivation and optical properties of InGaAs/AlGaAs/GaAs diode lasers were investigated. High-Reflective (HR) and Anti-Reflective (AR) mirrors comprising of four double-layers of Al2O3/Si and a single layer of Al2O3, respectively, were designed and optimized by Macleod software for 944 nm diode lasers. Optimization of Argon flow rate was studied through Alumina thin film deposition by Ion Beam Assisted Deposition (IBAD) for mirror improvement. The nanostructured HR and AR mirrors were deposited on the front and back facet of the laser respectively, by IBAD system under optimum condition. Atomic Force Microscope (AFM), Vis-IR Spectrophotometer, Field Emission Scanning Electron Microscopy (FESEM) and laser characterization Test (P-I) were used to characterize various properties of mirrors and lasers. AFM images show mirror's root mean square roughness is nearly 1 nm. The Spectrophotometer results of the front facet transmission and the back facet reflection are in good agreement with the simulation results. Optical output power (P) versus driving current (I) characteristics, measured before and after coating the facet, revealed a significant output power enhancement due to optimized AR and HR optical coatings on facets.

  15. Continuous high-power gas lasers

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1979-01-01

    High power gas laser concepts are discussed with emphasis on the role that fluid mechanics has played in their development. Consideration is given to three types of systems: gasdynamic lasers, HF supersonic diffusion lasers, and electric discharge lasers. Flow effects and aerodynamic windows in such lasers are briefly described. Future directions of research are outlined.

  16. High power laser apparatus and system

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1975-01-01

    A high-power, continuous-wave laser was designed for use in power transmission and energy-collecting systems, and for producing incoherent light for pumping a laser material. The laser has a high repetitive pulsing rate per unit time, resulting in a high-power density beam. The laser is composed of xenon flash tubes powered by fast-charging capacitors flashed in succession by a high-speed motor connected to an automobile-type distributor.

  17. A Preliminary In Vitro Study on the Efficacy of High-Power Photodynamic Therapy (HLLT): Comparison between Pulsed Diode Lasers and Superpulsed Diode Lasers and Impact of Hydrogen Peroxide with Controlled Stabilization.

    PubMed

    Caccianiga, Gianluigi; Baldoni, Marco; Ghisalberti, Carlo Angelo; Paiusco, Alessio

    2016-01-01

    Aim. In periodontology lasers have been suggested for the photodynamic therapy (PDT): such therapy can be defined as the inactivation of cells, microorganisms, or molecules induced by light and not by heat. The aim of this study was to evaluate results of PDT using a 980 nm diode laser (Wiser Doctor Smile, Lambda SPA, Italy) combined with hydrogen peroxide, comparing a pulsed diode laser (LI) activity to a high-frequency superpulsed diode laser (LII). Materials and Methods. Primary fibroblasts and keratinocytes cell lines, isolated from human dermis, were irradiated every 48 h for 10 days using LI and LII combined with SiOxyL(+) ™ Solution (hydrogen peroxide (HP) stabilized with a glycerol phosphate complex). Two days after the last irradiation, the treated cultures were analyzed by flow cytofluorometry (FACS) and western blotting to quantify keratin 5 and keratin 8 with monoclonal antibodies reactive to cytokeratin 5 and cytokeratin 8. Antimicrobial activity was also evaluated. Results. Both experimental models show the superiority of LII against LI. In parallel, stabilized HP provided better results in the regeneration test in respect to common HP, while the biocidal activity remains comparable. Conclusion. The use of high-frequency lasers combined with stabilized hydrogen peroxide can provide optimal results for a substantial decrease of bacterial count combined with a maximal biostimulation induction of soft tissues and osteogenesis.

  18. A Preliminary In Vitro Study on the Efficacy of High-Power Photodynamic Therapy (HLLT): Comparison between Pulsed Diode Lasers and Superpulsed Diode Lasers and Impact of Hydrogen Peroxide with Controlled Stabilization

    PubMed Central

    Baldoni, Marco; Ghisalberti, Carlo Angelo; Paiusco, Alessio

    2016-01-01

    Aim. In periodontology lasers have been suggested for the photodynamic therapy (PDT): such therapy can be defined as the inactivation of cells, microorganisms, or molecules induced by light and not by heat. The aim of this study was to evaluate results of PDT using a 980 nm diode laser (Wiser Doctor Smile, Lambda SPA, Italy) combined with hydrogen peroxide, comparing a pulsed diode laser (LI) activity to a high-frequency superpulsed diode laser (LII). Materials and Methods. Primary fibroblasts and keratinocytes cell lines, isolated from human dermis, were irradiated every 48 h for 10 days using LI and LII combined with SiOxyL+™ Solution (hydrogen peroxide (HP) stabilized with a glycerol phosphate complex). Two days after the last irradiation, the treated cultures were analyzed by flow cytofluorometry (FACS) and western blotting to quantify keratin 5 and keratin 8 with monoclonal antibodies reactive to cytokeratin 5 and cytokeratin 8. Antimicrobial activity was also evaluated. Results. Both experimental models show the superiority of LII against LI. In parallel, stabilized HP provided better results in the regeneration test in respect to common HP, while the biocidal activity remains comparable. Conclusion. The use of high-frequency lasers combined with stabilized hydrogen peroxide can provide optimal results for a substantial decrease of bacterial count combined with a maximal biostimulation induction of soft tissues and osteogenesis. PMID:27631000

  19. Optical mode engineering and high power density per facet length (>8.4 kW/cm) in tilted wave laser diodes

    NASA Astrophysics Data System (ADS)

    Ledentsov, N. N.; Shchukin, V. A.; Maximov, M. V.; Gordeev, N. Y.; Kaluzhniy, N. A.; Mintairov, S. A.; Payusov, A. S.; Shernyakov, Yu. M.

    2016-03-01

    Tilted Wave Lasers (TWLs) based on optically coupled thin active waveguide and thick passive waveguide offer an ultimate solution for thick-waveguide diode laser, preventing catastrophic optical mirror damage and thermal smile in laser bars, providing robust operation in external cavity modules thus enabling wavelength division multiplexing and further increase in brightness enabling direct applications of laser diodes in the mainstream material processing. We show that by proper engineering of the waveguide one can realize high performance laser diodes at different tilt angles of the vertical lobes. Two vertical lobes directed at various angles (namely, +/-27° or +/-9°) to the junction plane are experimentally realized by adjusting the compositions and the thicknesses of the active and the passive waveguide sections. The vertical far field of a TWL with the two +/-9° vertical beams allows above 95% of all the power to be concentrated within a vertical angle below 25°, the fact which is important for laser stack applications using conventional optical coupling schemes. The full width at half maximum of each beam of the value of 1.7° evidences diffraction- limited operation. The broad area (50 μm) TWL chips at the cavity length of 1.5 mm reveal a high differential efficiency ~90% and a current-source limited pulsed power >42W for as-cleaved TWL device. Thus the power per facet length in a laser bar in excess of 8.4 kW/cm can be realized. Further, an ultimate solution for the smallest tilt angle is that where the two vertical lobes merge forming a single lobe directed at the zero angle is proposed.

  20. High power ultrashort pulse lasers

    SciTech Connect

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  1. Endoscopic cystoventriculostomy and ventriculocysternostomy using a recently developed 2.0-micron fiber-guided high-power diode-pumped solid state laser in children with hydrocephalus

    NASA Astrophysics Data System (ADS)

    Ludwig, Hans C.; Kruschat, Thomas; Knobloch, Torsten; Rostasy, Kevin; Buchfelder, Michael

    2005-04-01

    Preterm infants have a high incidence of post hemorrhagic or post infectious hydrocephalus often associated with ventricular or arachnoic cysts which carry a high risk of entrapment of cerebrospinal fluid (CSF). In these cases fenestration and opening of windows within the separating membranes are neurosurgical options. Although Nd:YAG- and diode-lasers have already been used in neuroendoscopic procedures, neurosurgeons avoid the use of high energy lasers in proximity to vital structures because of potential side effects. We have used a recently developed diode pumped solid state (DPSS) laser emitting light at a wavelength of 2.0 μm (Revolix TM LISA laser products, Katlenburg, Germany), which can be delivered through silica fibres towards endoscopic targets. From July 2002 until June 2004 fourteen endoscopic procedures in 12 consecutive patients (age 3 months to 12 years old) were performed. Most children suffered from complex post hemorrhagic and post infectious hydrocephalus, in whom ventriculoperitoneal shunt devices failed to restore a CSF equilibrium due to entrapment of CSF pathways by the cysts. We used two different endoscopes, a 6 mm Neuroendoscope (Braun Aesculap, Melsungen, Germany; a 4 mm miniature Neuroscope (Storz, Tuttlingen, Germany). The endoscopes were connected to a standard camera and TV monitor, the laser energy was introduced through a 365 μm core diameter bare ended silica fibre (PercuFib, LISA laser products, Katlenburg, Germany) through the endoscope"s working channel. The continuous wave laser was operated at power levels from 5 to 15 Watt in continuous and chopped mode. The frequency of the laser in chopped mode was varied between 5 and 20 Hz. All patients tolerated the procedure well. No immediate or long term side effects were noted. In 3 patients with cystic compression of the 4th ventricle, insertion of a shunt device could be avoided. The authors conclude that the use of the new RevolixTM laser enables safe and effective procedures

  2. Freeform beam shaping for high-power multimode lasers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2014-03-01

    Widening of using high power multimode lasers in industrial laser material processing is accompanied by special requirements to irradiance profiles in such technologies like metal or plastics welding, cladding, hardening, brazing, annealing, laser pumping and amplification in MOPA lasers. Typical irradiance distribution of high power multimode lasers: free space solid state, fiber-coupled solid state and diodes lasers, fiber lasers, is similar to Gaussian. Laser technologies can be essentially improved when irradiance distribution on a workpiece is uniform (flattop) or inverse-Gauss; when building high-power pulsed lasers it is possible to enhance efficiency of pumping and amplification by applying super-Gauss irradiance distribution with controlled convexity. Therefore, "freeform" beam shaping of multimode laser beams is an important task. A proved solution is refractive field mapping beam shaper like Shaper capable to control resulting irradiance profile - with the same unit it is possible to get various beam profiles and choose optimum one for a particular application. Operational principle of these devices implies transformation of laser irradiance distribution by conserving beam consistency, high transmittance, providing collimated low divergent output beam. Using additional optics makes it possible to create resulting laser spots of necessary size and round, elliptical or linear shape. Operation out of focal plane and, hence, in field of lower wavefront curvature, allows extending depth of field. The refractive beam shapers are implemented as telescopes and collimating systems, which can be connected directly to fiber-coupled lasers or fiber lasers, thus combining functions of beam collimation and irradiance transformation.

  3. High power eye-safe Er3+:YVO4 laser diode-pumped at 976 nm and emitting at 1603 nm

    NASA Astrophysics Data System (ADS)

    Newburgh, G. A.; Dubinskii, M.

    2016-02-01

    We report on the performance of an eye-safe laser based on a Er:YVO4 single crystal, diode-pumped at 976 nm (4I15/2-->4I11/2 transition) and operating at 1603 nm (4I13/2-->4I15/2 transition) with good beam quality. A 10 mm long Er3+:YVO4 slab, cut with its c-axis perpendicular to the laser cavity axis, was pumped in σ-polarization and lased in π-polarization. The laser operated in a quasi-continuous wave (Q-CW) regime with nearly 9 W output power, and with a slope efficiency of about 39% with respect to absorbed power. This is believed to be the highest efficiency and highest power achieved from an Er3+:YVO4 laser pumped in the 970-980 nm absorption band.

  4. High-power one-, two-, and three-dimensional photonic crystal edge-emitting laser diodes for ultra-high brightness applications

    NASA Astrophysics Data System (ADS)

    Gordeev, N. Yu.; Maximov, M. V.; Shernyakov, Y. M.; Novikov, I. I.; Karachinsky, L. Ya.; Shchukin, V. A.; Kettler, T.; Posilovic, K.; Ledentsov, N. N.; Bimberg, D.; Duboc, R.; Sharon, A.; Arbiv, D. B.; Ben-Ami, U.

    2008-02-01

    Direct laser diodes can typically provide only a limited single mode power, while ultrahigh-brightness is required for many of the market-relevant applications. Thus, multistage power conversion schemes are applied, when the laser diodes are used just as a pumping source. In this paper we review the recent advances in ultra-large output aperture edge-emitting lasers based on the photonic band crystal (PBC) concept. The concept allows near- and far-field engineering robust to temperature and strain gradients and growth nonuniformities. High-order modes are selectively filtered and the effective optical confinement of the fundamental mode can be dramatically enhanced. At first, we show that robust ultra-narrow vertical beam divergence (<5 deg. FWHM) can be achieved simultaneously with ultrahigh differential efficiency (80-85%) and significant single mode power for several wavelengths of the key regions. A maximum single mode power of 1.4 W is achieved for 980 nm lasers. At second we extend the PBC concept towards the 2D photonic crystal. A significant field extension in the vertical direction allows a robust fabrication of the field-coupled lateral multistripe PBC arrays with a total multistripe width of 0.2 mm. We also demonstrate that the concept of high-order modes filtering works well also in the lateral direction. Finally, we address possible options for 3D managing of light towards wavelength stabilized laser operation by processing of the multistripe arrays along their lengths. The concept opens a way for 3D photonic crystal edge emitting lasers potentially allowing scalable single mode power increase to arbitrary high levels.

  5. Laser apparatus for surgery and force therapy based on high-power semiconductor and fibre lasers

    SciTech Connect

    Minaev, V P

    2005-11-30

    High-power semiconductor lasers and diode-pumped lasers are considered whose development qualitatively improved the characteristics of laser apparatus for surgery and force therapy, extended the scope of their applications in clinical practice, and enhanced the efficiency of medical treatment based on the use of these lasers. The characteristics of domestic apparatus are presented and their properties related to the laser emission wavelength used in them are discussed. Examples of modern medical technologies based on these lasers are considered. (invited paper)

  6. High-power and low-loss room temperature operation of 2.4μm GaInAsSb/AlGaAsSb type-I strained quantum-well laser diodes

    NASA Astrophysics Data System (ADS)

    Song, Yuzhi; Song, Jiakun; Zhang, Yu; Li, Kangwen; Xu, Yun; Song, Guofeng; Chen, Lianghui

    2015-10-01

    High power GaSb based type-I GaInAsSb/AlGaAsSb three quantum wells laser diodes emitting at 2.4 μm were optimized and fabricated. The laser wafer was grown with solid source Molecular Beam Epitaxy System. With optimizations of the epitaxial structure design and the ohmic contact, the operation voltage and the internal loss decreased; the internal quantum efficiency and output power increased. The internal quantum efficiency was determined about 80.1% and the internal loss was 12 cm-1 by measuring laser diodes with different cavity lengths. An uncoated 2-mm-long laser diode with 90-μm-wide aperture exhibited a threshold current density of 222 A/cm2 (74 A/cm2 per quantum well), a continuous wave output power of 232 mW and a quasi-continuous wave (1 kHz, 10 μs) output power of 1 W at room temperature.

  7. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  8. Diode end-pumped high-power Q-switched double Nd:YAG slab laser and its efficient near-field second-harmonic generation.

    PubMed

    Zhu, Peng; Li, Daijun; Qi, Bingsong; Schell, Alexander; Shi, Peng; Haas, Claus; Fu, Shaojun; Wu, Nianle; Du, Keming

    2008-10-01

    We reported on an all-solid-state double Nd:YAG slab laser. The laser was based on two diode end-pumped Nd:YAG slabs and a stable-unstable hybrid resonator. A cw output of 189 W and an average Q-switched output of 169 W at 10 kHz with an M(2) factor of 1.5 in the slow direction and 1.7 in the fast direction were obtained. We demonstrated efficient near-field frequency doubling by imaging the one-dimensional top-hat near-field to a lithium triborate frequency doubler. We obtained 93 W green light at 10 kHz with a pulse width of 10.7 ns. The efficiency of second-harmonic generation was up to 57%.

  9. Frequency stable high power lasers in space

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    The concept of a laser heterodyne gravity wave antenna that would operate in solar orbit with a one million kilometer path length is discussed. Laser technology that would be appropriate for operation of this space-based gravity wave detector is also discussed. The rapid progress in diode laser coupled with the energy storage and potentially sub-Hertz linewidths of solid state lasers, and the possibility of efficient frequency conversion by nonlinear optical techniques defines a technology that is appropriate for laser interferometry in space. The present status of diode-laser-pumped, solid state lasers is summarized and future progress is projected in areas of linewidth control, high average power, operating efficiency, and operational lifetimes that are essential for space-based applications.

  10. High Power Free Electron Lasers

    SciTech Connect

    George Neil

    2004-04-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. The characteristics that have driven the development of these sources are the desire for high peak and average power, high pulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. User programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few. Recently the incorporation of energy recovery systems has permitted extension of the average power capabilities to the kW level and beyond. Development of substantially higher power systems with applications in defense and security is believed feasible with modest R&D efforts applied to a few technology areas. This paper will discuss at a summary level the physics of such devices, survey existing and planned facilities, and touch on the applications that have driven the development of these popular light sources.

  11. High Power Short Wavelength Laser Development

    DTIC Science & Technology

    1977-11-01

    Unlimited güä^äsjäsiiiüüü X NRTC-77-43R P I High Power Short Wavelength Laser Development November 1977 D. B. Cohn and W. B. Lacina...NO NRTC-77-43R, «. TITLE fana »uetjjitj BEFORE COMPLETING FORM CIPIENT’S CATALOO NUMBER KIGH.POWER SHORT WAVELENGTH LASER DEVELOPMENT , 7...fWhtn Data Enterte NRTC-77-43R HIGH POWER SHORT WAVELENGTH LASER DEVELOPMENT ARPA Order Number: Program Code Number: Contract Number: Principal

  12. Generation of high-power laser light with Gigahertz splitting.

    PubMed

    Unks, B E; Proite, N A; Yavuz, D D

    2007-08-01

    We demonstrate the generation of two high-power laser beams whose frequencies are separated by the ground state hyperfine transition frequency in (87)Rb. The system uses a single master diode laser appropriately shifted by high frequency acousto-optic modulators and amplified by semiconductor tapered amplifiers. This produces two 1 W laser beams with a frequency spacing of 6.834 GHz and a relative frequency stability of 1 Hz. We discuss possible applications of this apparatus, including electromagnetically induced transparency-like effects and ultrafast qubit rotations.

  13. High power DUV lasers for material processing

    NASA Astrophysics Data System (ADS)

    Mimura, Toshio; Kakizaki, Kouji; Oizumi, Hiroaki; Kobayashi, Masakazu; Fujimoto, Junichi; Matsunaga, Takashi; Mizoguchi, Hakaru

    2016-11-01

    A frontier in laser machining has been required by material processing in DUV region because it is hard to get high power solid-state lasers in this spectral region. DUV excimer lasers are the only solution, and now the time has come to examine the new applications of material processing with DUV excimer lasers. The excimer lasers at 193nm and 248nm have been used in the semiconductor manufacturing for long years, and have field-proven stability and reliability. The high photon energy of 6.4 eV at 193nm is expected to interact directly with the chemical bond of hard-machining materials, such as CFRP, diamond and tempered glasses. We report the latest results of material processing by 193nm high power DUV laser.

  14. High-Power Amplifier Free Electron Lasers

    DTIC Science & Technology

    2006-06-01

    society, including laser pointers , printers, compact-disc players, DVD players, product scanners and even as instruments in medical procedures. With...FREE ELECTRON LASERS by Tyrone Y. Voughs June 2006 Thesis Advisor: William B. Colson Co-Advisor: Robert L. Armstead...2006 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE High-Power Amplifier Free Electron Lasers 6. AUTHOR(S) LT Tyrone Y

  15. Laser Diode Ignition (LDI)

    NASA Technical Reports Server (NTRS)

    Kass, William J.; Andrews, Larry A.; Boney, Craig M.; Chow, Weng W.; Clements, James W.; Merson, John A.; Salas, F. Jim; Williams, Randy J.; Hinkle, Lane R.

    1994-01-01

    This paper reviews the status of the Laser Diode Ignition (LDI) program at Sandia National Labs. One watt laser diodes have been characterized for use with a single explosive actuator. Extensive measurements of the effect of electrostatic discharge (ESD) pulses on the laser diode optical output have been made. Characterization of optical fiber and connectors over temperature has been done. Multiple laser diodes have been packaged to ignite multiple explosive devices and an eight element laser diode array has been recently tested by igniting eight explosive devices at predetermined 100 ms intervals.

  16. High power regenerative laser amplifier

    DOEpatents

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  17. High power regenerative laser amplifier

    DOEpatents

    Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.

    1994-01-01

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  18. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1991-01-01

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  19. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  20. Stark spectroscopy of a probe lithium beam excited with two dye lasers as a technique to study a high-power ion-beam diode.

    PubMed

    Knyazev, B A; An, W; Bluhm, H

    2012-03-01

    A non-disturbing measurement of electric field distributions is a subject of special interest in plasma physics and high-voltage devices. In this paper we describe a diagnostic technique for remote sensing of electric fields via injection of a probe beam of lithium atoms and cascade excitation of resonance fluorescence with two broadband dye lasers. The fluorescence spectrum was recorded using a monochromator equipped with an optical multi-channel analyser. The magnitude of the local electric field was retrieved from the Stark-shifted components of the 3d-2p lithium spectral line. The technique was applied to measurements of the electric field in the applied-B-field high-voltage diode of the 1 TW KALIF ion-beam accelerator.

  1. Trends in high power laser applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Wignarajah, Sivakumaran; Sugimoto, Kenji; Nagai, Kaori

    2005-03-01

    This paper reviews the research and development efforts made on the use of lasers for material processing in the civil engineering industry. Initial investigations regarding the possibility of using lasers in civil engineering were made in the 1960s and '70s, the target being rock excavation. At that time however, the laser powers available were too small for any practical application utilization. In the 1980's, the technology of laser surface cleaning of historically important structures was developed in Europe. In the early 1990s, techniques of laser surface modification, including glazing and coloring of concrete, roughening of granite stones, carbonization of wood were pursued, mainly in Japan. In the latter part of the decade, techniques of laser decontamination of concrete surfaces in nuclear facilities were developed in many countries, and field tests were caried out in Japan. The rapid advances in development of diode lasers and YAG lasers with high power outputs and efficiencies since the late 1990's have led to a revival of worldwide interest in the use of lasers for material processing in civil engineering. The authors believe that, in the next 10 years or so, the advent of compact high power lasers is likely to lead to increased use of lasers of material processing in the field of civil engineering.

  2. Lighting with laser diodes

    NASA Astrophysics Data System (ADS)

    Basu, Chandrajit; Meinhardt-Wollweber, Merve; Roth, Bernhard

    2013-08-01

    Contemporary white light-emitting diodes (LEDs) are much more efficient than compact fluorescent lamps and hence are rapidly capturing the market for general illumination. LEDs are also replacing halogen lamps or even newer xenon based lamps in automotive headlamps. Because laser diodes are inherently much brighter and often more efficient than corresponding LEDs, there is great research interest in developing laser diode based illumination systems. Operating at higher current densities and with smaller form factors, laser diodes may outperform LEDs in the future. This article reviews the possibilities and challenges in the integration of visible laser diodes in future illumination systems.

  3. NASA seeking high-power 60-GHz IMPATT diodes

    NASA Technical Reports Server (NTRS)

    Haugland, E. J.

    1984-01-01

    Recent progress in the development of high-power 60 GHz GaAs IMPATT diodes for communication links with high-data-rate satellites is discussed. One of the advantages of GaAs over Si as the material for the diodes are that GaAs is likely to have a higher output and efficiency than Si despite recent advances in Si technology. It is therefore in GaAs technology that research is currently concentrating. Some of the design strategies of the various companies working on the technology are described, including a pill process, MOCVD growth, and the use of diethy zinc as a dopant. Reliability testing of the diodes will be performed by NASA. Some of the alternatives to solid state amplifiers are discussed, including optical and traveling wave tube technology (TWT).

  4. Early history of high-power lasers

    NASA Astrophysics Data System (ADS)

    Sutton, George W.

    2002-02-01

    This paper gives the history of the invention and development of early high power lasers, to which the author contributed and had personal knowledge. The earliest hint that a high power laser could be built came from the electric CO2-N2-He laser of Javan. It happened that the director of the Avco-Everett Research Laboratory had written his Ph.D. dissertation on the deactivation of the vibrational excitation of N2 in an expanding flow under Edward Teller, then at Columbia Univ. The director then started an in-house project to determine if gain could be achieved in a mixture similar to Javan's by means of a shock tunnel where a shock heated mixture of N2, CO2, and He gas was expanded through a supersonic nozzle into a cavity. This concept was named by the author as the gasdynamic laser (GDL). The paper traces the history of the initial gain measurements, the Mark II laser, the RASTA laser, the Tri-Service laser, its troubles and solutions, the United Technology's XLD gasdynamic laser, and their ALL laser. The history of the coastal Crusader will also be mentioned. Also discussed are the early experiments on a combustion-driven chemical laser, and its subsequent rejection by the director.

  5. Scaling blackbody laser to high powers

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.

    1985-01-01

    Lasers pumped by solar heated blackbody cavities have potential for multimegawatt power beaming in space. There are two basic types of blackbody lasers; cavity pumped and transfer system. The transfer system is judged to be more readily scalable to high power. In this system, either N2 or CO is heated by the blackbody cavity then transferred into the laser cavity where CO2 is injected. The N2-CO2 system was demonstrated, but probably has lower efficiency than the CO-CO system. The characteristics of potential transfer laser systems are outlined.

  6. Lifetime estimation of high power lasers

    NASA Astrophysics Data System (ADS)

    Lu, Guoguang; Huang, Yun; En, Yunfei

    2010-11-01

    We have set up a computer automated controlled diode array reliability experiment which can take up 10 to 20 high power cm-bars. Subsequent 25°C and 50°C lifetime tests were completed. According to the method of least squares, the degradation model of cm-bars is obtained. Using the model and weibull++7 software, the extrapolated lifetime of cmbars at 25°C is 7950 hours (2.86×109 shots). We also obtain an acceleration factor 1.88 of resulting in a thermal activation energy of Ea=0.21eV using Arrhenius function. Finally, failure analysis was carried on the gradually degraded devices, the results show that it is the facet degradation which made high power cm-bars degrade during the long time lifetime test.

  7. High-power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Ryba, Tracey; Holzer, Marco

    2012-03-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With about 2,000 high power disk lasers installations, and a demand upwards of 1,000 lasers per year, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain recent advances in disk laser technology and process relevant features of the laser, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  8. Velocimetry with diode lasers

    NASA Astrophysics Data System (ADS)

    de Mul, F. F. M.; Jentink, H. W.; Koelink, M.; Greve, J.; Aarnoudse, J. G.

    The history of the application of diode lasers in velocimetry is reviewed. Some problems arising when using those lasers, e.g., mode hopping and wavelength shifts caused by temperature effects, are discussed, together with coherence effects encountered with diode lasers. The application in dual-beam velocimetry, in direct-contact velocimetry and in velocimetry using self-mixing will be discussed.

  9. High-Power Laser Source Evaluation

    DTIC Science & Technology

    1998-07-01

    uniform:«»! had been:taped. A sample beam profile at the receiver Zerodur Au-coated mirror 20 cm diameter f/6 Diode laser Diode bars 1 21 m beam...amplifiers and mirrors . This is of concern to the NIF Project and the use of unconverted 1.06 p.m light to produce these x-ray sources might require...they may result in DSWA Final Report - 34 NWET ANNUAL REPORT - QDV-99-0001 undesirable conditions at the turning mirrors or ghosts in the up-beam

  10. Etalon laser diode

    SciTech Connect

    Allen, L.B.; Koenig, H.G.; Rice, R.R.

    1981-08-18

    A laser diode is disclosed that is suitable for integrated and fiber optic applications requiring single transverse and single longitudinal mode operation. The single transverse mode is provided by making a gallium arsenide double heterostructural laser diode with a narrow stripe width and a relatively long length. The single longitudinal mode operation is provided by cracking the diode transverse to the stripe at one or more locations to form internal etalons in the laser cavity.

  11. The Twister laser fiber degradation and tissue ablation capability during 980-nm high-power diode laser ablation of the prostate. A randomized study versus the standard side-firing fiber.

    PubMed

    Shaker, Hassan; Alokda, Alsayed; Mahmoud, Hisham

    2012-09-01

    The objective of this work is to test the ablation capability and fiber degradation of the novel Twister fibers (TW), in both the large (LTW) and the standard (STW) sizes, against the standard side-firing (SF) fiber in a clinical setting during the treatment of BPH patients using the 980-nm high-power diode laser (HPDL). One hundred and twenty BPH patients treated with HPDL (Ceralase300, Biolitec AG, Jena, Germany) were randomized to receive treatment by one of the three fibers. Operative time corrected to tissue volume, laser treatment time, and laser energy were measured. Ablation rate was calculated as follows: the decrease of the prostate volume after 6 months/laser time. The fibers' resistance to degradation was defined by the laser energy needed to degrade the fiber completely. Preoperative prostate volume of 76 ± 38, 70 ± 39, and 88 ± 49 cc decreased by 49 ± 16, 51 ± 20, and 63 ± 16% for the SF, STW, and LTW fibers, respectively. This difference was highly significant when the LTW was compared to the other two fibers (p < 0.001). Prostate volume reduction post-operatively within each group as compared to the pre-operative volume was highly significant (p < 0.001). The ablation rate was highest in LTW, being 1.31 ± 0.59, 1.09 ± 0.51, and 1.54 ± 0.44 cc/min for the SF, STW, and LTW fibers, respectively. The LTW fiber resisted degradation more than the other fibers and the STW more than the SF fiber (p < 0.001). This study demonstrates the higher ablation efficiency and resistance to degradation of the LTW fiber as compared to the STW and SF fibers. The STW fiber has a similar ablation rate of the SF fiber but resists degradation better.

  12. Innovative high-power CW Yb:YAG cryogenic laser

    NASA Astrophysics Data System (ADS)

    Brown, D. C.; Singley, J. M.; Yager, E.; Kuper, J. W.; Lotito, B. J.; Bennett, L. L.

    2007-04-01

    In this paper we discuss a CW Yb:YAG cryogenic laser program that has resulted in the design and demonstration of a novel high power laser. Cryogenically-cooled crystalline solid-state lasers, and Yb:YAG lasers in particular, are attractive sources of scalable CW output power with very high wallplug efficiency and excellent beam-quality that is independent of the output power. This laser consists of a distributed array of seven highly-doped thin Yb:YAG-sapphire disks in a folded multiple-Z resonator. Individual disks are pumped from opposite sides using fiber-coupled ~ 30W 940nm pump diodes. The laser system we have constructed produces a near-diffraction-limited TEM 00 output beam with the aid of an active conduction-cooling design. In addition, the device can be scaled to very high average power in a MOPA configuration, by increasing the number and diameter of the thin disks, and by increasing the power of the pump diodes with only minor modifications to the current design. The thermal and optical benefits of cryogenically-cooled solid-state lasers will be reviewed, scalability of our Yb:YAG cryogenic laser design will be discussed, and we will present experimental results including output power, slope and optical-optical efficiencies, and beam-quality.

  13. Innovative high-power CW Yb:YAG cryogenic laser

    NASA Astrophysics Data System (ADS)

    Brown, D. C.; Singley, J. M.; Yager, E.; Kuper, J. W.; Lotito, B. J.; Bennett, L. L.

    2007-02-01

    In this paper we discuss a CW Yb:YAG cryogenic laser program that has resulted in the design and demonstration of a novel high power laser. Cryogenically-cooled crystalline solid-state lasers, and Yb:YAG lasers in particular, are attractive sources of scalable CW output power with very high wallplug efficiency and excellent beam-quality that is independent of the output power. This laser consists of a distributed array of seven highly-doped thin Yb:YAG-sapphire disks in a folded multiple-Z resonator. Individual disks are pumped from opposite sides using fiber-coupled ~ 30W 940nm pump diodes. The laser system we have constructed produces a near-diffraction-limited TEM 00 output beam with the aid of an active conduction-cooling design. In addition, the device can be scaled to very high average power in a MOPA configuration, by increasing the number and diameter of the thin disks, and by increasing the power of the pump diodes with only minor modifications to the current design. The thermal and optical benefits of cryogenically-cooled solid-state lasers will be reviewed, scalability of our Yb:YAG cryogenic laser design will be discussed, and we will present experimental results including output power, slope and optical-optical efficiencies, and beam-quality.

  14. Photoionization of optically trapped ultracold atoms with a high-power light-emitting diode

    SciTech Connect

    Goetz, Simone; Hoeltkemeier, Bastian; Amthor, Thomas; Weidemueller, Matthias

    2013-04-15

    Photoionization of laser-cooled atoms using short pulses of a high-power light-emitting diode (LED) is demonstrated. Light pulses as short as 30 ns have been realized with the simple LED driver circuit. We measure the ionization cross section of {sup 85}Rb atoms in the first excited state, and show how this technique can be used for calibrating efficiencies of ion detector assemblies.

  15. High-power picosecond laser pulse recirculation.

    PubMed

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  16. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  17. Improved Thermoelectrically Cooled Laser-Diode Assemblies

    NASA Technical Reports Server (NTRS)

    Glesne, Thomas R.; Schwemmer, Geary K.; Famiglietti, Joe

    1994-01-01

    Cooling decreases wavelength and increases efficiency and lifetime. Two improved thermoelectrically cooled laser-diode assemblies incorporate commercial laser diodes providing combination of both high wavelength stability and broad wavelength tuning which are broadly tunable, highly stable devices for injection seeding of pulsed, high-power tunable alexandrite lasers used in lidar remote sensing of water vapor at wavelengths in vicinity of 727 nanometers. Provide temperature control needed to take advantage of tunability of commercial AlGaAs laser diodes in present injection-seeding application.

  18. Spatial and Spectral Brightness Enhancement of High Power Semiconductor Lasers

    NASA Astrophysics Data System (ADS)

    Leidner, Jordan Palmer

    The performance of high-power broad-area diode lasers is inhibited by beam filamentation induced by free-carrier-based self-focusing. The resulting beam degradation limits their usage in high-brightness, high-power applications such as pumping fiber lasers, and laser cutting, welding, or marking. Finite-difference propagation method simulations via RSoft's BeamPROP commercial simulation suite and a custom-built MATLAB code were used for the study and design of laser cavities that suppress or avoid filamentation. BeamPROP was used to design a tapered, passive, multi-mode interference cavity for the creation of a self-phase-locking laser array, which is comprised of many single-mode gain elements coupled to a wide output coupler to avoid damage from local high optical intensities. MATLAB simulations were used to study the effects of longitudinal and lateral cavity confinement on lateral beam quality in conventional broad-area lasers. This simulation was expanded to design a laser with lateral gain and index prescription that is predicted to operate at or above state-of-the-art powers while being efficiently coupled to conventional telecom single-mode optical fibers. Experimentally, a commercial broad-area laser was coupled in the far-field to a single-mode fiber Bragg grating to provide grating-stabilized single-mode laser feedback resulting in measured spectral narrowing for efficient pump absorption. Additionally a 19 GHz-span, spatially resolved, self-heterodyne measurement was made of a broad-area laser to study the evolution/devolution of the mode content of the emitted laser beam with increasing power levels.

  19. Modulation instability in high power laser amplifiers.

    PubMed

    Rubenchik, Alexander M; Turitsyn, Sergey K; Fedoruk, Michail P

    2010-01-18

    The modulation instability (MI) is one of the main factors responsible for the degradation of beam quality in high-power laser systems. The so-called B-integral restriction is commonly used as the criteria for MI control in passive optics devices. For amplifiers the adiabatic model, assuming locally the Bespalov-Talanov expression for MI growth, is commonly used to estimate the destructive impact of the instability. We present here the exact solution of MI development in amplifiers. We determine the parameters which control the effect of MI in amplifiers and calculate the MI growth rate as a function of those parameters. The safety range of operational parameters is presented. The results of the exact calculations are compared with the adiabatic model, and the range of validity of the latest is determined. We demonstrate that for practical situations the adiabatic approximation noticeably overestimates MI. The additional margin of laser system design is quantified.

  20. Improvement of signal-to-noise ratio of optoacoustic signals from double-walled carbon nanotubes by using an array of dual-wavelength high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Leggio, Luca; de Varona, Omar E.; Escudero, Pedro; Carpintero del Barrio, Guillermo; Osiński, Marek; Lamela Rivera, Horacio

    2015-07-01

    Optoacoustic (OA) imaging is a rising biomedical technique that has attracted much interest over the last 15 years. This technique permits to visualize the internal soft tissues in depth by using short laser pulses, able to generate ultrasonic signals in a large frequency range. It combines the high contrast of optical imaging with the high resolution of ultrasound systems. The OA signals detected from the whole surface of the body serve to reconstruct in detail the image of the internal tissues, where the absorbed optical energy distribution outlines the regions of interest. In fact, the use of contrast agents could improve the detection of growing anomalies in soft tissues, such as carcinomas. This work proposes the use of double-walled carbon nanotubes (DWCNTs) as a potential nontoxic biodegradable contrast agent applicable in OA to reveal the presence of malignant in-depth tissues in near infrared (NIR) wavelength range (0.75-1.4 μm), where the biological tissues are fairly transparent to optical radiation. A dual-wavelength (870 and 905 nm) OA system is presented, based on arrays of high power diode lasers (HPDLs) that generate ultrasound signals from a DWCNT solution embedded within a biological phantom. The OA signals generated by DWCNTs are compared with those obtained using black ink, considered to be a very good absorber at these wavelengths. The experiments prove that DWCNTs are a potential contrast agent for optoacoustic spectroscopy (OAS).

  1. Diode laser (980nm) cartilage reshaping

    NASA Astrophysics Data System (ADS)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  2. High-power 0.87-micron channel substrate planar lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Stewart, T. R.; Gilbert, D. B.; Slavin, S. E.; Carlin, D. B.

    1988-01-01

    High-power single-mode channeled-substrate planar AlGaAs diode lasers are being developed for reliable high-power operation for use as sources in spaceborne optical communication systems. The CSP laser structure has been optimized for operation at an emission wavelength of 870 nm. Such devices have exhibited output powers in excess of 80 mW CW at an operating temperature of 80 C.

  3. High-power and high-efficiency diode-pumped Nd:LuYAG mixed crystal lasers operating at 939 and 946  nm.

    PubMed

    Cui, Qin; Lan, Jinglong; Lin, Zhi; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Jian; Xu, Jun

    2016-09-10

    We report on high-performance infrared lasers at 0.94 μm based on quasi-three-level transition of F3/24→I9/24 in Nd:LuYAG mixed crystal, for the first time to our knowledge. The maximum output power was achieved to 5.64 W with slope efficiency of approximately 52.5% at 946 nm. The simultaneous dual-wavelength laser at 939 and 946 nm is also obtained with maximum output power of 3.61 W and slope efficiency of 34.8% by introducing a glass etalon into the cavity. Moreover, a 2.0-W single-wavelength laser at 939 nm can be further attained by suitably tilting the etalon. Using a Cr:YAG saturable absorber, Q-switched laser operation is realized with maximum average output power of 0.68 W and the narrowest pulse width of 8.4 ns, which results in the maximum single pulse energy of approximately 55.3 μJ and the maximum pulse peak power of approximately 6.15 kW. Finally, thermal focal length of the laser crystal is estimated by using a flat-flat laser cavity.

  4. Apparatus for advancing a wellbore using high power laser energy

    DOEpatents

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  5. Infrared diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Civiš, S.; Cihelka, J.; Matulková, I.

    2010-12-01

    Three types of lasers (double-heterostructure 66 K InAsSb/InAsSbP laser diode, room temperature, multi quantum wells with distributed feedback (MQW with DFB) (GaInAsSb/AlGaAsSb based) diode laser and vertical cavity surface emitting lasers (VCSELs) (GaSb based) have been characterized using Fourier transform emission spectroscopy and compared. The photoacoustic technique was employed to determine the detection limit of formaldehyde (less than 1 ppmV) for the strongest absorption line of the v3 + v5 band in the emission region of the GaInAsSb/AlGaAsSb diode laser. The detection limit (less than 10 ppbV) of formaldehyde was achieved in the 2820 cm-1 spectral range in case of InAsSb/InAsSbP laser (fundamental bands of v1, v5). Laser sensitive detection (laser absorption together with high resolution Fourier transform infrared technique including direct laser linewidth measurement, infrared photoacoustic detection of neutral molecules (methane, form-aldehyde) is discussed. Additionally, very sensitive laser absorption techniques of such velocity modulation are discussed for case of laser application in laboratory research of molecular ions. Such sensitive techniques (originally developed for lasers) contributed very much in identifying laboratory microwave spectra of a series of anions (C6H-, C4H-, C2H-, CN-) and their discovery in the interstellar space (C6H-, C4H-).

  6. High power gas laser - Applications and future developments

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1977-01-01

    Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.

  7. Hybrid high power femtosecond laser system

    NASA Astrophysics Data System (ADS)

    Trunov, V. I.; Petrov, V. V.; Pestryakov, E. V.; Kirpichnikov, A. V.

    2006-01-01

    Design of a high-power femtosecond laser system based on hybrid chirped pulse amplification (CPA) technique developed by us is presented. The goal of the hybrid principle is the use of the parametric and laser amplification methods in chirped pulse amplifiers. It makes it possible to amplify the low-cycle pulses with a duration of <= fs to terawatt power with a high contrast and high conversion efficiency of the pump radiation. In a created system the Ti:Sapphire laser with 10 fs pulses at 810 nm and output energy about 1-3 nJ will be used like seed source. The oscillator pulses were stretched to duration of about 500 ps by an all-reflective grating stretcher. Then the stretched pulses are injected into a nondegenerate noncollinear optical parametric amplifier (NOPA) on the two BBO crystals. After amplification in NOPA the residual pump was used in a bow-tie four pass amplifier with hybrid active medium (based on Al II0 3:Ti 3+ and BeAl IIO 4:Ti 3+ crystals). The final stage of the amplification system consists of two channels, namely NIR (820 nm) and short-VIS (410 nm). Numerical simulation has shown that the terawatt level of output power can be achieved also in a short-VIS channel at the pumping of the double-crystal BBO NOPA by the radiation of the fourth harmonic of the Nd:YAG laser at 266 nm. Experimentally parametric amplification in BBO crystals of 30-50 fs pulses were investigated and optimized using SPIDER technique and single-shot autocomelator for the realization of shortest duration 40 fs.

  8. Atmospheric propagation and combining of high power lasers: comment.

    PubMed

    Goodno, Gregory D; Rothenberg, Joshua E

    2016-10-10

    Nelson et al. [Appl. Opt.55, 1757 (2016)APOPAI0003-693510.1364/AO.55.001757] recently concluded that coherent beam combining and remote phase locking of high-power lasers are fundamentally limited by the laser source linewidth. These conclusions are incorrect and not relevant to practical high-power coherently combined laser architectures.

  9. Atmospheric Propagation and Combining of High-Power Lasers

    DTIC Science & Technology

    2015-09-08

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6703--15-9646 Atmospheric Propagation and Combining of High - Power Lasers W. NelsoN...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Atmospheric Propagation and Combining of High - Power Lasers W. Nelson,* P. Sprangle...Turbulence Beam combining In this paper we analyze the beam combining and atmospheric propagation of high - power lasers for directed-energy (DE

  10. Flow lasers. [fluid mechanics of high power continuous output operations

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.; Russell, D. A.; Hertzberg, A.

    1975-01-01

    The present work reviews the fluid-mechanical aspects of high-power continuous-wave (CW) lasers. The flow characteristics of these devices appear as classical fluid-mechanical phenomena recast in a complicated interactive environment. The fundamentals of high-power lasers are reviewed, followed by a discussion of the N2-CO2 gas dynamic laser. Next, the HF/DF supersonic diffusion laser is described, and finally the CO electrical-discharge laser is discussed.

  11. High-power 83 W holmium-doped silica fiber laser operating with high beam quality.

    PubMed

    Jackson, Stuart D; Sabella, Alex; Hemming, Alex; Bennetts, Shayne; Lancaster, David G

    2007-02-01

    A high-power 83 W cladding-pumped Tm3+-Ho3+-doped silica fiber laser is reported. Using bidirectional 793 nm diode pumping, a maximum slope efficiency of 42% was produced after a threshold launched pump power of 12 W was exceeded. The laser operated at wavelengths near 2105 nm with moderate beam quality, i.e., M2 approximately 1.5. Further power scaling of the fiber laser was limited by thermal failure of the fiber ends.

  12. High-power 83 W holmium-doped silica fiber laser operating with high beam quality

    NASA Astrophysics Data System (ADS)

    Jackson, Stuart D.; Sabella, Alex; Hemming, Alex; Bennetts, Shayne; Lancaster, David G.

    2007-02-01

    A high-power 83W cladding-pumped Tm3+-Ho3+-doped silica fiber laser is reported. Using bidirectional 793nm diode pumping, a maximum slope efficiency of 42% was produced after a threshold launched pump power of 12W was exceeded. The laser operated at wavelengths near 2105nm with moderate beam quality, i.e., M2˜1.5. Further power scaling of the fiber laser was limited by thermal failure of the fiber ends.

  13. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  14. Composite photopolymerization with diode laser.

    PubMed

    Knezevic, Alena; Ristic, Mira; Demoli, Nazif; Tarle, Zrinka; Music, Svetozar; Negovetic Mandic, Visnja

    2007-01-01

    Under clinical conditions, the time needed for the proper light curing of luting composites or the multi-incremental buildup of a large restoration with halogen curing units is quite extensive. Due to the development of high power curing devices, such as argon lasers and plasma arc lights and, in order to decrease curing time, halogen and LED devices have developed a high intensity polymerization mode. This study compared the degree of conversion using Fourier Transform Infrared Spectroscopy (FT-IR) of two composite materials: Tetric Ceram and Tetric EvoCeram polymerized with three polymerization modes (high, low and soft mode) of a Bluephase 16i LED curing unit and blue diode laser intensity of 50 mW on the output of the laser beam and 35 mW/cm2 on the resin composite sample. Descriptive statistic, t-test, ANOVA, Pearson Correlation and Tukey Post hoc tests were used for statistical analyses. The results show a higher degree of conversion for the polymerization of composite samples with all photopolymerization modes of the LED curing unit. However, there is no significant difference in the degree of conversion between the LED unit and 50-second polymerization with the blue diode laser. Tetric EvoCeram shows a lower degree of conversion regardless of the polymerization mode (or light source) used.

  15. Thermal investigation on high power dfb broad area lasers at 975 nm, with 60% efficiency

    NASA Astrophysics Data System (ADS)

    Mostallino, R.; Garcia, M.; Deshayes, Y.; Larrue, A.; Robert, Y.; Vinet, E.; Bechou, L.; Lecomte, M.; Parillaud, O.; Krakowski, M.

    2016-03-01

    The demand of high power diode lasers in the range of 910-980nm is regularly growing. This kind of device for many applications, such as fiber laser pumping [1], material processing [1], solid-state laser pumping [1], defense and medical/dental. The key role of this device lies in the efficiency (𝜂𝐸) of converting input electrical power into output optical power. The high value of 𝜂𝐸 allows high power level and reduces the need in heat dissipation. The requirement of wavelength stabilization with temperature is more obvious in the case of multimode 975nm diode lasers used for pumping Yb, Er and Yb/Er co-doped solid-state lasers, due to the narrow absorption line close to this wavelength. Such spectral width property (<1 nm), combined with wavelength thermal stabilization (0.07 𝑛𝑚 • °𝐶-1), provided by a uniform distributed feedback grating (DFB) introduced by etching and re-growth process techniques, is achievable in high power diode lasers using optical feedback. This paper reports on the development of the diode laser structure and the process techniques required to write the gratings taking into account of the thermal dissipation and optical performances. Performances are particularly determined in terms of experimental electro-optical characterizations. One of the main objectives is to determine the thermal resistance of the complete assembly to ensure the mastering of the diode laser temperature for operating condition. The classical approach to determine junction temperature is based on the infrared thermal camera, the spectral measurement and the pulse electrical method. In our case, we base our measurement on the spectral measurement but this approach is not well adapted to the high power diodes laser studied. We develop a new measurement based on the pulse electrical method and using the T3STERequipment. This method is well known for electronic devices and LEDs but is weakly developed for the high

  16. Latest development of high-power fiber lasers in SPI

    NASA Astrophysics Data System (ADS)

    Norman, Stephen; Zervas, Mikhail N.; Appleyard, Andrew; Durkin, Michael K.; Horley, Ray; Varnham, Malcolm P.; Nilsson, Johan; Jeong, Yoonchan

    2004-06-01

    High Power Fiber Lasers (HPFLs) and High Power Fiber Amplifiers (HPFAs) promise a number of benefits in terms of their high optical efficiency, degree of integration, beam quality, reliability, spatial compactness and thermal management. These benefits are driving the rapid adoption of HPFLs in an increasingly wide range of applications and power levels ranging from a few Watts, in for example analytical applications, to high-power >1kW materials processing (machining and welding) applications. This paper describes SPI"s innovative technologies, HPFL products and their performance capabilities. The paper highlights key aspects of the design basis and provides an overview of the applications space in both the industrial and aerospace domains. Single-fiber CW lasers delivering 1kW output power at 1080nm have been demonstrated and are being commercialized for aerospace and industrial applications with wall-plug efficiencies in the range 20 to 25%, and with beam parameter products in the range 0.5 to 100 mm.mrad (corresponding to M2 = 1.5 to 300) tailored to application requirements. At power levels in the 1 - 200 W range, SPI"s proprietary cladding-pumping technology, GTWaveTM, has been employed to produce completely fiber-integrated systems using single-emitter broad-stripe multimode pump diodes. This modular construction enables an agile and flexible approach to the configuration of a range of fiber laser / amplifier systems for operation in the 1080nm and 1550nm wavelength ranges. Reliability modeling is applied to determine Systems martins such that performance specifications are robustly met throughout the designed product lifetime. An extensive Qualification and Reliability-proving programme is underway to qualify the technology building blocks that are utilized for the fiber laser cavity, pump modules, pump-driver systems and thermo-mechanical management. In addition to the CW products, pulsed fiber lasers with pulse energies exceeding 1mJ with peak pulse

  17. High power laser workover and completion tools and systems

    SciTech Connect

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-10-28

    Workover and completion systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser workover and completion of a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform laser workover and completion operations in such boreholes deep within the earth.

  18. Development of High Power Lasers for Materials Interactions

    SciTech Connect

    Hackel, L A

    2003-04-11

    The Lawrence Livermore National Laboratory (LLNL) has a long history of developing high power lasers for use in basic science and applications. The Laser Science and Technology Program (LS&T) at LLNL supports advanced lasers and optics development both for the National Ignition Facility (NIF) as well as for high power lasers and optics technology for a broader range of government, military and industrial applications. The NIF laser is currently under construction with the first of the 192 beamlines being activated. When finished NIF will have an output energy of 2 MJ at 351 nm. This system will be used for studies of high energy density physics, equation of state and inertial confinement fusion. It is now generally acknowledged that the future of laser missile defense lies with solid state lasers. The leading laser technology for theater missile defense is under development within the LS&T and funded by the US Army SMDC. This high average power technology is based on a solid state laser operated in a heat capacity mode. In the concept the heat producing lasing cycle is separated in time from the cooling cycle thus reducing thermal gradients and allowing significantly greater average output power. Under the current program, an LLNL developed laser has achieved a record setting 13 kW of average power in 20 second duration bursts. We have also performed target lethality experiments showing a previously unrecognized advantage of a pulsed laser format. The LLNL work is now focused on achieving improved output beam quality and in developing a 100 kW output with diode pumping of a large aperture crystal gain medium on a compact mobile platform. The Short Pulse Laser Group of LS&T has been developing high power short pulse laser systems for a number of applications. Of great importance is petawatt (10{sup 12} Watt) and greater power output to support experiments on the NIF. We are developing a system of 5 M class output and 5 to 10 ps pulse duration for generating intense

  19. High-power, high-intensity laser propagation and interactions

    SciTech Connect

    Sprangle, Phillip; Hafizi, Bahman

    2014-05-15

    This paper presents overviews of a number of processes and applications associated with high-power, high-intensity lasers, and their interactions. These processes and applications include: free electron lasers, backward Raman amplification, atmospheric propagation of laser pulses, laser driven acceleration, atmospheric lasing, and remote detection of radioactivity. The interrelated physical mechanisms in the various processes are discussed.

  20. High-Power COIL and YAG Laser Welding

    DTIC Science & Technology

    2002-01-24

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012387 TITLE: High-Power COIL and YAG Laser Welding DISTRIBUTION...ADP012376 thru ADP012405 UNCLASSIFIED High-power COIL and YAG laser welding Fumio Wani, Tokuhiro Nakabayashi, Akiyoshi Hayakawa, Sachio Suzuki, and...is worse, but it has the function of pulse modulation which the COIL dose not have. As a result of the welding test with the 6 kW Nd:YAG laser, it

  1. High power laser downhole cutting tools and systems

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  2. High Power Fiber Lasers and Applications to Manufacturing

    NASA Astrophysics Data System (ADS)

    Richardson, Martin; McComb, Timothy; Sudesh, Vikas

    2008-09-01

    We summarize recent developments in high power fiber laser technologies and discuss future trends, particularly in their current and future use in manufacturing technologies. We will also describe our current research programs in fiber laser development, ultra-fast and new lasers, and will mention the expectations in these areas for the new Townes Laser Institute. It will focus on new core laser technologies and their applications in medical technologies, advanced manufacturing technologies and defense applications. We will describe a program on large mode area fiber development that includes results with the new gain-guiding approach, as well as high power infra-red fiber lasers. We will review the opportunities for high power fiber lasers in various manufacturing technologies and illustrate this with applications we are pursuing in the areas of femtosecond laser applications, advanced lithographies, and mid-IR technologies.

  3. Robotics For High Power Laser Beam Manipulation

    NASA Astrophysics Data System (ADS)

    Watson, Henry E.

    1989-03-01

    The research and development programs in manufacturing science at The Pennsylvania State University have a major emphasis on laser materials processing technology development. A major thrust of this program is the development of an intelligent robotic system which can manipulate a laser beam in three dimension with the precision required for welding. The robot is called LARS for Laser Articulated Robotic System. A gantry based robot was selected as the foundation for LARS and the system is divided into five major subsystems: robot, electronic control, vision, workhead, beam transport, and software. An overview of the Laser Robotics program including laser materials processing research programs will be provided.

  4. High-power air-cooled SiC-clad Nd:YVO4 slab lasers.

    PubMed

    Zhang, Rui; Niu, Jinfu; Xu, Jianqiu; Xu, Jingzhong

    2011-05-15

    We demonstrate a diode-pumped, air-cooled, 100 W class SiC-clad Nd:YVO(4) active slab laser based on diffusion bonding of two SiC plates to a thin Nd:YVO(4) slab. We obtained 83 W of cw output power with a slope efficiency of 27% without water cooling. This demonstration initiates a novel (to the best of our knowledge) cooling design for efficient removal of waste heat generated from the diode edge-pumped high-power slab laser at room temperature.

  5. Propagation and focusing properties of high-power laser beams

    NASA Astrophysics Data System (ADS)

    Lu, Baida; Bin, Zhang

    1996-11-01

    In This paper, on the basis of the generalized Huygens- Fresnel diffraction integral and by using the statistical- optics model of high-power lasers presented by Manes and Simmons at LLNL, the propagation and focusing properties of high-power lasers with amplitude modulations (AMs) and phase fluctuations (PFs) have been studied in detail. Numerical calculations for the apertured case have been performed, showing the dependence of focused field characteristics on the truncation parameter, Fresnel number of the system, phase fluctuations and amplitude modulations of high-power laser beams.

  6. System and method for high power diode based additive manufacturing

    DOEpatents

    El-Dasher, Bassem S.; Bayramian, Andrew; Demuth, James A.; Farmer, Joseph C.; Torres, Sharon G.

    2016-04-12

    A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array.

  7. Pulsed operation of high-power light emitting diodes for imaging flow velocimetry

    NASA Astrophysics Data System (ADS)

    Willert, C.; Stasicki, B.; Klinner, J.; Moessner, S.

    2010-07-01

    High-powered light emitting diodes (LED) are investigated for possible uses as light sources in flow diagnostics, in particular, as an alternative to laser-based illumination in particle imaging flow velocimetry in side-scatter imaging arrangements. Recent developments in solid state illumination resulted in mass-produced LEDs that provide average radiant power in excess of 10 W. By operating these LEDs with short duration, pulsed currents that are considerably beyond their continuous current damage threshold, light pulses can be generated that are sufficient to illuminate and image micron-sized particles in flow velocimetry. Time-resolved PIV measurements in water at a framing rate of 2kHz are presented. The feasibility of LED-based PIV measurements in air is also demonstrated.

  8. High power femtosecond lasers at ELI-NP

    SciTech Connect

    Dabu, Razvan

    2015-02-24

    Specifications of the high power laser system (HPLS) designed for nuclear physics experiments are presented. Configuration of the 2 × 10 PW femtosecond laser system is described. In order to reach the required laser beam parameters, advanced laser techniques are proposed for the HPLS: parametric amplification and cross-polarized wave generation for the intensity contrast improvement and spectral broadening, acousto-optic programmable filters to compensate for spectral phase dispersion, optical filters for spectrum management, combined methods for transversal laser suppression.

  9. Rapid heating of matter using high power lasers

    SciTech Connect

    Bang, Woosuk

    2016-04-08

    This slide presentation describes motivation (uniform and rapid heating of a target, opportunity to study warm dense matter, study of nuclear fusion reactions), rapid heating of matter with intense laser-driven ion beams, visualization of the expanding warm dense gold and diamond, and nuclear fusion experiments using high power lasers (direct heating of deuterium spheres (radius ~ 10nm) with an intense laser pulse.

  10. Lifetime of high-power GaAs photoconductive semiconductor switch triggered by laser of different power density

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Wang, Wei; Shen, Yi; Shi, Jinshui; Zhang, Linwen; Xia, Liansheng

    2015-02-01

    Conduction modes of GaAs photoconductive semiconductor switch (PCSS) and their conditions are expounded. Laser diode and high-power picosecond Nd:YAG lasers are used as triggers for nonlinear mode and quasi-linear mode respectively in high-power conduction experiment. GaAs PCSS`s failure mechanisms and factors influencing lifetime in both modes are analyzed. It is found that the power density of laser at trigger time determines in which mode GaAs PCSS operates. Low-power laser triggers a nonlinear mode conduction in which GaAs PCSS`s lifetime is only 103, while high-power laser triggers a quasi-linear mode conduction in which GaAs PCSS`s lifetime is up to 105. According to the findings, the compact high-power pulsed power system based on mass of GaAs PCSSs demands for miniature high-power laser generators.

  11. Overview on the high power excimer laser technology

    NASA Astrophysics Data System (ADS)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  12. High-power disk and fiber lasers: a performance comparison

    NASA Astrophysics Data System (ADS)

    Ruppik, Stefan; Becker, Frank; Grundmann, Frank-Peter; Rath, Wolfram; Hefter, Ulrich

    2012-03-01

    The Performance of High Power Disk Lasers and Fiber Lasers along with their rapid development to the high power cw regime have been of great interest throughout the last decade. Both technologies are still in the focus of several conferences, workshops, and papers and represent the "state-of-the-art" of industrial high power solid state lasers for material processing. As both laser concepts are considered to be the leading 1 μm light-source, this presentation presents an objective and fair comparison of the two different technologies from a manufacturer who pursued both. From the geometry of the active material, through the resonator design, cooling regime, and pumping method to the point of beam quality and power scaling, the different approaches associated with the advantages, challenge and limits of each technology will be discussed. Based on ROFIN's substantial industrial experience with both laser concepts, an outlook into future trends and chances, especially linked to fiber laser, will be given.

  13. Diode laser potential in laser cleaning of stones

    NASA Astrophysics Data System (ADS)

    Salimbeni, Renzo; Pini, Roberto; Siano, Salvatore; Bachmann, Friedrich G.; Meyer, Frank

    2001-10-01

    In this work we investigated for the first time the laser cleaning process of encrusted stones by employing a high power diode laser system. The test have been carried out using a Rofin-Sinar mod. DL025S emitting up to 2.5 kW CW power to clean various samples representing natural encrustation by pollution exposition and graffiti, typically encountered on historical monuments and buildings in urban environment.

  14. Zr/oxidized diamond interface for high power Schottky diodes

    SciTech Connect

    Traoré, A. Muret, P.; Fiori, A.; Eon, D.; Gheeraert, E.; Pernot, J.

    2014-02-03

    High forward current density of 10{sup 3} A/cm{sup 2} (at 6 V) and a breakdown field larger than 7.7 MV/cm for diamond diodes with a pseudo-vertical architecture, are demonstrated. The power figure of merit is above 244 MW/cm{sup 2} and the relative standard deviation of the reverse current density over 83 diodes is 10% with a mean value of 10{sup −9} A/cm{sup 2}. These results are obtained with zirconium as Schottky contacts on the oxygenated (100) oriented surface of a stack comprising an optimized lightly boron doped diamond layer on a heavily boron doped one, epitaxially grown on a Ib substrate. The origin of such performances are discussed.

  15. High-power lasers for directed-energy applications.

    PubMed

    Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard

    2015-11-01

    In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers.

  16. XUV Preionization Effects in High Power Magnetically Insulated Diodes

    DTIC Science & Technology

    1985-06-01

    small electron fraction lost to the anode are used to initiate a surface flashover of the dielectric filled grooves, forming the anode plasma from...intense (30- 50 kW/cm 2 ) XUV illumination system. Pre-forming both the anode and vacuum feed surface plasmas appears necessary to substantially... surface desorption and photoionization by an intense XUV pulse has been shown to dramatically Improve a vacuum diode impedance history. The 6- Terawatt

  17. Beam Stop For High-Power Lasers

    NASA Technical Reports Server (NTRS)

    Mcdermid, Iain S.; Williamson, William B.

    1990-01-01

    Graphite/aluminum plate absorbs most of light. Beam stop fits on standard optical mounting fixture. Graphite plate thick enough to absorb incident laser beam but thin enough to transfer heat quickly to heat sink. Device used for variety of blocking purposes. For example, blocks laser beam after it passes through experimental setup, or at each stage of setup so stages checked and tested in sequence. Negligible reflectance of device is valuable safety feature, protecting both users and equipment from reflections.

  18. High power, electrically tunable quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Slivken, Steven; Razeghi, Manijeh

    2016-02-01

    Mid-infrared laser sources (3-14 μm wavelengths) which have wide spectral coverage and high output power are attractive for many applications. This spectral range contains unique absorption fingerprints of most molecules, including toxins, explosives, and nerve agents. Infrared spectroscopy can also be used to detect important biomarkers, which can be used for medical diagnostics by means of breath analysis. The challenge is to produce a broadband midinfrared source which is small, lightweight, robust, and inexpensive. We are currently investigating monolithic solutions using quantum cascade lasers. A wide gain bandwidth is not sufficient to make an ideal spectroscopy source. Single mode output with rapid tuning is desirable. For dynamic wavelength selection, our group is developing multi-section laser geometries with wide electrical tuning (hundreds of cm-1). These devices are roughly the same size as a traditional quantum cascade lasers, but tuning is accomplished without any external optical components. When combined with suitable amplifiers, these lasers are capable of multi-Watt single mode output powers. This manuscript will describe our current research efforts and the potential for high performance, broadband electrical tuning with the quantum cascade laser.

  19. Innovative Facet Passivation for High-Brightness Laser Diodes

    DTIC Science & Technology

    2016-02-05

    Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 high-power laser diodes, catastrophic optical damage, high energy lasers REPORT...factor bar) desired for military high energy lasers (HELs). COD of the front facet (laser mirror) is the main failure mechanism that constrains scaling... energy lasers (HELs). COD of the front facet (laser mirror) is the main failure mechanism that constrains scaling LD power by 10X over the SOA to 600 W

  20. High power parallel ultrashort pulse laser processing

    NASA Astrophysics Data System (ADS)

    Gillner, Arnold; Gretzki, Patrick; Büsing, Lasse

    2016-03-01

    The class of ultra-short-pulse (USP) laser sources are used, whenever high precession and high quality material processing is demanded. These laser sources deliver pulse duration in the range of ps to fs and are characterized with high peak intensities leading to a direct vaporization of the material with a minimum thermal damage. With the availability of industrial laser source with an average power of up to 1000W, the main challenge consist of the effective energy distribution and disposition. Using lasers with high repetition rates in the MHz region can cause thermal issues like overheating, melt production and low ablation quality. In this paper, we will discuss different approaches for multibeam processing for utilization of high pulse energies. The combination of diffractive optics and conventional galvometer scanner can be used for high throughput laser ablation, but are limited in the optical qualities. We will show which applications can benefit from this hybrid optic and which improvements in productivity are expected. In addition, the optical limitations of the system will be compiled, in order to evaluate the suitability of this approach for any given application.

  1. Generation of doughnut spot for high-power laser technologies using refractive beam shaping

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2015-03-01

    Doughnut and inverse-Gauss intensity distributions of laser spot are required in laser technologies like welding, cladding where high power fiber coupled diode or solid-state lasers as well as fiber lasers are used. In comparison to Gaussian and flat-top distributions the doughnut and inverse-Gauss profiles provide more uniform temperature distribution on a work piece - this improves the technology, increase stability of processes and efficiency of using the laser energy, reduce the heat affected zone (HAZ). This type of beam shaping has become frequently asked by users of multimode lasers, especially multimode fiber coupled diode lasers. Refractive field mapping beam shapers are applied as one of solutions for the task to manipulate intensity distribution of multimode lasers. The operation principle of these devices presumes almost lossless transformation of laser beam irradiance from Gaussian to flat-top, doughnut or inverse-Gauss through controlled wavefront manipulation inside a beam shaper using lenses with smooth optical surfaces. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying with high-power multimode lasers. Examples of real implementations and experimental results will be presented as well.

  2. High power laser and cathode structure thereof

    SciTech Connect

    Nam, K. H.; Seguin, H. J.; Tulip, J.

    1981-09-08

    A cathode structure for gas lasers is disclosed that is comprised of a flat plate of non-conducting material positioned in the laser in spaced relation to the laser anode to define a discharge region therebetween, a two-dimensional array of metal sub-electrode rods passing through the plate and having their upper ends lying flush with the surface of the plate, a block of dielectric material positioned below the plate and containing a series of transverse channels therein, electric current conductors lying in the channels and adapted for connection to a power supply, the lower ends of the said rods passing through openings in the block into the channels to define a predetermined uniform gap between the ends of the rods and the electrical conductor, and a liquid electrolyte solution filling the channels and electrically connecting the sub-electrode rods and the conductors.

  3. Laser diode technology and applications V; Proceedings of the Meeting, Los Angeles, CA, Jan. 18-20, 1993

    NASA Astrophysics Data System (ADS)

    Renner, Daniel

    Various papers on laser diode technology and its applications are presented. The general topics addressed include: high-power coherent large-aperture sources, vertical-cavity lasers, quantum-well lasers, semiconductor laser reliability, high-power semiconductor lasers, surface-emitting lasers, laser dynamics, and visible and midinfrared semiconductor lasers.

  4. MOVPE growth of laser structures for high-power applications at different ambient temperatures

    NASA Astrophysics Data System (ADS)

    Bugge, F.; Crump, P.; Frevert, C.; Knigge, S.; Wenzel, H.; Erbert, G.; Weyers, M.

    2016-10-01

    Laser structures for different operating temperatures were developed. Higher temperatures need an increase in barrier height to reduce carrier leakage. Best results for an emission wavelength of ≈800 nm were obtained using an asymmetric structure containing an n-InGaP and a p-Al0.5Ga0.5As waveguide. Such structures show 10 W output power for a single laser diode and >100 W for a laser bar at 50 °C ambient temperature and also a good aging behavior. Lower operating temperatures permit lower barrier heights which results in a lower series resistance and therefore higher conversion efficiency at high power. Carrier concentration and mobility for different AlxGa1-xAs compositions were estimated in dependence on temperature. An optimized structure reached 20 W for a single laser diode and 2 kW for a laser bar in QCW mode at -70 °C.

  5. Atmospheric propagation and combining of high-power lasers.

    PubMed

    Nelson, W; Sprangle, P; Davis, C C

    2016-03-01

    In this paper, we analyze beam combining and atmospheric propagation of high-power lasers for directed-energy (DE) applications. The large linewidths inherent in high-power fiber and slab lasers cause random phase and intensity fluctuations that occur on subnanosecond time scales. Coherently combining these high-power lasers would involve instruments capable of precise phase control and operation at rates greater than ∼10  GHz. To the best of our knowledge, this technology does not currently exist. This presents a challenging problem when attempting to phase lock high-power lasers that is not encountered when phase locking low-power lasers, for example, at milliwatt power levels. Regardless, we demonstrate that even if instruments are developed that can precisely control the phase of high-power lasers, coherent combining is problematic for DE applications. The dephasing effects of atmospheric turbulence typically encountered in DE applications will degrade the coherent properties of the beam before it reaches the target. Through simulations, we find that coherent beam combining in moderate turbulence and over multikilometer propagation distances has little advantage over incoherent combining. Additionally, in cases of strong turbulence and multikilometer propagation ranges, we find nearly indistinguishable intensity profiles and virtually no difference in the energy on the target between coherently and incoherently combined laser beams. Consequently, we find that coherent beam combining at the transmitter plane is ineffective under typical atmospheric conditions.

  6. Method and apparatus for tuning high power lasers

    DOEpatents

    Hutchinson, Donald P.; Vandersluis, Kenneth L.

    1977-04-19

    This invention relates to high power gas lasers that are adapted to be tuned to a desired lasing wavelength through the use of a gas cell to lower the gain at a natural lasing wavelength and "seeding" the laser with a beam from a low power laser which is lasing at the desired wavelength. This tuning is accomplished with no loss of power and produces a pulse with an altered pulse shape. It is potentially applicable to all gas lasers.

  7. Simulation of High Power Lasers (Preprint)

    DTIC Science & Technology

    2010-06-01

    product of laser power. 5. References 1 Wilcox, D. C, Turbulence Modeling for CFD, DCW Industries, Inc. pp. 185-193, July 1998. 2 Menter, F. L...Modeling for CFD, DCW Industries, Inc. pp. 294-296, July 1998. 4 Perram, G. P, .Int. J. Chem. Kinet. 27, 817-28 (1995). 5 Madden, T. J. and Solomon

  8. High-power laser source evaluation

    SciTech Connect

    Back, C.A.; Decker, C.D.; Dipeso, G.J.; Gerassimenko, M.; Managan, R.A.; Serduke, F.J.D.; Simonson, G.F.; Suter, L.J.

    1997-07-01

    This document reports progress in these areas: EXPERIMENTAL RESULTS FROM NOVA: TAMPED XENON UNDERDENSE X-RAY EMITTERS; MODELING MULTI-KEV RADIATION PRODUCTION OF XENON-FILLED BERYLLIUM CANS; MAPPING A CALCULATION FROM LASNEX TO CALE; HOT X RAYS FROM SEEDED NIF CAPSULES; HOHLRAUM DEBRIS MEASUREMENTS AT NOVA; FOAM AND STRUCTURAL RESPONSE CALCULATIONS FOR NIF NEUTRON EXPOSURE SAMPLE CASE ASSEMBLY DESIGN; NON-IGNITION X-RAY SOURCE FLUENCE-AREA PRODUCTS FOR NUCLEAR EFFECTS TESTING ON NIF. Also appended are reprints of two papers. The first is on the subject of ``X-Ray Production in Laser-Heated Xe Gas Targets.`` The second is on ``Efficient Production and Applications of 2- to 10-keV X Rays by Laser-Heated Underdense Radiators.``

  9. Irradiance analyzer for high power lasers

    SciTech Connect

    Conrad, R.W.

    1981-04-07

    An irradiance analysis system which includes an array of square rods that are joined together and have a flat entrance end and a polished flat exit end through which visible light is transmitted to a fresnel lens and focused to a particular area where the image focused is photographed so that when the various frames are developed they can be analyzed in a conventional film densitometer to yield quantative data on the temporal variation of laser beam irradiance distributions.

  10. Germanate Glass Fiber Lasers for High Power

    DTIC Science & Technology

    2016-01-04

    germanate based glasses with a specific focus on glass stability during thermal- cycling which is representative of the steps required to fabricate a doped...evidence of crystallisation after thermal cycling , and is of a low enough loss to realize a fiber laser. The glass stability is demonstrated by...specific focus on glass stability during thermal- cycling which is representative of the steps required to fabricate a doped micro-structured germanate

  11. Improved Spatial Filter for high power Lasers

    SciTech Connect

    Estabrook, Kent G.; Celliers, Peter M.; Murray, James E.; DaSilva, Luiz; MacGowan, Brian J.; Rubenchik, Alexander M.; Manes, Kenneth R.; Drake, Robert P.; Afeyan, Bedros

    1998-06-01

    A new pinhole architecture incorporates features intended to reduce the rate of plasma generation in a spatial filter for high-energy laser pulse beams. An elongated pinhole aperture is provided in an apertured body for rejecting off-axis rays of the laser pulse beam. The internal surface of the elongated aperture has a diameter which progressively tapers from a larger entrance cross-sectional area at an inlet to a smaller output cross-sectional area at an outlet. The tapered internal surface causes off-axis rays to be refracted in a low density plasma layer that forms on the internal surface or specularly reflected at grazing incidence from the internal surface. Off-axis rays of the high-energy pulse beam are rejected by this design. The external surface of the apertured body adjacent to the larger entrance cross-sectional area at the inlet to the elongated aperture is angled obliquely with respect to the to direction of the path of the high-energy laser pulse beam to backscatter off-axis rays away from the high-energy pulse beam. The aperture is formed as a truncated cone or alternatively with a tapered square cross-section. The internal surface of the aperture is coated with an ablative material, preferably high-density material which can be deposited with an exploding wire.

  12. CHRONICLE: International forum on advanced high-power lasers and applications (AHPLA '99)

    NASA Astrophysics Data System (ADS)

    Afanas'ev, Yurii V.; Zavestovskaya, I. N.; Zvorykin, V. D.; Ionin, Andrei A.; Senatsky, Yu V.; Starodub, Aleksandr N.

    2000-05-01

    A review of reports made on the International Forum on Advanced High-Power Lasers and Applications, which was held at the beginning of November 1999 in Osaka (Japan), is presented. Five conferences were held during the forum on High-Power Laser Ablation, High-Power Lasers in Energy Engineering, High-Power Lasers in Civil Engineering and Architecture, High-Power Lasers in Manufacturing, and Advanced High-Power Lasers. The following trends in the field of high-power lasers and their applications were presented: laser fusion, laser applications in space, laser-triggered lightning, laser ablation of materials by short and ultrashort pulses, application of high-power lasers in manufacturing, application of high-power lasers in mining, laser decommissioning and decontamination of nuclear reactors, high-power solid-state and gas lasers, x-ray and free-electron lasers. One can find complete information on the forum in SPIE, vols. 3885-3889.

  13. Overview of the NASA high power laser program

    NASA Technical Reports Server (NTRS)

    Lundholm, J. G.

    1976-01-01

    The overall objectives of the NASA High Power Laser Program are reviewed along with their structure and center responsibilities. Present and future funding, laser power transmission in space, selected program highlights, the research and technology schedule, and the expected pace of the program are briefly considered.

  14. Device for wavefront correction in an ultra high power laser

    DOEpatents

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2002-01-01

    A system for wavefront correction in an ultra high power laser. As the laser medium flows past the optical excitation source and the fluid warms its index of refraction changes creating an optical wedge. A system is provided for correcting the thermally induced optical phase errors.

  15. Stretchers and compressors for ultra-high power laser systems

    SciTech Connect

    Yakovlev, I V

    2014-05-30

    This review is concerned with pulse stretchers and compressors as key components of ultra-high power laser facilities that take advantage of chirped-pulse amplification. The potentialities, characteristics, configurations and methods for the matching and alignment of these devices are examined, with particular attention to the history of the optics of ultra-short, ultra-intense pulses before and after 1985, when the chirped-pulse amplification method was proposed, which drastically changed the view of the feasibility of creating ultra-high power laser sources. The review is intended primarily for young scientists and experts who begin to address the amplification and compression of chirped pulses, experts in laser optics and all who are interested in scientific achievements in the field of ultra-high power laser systems. (review)

  16. High-power laser source evaluation

    SciTech Connect

    Back, C. A.; Decker, C. D.; Davis, J. F.; Dixit, S.; Grun, J.; Managan, R. A.; Serduke, F. J. D.; Simonson, G. F.; Suter, L. J.; Wuest, C. R.; Ze, F.

    1998-07-01

    Robust Nuclear-Weapons-Effects Testing (NWET) capability will be needed for the foreseeable future to ensure the performance and reliability, in nuclear environments, of the evolving U.S. stockpile of weapons and other assets. Ongoing research on the use of high-energy lasers to generate environments of utility in nuclear weapon radiation effects simulations is addressed in the work described in this report. Laser-driven hohlraums and a variety of other targets have been considered in an effort to develop NWET capability of the highest possible fidelity in above-ground experiments. The envelope of large-system test needs is shown as the gray region in fig. 1. It does not represent the spectrum of any device; it is just the envelope of the spectral region of outputs from a number of possible devices. It is a goal of our laser-only and ignition-capsule source development work to generate x rays that fall somewhere in this envelope. One of the earlier appearances of this envelope is in ref. 1. The Defense Special Weapons Agency provided important support for the work described herein. A total of $520K was provided in the 1997 IACROs 97-3022 for Source Development and 97-3048 for Facilitization. The period of performance specified in the Statement of Work ran from 28 February 1997 until 30 November 1997. This period was extended, by agreement with DSWA, for two reasons: 1) despite the stated period of performance, funds were not available at LLNL to begin this work until somewhat later in the fiscal year, and 2) we agreed to stretch the current resources until follow-on funds were in hand, to minimize effects of ramping down and up again. The tasks addressed in this report are the following: 1) Non-ignition-source model benchmarking and design. This involves analysis of existing and new data on laser-only sources to benchmark LASNEX predictions 2) Non-ignition-source development experiments 3) Ignition capsule design to improve total x-ray output and simplify target

  17. High power solid state laser modulator

    DOEpatents

    Birx, Daniel L.; Ball, Don G.; Cook, Edward G.

    2004-04-27

    A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.

  18. Frequency narrowing of a 25 W broad area diode laser

    NASA Astrophysics Data System (ADS)

    Sell, J. F.; Miller, W.; Wright, D.; Zhdanov, B. V.; Knize, R. J.

    2009-02-01

    We report on the spectral narrowing of a high powered (25 W) broad area diode laser using an external cavity with a holographic diffraction grating. In a Littman-Metcalf configuration, the external cavity is able to reduce the linewidth of the diode laser to primarily a single longitudinal mode (1.8 MHz) for output powers of ≤10 W at 852 nm. Many physics applications could benefit from such high powered, narrow linewidth lasers; however both the frequency stability and the spatial profile of the output beam show room for improvement.

  19. Recent development on high-power tandem-pumped fiber laser

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Xiao, Hu; Leng, Jinyong; Zhang, Hanwei; Xu, Jiangmin; Wu, Jian

    2016-11-01

    High power fiber laser is attracting more and more attention due to its advantage in excellent beam quality, high electricto- optical conversion efficiency and compact system configuration. Power scaling of fiber laser is challenged by the brightness of pump source, nonlinear effect, modal instability and so on. Pumping active fiber by using high-brightness fiber laser instead of common laser diode may be the solution for the brightness limitation. In this paper, we will present the recent development of various kinds of high power fiber laser based on tandem pumping scheme. According to the absorption property of Ytterbium-doped fiber, Thulium-doped fiber and Holmium-doped fiber, we have theoretically studied the fiber lasers that operate at 1018 nm, 1178 nm and 1150 nm, respectively in detail. Consequently, according to the numerical results we have optimized the fiber laser system design, and we have achieved (1) 500 watt level 1018nm Ytterbium-doped fiber laser (2) 100 watt level 1150 nm fiber laser and 100 watt level random fiber laser (3) 30 watt 1178 nm Ytterbium-doped fiber laser, 200 watt-level random fiber laser. All of the above-mentioned are the record power for the corresponded type of fiber laser to the best of our knowledge. By using the high-brightness fiber laser operate at 1018 nm, 1178 nm and 1150 nm that we have developed, we have achieved the following high power fiber laser (1) 3.5 kW 1090 nm Ytterbium-doped fiber amplifier (2) 100 watt level Thulium-doped fiber laser and (3) 50 watt level Holmium -doped fiber laser.

  20. Large-area high-power VCSEL pump arrays optimized for high-energy lasers

    NASA Astrophysics Data System (ADS)

    Wang, Chad; Geske, Jonathan; Garrett, Henry; Cardellino, Terri; Talantov, Fedor; Berdin, Glen; Millenheft, David; Renner, Daniel; Klemer, Daniel

    2012-06-01

    Practical, large-area, high-power diode pumps for one micron (Nd, Yb) as well as eye-safer wavelengths (Er, Tm, Ho) are critical to the success of any high energy diode pumped solid state laser. Diode efficiency, brightness, availability and cost will determine how realizable a fielded high energy diode pumped solid state laser will be. 2-D Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are uniquely positioned to meet these requirements because of their unique properties, such as low divergence circular output beams, reduced wavelength drift with temperature, scalability to large 2-D arrays through low-cost and high-volume semiconductor photolithographic processes, high reliability, no catastrophic optical damage failure, and radiation and vacuum operation tolerance. Data will be presented on the status of FLIR-EOC's VCSEL pump arrays. Analysis of the key aspects of electrical, thermal and mechanical design that are critical to the design of a VCSEL pump array to achieve high power efficient array performance will be presented.

  1. Phosphate glass useful in high power lasers

    DOEpatents

    Hayden, Joseph S.; Sapak, David L.; Ward, Julia M.

    1990-01-01

    A low- or no-silica phosphate glass useful as a laser medium and having a high thermal conductivity, K.sub.90.degree. C. >0.8 W/mK, and a low coefficient of thermal expansion, .alpha..sub.20.degree.-40.degree. C. <80.times.10.sup.-7 /.degree.C., consists essentially of (on a batch composition basis): the amounts of Li.sub.2 O and Na.sub.2 O providing an average alkali metal ionic radius sufficiently low whereby said glass has K.sub.90.degree. C. >0.8 W/mK and .alpha..sub.20.degree.-40.degree. C. <80.times.10.sup.-7 /.degree.C., and wherein, when the batch composition is melted in contact with a silica-containing surface, the final glass composition contains at most about 3.5 mole % of additional silica derived from such contact during melting. The Nd.sub.2 O.sub.3 can be replaced by other lasing species.

  2. High power induction free electron laser

    NASA Astrophysics Data System (ADS)

    Miller, John L.

    1988-12-01

    Free electron laser (FEL) amplifiers driven by linear induction accelerators have considerable potential for scaling to high average powers. The high electron beam current produces large single pass gain and extraction efficiency, resulting in high peak power. The pulse repetition frequency scaling is limited primarily by accelerator and pulsed power technology. Two FEL experiments have been performed by the Beam Research Program at the Lawrence Livermore National Laboratory (LLNL): The ELF experiment used the 3.5-MeV beam from the Experimental Test Accelerator (ETA) and operated at a wavelength of 8.6 mm. This device achieved an overall single-pass gain of 45 dB, an output power of 1.5 GW, and an extraction efficiency of 35 percent. The microwave beam was confined in a waveguide in the 4-m-long wiggler. The PALADIN experiment uses the 45-MeV beam from the Advanced Test Accelerator and operates at a wavelength of 10.6 micrometers. Using a 15-m long wiggler a single pass gain of 27 dB was produced. Gain guiding was observed to confine the amplified beam within a beam tube that had a Fresnel number less than 1. The results of these experiments have been successfully modeled using a three dimensional particle simulation code. The Program also has ongoing efforts to develop wiggler, pulsed power and induction linac technology. A focus of much of this work is the ETA-II accelerator, which incorporates magnetic pulse compression drivers. One application of ETA-II will be to drive a 1 mm wavelength FEL. The microwave output will be used for a plasma heating experiment.

  3. High Power Induction Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Miller, John L.

    1989-07-01

    Free electron laser (FEL) amplifiers driven by linear induction accelerators have considerable potential for scaling to high average powers. The high electron beam current produces large single pass gain and extraction efficiency, resulting in high peak power. The pulse repetition frequency scaling is limited primarily by accelerator and pulsed power technology. Two FEL experiments have been performed by the Beam Research Program at the Lawrence Livermore National Laboratory (LLNL): The ELF experiment used the 3.5-MeV beam from the Experimental Test Accelerator (ETA) and operated at a wavelength of 8.6 mm. This device achieved an overall single-pass gain of 45 dB, an output power of 1.5 GW, and an extraction efficiency of 35%. The microwave beam was confined in a waveguide in the 4-m-long wiggler. The PALADIN experiment uses the 45-MeV beam from the Advanced Test Accelerator and operates at a wavelength of 10.6 IA. Using a 15-m long wiggler a single pass gain of 27 dB was produced. Gain guiding was observed to confine the amplified beam within a beam tube that had a Fresnel number less than 1. The results of these expriments have been successfully modeled using a three dimensional particle simulation code. The Program also has ongoing efforts to develop wiggler, pulsed power and induction linac technology. A focus of much of this work is the ETA-II accelerator, which incorporates magnetic pulse compression drivers. One application of ETA-II will be to drive a 1 mm wavelength FEL. The microwave output will be used for a plasma heating experiment.

  4. Phosphate glass useful in high power lasers

    DOEpatents

    Hayden, J.S.; Sapak, D.L.; Ward, J.M.

    1990-05-29

    A low- or no-silica phosphate glass useful as a laser medium and having a high thermal conductivity, K[sub 90 C] > 0.8 W/mK, and a low coefficient of thermal expansion, [alpha][sub 20--40 C] < 80[times]10[sup [minus]7]/C, consists essentially of (on a batch composition basis Mole %): P[sub 2]O[sub 5], 45-70; Li[sub 2]O, 15-35; Na[sub 2]O, 0-10; Al[sub 2]O[sub 3], 10-15; Nd[sub 2]O[sub 3], 0.01-6; La[sub 2]O[sub 3], 0-6; SiO[sub 2], 0-8; B[sub 2]O[sub 3], 0-8; MgO, 0-18; CaO, 0-15; SrO, 0-9; BaO, 0-9; ZnO, 0-15; the amounts of Li[sub 2]O and Na[sub 2]O providing an average alkali metal ionic radius sufficiently low whereby said glass has K[sub 90 C] > 0.8 W/mK and [alpha][sub 20--40 C] < 80[times]10[sup [minus]7]/C, and wherein, when the batch composition is melted in contact with a silica-containing surface, the final glass composition contains at most about 3.5 mole % of additional silica derived from such contact during melting. The Nd[sub 2]O[sub 3] can be replaced by other lasing species. 3 figs.

  5. Modeling of high power laser interaction with metals

    NASA Astrophysics Data System (ADS)

    Mustafa, Kurt; Zahide, Demircioǧlu

    2017-02-01

    Laser matter interaction has been very popular subject from the first recognition of lasers. Laser application in industry or laboratory applications are based on definite interactions of the laser beam with the workpiece. In this paper, an effective model related with high power radiation interaction with metals is presented. In metals, Lorentz-Drude model is used calculate permeability theoretically. The plasma frequency was calculated at various temperatures and using the obtained results the refractive index of the metal (Ag) was investigated. The calculation result revealed that the effect of the temperature need to be considered at reflection and transmission of the laser beam.

  6. New diode wavelengths for pumping solid-state lasers

    SciTech Connect

    Skidmore, J.A.; Emanuel, M.A.; Beach, R.J.

    1995-01-01

    High-power laser-diode arrays have been demonstrated to be viable pump sources for solid-state lasers. The diode bars (fill factor of 0.7) were bonded to silicon microchannel heatsinks for high-average-power operation. Over 12 W of CW output power was achieved from a one cm AlGaInP tensile-strained single-quantum-well laser diode bar. At 690 nm, a compressively-strained single-quantum-well laser-diode array produced 360 W/cm{sup 2} per emitting aperture under CW operation, and 2.85 kW of pulsed power from a 3.8 cm{sup 2} emitting-aperture array. InGaAs strained single-quantum-well laser diodes emitting at 900 nm produced 2.8 kW pulsed power from a 4.4 cm{sup 2} emitting-aperture array.

  7. Transient Plasma Photonic Crystals for High-Power Lasers.

    PubMed

    Lehmann, G; Spatschek, K H

    2016-06-03

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  8. High power repetitive TEA CO2 pulsed laser

    NASA Astrophysics Data System (ADS)

    Yang, Guilong; Li, Dianjun; Xie, Jijiang; Zhang, Laiming; Chen, Fei; Guo, Jin; Guo, Lihong

    2012-07-01

    A high power repetitive spark-pin UV-preionized TEA CO2 laser system is presented. The discharge for generating laser pulses is controlled by a rotary spark switch and a high voltage pulsed trigger. Uniform glow discharge between two symmetrical Chang-electrodes is realized by using an auto-inversion circuit. A couple of high power axial-flow fans with the maximum wind speed of 80 m/s are used for gas exchange between the electrodes. At a repetitive operation, the maximum average output laser power of 10.4 kW 10.6 μm laser is obtained at 300 Hz, with an electro-optical conversion efficiency of 15.6%. At single pulsed operation, more pumping energy and higher gases pressures can be injected, and the maximum output laser energy of 53 J is achieved.

  9. High-resolution spectral mapping of a lensed high power laser bar

    NASA Astrophysics Data System (ADS)

    Gannon, Caleb D.; Koenning, Tobias; Patterson, Steve G.; Leisher, Paul O.

    2014-03-01

    Alkali gas lasers based on rubidium vapor have an extremely narrow absorption band (<0.01 nm at STP) at 780 nm. Diode-pumped alkali lasers (DPALs) require high-power diode arrays having emission spectra which are closely matched to this absorption peak. There are several methods which can be used for narrowing and stabilizing the output spectrum of a diode laser bar including external locking via a volumetric holographic grating (VHG). While this approach offers several advantages over internal stabilization techniques, the effect of pointing error arising from bar smile can be detrimental to the locked performance of the lensed array. In order to investigate the effect of smile on wavelength locking, a system capable of mapping the emission spectrum of the lensed diode laser bar was developed. The approach utilizes an imaging system and spatial filter to couple light from individual emitters of the lensed array into a commercial optical spectrum analyzer. This approach offers a larger dynamic range than traditional spectral mapping techniques, with a resolved signal to noise ratio in excess of 60 dB. Results from the characterization of a VHG-locked 780 nm laser bar array will be presented.

  10. High-power laser applications in Nippon Steel Corporation

    NASA Astrophysics Data System (ADS)

    Minamida, Katsuhiro

    2000-02-01

    The laser, which was invented in 1960, has been developed using various substances of solids, liquids, gases and semiconductors as laser active media. Applications of laser utilizing the coherent properties of laser light and the high power density light abound in many industries and in heavy industries respectively. The full-scale use of lasers in the steel industry began nearly 23 years ago with their applications as controllable light sources. Its contribution to the increase in efficiency and quality of the steel making process has been important and brought us the saving of the energy, the resource and the labor. Laser applications in the steel making process generally require high input energy, so it is essential to consider the interaction between the laser beam and the irradiated material. In particular, the reflectivity of the laser beam on the surface of material and the quantity of the laser-induced plasma are critical parameters for high efficient processes with low energy losses. We have developed plenty of new laser systems for the steel making process with their considerations in mind. A review of the following high-power-laser applications is given in the present paper: (1) Use of plasma as a secondary heat source in CO2 laser welding for connecting steel sheets of various grades. (2) Laser-assisted electric resistance welding of pipes. (3) New type all-laser-welded honeycomb panels for high-speed transport. (4) Laser flying welder for continuous hot rolling mill using two 45 kW CO2 lasers.

  11. Single-mode and high power waveguide lasers fabricated by ion-exchange.

    PubMed

    Della Valle, G; Festa, A; Sorbello, G; Ennser, K; Cassagnetes, C; Barbier, D; Taccheo, S

    2008-08-04

    We report on a single-end diode-pumped waveguide laser providing output power in excess of 20 mW with 17% slope efficiency in robust single longitudinal and transverse mode operation at 1533.5 nm. The active medium was an Er:Yb-doped waveguide only 9-mm long fabricated by Ag-Na ion-exchange in a phosphate glass. The overall cavity length including butt-coupled fiber-Bragg-grating mirrors was <60 mm. We also report on high power waveguide lasers providing more than 160 mW output power and 46% slope efficiency in multimode operation. Feasibility of high power single mode waveguide lasers based on ion-exchange technology in phosphate glasses is also experimentally investigated by using a 50-mm long active waveguide specially designed for efficient single-end pumping.

  12. Welding with High-power Lasers: Trends and Developments

    NASA Astrophysics Data System (ADS)

    Bachmann, M.; Gumenyuk, A.; Rethmeier, M.

    High-power laser beam welding became new stimuli within the last 10 years due to the availability of a new generation of high brightness multi kilowatt solid state lasers. In the welding research new approaches have been developed to establish reliable and praxis oriented welding processes meeting the demands of modern industrial applications during this time. The paper focuses on some of the current scientific and technological aspects in this research field like hybrid laser arc welding, simulation techniques, utilization of electromagnetic fields or reduced pressure environment for laser beam welding processes, which contributed to the further development of this technology or will play a crucial role in its further industrial implementation.

  13. High-Power Fiber Lasers for Directed-Energy Applications

    DTIC Science & Technology

    2008-01-01

    demonstrated in a moder- ately turbulent environment. HIgH-PowEr FIbEr LAsErs Although a number of companies manufacture high-power fiber lasers , IPG ...in approximately one year. Multi- kilowatt , single-mode fiber lasers are robust, compact, and have high wall- plug efficiency, random polarization...and large band- width (~0.1%). A 1 kW, single-mode IPG fiber laser module, operating at wavelength l = 1.075 μm, exclud- ing power supply, measures w

  14. High-power synchronously pumped femtosecond Raman fiber laser.

    PubMed

    Churin, D; Olson, J; Norwood, R A; Peyghambarian, N; Kieu, K

    2015-06-01

    We report a high-power synchronously pumped femtosecond Raman fiber laser operating in the normal dispersion regime. The Raman laser is pumped by a picosecond Yb(3+)-doped fiber laser. It produces highly chirped pulses with energy up to 18 nJ, average power of 0.76 W and 88% efficiency. The pulse duration is measured to be 147 fs after external compression. We observed two different regimes of operation of the laser: coherent and noise-like regime. Both regimes were experimentally characterized. Numerical simulations are in a good agreement with experimental results.

  15. Diode laser welding of aluminum to steel

    SciTech Connect

    Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica

    2011-05-04

    Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

  16. High-power continuous-wave mid-infrared radiation generated by difference frequency mixing of diode-laser-seeded fiber amplifiers and its application to dual-beam spectroscopy

    NASA Technical Reports Server (NTRS)

    Lancaster, D. G.; Richter, D.; Curl, R. F.; Tittel, F. K.; Goldberg, L.; Koplow, J.

    1999-01-01

    We report the generation of up to 0.7 mW of narrow-linewidth (<60-MHz) radiation at 3.3 micrometers by difference frequency mixing of a Nd:YAG-seeded 1.6-W Yb fiber amplifier and a 1.5-micrometers diode-laser-seeded 0.6-W Er/Yb fiber amplifier in periodically poled LiNbO3. A conversion efficiency of 0.09%/W (0.47 mWW-2 cm-1) was achieved. A room-air CH4 spectrum acquired with a compact 80-m multipass cell and a dual-beam spectroscopic configuration indicates an absorption sensitivity of +/-2.8 x 10(-5) (+/-1 sigma), corresponding to a sub-parts-in-10(9) (ppb) CH4 sensitivity (0.8 ppb).

  17. Enhanced vbasis laser diode package

    DOEpatents

    Deri, Robert J.; Chen, Diana; Bayramian, Andy; Freitas, Barry; Kotovsky, Jack

    2014-08-19

    A substrate having an upper surface and a lower surface is provided. The substrate includes a plurality of v-grooves formed in the upper surface. Each v-groove includes a first side and a second side perpendicular to the first side. A laser diode bar assembly is disposed within each of the v-grooves and attached to the first side. The laser diode bar assembly includes a first adhesion layer disposed on the first side of the v-groove, a metal plate attached to the first adhesion layer, a second adhesion layer disposed over the metal plate, and a laser diode bar attached to the second adhesion layer. The laser diode bar has a coefficient of thermal expansion (CTE) substantially similar to that of the metal plate.

  18. Diode laser welding of high yield steel

    NASA Astrophysics Data System (ADS)

    Lisiecki, Aleksander

    2013-01-01

    The following article describes results of investigations on influence of laser welding parameters on the weld shape, quality and mechanical properties of 2.5 mm thick butt joints of thermo-mechanically rolled, high yield strength steel for cold forming S420MC (according to EN 10149 - 3 and 060XLK according to ASTM) welded with high power diode laser HPDL ROFIN SINAR DL 020 with rectangular laser beam spot and 2.2 kW output power, and 808 nm wavelength. The investigations at the initial stage were focused on detailed analysis of influence of the basic laser welding parameters such as laser power and welding speed on the shape and quality of single bead produced during bead-on-plate welding. Then the optimal parameters were chosen for laser welding of 2.5 mm thick butt joints of the thermo-mechanically rolled, high yield strength steel sheets for cold forming S420MC. The test joints were prepared as single square groove and one-side laser welded without an additional material, at a flat position. Edges of steel sheets were melted in argon atmosphere by the laser beam focused on the top joint surface. The test welded joints were investigated by visual inspection, metallographic examinations, mechanical tests such as tensile tests and bending tests. It was found that the high power diode laser may be applied successfully for one-side welding of the S420MC steel butt joints. Additionally it was found that in the optimal range of laser welding parameters the high quality joint were produced.

  19. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    DOEpatents

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  20. Power semiconductor laser diode arrays characterization

    NASA Astrophysics Data System (ADS)

    Zeni, Luigi; Campopiano, Stefania; Cutolo, Antonello; D'Angelo, Giuseppe

    2003-09-01

    Nowadays, power semiconductor laser diode arrays are becoming a widespread source for a large variety of industrial applications. In particular, the availability of low-cost high-power laser diode arrays makes their use possible in the industrial context for material cutting, welding, diagnostics and processing. In the above applications, the exact control of the beam quality plays a very important role because it directly affects the reliability of the final result. In this paper, we present two different approaches useful for the characterization of the beam quality in laser diode arrays. The first one, starting from total intensity measurements on planes orthogonal to the beam propagation path, is able to deduce the working conditions of each laser setting up the array. The second one is aimed at the measurement of a global quality factor of the array itself; to this end, the empirical extension of the M2 concept to composite beams is presented along with some experimental results. As the first technique is especially intended for the non-destructive detection of design problems in the array itself and in the bias circuitry, the second one represents a powerful tool for the rapid on-line diagnostics of the laser beam during its use.

  1. Trace Detection with Diode Lasers

    NASA Astrophysics Data System (ADS)

    Fox, Richard W.

    1995-01-01

    Diode lasers were used to detect trace quantities of calcium, lead, chromium, cesium and rubidium. Extended -cavities were often employed for wavelength tuning and linewidth narrowing, and design considerations for the cavities are discussed. Calcium was detected under low pressure, Doppler-free conditions, and consequently the frequency stability of the laser's power spectrum was studied. The laser's frequency noise spectral density was measured and converted by calculation to the power spectrum. Examples of laser frequency noise densities with corresponding calculated power spectrums for free-running and frequency-locked conditions are given. An electronic feedback system to narrow a 657 nm wavelength diode laser's linewidth was constructed, and the resulting linewidth with respect to the locking cavity was measured to be approximately 500 Hz. Calcium atom concentrations of 0.35 x 10E-09 in water samples were measured by flame laser-enhanced ionization using a 423 nm wavelength frequency-doubled diode laser system. Analysis of the ionization signal and the noise was performed. Additional measurements of water samples with diode lasers demonstrated chromium detection at 25 x 10E-09, cesium at 0.25 x 10E -09, and rubidium at 0.25 x 10E-09. Lead was detected using a frequency-doubled diode system at a wavelength of 405 nm. The detection was by absorption from a metastable energy level; lead atoms in an argon vapor were excited into the metastable level by a radio-frequency discharge.

  2. Calibrated feedback for laser diodes

    SciTech Connect

    Howard, P.G.

    1986-04-22

    A method is described of calibrating the feedback output from the feedback light detector of the laser diode of an optical disk drive of a laser light pen which consists of mounting a first and a second resistor in a laser light pen; connecting the first resistor between the feedback light detector and ground; connecting the second resistor between the feedback light detector and a feedback output; operating the laser diode to produce a predetermined light power output; adjusting the resistance of the first resistor to produce a predetermined voltage at the feedback output; and adjusting the resistance of the second resistor to produce a predetermined impedance at the feedback output.

  3. Wavelength stabilized multi-kW diode laser systems

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  4. Reliability of high-power semiconductor laser arrays

    NASA Astrophysics Data System (ADS)

    Kung, Hsing H.; Craig, Richard R.; Zucker, Erik P.; Li, Benjamin; Scifres, Donald R.

    1992-10-01

    The reliability of continuously operating (cw) high power laser arrays is a critical factor for the acceptance of these devices in a wide range of applications. Extensive investigation into the reliability of semiconductor lasers has led to an improved understanding of failure mechanisms such as material defects, mirror damage and solder related failures as well as to methods which significantly suppress the occurrence of catastrophic failure. Furthermore, as a result of material quality improvements, laser arrays exhibit very low gradual degradation for high power operation up to 2 Watts cw. Long term lifetest data shows that the projected medium life at room temperature of such devices exceed 100,000 hours at 2 W cw.

  5. High power continuous-wave Alexandrite laser with green pump

    NASA Astrophysics Data System (ADS)

    Ghanbari, Shirin; Major, Arkady

    2016-07-01

    We report on a continuous-wave (CW) Alexandrite (Cr:BeAl2O4) laser, pumped by a high power green source at 532 nm with a diffraction limited beam. An output power of 2.6 W at 755 nm, a slope efficiency of 26%, and wavelength tunability of 85 nm have been achieved using 11 W of green pump. To the best of our knowledge, this is the highest CW output power of a high brightness laser pumped Alexandrite laser reported to date. The results obtained in this experiment can lead to the development of a high power tunable CW and ultrafast sources of the near-infrared or ultraviolet radiation through frequency conversion.

  6. High-power disordered Nd:CaYAlO(4)lasers at 1.08 microm.

    PubMed

    Yu, Haohai; Xu, Xiaodong; Li, Dongzhen; Wang, Zhengping; Xu, Jun

    2010-08-01

    We demonstrate the high-power laser performance with a disordered Na:CaYAlO(4) crystal at a wavelength of about 1.08microm. Continuous-wave output power of 5.16W is achieved with a laser diode as the pump source. For the first time to our knowledge, the passively Q-switched Na:CaYAlO(4) laser is obtained with the maximum average output power of 2.39W, shortest pulse width of 5.7ns, and highest peak power of 15.47kW. By spectral analysis, the Nd:CaAlO(4) laser wavelength is centered at about 1.08microm. We propose that, by suitable tuning, the Na:CaYAlO(4) laser should be an excellent source for helium optical pumping.

  7. High-Efficiency Diode-Pumped Rubidium Laser: Experimental Results (Preprint)

    DTIC Science & Technology

    2007-01-29

    Beach, V.K. Kanz, S.A. Payne, J.T. Early, “New Class of CW High-Power Diode Pumped Alkali Lasers (DPALs),” SPIE High-Power Laser Ablation V......2006). 7. Y. Wang, T. Kasamatsu, Y.Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, and H. Kan, “ Cesium Vapor Laser Pumped by

  8. Development of high-brightness high-power fiber laser pump sources

    NASA Astrophysics Data System (ADS)

    Priest, J. A.; Faircloth, Brian O.; Swint, Reuel B.; Coleman, James J.; Forbes, David V.; Zediker, Mark S.

    2004-06-01

    High power fiber lasers have strong potential for use in both commercial and military applications. Improved wall plug efficiency over Nd:YAG and CO2 lasers combined with up to a 10-fold improvement in beam quality, make fiber lasers extremely attractive for industrial applications such as welding and cutting. In military applications, fiber lasers offer a simplified logistic train, a deep magazine limited only by electric power, and a compact footprint, allowing theater defense and self-protection of combat platforms with speed of light engagement and flexible response. Commercial viability of these systems, however, is limited by the availability of compact, cost effective, and reliable diode laser pump sources in the multi-kilowatt regime. The relatively low brightness of diode laser sources has complicated the task of building high power pumps at a reasonable cost. In response to this need, Nuvonyx, Inc. in conjunction with the University of Illinois at Urbana-Champaign, has been developing a new technology for producing high power, single lateral mode devices which do not suffer form the instabilities mentioned above. The waveguide consists of a narrow section, approximately 2 μm wide, which flares to approximately 12 μm wide at the output facet. The flaring of the waveguide increases the gain volume and reduces the optical power density at the facet allowing for higher output power capability. The index guide is defined using an epitaxial process which allows the confinement of the mode to be reduced as the width of the guide expands. Thus, the mode is confined in a single mode waveguide throughout the cavity maintaining stability of the mode to the emitting facet. In November 2002, Nuvonyx, Inc. was awarded a contract with the Air Force Research Lab, Kirtland AFB, Albuquerque, NM, to transition these devices to production quality for use in high-power fiber laser pumps. Partnered with Alfalight, Inc. and the University of Illinois, we have begun initial

  9. High-power YAG laser and its applications

    NASA Astrophysics Data System (ADS)

    Sato, S.; Tsuchiya, Kazuyuki; Owaki, Katsura; Morita, Ichiro

    2000-02-01

    Laser beams have been noticed as new heat resources with high energy concentration, which are different from plasma and arc. Conventionally, the only kW class industrial laser has been a carbon dioxide (CO2) laser. However, recently, several new high power lasers other than CO2 laser have been developed so that new methods of laser material processing have come out. As for YAG lasers, formerly, cw or pulse YAG lasers of several hundreds W class were used for welding or cutting of electrical appliants or cutting of thin metal plates. Now, the power has been raised to 5 - 6 kW, which enables YAG lasers to apply wider applications of material processing in many industrial fields, such as automobile industries, heavy industries and so on. It is a flexible fiber delivery that is the most remarkable advantage of YAG laser, which can be applied to ordinary machinery tools and robotic systems and makes it possible to deliver laser power to remote locations. Moreover, a shorter wavelength (1.06 micrometer) of YAG lasers than that of CO2 lasers is appropriate to metal processing. Figure 1 shows an example of YAG laser processing system utilizing those advantages. Also in IHI, the processing with YAG lasers has been studied for their practical application which has already succeeded in some sections such as cladding, repair welding and subdividing of nuclear power plants making use of YAG lasers' properties of fiber delivery of beam. Moreover, underwater processing technique is studied for practical use. In this paper, the examples of YAG laser application technology were described.

  10. An assessment of high-power light-emitting diodes for high frame rate schlieren imaging

    NASA Astrophysics Data System (ADS)

    Willert, Christian E.; Mitchell, Daniel M.; Soria, Julio

    2012-08-01

    The feasibility of using high-power light-emitting diodes (LED) as a light source for high frame rate schlieren imaging is investigated. Continuous sequences of high-intensity light pulses are achieved by overdriving the LED with current pulses up to a factor of ten beyond its specifications. In comparison to commonly used pulsed light sources such as gas discharge lamps and pulsed lasers, the pulsed LED has several attractive advantages: the pulse-to-pulse intensity variation is on the same order of magnitude as the detector (camera) noise permitting quantitative intensity measurements. The LED's narrow emission bandwidth reduces chromatic abberations, yet it is spectrally wide enough to prevent the appearance of speckle and diffraction effects in the images. Most importantly, the essentially lag-free light emission within tens of nanoseconds of the applied current pulse allows the LED to be operated at varying frequencies (i.e., asynchronously), which generally is not possible with neither lasers nor discharge lamps. The pulsed LED source, driven by a simple driver circuit, is demonstrated on two schlieren imaging setups. The first configuration visualizes the temporal evolution of shock structures and sound waves of an under-expanded jet that is impinging on a rigid surface at frame rates of 500 kHz to 1 MHz. In a second application, long sequences of several thousand high-resolution images are acquired on a free jet at a frame rate of 1 kHz. The low-intensity fluctuation and large sample number allow a reliable computation of two-point correlation data from the image sequences.

  11. Reliability of single-mode and multi-mode high-power semiconductor lasers at eye-safe wavelengths

    NASA Astrophysics Data System (ADS)

    Stakelon, T.; Lucas, J.; Osowski, M.; Lammert, R.; Moon, S.; Panja, C.; Elarde, V.; Gallup, K.; Hu, W.; Ungar, J.

    2009-02-01

    High power semiconductor lasers with wavelengths in the eye-safer region have application to a variety of defense, medical and industrial applications. We report on the reliability of high power multimode and single mode InGaAsP/InP diode lasers with wavelengths in the range 1320 to 1550 nm in a variety of configurations, including single-chip, conduction-cooled arrays, arrays incorporating internal diffraction gratings, master-oscillator power amplifiers, and fiber-coupled modules of the above. In all cases we show very low rates of degradation in optical power and the absence of sudden failure from catastrophic optical damage or from laser-package interactions.

  12. Submillimeter sources for radiometry using high power Indium Phosphide Gunn diode oscillators

    NASA Technical Reports Server (NTRS)

    Deo, Naresh C.

    1990-01-01

    A study aimed at developing high frequency millimeter wave and submillimeter wave local oscillator sources in the 60-600 GHz range was conducted. Sources involved both fundamental and harmonic-extraction type Indium Phosphide Gunn diode oscillators as well as varactor multipliers. In particular, a high power balanced-doubler using varactor diodes was developed for 166 GHz. It is capable of handling 100 mW input power, and typically produced 25 mW output power. A high frequency tripler operating at 500 GHz output frequency was also developed and cascaded with the balanced-doubler. A dual-diode InP Gunn diode combiner was used to pump this cascaded multiplier to produce on the order of 0.5 mW at 500 GHz. In addition, considerable development and characterization work on InP Gunn diode oscillators was carried out. Design data and operating characteristics were documented for a very wide range of oscillators. The reliability of InP devices was examined, and packaging techniques to enhance the performance were analyzed. A theoretical study of a new class of high power multipliers was conducted for future applications. The sources developed here find many commercial applications for radio astronomy and remote sensing.

  13. High-power thulium lasers on a silicon photonics platform.

    PubMed

    Li, Nanxi; Purnawirman, P; Su, Zhan; Salih Magden, E; Callahan, Patrick T; Shtyrkova, Katia; Xin, Ming; Ruocco, Alfonso; Baiocco, Christopher; Ippen, Erich P; Kärtner, Franz X; Bradley, Jonathan D B; Vermeulen, Diedrik; Watts, Michael R

    2017-03-15

    Mid-infrared laser sources are of great interest for various applications, including light detection and ranging, spectroscopy, communication, trace-gas detection, and medical sensing. Silicon photonics is a promising platform that enables these applications to be integrated on a single chip with low cost and compact size. Silicon-based high-power lasers have been demonstrated at 1.55 μm wavelength, while in the 2 μm region, to the best of our knowledge, high-power, high-efficiency, and monolithic light sources have been minimally investigated. In this Letter, we report on high-power CMOS-compatible thulium-doped distributed feedback and distributed Bragg reflector lasers with single-mode output powers up to 267 and 387 mW, and slope efficiencies of 14% and 23%, respectively. More than 70 dB side-mode suppression ratio is achieved for both lasers. This work extends the applicability of silicon photonic microsystems in the 2 μm region.

  14. High Energy Density Sciences with High Power Lasers at SACLA

    NASA Astrophysics Data System (ADS)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  15. Cascaded combiners for a high power CW fiber laser

    NASA Astrophysics Data System (ADS)

    Tan, Qirui; Ge, Tingwu; Zhang, Xuexia; Wang, Zhiyong

    2016-02-01

    We report cascaded combiners for a high power continuous wave (CW) fiber laser in this paper. The cascaded combiners are fabricated with an improved lateral splicing process. During the fusing process, there is no stress or tension between the pump fiber and the double-cladding fiber. Thus, the parameters of the combiner are better than those that have been reported. The coupling efficiency is 98.5%, and the signal insertion loss is 1%. The coupling efficiency of the cascaded combiners is 97.5%. The pump lights are individually coupled into the double-cladding fiber via five combiners. The thermal effects cannot cause damage to the combiners and the cascaded combiners can operate stably in high power CW fiber lasers. We also develop a high power CW fiber laser that generates a maximum 780 W of CW signal power at 1080 nm with 71% optical-to-optical conversion efficiency. The fiber laser is pumped via five intra-cavity cascaded combiners and five extra-cavity cascaded combiners with a maximum pump power of 1096 W and a pump wavelength of 975 nm.

  16. All solid-state high power visible laser

    NASA Technical Reports Server (NTRS)

    Grossman, William M.

    1993-01-01

    The overall objective of this Phase 2 effort was to develop and deliver to NASA a high repetition rate laser-diode-pumped solid-state pulsed laser system with output in the green portion of the spectrum. The laser is for use in data communications, and high efficiency, short pulses, and low timing jitter are important features. A short-pulse 1 micron laser oscillator, a new multi-pass amplifier to boost the infrared power, and a frequency doubler to take the amplified infrared pulsed laser light into the green. This produced 1.5 W of light in the visible at a pulse repetition rate of 20 kHz in the laboratory. The pulses have a full-width at half maximum of near 1 ns. The results of this program are being commercialized.

  17. Degradation mechanism of laser diodes for 880-nm band

    NASA Astrophysics Data System (ADS)

    DÄ browska, E.; Nakielska, M.; Kozłowska, A.; Teodorczyk, M.; KrzyŻak, K.; Sobczak, G.; Kalbarczyk, J.; MalÄ g, A.

    2013-01-01

    The laser diodes (LD) have numerous applications and promise to become key elements for next generation laser technologies. LD are usually operated under conditions of heavy thermal load. As a result, the devices are affected by aging processes leading to changes of the operation parameters, degradation and, eventually, complete failure. Degradation of high power semiconductor lasers remains a serious problem for practical application of these devices. We investigated the effect of mounting induced strain and defects on the performance of high power laser. In this paper measurements of the temperature distribution and the electroluminescence along the cavity of InGaAs quantum well lasers before and after accelerated aging processes are presented. The electro-optical parameters of the high output power laser diodes, such as emission wavelength, output power, threshold current, slope efficiency, and operating lifetime are presented too.

  18. Automatic alignment technology in high power laser system

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Dai, Wan-jun; Wang, Yuan-cheng; Lian, Bo; Yang, Ying; Yuan, Qiang; Deng, Xue-wei; Zhao, Jun-pu; Zhou, Wei

    2015-02-01

    The high power solid laser system is becoming larger and higher energy that requires the beam automatic alignment faster and higher precision to ensure safety running of laser system and increase the shooting success rate. This paper take SGIII laser facility for instance, introduce the basic principle of automatic alignment of large laser system. The automatic alignment based on digital image processing technology which use the imaging of seven-classes spatial filter pinholes for feedback to working. Practical application indicates that automatic alignment system of cavity mirror in SGIII facility can finish the work in 210 seconds of four bundles and will not exceed 270 seconds of all six bundles. The alignment precision promoted to 2.5% aperture from 8% aperture. The automatic alignment makes it possible for fast and safety running of lager laser system.

  19. High power and single mode quantum cascade lasers.

    PubMed

    Bismuto, Alfredo; Bidaux, Yves; Blaser, Stéphane; Terazzi, Romain; Gresch, Tobias; Rochat, Michel; Muller, Antoine; Bonzon, Christopher; Faist, Jerome

    2016-05-16

    We present a single mode quantum cascade laser with nearly 1 W optical power. A buried distributed feedback reflector is used on the back section for wavelength selection. The laser is 6 mm long, 3.5 μm wide, mounted episide-up and the laser facets are left uncoated. Laser emission is centered at 4.68 μm. Single-mode operation with a side mode suppression ratio of more than 30 dB is obtained in whole range of operation. Farfield measurements prove a symmetric, single transverse-mode emission in TM00-mode with typical divergences of 41° and 33° in the vertical and horizontal direction respectively. This work shows the potential for simple fabrication of high power lasers compatible with standard DFB processing.

  20. Modeling compact high power fiber lasers and vecsels

    NASA Astrophysics Data System (ADS)

    Li, Hongbo

    Compact high power fiber lasers and the vertical-external-cavity surface-emitting lasers (VECSELs) are promising candidates for high power laser sources with diffraction-limited beam quality and are currently the subject of intensive research and development. Here three large mode area fiber lasers, namely, the photonic crystal fiber (PCF) laser, the multicore fiber (MCF) laser, and the multimode interference (MMI) fiber laser, as well as the VECSEL are modeled and designed. For the PCF laser, the effective refractive index and the effective core radius of the PCF are investigated using vectorial approaches and reformulated. Then, the classical step-index fiber theory is extended to PCFs, resulting in a highly efficient vectorial effective-index method for the design and analysis of PCFs. The new approach is employed to analyze the modal properties of the PCF lasers with depressed-index cores and to effectively estimate the number of guided modes for PCFs. The MCF laser, consisting of an active MCF and a passive coreless fiber, is modeled using the vectorial mode expansion method developed in this work. The results illustrate that the mode selection in the MCF laser by the coreless fiber section is determined by the MMI effect, not the Talbot effect. Based on the MMI and self-imaging in multimode fibers, the vectorial mode expansion approach is employed to design the first MMI fiber laser demonstrated experimentally. For the design and modeling of VECSELs, the optical, thermal, and structural properties of common material systems are investigated and the most reliable material models are summarized. The nanoscale heat transport theory is applied for the first time, to the best of my knowledge, to design and model VECSELs. In addition, the most accurate strain compensation approach is selected for VECSELs incorporating strained quantum wells to maintain structural stability. The design principles for the VECSEL subcavity are elaborated and applied to design a 1040nm

  1. High Power Accelerator and Magnetically Insulated Ion Diode for Ion Ring Studies.

    NASA Astrophysics Data System (ADS)

    Jones, Stephen Edward

    Ion ring generation for Cornell University's Megavolt Ion Coil Experiment (MICE) requires a suitable pulsed power accelerator to drive a high-power magnetically insulated ion diode. The diode then emits an intense ion-beam which forms an ion ring by using a cusped magnetic field. The goal of this thesis is to provide the necessary beam to form the ion-ring, and the present work consists of two parts: (1) the design, construction, testing, and operation of the pulsed power accelerator; and (2) the design, construction, testing, operation, and physics studies of a magnetically insulated diode for ion ring generation. For the required pulsed-power driver, we use a modified 2-MV, 100 kJ Marx generator, connected to a new 2-Omega-200-nsec pulse-forming line. For the diode, we use a novel applied-B, extraction diode with anode-side as well as cathode-side coils. This coil arrangement forms an easily variable pseudo-separatrix within the gap allowing flexibility for diode studies and optimization. Diode investigations reveal the efficacy of such a pseudo-separatrix located in the gap near the flashboard, in terms of anode turn-on and ion beam current. Further results (1) support the hypothesis that leakage electrons to the flashboard are instrumental for anode turn-on, (2) indicate that the gap electron-population has two different electron sources, and (3) discuss the possible long development time scale for diode development. Extensive computer simulations have also been conducted on the accelerator and diode, and results are compared with experiment. A driving constraint throughout this work is affordability on a university budget; also, unfortunately, some of the experiments had to be cut short due to funding cuts.

  2. Diode laser and endoscopic laser surgery.

    PubMed

    Sullins, Kenneth E

    2002-05-01

    Two functionally important differences exist between the diode laser and the carbon dioxide (CO2) laser (used more commonly in small animal surgery). Diode laser energy is delivered through a quartz fiber instead of being reflected through an articulated arm or waveguide. Quartz fibers are generally more flexible and resilient than waveguides and can be inserted through an endoscope for minimally invasive procedures. Laser-tissue interaction is the other significant difference. The CO2 laser is completely absorbed by water, which limits the effect to visible tissue. The diode wavelength is minimally absorbed by water and may affect tissue as deep as 10 mm below the surface in the free-beam mode. With proper respect for the tissue effect, these differences can be used to the advantage of the patient.

  3. Transmission grating stretcher for contrast enhancement of high power lasers.

    PubMed

    Tang, Yunxin; Hooker, Chris; Chekhlov, Oleg; Hawkes, Steve; Collier, John; Rajeev, P P

    2014-12-01

    We propose, for the first time, a transmission grating stretcher for high power lasers and demonstrate its superiority over conventional, reflective gold grating stretchers in terms of pulse temporal quality. We show that, compared to a conventional stretcher with the same stretching factor, the transmission-grating based stretcher yields more than an order of magnitude improvement in the contrast pedestal. We have also quantitatively characterized the roughness of the grating surfaces and estimated its impact on the contrast pedestal.

  4. Simulative research on the anode plasma dynamics in the high-power electron beam diode

    SciTech Connect

    Cai, Dan; Liu, Lie; Ju, Jin-Chuan; Zhang, Tian-Yang; Zhao, Xue-Long; Zhou, Hong-Yu

    2015-07-15

    Anode plasma generated by electron beams could limit the electrical pulse-length, modify the impedance and stability of diode, and affect the generator to diode power coupling. In this paper, a particle-in-cell code is used to study the dynamics of anode plasma in the high-power electron beam diode. The effect of gas type, dynamic characteristic of ions on the diode operation with bipolar flow model are presented. With anode plasma appearing, the amplitude of diode current is increased due to charge neutralizations of electron flow. The lever of neutralization can be expressed using saturation factor. At same pressure of the anode gas layer, the saturation factor of CO{sub 2} is bigger than the H{sub 2}O vapor, namely, the generation rate of C{sup +} ions is larger than the H{sup +} ions at the same pressure. The transition time of ions in the anode-cathode gap could be used to estimate the time of diode current maximum.

  5. Semiconductor Laser Diodes and the Design of a D.C. Powered Laser Diode Drive Unit

    DTIC Science & Technology

    1988-06-01

    the design of a laser diode modulation circuit is the determination of the input imped- ence and equivalent circuit of the laser diode and packag- ing...current source with a high internal impedance as compared to the input imped- ance of the laser. [Ref. l:p. 33] Summarizing the above, laser diodes...switches. The modula- tion circuitry is connected in parallel with the laser diode and provides a modulated input to the laser diode superim- posed onto

  6. Fault protection of broad-area laser diodes

    NASA Astrophysics Data System (ADS)

    Jacob, J. H.; Petr, R.; Jaspan, M. A.; Swartz, S. D.; Knapczyk, M. T.; Flusberg, A. M.; Chin, A. K.; Smilanski, I.

    2009-02-01

    Detailed reliability studies of high-power, CW, broad-area, GaAs-based laser- diodes were performed. Optical and electrical transients occurring prior to device failure by catastrophic optical-damage (COD) were observed. These transients were correlated with COD formation as observed in laser diodes with an optical window in the n-side electrode. In addition, custom electronics were designed to fault-protect the laser diodes during aging tests, i.e. each time a transient (fault) was detected, the operating current was temporarily cut off within 4μs of fault detection. The lifetime of fault-protected 808-nm laser-diode bars operated at a constant current of 120A (~130W) and 35°C exceeded similar unprotected devices by factors of 2.

  7. High-Power Lasers for Science and Society

    SciTech Connect

    Siders, C. W.; Haefner, C.

    2016-10-05

    Since the first demonstration of the laser in 1960 by Theodore Maiman at Hughes Research Laboratories, the principal defining characteristic of lasers has been their ability to focus unprecedented powers of light in space, time, and frequency. High-power lasers have, over the ensuing five and a half decades, illuminated entirely new fields of scientific endeavor as well as made a profound impact on society. While the United States pioneered lasers and their early applications, we have been eclipsed in the past decade by highly effective national and international networks in both Europe and Asia, which have effectively focused their energies, efforts, and resources to achieve greater scientific and societal impact. This white paper calls for strategic investment which, by striking an appropriate balance between distributing our precious national funds and establishing centers of excellence, will ensure a broad pipeline of people and transformative ideas connecting our world-leading universities, defining flagship facilities stewarded by our national laboratories, and driving innovation across industry, to fully exploit the potential of high-power lasers.

  8. Direct laser diode welding system with anti-reflection unit

    NASA Astrophysics Data System (ADS)

    Nagayasu, Doukei; Wang, Jing-bo

    2003-11-01

    A high power laser diode system for welding is widely known. However, the reliability and the reasonability are required by an industrial market. Reliability, especially lifetime, mainly depends on the temperature of laser diode (LD) and it might be rise if LD would receive reflection from welding point. This paper conducted the measurement of the reflection during welding by applying 1/4 wavelength plate and PBS. Results indicated the reflection during welding was inevitable. We developed a prototype high power laser diode system, which equipped an anti-reflection unit, to improve the reliability. The system traveled 3m/min and its bead width was 1.2 mm for 1.5 mm Al (A5052) under the spot size 2.7 x 0.6 mm FWHM. Additionally, we started to develop fast and slow collimation lenses for LD to realize a reasonale price for system The brief evaluation of fast collimation lenses was also reported.

  9. New Submount Requirement of Conductively Cooled Laser Diodes for Lidar Applications

    NASA Technical Reports Server (NTRS)

    Mo, S. Y.; Cutler, A. D.; Choi, S. H.; Lee, M. H.; Singh, U. N.

    2000-01-01

    New submount technology is essential for the development of conductively cooled high power diode laser. The simulation and experimental results indicate that thermal conductivity of submount for high power laser-diode must be at least 600 W/m/k or higher for stable operation. We have simulated several theoretical thermal model based on new submount designs and characterized high power diode lasers to determine temperature effects on the performances of laser diodes. The characterization system measures the beam power, output beam profile, temperature distribution, and spectroscopic property of high power diode laser. The characterization system is composed of four main parts: an infrared imaging camera, a CCD camera, a monochromator, and a power meter. Thermal characteristics of two commercial-grade CW 20-W diode laser bars with open heat-sink type were determined with respect to the line shift of emission spectra and beam power stability. The center wavelength of laser emission has a tendency to shift toward longer wavelength as the driving current and heat sink temperature are increased. The increase of heat sink temperature decreases the output power of the laser bar too. Such results lay the guidelines for the design of new submount for high power laser-diodes.

  10. Modular package for cooling a laser diode array

    DOEpatents

    Mundinger, David C.; Benett, William J.; Beach, Raymond J.

    1992-01-01

    A laser diode array is disclosed that includes a plurality of planar packages and active cooling. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar package having the laser diode bar located proximate to one edge. In an array, a number of such thin planar packages are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink that is attached proximate to the laser bar so that it absorbs heat generated by laser operation. To provide the coolant to the microchannels, each thin planar package comprises a thin inlet manifold and a thin outlet manifold connected to an inlet corridor and an outlet corridor. The inlet corridor comprises a hole extending through each of the packages in the array, and the outlet corridor comprises a hole extending through each of the packages in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has application as an optical pump for high power solid state lasers. Further, it can be incorporated in equipment such as communications devices and active sensors, and in military and space applications, and it can be useful in applications having space constraints and energy limitations.

  11. Overview on new diode lasers for defense applications

    NASA Astrophysics Data System (ADS)

    Neukum, Joerg

    2012-11-01

    Diode lasers have a broad wavelength range, from the visible to beyond 2.2μm. This allows for various applications in the defense sector, ranging from classic pumping of DPSSL in range finders or target designators, up to pumping directed energy weapons in the 50+ kW range. Also direct diode applications for illumination above 1.55μm, or direct IR countermeasures are of interest. Here an overview is given on some new wavelengths and applications which are recently under discussion. In this overview the following aspects are reviewed: • High Power CW pumps at 808 / 880 / 940nm • Pumps for DPAL - Diode Pumped Alkali LasersHigh Power Diode Lasers in the range < 1.0 μm • Scalable Mini-Bar concept for high brightness fiber coupled modules • The Light Weight Fiber Coupled module based on the Mini-Bar concept Overall, High Power Diode Lasers offer many ways to be used in new applications in the defense market.

  12. Quantum Noise in Laser Diodes

    NASA Technical Reports Server (NTRS)

    Giacobino, E.; Marin, F.; Bramati, A.; Jost, V.; Poizat, J. Ph.; Roch, J.-F.; Grangier, P.; Zhang, T.-C.

    1996-01-01

    We have investigated the intensity noise of single mode laser diodes, either free-running or using different types of line narrowing techniques at room temperature. We have measured an intensity squeezing of 1.2 dB with grating-extended cavity lasers and 1.4 dB with injection locked lasers (respectively 1.6 dB and 2.3 dB inferred at the laser output). We have observed that the intensity noise of a free-running nominally single mode laser diode results from a cancellation effect between large anti-correlated fluctuations of the main mode and of weak longitudinal side modes. Reducing the side modes by line narrowing techniques results in intensity squeezing.

  13. Safety approaches for high power modular laser operation

    NASA Astrophysics Data System (ADS)

    Handren, R. T.

    1993-03-01

    Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest was the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program progressed to the point where a plant-scale facility to demonstrate commercial feasibility was built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a greater than 90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities (approximately 3000 gal) of ethanol dye solutions. The Laboratory's safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

  14. High power free-electron laser concepts and problems

    SciTech Connect

    Goldstein, J.C.

    1995-03-01

    Free-electron lasers (FELs) have long been thought to offer the potential of high average power operation. That potential exists because of several unique properties of FELs, such as the removal of ``waste heat`` at the velocity of light, the ``laser medium`` (the electron beam) is impervious to damage by very high optical intensitites, and the technology of generating very high average power relativistic electron beams. In particular, if one can build a laser with a power extraction efficiency 11 which is driven by an electron beam of average Power P{sub EB}, one expects a laser output power of P{sub L} = {eta} P{sub EB}. One approach to FEL devices with large values of {eta} (in excess of 10 %) is to use a ``tapered`` (or nonuniform) wiggler. This approach was followed at several laboratories during the FEL development Program for the Strategic Defense Initiative (SDI) project. In this paper, we review some concepts and technical requirements for high-power tapered-wiggler FELs driven by radio-frequency linear accelerators (rf-linacs) which were developed during the SDI project. Contributions from three quite different technologies - rf-accelerators, optics, and magnets - are needed to construct and operate an FEL oscillator. The particular requirements on these technologies for a high-power FEL were far beyond the state of the art in those areas when the SDI project started, so significant advances had to be made before a working device could be constructed. Many of those requirements were not clearly understood when the project started, but were developed during the course of the experimental and theoretical research for the project. This information can be useful in planning future high-power FEL projects.

  15. New Yb-doped crystals for high-power and ultrashort lasers

    NASA Astrophysics Data System (ADS)

    Druon, F.; Boudeile, J.; Zaouter, Y.; Hanna, M.; Balembois, F.; Georges, P.; Petit, J.; Goldner, P.; Viana, B.

    2006-09-01

    Since the beginning of the 90's, Titanium Sapphire has become the crystal of choice for the development of ultrashort laser system producing very short and powerful pulses using the Chirped Pulse Amplification technique. In parallel to these developments leading to commercial products, new laser crystals have been studied in order to reach directly other wavelength range and to overcome the need to develop cw or pulsed green laser to pump the Titanium Sapphire crystal. In order to be able to directly pump the crystals with very efficient and high power semiconductor laser, new crystals doped with ytterbium ions have been developed. Actually, in the field of femtosecond lasers, an intense interest has been shown for ytterbium-doped laser-crystals. These crystals are now well-known to be particularly suitable for very efficient, directly-diode-pumped, solid state femtosecond oscillators. However, it has been shown that the spectral properties of the Yb 3+ dopant strongly depend on the matrix host and a lot of works have been done to find the "ideal" matrix allowing both ultrashort-pulsed and high-power lasers. Firstly, in order to take advantage of the very high-power laser diodes available to pump Yb-doped materials, ideal crystals need to be able to hold high power pumping; so high thermal conductivity is required (>5W/m/K, typically). Secondly, to generate very short pulses (<100 fs) ideal crystals have to demonstrate very broad and smooth spectra. Among the numerous Yb-doped crystals already studied, many failed with one of these two contradictory criteria (contradictory because broad spectra are often synonymous of high disorder in the host lattice and the good thermal conductivity requires an ordered matrix to allow good propagation of phonons). In this paper, we are relating the performance of a new Yb-doped crystal: Yb:CaGdAlO4 (Yb:CALGO) and how it takes place in this quest of "ideal" crystal. Actually, this very new crystal allowed, to our best knowledge

  16. The role of anode and cathode plasmas in high power ion diode performance

    SciTech Connect

    Mehlhorn, T.A.; Bailey, J.E.; Bernard, M.A.

    1996-06-01

    We describe measurements, modeling, and mitigation experiments on the effects of anode and cathode plasmas in applied-B ion diodes. We have performed experiments with electrode conditioning and cleaning techniques including RF discharges, anode heating, cryogenic cathode cooling and anode surface coatings that have been successful in mitigating some of the effects of electrode contamination on ion diode performance on both the SABRE and PBFA accelerators. We are developing sophisticated spectroscopic diagnostic techniques that allow us to measure the electric and magnetic fields in the A-K gap, we compare these measured fields with those predicted by our 3-D particle-in-cell (PIC) simulations of ion diodes, and we measure anode and cathode plasma densities and expansion velocities. We are continuing to develop E-M simulation codes with fluid-PIC hybrid models for dense plasmas, in order to understand the role of electrode plasmas in ion diode performance. Our strategy for improving high power ion diode performance is to employ and expand our capabilities in measuring and modeling A-K gap plasmas and leverage our increased knowledge into an increase in total ion beam brightness to High Yield Facility (HYF) levels.

  17. Annular resonators for high-power chemical lasers

    NASA Astrophysics Data System (ADS)

    Wade, Richard C.

    1993-08-01

    Resonators capable of extracting highly coherent energy from DF and HF chemical laser annular gain media have been under investigation for weapon application since 1974. This survey article traces the background of interest in these devices, describes the various concepts that have been experimentally and analytically investigated, and discusses the issues associated with their operation. From the discussion of issues, preferred concepts are selected. Applicability of these concepts to high-power operation is addressed through discussions of past and ongoing high-power demonstration programs and the issues facing their application to weapon sized devices capable of strategic and tactical missions such as ballistic missile defense (BMD), theater missile defense (TMD), and anti satellite (ASAT).

  18. Researching the 915 nm high-power and high-brightness semiconductor laser single chip coupling module

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wang, Cuiluan; Wu, Xia; Zhu, Lingni; Jing, Hongqi; Ma, Xiaoyu; Liu, Suping

    2017-02-01

    Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2 -str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.

  19. High-Power Fiber Lasers Using Photonic Band Gap Materials

    NASA Technical Reports Server (NTRS)

    DiDomenico, Leo; Dowling, Jonathan

    2005-01-01

    High-power fiber lasers (HPFLs) would be made from photonic band gap (PBG) materials, according to the proposal. Such lasers would be scalable in the sense that a large number of fiber lasers could be arranged in an array or bundle and then operated in phase-locked condition to generate a superposition and highly directed high-power laser beam. It has been estimated that an average power level as high as 1,000 W per fiber could be achieved in such an array. Examples of potential applications for the proposed single-fiber lasers include welding and laser surgery. Additionally, the bundled fibers have applications in beaming power through free space for autonomous vehicles, laser weapons, free-space communications, and inducing photochemical reactions in large-scale industrial processes. The proposal has been inspired in part by recent improvements in the capabilities of single-mode fiber amplifiers and lasers to produce continuous high-power radiation. In particular, it has been found that the average output power of a single strand of a fiber laser can be increased by suitably changing the doping profile of active ions in its gain medium to optimize the spatial overlap of the electromagnetic field with the distribution of active ions. Such optimization minimizes pump power losses and increases the gain in the fiber laser system. The proposal would expand the basic concept of this type of optimization to incorporate exploitation of the properties (including, in some cases, nonlinearities) of PBG materials to obtain power levels and efficiencies higher than are now possible. Another element of the proposal is to enable pumping by concentrated sunlight. Somewhat more specifically, the proposal calls for exploitation of the properties of PBG materials to overcome a number of stubborn adverse phenomena that have impeded prior efforts to perfect HPFLs. The most relevant of those phenomena is amplified spontaneous emission (ASE), which causes saturation of gain and power

  20. A wireless remote high-power laser device for optogenetic experiments

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gong, Q.; Li, Y. Y.; Li, A. Z.; Zhang, Y. G.; Cao, C. F.; Xu, H. X.; Cui, J.; Gao, J. J.

    2015-04-01

    Optogenetics affords the ability to stimulate genetically targeted neurons in a relatively innocuous manner. Reliable and targetable tools have enabled versatile new classes of investigation in the study of neural systems. However, current hardware systems are generally limited to acute measurements or require external tethering of the system to the light source. Here we provide a low-cost, high-power, remotely controlled blue laser diode (LD) stimulator for the application of optogenetics in neuroscience, focusing on wearable and intelligent devices, which can be carried by monkeys, rats and any other animals under study. Compared with the conventional light emitting diode (LED) device, this LD stimulator has higher efficiency, output power, and stability. Our system is fully wirelessly controlled and suitable for experiments with a large number of animals.

  1. Design and comparison of laser windows for high-power lasers

    NASA Astrophysics Data System (ADS)

    Niu, Yanxiong; Liu, Wenwen; Liu, Haixia; Wang, Caili; Niu, Haisha; Man, Da

    2014-11-01

    High-power laser systems are getting more and more widely used in industry and military affairs. It is necessary to develop a high-power laser system which can operate over long periods of time without appreciable degradation in performance. When a high-energy laser beam transmits through a laser window, it is possible that the permanent damage is caused to the window because of the energy absorption by window materials. So, when we design a high-power laser system, a suitable laser window material must be selected and the laser damage threshold of the window must be known. In this paper, a thermal analysis model of high-power laser window is established, and the relationship between the laser intensity and the thermal-stress field distribution is studied by deducing the formulas through utilizing the integral-transform method. The influence of window radius, thickness and laser intensity on the temperature and stress field distributions is analyzed. Then, the performance of K9 glass and the fused silica glass is compared, and the laser-induced damage mechanism is analyzed. Finally, the damage thresholds of laser windows are calculated. The results show that compared with K9 glass, the fused silica glass has a higher damage threshold due to its good thermodynamic properties. The presented theoretical analysis and simulation results are helpful for the design and selection of high-power laser windows.

  2. VACUUM WINDOW DESIGN FOR HIGH-POWER LASERS.

    SciTech Connect

    SHAFTAN, T.

    2005-04-21

    One of the problems in the high-power lasers design is in outcoupling of a powerful laser beam out of a vacuum volume into atmosphere. Usually the laser device is located inside a vacuum tank. The laser radiation is transported to the outside world through the transparent vacuum window. While considered transparent, some of the light passing through the glass is absorbed and converted to heat. For most applications, these properties are academic curiosities; however, in multi-kilowatt lasers, the heat becomes significant and can lead to a failure. The absorbed power can result in thermal stress, reduction of light transmission and, consequently, window damage. Modern optical technology has developed different types of glass (Silica, BK7, diamond, etc.) that have high thermal conductivity and damage threshold. However, for kilo- and megawatt lasers the issue still remains open. In this paper we present a solution that may relieve the heat load on the output window. We discuss advantages and issues of this particular window design.

  3. Dichroic mirror for high power Nd:YAG laser

    SciTech Connect

    Dinca, A.; Lupei, V.; Miclea, P.T.; Dinca, M.P.

    1996-12-31

    The paper presents the design of a dichroic mirror used in a Nd:YAG high power laser to reflect the 1.44 {micro}m radiation and to transmit the 1.064 {micro}m one. In order to obtain a wide transmission band, all the solutions for matching basic stack with the substrate, consisting in a number of periods less or equal than three, were investigated and the best was selected. The solutions were obtained by analytical inversion of the equations for the three layer equivalent system.

  4. High-Power LOC Lasers: Synthesis and Mode Control

    DTIC Science & Technology

    1975-03-01

    Wright-Patterson AFB, OH 45433. AFAL ltr 4 Sep 1975 ^F—^»IPl««—-B-^——— ■ - m wmrnmmmmmm i i ^1 AFAL-TR-75-13 OS HIGH-POWER LOC LASERS...AIR FORCE AVIONICS LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 46433 ^^^^^^^^^^^A«^ - — HIWSWWW""^- tmm**~* m ...8217 — ’ - UMUtattiHta 5 y^p^pil m *mMi\\r~r’ FOREWORD This Final Report was prepared by RCA Laboratories, Princeton, New

  5. Broadly tunable high-power operation of an all-solid-state titanium-doped sapphire laser system

    NASA Technical Reports Server (NTRS)

    Steele, T. R.; Gerstenberger, D. C.; Drobshoff, A.; Wallace, R. W.

    1991-01-01

    Broadly tunable and high-power operation of a Ti-doped sapphire laser is obtained with a diode-laser-pumped frequency-doubled Nd:YAG laser as the pump source. A maximum broadband (FWHM = 25 nm) output pulse energy of 720 microJ at 795 nm in a TEM00 mode is obtained for 1850 microJ of energy of 532-nm pump light. A minimum pulse duration of 7 nsec is obtained from a 40-mm-long cavity. With the use of an intracavity prism, the Ti:sapphire laser is tunable continuously over the 696-1000-nm spectral range (with three different mirror sets).

  6. Modeling of diode pumped metastable rare gas lasers.

    PubMed

    Yang, Zining; Yu, Guangqi; Wang, Hongyan; Lu, Qisheng; Xu, Xiaojun

    2015-06-01

    As a new kind of optically pumped gaseous lasers, diode pumped metastable rare gas lasers (OPRGLs) show potential in high power operation. In this paper, a multi-level rate equation based model of OPRGL is established. A qualitative agreement between simulation and Rawlins et al.'s experimental result shows the validity of the model. The key parameters' influences and energy distribution characteristics are theoretically studied, which is useful for the optimized design of high efficient OPRGLs.

  7. Control system for high power laser drilling workover and completion unit

    DOEpatents

    Zediker, Mark S; Makki, Siamak; Faircloth, Brian O; DeWitt, Ronald A; Allen, Erik C; Underwood, Lance D

    2015-05-12

    A control and monitoring system controls and monitors a high power laser system for performing high power laser operations. The control and monitoring system is configured to perform high power laser operation on, and in, remote and difficult to access locations.

  8. High-power light-emitting diode based facility for plant cultivation

    NASA Astrophysics Data System (ADS)

    Tamulaitis, G.; Duchovskis, P.; Bliznikas, Z.; Breive, K.; Ulinskaite, R.; Brazaityte, A.; Novickovas, A.; Zukauskas, A.

    2005-09-01

    Based on perspectives of the development of semiconductor materials systems for high-power light-emitting diodes (LEDs), an illumination facility for greenhouse plant cultivation was designed with the dominating 640 nm photosynthetically active component delivered by AlGaInP LEDs and supplementary components from AlGaN (photothropic action, 455 nm) and AlGaAs (photosynthetic 660 nm and photomorphogenetic 735 nm) LEDs. Photosynthesis intensity, photosynthetic productivity and growth morphology as well as chlorophyll and phytohormone concentrations were investigated in radish and lettuce grown in phytotron chambers under the LED-based illuminators and under high-pressure sodium (HPS) lamps with an equivalent photon flux density. Advantages of the high-power LED-based illuminators over conventional HPS lamps, applicability of AlGaInP LEDs for photosynthesis and control of plant growth by circadian manipulation of a relatively weak far-red component were demonstrated.

  9. High-power solid-state cw dye laser.

    PubMed

    Bornemann, R; Thiel, E; Bolívar, P Haring

    2011-12-19

    In the present paper we describe a high-power tunable solid-state dye laser setup that offers peak output power up to 800 mW around 575 nm with excellent long-time power stability and low noise level. The spectral width of the laser emission is less than 3 GHz and can be tuned over more than 30 nm. A nearly circular mode profile is achieved with an M(2) better than 1.4. The device can be integrated in a compact housing (dimensions are 60 × 40 × 20 cm(3)). The limitation of long-time power stability is mainly given by photo decomposition of organic dye molecules. These processes are analyzed in detail via spatially resolved micro-imaging and spectroscopic studies.

  10. 157 W all-fiber high-power picosecond laser.

    PubMed

    Song, Rui; Hou, Jing; Chen, Shengping; Yang, Weiqiang; Lu, Qisheng

    2012-05-01

    An all-fiber high-power picosecond laser is constructed in a master oscillator power amplifier configuration. The self-constructed fiber laser seed is passively mode locked by a semiconductor saturable absorber mirror. Average output power of 157 W is obtained after three stages of amplification at a fundamental repetition rate of 60 MHz. A short length of ytterbium double-clad fiber with a high doping level is used to suppress nonlinear effects. However, a stimulated Raman scattering (SRS) effect occurs owing to the 78 kW high peak power. A self-made all-fiber repetition rate increasing system is used to octuple the repetition rate and decrease the high peak power. Average output power of 156.6 W is obtained without SRS under the same pump power at a 480 MHz repetition rate with 0.6 nm line width.

  11. Cladded single crystal fibers for high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Kim, W.; Shaw, B.; Bayya, S.; Askins, C.; Peele, J.; Rhonehouse, D.; Meyers, J.; Thapa, R.; Gibson, D.; Sanghera, J.

    2016-09-01

    We report on the recent progress in the development of cladded single crystal fibers for high power single frequency lasers. Various rare earth doped single crystal YAG fibers with diameters down to 17 μm with length > 1 m have been successfully drawn using a state-of-the-art Laser Heated Pedestal Growth system. Single and double cladding on rare earth doped YAG fibers have been developed using glasses where optical and physical properties were precisely matched to doped YAG core single crystal fiber. The double clad Yb:YAG fiber structures have dimensions analogous to large mode area (LMA) silica fiber. We also report successful fabrications of all crystalline core/clad fibers where thermal and optical properties are superior over glass cladded YAG fibers. Various fabrication methods, optical characterization and gain measurements on these cladded YAG fibers are reported.

  12. Extremely high-power CO2 laser beam correction.

    PubMed

    Kudryashov, Alexis; Alexandrov, Alexander; Rukosuev, Alexey; Samarkin, Vadim; Galarneau, Pierre; Turbide, Simon; Châteauneuf, François

    2015-05-10

    This paper presents the results of high-power CO2 laser-aberration correction and jitter stabilization. A bimorph deformable mirror and two tip-tilt piezo correctors were used as executive elements. Two types of wavefront sensors, one Hartmann to measure higher-order aberrations (defocus, astigmatism etc.) based on an uncooled microbolometer long-wave infrared camera and the other a tip-tilt one based on the technology of obliquely sputtered, thin chromium films on Si substrates, were applied to measure wavefront aberrations. We discuss both positive and negative attributes of suggested wavefront sensors. The adaptive system is allowed to reduce aberrations of incoming laser radiation by seven times peak-to-valley and to stabilize the jitter of incoming beams up to 25 μrad at a speed of 100 Hz. The adaptive system frequency range for high-order aberration correction was 50 Hz.

  13. High power narrowband 589 nm frequency doubled fibre laser source.

    PubMed

    Taylor, Luke; Feng, Yan; Calia, Domenico Bonaccini

    2009-08-17

    We demonstrate high-power high-efficiency cavity-enhanced second harmonic generation of an in-house built ultra-high spectral density (SBS-suppressed) 1178 nm narrowband Raman fibre amplifier. Up to 14.5 W 589 nm CW emission is achieved with linewidth Delta nu(589) < 7 MHz in a diffraction-limited beam, with peak external conversion efficiency of 86%. The inherently high spectral and spatial qualities of the 589 nm source are particularly suited to both spectroscopic and Laser Guide Star applications, given the seed laser can be easily frequency-locked to the Na D(2a) emission line. Further, we expect the technology to be extendable, at similar or higher powers, to wavelengths limited only by the seed-pump-pair availability.

  14. High power metallic halide laser. [amplifying a copper chloride laser

    NASA Technical Reports Server (NTRS)

    Pivirotto, T. J. (Inventor)

    1982-01-01

    A laser amplification system is disclosed whereby a metallic halide vapor such as copper chloride is caused to flow through a laser amplifier and a heat exchanger in a closed loop system so that the flow rate is altered to control the temperature rise across the length of the laser amplifier. The copper atoms within the laser amplifier should not exceed a temperature of 3000 K, so that the number of copper atoms in the metastable state will not be high enough to prevent amplification in the amplifier. A molecular dissociation apparatus is provided at the input to the laser amplifier for dissociating the copper chloride into copper atoms and ions and chlorine atoms and ions. The dissociation apparatus includes a hollow cathode tube and an annular ring spaced apart from the tube end. A voltage differential is applied between the annular ring and the hollow cathode tube so that as the copper chloride flows through, it is dissociated into copper and chlorine ions and atoms.

  15. Robust focusing optics for high-power laser welding

    NASA Astrophysics Data System (ADS)

    McAllister, Blake

    2014-02-01

    As available power levels from both fiber and disc lasers rapidly increase, so does the need for more robust beam delivery solutions. Traditional transmissive optics for 1 micron lasers have proven to be problematic in the presence of higher power densities and are more susceptible to focal shift. A new, fully-reflective, optical solution has been developed using mirrors rather than lenses and windows to achieve the required stable focal spot, while still protecting the delicate fiber end. This patent-approved beam focusing solution, referred to as high power reflective focusing optic (HPRFO), involves specialty mirrors and a flowing gas orifice that prevents ingress of contaminants into the optically sensitive region of the assembly. These mirrors also provide a unique solution for increasing the distance between the sensitive optics and the contamination-filled region at the work, without sacrificing spot size. Longer focal lengths and lower power densities on large mass, water-cooled, copper mirrors deliver the robustness needed at increasingly high power levels. The HPRFO exhibits excellent beam quality and minimal focal shift at a fraction of commercially available optics, and has demonstrated consistent reliability on applications requiring 15 kW with prolonged beam-on times.

  16. Diode Pumped Fiber Laser

    DTIC Science & Technology

    1983-07-01

    acousto - optic beam deflector for greater absolute accuracy. The detection system was also upgraded to a response time of • 1 usec. The... 2 C. SUMMARY OF RESULTS.., 3 D . GENERAL PLAN 5 II. Nd:YAG FIBER PREPARATION 7 A. FIBER GROWTH 7 B. PHYSICAL PROPERTIES OF Nd:YAG...A. INTRODUCTION 25 B. GENERAL FORMALISM 26 C. FREE-SPACE LASERS 35 D . FIBER LASERS 43 1. Fiber Laser Configuration 43 2 . F

  17. Manufacturing Methods and Technology Engineering High-Efficiency, High-Power Gallium Arsenide Read-Type IMPATT Diodes. Volume I.

    DTIC Science & Technology

    1977-08-01

    A design review of Read profile IMPATT diodes is presented. Work performed on this program to achieve the target specifications for high power X-band...applied to the manufacturing processes to improve the production rates of Read IMPATT diodes. This included spray dicing of the wafers, and new thermal

  18. Applications of microlens-conditioned laser diode arrays

    SciTech Connect

    Beach, R.J.; Emanuel, M.A.; Freitas, B.L.

    1995-01-01

    The ability to condition the radiance of laser diodes using shaped-fiber cylindrical-microlens technology has dramatically increased the number of applications that can be practically engaged by diode laser arrays. Lawrence Livermore National Laboratory (LLNL) has actively pursued optical efficiency and engineering improvements in this technology in an effort to supply large radiance-conditioned laser diode array sources for its own internal programs. This effort has centered on the development of a modular integrated laser diode packaging technology with the goal of enabling the simple and flexible construction of high average power, high density, two-dimensional arrays with integrated cylindrical microlenses. Within LLNL, the principal applications of microlens-conditioned laser diode arrays are as high intensity pump sources for diode pumped solid state lasers (DPSSLs). A simple end-pumping architecture has been developed and demonstrated that allows the radiation from microlens-conditioned, two-dimensional diode array apertures to be efficiently delivered to the end of rod lasers. To date, pump powers as high as 2.5 kW have been delivered to 3 mm diameter laser rods. Such high power levels are critical for pumping solid state lasers in which the terminal laser level is a Stark level lying in the ground state manifold. Previously, such systems have often required operation of the solid state gain medium at low temperature to freeze out the terminal laser Stark level population. The authors recently developed high intensity pump sources overcome this difficulty by effectively pumping to much higher inversion levels, allowing efficient operation at or near room temperature. Because the end-pumping technology is scalable in absolute power, the number of rare-earth ions and transitions that can be effectively accessed for use in practical DPSSL systems has grown tremendously.

  19. IC Fabrication Methods Improve Laser Diodes

    NASA Technical Reports Server (NTRS)

    Miller, M.; Pickhardt, V.

    1984-01-01

    Family of high-performance, tunable diode lasers developed for use as local oscillators in passive laser heterodyne spectrometer. Diodes fabricated using standard IC processes include photolithography, selective etching and vacuum deposition of metals and insulators. Packaging refinements improved thermal-cycling characteristics of diodes and increased room-temperature shelf life.

  20. High power tandem-pumped thulium-doped fiber laser.

    PubMed

    Wang, Yao; Yang, Jianlong; Huang, Chongyuan; Luo, Yongfeng; Wang, Shiwei; Tang, Yulong; Xu, Jianqiu

    2015-02-09

    We propose a cascaded tandem pumping technique and show its high power and high efficient operation in the 2-μm wavelength region, opening up a new way to scale the output power of the 2-μm fiber laser to new levels (e.g. 10 kW). Using a 1942 nm Tm(3+) fiber laser as the pump source with the co- (counter-) propagating configuration, the 2020 nm Tm(3+) fiber laser generates 34.68 W (35.15W) of output power with 84.4% (86.3%) optical-to-optical efficiency and 91.7% (92.4%) slope efficiency, with respect to launched pump power. It provides the highest slope efficiency reported for 2-μm Tm(3+)-doped fiber lasers, and the highest output power for all-fiber tandem-pumped 2-μm fiber oscillators. This system fulfills the complete structure of the proposed cascaded tandem pumping technique in the 2-μm wavelength region (~1900 nm → ~1940 nm → ~2020 nm). Numerical analysis is also carried out to show the power scaling capability and efficiency of the cascaded tandem pumping technique.

  1. High-power lasers for directed-energy applications: comment.

    PubMed

    Vorontsov, Mikhail A; Weyrauch, Thomas

    2016-12-10

    Sprangle et al. [Appl. Opt.54, F201 (2015)APOPAI0003-693510.1364/AO.54.00F201] recently concluded that our experiments on coherent combining of laser beams over an atmospheric path [Opt. Lett.36, 4455 (2011)OPLEDP0146-959210.1364/OL.36.004455] were "effective only because at these low-power levels the linewidth of the lasers was very narrow… and the level of atmospheric turbulence was low…." These conclusions are inaccurate, not relevant to practical high-power coherently combined laser systems, and contradict our most recent experiments with coherent combining of 21 laser beams with a linewidth of about 1 GHz over 7 km distance. In this comment we also challenge the major conclusion of Sprangle et al. [Appl. Opt.54, F201 (2015)APOPAI0003-693510.1364/AO.54.00F201] and the more recently published paper by Nelson et al. [Appl. Opt.55, 1757 (2016)APOPAI0003-693510.1364/AO.55.001757] regarding inefficiency of coherent beam combining under typical atmospheric conditions.

  2. High power continuous-wave titanium:sapphire laser

    DOEpatents

    Erbert, G.V.; Bass, I.L.; Hackel, R.P.; Jenkins, S.L.; Kanz, V.K.; Paisner, J.A.

    1993-09-21

    A high-power continuous-wave laser resonator is provided, wherein first, second, third, fourth, fifth and sixth mirrors form a double-Z optical cavity. A first Ti:sapphire rod is disposed between the second and third mirrors and at the mid-point of the length of the optical cavity, and a second Ti:sapphire rod is disposed between the fourth and fifth mirrors at a quarter-length point in the optical cavity. Each Ti:sapphire rod is pumped by two counter-propagating pump beams from a pair of argon-ion lasers. For narrow band operation, a 3-plate birefringent filter and an etalon are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors are disposed between the first and second mirrors to form a triple-Z optical cavity. A third Ti:sapphire rod is disposed between the seventh and eighth mirrors at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers. 5 figures.

  3. High power continuous-wave titanium:sapphire laser

    DOEpatents

    Erbert, Gaylen V.; Bass, Isaac L.; Hackel, Richard P.; Jenkins, Sherman L.; Kanz, Vernon K.; Paisner, Jeffrey A.

    1993-01-01

    A high-power continuous-wave laser resonator (10) is provided, wherein first, second, third, fourth, fifth and sixth mirrors (11-16) form a double-Z optical cavity. A first Ti:Sapphire rod (17) is disposed between the second and third mirrors (12,13) and at the mid-point of the length of the optical cavity, and a second Ti:Sapphire rod (18) is disposed between the fourth and fifth mirrors (14,15) at a quarter-length point in the optical cavity. Each Ti:Sapphire rod (17,18) is pumped by two counter-propagating pump beams from a pair of argon-ion lasers (21-22, 23-24). For narrow band operation, a 3-plate birefringent filter (36) and an etalon (37) are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors (101, 192) are disposed between the first and second mirrors (11, 12) to form a triple-Z optical cavity. A third Ti:Sapphire rod (103) is disposed between the seventh and eighth mirrors (101, 102) at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers (104, 105).

  4. Linewidth-tunable laser diode array for rubidium laser pumping

    SciTech Connect

    Li Zhiyong; Tan Rongqing; Xu Cheng; Li Lin

    2013-02-28

    To optimise the pump source for a high-power diodepumped rubidium vapour laser, we have designed a laser diode array (LDA) with a narrowed and tunable linewidth and an external cavity formed by two volume Bragg gratings (VBGs). Through controlling the temperature differences between the two VBGs, the LDA linewidth, which was 1.8 nm before mounting the two VBGs, was tunable from 100 pm to 0.2 nm, while the output power changed by no more than 4 %. By changing simultaneously the temperature in both VBGs, the centre wavelength in air of the linewidth-tunable LDA was tunable from 779.40 nm to 780.05 nm. (control of laser radiation parameters)

  5. High-power 1550 nm tapered DBR lasers fabricated using soft UV-nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Viheriälä, Jukka; Aho, Antti T.; Mäkelä, Jaakko; Salmi, Joel; Virtanen, Heikki; Leinonen, Tomi; Dumitrescu, Mihail; Guina, Mircea

    2016-03-01

    Paper reports the DBR-RWG surface grating design, the fabrication process, and the output characteristics of tapered DBR laser diodes for the applications, like for example LIDAR and range finding, that require eye-safe high-power single-mode coherent light sources. The fabricated regrowth-free DBR AlGaInAs/InP lasers exhibited a CW output power as high as 560 mW in single-mode operation at room temperature. At maximum output power the SMSR was 38 dB, proving the excellent behavior of the surface gratings. The tapered section enabled scaling the maximum CW power at room temperature from 125 mW to 560 mW, by increasing its length from 0.5 mm to 4.0 mm. The paper discusses the limitations and performance variation associated to the power scaling by using the tapered section length as a scaling parameter.

  6. Research and Development of Laser Diode Based Instruments for Applications in Space

    NASA Technical Reports Server (NTRS)

    Krainak, Michael; Abshire, James; Cornwell, Donald; Dragic, Peter; Duerksen, Gary; Switzer, Gregg

    1999-01-01

    Laser diode technology continues to advance at a very rapid rate due to commercial applications such as telecommunications and data storage. The advantages of laser diodes include, wide diversity of wavelengths, high efficiency, small size and weight and high reliability. Semiconductor and fiber optical-amplifiers permit efficient, high power master oscillator power amplifier (MOPA) transmitter systems. Laser diode systems which incorporate monolithic or discrete (fiber optic) gratings permit single frequency operation. We describe experimental and theoretical results of laser diode based instruments currently under development at NASA Goddard Space Flight Center including miniature lidars for measuring clouds and aerosols, water vapor and wind for Earth and planetary (Mars Lander) use.

  7. Laser diode technology and applications IV; Proceedings of the Meeting, Los Angeles, CA, Jan. 20-22, 1992

    NASA Astrophysics Data System (ADS)

    Renner, Daniel

    1992-06-01

    The proceedings contain material on high-power lasers, surface-emitting lasers, laser dynamics, visible and mid-IR semiconductor lasers, semiconductor laser reliability, strained-quantum-well lasers, materials and processes for semiconductor lasers, optoelectronic assembly and packaging, and semiconductor laser applications. Papers are presented on characteristics of active grating-surface-emitting amplified lasers; high-power CW operation of laser diodes with etched micromirrors; carrier transport effects in high-speed quantum-well lasers; high-power, 8.5-W, CW visible laser diodes; and highly reliable high-power AlGaAs lasers with window grown on facets. Attention is also given to InGaAs/GaAs/InGaP strained-layer quantum-well lasers grown by gas-source molecular beam epitaxy, laser-assisted etching to fabricate a buried continuous-graded cavity for unstable semiconductor laser diodes, use of microchannel cooling for high-power 2D laser diode arrays, stabilization of self-pulsating laser diodes, and a fiber bundles displacement measuring device.

  8. The NASA high power carbon dioxide laser: A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1976-01-01

    A closed-cycle, continuous wave, carbon dioxide high power laser has been designed and fabricated to support research for the identification and evaluation of possible high power laser applications. The device is designed to generate up to 70 kW of laser power in annular shape beams from 1 to 9 cm in diameter. Electric discharge, either self sustained or electron beam sustained, is used for excitation. This laser facility provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams. The facility provides a well defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  9. Generation of turquoise light by sum frequency mixing of a diode-pumped solid-state laser and a laser diode in periodically poled KTP.

    PubMed

    Johansson, Sandra; Spiekermann, Stefan; Wang, Shunhua; Pasiskevicius, Valdas; Laurell, Fredrik; Ekvall, Katrin

    2004-10-04

    We report a simple and efficient method to achieve visible light by sum-frequency mixing radiation from a diode-pumped solid-state laser and a laser diode in a periodically poled KTiOPO4 crystal. Since high-power laser diodes are available at a wide range of wavelengths, it is thereby possible to obtain essentially any wavelength in the visible spectrum by appropriate choice of lasers. For demonstration we choose to construct a light source in the blue-green region. A turquoise output power of 4.0 mW was achieved.

  10. Generation of turquoise light by sum frequency mixing of a diode-pumped solid-state laser and a laser diode in periodically poled KTP

    NASA Astrophysics Data System (ADS)

    Johansson, Sandra; Spiekermann, Stefan; Wang, Shunhua; Pasiskevicius, Valdas; Laurell, Fredrik; Ekvall, Katrin

    2004-10-01

    We report a simple and efficient method to achieve visible light by sum-frequency mixing radiation from a diode-pumped solid-state laser and a laser diode in a periodically poled KTiOPO4 crystal. Since high-power laser diodes are available at a wide range of wavelengths, it is thereby possible to obtain essentially any wavelength in the visible spectrum by appropriate choice of lasers. For demonstration we choose to construct a light source in the blue-green region. A turquoise output power of 4.0 mW was achieved.

  11. High power laser welding in hyperbaric gas and water environments

    SciTech Connect

    Shannon, G.J.; McNaught, W.; Deans, W.F.; Watson, J.

    1997-06-01

    As the exploitation of oil and gas reserves moves into deeper water (>500 m), advanced welding techniques will have to be developed for installation and repair as current commercially available arc welding processes can no longer be utilized at depths greater than 300 m due to the detrimental effect of pressure on arc stability. In addition, systems relying on diver intervention are unlikely to be viable due to health and safety considerations. Here, a hyperbaric laser welding facility has been constructed and the feasibility of high power CO{sub 2} and Nd:YAG laser welding in both high pressure gas and water environments, to simulated water depths of 500 m, has been established. From initial trials on welding through water at atmospheric pressure, it was found that the different absorption characteristics of water to 10.6 {micro}m (CO{sub 2} laser) and 1.06 {micro}m (Nd:YAG laser) radiation proved crucial. The Nd:YAG laser was totally unsuitable as the beam was largely diffused in the water, whereas the CO{sub 2} beam was readily absorbed and, using high speed video equipment, was found to form a high irradiance channel and a dry region around the weld area. Welding under a high pressure gas environment produced a highly energized plume which prevented keyhole welding at pressures over 1 {times} 10{sup 6} Pa. An investigation carried out into the efficacy of a gas jet delivery system to alleviate the extent of the plume showed that argon blown horizontally across the weld was the optimum configuration, extending the welding range up to 5 {times} 10{sup 6} Pa. A limited investigation into high pressure underwater welding showed porosity to be a problem although sound welds were produced at pressures up to 2 {times} 10{sup 6} Pa.

  12. High-power fiber laser/amplifier: present and future

    NASA Astrophysics Data System (ADS)

    Manzur, Tariq; Bastien, Steven P.

    2000-03-01

    As a result of the overwhelming demand for bandwidth, the number of channels offered in commercially available DWDM systems has climbed from 8 to 160 in just a few short years. With the growth in channel counts comes increasing demands placed upon optical amplifiers for the long haul market. High powers, flatter gain profiles, extended bandwidths (both C- and L-band), dispersion compensation, longer distances and greater control at the optical level are all capabilities that future networks will require. Today's optical amplifiers must be capable of supporting these services in advance of their installation to prepare networks for these foreseeable demands. Optigain's expertise and focus on optical amplifiers for the telecommunications industry has enabled it to achieve a technology leadership position in the field of optical amplification. Optigain's leadership position in the development of high power amplifiers based upon fiber laser technology will permit the Company to obtain favorable pricing and to gain significant market share in high growth markets. Figures 1 and 2 show the EDFA future global market shares.

  13. Modelling the spatial colour distribution of phosphor-white high power light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Keppens, A.; Denijs, S.; Wouters, S.; Ryckaert, W. R.; Deconinck, G.; Hanselaer, P.

    2010-05-01

    In contrast to the spatial (luminous) intensity distribution of high power light-emitting diodes (LEDs), little effort has been made to examine the spatial colour distribution of these light sources, i.e. the values of CIE colour coordinates as a function of direction in space. The spatial colour variation is negligible for single colour emitters, but this is not the case for bichromatic white LEDs using phosphor for wavelength conversion. As the latter diode types are most often used for high colour rendering applications, a quantitative description of their colour distribution is necessary. Therefore, photogoniometer measurements have been performed on a variety of white light-emitting diodes incorporating a planar (remote) phosphor. In this paper measurement results are used to discuss and model the spatial colour distribution of phosphor-white LEDs. Such LEDs appear to show an intrinsic and inevitable spatial colour variation. Furthermore, the measurement data and constructed model allow evaluating the visibility of spatial colour differences and the relevance of colour binning measurements at the end of LED package production lines. Using insights on spatial colour distribution gathered throughout this paper, a design proposal is made to vastly decrease the colour variation of phosphor-white LEDs.

  14. Diffuse reflectivity of gold plating with high power laser irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Yong; Zhang, Lei; Yang, Pengling; Wang, Zhenbao; Tao, Mengmeng; Liu, Fuhua; Feng, Guobin

    2015-05-01

    The discoloration and optical characteristics of the gold plating film under long-time high power laser irradiation are investigated. The fabrication process of gold plating on nickel underplate on rough surface of copper and aluminum alloy substrates is introduced. The measurement results of the diffuse reflectivity for the samples with different surface roughness indicate that roughness of the gold layer surface should be 4μm to obtain the maximum value of diffuse reflectivity. The discoloration and variation of diffuse reflectivity are experimentally studied under 2000W irradiation. The research results show that the discoloration and degrading of reflectivity are caused by the diffusion of Ni to the gold plating surface and forming NiO thin film due to the porosity of the gold film and high temperature treatment. A change of diffuse reflectivity related mechanism is described. Several plating solution recipes are used to eliminate the discoloration and mitigate the degrading of the reflectivity on gold surface.

  15. High-power diode-seeded thulium-doped fiber MOPA incorporating active pulse shaping

    NASA Astrophysics Data System (ADS)

    Shi, Hongxing; Tan, Fangzhou; Cao, Yi; Wang, Peng; Wang, Pu

    2016-10-01

    A turnkey fiber laser source generating high beam quality pulses with 240 W average power and arbitrary pulse shapes is presented in theory and experiment. It is based on semiconductor laser diode modulated by arbitrary waveform generator as a seed and polarization maintaining (PM) master oscillator power amplifier (MOPA) system to boost the pulse energy. Detailed experimental and theoretical studies are in a very good agreement. The polarization extinction ratio (PER) of system measured at maximum output power is beyond 17 dB with the excellent beam quality factor M 2 of 1.25.

  16. New generation high-power rare-earth-doped phosphate glass fiber and fiber laser

    NASA Astrophysics Data System (ADS)

    Wu, Ruikun; Myers, John D.; Myers, Michael J.

    2001-04-01

    High power, high brightness fiber lasers have numerous potential commercial and military applications. Fiber lasers with cladding pump designs represent a new generation of diode pumped configurations that are extremely efficient, have single mode output and may be operated with or without active cooling. Kigre has invented a new family of Er/Yb/Nd phosphate laser glass materials (designated QX) that promise to facilitate a quantum leap in fiber laser technology of this field. The new phosphate glass Rare-Earth doped fiber exhibit many advantages than Silica or Fluoride base fiber, see table.1. Instead of 30 to 50 meters of fused silica with a 50 mm bend radii; Kigre's phosphate glass fiber amplifiers may be designed to be less than 4 meters long .Laser performance and various design parameters, such as the fiber core diameter, NA, inner cladding shape and doping concentration are evaluated. Laser performances was demonstrated for an experimental QX/Er doubled clading fiber commissioned by MIT having 8 micron core, a 240 X 300 micron rectangle shaped inner cladding with 0.4 NA and 500 micron outer clading.. Kigre obtained approximately 2 dB/cm gain from 15cm long fiber under 940nm pumping The same fiber was evaluated by researcher at MIT. They used 975nm pump source. Maximum 270mW output was demonstrated by 30 cm long fiber with Fresnel reflection resonator mirrors. The slope efficiency of absorbed pump power s 47%.

  17. High-power thulium-doped fiber laser in an all-fiber configuration

    NASA Astrophysics Data System (ADS)

    Baravets, Yauhen; Todorov, Filip; Honzatko, Pavel

    2016-12-01

    High-power Tm-doped fiber lasers are greatly suitable for various applications, such as material processing, medicine, environmental monitoring and topography. In this work we present an all-fiber narrowband CW laser in near fundamental mode operation based on a Tm-doped double-clad active fiber pumped by 793 nm laser diodes with a central wavelength stabilized at 2039 nm by a fiber Bragg grating. The achieved output power is 60 W with a slope efficiency of 46%. The measured beam quality factor is less than 1.4. Further increasing of the output power is possible using various power scaling techniques, for example, coherent combination of several Tm-doped fiber lasers. The developed fiber laser could be employed for welding, cutting and marking of thermoplastics in industry, minimally invasive surgery in medicine or sensors in lidar systems. Future improvements of thulium fiber lasers are possible due to the extremely wide gain-bandwidth of the active medium and the rapid growth of 2-μm fiber components production.

  18. Diode pumped tunable dye laser

    NASA Astrophysics Data System (ADS)

    Burdukova, O.; Gorbunkov, M.; Petukhov, V.; Semenov, M.

    2017-03-01

    A wavelength-tunable dye laser pumped by blue laser diodes (λ =445 nm) in a 200 ns pulsed mode has been developed. We used a 3-mirror cavity with transverse excitation and total internal reflection of laser beam in the active element. Tuning curves for 8 dyes in benzyl alcohol were measured in the range of 506-700 nm. Four dyes have their tuning range more than 60 nm, which is comparable to the tuning ranges of other dye lasers pumped by more expensive sources. The output energy obtained at the generation maximum of both DCM and coumarin 540A dyes was approximately 130 nJ while the pump energy was 2400 nJ.

  19. Self-Injection Locking Of Diode Lasers

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1991-01-01

    Simple optical coupling scheme locks array of gain-guided diode lasers into oscillation in single mode and with single-lobed output beam. Selective feedback from thin etalon self-injection-locks array into desired mode. One application of new scheme for pumping of neodymium: yttrium aluminum garnet lasers with diode-laser arrays.

  20. Next Generation Large Mode Area Fiber Technologies for High Power Fiber Laser Arrays

    DTIC Science & Technology

    2012-06-08

    REPORT Next Generation Large Mode Area Fiber Technologies for High Power Fiber Laser Arrays 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: This program...monolithically-integrated building blocks (individual laser channels) of high power beam-combined fiber laser arrays. Robust single-mode performance...of CCC fibers with core sizes of up to ~60?m has been rigorously demonstrated. Various CCC fiber based high power lasers have been also

  1. Diode Pumped Fiber Laser.

    DTIC Science & Technology

    1984-12-01

    72 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2. Mechanical Q-Switching ..................... 72 3...nonuniform heating of the molten zone due to the manner in which the laser beams are inc ident upon the source rod, and (3) mechanical vibrations in the motor...were attached to a solid block of aluminum for better mechanical stability. Curved mirrors (R = 10 cm) were obtained from an outside manufacturer for

  2. Diode Pumped Fiber Laser.

    DTIC Science & Technology

    1987-08-01

    mounting fixture beeame soft and gradually come out of the fixture. S)me chemical reaction was takin- place between the epoxy and the dye solvent , which...loose. The solvent apparenlly did no)t affect the bonding agent used to attach the fibers inside the capillarie,. \\lthmigh individual capillarv tubes...pure solvent . was added to the cavity laser oscillation ceased, and was onlv re, ,t()red after readjuisting the orientation of the output coupler, as

  3. Schlieren with a laser diode source

    NASA Astrophysics Data System (ADS)

    Burner, A. W.; Franke, J. M.

    1981-10-01

    The use of a laser diode as a light source for a schlieren system designed to study phase objects such as a wind-tunnel flow is explored. A laser diode schlieren photograph and a white light schlieren photograph (zirconium arc source) are presented for comparison. The laser diode has increased sensitivity, compared with light schlieren, without appreciable image degradiation, and is an acceptable source for schlieren flow visualization.

  4. Power spectral density specifications for high-power laser systems

    SciTech Connect

    Lawson, J.K.; Aikens, D.A.; English, R.E. Jr.; Wolfe, C.R.

    1996-04-22

    This paper describes the use of Fourier techniques to characterize the transmitted and reflected wavefront of optical components. Specifically, a power spectral density, (PSD), approach is used. High power solid-state lasers exhibit non-linear amplification of specific spatial frequencies. Thus, specifications that limit the amplitude of these spatial frequencies are necessary in the design of these systems. Further, NIF optical components have square, rectangular or irregularly shaped apertures with major dimensions up-to 800 mm. Components with non-circular apertures can not be analyzed correctly with Zernicke polynomials since these functions are an orthogonal set for circular apertures only. A more complete and powerful representation of the optical wavefront can be obtained by Fourier analysis in 1 or 2 dimensions. The PSD is obtained from the amplitude of frequency components present in the Fourier spectrum. The shape of a resultant wavefront or the focal spot of a complex multicomponent laser system can be calculated and optimized using PSDs of the individual optical components which comprise the system. Surface roughness can be calculated over a range of spatial scale-lengths by integrating the PSD. Finally, since the optical transfer function (OTF) of the instruments used to measure the wavefront degrades at high spatial frequencies, the PSD of an optical component is underestimated. We can correct for this error by modifying the PSD function to restore high spatial frequency information. The strengths of PSD analysis are leading us to develop optical specifications incorporating this function for the planned National Ignition Facility (NIF).

  5. Diode laser harmonic spectroscopy applied to in situ measurements of atmospheric trace molecules

    NASA Technical Reports Server (NTRS)

    Loewenstein, Max

    1988-01-01

    With the emergence of lead-salt diode laser technology, a broad and important IR spectral region, roughly 3-30 microns, became accessible to tunable laser spectroscopy. More recent advances in fabrication techniques have provided experimenters with relatively high power quasi-single-mode high-temperature lasers that are readily adapted to compact automated instruments for field experiments. An especially attractive capability of diode lasers is the ease of using them for simultaneous multiconstituent sampling in the atmosphere. This paper presents a summary description of field instruments for atmospheric research which employ diode lasers and second-harmonic detection. Representative results obtained with some of these instruments are presented.

  6. Effects of radiation on laser diodes.

    SciTech Connect

    Phifer, Carol Celeste

    2004-09-01

    The effects of ionizing and neutron radiation on the characteristics and performance of laser diodes are reviewed, and the formation mechanisms for nonradiative recombination centers, the primary type of radiation damage in laser diodes, are discussed. Additional topics include the detrimental effects of aluminum in the active (lasing) volume, the transient effects of high-dose-rate pulses of ionizing radiation, and a summary of ways to improve the radiation hardness of laser diodes. Radiation effects on laser diodes emitting in the wavelength region around 808 nm are emphasized.

  7. Excess noise in tunable diode lasers

    NASA Technical Reports Server (NTRS)

    Rowland, C. W.

    1981-01-01

    The method and the apparatus for identifying excess-noise regions in tunable diode lasers are described. These diode lasers exhibit regions of excess noise as their wavelength is tuned. If a tunable diode laser is to be used as a local oscillator in a superheterodyne optical receiver, these excess-noise regions severely degrade the performance of the receiver. Measurement results for several tunable diode lasers are given. These results indicate that excess noise is not necessarily associated with a particular wavelength, and that it is possible to select temperature and injection current such that the most ideal performance is achieved.

  8. Holographic injection locking of a broad area laser diode via a photorefractive thin-film device.

    PubMed

    van Voorst, P D; de Wit, M R; Offerhaus, H L; Tay, S; Thomas, J; Peyghambarian, N; Boller, K-J

    2007-12-24

    We demonstrate locking of a high power broad area laser diode to a single frequency using holographic feedback from a photorefractive polymer thin-film device for the first time. A four-wave mixing setup is used to generate feedback for the broad area diode at the wavelength of the single frequency source (Ti:Sapphire laser) while the spatial distribution adapts to the preferred profile of the broad area diode. The result is an injection-locked broad area diode emitting with a linewidth comparable to the Ti:Sapphire laser.

  9. Application and the key technology on high power fiber-optic laser in laser weapon

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  10. High-power high-brightness semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Botez, D.

    2005-01-01

    Broad-stripe (greater than or equal to 100 microns) diode lasers have achieved CW powers as high as 15W, and wallplug efficiencies as high as 70%. For high coherent power photonic-crystal structures with modulated gain, that is active photonic crystals (APCs), of large index steps have been used, as early as 1988, for effective lateral-mode control range in large-aperture (100-200 microns) devices. Photonic-bandpass (PBP) structures relying on long-range resonant leaky-wave coupling, so called ROW arrays, have allowed stable, near-diffraction-limited beam operation to powers as high as 1.6W CW and 10W peak pulsed. Photonic-bandgap (PBG) structures with a built-in lattice defect, so called ARROW lasers, have provided up to 0.5W CW stable, single-mode power and hold the potential for 1W CW highly reliable single-mode operation. The solution for high-efficiency surface emission, from 2nd-order DFB/DBR lasers, in a single-lobe beam pattern was found in 2000. Single-lobe and single-mode operation in a diffraction-limited beam orthonormal to the chip surface was demonstrated, which opens the way for the realization of 2-D surface-emitting, 2nd-order APCs for the stable generation of watts of CW single-lobe, single-mode power from large 2-D apertures, as well as scalability of such devices at the wafer level.

  11. Improving lifetime of quasi-CW laser diode arrays for pumping 2-micron solid state lasers

    NASA Astrophysics Data System (ADS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-04-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  12. Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  13. 250W diode laser for low pressure Rb vapor pumping

    NASA Astrophysics Data System (ADS)

    Podvyaznyy, A.; Venus, G.; Smirnov, V.; Mokhun, O.; Koulechov, V.; Hostutler, D.; Glebov, L.

    2010-02-01

    The diode pumped alkali vapor lasers operating at subatmospheric pressure require developing of a new generation of high-power laser diode sources with about 10 GHz wide emission spectrum. The latest achievements in the technology of volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass opened new opportunities for the design and fabrication of compact external cavity laser diodes, diode bars and stacks with reflecting VBGs as output couplers. We present a diode laser system providing up to 250 W output power and emission spectral width of 20 pm (FWHM) at the wavelength of 780 nm. The stability and position of an emission wavelength is determined by the resonant wavelength of a VBG which is controlled by temperature. Stability of an emitting wavelength is within 5 pm. Thermal tuning of the wavelength provides maximum overlapping of emitting line with absorption spectrum of a Rb (rubidium)- cell. The designed system consists of 7 modules tuned to the same wavelength corresponding to D2 spectral line of Rb87 or Rb85 and coupled to a single output fiber. Analogous systems could be used for other Rb isotopes spectral lines as well as for lasers based on other alkali metal vapors (Cs and K) or any agents with narrow absorption lines.

  14. GaN IMPATT diode: a photo-sensitive high power terahertz source

    NASA Astrophysics Data System (ADS)

    Mukherjee, Moumita; Mazumder, Nilraton; Roy, Sitesh Kumar; Goswami, Kushalendu

    2007-12-01

    The prospects of wurtzite phase single-drift-region (SDR), flat and single-low-high-low (SLHL) type GaN IMPATT devices as terahertz sources are studied through a simulation experiment. The study indicates that GaN IMPATT diodes are capable of generating high RF power (at least 2.5 W) at around 1.45 THz with high efficiency (17-20%). The superior electronic properties of GaN make this a promising candidate for IMPATT operation in the THz regime, unapproachable by conventional Si, GaAs and InP based IMPATT diodes. The effect of parasitic series resistance on the THz performance of the device is further simulated. It is interesting to note that the presence of a charge bump in a flatly doped SDR structure reduces the value of parasitic series resistance by 22%. The effects of photo- illumination on the devices are also investigated using a modified double iterative simulation technique. Under photo-illumination (i) the negative conductance and (ii) the negative resistance of the devices (both flat and SLHL) decrease, while the frequency of operation and the device quality factor shift upwards. However, the upward shift in operating frequency is found to be more (~16 GHz) in the case of the SLHL SDR IMPATT device. The study indicates that GaN IMPATT is a promising opto-sensitive high power THz source.

  15. Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass.

    PubMed

    Engholm, M; Norin, L

    2008-01-21

    Photodarkening experiments are performed on ytterbium-doped silicate glass samples. A strong charge-transfer (CT) absorption band near 230nm in aluminosilicate glass is found to be correlated to the mechanism of induced color center formation. Excitation into the CT-absorption band generates similar color centers as observed in ytterbium-doped fiber lasers under 915nm high power diode pumping. The position of the CT-absorption band is compositional dependent and is shifted to shorter wavelengths in ytterbium doped phosphosilicate glass. Very low levels of photodarkening is observed for the ytterbium doped phosphosilicate glass composition under 915nm high power diode pumping. Possible excitation routes to reach the CT-absorption band under 915nm pumping are discussed.

  16. Laser diode array pumped continuous wave Rubidium vapor laser.

    PubMed

    Zhdanov, B V; Stooke, A; Boyadjian, G; Voci, A; Knize, R J

    2008-01-21

    We have demonstrated continuous wave operation of a laser diode array pumped Rb laser with an output power of 8 Watts. A slope efficiency of 60% and a total optical efficiency of 45% were obtained with a pump power of 18 Watts. This laser can be scaled to higher powers by using multiple laser diode arrays or stacks of arrays.

  17. Systems and assemblies for transferring high power laser energy through a rotating junction

    DOEpatents

    Norton, Ryan J.; McKay, Ryan P.; Fraze, Jason D.; Rinzler, Charles C.; Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2016-01-26

    There are provided high power laser devices and systems for transmitting a high power laser beam across a rotating assembly, including optical slip rings and optical rotational coupling assemblies. These devices can transmit the laser beam through the rotation zone in free space or within a fiber.

  18. High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics

    PubMed Central

    Allen, Thomas J.; Beard, Paul C.

    2016-01-01

    The use of visible light emitting diodes (LEDs) as an alternative to Q-switched lasers conventionally used as photoacoustic excitation sources has been explored. In common with laser diodes, LEDs offer the advantages of compact size, low cost and high efficiency. However, laser diodes suitable for pulsed photoacoustic generation are typically available only at wavelengths greater than 750nm. By contrast, LEDs are readily available at visible wavelengths below 650nm where haemoglobin absorption is significantly higher, offering the prospect of increased SNR for superficial vascular imaging applications. To demonstrate feasibility, a range of low cost commercially available LEDs operating in the 420-620nm spectral range were used to generate photoacoustic signals in physiologically realistic vascular phantoms. Overdriving with 200ns pulses and operating at a low duty cycle enabled pulse energies up to 10µJ to be obtained with a 620nm LED. By operating at a high pulse repetition frequency (PRF) in order to rapidly signal average over many acquisitions, this pulse energy was sufficient to generate detectable signals in a blood filled tube immersed in an Intralipid suspension (µs’ = 1mm−1) at a depth of 15mm using widefield illumination. In addition, a compact four-wavelength LED (460nm, 530nm, 590nm, 620nm) in conjunction with a coded excitation scheme was used to illustrate rapid multiwavelength signal acquisition for spectroscopic applications. This study demonstrates that LEDs could find application as inexpensive and compact multiwavelength photoacoustic excitation sources for imaging superficial vascular anatomy. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. PMID:27446652

  19. Laser diode package with enhanced cooling

    DOEpatents

    Deri, Robert J.; Kotovsky, Jack; Spadaccini, Christopher M.

    2011-09-13

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  20. Laser diode package with enhanced cooling

    SciTech Connect

    Deri, Robert J; Kotovsky, Jack; Spadaccini, Christopher M

    2012-06-12

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  1. Laser diode package with enhanced cooling

    SciTech Connect

    Deri, Robert J; Kotovsky, Jack; Spadaccini, Christopher M

    2012-06-26

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  2. Hermetic diode laser transmitter module

    NASA Astrophysics Data System (ADS)

    Ollila, Jyrki; Kautio, Kari; Vahakangas, Jouko; Hannula, Tapio; Kopola, Harri K.; Oikarinen, Jorma; Sivonen, Matti

    1999-04-01

    In very demanding optoelectronic sensor applications it is necessary to encapsulate semiconductor components hermetically in metal housings to ensure reliable operation of the sensor. In this paper we report on the development work to package a laser diode transmitter module for a time- off-light distance sensor application. The module consists of a lens, laser diode, electronic circuit and optomechanics. Specifications include high acceleration, -40....+75 degree(s)C temperature range, very low gas leakage and mass-production capability. We have applied solder glasses for sealing optical lenses and electrical leads hermetically into a metal case. The lens-metal case sealing has been made by using a special soldering glass preform preserving the optical quality of the lens. The metal housings are finally sealed in an inert atmosphere by welding. The assembly concept to retain excellent optical power and tight optical axis alignment specifications is described. The reliability of the laser modules manufactured has been extensively tested using different aging and environmental test procedures. Sealed packages achieve MIL- 883 standard requirements for gas leakage.

  3. Method and apparatus for delivering high power laser energy over long distances

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-04-07

    Systems, devices and methods for the transmission and delivery of high power laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser drilling of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates.

  4. High brightness diode-pumped organic solid-state laser

    SciTech Connect

    Zhao, Zhuang; Mhibik, Oussama; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien

    2015-02-02

    High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

  5. Diode Lasers and Practical Trace Analysis.

    ERIC Educational Resources Information Center

    Imasaka, Totaro; Nobuhiko, Ishibashi

    1990-01-01

    Applications of lasers to molecular absorption spectrometry, molecular fluorescence spectrometry, visible semiconductor fluorometry, atomic absorption spectrometry, and atomic fluorescence spectrometry are discussed. Details of the use of the frequency-doubled diode laser are provided. (CW)

  6. Refractive microlens structures with high-damage thresholds enable flexible beam shaping of high-power lasers

    NASA Astrophysics Data System (ADS)

    Homburg, O.; Aschke, L.; Lissotschenko, V.

    2007-01-01

    High power and high energy laser sources are used in a large variety of industrial and scientific applications for material processing. The most common are welding, soldering, cutting, drilling, laser thermal annealing, micro-machining, ablation and micro-lithography. For optimised processes the most important laser sources today are: CO II-lasers, Nd- YAG lasers, high-power diode lasers, excimer lasers or fiber lasers. Beside the right choice of the suitable laser source the right choice of high performance optics for generating the appropriate beam profile is of high importance for the applications. In many cases homogenous top-hat square or rectangular light fields as well as light lines are indispensable or add strong advantages to the application. This takes into account that gaussian shaped laser foci are not the ideal solution. Refractive micro-lenses and micro-lens arrays based on damage resistant materials are an efficient, compact and flexible solution to achieve adequate intensity distributions on the work piece. LIMO has a unique production technology based on computer-aided design that enables the manufacture of high-precision microlens arrays with free programmable surfaces. Thus, specific beam profiles with superior uniformity and efficiency can be generated. Compact beam shaper modules with prealigned optics have been developed. These modules simply have to be placed into the collimated input beam and the required intensity profile is generated at the target without any complicated alignment.

  7. Underwater Chaotic Lidar using Blue Laser Diodes

    NASA Astrophysics Data System (ADS)

    Rumbaugh, Luke K.

    cavity. The possibility of overcoming this limit by increasing optical feedback strength is discussed. 2. Power scaling in the blue-green spectrum using no optical frequency doubler. Synchronization of two 462 nm blue InGaN laser diodes by bi-directional optical injection is demonstrated for the first time in laboratory experiments. The improvement in chaotic intensity modulation signal strength is demonstrated to be 2.5x over the single-diode case. The signal strength is again shown to be limited by the onset of internal cavity lasing. The synchronized-laser arrangement is shown to be theoretically equivalent to a single-diode scenario in which the optical feedback is amplified by 2x, supporting the idea that increased optical feedback strength can be used to scale optical chaotic modulation of InGaN diodes to high powers. 3. Underwater impulse response measurements using a calibrated chaotic lidar system. An underwater chaotic lidar system using two synchronized diodes as transmitters is demonstrated in laboratory experiments for the first time. Reflective impulse response measurements using the lidar system are made in free space, and in a variety of clear and turbid water conditions, using a quasi-monostatic (i.e. co-located transmitter and receiver) arrangement. A calibration routine is implemented that increases accuracy and instantaneous dynamic range of the impulse response measurement, resulting in a baseline temporal resolution of 750 ps and a PSLR of over 10 dB. The calibrated system is shown to be able to simultaneously measure localized and distributed reflections, and to allow separation of the localized ( i.e. surface and target) reflections from the distributed ( i.e. backscatter) returns in several domains. Accurate range measurement with sub-inch typical error is demonstrated in laboratory water tank tests, which show accurate measurement through >6 feet of turbid water, as limited by the experimental water tank setup. Strong performance to the limit of

  8. High power single-frequency continuously-tunable compact extended-cavity semiconductor laser.

    PubMed

    Laurain, A; Myara, M; Beaudoin, G; Sagnes, I; Garnache, A

    2009-06-08

    We demonstrate high power high efficiency (0:3 W) low noise single frequency operation of a compact extended-cavity surface-emitting-semiconductor-laser exhibiting a continuous tunability over 0:84 THz with high beam quality. We took advantage of thermal lens-based stability to develop a short (< 3 mm) plano-plano external cavity without any intracavity filter. The structure is optically pumped by a 1 W commercial 830 nm multimode diode laser. No heat management was required. We measured a low divergence circular TEM(00) beam at the diffraction limit (M(2) < 1:05) with a linear light polarization (> 37 dB). The side mode suppression ratio is 60 dB. The free running laser linewidth is 850 kHz limited by pump induced thermal fluctuations. Thanks to this high-Q external cavity approach, the frequency noise is low and the dynamics is in the relaxation-oscillation-free regime, exhibiting a low intensity noise, with a cutoff frequency approximately 250 MHz above which the shot noise level is reached. We show that pump properties define the cavity design and laser coherence.

  9. High power lasers and their industrial applications; Proceedings of the Meeting, Innsbruck, Austria, Apr. 15-18, 1986

    NASA Astrophysics Data System (ADS)

    Schuoecker, Dieter

    1986-01-01

    Papers are presented on the discharge behavior of an RF excited high power CO2 laser at different excitation frequencies; high power CO2 lasers for materials processing; a semiconductive preionization technique; high power Nd lasers for industrial applications; high power light transmission in optical waveguides; beam delivery systems for high power lasers; and quality control for high power CO2 laser optics. Topics discussed include the monitoring of laser material processes; measuring the quality of high power laser beams; the physics of laser material processing; metal precision drilling with lasers; and the evolution of microstructure for laser clad Fe-Cr-Mn-C alloys. Consideration is given to robotic manipulation for laser processing; laser cutting; the use of the laser versus the electron beam in welding the surface treatments; high power laser safety; and laser protective filters for the visible and near-IR spectrum.

  10. Simulation of power – current characteristics of high-power semiconductor lasers emitting in the range 1.5 – 1.55 μm

    SciTech Connect

    Gorlachuk, P V; Ivanov, A V; Kurnosov, V D; Kurnosov, K V; Romantsevich, V I; Simakov, V A; Chernov, R V

    2014-02-28

    We report the simulation of power – current characteristics of high-power semiconductor lasers emitting in the range 1.5 – 1.55 μm. A technique is described which allows one to determine the thermal resistance and characteristic temperatures of a laser diode. The radiative and nonradiative carrier recombination rates are evaluated. Simulation results are shown to agree well with experimental data. (lasers)

  11. Kilowatt class high-power CW Yb:YAG cryogenic laser

    NASA Astrophysics Data System (ADS)

    Brown, D. C.; Singley, J. M.; Yager, E.; Kowalewski, K.; Guelzow, J.; Kuper, J. W.

    2008-04-01

    We discuss progress towards a kilowatt class CW Yb:YAG cryogenic laser. Cryogenically-cooled crystalline solid-state lasers, and Yb:YAG lasers in particular, are attractive sources of scalable CW output power with very high wallplug efficiency and excellent beam-quality that is independent of the output power. Results are presented for a high power Yb:YAG oscillator that has produced over 550 W of output power with good slope and optical-optical efficiencies while maintaining single transverse mode output. We also describe a new oscillator-amplifier cryogenic Yb:YAG system nearing completion, that will build on the work presented here and result in CW power output of > 1 kW while maintaining near-diffraction-limited beam quality. The oscillator described here consists of a distributed array of seven highly-doped thin Yb:YAG-sapphire disks in a folded multiple-Z resonator. Individual disks are pumped from opposite sides using 100 W fiber-coupled 940 nm pump diodes. The laser system produces a near-diffraction-limited TEM 00 output beam with the aid of an active conduction-cooling design. In addition, the device can be scaled to very high average power in an oscillator-amplifier configuration, by increasing the number and diameter of the thin disks, and by increasing the power of the pump diodes with only minor modifications to the current design. We will present experimental results including output power, threshold power, and slope and optical-optical efficiencies.

  12. Advanced specialty fiber designs for high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Gu, Guancheng

    The output power of fiber lasers has increased rapidly over the last decade. There are two major limiting factors, namely nonlinear effects and transverse mode instability, prohibiting the power scaling capability of fiber lasers. The nonlinear effects, originating from high optical intensity, primarily limit the peak power scaling. The mode instability, on the other hand, arises from quantum-defect driven heating, causing undesired mode coupling once the power exceeds the threshold and degradation of beam quality. The mode instability has now become the bottleneck for average output power scaling of fiber lasers. Mode area scaling is the most effective way to mitigate nonlinear effects. However, the use of large mode area may increase the tendency to support multiple modes in the core, resulting in lower mode instability threshold. Therefore, it is critical to maintain single mode operation in a large mode area fiber. Sufficient higher order mode suppression can lead to effective single-transverse-mode propagation. In this dissertation, we explore the feasibility of using specialty fiber to construct high power fiber lasers with robust single-mode output. The first type of fiber discussed is the resonantly-enhanced leakage channel fiber. Coherent reflection at the fiber outer boundary can lead to additional confinement especially for highly leaky HOM, leading to lower HOM losses than what are predicted by conventional finite element mothod mode solver considering infinite cladding. In this work, we conducted careful measurements of HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes and coating indexes were studied in comparison to simulations. This work demonstrates the limit of the simulation method commonly used in the large-mode-area fiber designs and the need for an improved approach. More importantly, this work also demonstrates that a

  13. High-Power Solid-State Lasers from a Laser Glass Perspective

    SciTech Connect

    Campbell, J H; Hayden, J S; Marker, A J

    2010-12-17

    Advances in laser glass compositions and manufacturing have enabled a new class of high-energy/high-power (HEHP), petawatt (PW) and high-average-power (HAP) laser systems that are being used for fusion energy ignition demonstration, fundamental physics research and materials processing, respectively. The requirements for these three laser systems are different necessitating different glasses or groups of glasses. The manufacturing technology is now mature for melting, annealing, fabricating and finishing of laser glasses for all three applications. The laser glass properties of major importance for HEHP, PW and HAP applications are briefly reviewed and the compositions and properties of the most widely used commercial laser glasses summarized. Proposed advances in these three laser systems will require new glasses and new melting methods which are briefly discussed. The challenges presented by these laser systems will likely dominate the field of laser glass development over the next several decades.

  14. Diode laser power module for beamed power transmission

    NASA Technical Reports Server (NTRS)

    Choi, S. H.; Williams, M. D.; Lee, J. H.; Conway, E. J.

    1991-01-01

    Recent progress with powerful, efficient, and coherent monolithic diode master-oscillator/power-amplifier (M-MOPA) systems is promising for the development of a space-based diode laser power station. A conceptual design of a 50-kW diode laser power module was made for space-based power stations capable of beaming coherent power to the moon, Martian rovers, or other satellites. The laser diode power module consists of a solar photovoltaic array or nuclear power source, diode laser arrays (LDAs), a phase controller, beam-steering optics, a thermal management unit, and a radiator. Thermal load management and other relevant aspects of the system (such as power requirements and system mass) are considered. The 50-kW power module described includes the highest available efficiency of LD M-MOPA system to date. However, the overall efficiency of three amplifier stages, including the coupling efficiency, turns out to be 55.5 percent. Though a chain of PA stages generates a high-power coherent beam, there is a penalty due to the coupling loss between stages. The specific power of the 50-kW module using solar power is 6.58 W/kg.

  15. Versatile subnanosecond laser diode driver

    NASA Astrophysics Data System (ADS)

    Żbik, Mateusz; Wieczorek, Piotr Z.

    2016-09-01

    This article presents a laser diode driver that provides a fast modulation of a laser beam. A pulsed current source was designed and built to test Infra-Red (I-R) receivers in the Time Domain (TD). The proposed solution allows to estimate pulse responses of various photodetectors, whereas the testing was performed with a PiN photodetector. The pulse response brings the information on the behavior of the device under test in a wide frequency range. In addition, an experimental application of the proposed method is presented too. System discussed in this paper has been fully designed and manufactured in Warsaw University of Technology (WUT) in Institute of Electronic Systems (ISE).

  16. Diode Laser Ear Piercing: A Novel Technique.

    PubMed

    Suseela, Bibilash Babu; Babu, Preethitha; Chittoria, Ravi Kumar; Mohapatra, Devi Prasad

    2016-01-01

    Earlobe piercing is a common office room procedure done by a plastic surgeon. Various methods of ear piercing have been described. In this article, we describe a novel method of laser ear piercing using the diode laser. An 18-year-old female patient underwent an ear piercing using a diode laser with a power of 2.0 W in continuous mode after topical local anaesthetic and pre-cooling. The diode laser was fast, safe, easy to use and highly effective way of ear piercing. The advantages we noticed while using the diode laser over conventional methods were more precision, minimal trauma with less chances of hypertrophy and keloids, no bleeding with coagulation effect of laser, less time taken compared to conventional method and less chance of infection due to thermal heat effect of laser.

  17. Diode Laser Ear Piercing: A Novel Technique

    PubMed Central

    Suseela, Bibilash Babu; Babu, Preethitha; Chittoria, Ravi Kumar; Mohapatra, Devi Prasad

    2016-01-01

    Earlobe piercing is a common office room procedure done by a plastic surgeon. Various methods of ear piercing have been described. In this article, we describe a novel method of laser ear piercing using the diode laser. An 18-year-old female patient underwent an ear piercing using a diode laser with a power of 2.0 W in continuous mode after topical local anaesthetic and pre-cooling. The diode laser was fast, safe, easy to use and highly effective way of ear piercing. The advantages we noticed while using the diode laser over conventional methods were more precision, minimal trauma with less chances of hypertrophy and keloids, no bleeding with coagulation effect of laser, less time taken compared to conventional method and less chance of infection due to thermal heat effect of laser. PMID:28163460

  18. Diode lasers: From laboratory to industry

    NASA Astrophysics Data System (ADS)

    Nasim, Hira; Jamil, Yasir

    2014-03-01

    The invention of first laser in 1960 triggered the discovery of several new families of lasers. A rich interplay of different lasing materials resulted in a far better understanding of the phenomena particularly linked with atomic and molecular spectroscopy. Diode lasers have gone through tremendous developments on the forefront of applied physics that have shown novel ways to the researchers. Some interesting attributes of the diode lasers like cost effectiveness, miniature size, high reliability and relative simplicity of use make them good candidates for utilization in various practical applications. Diode lasers are being used by a variety of professionals and in several spectroscopic techniques covering many areas of pure and applied sciences. Diode lasers have revolutionized many fields like optical communication industry, medical science, trace gas monitoring, studies related to biology, analytical chemistry including elemental analysis, war fare studies etc. In this paper the diode laser based technologies and measurement techniques ranging from laboratory research to automated field and industry have been reviewed. The application specific developments of diode lasers and various methods of their utilization particularly during the last decade are discussed comprehensively. A detailed snapshot of the current state of the art diode laser applications is given along with a detailed discussion on the upcoming challenges.

  19. Multi-kW cw fiber oscillator pumped by wavelength stabilized fiber coupled diode lasers

    NASA Astrophysics Data System (ADS)

    Becker, Frank; Neumann, Benjamin; Winkelmann, Lutz; Belke, Steffen; Ruppik, Stefan; Hefter, Ulrich; Köhler, Bernd; Wolf, Paul; Biesenbach, Jens

    2013-02-01

    High power Yb doped fiber laser sources are beside CO2- and disk lasers one of the working horses of industrial laser applications. Due to their inherently given robustness, scalability and high efficiency, fiber laser sources are best suited to fulfill the requirements of modern industrial laser applications in terms of power and beam quality. Pumping Yb doped single-mode fiber lasers at 976nm is very efficient. Thus, high power levels can be realized avoiding limiting nonlinear effects like SRS. However the absorption band of Yb doped glass around 976nm is very narrow. Therefore, one has to consider the wavelength shift of the diode lasers used for pumping. The output spectrum of passively cooled diode lasers is mainly defined by the applied current and by the heat sink temperature. Furthermore the overall emission line width of a high power pump source is dominated by the large number of needed diode laser emitters, each producing an individual spectrum. Even though it is possible to operate multi-kW cw single-mode fiber lasers with free running diode laser pumps, wavelength stabilizing techniques for diode lasers (e.g. volume holographic gratings, VHG) can be utilized in future fiber laser sources to increase the output power level while keeping the energy consumption constant. To clarify the benefits of wavelength stabilized diode lasers with integrated VHG for wavelength locking the performance of a dual side pumped fiber oscillator is discussed in this article. For comparison, different pumping configurations consisting of stabilized and free-running diode lasers are presented.

  20. Hard solder 20-kW QCW stack array diode laser

    NASA Astrophysics Data System (ADS)

    Li, Xiaoning; Kang, Lijun; Wang, Jingwei; Zhang, Pu; Xiong, Lingling; Liu, Xingsheng

    2012-03-01

    With the increasing applications of high power semiconductor lasers in industry, advanced manufacturing, aerospace, medical systems, display, entertainment, etc., semiconductor lasers with high power and high performances are required. The performance of semiconductor lasers is greatly affected by packaging structure, packaging process and beam shaping. A novel macro channel cooler (MaCC) for stack array laser with good heat dissipation capacity and high reliability is presented in this work. Based on the MaCC package, a high power stack array diode laser is successfully fabricated. A series of techniques such as spectrum control and beam control are used to achieve narrow spectrum and high beam quality. The performances of the semiconductor laser stack array are characterized. A high power 20kW QCW hard solder packaged stack array laser is fabricated; a narrow spectrum of 3.94 nm and an excellent rectangular beam shape are obtained. The lifetime of the stack array laser is tested as well.

  1. Frequency stabilization of diode-laser-pumped solid state lasers

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.

  2. High power, short pulses ultraviolet laser for the development of a new x-ray laser

    SciTech Connect

    Meixler, L.; Nam, C.H.; Robinson, J.; Tighe, W.; Krushelnick, K.; Suckewer, S.; Goldhar, J.; Seely, J.; Feldman, U.

    1989-04-01

    A high power, short pulse ultraviolet laser system (Powerful Picosecond-Laser) has been developed at the Princeton Plasma Physics Laboratory (PPPL) as part of experiments designed to generate shorter wavelength x-ray lasers. With the addition of pulse compression and a final KrF amplifier the laser output is expected to have reached 1/3-1/2 TW (10/sup 12/ watts) levels. The laser system, particularly the final amplifier, is described along with some initial soft x-ray spectra from laser-target experiments. The front end of the PP-Laser provides an output of 20--30 GW (10/sup 9/ watts) and can be focussed to intensities of /approximately/10/sup 16/ W/cm/sup 2/. Experiments using this output to examine the effects of a prepulse on laser-target interaction are described. 19 refs., 14 figs.

  3. A NASA high-power space-based laser research and applications program

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Walberg, G. D.; Conway, E. J.; Jones, L. W.

    1983-01-01

    Applications of high power lasers are discussed which might fulfill the needs of NASA missions, and the technology characteristics of laser research programs are outlined. The status of the NASA programs or lasers, laser receivers, and laser propulsion is discussed, and recommendations are presented for a proposed expanded NASA program in these areas. Program elements that are critical are discussed in detail.

  4. The NASA high-power carbon dioxide laser - A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1977-01-01

    The NASA Lewis Research Center has designed and fabricated a closed-cycle, continuous wave (CW), carbon dioxide (CO2) high-power laser to support research for the identification and evaluation of possible high-power laser applications. The device is designed to generate up to 70 kW of laser power in annular-shape beams from 1 to 9 cm in diameter. Electric discharge, either self-sustained or electron-beam-sustained, is used for excitation. This laser facility can be used in two ways. First, it provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high-power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams, all of which are important whether the laser application is government or industry oriented. Second, the facility provides a well-defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  5. Small core fiber coupled 60-W laser diode

    NASA Astrophysics Data System (ADS)

    Fernie, Douglas P.; Mannonen, Ilkka; Raven, Anthony L.

    1995-05-01

    Semiconductor laser diodes are compact, efficient and reliable sources of laser light and 25 W fiber coupled systems developed by Diomed have been in clinical use for over three years. For certain applications, particularly in the treatment of benign prostatic hyperplasia and flexible endoscopy, higher powers are desirable. In these applications the use of flexible optical fibers of no more than 600 micrometers core diameter is essential for compatibility with most commercial delivery fibers and instrumentation. A high power 60 W diode laser system for driving these small core fibers has been developed. The design requirements for medical applications are analyzed and system performance and results of use in gastroenterology and urology with small core fibers will be presented.

  6. Diode-pumped laser altimeter

    NASA Technical Reports Server (NTRS)

    Welford, D.; Isyanova, Y.

    1993-01-01

    TEM(sub 00)-mode output energies up to 22.5 mJ with 23 percent slope efficiencies were generated at 1.064 microns in a diode-laser pumped Nd:YAG laser using a transverse-pumping geometry. 1.32-micron performance was equally impressive at 10.2 mJ output energy with 15 percent slope efficiency. The same pumping geometry was successfully carried forward to several complex Q-switched laser resonator designs with no noticeable degradation of beam quality. Output beam profiles were consistently shown to have greater than 90 percent correlation with the ideal TEM(sub 00)-order Gaussian profile. A comparison study on pulse-reflection-mode (PRM), pulse-transmission-mode (PTM), and passive Q-switching techniques was undertaken. The PRM Q-switched laser generated 8.3 mJ pulses with durations as short as 10 ns. The PTM Q-switch laser generated 5 mJ pulses with durations as short as 5 ns. The passively Q-switched laser generated 5 mJ pulses with durations as short as 2.4 ns. Frequency doubling of both 1.064 microns and 1.32 microns with conversion efficiencies of 56 percent in lithium triborate and 10 percent in rubidium titanyl arsenate, respectively, was shown. Sum-frequency generation of the 1.064 microns and 1.32 microns radiations was demonstrated in KTP to generate 1.1 mJ of 0.589 micron output with 11.5 percent conversion efficiency.

  7. Advanced Splicing and High-Resolution Imaging Facility for High Power PCF Laser Fabrication

    DTIC Science & Technology

    2014-10-31

    process, and integrate PCF’s into all-fiber high power laser systems. Specifically, a tabletop scanning electron microscope (SEM) and a CO2 laser ...PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: ...... ...... Technology Transfer No technology transfers are reported during this project Final Report CO2 Laser ...characterize, process, and integrate PCF’s into all-fiber high power laser systems. Specifically, a tabletop scanning electron microscope (SEM) and a CO2

  8. Novel high-brightness fiber coupled diode laser device

    NASA Astrophysics Data System (ADS)

    Haag, Matthias; Köhler, Bernd; Biesenbach, Jens; Brand, Thomas

    2007-02-01

    High brightness becomes more and more important in diode laser applications for fiber laser pumping and materials processing. For OEM customers fiber coupled devices have great advantages over direct beam modules: the fiber exit is a standardized interface, beam guiding is easy with nearly unlimited flexibility. In addition to the transport function the fiber serves as homogenizer: the beam profile of the laser radiation emitted from a fiber is symmetrical with highly repeatable beam quality and pointing stability. However, efficient fiber coupling requires an adaption of the slow-axis beam quality to the fiber requirements. Diode laser systems based on standard 10mm bars usually employ beam transformation systems to rearrange the highly asymmetrical beam of the laser bar or laser stack. These beam transformation systems (prism arrays, lens arrays, fiber bundles etc.) are expensive and become inefficient with increasing complexity. This is especially true for high power devices with small fiber diameters. On the other hand, systems based on single emitters are claimed to have good potential in cost reduction. Brightness of the inevitable fiber bundles, though, is limited due to inherent fill-factor losses. At DILAS a novel diode laser device has been developed combining the advantages of diode bars and single emitters: high brightness at high reliability with single emitter cost structure. Heart of the device is a specially tailored laser bar (T-Bar), which epitaxial and lateral structure was designed such that only standard fast- and slow-axis collimator lenses are required to couple the beam into a 200μm fiber. Up to 30 of these T-Bars of one wavelength can be combined to reach a total of > 500W ex fiber in the first step. Going to a power level of today's single emitter diodes even 1kW ex 200μm fiber can be expected.

  9. Many-sided electron beam pumping of high-power lasers

    NASA Astrophysics Data System (ADS)

    Ryzhov, V. V.; Turchanovskii, I. Y.

    1997-04-01

    To study the performance of high power lasers with a many- sided electron beam injection, MUFLON-code has been developed. This code was used to choose and design optimum injection schemes for the excitation of the high-power gas lasers developed at the High Current Electronics Institute.

  10. 980nm diode laser pump modules operating at high temperature

    NASA Astrophysics Data System (ADS)

    Campbell, Jenna; Semenic, Tadej; Leisher, Paul; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2016-03-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. This problem is being addressed by the team formed by Freedom Photonics and Teledyne Scientific through the development of novel high power laser chip array architectures that can operate with high efficiency when cooled with coolants at temperatures higher than 50 degrees Celsius and also the development of an advanced thermal management system for efficient heat extraction from the laser chip array. This paper will present experimental results for the optical, electrical and thermal characteristics of 980 nm diode laser pump modules operating effectively with liquid coolant at temperatures above 50 degrees Celsius, showing a very small change in performance as the operating temperature increases from 20 to 50 degrees Celsius. These pump modules can achieve output power of many Watts per array lasing element with an operating Wall-Plug-Efficiency (WPE) of >55% at elevated coolant temperatures. The paper will also discuss the technical approach that has enabled this high level of pump module performance and opportunities for further improvement.

  11. Laterally injected light-emitting diode and laser diode

    DOEpatents

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  12. Degradation mechanism beyond device self-heating in high power light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Yung, K. C.; Liem, H.; Choy, H. S.; Lun, W. K.

    2011-05-01

    A unique degradation property of high power InGaN/GaN multiple quantum well (MQW) white light-emitting diodes (LEDs) was identified. The LEDs were stressed under different forward-currents. The various ageing characteristics were analyzed for both the electrical response and electro-luminescence (EL) spectra. The Raman spectroscopy allowed noninvasive probing of LED junction temperature profiles which correlated well with the EL characteristics, showing a junction temperature drop during degradation at certain current levels. In addition to the common observations: (1) a broadening of the light intensity-current (L-I) characteristic in the nonlinear regime, and (2) a shift of the current-voltage (I-V) dependence to higher current levels, the EL spectra showed different temperature responses of the two blue emission peaks, 440 and 463 nm. The former was temperature sensitive and thus related to shallow defect levels, while the latter was thermally stable and deeper defect states were involved in the degradation process. This unique selection rule resulted in the enhancement of the blue emission peak at 463 nm after degrading the LEDs. This study suggests that LED device heating is not directly linked to the degradation process.

  13. Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting

    NASA Astrophysics Data System (ADS)

    Krames, Michael R.; Shchekin, Oleg B.; Mueller-Mach, Regina; Mueller, Gerd O.; Zhou, Ling; Harbers, Gerard; Craford, M. George

    2007-06-01

    Status and future outlook of III-V compound semiconductor visible-spectrum light-emitting diodes (LEDs) are presented. Light extraction techniques are reviewed and extraction efficiencies are quantified in the 60%+ (AlGaInP) and ~80% (InGaN) regimes for state-of-the-art devices. The phosphor-based white LED concept is reviewed and recent performance discussed, showing that high-power white LEDs now approach the 100-lm/W regime. Devices employing multiple phosphors for “warm” white color temperatures (~3000 4000 K) and high color rendering (CRI > 80), which provide properties critical for many illumination applications, are discussed. Recent developments in chip design, packaging, and high current performance lead to very high luminance devices (~50 Mcd/m2 white at 1 A forward current in 1 x 1 mm2 chip) that are suitable for application to automotive forward lighting. A prognosis for future LED performance levels is considered given further improvements in internal quantum efficiency, which to date lag achievements in light extraction efficiency for InGaN LEDs.

  14. Hundred-watt diode laser source by spectral beam combining

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Peng, Hangyu; Liu, Yun; Qin, Li; Cao, Junsheng; Shan, Xiaonan; Zeng, Yugang; Fu, Xihong; Tong, Cunzhu; Ning, Yongqiang; Wang, Lijun

    2014-12-01

    A diode laser source with a continuous wavelength (CW) power of 106 W and the beam quality M2 of 14.6 is demonstrated by spectrum beam combining (SBC) of three 800 nm LDAs. With the help of relay optics, a wavelength interval of 0.21 nm and a whole spectrum span of 13.9 nm are achieved, which is almost 10 times narrower than those of the structure without the relay optics. This presents a method to obtain a high power and high beam quality SBC laser source with a narrow spectrum.

  15. LD pumped high-repetition-rate high-power 532nm Nd:YAG/LBO solid state laser

    NASA Astrophysics Data System (ADS)

    Li, Pingxue; Liu, Dongyu; Chi, Junjie; Yang, Chun; Zhao, Ziqiang; Hu, Haowei; Zhang, Guangju; Yao, Yifei

    2013-09-01

    Diode pumped solid state 532 nm green laser is widely required for many industrial, medical and scientific applications. Among most of these applications, high power quasi-continuous-wave (QCW) green laser output is demanded. This can be efficiently achieved through a diode-side-pumped acoustic-optic Q-switched Nd:YAG laser with an intracavity second harmonic generation (SHG). In our experiment, LBO crystal is used for the second harmonic generation of high-average-power lasers of near infrared (NIR) range, though its effective NLO coefficient deff is relatively small. It is because of its high damage threshold (greater than 2.5 GW/cm2), large acceptance angle, small walk-off angle, and the nonhygroscopic characteristic. In this paper, we reported a high-repetition-rate high-power diode-side-pumped AO Q-switched Nd:YAG 532 nm laser. A plane-plane cavity with two rods, two AO Q-switches and the type II critical phase-matched LBO at room temperature were employed. Under the LD pump power of 480 W, 95.86 W at 1064 nm wavelength was achieved when the repetition rate was 15 kHz, and the 532 nm average output power of 44.77 W was obtained, with a pulse width of 111.7 ns, corresponding to an optical to optical conversion efficiency of 46.7% from 1064 nm to 532 nm. The 532 nm average output power was 40.10 W at a repetition rate of 10 kHz with a pulse width of 78.65 ns. The output characteristics of the SHG varying with the pumping current and the pulse repetition frequency (PRF) of the laser were also investigated. Further improvement of the SHG is under study.

  16. A compact high brilliance diode laser

    NASA Astrophysics Data System (ADS)

    Bammer, F.; Holzinger, B.

    2006-02-01

    We explain some technical details regarding time-multiplexing of laser diodes, a method to improve the beam quality of diode lasers, which is still insufficient for many applications. Several pulsed laser diode beams are guided onto a common optical path to superpose the power of the laser diodes while maintaining the beam parameter product of a single laser diode. Pulsed operation of continuous wave laser diodes with average power equal to the specified cw-power of 4 W was tested for 150 hours without failure. We use a fast digital optical multiplexer built up by a cascade of binary optical switches. For the latter we use a Pockel's cell followed by a polarization filter, which allows addressing of two optical paths. Instead of direct on/off-switching we drive the crystals with a harmonic voltage course to avoid ringing caused by piezo-electricity. Up to now an optical power of 10.5 W was generated, 13 W are expected with some improvements. Furthermore we discuss the use of new 8 W laser diodes and the involved implications on driver technology.

  17. High-power, variable repetition rate, picosecond optical parametric oscillator pumped by an amplified gain-switched diode.

    PubMed

    Kienle, Florian; Chen, Kang K; Alam, Shaif-Ul; Gawith, Corin B E; Mackenzie, Jacob I; Hanna, David C; Richardson, David J; Shepherd, David P

    2010-04-12

    We demonstrate a picosecond optical parametric oscillator (OPO) that is synchronously pumped by a fiber-amplified gain-switched laser diode. At 24W of pump power, up to 7.3W at 1.54microm and 3.1W at 3.4microm is obtained in separate output beams. The periodically poled MgO-doped LiNbO(3) OPO operates with ~17ps pulses at a fundamental repetition rate of 114.8MHz but can be switched to higher repetition rates up to ~1GHz. Tunabilty between 1.4microm and 1.7microm (signal) and 2.9microm and 4.4microm (idler) is demonstrated by translating the nonlinear crystal to access different poling-period gratings and typical M(2) values of 1.1 by 1.2 (signal) and 1.6 by 3.2 (idler) are measured at high power for the singly resonant oscillator.

  18. Development of high coherence high power 193nm laser

    NASA Astrophysics Data System (ADS)

    Tanaka, Satoshi; Arakawa, Masaki; Fuchimukai, Atsushi; Sasaki, Yoichi; Onose, Takashi; Kamba, Yasuhiro; Igarashi, Hironori; Qu, Chen; Tamiya, Mitsuru; Oizumi, Hiroaki; Ito, Shinji; Kakizaki, Koji; Xuan, Hongwen; Zhao, Zhigang; Kobayashi, Yohei; Mizoguchi, Hakaru

    2016-03-01

    We have been developing a hybrid 193 nm ArF laser system that consists of a solid state seeding laser and an ArF excimer laser amplifier for power-boosting. The solid state laser consists of an Yb-fiber-solid hybrid laser system and an Er-fiber laser system as fundamentals, and one LBO and three CLBO crystals for frequency conversion. In an ArF power amplifier, the seed laser passes through the ArF gain media three times, and an average power of 110 W is obtained. As a demonstration of the potential applications of the laser, an interference exposure test is performed.

  19. Percutaneous diode laser disc nucleoplasty

    NASA Astrophysics Data System (ADS)

    Menchetti, P. P.; Longo, Leonardo

    2004-09-01

    The treatment of herniated disc disease (HNP) over the years involved different miniinvasive surgical options. The classical microsurgical approach has been substituted over the years both by endoscopic approach in which is possible to practice via endoscopy a laser thermo-discoplasty, both by percutaneous laser disc nucleoplasty. In the last ten years, the percutaneous laser disc nucleoplasty have been done worldwide in more than 40000 cases of HNP. Because water is the major component of the intervertebral disc, and in HNP pain is caused by the disc protrusion pressing against the nerve root, a 980 nm Diode laser introduced via a 22G needle under X-ray guidance and local anesthesia, vaporizes a small amount of nucleous polposus with a disc shrinkage and a relief of pressure on nerve root. Most patients get off the table pain free and are back to work in 5 to 7 days. Material and method: to date, 130 patients (155 cases) suffering for relevant symptoms therapy-resistant 6 months on average before consulting our department, have been treated. Eightyfour (72%) males and 46 (28%) females had a percutaneous laser disc nucleoplasty. The average age of patients operated was 48 years (22 - 69). The level of disc removal was L3/L4 in 12 cases, L4/L5 in 87 cases and L5/S1 in 56 cases. Two different levels were treated at the same time in 25 patients. Results: the success rate at a minimum follow-up of 6 months was 88% with a complication rate of 0.5%.

  20. Highly reliable, high-brightness 915nm laser diodes for fiber laser applications

    NASA Astrophysics Data System (ADS)

    Xu, Zuntu; Gao, Wei; Cheng, Lisen; Luo, Kejian; Shen, Kun; Mastrovito, Andre

    2008-02-01

    High brightness, high power, and highly reliable 915nm InAlGaAs laser diodes with optimized design are reported in this paper. The laser diodes exhibit excellent performance, such as, high slope efficiency, low threshold current, low voltage, etc., which make them suitable for high brightness operation. The aging test data shows no failures during aging test and more than 220,000 hours estimated lifetime for 90um emitter laser diodes at 8W CW operation. The aging test with the same emitter size at higher stress conditions showed sudden failure that corresponds to catastrophic optical damage (COD) on the facet. A novel large optical cavity (LOC) epi-structure with flat-top near field intensity distribution was developed. The maximum output power is up to 23W under CW testing condition at 25 °C, which is highest level achieved so far. The output power is limited by thermal roll over and there is no COD occurring. This data shows Axcel's technologies can further increase the brightness to over 110mW per micron for 915nm laser diodes. This type of laser diodes is essential for pumping fiber lasers to replace CO2 lasers for industry applications.